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Ias notas que deben figurar al pie de pagina han sido reu-
nidas en dos hojas al final.
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procedimientos similares.

TATORES EXCEPCIONALES DE LAS FUINCIONES
ENTERAS O MEROMORFAS REPRESENTADAS POR i
SERIES DE TAYLOR LAGUNARES d

Lems:AD ABSURDUM
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INTRODUCCION

f . : . o .
i () fue guien por primera vez, seflalo que debla |

Headamard |7
existir una relacidn entre los valores excepcionales de una fune

cién entera y las proPiedadée:lagunares de la serie de Taylor

que la representa., Luego se ocuparon de este tema Fejer Lﬁj, Bi-
ernacki r?j() v Pﬁlya,ﬁiﬂ , pero los metodos ubilizados por es— |
tos subores no les permitieron obtensr resultados precisos. Ha-
o1 algunos'aﬁos, sin conocer ninguno de los trabajos de los autox
res citados anteriormente, me ocupg de este tema, obteniendo, me=

i
diante un metodo bastante simple unos resultados sumemente pre-
E

cisos. Tuego conbtinue xEEX trabajando sobre el mismo tema obte-
niendo algunos resultados inmejorables en el sentido de que la
condicidn lagunar no vpodia debilitarse sin que el resultado de-

]

. g 4 ‘ 4 & :
jage de cumplirse,Ademas extendl la teoria o lag Tfuncloneg mero—

morfas.

- - 7 - = ; " |
Tn esta memoris,ademas de varios resultades ineditos, expon-
zo asimismo algunos de equellos resultados dispersos en mis memo-
pias anteriores, a fin de que egta memoria contenga un estudio lo

mas completo posible del tema, con 1los resultados dembstraéos'por

g

-~

Tn el priner capﬁtulo me ocupo de las funciones da orden fi=-
nito, donde, como es habitual,los resultados son muché‘mas preci-
sos que para el orden infinito, que estudiamos en el segundo ca-
pitulo.

Entes de dar en forme imprecisa la ides comﬁn contenida en
1os resultados de esta memoria debemos dar el gignificado de al-
gunas notaciones, al mismo tiempo deremos otras que nNos seréﬁ ﬁ—%
tileg en los capiﬁulos siguientes y concretaremos la terminologia

que emplearemos en 1la totalidad del trabajo.




Muy a menudo apareceran en esta memoria expresiones de la for- |

SN ) _f
L TR i
P‘_ =3 g - /
Cf 3 4 :
en ellas la sucesién?‘%ﬁg () representara siempre una sucesidn

de numeros enteros tal que B

. ; fn ,j: ] [
_’Jr = -!‘—‘_. 1 o )// 2T e ,/V/"'{ p A w7
g = = L tee o

!
K

N

la condicidn © =/, no impone ninguna restricecidén, puesto que na-

da impéde que (i, = O

Ahora representando poru 1/ el mayor de los I tales que f/ )

i

/ h L

/. definiremos, segun es costumbre, la densidad max:.ma D de 3.3
5 ~

por

- Y-l " )=
D {f;;} //;jf"// Ju/

A
la funcion de deneidad )4 // de =) ’5 por

el

v, finalmente, la densidad media superior D de = 4, 5 por
3 [ -~
_ IS .
— [ -1 \ \
. H H } ! I J ]
D=t £ Dxidx
- Do oae . P4
r = Q
. .- L ‘o)
Por otra parte, en el caso del orden finito una funeidn oy
g . < i
tal que ‘
. t
2 ' —— r} / ’ » d £ 2 -
/fr,’;" L i %f A7 9 '}'3 f :’} I,.I‘-_i:u_ 0
PRI / Il 2 ,

J R J .
donde ¢ es un numero finito, sera l3amada un orden precisado, ¥

. 2040 . .
la expresidn 7! ) 19 repreentaremos siempre en el ca itulo pri-
b P D P

., - . _ . E " .
mero Por | { |7 ). Entonces, si la funcidn caracteristica de Nevanli-

o I, a ;X = ]
nna « /7 ¢ ).de la funcidén meromorfa - %} verifica
D s )
s = TONCLLAE 3
s v ! !
TR vy

diremos:
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12,- si f S0 4, que j ; ) es de orden precisado inferior a f»q 1=
22,- pi O j,:_;(;,,q_ue )’f " ) es de orden precisado eq_ulvalen'te 2
&

:i_"_) 7oy

| 0

o

Y
32,- si --Jr <L ,que f . L“ es de orden precisado superior a 7"1 o

L] r

Cuando‘r w’ es entera, escribiendo
- Aoee e!‘- f ka 4 :
' e S | 1-
(1) ”! P A g Vﬂ':" . _"__ _/__*_' — _}—‘ T
",/,5 {# TY ¢ g2 ’f"_
[REEIN L L A
4 !' P . .
donde / {_.f. ! representa el maximo deg [ ’;,L_i‘en la circunferencia
T j b i |
2 :- = podra suceder que -/ -.,i’* 472 pero siempre que ,L/,. -. 0 re-

o J ! - 3 3 J -

sultara /// /) 4 ¥ & la inversa; y del mismo modo resulta facil
.. f . £ .

