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VALORES EXCEPCIONALES DE LAS FUNCIONES 

ENTERAS O MEROMORFAS REPRESENTADAS POR 

l SERIES DE TAYLOR LAGUNARES 

Lema:AD ABSURDUM i 

INTRODUCCION 

1, R . : do1 : 
) fue quien por primera vez, sefialo que debia Hadamard (Tj ( 

existir una relación entre los valores excepcionales de una fune l 

ción entera y las propiedadés lagunares de la serie de Taylor 

que la representa, Luego se ocuparon cle este tema Fejer 16, , Bi— l 

ernacki ÍZ\(Z) y P8lya [_l}j , pero los métodos utiligados por es- ’ 

tos autores no les nermitieron obtener resultedos precisos, Ha— I 

ce algunos afios, sin conocer nlnguno de los trabajos de los au'ho-—i 

res citados anteriormente, me ocu*)e de este tema, obteniendo, me— 

diante un me’codo bast}ante simple unos resultados sumemente pre— J 

cisos. Iuego continue puEX trabajando sobre el mismo tema obte— \f 

niendo algunos resultados immejorables en el sentido de que la 

condición lagunar no podia debilitarse sin que el resultado de— 

jase de cumplirse,Además extendí la teoría 8a las funciones mero— 

morfas. 

En esta memoria,adema;s de verios resultados ineidítos, .expon- 

zo asimismo algunos de equellos resultados dispersos en mis memo— 

prias anteriores, a fin de que esta memoria contenga un estudio lo\ 

mas completo posible del tema, con los res ultados ce,.‘ostrados pon 

£ | 
procedimientos similares. 

En el primer oapl‘t.ulo me ocupo de las funciones da orden fi=- | 

nito, donde, como es habitual,los resultados son mu.ché mas preci-— 

sog que para el orden infinito, que es tudismos en el segundo ca- 

prl;ulo. 
| 

Rntes de dar en forma imprecisa le idea comfln contenida en 

Jos resultados de esta memoria debemos dar el gignificado de al- 

gunas notaciones, al mismo tiempo deremos otras que nos seran u—l 

tiles en los caplyulos siguientes y concretaremos la terminologia 

que emplearemos en la totalidad del trabajo. 



- «i) definiremos, _egu.n es costumbre, la densidad maxn_ma D de t/:fl 

. . . 

Muy a menudo apareceran en esta memoria expresiones de la for- 

ma L 

. Cf ) i y . . 

en ellas la suces:l.ónfq},m% () representara siempre una sucesión 

de numeros enteros tal que 

I . e _ 
d5 NN &R :*//:2 1 &% ) i 

la condición O =/ p, no impone ninguna restricción, puesto que na- — 

da impède que &, 7 O: 
I 

Ahore representando por / i /) el mayor de los H tales que f h q i 

ac t d pta b), 1 
EA A 

È v 
Por otra parte, en el cago del orden finito una .Eunc:nón —/(f 

i 

t al que ' 

’\Í /Q l:[!, ya L 
y 

z J 

donde Ó es un numero finito, seré làamada un orden precisado, y 

la expreb:l.ón )’” 7Y qa repreentaremos siempre en el cap‘itulo pri-— 

mero por( í ;O_\. Entonces, si la ;.unc:Lón caracteristica de Nevanli- 

;k J verifica 
L É 

nna -’__,'; d ).de la función meromorfa £ 

diremos: 



Vï 

Ér 
12.- si f S0, que F L }’\ es de orden precisado inferior af/‘( =0 

22,=- 81 Oz )/x“g;_,que’; 2z ) es de orden precisado equivalente a 

Oy 
[ BRSNS r. 

39,- sif- < ,que ; . Z_) es de orden precisado superior a 7( ( ) 

Cuando; L'-ï\_, es entera, escribiendo 
L 

(1) 

donde Dé 3 3 5 ]len la circunferencia 

P , podra suceder que - pero siempre que J g re- 

sultará 4\ O , ¥ 8a la inversa; y del mismo modo resulta fácil 

demostrar que las condiciones 7. f’— LRy O ,ÉA,,(OL' son equi- 

valentes, Por lo tanto, en el caso de funciones enteras, para de- 

finir les tres clases que hemos definido en relación al orden 

precisadoF ( }>) hubiesemos podido partir de 4/( , Y la clasifica- 

ción hubiese coincidido con la anterior, Finalmente, cuendo (1) 

se cumpla diremos que la función enuera7 (Z)es de tipo 4,del 
Z =5 

orden precisado, P. 

En el caso del orden infinito utilizaremos los ordenes de K. 

L. Hiong 28_,., que,como en este caso únicamente estudiremos fun- 

ciones enteras, definiremos del siguiente modo: Sea “O ( 

función que tiende al infinito, ahora pare sefalar meyormente 

que se trate del orden infinito (y lo mismo haremos en la tota— 
(l 

lidad del capl'l.ulo segundo) represenuaremos la IquClOI!'f,F 

por WL, y si P\_P)us tal que - /17 ") es una finción convá 

7 
xa de //77( f2 que adema% verifica 

q dto ci) 

L 

] g 8 

‘diremos que la función entera 7[();) es de orden infinito ()([ ) 



Ua EE 

A ò f , h - (cuéndo existenverios ordenes P (/ 7 , f CO ) 9 D (P)suee, las expre— 

siones correspondientes vendrdn representadas por j/ C fU 4[5 (17, 

jaeees). Siguiendo la costumbre le expresión 0( /) representa 

cantidades que tienden a cemo cuando la variable tiende a un de- I 

terminado fimiá:e, y de modo parecide [/ I /) representara cantldades; 

que permanecen acotadas cuando la veriable tiende asimismo a un i 

limite. Caso de que exista posibilidad de confusión sefialaremos 

a que variable y limite se refiere estas expresiones, pero gene- i 

ralmente no haremos ninguna indicación, j 

Finá_mente, siguiendo a Nevanlinne, la expres i.ón "’/‘}'L" ) reprea 
l 

=enuara el número de polos de 7 2 )} contenidos en el c:chulo/í/ I 
i = P 3 y por lo tanto, L(/04/ Jrepresentara el número de ceros de Ll G 

f' (% ) contenidos en el mismo círculo. 
Yt 
U 

La idea general de los teoremas de esta memoria podemos ahora \ 

explicarla en forma algo imprecisa como sigue: Sea /—(9) una fun- : 

ción entera de orden Í) y de tipo 1 del orden precisado ( /2V slos 

teoremas cl ás-loos permiten (al menos parg los valores de / pro- 

ximos .a un entero) la existencie de un par excepcional / 

t2l que la expresión 

| 

| 
de funciones enteras de orden precisado inferior a [/ (/) ' 

| 

| I 

i ///m 
pace 

É a i . 
toma un valor mucho menor que para cualquier otro par ‘f; É_a))áp y ’ 

7 L.{) de funciones enteras de orden precisado inferior á,«)[ r) . 

Del mismo modo, si/ ‘_}J es de orden infinito, los mlsmoé teoremas 1 | 

clacmos permiten la existencia de un par)é j\f v y/ () ) de fun—\ 

ciones enteras de orden inferior, para el cual i 

M/; 2 f‘,/’ | 

da WIS 7 

Los teoremas contenidos en esta memoria afirman que cuando los ex—", 

ponentes de la serie de Taylor de r/ 2 J verifican ciertas condlclo\ 

nes lagunares desaparecen la posibilidad de la existencia del par j 

excepcional, 



j 
L 

CAPITULO T 

ORDEN FINITO 

1,1.~ En varias de mis memorias anteriores, precisando un resul 

tado de Wiman _Í_l6,/ obtuve un lema muy interesante sobre el compor- 

temiento de las funciones enteras de orden entero que admiten un 

valor excepcional: luego extendí este resultado a las funciones 

meromorfas de orden entero que toman dos valores en un conjunto de : 
, i 

puntos relativemente poco numeroso . Bosteriormente demostre estos — 

resultados para el caso en que él orden no es entero., A continua- — 

ción daremos el resultado para las funciones enteras,el cual nos 

, ) 
permitire demostrar,en el numero siguiente el resultado general 

de que acabemos de hablar. 

