- (2004) Teoria geral dos signos. Como as linguagens significam as coisas, 4i San Pablo: Thompson

Tenhaaf, N. (1996) "Mysteries of the bioapparatus" en Immersed in Technolog A. A. Moser y D. MacLeod (eds.), 51-72. Cam

Abstract

Among the theorists of virtual environments, the ambivalence of embodi ment and disembodiment, as well as the psychical and mental effects experienced in virtual environments, is much discussed. The dichotomy of the "real" vs. the "virtual" has been called "the representational dilemma of cyberspace". Most intriguing in this dilemma is certainly the topic of the limits of the body in virtual reality experiences. In fact, it is a dilemma that challenges semiotics. This paper proposes that the Peircean concepts of immediate and dynamic object can help to understand the complementarities, mixtures, and interchanges between the carnal bodies and the alternative bodies as a way of overcoming the too simple dualisms of the real vs. the virtual, the natural vs. the artificial, or the material vs. its specters.

Lucia Santaella es profesora titular de Semiótica y directora del Centro de Investigación en Midias Digitales en la Universidad Católica de San Pablo, Brasil. Sus más recientes intereses de investigación están dirigidos hacia la semiótica cognitiva y las culturas tecnológicas. Tiene 26 libros publicados y es la editora de 7 libros en el área de semiótica, arte, cultura y metodologia. Ha publicado más de 200 artículos en periódicos y libros en Brasil y otros países. E-mail: lbraga@pucsp.br

AMBIENTES INTELGENTES: BODYARCHITECTURE

REJANE CANTON

Mundos virtuais são coleções de informação binária geradas em computador. Para aceder perceptiva e cognitivamente a esses mundos você deve utilizar uma interface tecnológica que possui, no paradigma corrente dominante, a capacidade de produzir em você um efeito perceptivo do tipo: con-vencê-lo de estar 'datilografando' uma página virtual em uma tela retangular.

O primeiro sistema comercial a simular uma mesa de trabalho em um monitor de computador foi a estação de trabalho Xerox Star (1981), seguida pelo Macintosh da Apple (1984). Da perspectiva do design e do modo de operat, a Star e o Macintosh representaram, para a época, um importante avanço das interfaces humano-computador. Com o simples 'toque de um dedo', via dispositivos de manipulação direta - mouse, teclado ou caneta ótica - ícones e janelas poderiam ser ativados, possibilitando a interatores não especialistas desempenhar tarefas computacionais complexas.

A idéia desktop ou GUI (Graphics User Interface), como ficou conhecida, logo se disseminou. Também, em parte, devido ao poder persuasivo da Microsoft Windows, milhōes de computadores pessoais nas versōes 'de mesa’ ou portáteis (notebooks, laptops, palmtops) foram vendidos, o que a transformou no paradigma dominante das interfaces humano-computador.

O problema com as GUIs é que, da perspectiva do interator, o computador continua a ser um universo em si mesmo. Apesar das aparências, só podemos realmente interagir com ele por meio de linguagem complexa, um

[^0]exercício que, na maior parte dos casos, nāo tem nada a ver com as tarefas que desejamos que ele desempenhe.

Além do problema interface humano-máquina, outra questão impor tante é que o modelo 'computador pessoal' não parece abarcar o real poten cial da tecnologia da informação. Segundo o professor do MIT, Randal Davis (Kahn 2001: 110), o estado da arte dessa tecnologia é um acidente his tórico: "alguém teve a brilhante idéia de ligar uma máquina de escrever a um computador e, desde então, temos datilografado. Isso é bobo. Não datilogra famos para falar uns com os outros, por que temos que datilografar para nos

1. BITS EM TODA PARTE

Com o objetivo de superar o modelo desktop, inúmeros projetos (artisticos e científicos) se empenham em encontrar uma possível solução para o problema. Uma dessas propostas -que acabou se transformando em uma importante tendência tecnológica - está empenhada em 'colocar' o interator dentro de um mundo computacional, algo similar ao que aconteceu com o ator Jeff Bridges, que foi aspirado para dentro do mundo computacional no filme Trom: uma odisséia eletrônica. Nesses sistemas -cujo modelo exemplar são os sofisticados sistemas de realidade virtual - a idéia central é criar dispositivos que permitam ao interator imergir e interagir, no melhor dos casos, efetivamente em um mundo simulado.