demostrar que las condiciones D« 4 &P § /[« /< o son equi-

valentes, Por 1o tanto, en el caso de funciones énteras, para de-

finir las tres clases que hemos definido en relacién al orden
precisado f )7) hublesemos podido partir de /, y ¥ la clasifica~
cidén hubiese coincidido con la anterior. Finalmente, cuando (1)

se cumpla diremos que la funcidn entera 4. [ Z ) es de tipo 4 ; del
O ¥ i

orden precisado./ (/.

s " - - . - - ) ]
Fn el caso del orden infinito ubtilizaremos los ordenes de K,

.. Hiong -':8_:, que,como en este caso tnicamente egstudiremos fun-
ciones enteras, definiremos del siguiente modo: Sea [ {17 una
funcidén gque tiende al infinito, ahora pare sefialar mayormente
que se trate del orden infinito (¥ lo mismo haremos en la *tota-

(i’
lidad del capl'Lulo segundo) represenuaremos la Iuncloﬁf’

/ A g M)
V7L J
{? = o ’Z(/L?({)

i

! por Wi, ysi PMP)MS tal que u?’/ i) es una f?noién conve
~
xa, de -,’J /( /7 que adem&% verifica I
_ oLt
/ 3 3 f = A \ - -

Vi [ 134 el W77 ()= =),

[ 4 } _’f’ o pAr R _ L 7
I [f,' I . / /
£

-diremos que la funciédn entera 7_1'(: Z\?Jw es de orden infinito [ ([7)
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(cuéndo existenvarios ordenest(rU ,/XLKGJ,;{igé),..., las expre- .’

siones correspondientes vendrdn representadas jolo2 N VA EO R AN I

i

_yl{,;;,...,). Siguiendo la costumbre la expresidn 0( /) representa j

cantidades que tlenden a cewo cuando la variable tiende o un de- 4
terminado limite, ¥y de modo parecido’i)f{u representaré cantidades
que permanecen acotadas cuando la variable tiende asimismo a un
limite. Caso de que existe posibilidad de confusidn sgefialaremos
8 que variable y limite se refiere estas expresiones, pero gene-—
ralmente no haremos ninguna indicaoiﬁn.

Finalmente, siguiendo a Nevanlinne la expres idn.f{%?f_F repres
sentaré el numero de polos de yt ») contenidos en el olrculo/jJ
= | 3 ¥y por lo tamﬁo,.qgfff,yﬁjfrepreﬁentara el numero de ceros de
ff{i} contenidos en el mismo circulo.

Ia idea general de los tecoremas de esta memoria podemos ahora
xplicarle en forma algo imprecisa como sigue: Sea [/ 1) une fun-
cidn entera de orden f) v de tipo 1 del orden pr601uado () ,los
Teoremas clésicos permiten (a2l menos para los valores de (7 pro=-
ximos .a un entero) la existencis de un par excepcional f;{fi}jééf
yzi(;?f de funciones enteras de orden precisado inferior af?{fﬁ}

tal que la expresidn

= o A ﬁ-——f g

iy S _— |

/ATy

# . {. [‘ Ir'-‘l_/;
=

toma un valor mucho menor que para cualquier otro par: Tx «1;5[ y

d ﬁ
7 é‘) de funciones enteras de orden precisado inferior arJ(f‘) .
94 . i
Del mismo modo, Si/ L;J eg de orden 1nE1n¢to, los mlsmoé teoremas
P
ClaELOOS permiten la existencia de un nar,. é\,f v lr/ L" de fun~

o

ciones enteras de orden inferior, para el cual

11’9' e s ,(—://.‘a//\/ i ‘_,."_;_._{: 1/,
;;té g WL

¥

Loes teoremas contenidos en esgsta memoria afirman que cuando los ex—

ponentes de la serie de Taylor def:ﬁﬁ_i verifican ciertas condicio

nes lagunares desaparecen la posibilided de la existencia del par

excepecional,
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CAPITULO T
ORDEN FINITO

1l,1.- En varias de mis memorias anteriores, precisando un reéu;
tado de Wiman [16? obtuve un lems muy interesante sobre el compor-
tamiento de las funciones enteras de orden entero que admiten un
valor excepcional; luego extendi este resultado 2 las funciones
meromorfas de orden entero que toman dos valores en un- oongun$o de

puntos relativamente poco numeroso: .Posteriormente demos tre estos

regultados pare el caso en que el orden no es entero, A continua-

cién daremos el resultado para las funciones enteras,el cual nos
i ] - .

permitira demostrar,en el numero siguiente el resultado general

de que acabemos de hablar.