LEMA l.- Sea f'( juna función entera de orden ÉZ///,(') gd — 
I 

orden prec:..,ao.o equivalenjie o superior a P( ). Si i 

j 
Ld ' . 

donde/? / U ) es una constente que de ende unicamente de O ; enton- | 
CLP- q p ¢ í enton= | 

5 =7, 3 cx 
ces, parall Rajac b DR y =2 se cumple 

(l’lil) 

é E ha / - . - 

\B 0040 U (N ' L J 

w in es el entero mas proxrno a O, y donde como kabltualmen‘l:e i 

OC4) representa una can'tldad que tiende a cero, en esté caso cu- 

ando }\’—r/“, 

Ademas, si existe una sucesión : LÍ 5 { )) ” 

/1 AÉ/Í’(I’\-.UÍ ‘f -_,/(’ l 

7202 Í,f\ q 
entonces z 

uLa (r BoN 

donde B2) 3 / cusndo X - 1), 



, 
DEMOSTRACION.- Sea g/ el entero que verifica 

7/ pPs l; +4, 
L 

segun unos resultados cu.mamerrl:e conoc:.dos podemos escribir 

(3,1,3) i eyt ’“"’ñí (7 ) i b COENCXTVR ò o d) 2ty f C2 3 £ L ?_\(y__r_/ 

™ . . /’ S oL r E 

donde ,r;«, es un entero positivo o nulo, / ('_«}\)u.n polinomio de gra-— 

L 
o>~ 

do /_] como maximo que escribiremos 

%( - //@ 3%‘# a E P 

(/[,p\'es ¢l factor primerio de Weierstrass, o sea i 

l da f L ‘ 
£ f ' - L @,J/,-'Lf .u,)z%/%( L Z ) 

y donde finalmente 

nulos dell (3 3 ) . 

Supongamos primeremente que }/ < 5»}/+-7en'bonces evidentemente 

<<
 

/ 

,'
\\
/‘
 P 

/;F $ representa la sucesión de los ceros no 
uh . 

4 

no _ç,_}f puesto que, segun las hinótesis que hemos adm:l.tldo, 1 

;{/3 
Como 

7 (A = jt 
(1,1,4) ,//,// 7 -I L 

en virtud de (1,1,3) tendremos . N, 

GEO 
CR CA q T O0 s +, 

donde 7)), es el numero de los í L que verlf‘loan/ 5 

fl\( U ) representa la parte real de Lf a.demas, se;nm hemos in- 

dica do en el enunciado del lema 1, l’arepresen'ba)/’ }. Por lo tan- 

to, XHEESRèreumes si ponemos j 



¥ puesto que 

RCI -2 TN (R pladeeie a CR Y) 
\ 

donde l Ck A‘) /Z //; f/ dependen Únicamente de K y de /2 3 teni- 

endo en cuenta que, en este caso segun hemos dicho 90 — «/' 3 Pe— 

sul'bara finalmente 
| 

/’;/7’/ /f/f SET /—( _ \IF R pna r i RAA 
o = 

En segundo Lugftr supongamos que ,f ]”"’ f; sen este caso teg_ï 

dpemos 777 — 9,4/(7) Aplicando las i‘omulas (1,1,3) y (1,1,4) po- 

dremos escrlblr la (1,1,5) en otra forma, a saber: . j 

J('t:’i//,r/ 

por lo tento, si ponemos oo 
_/ \—7 L 41 

0 v O e — j E 

Y \/}’Í J2 Brrd g. 
5 p K=71,T L 

y recordando la (1,1,6), y que, 'en este caso,, /-7, de nuevo 

tendremosgs L 

7/ feaje 
(ad 7)€ / paa 

. ft’) £l “/\ /“! ‘ 
en consecuencia, esta desigualdad se cumpllra en la to'balldad de 



los casos. Para demostrar la primera parte del lema nos falta uni- 

camente demostrar que, con las hípo“tesls admitidas, se cumple 

'í_/)_g;_x., (P%—o(_/;)( CR) 

cuando R — X, : i 

Segun Blumenth&l (3, note II] y Denjoy f4j el factor primario | 

de Beierstrass cumple ) H 

) iE tad yic O J [ belE, st el 
(1,1,8) è t 

ha : ft qad L dgl EE M, | 
donde :’4 y £ son dos constantes que dependen unicamente del va— { 

~ 

lor del entero [, s para una Emiución acotación de estas constan%ev 

tes puede consultarse los trabajos de Blumenthal y Í)anjoy que aca- 

bamos de citar. 
3 

Evidentemente recordando la (1,1,6), y supèniendo f\l sufici= 

entemente grande, las (1,1,8) nos perm:d:en afirmar 

RV q 
fo =t (,/7}%/ (/) tC s pr 

Supongamos que , para ll'):l; Í'r , se cumple 

M CE / SAU CP) 
resulta de la acotación de Í'Lf f que hemos dado dltimemente 



P par B VO P , S 
FQM/A/ 

o 

+C 4 ) O- A L (f 3 »L!l’)ñ;,, M!H}y()/h
'f/) an‘rr,,“ 

f’ 
c 

J 
Las propiedades de los ordenes precisados permiten inmediatamente | 

demostrar que, para R — g 

È VAU = o g LL 
v} (l” —J'“—/T—;} ÍÍ f (/’H (7) )F_,,,”_,_,/ i R'm«f 

y que, R) 
CA tJ UKD 
e PA g pel ”/WJ) ML A tar ) AR p mré : R 

- 
de todo lo cual, y teniendo en cuenta que suponemos f"{. CW K re- 

sulta ( 
/\rm 1 2 5 f7 

1,9 P FISC fHal)id g~ 

donde C_(_ ‘/3’,} es una constante que depende únicamente de ‘f_?‘, y que 

es una función continua de ’[/ , Siempre positiva para {_ < pe oj 

esta constante es la que interviene en el enunciado dá lema. La 

desigualdad (1,1,9) junto con la (1,1,7),:suponiendo A- E: Cf‘))) 

demuestre (1,1,1). 

la demostración de (1,1,2) la dividiremos en dos partes cor- 

respondientes a las dos desigualdades de que se compone_}ongamos g 

en (1,1,9) P:] f\ .,,y:.) % en este caso se convertiré: 'en 

1 _/Y,,Hf_ DINB GR ), L 
~ ¥, puesto que, segun las hlpotesa.s I 

dg M CR, PA /M UCR), 
de (1,1,1), se deduce 

i 

lo cual demuestre la primera parte de (,1,1,2). 

Ldr ) 

Z 
La seunca parte se demuestra del siguiente modo: Ssgun la for- 

mula de Jensen, y puesto quàf LJ\Í suponemos que es una función 

entera, a partir de un valor de /' se cu.mpllra 



aa — jH r dacs h 
0 

donde 'rl es una constante finita, Sea (& ‘el valor de AL que veri- 

fica 

de (1,1,1), (1,1 lO) y'puesto que siempre 

f J;(f(/’[/ Jzí/í/f(/ £ 
resulta finalmente 

@,1,11)f }(f)v, Mirnd cor e’ -Jtre-wi i)+ 4 i G(».{w.f> 

De la sucesión /(«Z extraeremos shora una sucesión parcial 

—(]’\tal que 

k= o /Ii) 

para demostrar la segunóa desigualdad de (1,1,2) basta demostrar 

que I[ =4 b f } 

considerendo la (1,1,11) un:.camen‘te pere la sucesión “f %“ divi-— 

diendola por "" 

UL 497 i 
y pasando luego al l:%.ml’ce, tendremos 

- / h \f/} p 

I ( ““ïf, ,) 
J/. 

(1v1712)\», 

puesto que el limite [/, de (7 en el caso que estamos considerando 

viene dado por 



Representando por fi(?fi] le rais real de 

d »yy/',\f/l 27 oy )'77,%_]—‘ 
[;\/—-'b j —/j Qi ces P N L =7 

J 

tendremos, seglín la (1,1 12), 

Ha -M E)a S , 
y puesto que — 2 tendremos finalmente / , 

lo cual, seglín hemos dicho, completa la demostración de (1,1,2). 

Ahora para terminar la demostración del lema l tendrimos que 

demostrar que la E(SC) tiende EE a 1 cuando — (0. pero esto se 

sigue casi inmediatamente de la definición de/g (Jf) 

1,2.- Segxá.n hemos dicho el leme que acabamos de demostrar pe— 

re las funciones enteras nos permitirá demostrar un resultado se- 

mejante para las funciones meromorfas, resultado que nos serd Util 

para la demostración de uno de los teoremas objeto de este capítu—- 

lo. El lema en cuestión puede enunciarse como sigue: 

IEMA 2.- Sea %—Li) una función meromorfa de orden r7 //1 y 

de orden preclsado equivalente o superior aF(f) si 

I AP 2 e, ],y ROE = Bl Y di — 

VC Pr U 
tidades pos:l.tlvas"{' I G’/ entonces, cualesquiera que sean las 

E
 

y parg).? RE {2 R T 3=/ 

(LB 3’+awj§2”’“+f¥b o) )4 

/L“R/
 (MJ(///‘

[ /’”‘[k/fl
 /J)( 



excep'bo en un congu.n't;o de pequenos clrculos la suma de cuyos ra- —— 
dios es inferior a,á Sd / ///(,' ) 

Ademas, si ex1ste una suces:Lón L/(\,%(ÍM?Z /\ Ademss, P 

f’.:; vm) =t =B+ st BB j i 
eXlStlI'a u.n numeru 

fl Ao BB | | 
que l9 suces:.ónç /\,_ s podra ex‘braerse una suces:l.ón parclal 

)
 

§ pera la cual 

r p{BHE (142,2) LE feecpe oflf_ ER ) 
Finalmente si f“ À)es entera se verifica 

a PR 
L' Vi) 

Nota.- la constante Li t_”’? t7) es la que interviene en un lems 
de Bernstein [l, lema I];]. 