Em pesquisas de realidade virtual, o locus das interfaces se alterna em 2 direçōes principais: em interfaces wearables ou em ambientes imersivos. No primeiro caso, a idéia é 'embrulhar' você com uma vestimenta composta de uma matriz de sensores-efetores - uma malha de pequenos detectores táteis, associados a vibradores de diversos graus de dureza - centenas deles por cm^{2}. Um exemplo desse tipo de interface é o macacão tátil que está sendo desenvolvido pelo engenheiro Danilo de Rossi, na Universidade de Pisa.

Além da sua pele, também seus ouvidos, olhos, nariz e outras partes do corpo já podem ser interfaciadas, isto é, estendidas para receber e transmitir exclusivamente informaçōes computacionais. No cenário mais exótico, uma parte sua é transformada em 'hardware' (o que, do ponto de vista técnico, significa implantar chips silicônicos diretamente no seu corpo; por exemplo, no seu sistema nervoso central) de forma a fazer seu cérebro interagir diretamente com o computador.

A primeira interface cerebral humana, realizada com sucesso, foi implantada, em 1998, no cérebro de Johnny Ray. Essa técnica foi desenvolvida,
ja em meados de 1990, pelos neurocientistas Philip Kennedy, Roy Bakay e equipe, filiados a Emory University, de Atlanta. Embora a técnica seja ainda muito rudimentar, o paciente Ray (que após sofrer um derrame cerebral ficou totalmente imobilizado), de acordo com o relato dos cientistas, pode mover um cursor na tela através de padrōes elétricos que correspondem a, por exemplo, pensar em mover um braço (vide Hockenberry 2001: 96).

Outra opção menos invasiva é entrar em um hardware externo transparente, nas 'cavernas' imersivas ou CAVEs (CAVE Automatic Virtual Environment). Essas interfaces são salas cúbicas de dimensōes variáveis (por exemplo, a do Laboratório de Sistemas Integrados da Escola Politécnica da Universidade de São Paulo possui $3 \mathrm{~m} \times 3 \mathrm{mx} 3 \mathrm{~m}$), cujas paredes são formadas por telas de projeção panorâmicas. Sobre as telas, múltiplos vídeo projetores, sincronizados por computadores, criam um campo de projeção único que envolve os interatores com imagens e som 3D. Nesses sistemas, você utiliza um tipo de óculos estereoscópico que serve para criar a sensação de tridimensionalidade. O dispositivo de interação é uma espécie de batuta de controle (esta versão, por exemplo, é utilizada na caverna do centro Ars Eletrônica, em Linz, na Áustria) que serve tanto para gerar uma perspectiva subjetiva da cena, quanto para interagir com os objetos virtuais. Ainda outra interface de posição, que está sendo investigada pela University of North Carolina, em Chapel Hill, é um macacão com sensores ópticos, que são interpretados por um conjunto de diodos espalhados pelo ambiente. Com esse dispositivo, ao andar ou se mover na caverna, seus movimentos são mapeados, o que serve para informar ao computador a posição e a orientação do seu corpo.

Essa tecnologia (cujo nome faz referência ao "Mito da Caverna", na República de Platão) foi desenvolvida pelos pesquisadores Thomas DeFanti, Daniel Sandin e Carolina Cruz-Neira, em 1992 (data da primeira demonstração pública, ocorrida na convenção de computação gráfica SIGGRAPH'92), no Electronic Visualization Laboratory da Universidade de Illinois, em Chicago. Vale destacar, contudo, que a idéia de uma sala midiática que responde às ações de um agente humano não é nova. Na ficção The Veldt (1950), Ray Bradbury descreve um ambiente capaz de ler a mente de crianças e, a partir dessa informação, criar uma simulação hiperrealista a ponto de transformar essa fantasia em experiência.

Do ponto de vista do usuário, todas essas interfaces produzem um efeito comum: basta que o 'projecionista ligue a tomada' e a sua percepção da tecnologia como um objeto separado -uma ferramenta - irá desaparecer. Você terá a impressão de mergulhar em um outro mundo.