LEMA 1.- Sea ﬂ(’ ) una funcién entera de orden {32fﬂﬁfﬁ y de
orden precisado GQU¢VELCRUG o superior a {{ [“L Si

- fa /,} ] “/) s F

Py _225;;_ﬁ445 < is{(pt,

twn, B s P LLp

‘Lf. - (p L W S _ .
dondel if{ﬁ es une constante que depende unicamente de ? ; enton-

_‘_g o

ces, para k V;L, Q yx; 0') se cumple

' 10 o F 5 N\

1,1,1 ,'_.‘/-!f;f‘;fz o {0 vr i, (D )
(1,1,1) _)L,/.,‘J ) L(?)‘)I, g /) Fl ]'/’I {ffL/z/f/ L ‘l//
f—i_‘ P “I. Ty ! p l_:)l i -; m o .
1 A SN 1.3 () J { . ( /\

"’) i
-

donde jres el entero mes pTOklﬂO 8 f% y donde como habitualmente

0(4) repreoenia una, cantluad que tiende a cero, en esté caso cu-

ando K — D0,

‘l,'v"\.-‘

Adamas, si existe una sucesién 3 ﬁ’%

N

(45 K y=cftal que

a1 = At
,f £ /ll" [\ 37 I /
f/f'?’;f"z P MRl - f -5,

e oo QTLh“)

entonces .

. o (1 i-.w“Lff}
(3,1,2) (1 *’R-*' *

S/

b
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DENOSTRACION.- Sea 4 el entero que verifica ><\
[

e S e
y=p<=gtd,

segun unos resultados sumamente conocidos podemos escribir

« hL{%) T | 3 \
( 1 3 Pk ™ i )1— ‘3 A J {-Tr_ i
l, ’ ) f:"- ' g ] Lé “ t’?’ ~ %_ f '
f=1 -
;

donde ,rg, es un entero positivo o nulo, ./ (X ) un polinomio de gra-
; e

do ¢/} como maximo gque escribiremos
/ _
3 . . e M
A Py II? 'z ‘F’ ' s A
/fé (..),’4) o ’f{fg ;} _f_ ¢t .7!43;
Y
{:*f,{,“es ¢l factor primario de Weilerstrass, o sea
ig %

!r.j‘ (Ah )= (A4 &7 { - _,_/}

representa la sucesidén de los ceros no

5’

;
L

/

YA

¢
y donde finalmente ; Z_

i (r K
nulos dezf-.ﬁ‘;) "
Supongamos primeramente que JﬁP < ;%;‘f/-r‘*fen'honoes evidentemente

V78 M%:—,{ puesto que, seoun las hipotesis que hemos admitido,

P =4/

Como . 44
(1,1,4) 2 AR G LT
v /
en virtud de (1,1,3) tendremos ) oy _ //‘ \
- . ’__)‘ LI . ': ' 11, 4
g VOO By g + 0T E > bk, [T
/7L 4 .‘ k*:‘?. 4 L K/
. m ,
] . & P .\
<115'5 e () (4 % L 57{EV
[ 7y &= < T, (. R J
¥ / 7'[(/'7 ! N7 ’ v e Dt ) ,"'r
K-IL;{ K ,7Z % ‘\u.:; ) \ 7 [":-‘-'}”ﬂl "\!/V j
- f{- ’

donde !, es el nimero de los ',1 que verlf‘loanr f,\ ! Xy donde
/K

L

f( L‘YL) representa la parte real de ‘% a.demas, seo'un hemos in-

dlcauo en el enunciado del lema 1, Prepresem:ﬁ !;}. Por lo ten- "

to, ENFENErENER S1 ponemos

..........




N . )
QLS e (RN ST (& |
/ r 7 == — - e ,,_,--b—ﬂ—-
(o2 gl (5 flr 2 2ol En ()
\ K=o ! \“i-:_‘x y= I,:,i}../ ' \ e
2 »
/‘ L LJ P/'_\ . 1. 4’{ _-‘; }:- y/}.
U f o = .5 . —_—— i

¥ pue sto que

W D ) .
donde U[(”f/‘ yr/ ([’\ i," dependen unicamente de [ ¥ de ;2 , bteni-
endo en cuenta que, en ‘este caso segu_n hemos dicho V7 = «//, re-

sultara Tinslmente

L7 ' [ io. ) | |. 7] ," - b 4 &
JIFSIEFPHE ekl cik
L L=p
En segundo J.ug%r supongamos que ,f g T f ;en egte caso ten:

i

dpenos /77 - .,z/-h, (5 Aplicando las formulas (1,1,3) v (1,1,4) po-—

dremos escrlblr la (1,1,5) en otra forma, & saber:
,m’_

T A i 7z :?‘f /" e i e { g
LI o /< (H FOlL1 P ';"’> , 7Y | :‘L-d <*’ ;-

i e i i i & i B T i A B, e e o e o e s A o
-’

”—_“ 3 lf' F s:""i.‘. I
| :'_I*_d_ ) = i Qs i~ ;_if\ ,e" \_‘ s
N i AN 7 2 e A S
\ j f'f"'::‘ {f_@-_ 11!_},;) S Z iy |
1+, e L e oy \ J; ’ AN t .f;,.; 4/ i g7 |
i 4= "Vrrf d ' ¥ N !::_;.:;‘;»4 )L(, ! g ‘
3 < ¢
N por lo tento, si ponemos N g \
— + # 'i
L n prae L) ﬁ
AN dpr L T |

K=1,T7 " &
v recordando la (1,1,6), ¥ que, en este caso, b7 -l 1 " de nuevo

f |

‘tendremos _ F
‘ 7, ,«7 / 7 ’léf. |

\.€ "z = 9 :

(1 1 7) r"\ 3‘ J.r'. J _‘ { i i . o o . () r A\, :
. , g (k ) ”"("‘{’"j”’ o v LK f}f-’/ |

(= ”f“ff*‘"}

en consecuencia, esta des:.gusldad se cumpllra, en la totalidad de

S
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. ; J 1
los casos. Para demostrar la primera parte del lema nos falta uni-

camente demostrar que, con las hipote61s admitidas, se cumple !