DEMOSTRACION.- Sea 4, 

polos da/L( Y), apllcando el lema l a J, ( )resultará, para d'A€ 
y =z L) /J v 5 /o > 

5\3 el produeto camdnico formado 402 los 

puesto que los ceros de -/, 7% ) son los polos de/l[ ) Ó. ) 

Poniendo i 
/ aRfu, ) 

{4 / 

uesto que ÍJ es arbitmaria de lo que antecede se deduce, si supom D qi n q: , 

J 

nemos f*= fç , 

(1,2,3) 

y toda vez que 

dgl a IA (B're @) TCR), 
‘3)\ es entera, esta misma desigualdad se cumpli- é 

j ré en la totalldad del clrcu.lo; < R, , i 
L[;)el producto ca’nénico formado con 

los ceros dezé( ), y poniendo i 

Representando shore por d 



podremos demostrar del mismo modo que 
1 

en la totalidad de 3\/ 

De (1,2,3) se deduce apllcando el leme de Bernstein anterior- 
men'te citado ,l lema II_/ y teniendo en cuenta leg propledades de 
los oroenes precisados 

(1,2,5) J/wjç JE ta VLUJ( )6( O UCR), ! 
valida en el clrculo/]/g (A/’i 3 excepto en un conjunto de peque—’ 
fios cïrcalos la suma de cuyos radios es inferior a \/Í“ ///g'_, | 

| Del mismo modo, de (1,2 »4) se deduce la desigualdad i 

réa íi;?/;? G ==L Rtol /))(—.j; COUA ), 
asimismo valida ení /" ,Q , ©Xcepto en un conjunto de pequefios 
circulos 1a suma de cuyos redios es inferior a 5. I\ 063 //} 

Por otra parte, si def‘lnmos/ (X Ay J ( 7) por 

resultars inmediatamente q_uef[; ) yf (/) son enteras, y cumplen 

MD f ence /b, n 
p 

/ 

y segun las hlpotes:z.s y la definición de /((á) y de f (_;J__Í“re'sulta 

(1,2,7) ,[V// ,í_c.'._i/.il__ /n,l__li_’”_g da BrBJC C ) 
Pzas L/’(, J p 

y aplicando a,)gy f_% iya f (’2 j el leme 1 obtendremos d, A 

1,2 8)4/ //( / “;/(/\{/L//U m LFM« 

OTA - p 
dOEGCA UKD 

| 



¥y 

(1,2,9 >/,47 fw ( ‘)l( f)fw'w /'f”'“l/LL/\f))f 

_;_//j,L[j«g// Q7 UKk, 
para R e Ry P AL . Ademss de la definición de 

Y 2Ny de ,’_7 se deduce 

LR PA RA / \/,f ¢ 

/ d La 

Y, por lo janto, si escribimos 

IKL(/\ V\ %/(;\",) /C(}\ =l 
e 

las (1,2 6) y (1,2,9), expresando/;l _\_) como el cociente de,] U)) 

i LDL),nos darén 1a primera des 1gaaldad de las (1,2,1). Del mis- 

mo modo, las (1,2,5) y (1,2 8), expresando Z/( ,\\)como el cocien- 

te de /L ) y(Z/ ), nos daran la segunda desigualdad de las 

(1,2 1) 4 

Para demostrar las desigualdades (1,2,2) procederemos del gi- 

guiente modo: La definición de/( 3) y de / (})nos permite afir- 
— 

mar que la función a 7—) que verifica . 

£ es un polinomio de grado -2 ;7 - f como max:.mo, ¥, puesto que -!L /:,;) 

Ty 4 /,\' | son enteras, tendremos l 

7, À /Í / C/ ) 

= oo L (i JV, 

Ademas, segúxn Nevanlinne, 

7[.\ +7'c //}/ tO nE 



Tey ç / '(,(,)})-47 'f}w' 
}(} da // /\"\,[\ 

E fg Mg )+ dg dor oo, 
por lo tanto, recordando (1,2,3), (1,2 4), (1,2,10) y las propie- 

dades que segu.n las hipotesis 'blene z P o puede afirmarse que 

.;_”wc;/ULÉZ%”A'fL\'+H 
LVCR) = R ) 

) 
y en consecuencia podra extraerse de ,/\ S Una sucesión parcial, 

que representarèmos por/ }J < , de modo que . | 

y recordando (1,2,7), la apllcaclón del dememmeay lema 1, y en per- 

ticular de (l 1,2), nos permite escribir 

/Wfi_” BBN 
— 1-H///‘ 

Ve 

¥, puesto que seglín la definición que hemos dado, 

U ), D 
esto completa la demostración del lema 2. x h 

OBservación,- Sij[( >) es una función entera la segmüa desi- 

gualdad de (1,2,1) se cumple sin excepción, es decir, los peqgue— 

fios 01rculos excepcionales dejan de existir, DP igual mopo si la 

función f— /« ,no tiene ceros sera la primera des:.gualdad de(1,2,1) 

la que se cu.mpl:.ra sin excepción, 

1,3.—Ahora nos mnteresa demostrar un resultado que m cs m 

dE una precisión de un resultado de Po/l;y'a [13, cap. III teorema 

IV?. Bl enundiado de esta precisión es como sigue: 

LEMA 3.- Sea



para 'bodo V"*lOI‘ de /7 puede en trarse un punto % que satisface 

de pendlen'be de & "'_’). 

DB“JOSTRACIO‘I.- Sea “¥. un entero positivo dado, y pongamos, par 

ra simplificar las formulas i 

Empleando, como habitualmente, la notacióní;[à) para repre— 

sentar la función cuya serie de Taylor, MHNNEEENES alrededor del I 

origen, tiene los coeficientes conjugados a los de la serie de ! 

Taylor, n/mm alrededor del origen, def(à) 3 podremos cons<. 

truir las ,Z í funciones 

4 

L 

Vma, j 

) 
, EVlden“temenue los coeflclentes de los desarrollos en series de 

Taylor alregèdor del origen, de estas funciones, son reales por 

cons:l.gulente, segu.n los resultados de Polya /l3l, EIARISE podra_n 

formar/v 27 funciones q} V///\_ _/_ á/J 03 "Uaí" 4y~ ) teles 

(>0l j 7kf_,\L//nZ”ï 7//7 ,)_Í] 



17% 

la integral siendo calculada a lo largo de la frontera, descrita , 

en sentido negativo, del dominio definido por ] 

;,:?ci df 1, farg cET D Y . | 
Por otra parte, de la definición de las fu_nclonesl’I v, 4 (5 4 ) re—‘ 

sulte que, para todo valor de /7 y pera cualquier valor de. Ma 

7f/;LLJL7L/í7U f ) híxlí(/ll (,)_7 /MC p), 

De todo xmmEm cusnto precede resulta Iacllmente que es posfble’ 

J 

1 

hallar una }/)} independiente de j7/ tal que, para [ 7//"171 , existe 
d 4 

un punto función de // y 474 que representeremos por k que ve— | 

rifica 

DY, 

y que 2l mismo tiempo cuMple la desigualdad ‘ 

Mé //;/1 L G )H/ÍH gnd M) 
Jm b mz \2 1, 9, P J 

Por lo tanto, se deduce facilmente la existencia de unos puntos 

x función de /" ,que verifican 

3"') n P 

1,3,1 (3 /d ) A% qr It (1,3, )/ /?r\f /Z«_»,'m,r/ {7 1Y) 4 çf“um,/.m,l" Y! AR 

/f () ;’4 ;f/a/( E) d 

donde 3 (F/es una función positiva que tiemde a cero cuando I /-) 

tiende 21 infinito,y, puesto que los valores que 77/ puede tomar 

son en numero finito, podremos suponer que esta función es inde- 

pendiente de )/Za 

Sea pues ’/u‘ un valor tel que, pare [°>/7’ , se cumple i 

/M ra | p )S 4 Y, 3 
, p. p d 
"1 l",/,—)v entonces, cuando / '7}{,‘” , existiran unos p!] y sea[l\l?, EMér I!_/ 

puntos Z. que verificaran las (1,3,1)y la 
L p, , 1z i B L L - . I E j 



18 

fo%/fl/n“flr‘ oC i )
lc/ï/w(f“” 

Estos ragonamientos pueden repetirse para cualquier valor de 

P Saa . CE ) 
7 hemos definido pues una sucesión \./1_,_? que podemos suponer l PSS L 

que verifica /ígí'\\ . 