Enquanto a realidade virtual tenta criar um mundo dentro do computador a partir da implementação de um enorme aparato de interfaces que pos-
sibilitam simular o mundo físico, uma outra tendência tecnológica (supostan mente oposta) aposta na sobreposição do espaço virtual, inclusive o cibestapaço, ao mundo que já existe. Nesse caso, o desafio é 'virtualizar' o espaço fi que já existe no lugar de criá-lo dentro de um computador

De acordo com essa tendência, um dos problemas dos sistemas de realidade virtual é que o 'mundo exterior' deixa de existir para o interator. Não po po demos ver coisas ou pessoas que não estejam 'linkadas' ao sistema e a falta de ligação entre o ambiente físico e o mundo dos dados - os átomos e os bits nos obriga a interagir em paralelo, isto é, em um espaço ou em outro,

A idéia de sobrepor o espaço virtual ao mundo que já existe foi primeir sugerida por Mark Weiser (1991). Cunhada com o nome de computação ubíqua (ubiquitous computing), essa proposta tem como foco de investigação a implementação de tecnologias que possibilitariam trazer a virtualidade dos dados computacionais - inclusive formas de alteração, processamento e análise desses dados - fora, para o mundo físico.

Segundo Weiser, uma forma de pensar a ubiquitous computing é imaginar um novo design para os computadores (nada a ver com o modelo Sunflower de Steve Jobs, é claro). Desenhados fora de suas caixas plásticas, os computadores 'ubíquos' são projetados para causar a sensaçăo de que vivemos em um mundo estendido, repleto de máquinas invisíveis. Em tal mundo, usuá rios teriam a sua disposição um network composto de centenas de sistemas interconectados e desenhados para satisfazer suas necessidades semióticas de informação, comunicação, serviços e entertainment.

Como? Imagine chips de computadores embutidos em todos os objetos do cotidiano. Canetas inteligentes. Microfones inteligentes. Tijolos inteligentes espalhados pelo ambiente e interconectados por meio de um network de sensores que armazenam dados sobre a identidade, a localização e o estado de milhares de objetos. Um microfone 'inteligente' pode, por exemplo, informar (sobre o seu estado) 3 dados distintos: 1) sou um microfone; 2) meu estado está ok, isto é, estou funcionando; 3) estou em tal lugar. Para que precisamos disso? De acordo com a proposta, isso muda tudo. Com esses dados, um microfone pode informar que foi comprado por tal valor, de tal fornecedor, em tal data; que foi desenhado por fulano, fabricado por tal companhia e até, no caso de extravio ou quebra, auto solicitar sua subscituição ou reparo.

Em 1999, o ISTAG (grupo de assessoria do Programa de Tecnologia da Sociedade da Informação, da comunidade européia) lança uma espécie de update dessa proposta. O projeto do ISTAG, que foi cunhado com o nome de Ambient Intelligence (AmI ou inteligência ambiental), objetiva conectar
${ }_{3}$ computação e a comunicação ubíquas a interfaces customizadas para o humano.
Esse programa, por meio de quatro cenários hipotéticos especula como quais tecnologias da informação serão utilizadas e experimentadas em 2010 Nas quatro visōes, humanos imersos em uma infraestrutura comunicacional (fixa e móvel) interagem com centenas de dispositivos físicos interconectados. Ou seja, para o ISTAG, em 2010, no lugar de você ter que se sentar à frente de uma máquina, máquinas estarāo à sua volta, em todos os lugares. Mais ainda, interaçōes entre você e um tal sistema serão possíveis através de interfaces naturais ao humano. Interfaces capazes de nos reconhecer, de responder as nossas presenças e de aprender nossas preferências.

Outras iniciativas que têm seus esforços voltados para a pesquisa e o desenvolvimento de interfaces humano-computador altamente interativas são as tangible bits e augmented reality. Em tangible bits, o grande desafio é transformar objetos do cotidiano como paredes, portas, janelas, mesas, livros, luzes, e até o fluxo do ar e da água em interfaces computacionais. De acordo com o diretor do Tangible Media Group do MIT Media Lab, Hiroshi Ishii (Ishiie e Ulilmer 1997), as interfaces tangíveis possibilitarão a você acessar e manipular dados digitais (vídeos, gráficos e modelos 3D) utilizando nada mais que o conhecimento inato que você adquiriu manipulando objetos do mundo físico: "If you can pick up a mothball, you can run Ishii's computer".

O 'computador' desenvolvido por Hiroshi Ishii e equipe é um pequeno cômodo 'aumentado' com interfaces tangíveis (por exemplo, luzes, sombras, sons, fluxo de ar e de água), controladas por um sistema computacional. Nesse espaço, padrōes de luz, projetados sobre uma superfície de água corrente, refletem no teto do laboratório para comunicar as atividades de um hamster de estimação do laboratório. Outros signos visuais (por exemplo, mudanças na iluminação) e sonoros (por exemplo, canto de pássaros e trovōes) anunciam o recebimento de e-mails ou outras informaçōes do tráfego da Net que podem ser revistas, atrasando-se os ponteiros de um relógio físico.