5’—};" fan ,/\'.__ {\.’ ‘""‘“,f T
.._%;fﬂ:_-m CBro(dn T |

cuando ?\ TR Ay
Segun Blumenth&l [EQ_noﬁe Iij y Denjoy fﬁj el factor primario

de BWeierstrass cumple . !* |
) b LA = A | |
pug L Ey U= afl '
(1!138) ‘7 “ PR .4; F 7
" &) ™AL '
'k XLJ' '5' L— CJL f: N J f J
Iy ’r'/ 7/ ¢ .
donde . v L £ son dos constantes que dependen unicamente del va-

¥ . =
lor del entero /- ; para uns Emkmzidm acotacidén de estas constanse

tes puede consultarse los trabajos de Blumenthal y_banjoy que aca=-

bamos de citar.
.

Evidentemente recordando la (1,1 ,6), ¥ supdniendo ﬁi sufici=-

entemente grande, las (1,1,8) nos permlten afirmer P

- S oy e , // \] v ‘ _,? vt ﬁi fﬁ‘?’j
L=k, +o(+C..., Ef{'-ff—f:—f f Cone! J [+
L ! i T f: , ‘R_?

e integrando por partes

%;QITJ{)EE
i —of | i o ) 32 (L - )
= e ('/ + 0} +Coi sy ?f{]”' /7!

i

et ) 2L )4

2 (
+ {“-';g.': ;o F L ”)?”ﬂ, { g =
J i ;
] : ot ) s 1 o F‘,
o o v ot e i , e
- ’. J,-? yiv + 7 k“/}» Z ) f‘,?-"-""—"-"""' T j“
= ’.".r

Supongamos que , para.fyg; ’t , Se cumple

P A EIAUCP)

resulta de la acotacidn de f’(f fﬁ que hemos dado ultimemente




Pz fo=prm (%, +o(h +(,, M LKD)

| AT )il et Yo +U'7m“‘“
e . ),C)%'-'f) %%LCLJ a;ﬁ)*h,-,,,ﬂ_’ } e

Il

n |
Las propiedades de los ordenes precisados permiten inmediatamente |
demostrar que, paras R > o2 J
- “‘h
VAU yy X #H»P_;,.,__ |
pied et AL F?es v of K T e
(} f-4) ”J = J.’ (/ (J)P ’3’)17‘ }‘J ¥ |
F‘ |
v Gus 3 e
J ‘_! f f J { /.
P ,/ ey }_f__'_J.. ., }f’? . )) '}r}’] -f- ‘ '_’\j__?_,_)__.r-:}
jj t+ ) e !' “" P... W J'< o
="
N ~ D
de todo lo cual, y teniendo en cuenta que suponemos f"z:.__{,.* K re-
sulta
p - i+ A o |
[ s L= A0 )) .\*rﬂ — ([ K J
(1,1,9) ff(;«‘-,- FIsCitelijesd e VIR
donde L' : .~ es una constante que depende unlca.menue de f. Y que

es una i‘unc:r_éﬂ continua de !.;’)' s Siempre positiva para.i. <. [c‘ S
esta constante es la que interviene en el enunciado déﬁ lema, La
desigualdad (1,1,9) junto con la (1,1,7),:suponiendo A = PJ ( L’”
demuestra (1,1,1). |

Le demostracidén de (1,1,2) la dividiremos en dos partes cor-
respondientes a las dos des J.gualaades de que se compone,l-"omamos :

p. J
en (1,1,9) = f’* ﬁ .ny_&) 4/ en este casco se convertirs, ‘en

;;_7‘-";{,4 %/\-_-L u,{}}( ik )} ;

vy, puesto que, segu.n las hlpote.als

fuf—'/ MK, f”f (/-0 TR,
de (1,1 1), se deduce

; T\ h /(‘ )/ (A0 B) UKL,

G
lo cual demuestra la primera parte de (,1,1,2). _
#-
La seunce parte ge demuestra del siguiente modo: Spgun la for-
mula de Jensen, y puesto quvf L]u guponemos que es una funcidn

entera, a partir de un valor de /° se cumpllra




{ . Eﬁ:
i % o mod 4: I G " -
(1,1,10) }ﬂ;ﬁfif“& S|l =H
E)f v
donde }f es una congtante finita. Sea(k;’el valor de M. que veri-
fica |
//4« (R 2= 'FC R, ]tz + T Ko )
1 de (1,1,1), (1,1 lO) y ‘puesto que siempre
| ,/Zf‘(/}/’ b *”—Jzﬁﬂff(i 1)

resulte finalmente

, 2P 9= H,
(1,1,11) %(J" u)fﬁfc/’:'/uff —Jlrem i)+ AT ({rtfwf) H
; De la sucesién kﬁ?g extraeremos shora unsa suceslén parcial
{jij>+al que