///Lf/L— Íïy"m 
M=oz defi 

a partir de esta sucesión puede mmnu una .E'u.n01ón|/q_ua tenga las 

propiedades siguientes: 

8). Í/HM N/,Uj 1] 

=29 Ed 

b). para X, , satisface a 7/( Pr ga 
21 / z 

Una vez establecido lo que antecede, para cualquier valor de 

jo podremos elegir 77 igusl al mayor valor que cumple /\fl,fléf" 

y 44 de modo que Bea el menor entero que setisface a 

= -,,__ 
br / G )/ *:L rra 

con estas elecciones Z quedara completamente determinado por 
m P 

li 3 en consecuencia, podremos representerlo abreviadamente por/a Pt 
) 

y verificara 

dcr 
La n LL /'”]Z Q=TT l‘)*r i, 

n 

t«\ 

y como en 1a definición de Í/(/"j no he intervenido la finción 

i 

(f\' ( pj: el lema queda demostrado. 

1,4.— El lema l y el lema 3 nos permiten demostrar el teorema 

siguiente: 

TEOREMA I.- Sea. 

R
A
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uns función entera de orden Q y de tipo 1 del ord pery 

y sés ) la densided múxime de la ñs_uçg_S_i_ángr\%; </ (% en- j 

tonces, cualesquiera que sean las funciones Da . CU OS ULS o, Que SOSI aa S0 Onon 

ras y de orden precisado inferior a D(/7), tendremos i € loN pres ' il 

ac p E) . qe LT mR eep) 
P U : 1 

nicemente de R) : d dong_eB . depende 

Observación,- La condición’yf;Dí / no puede debilitarse, pues 

la f1mción(f.?r/ï,: (;?jverifica’m[) z / Yy presenta el per excepcional 

LOE h (3)50- 
0 Ç 13 

DEMOSTRACION,— Por mediación del resultado ya citedo demmimmitme 
— = Y . 

Bernstein Ll, lema IIJI se puede demostrer facilmente la existencia 
tp i —p . 

de una sucesión Z,K“? (/;;,'_'N% -OC Jtal que 
dossao 

CMr F) guea, dgl Rr H) . 2 
g 

UR) — U da 
\1/!:1' 

donde para simplificar hemos escrito HC'})EÉ (-3«\"\—()/) _Í;()//" 

Sea B una cantidad que verifica 

1,4,1 4171 — : @D L — L 
p- 

sin perdida de generalidad podemos suponer que R puede ej.egirse 

de manera que verifique Bd // , puesto que si ello no fu%se posi- 

ble el teorema resultarïa cierto con solo suponer [)71 = —// o Apli- 

cando pues el lema 1 a la función ff [j) y escribiendo como en el 1e-‘ 
n , gi -- : 

maá\:f-[_' o se deduce, en (2R < = R, 

/!z/y_/ff(;ï)/—’—— 

(1,4,2) = ([ )1/ (//'(/\;M)H)/rïw7///'(;-/7/;': (K., H)) f 

aAT o UCR ),
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Ahora bien una nueva aplicación del resultado de Berns'bein i 

permite demostrar que cuslquiera que sea el punto % 3. ch E : 

es posible hallar un valor £, que verifica € “f,< ¢, donde & | 

es una centidad positive tan pequefia como se quiera pero fija, de 

modo que en los puntos : 
Py = . : 

./ a dg D/ L/D Ç . i 

se verifica i 

(1,443) dlt G CCR) 
cuando /á / =/ G co 

Dada la arbitreriedad de & ,de (1,4,2) y (1,4,3), y puesto — 
\l

-)
\ 

que F(:-') es entera, se deducen las siguientes deéigualde.des' 

(1,4,4) //z/zg/ ECA /// 

= /í/;[»/w; /+4'c/"g/f; Gletaddglgigls 

e 
/«) (A )/ñl R. Mbemlaia- »,/f(ZR._,H)H 

+(B fiz“wwc!/// Uch)? S007) (R ) 

valldasén la misma corona que (1,4,2), y donde 
I 

%;x —M;L l 
y del mismo modo 

Laa La TÍ/H L 
(4] = m l 

Segun el lema 3 en el domlm.o ç ' 

~ Z‘ B pesrocinR, : € y 

//7“/(// 
: l 

fEC CR, /Lf/‘“,.;-://\f\r0+.m: , 
existe un punto ; tel que 

(1,4,5) lz;/ Lj MC ) VR ). | 

Si en la (1,4,4) se toma : l=d+0(4) , de (1,4,4) y (1,4,5) 

segun las propiedades g (R,H) se deduce, dividiendo por / K. ) y 1 



pasando al límite, ] 

~ i 

(1,4,6) ( S pia Xra D). 148, 
Si definimos b4 por la igualdad 

/:EÍL/B,)[“J/(ÍÍÍZ 272 /\ ,, 

de (1,4,6) se deduce que cual:iuier I'? que verifique (1,4,1) veri- | 
L j 

ficara asimismo ]j 7[{ . lo cual demuestra el teorema. En la ulti 

J
U
 

| 
ma fase de la demos traclén hemos supuesto )/ 57[) , cuando '/"/lD'j 

— () el ramonamiento es inmediato. 

l,5.- El lema 2 nos permitirá, demostrar para una ciase de fun-—} 

ciones meromorfas un teorema semejante al anterior, a saber: 

TEOREMA II.- Sea 

E) Fc;) 
' 

'ón meromorfa de orden P 3 si las i‘unc:.ones en‘berasl’ (9_) 

den precisado equlvalente a /l J (de tipo res- tipo res- 

pectivamente h y[l_ ), no se anulen simulteneamente y sus desa- 
4 

r_r_(_)?l.los de Taylor son de la f 

- DE i 5___ E {m N "‘tLU N — I 

— f - Y a ER - ») - j A Z 1 

ELR 5 ) l RRT - l 

Ea 7 d C, — | 

) ¢ pi i 
: 4 j ) L 

si ademas las densl@ad?i l), de ;aí ),K L satlsfa i 

cen a 
' - 

don cembb, QJ) 
4 Ç . 

entonces: . 

/‘)> es de orden preclsado equ:.valente a ,I)L’ f2d a 
— 

cisado inferior a )u//’ /(con solo una pos:l.ble excepclón) se tiene 
__________ —— 



EE P LB e, | 
Bi ——r p- Pqge 

donde Bç es una cantidad positiva que depende micm@ntg de »[ ,/",J , 
i N g D i D, Im D, 

DI«HLOSTRACIO;I.— 8in perdida de generalidad podemos suponer 5/ [,, i 

pues, caso de no cumplirse, bastara representarf (%) por , P 
;_,( ) y viceversa, para que se cumpla, lo cual unicamente inter- 

cembia el numerador J el denominador de la fracción que represen- 

ta F L ) 5 sin nlngu_n efecto posible Dobre el resultado, Entonces — 

la pr:_mera parte de la conclusión del teorema se demuestra de ma- 

nera sumamente sencilla, En efecto, puesto que suponemos que /// D 

L el teorema I nos permite afirmar 1med1atamen'be que R 
< 

s ’71(14,_'//%) =SB 

i P o0 var 1 

3 om0 M f (/F )= (o 4/F), vesulta finalmente ' ‘ 

Tk Ty 
,{'47/;7 . ( /(_[_i>/í,-«( [34(\'7 (l))‘/“[,’, 
fPi o ! 

| 
j 

f . ‘ 

| 
1 

y puesto que 

P o. | 
í . dr Vo g ",, | _T(Í?F_);))/MC}Í' //F)-)l]_’)_— %'(/L /), \ 1 

Z t 
OO t se deduce 

t 

/ 14 ZC—»,.Í’H =0 _ / pi LY ' . I 

Además, como qt}áe_ra que J 

‘ / F e fg MU RJr 0(4) d T“(!F)íf//í/l/l(ï/}ijvï/ll/ la / . \ 

resulta de las dos últimas desigualdades que f Lé) es de orden pre 
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cisado equivalente a I9[7’); lo cual es la primere parte de la con—-R 

clusión. 