Em augmented reality, a hibridização dos espaços físico e virtual é alcancada por meio de dispositivos que possibilitam justapor gráficos, textos e outros dados computacionais à percepção que o usuário tem do ambiente físico. Boa parte dessa pesquisa focaliza a construção de interfaces de visualização transparentes (see-through displays) que detectam a posição e a orientação da cabeça do interator. Com essa informação, dados computacionais (por exemplo, informaçōes visuais e sonoras) podem ser alinhados com o ponto de vista que o usuário tem do ambiente circundante, o que possibilita ao sistema fornecer-lhe uma visão 'aumentada' dos objetos. Por exemplo, você pode imaginar utilizar uma interface que se parece com um par de óculos solares para
ver gráficos ou textos que indicam - por meio de visão do tipo raios mo operar, manter ou reparar um equipamento quebrado (vide raios X - co.

2. BODYARCHITECTURE

Inspirada por essas idéias, estou desenvolvendo um ambiente inteligen te que denominei Bodyarchitecture. Trata-se de uma plataforma de pesquis projetada para investigar diferentes formas (natural e multimodal) de interação humano-computador. Esse projeto envolve a pesquisa e o desenvolvimento de tecnologias (por exemplo, sistemas de visão computacional, reconhecimento de voz e gestos) que servem para conectar espaços midiáticos e físiciao que seus habitantes são, fazem ou dizem. O sistema foi concebido para ser invisível ao usuário. Você poderá comunicar e interagir com esse ambiente de maneira natural, isto é, de modo intuitivamente semiótico.

Um exemplo possível de interação usuário-sistema seria: Você entra em uma sala. Ela possui quatro metros de comprimento por quatro metros de largura por quatro metros de altura. As paredes, o piso e o teto são brancos e bidimensionais. Ao caminhar nesse espaço, a força de seus passos altera o equilíbrio do ambiente, até você alcançar o centro. Nesse momento, as atividades de seu corpo são transcritas para as paredes, isto é, as paredes começam a (ou parecem) se mover de forma fluida, tridimensional. Além das modificações geradas pelo dispositivo de reconhecimento de gestos, outra variável prevista é um sistema de áudio estéreo (invisível) que 'extrai' sons de seu corpo - seu batimento cardíaco, o ritmo de sua respiração, a freqüência de sua voz. Acrescente os dois sistemas e você poderá imaginar o tipo de impacto arquitetônico que a crescente complexidade das modificações pode causar. Esse sistema também suporta interações via linguagem falada, o que significa que por meio de comandos de voz você poderá não somente alterar a forma do ambiente circundante, mas também controlar, comandar, explorar e armazenar todos os dados que o sistema produz. Com essa aplicação você poderá, por exemplo, comandar para que as paredes 'desapareçam' e o sistema the fornecerá informações externas em tempo real. Nessa aplicação, cenas do mundo externo são capturadas e convertidas para sinais de vídeo digital utilizando como dispositivos de input tecnologia de mixagem de vídeo, similar aos sistemas de efeitos especiais empregados pela TV.

A instalação física de Bodyarchitecture é uma sala de dimensōes $4 \times 4 \times 4 \mathrm{~m}$ mobiliada com 6 projetores LCD (4 para as paredes, 1 para o piso e 1 para o teto), 10 videocâmaras (5 dedicadas para o sistema de visão computacional e 5 dedicadas para capturar informações externas), 1 sistema de áudio es-
téreo e e 1 conjunto de dispositivos controlados por computador (por exemplo, sensores de detecção de movimento, temperatura e pressão). As workstations que desempenham a computação do ambiente, o 'cérebro' do sistema, estāo projetadas para estarem localizadas em uma área externa. Este minha cabeça.

Figura 1. Projeto da instalação.

3. JUNTANDO AS PARTES

Bodyarchitecture iniciou em 2001 como um projeto de pesquisa. Os primeiros estágios de seu design focalizaram a pesquisa dos sistemas de visão computacional e reconhecimento de fala.