{0\ — )7 iyl
i ) [WORw £3] _
Sy A 4 = 45%/ ey - F L \';L )

veor Uiy 7@ V(RS

Ji., LU, £) 7
",ﬂ:?f,‘T;;?E:;?}r” = e
s ~ B A

para demostrar la segunda desigualdad de (1,1,2) basta demostrar

b=t BE)

I i
con51derando le (1,1,11) Unicemente pars la sucesidn Ell%} divi-

diendola por w
" U it ’ ; a
vy pasando luego al limlte, tendremos L _J%L
" P - lf} ] -
ol / j; 5" J / §/a ’.r:) - ; %0 / .=
| ,/ﬁ_, _. et -;__.,r,;_. AL (L IL (l;

(\ L " .,r'} h o
N N iz

(1,1,12)< S

o ' 1} . :
puesto que el llmlteﬂ&”;deﬁﬁ: en el caso que estamos considerando

viene dado por . -

- Y S g ;! ' _fﬂ - .{-'/.il'-',

A}?fﬂé&JC:ZGL?L (AT - {% g
=

)
B D T o e e o o




Representahdo por ﬁ(’x}la reiz real de

: . 1} / - . ~ - -.; ‘; T
| f_ / J {ﬁ @iz CoH ) _ ﬁ‘ 7’ =it
: tendremos, segun la (1,1 12),

!

E

f)f("”)::_ Y J)

4
vy puesto que Y= tendremos finalmente
l

/E /z"?"- B (ﬁﬁ) )

lo cual, segtfm nemos dicho, complete le demostracién de (1,1,2).
178
Ahore para terminar la demostracidén del lema 1 tendrimos que
demostrar que la Eiﬁti)tiende mk o 1 cuando X' —> (. pero esto se

sigue casi inmediatemente de la definicidn de ﬁ (2C)

1,2.- Seglin hemos dicho el leme que acabamos de demostrar pa-
ra las funciones enteras nos permi‘l:iréi demostrar un resultado se-
me jante para las funciones meromorfas, resultado que nos serd util
pars la demostracidn de uno de los teoremas objeto de este capitu—,

lo. E1 lema en cuestidén puede enunciarse como sigue:

TEMA 2.- Sea #C’i} una func:_én mmromorfa de orden f -~ //
de orden prec:r_sado equivalente o superior aFLf,’. Si r
- 24 o . ) s -——H 5
{’V?;"?/-f,’f ;'?'C’/_‘._ﬁ—’/ ) L= b (/Lf/) Vg 4 Uzid /‘? {/ (F‘
rer - . VS e T
=00 (/L_{ ;J_,q’ fL é}'ﬁ)
en‘bonces, cmlesqulera que sean. 1as can-bldades n051t1vas )4 ¥ o @"-/

IO s Y
y parei’ Rz/=LIK7 ',’z'."'f’“«*’

-

d -~ 1 vy 4/ 7’ . T
. \ (ﬁL b o) 1" i Ho () || % )f }‘;:‘\suuﬁ

-
S

: | | o i /) 7 __/__K:-}-.c,;.? Vs G OM il As e ip? ?{(R,. ))(
(1,2,1) H\-: fe:]f[ ;‘_ﬁty‘)/ f\ 7 . /Lf(f_{,}~)fa.c-7(7m.(. A (R, f

| e (7,8 UR)

(ﬂjﬂw rocd) T e [E R e L,ﬂ@/ )
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excepto en un congun'bo de pequefios 01rculos la swna de cuyos ra-

dios es inferior FYAY; 27 K ;" / _ |

Ademss, si exizto we sucosisy 1Rs(tne R, = e0) tal que
: T(R~

J{/’J?L’i— _1—_....-’__-{' ’}f+ 'f_\} /jﬂo;/r.

e Uk g [887

ex:l.stlra un numero

Fl - |
b= A BB,
S b
tal queide le sucesidén i X ., s podra extraerse una sucegidn parcial |
T " - '

[ .5 pera la cual

A o

-

x

(1,2,2) 4,-F-f-oc)< ’-{Jrf# [ ’—‘"“/HH)

Finmelmente si gifji) es entera se verifice

) B e _
Nota.- la constante L L7/ /) es la que interviene en un lems
de Bernstein }:1, lema II_].

| DEMOSTRACION. - Sea 4’? ( 9\\ el producto camdnico formado B0z los
| polos de/ 7,\_/ s aplicando el lems 1 g ’} /ﬁ') resultax'a, naraQ St

}":_LH..J\ Y‘:_./fo{"“i—% |
47 % 44: ( })/%(_L._ o kj;, K s Newt Gzl (K, )+
& P,
FR=0() 2TUR), .
pues”co que los ceros de ,,;1 ;P ) son los polos de /J’[ }) A. ; |
L i
Foniendo . f
. . & RS v ’ L
. 2=hh ()
7: S

puesto que (D es ar‘bit&amia, de lo que entecede se deduce, -si supom
nemos | = [ , , '