Pare demostrar la segunda perte supondremos que existen dos 

funciones /L;(A) ny (;) meromorfas y de orden precisado inferior 

a ( lj tales que 

(1,5,1) lm -——',—_%—— GRCI  e4d) 
frao v j 

2 . i y demostraremos que en este caso É es superior a una centidad po— 

j que es la sitiva que depende unicamente de / , [: 9080 D, y 44 2, 

secunda parte de la conclusión, I ': 
4 

En primer lugar resulta facil demostrar que es posible hallar i 

RJT A,, tj ) or- 
cuatro funciones enteras f; (á) t,, (5 j 24, 

di 
den precisado inferior a p (ry stales kque 

i 

]l (:,-J = 

dG G0 4, (3 Ao, | 
Para ello basta demostrer que toda función meromorfa {/L}) de or- 

den precisado inferior a [) /") puede escribirse como cociente de 

dos funciones enteras de orden precisado inferior a /J, ("), Esto Be 
I 

demuestra como sigue: escribamos primero /’('í) como cociente de 1 
o 

dos funciones enteras que no tengan ceros comunes, sea : 
E 

Z 

dd - | 
167 g H 

esta representación, y supongemos pqE que,por ejemplo, J;r (%) es 
i | 

de orden precisado equivalente o superior a J ( /7 s como en el nu— p q p ( 

mero 1,1, podemos escribir - ‘ 

di fff/ h = PR A a b Ao Caad (5 ) 
y puesto que 

N/ Sa A/ oCU 
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resulta que 

CCP B oCU ), 

y en consecuencia 

dq b =4 PA oCU D, 

Escribiendo, pues,/j (%) en la forma 
7 

o 
- dto 

fwiufi/i(L—'J ' G 
¥ como el numerador y la frección son de orden precisado inferior 

a ÍJ CP)tembien lo sers el denominador. 

Pongemos ahora 

g;',,@)fl;)méug)gg) HG), | 
(1,9,2)} 

/% Cb)/', )}—J (í)/z'/i) HL%)\ I “ 

como4 L ) y F(;)no tienen ceros en comu)n, es evidente que los “J 

conjuntós de los ceros deH ()}yftfi) fl ( " ) difieren solemente / 

por la adicion 8 lo sumo de una sucesión fomada por ceros de ñ,,(’)\ 

e igualmente pare los conjuntos de los ceros de H, Lj;) y/ L,j) ‘f/" 

que difieren a lo sumo por le adición de une sucesión de 'ceros de 

’f;) 3 ¥ puesto que 7, Lj) y ,/, (}/ son de orden prec:.èado in- 
l. fer;or a}?(/ j, queda demostrado ' i 

-~ T m / DA 13 Ç iy 2P0 B ) | 
(1,5,3) = pr U 

i 1) = B 
U ) 

O Ahora bienl Gombinando debidamente las (1,5,1) se obtienen fa—-_ 

v 
7 
/ 

cilmente — 

(L A %J,()U 3Ry 
(1,5,4)4 

'U :/M( LU ÀLí)HLL) 



y de estas ív'ualdaaes, aplicando el resultado ya eitado de Berng- 
tein '1 lema II{ es fac1l deducir la existencia de una sucesión cp 
EE Ura f. saa) tel que m 

donde pueden presentarse dos casos (suponemos 'sin perdida de geners 

lided, j, =T, ) 

estudiaremos separadamente estos dos casos, 

En el primer caso, si /5 es inferior 8 una cantidad positiva 

que depende únicamente de{//w, y de ua D, , podremos, en virtud de 
(1,5,3), aplicar el lema 2 a ,'—;(L") iya HL;P_) 3 recordando la (1,5,4 
se deduce, tenlendo en cuenta nuevamente que las” son de orden 
precisado 1nfer10r aP1 /")y que 

(1,5,5) ,/;,,, JCU Hd CRa ME g = 55 
de lo cual se deduce que, si B es inferior a una cantidad positi- 
va que depende tnicamente de fii , Y de 797 

/ t 
D,, sera posible haller 

una cantidad;"> Ç tal que, a partir de un valor dia en el domi- 

nio 

| g 5t cRs t B ECa 
se verificara, en virtud de (1,5,3) 



1o cual estara en contradicción con el lema 33 esto termine la de— 

mogtración en el primer caso. 

En el segundo caso, o sea cuando 

’/;-1 :Tafit' : l 

la demostración debe variarse, pues no es posible demostrar la de— 

sigualdad (1,5,5). En este caso la demostración se efectuars en } 

. la siguiente forma: Sif[;;ï_,-_,[v; ) — de nuevo, cuando / es inferior 

a una cantidad que depende únicamente de 4’»,,podremos aplicar el l 

lema 2 a }_', cjg a H )y demos'l;rar la existencia de una canti- 

dad É > Q 
5 ‘ 

y de una sucemón N( de modo que en el dominio : J 

\ 

*l‘}’; 7+LJ [N 

se cu.inpla) a partir de un valor de i, 

Jí/gçí) VER) 

de nuevo en contradicción con el lema 3. 

Finalmente, si L/ f »Ff ,cuando f’\ es inferior a una cemti- 
j 

dad que depende unicamente de //», , serg posible afnmar sola.men—- 

te que el lema 2 es apliceble a H, ( 71\1 , pero por otra garte, es 

posible hallar - á— >~ () de modo que ; 

,[L‘/Z/iIL(km fz;_/\ #; 

‘-‘I\' ) ’,/f( 
VR n 

pues de no ser cierto.; para ningu.n velor de É, esta Ultime desi-| 

gualdad, podriamos aplicar a /“/,/ L )el lema 2, utilizando en lu- 

gar de la sucesión f }(,,_( 18§ R, ,»(,1 sdonde f5 X, E / 7 :, y Te- 

sultaria que pare S guficientemente pequefia tendriamos l 



L 4 G AR, H — 
9t ( e LR, o 

contrariamente a la definición de T/‘« . Por lo tanto, de (l 5,4) J 

(1,5,6), aplicando a H, (J) el lema 2, lo cual es posible segun hem( 
mos visto, resulta flnalmen'be que si ;‘j es mnferior a una cantldad 

| 
I 

positiva que depende únicamente de l, ,en el dominio ‘1 

ECT ORa j aty 5K )- 
/ 

se cumplira asimismo en este caso, y a partir de un valor de L, | 
la desigualdad : : l 

desigualdad que de nuevo esta en contradiccidn con el lems 3. 

Como en todos los casos, si [5 es inferior a una cantidad po- 
j 

sitiva que depende únicamente de 17, y de 7// L/ , hemos llegado a 

una contradicción con el lema3, hemos demostrado el teorema, Sin 

embargo creo debo REEZ señal\àr la aparente contradicción entre el 

enunciado, donde 5 depende ademas de [— y f,Z';'íD,, de É v (:‘, y 
el resultado final de la demostraeldn en que la cantidad positiva 

ue debe sobrepasar L:; depende tmlcamen'Le de f/ y de 7z ,’}4— es g 

debida a que, pare concretar, hemos supuesto que 74 D= f/xx mien- | 

tras que en el enunciado solamente se supone que se cump%e al me- 

mos una de las dos desigualdades 1‘ 

| / 1 7 D , 11 Dy — 
j 

. l si en lugar de suponer que se cumple la primera hubiesemos supu- — 

esto que se cumple la segunda, la cota inferior de la C? que ve— ,a . R 1 
rifica (1,5,1), o sea (1,5,3), dependeria unicamente de fyïa y de 

y D, . Por lo tanto, el enunciado es correcto, . 

, 
1,6.- El teorema I puede tambien modificarse en otra direc. . 
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ción, pero para ello necesitemos introducir nuevas notaciones, Sea 

A el ángulo 

dz </ - )@‘7‘ 5 dlE c, 

3 

entonces ?, C sera llamada la amplitud delum ángúo A o y 

NGA /) 
) ) y . . . 

representara el numero de ceros de f & ):m‘terlores a la intersec— 

ción del angulo /| con el circulo. l;l;\/f: p. 

È Con estas notaciones podemos ya enunciar el teorema que nos in- 

teresa 

TEOREVMA IITX.- Sea 

una fmc::.ón entera de orden P ¥ de tipo l del orden 'precusadol)' ‘) 

| —— m | 
D de la suces:Lón 

{ 
Dado un angulo A de amplltud «) = /L/; , si la densidad méxima | 

,i’1 ‘5} enteras y de orden preclsado equlvalen'be a{ 
X 
{/ Lf ‘es un orden precisado tal que ! ' 

501 h N 

’/z// 
g "@///(, E =9 

) 
sera satisfecha 

T CRA MAMEET È) p i ///”z neh: Í_É_É/—» 55 | 
pa ee ‘_(/" ( Í/,-’ h od 

$ j : 
donde [J/ es una cantidad positiva que depende unicamente de () 
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DEMOSTRACION,— Igual que anteriormente,y para simplificar, pon- 

dremos 

H(:á}:ÉC.;)H})-Í,(;À), i 

y dadas las propiedades clésicas de los productos canénicos de 

Veierstrass que podemos limitar a los de orden no entero, puesto 

que acjualmente suponemos que el ángulo A no incluye la totali- 

dad del plano, si 

(1,6,1) 

podemos emnstruir una función 7 (_2‘) holomorfa en /\ que tenga en 

este angulo los mismos ceros que, H(j’~ y Y que verifique 

(1,6,2) No dMA gl - P 
peeo U 7 

D a donde 4 ( /0 /\, 4 ) representa el nèxino de(7 {3 l en le siremfer 

ety imterceçeita' de A x5 =0 . 