A segunda etapa focalizou a construção de uma infraestrutura. Em novembro de 2003, o artista e arquiteto José Wagner Garcia me convidou para implementar uma CAVE portátil, imersiva e interativa. Uma vez que o projeto Bodyarchitecture correspondia parcialmente à proposta (e experimentação é essencial para a evolução de um novo projeto), eu decidi utilizar essa oportunidade como um teste de prova do conceito. Até o presente a arquitetura desse protótipo utiliza: 1) um cluster de PCs; 2) software custom made; 3) dispositivos de traqueamento do tipo 3D bird e DataGlove; 4) e um dispositivo de visualização portátil (3 paredes e um piso de $3 \times 3 \times 3 \mathrm{~m}$).

Etapas de desenvolvimento subseqüentes serão dedicadas à conexão dos vários componentes da sala (e.g., sistemas de tracking e reconhecimento de fala), mais precisamente, entre eles e entre os bancos de informação internos e externos (inputs gerados pelo interator, pelas câmeras ou por dados da Internet). Para alcançar esse objetivo, será desenvolvido um software que permita
a sala operar em tempo real. Os primeiros estágios de design e construção de Bodyarchitecture objetivam a pesquisa e o desenvolvimento dos sistemas de vi. são computacional e reconhecimento de fala.

Referências bibliográficas

FEINER, S. K. (2002) "Augmented reality: a new way of seeing", Scientific American
286 (4), 34-41. (4), 34-41.

Hockenberry, J. (2001) "The next brainiacs", Wired (August), 94-105
ISHII, H. e Ullmer, B. (1997) "Tangible bits: Towards seamless interfaces between people, bits and atoms" em Proceedings of CHI'97, 234-241. New York: ACM Press

KAHN, J. (2001) "Let's make your head interactive", Wired (August), 106-115.
WEISER, M. (1991) "The computer for the 21 st century", Scientific American 26
(3), 94-104.

Abstract

This paper provides an overview of a current research project on intelligent environments. The aim of intelligent environments is to study and develop new ways of moving beyond the dominant model of Graphical User Interface (GUI). To illustrate the key concepts, an artistic prototype, called Bodyarchitecture, is introduced. The paper explores three main technological domains: virtual reality, augmented reality and other projects such as ubiquitous computing and tangi-

Rejane Cantoni [www.rejanecantoni.com; rcantoni@uol.com.br] é artista e pesquisadora de sistemas de informaçăo. Doutora e Mestre pelo Programa de Comunicação e Semiótii ca da PUC-SP; Mestre em Visualização e Comunicação Infográficas pelo Programa de Études Supérieures des Systèmes d'Information da Universidade de Genebra, Suíga; c Professora do Departamento de Ciências da Computação da PUC, São Paulo. Sua pes quisa focaliza a engenharia dos sistemas de realidade virtual, instalaçōes interativas com dispositivos de aquisição e manipulação de dados em ambientes sensorizados e automação. E-mail: rcantoni@uol.com.br

NaUFRAGIOS COLECTIVOS Y PERSONALES EN EL CINE ARGENTINO CONTEMPORÁNEO

Geoffrey Kantaris

En 1989, siete años después de la Guerra de Malvinas y el colapso de la dictadura, se filmó en la Argentina una película con un título evocativo, Ưltimas imágenes del naufragio, dirigida por Eliseo Subiela. Ubicada históricamente en 1982 o 1983, pero reflejando también las incertidumbres y crisis de la presidencia de Raúl Alfonsín, es una película estilizada que relaciona el sentido de desintegración social de los años de la hiperinflación y la incertidumbre política con las narrativas colapsadas de un escritor devenido vendedor de seguros, que se encuentra a sí mismo incapaz de entender los hilos de la pobreza, el crimen y la disolución de las relaciones familiares en la neblina de una ciudad cuyos límites son tan inciertos como las vidas de sus náufragos habitantes. La metáfora del naufragio iba a probar ser profética, aunque la idea de que esas serían las últimas imágenes del naufragio social fue prematura, y esta es la razón del título de mi artículo. A través del mismo, quisiera sugerir una paradoja temporal entre lo tardío y la repetición, que nos enviará rápidamente al fin del milenio, a películas hechas con una estética radicalmente diferente de la de Subiela, pero que repiten el sentido de naufragio personal y colectivo que la Argentina está experimentando todavía hoy.

He argumentado en otro lugar que Últimas imágenes y su todavía más famosa contemporánea Sur (Solanas 1988) fueron emblemáticas de la pérdida de esperanzas en la modernización nacional argentina -suspendida desde

[^0]: 2006 Editorial Gedisa (Barcelona) 147-154