(23 Loglg QA D UR) _
¥ toda vez que{?}l' ’d) es entera, es-t:cs. ,IH.ZLSII‘LB. desigualdad se cumpli-
ré on la totalidad del c:.rculo; 3 H

If\

|
Representando ahora por ,/ .‘ Z Jel producto canonlco formado cont

7

los ceros de,%( ), y ponlendo
v




- N P ’ﬁ/ L
ACE ANy

podremos demostrar del mismo modo que
(1,2,4) g g0 2B rec)) 0
en le totalidad de :}J
De (1,2,3) se deduc:e apllcando el lemn de Bernsteln anterior-
men‘te citado ;1 lema II_J Y teniendo en cuenta las pI‘OpJ edades de

los oroones Precisados -
) G /R e 0 AYTT7 D)
(1,2,5) "fé’";?_f' C ‘7‘; S AS AR "'17))( 76( )(?( { CP\/J '

valida en el c:.rculof;/x" xé;% » exXcepto en un conjunto de peque—l!
flog c‘ircalos la suma de cuyos radios es inferior a \/f" ///

Del mismo modo, de (1,2 y4) se deduce 1s demgualciad

(1,2,6) /le/:f (ol (—;l) {;6) KD

. . (% | N
asimismo valida en 4/" LJ ,Q s €Xcepto en un conjunto de requefios

circulos la sums de cuyos radios es inferior s .21 [3\ » //1,

4

Por otra parte, si definimos ,!/ (X )y J ( ; ) por

» J /él} 7?}’ % j;/(?"

resultara inmediatamente que Zy L% ) yfﬂ [z;\:) son enteras, y cumplen
(i ; f,f" }‘1 4 ."_7 -

Lyl =min 1/ k),

v segun las hlpO‘tPSlS ¥y la definicidn de %ii} y de 7€ %J resul‘ta

) J N RN =_‘
(1 247) Jﬁ 7T *"*%j‘_?i/iﬁw’/f f’ _u / f( —-Lb i /,-'/'{..L)'_.}
(¢ =&

e

v aplicando a ,,Jj %)y a %'_'r (%3 el lems 1 obbendremos
C e g/

\lmL L!/)f ':‘ / \..*,'),x A1 LY et 13 S .1 i ’..L.

1,2,8) ’// // (%) ﬁ[f ,- L/-\)ﬁ{“_:/u/._;f(;j;é,i_ "//‘1»(,-(-;)[\:’_,{)7‘;-{-«

-0 v - T o
i R + fj e A1, UKD

L




+2,9) Jc fm) (*’) 7t( f)ft-’?cﬁ w—‘“zzm/;é)u '!
7))

+’ﬁjfﬁ-r6/ 27T /T”k\
para sl h-*} a { L\y(A;. oLt Ademss @e la definicién de
%-<_2 v ﬁef_ ) se deduce E

Sk, - |

.‘

JHR
TYK{@M(F}”&E@

7

Vs por lo tanto, si escribimos

BRDEYIR L] xR p=acRy),

l-'

las (1,2 6) 7 (1,2,9), e}.presando#t A) como el cociente def} )
y'p ;}),nos darén la prhmera deulgualdad de las (1,2,1). Del mis—
i modo, las (1,2,5) y (1,2 8), expresando r( % ) como el cocien-
te de ﬂft ) y{Z; 3) s nos daran la segunde desigualdad de las
(1,2,1). g

Para demostrar las desigualdades (1,2,2) procederemos del gi-

guiente modo: Ia definicidn de/f( ) ¥ de / (]‘)nos permite afir-

mar que la Eun016n:L/ ¢) que verifica
T oy [ p )
J I "Zu \_ o J d l

s‘_.-o-

es un polinomio de grado 3" - /como maximo, y, puesto que % }‘

¥ # > | son enteras, tendremos f

Joo, 2ZALEE) AogHILEE)

P !
(1,2,10) :
= oo U i)

]
s

)
Ademas, segun Nevanlinne,

TOPSTUEQ T 00
- /// f -i;f.h: | (f= WELT Y /1 _Jb i/,
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: Tririn<Trirud)+TirmoNores.

| F éJf_\}g;fffzJ L//;;).Lbfkyjéi

i ig_gftﬁ/ﬁJ,»yv-. + S JF 7 1

3 ‘Y Ll,,%_) .-A:;L-//k ,leh(;

por lo tanto, recordando (1,2,3), (1,2,4), (1,2,10) y las propie-
dades que segun las hipotesis tieme [0 2

p
(" M g

s puede afirmarse que

j’;r.,_,,/, 4//;lq; ) / , % /ﬂ ’I ( \ gt f ) :I 1}
i {28 it S L= LA7E —A— —— L )
}-,',___‘.Y_-) L- L ‘l-\v}-}) 27 = 70 L {I"\-1I e )
| € ik J 5
y en consecuencia podra extraerse de 5 f\’ ¢ Lna sucesién parcial,
| o e e o)
] que representaremos por < f’»’ ; s de modo que
| O 3
L7 4 f L/ CFE f gt
a///w i ' DT
i e 00 i

v recordando (1,2 y7), la aplicacién del Immmmmmmmy lema 1, y en par—

ticular de (1,1,2), nos pemz_te escribir

/;.J: U“ l\ ;_ f ‘1 - L{

esto completa la demostracidén del lema 2, ‘.