Por otra parte, el lema de Bernstein Ll,lema II | " aplicandolo 

a tL d 31 nos permite establecer que dada una suces:.ón de puntos | 

S > que tiende al infinito y que verifica x I 
LS - 

% uclEM . , pld D | 

Por lo tanto, aplicando el lema 3 resulta que, en cualquier , 

a.ngulo /\ de amplitud superior s.,Z /TD .y Se verifica 
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. Vi /L//U’j’/)} H) , (1,6,3) dur ME y 
pE VV 

En consecuencia , siT('Dd U'//Z en el àágulo /\,de igual bisec— 
triz- que / \ pero de amplitud igual a le mitad, se cumple, en vir- 

tud de (1,6,2) y (1,6,3), 

}f’:_() UC//) 

Ahore bien como hemos supuesto que x, o ’Tr/f por la teoria 
claslca de las funciones holomorfas y sin ceros en un angulo cuya 

amplitud es superior a J /‘/‘A) , resultara que si /\,, es el argulo 
de igual bisectriz que /| y de amplitud 

q p ZU 
UT E p 

& 40 . 
se cumplirà 

E aa f,//l/ CCPA ]i’//'“ — /"‘,7,5)' 
I — —— —— - 
prec e 

donde C depende unicamente de P y de U’ De esto se deduce 1a 
Ç existencia de una sucesión de puntos4 9_ j( :Lnterlores a _/\g,y que 

'tlenden al infinito, en los cuales 

t /, /HL;"\//;(W\_! < Z g Eoucr) ig 1) 

y puesto que—H(_;_/íL!;_\/ no tiene ceros en /\ ésta migma desiJ 

gualdad se cumple en unas curvas que partiendo de los A " terminan 
en un punto frontera de/\ . Por lo tanto, aplicando u.n“r’eflsultado | 
muy conocido de Milloux en su forma mas precisa (vease por ej, 
Nevanlinna :fiZ, Dag. 95-100} ) resulta finalmente que en el inte- 

rior de /\ existen una sucesién de circulos 

l 



(1,6,4) | A~=% "lí; or. 

donde & depende Unicamente de P cJ b, en ios cuales 

f Hcgu/;c;) ——C /-B) U ) 

4 / . 
ademas, es facil demostrar que cuando BÍÉ“ puede elegirse Ç 1 

completamente independiente de b 3 por lo tanto, siB aaemás de 

4 
cumplirse la desigualdad Gàtimamente indicada, cumple asimismo la 

H\ é u- b) 

en los circulos (1,6,4) se verl_L:Lcara, dadas las propiedades deí(íj 

(1,6,5) Jéígthjá))«i Ó . : 

aplicando nuevamente el lema 3 veremos que, si [_) es inferior a 

una cierta cantidad Aí que depende Unicamente de £ , O Sea de (J 

y de {77, en el interior de los círculos (1,6,4) existiran puntos 

en lós cuales 

_,/J;-;\mç;);y L /ÍÍ MG E) 

lo cual esta en contradicción con (1,6,5). En consecuencia, si 

D A , la B que verifica (1,6,1) no puede ser inferior a una 

can'tlctad INEXUEREAdE positiva 55 que depende unlcanen't;e de (z y : 

G 3 pues de lo contrario se llega a un absurdo, Esto termlna la 

demostración del teorema III L 

l,7.- La condición lagunar de la serie de Taylor qxíe repre‘sen-} 

ta la función F( 5) puede expresarse, en lugar de hacerlo -como | 

hasta ehore mediante la densidad máxima, por medio de la densidad , 

media superior. Representando, pues por —D_’É la densidad\media su- 

perior de{/KZ puede enunciarse el siguiente teorema, semejante — 

la teorema I, pero que no. lo contiene ni esta contenido en él 

TEOREMA IV.- Sea, ' 
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e 

(—Cf;) Z 
=0 

una func:.ón entera de orden ,J Ed de Otipo 1 del orden preclsado 

'DL/) . Sl a D* dondeA es una cierta can ntidad que depen- 

de un:l.camente de D , ¥ cu.mple f//{- %/,( y[,,;;A //,( ), en- 
tonces, cualesquiera que sean las ñunclonesf (á)% U y}é (S) en- 

teres y de orden precisado inferior aP(/AJ re 

IR ÈN s %/”1 // o 7?] = HL{' (59‘!/ 

Pr or U 

DEMOSTRACION.— Primeramente podremos repetir lo dicho en la 

demostración del teorema I hasta obtener la formula (1,4,4), lue- 

go la demos'l:raclón debe continuarse del siguiente modo: 

Segun Mandelbrojt E.l, teorema a, pag. 366:( cualquiers que 

sea el punto 5,: en el interior del dominio definido por 

g5~ fga 1D e, 
donde /:“ es une cantidad positiva arbitreria, existe un punto É,' 

en el cual se cumple 

h dROr t 
(1,7,1) E 

É crd f AT = i D—}— el Hliy -4 N gl 
donde |7 _fá ) como generalmente venimos haciendo (9. Hy E) 

Ahore bien, a partir de un valor de K tambien segun un resuls 

tado de Mendelbrojt Lll, Da2g. 35%_? y apoyandonos en que, segú".ti 

Dvoretzky L’fl, D*_/‘_ gD* , tendremos 
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\/~¢¢y/,\,< 

fr?L( D—H')%L;(DÉ_É:'_X_,» 
\ \ En 

(177:2)(\ 

, =D 73 dgt eD')-€ ¢ , 
J r s . 

Ademas, si escribimos 

es evidente que, para (%, suficientemente grande, de (1,7,1) y de 

(1,7,2) se sigue 

dlE dgM )) 
donde f = E D -3 oy (£5%), I 

Por otra parte Valiron D.E, pag 32_7 demuestra que pera las 

3 funciones enteras de orden finito se verifica 

deg )EU 0 dq MCE ) 
y en consecuencia 

@t Jegl PO Ao g D ) 

Si en la fdrmula (1,4,4) tomamos . 

dig QD AL 5 
y en la (1,7,3) t 

, , ) 
§:/<¥, f;t/, -V/,+á»-4w(:%u€,v_,H)+,;//}' I l 

de (1,4,4) yde (1,7,3), pesando al iímite y Xamants teniendo en 

cuenta que É es erbitraria, se deduce que toda P, que verifica 

(1,4,1) verificara tambien 

ERr B 
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donde 

JZ]Z[ 320 = fl-—D*— ”é’/ 

y donde,si "/;«/Ó"Z V4 

— A D rmfl]f"_/fm U’zícümvm Iaa Cm D= 

& 
psiguDe '/(5 , entonces (f—u 

Si ahore definimos le cantidad A'g que interviene en el enun- 

ciado del teorema IV, como el extremo superior de las cantidades 

A /Q que verifica 

XAzx ziy 
VGR y};/, o [,L+7F Jrea l5é 7 

: ) L 
resulte inmedistemente />4, 7 //Z yí;,,/ =7/% . Ademas, 

mles‘to que por hlpote':ls 8771 D A, resulta que en todos los ca— 

— / , ¥, en consecuencia, si definimos B por 

/::B([‘*r,)’%‘/":.’_ ’{[5%’/ 

se deduce que, si [J“ cumple (1,4, l) debe cumplir asimismo f H 

y nuesto que % y ,4c dependen u.n:l.cmwente de P. y de D , l0 mis- 

mo s.çucederà con f'\ s ¥, DOr lo tanto, el teorema queda completa- 

mente demostrado, L 

: , =% 

1,8.- En el teoreme III puede agimismo subsiituirse D por D 

veriando Unicamente el valor de .A/, pero despues de lo lii:ï.cho en 
J E . . 

los numeros anteriores creo innecesario dar el enunciado y la de— 

mostración de este teorema, 

Por el contrario damos a continuación sin demostración, pues- | 

to que el lector podra demostrarlo sin grande dificultades, los 

enunciados de un lema y dos teoremas que demuestran que en algu- 

nos resultados anteriores cuando la función es de crecimiento muy 

regular respecto al orden precisado ), (), la expresión 



P aL S 
,fi//’//r /LCIV-,’//H) I 

d fes) U_(É) 

puede substituirse por 

es decir, en algunos resultados anteriores el hecho de que F( % 
sea de crecimiento muy regular se transmite a - L J//[/ f ],)7» 

Los enunciados en cuestion son los siguientes: 

IEMA 4.~ Seaf( 2 una fu.nc:.ón entera de orden 1, ¥ de orden 

ZWÍ?' l//l//(/‘f j) 
Lr—//) 

)= o 

v si 

donde í l,ipPJes una constante seme jente a CC f’/ . entonces, exis- P 'S, exig= 

;\g--( f. ,ç“’)/w—fcmr— R EV 

N L MR Ó) , o) g Mk 
con 

N latamdf R) L £ /- /Jrz/HC/% W—(/.w;( V) 
aondefi( J/]an la mlsma función que 1nterv1ene en el lema i. 

t i a a h 

TEOREMA V.- Sea 
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una función entera de tipo l del orden precisado P[!"_) y tel que 

J,r/ ]// P F J I - 

V f. K 

si una al menos de las dos condiciones: 

lE 

2_% 3 5*:_ 4 (A, es la misma que en el teoreme IV) 

se cumple~ em.onces, cualesquiera que sean las funciones / )/J?/E 

y)ll ¢ ïà enteras y de orden precisado inferior a Í ([}, se verlfl— 
ot lr lta cSaa ta E a e 2 a a B t tn b — m 

can, 

p C P // 
%“Wl; - 71/}" 

PI go L 
0) 

N 

“Í)' f),‘. scuando es la nrlmera condlclon la que cumple , 

a segunda condlclón la que es sa’clsi‘echa. 