OBservacibn.- Si if ( }’) es una funcidn entera la segu?ni_a desi-

gualdad de (1,2,1) se cumple gin excepcidn, es decir, 10? peque-—

,___,,._,_._,_.__.,_,.___,_._,_..___,__m_ﬁ..,_ﬂ,w._—w—_——.ﬁ._H_m_mm_—-ﬁmm——rm.

flos circulos excepcionales dejan de existir. De igual modo si la
funcidn }L {'j’} no tiene ceros seréd la primera desigualdad de(%,2,1)

»

la que se cumplira sin excepcidn,

1l,3.-Ahora nos mnteresa demostrar un resultado que sm e =W
g un= precisidn de un resultado de Pcflya jrl3, cap. 111 teorema

1 . - .
IV {» Bl enundiado de esta precisidn es como sigue:

LEMA 3.- Sea




.o;,
A S Ty A !
v : / Z
f' >~ .,2__*1 K~ )
K=p2

una funcidn entera, ¥y representemos por D la denﬂlé}ad me.x:!.ma de

la suces:.dnﬁ{ LS 3 entonces, cula.qule:mque sea la funcidn @{f J,

para todo valor de /7 puede encon‘brarse un punto % que satisface

— )

_a._

"'-——r—-ii::-—-—--—-_ o~ B L L i [ 15 b iy N | e Tl -

o =T o f’i/ - ‘x{-' f?"w r ;kj fUJﬁ;{ %mej“{}}(‘f( 04‘5,"7[ f;};
‘f -~ A + i .‘

JoglFCs == beg ai iz ),

donde /L/ Jes ‘una cantidad que -hlende a cero con 7;5— ¥y que es in-

4
dependiente de (= Z(2),

D_EHOSTRACION.— Sea 77, un entero positivo dado, y pongamos, pa=

J
ra sinplificar las formulas

Empleando, como habitualmente, la notacidn frC ;1 ) pare repre-—

‘sentar la funcidn cuya serie de Taylor,

Wi alrededor del

origen, tiene los coeficientes conjugados a los de la serie de

Taylor, B alrededor del origen, def(>) podremos cons-. -
truir lasz 7{ Tunciones 3\

f e 1. Jr'.'.YI L ! :

b ixN=g f z A = e 5
o, R TICET (5 /o L,\;bgﬁf:r-;{/, 31
/Z ‘; \ - 4‘ ! % ( /1\ - ) x‘ ("Z’C @ /.(- ...-l‘ ‘)". .E'

Ev:Lden't:emenue los coeficientes de los desarrollos en series de
Taylor alredédor del origen, de estas funcmnes, son rea.les, por

consa.gu:l.ente segun los resultados de Polya 13] EIRISE odran
’ f P

BRI S i L R e e s e i T T T AT L5 PO L S B o e i iaon L b e

foxmarv 2. funmonesq 5,4 ,L L ./ /,j/,/ )—-u 7'“,/' 27~ ) tales
que ~ 4 e . s 21y b
oo | 75 Z_1$ :)/ (Ao B2 o
'?
= (10U oy ) (o)
.4;
B ———————
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le. integral siendo calculada a lo largo de la frontera, descrita

en sentido negativo, del dominio definido por

7 o - \ - .
= | A= A+ i e - T e
Sy )% |= f ]f-'zg( “C[<TTD+Y,
Por otra parte, de la definicidn de las funcioaesfi; f{ J‘ Te -

sulta que, para todo valor de /7 y para cualquier valor de,ﬁ',

sk [lg ML, ) gt JT-lgmccp)

De todo xmEE® cuanto precede resulta facilmente que es posible
hallar una }‘ independiente de 47/ tal que, paxa.fiyrf%_, existe

un punto fun016n.de /7 ¥y 1 que representaremos porﬁf  que ve-

— P -
7 j}/“r‘ ."/,_f_f;’r

rifica

P e NI lave
n )2 - ‘f }?}j/ e } - : J ]f

[<TD Y,

A

vy que al mismo tiempo culple la desigualdad

i
1,1 I: " i "yt | — 1~ }
/”ﬁ / /f{} /’W ;t &f}’l )/v & ‘ / tf}’l‘.i 3, (-L%qj ,;,_ij-.) }J‘r // 6 f/}% 7/H{ f

Por lo tanto, se deduce facilmente la existencia de unos puntos

- funcidn de {° ,que verifican

}ﬂ-i, Vi, 12

(1,3,1) 5 I“"{/ 2 =(FHO)E M’Z/ 5. —gn\(<l 3 H ,
,/ "2; Y l/ ), ’rn - 1/44 //a 1~ » ;

?wygf #(} - Y Lg;w’im £,

donde'zluifﬁes une funcidn positiva que tiemde a cero cuando r?

tiende 21 infinito,y, puesto que los valores que -7y’ puede Ltomar
son en numero finito, podremos suponer que esta funcién es inde-

pendiente de ).