TEOREMA 

una función entera de '(n.po l del oraen preclsaao ,;( /”’] y que ve- 

.'Z‘l.LlCa 

'Dado un è.ngu]_.o_ A de gmplitgd,? (fl"?‘fi/fj , si le densifed maxima 
gpa gaar t P H Y s T D dedy, - verifica — E h 

N - 
2/3 — A L 

donde _X es una cleri.a cantldad que depende u:alce_men'be de P , de 

era que | seen las fu.ncu.onesç (% 
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a j 

donde H,_; depende unicamente de,_’, , de U y de da 

Una vez demostrado el Xmm=x®E®R lema 4, los teoremas V y VI se 

demuestren a partir de él como los resultados correspondientes se 

demostraban a partir del lema 1. 
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CAPTTULO IT 

ORDEN INFINITO 

2,1.- En primer lugar demostraremos un lemg que nos es indis- 

pensable para la demosüración de los resultados que nos interesan 

En todo este capltulo, segu.a dl_]lmos en la 1n17roducc1ón emplearemo 

unos ordenes casi iguales a los de K L.Hiong. 

pu= 8?“” (5’; /), 
can 

si PL (á) es una función de orden infinito t— (P)s para /{4 suficien 
cui 

temente grande, SXlS'blran s:.empre dos valores f\/ yf'\ 4 que s satis- 

facen a 

K, N Ri . 
R ——a Ra ha , 

C ER Ó g (R, 
Ay tales que, para jC 5/5&'” , lg_fi}}._nfc«i__é_pf( %) es acoteda 

s N 
—a val que sea mayor que 

DEMOSTRACION.— Supondremos que }4 ( 5) no se anula ezg\ el origen, 

puesto que, si esta condición no se cumpliera y 7J/( )tmriera en 

el orlgen un cero de orden 777 s Se podria ragonar sobrelL(j)/%\W 

y la desigualdad que el leme afirme, seria verificada a fortiori 

Apliquemos ahora el lema de Bernstein 'Lí, lema Ifl , tomando 
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\ O A UR,) 

(2,1,1) 3 
/ , / o 

\'@, = ) S E 
\ m MR , EE ) 

segun las hlpo'bESls sobre el valor en ol origen y las propiedades 

de los ordenes tendremos, para K suflclflntemente grendes yll/)]í—} 
+o(7) 

de %/fmp [vs (kY] 

874 diB g' 410 1) 

Wg/ftg)de\,.)] / 
por ctra palte, segu.n Hiong [o/, el nimero de ceros delí (3 en 

este mismo ClI'CUJ_O es inferior a 

L cR) 
por consiguiente el numero de los pequefios circulos que intervie— 

140{4) 

j nen en el lema de Bernstein es también inferior a este numero, y 

como quiera que, en virtud de (2,1,1), la suma de log pEGEH dla.me- 

tros de estos pequefios circulos es inferior a 

ó «";’/'M’U\! /(%L/PLR)/ L 

se ve sin dificultad que, cn la corona [ 
L 

dfa i E R, 

s 
existe comoiu.na corona de emplitud igual o superior a 

a4 

Caa gra (E ) 
[ R)) “í”’mJ Ç “4/(;/(/‘) 

) j 5 que no tiene ningun punto comin con los pequefios círculos repeti- 
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damente mencionados. En razon de la expresión que nosotros hemos 
tomado para É y 77 el valor de Ú L"/' €) sera inferior a 

tig 

) ' 
/-/[íl/VK 7“ 

Y, por consiguiente, al exterior de los pequefios circulos tendre- 
mos 

(24143) f;"/t?l"f(è)/ 7—”'_
}‘} iC K{)]"r[“) LLÍ

 ( rfi;(u{ 

Le expresión (2,1,2) y le desigualdad (2,1,3) demuestran el lema 

5 

2,2.- TEOREMA VII,- Sea 

una funclón en'tera de orden inTinito F(/ l. Si la función de dens:t 

dadD {j de $ l/( { verifica 

G DA Z"’é_ co 'L’(;r_f»:_'/_i/ 
=] 

¥ SlIi/‘ (r, L/L/ /yr (//j, ordenes respectlvos de!,á & 

1) 
Craa cya L 9 i 

RO PU (0=t ad i 
es imposible (cualesquièra. que sean las funciones enteras // á) 
;_]_,_L 0 ,14 (5) / [á) , cuyos Ordenes sa‘blsfacen 2, las oondlclones 

anterlores) q_ue la 1deru idad 

y% r,\) , son ‘tales que 

(2,2,1) ]{(_5,)/7(5) 1= ) e™ 

865. S&tlolefiha pera nlngu.na func:l.ón en'bera f’ L_U , 

DEMOSTRACION.-— Segun el resultado ya utilizado de Mandelbrojt 

íll, teorema a_7 en el dominio 
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cualquiera que sea 3 existe un punto ; : en el cual 

q
 

o 

— 

,
 

(e9892) feg HECO 

el te)], 
D 

Escribiendo como anteriormente 

U (1) aaa (í b lf P) ' 
OERa o2 

de (2,2,2) 8e deduce 

e - , r * L e 
(2,2,3) /7//»(;9/7/{/:#(/,) —-/;Í/\K—;/;/Í[l:[_(w_], 

pero en esta el valor de K no es arbitrario como en la (2,2,2), 

en la (2,«,3) /( es ung función de /7, que representaremos por 

RIVP): Ademas repxe.aentmremos por ,t (/) el valor de /Í cuando K 

:K(,'.'). Ahora bien, segun Hiong, tendremos 

aa dipgd , 
. L . 3 

¥, por la teorie clasica de las funciones enteras, deduciremos, 

teniendo en cuenta las propiedades de los òrdenes de Hiong, que 

f+eid) 

Mer =Ml ] 7, , 

en consecuencia, dada una sucesión >f tal;que 

17603 

fg MR E) = LR, i 
l 

se cumplira 

Por otre parte, según landelbrojt ELl, PA Ça 355_.7 de (2,2,4) 

se deduce 



J 
(21215)5(2»12!6) Y (2,2’7) se sigue .' 
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ct-PYTteiip 

(2,2,5) /[/ {_H’U" ] ) 

Asimismo, según Mandelbrojt LlO, lema VI;], de la condición 

E pia pE 
—j/%/i’? D)) < oo, 
far 

'Be sigue 

(2,2,6) J/z%'[th(ff)_7;:Cl':‘f"”/‘@') f 

donde ( es una constante. 

Ahora bien, apliquemos az4 /_}) el lema 5 tomando /ï,q en lugar 
de /\71 3 segun este lema podremos elegir un O tal que 

, dL ' L 
{4 - Oz % ;;LH/K 

y que existan F\íyFH' de modo que 

m Na dl =R’ }——kv — R, E 
Ju(/\ )./ 

y que, pargñ}y(’)/(«/\l/ 

(2,2,7) /bz//fé y=-[weR..) v a 
. Por lo tanto, si elegimos 

m ROFRS 
K= == 

puesto que 

7 EE 

) y el dominio en que se cumple (2,2,3) es interior, segun la elec- 

cién de Z' y de 1 , al en que se verifica la (2,2,7); de (2,2,3), 
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si suponemos, pues, la existencia,en contra de lo que afirma el 

teorema, de uns función entera fí Z ) que cumple (2,2,1), hebremos 
u pé ssmgó 

demostrado que todo punto de 1a cirmm:ferenoia/'íjf h : se halla 

a una distancia inferior a 
an 

de un punto 3' en que se verifica 

o sea, puesto que el orden de-/É (3',65 inferior por hipètesis a 

p(,P) 'o _ 
~ r 1 1 N l É 

(2,2,9) RLT GU do1 

donde«(\! ;“q”/ representa 1a parte real de i/ , E bg r - 

Por otra parte, sea cual sea R , el lema 5 nos permite afir- 
5 . . p 

mar le existencia de un f  tal que 

rifica 

& P Tidar ) lia -/;;//fig;)fi’- <[] 
/ 

pam/,‘i/ — 'R ò , tendremos 



4. 
, L — 

y una formule de Caratheodory (vease por ej. Landau 3_9, pag. 299_7 

nos dera, pera/j/ =R+ /—;%Zpu 

d d.. ) Emé y una formula clasice nos dera asimismo, para 

Finalmente, recordando que cualquier punto de la circunfernci 

iy ) :H'“' se halla a une distancia inferior a 
m p 

gt 

de un punto :’ donde se verifica la (2,2,9), resulta, en toda la 
D4 

circunferencia |4~ K Vo, 

cha — P 

_£ fç'_í L CR, 

ça {l. Estas desigualdades demuestran 

} £ ¥y, =
 - o 

, donde /i, tiende &l infinito con 
ggA 

o 
en todos los puntos de/4j— h - 

‘¥l 310 cual es imposible puesto que / es una funcion entera 

sin ceros. 

2,3+~ AHora podriamos enunciar y demostrar un teorema (-:uya re 

lación con el teoreme VII seria la misma que existe entre el II y 

el I,pero ello nos impondria en primer lugar la definición de Xz 

una clase de Ordenes que, ademss de las propiedades de los de 

Hiong, cumplieran otras condiciones a 

propiadas, A esta definición ya suficientemente leboriosa, segui- 
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ria una demostración que, sin ser dificil requiere un espacio que 

en conjunto haria esta memoria interminable, En consecuencia pre— 

. fiero pasar directemente al enunciado y demostración de un teore— 

ma gsemejante al III, pero para las funciones de orden infinito, 

TROREMA VIII.- Sea 

una función entera de orden infinito f’ '), Si la función de den- 
y d —— 5 S — 

A 

mem y el valor pmsi finito // (sin excepción) resulta 

MORA 4 '/:7/'_]_"_)_;»/, 

donde 77 (1% /"\,'7/( f-0L) tiene el significado que le hemos dado 

en el n2, 1,6. 
J -- 

DEMOSTRACION.— Construyamos como indica Hiong /8/ el produc— 

to canmn1007 ( A ) con los ceros de [/ 4 )- . interiores a A . Si 
f o - 

con“crariamen-bè\'ío que afirma el teorema se cumpliera 

pl f/' A/ ///L/ lrj__ 4.)) 

" ,«//7'/7/ — = /:% €/ j É 

p- P l,/ ( /”/‘ 

resultaria 

— Brocds 

,4/-;,-/;/_r;r;;;)\'/_z«z»u—:/__»' È 

Ahora bien, razonando como en el n2, anterior al demostrar 

(242,8), resultera que,psra cualquier a)ngulo A, interior a /i , e- 



. < cp ¢ 
xiste una sucesión 1 K ; tal que 

/[/”//Í\ EV——Cl)7L1(fÍ,4;f0iU 

Y, por lo tanto, 

P) 2 fA Rr L B xI 
///”Z it k ", 4 L //jL v/ T ")' 4 (’k l )»J) 

/ 
LE 

En consecuencia, le teorià de las funciones holomorfes y sin 
) f $ j 8 O ceros en un angulo nos permite afirmar que en todo angulo A\, que 

en los cuales 
ç 3 

puntos 3 15 % L 
L d 

È 
J 

! contenga /\4 y que este contenido en / existira una sucesión de. 
¥ 

3 

È 

4 . . j . . oj 
| donde Ja cl 4 ) / . Ademas esta misma desigualdad se cumplira en una 

O sucesidn de curvas que partiendo de los X terminan en la fronte- 
n 

ra de /\ .Por otra parte, apllcanao el lema de Bernstein ]l lema II’ 

i tantas veces utilizado, seria fac:_l demostrar que en todo /i, inte- 

rior a / I / 

ftocil . L 

_/f/'L/)/ N _/ 

, | y aplicando a estas dos ultimas desigualdades el teorema de Milloux | 

que hemos citado anteriormente, se demuestra i’acllmenue que, en 

los circulos N 
v "’« 

~ i . T D 7 7 : (2,3,1) l3 ‘\-,,/:U’Z/U“ do 3 i j 
li aJ 

gonde '“}' es una centidad positiva arbitraria, se verifica ig 

dfa f) « I 

dgg /Ea — Nlr y 
y como 

_BHo(l 

O 
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(2,3,2) %_;/H'; arr 

Aplicando = f'_/."í) —A el resultado ya utilizado de Mendelbpojt 

[íl, teorema a;/' resulta 

5 //% /."7" alv 

(2,3,3) - 

j ;/l?/i é -Í/z’/f’ ”/f: 

donde Y es un punto del circulo 

y si en (2,3,3) tomamos para R un valor fijo cuelqguiere con la 

sola condición que / ,51_( /7% Ç se seguira 

(2,3,4) — ./ 

X 4 y si en. (2,3,1) tomamos \{C Ó , lo cual es posible puesto que $ 

es arbitraria, las desigualdades (2,3,2) y (2,3,4) son incompati- 

bées. Por lo tanto, si suponemos que el teorema no se cumple lle- 

gemos a un absurdo, 

2444~ Igual que pera las funciones de orden finito para las 

de orden únfinito, si se supone que ’-C;_) es de crecimiento regu- 

lar del orden infinito '/;"LÍ”;) , e8 decir, cuando se cumple,- 

a d A oj , df /_LL/(VL_J_// H 
r p-a Jlflé/ wer) 

en la conclusión del teorem‘a. anterior puede substituirse %/ por 

Jí,;/;gíç, . Mas concretamente podemos enunciar el teorema siguiente: — 

TEOREMA IX.— Sea 

u
i
 

~
 

o
o
 

‘
\
b
 

N
 

R
 

7 
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fia del final del trabajo. 

3 
().—ista memoria no me ha sido posible consulterla, solemente co- 

nozco de ella lo que Polya indica en la suya. 

Y- Usamos Í / £,en luger de l N %, para subrayar que se trata de 
t 7 m q 

' . 
una sucesión de numeros enteros, puesto que en la teoria de 

<\ y 3 
las series de Dirichlet la L A , j habitualmente representa una 

£ ng 
gucesión de numerow positivos cualesquiera. 

i 
| 

(o~ Bl lema es asimigmo cierto cuando O € P //J, , Dero, en es— — 
| 

te caso le transformzcidn correspondiente no puede efectuar- | 
4 La 

se, segun deisra se Vera en la demostración, y entonces la | 

constante ( ( ~Peuando f —XO, Y por lo tento, el lema 

pierde importancia en las aplicaciones. o . e 

o5 - 

3 | 

.. ().- Evidentemente, cuando V = 7 f’// d4 10 mismo puede eleéfilrse J2 i / i 
- P / aa 4 B 1 

= i que pn z /7 - /, pero para fijar el valor de ii hemos he— 7= 

cho Ja segunda eleccidn. 

()= A pesar de que 7, {;) puede ser de orden precisado inferior 

a (;?(f“'f)/e incluso de érden inferior a [, la demostración pue- 

de, incluso en este caso, efectuarse de modo que los resul- 



0 

0= 

- . 3 s : pia H r obstente, la existencia de L = 0 introduce pequeiiag Varige 

tados continuen validos, Lo mismo podre ñec:Lrse para/ ”) , 

que pronto definiremos. i 

i 3 ) £ — Ahora y hasta el final de este capitulo /// representara, 
J - como en los lemas 1 y 2, el entero mas proximo a P. (cuan- 

do existan dos enteros igualmente proxnms a f , entonces 

Ha l'eprebenl,ara, como anteriormente, el mayor de ellos), — 

En reelidad los teoremas I, II, IV y V tienen su maximo in- 
teres cuando ,é es entero, pues en caso contrario los reo- 

remas clasicos, sin condición lagunar, ya den una cota in- 

ferior positiva para 
URDU 

//2 dé 
pré 

no obstente, en muchos casos (en particular cusndo V es | , . 
proxime 82 un entero) los teoremas I, II, IV y V mediante 

la introducción de una condición lagunar den una acotación 
mejor que los teoremes clàsicos, 

La ,Í: y laL F) se definen a partir de 2 l_f casi del mig- 

mo modo que Mandelbrojt las define a pari:ir de 7 À )’ï , HO 
S an 

nves 

fo 1 ciones en las definiciones mencionadas, para estas veria- 

ciones puede consultarse mi memoria le\ . L_' i 