*

Sea pues [ un valor tel que, para/’>-/"’ , se cumple

Y, (F)= 8 Y,

' = i . i |
2 e i ] N )

N seaﬂmr:,wuﬁfséfd_], entonces, euando]’;—hﬂ, , existiran unos Dy
‘ b5/ S| = EWL |

puntos %_ que verificaren las (1,3,1)y la
g, MM, 0
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jﬁ%/{r 5 mr‘/w/ z\).&zm(;%

Estos ragonamientos pueden repetirse para cualquier valor de

~ . « - r-,- F :‘
7 hemos definido pues una su06316n>f1%? gue podemos suponer
L ("t

que verifica /<,,"EF\\ B

"//frt‘ll.—f\/ﬂ/.“w -y

LEEER defi irse L
a partir de esta sucesidn puede EEXAXEE una fun016nrquc tenga las

o

pe

propiedades siguientes:

a). ﬁ‘,aﬁ n-:/’yj C';
=0 e
L7

i} . ) Vi Y e
b). pare)=f, , satisface a %ﬁ_ﬁ)37 o7
Una vez establecido lo que antecede, para cualgquier valor de
a s L a
j? » podremos elegir 72 igual al mayor valor que cumple /v </~

y 77 de modo que Bea el menor entero que satisface a
_,—F-‘ .

S SOV
! yvi /“' (! )/ Tév _/Lf :

¥

!, |’}F ?— ]

|73 en consecuen01a, nodremos representarlo abreviadamente por X
i

y verlflcara

L4
(7

LY

s {1+ 5P %~ =D+,
'f‘f” ;f—!_y j J ~(7 jt ) //](,*w il ) T |
’fé;[ /fﬁ;.}ﬁ_)}- 77/ .))/if//ru,.f )

. T i~ - . . :
y como en la definicidn de ?ﬁ(/’j no hs intervenido la funcidén

:

[

|

|

l ' : i

i E con esvas elecciones‘Z quedara completemente determinado por
:

l .

&Tirv}, el lema queda demostrado.
1,4, BE1 lema 1 y el lema 3 nos permiten demostrar el teorema
siguiente:

TEOREMA I.- Sea.

JQQ
B \—-——1 S i,(
Feo=, 43
Ay ’ }




o D inte S ‘—-‘ww—-

y séa D 1a densidad ma: ma:{lma de la sucesz_énf{/ 5 ’ Sl/,ﬂ?? f . (p en-

-

't;onces, cualesqulera que sean las funcn_onest )55{, y; _‘L//‘ ente-

=

ras y de orden precisado inferior & IJ (/) , ‘tendremos

e A LR

—lfé//’f/( F—[)) 3 -
A /L i F f Cf/ )

di<lee C ( I )
donde 3 depende wnicemente do71if)

Observacnén.-— Ta condicidn’yy ,,0 7’ no puede debilitarse, pues

19
-3 una fu_nc:Lén entera de o1 orden P P de tipo 1 del orden preclsa.do Pu’"; -
i la funcidn €y ( }verlflca;rﬂ 7f v presenta el par excepcional

PLL)/}K(%—

DEMOSTRACION.~ Por mediacidn del result ado va ci"‘sado ¢l eenGmmIpnT
de una oucesz.dn, }('“J (/;,,,ﬁ/_ —0f' ) tal que
&

o

' g MRw, ) oy i (R H)
%//f’/.’ —-w~~/,,,/( S = ;
f

}/ | . / L)p)] o = o 7'.':...’;-(. R”HJ

donde para simplificar hemos escrito ‘!.7( ( ’3,)-:—[- (-fi) *’i-é)y) ’,7;()//“

< ) - -
Sea [} una cantidad que verifica

AU/ AN TS
(1,4,1) L2577 ~—"*':*7.—T‘—"“*’) © Y T
o pee  ULK)

e

1 Bernstein Ll Z]_emp ITJ se puede demostrer :[‘ac:.lmen‘te la e}:ls'tencla
[ sin perdida de generalidad podemos suponer que I puede ej.egirse.
~ i L]
de manera que verifique < -/ , puesto que si ello no fugse posi-
“ ble el teorems resultaria cierto con solo suponer b:' = -/ . Apli-
cando pues el lema 1 a la funcidn ff [;) ¥ escribiendo como en el le-

e .‘4
malr_} $ L 4 T ge deduce, en (2 RM{_/ < L.

Seg I HGII=
2 = (G | [ R Bl ecr 10 (R 1)

e NI s = -
+(b L Fol7 ) UKD,
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Ahora bien una nueva aplicacidn del resultado de Bernstein

permite demostrar que cualquiera que sea el punto ;_5 =P f 1 &,
es posible hallar un valor £, que verifica( </, < 7 ;  donde ¢

es una centidad positiva fan pequefia como se quiera pero fija, de
modo que en los puntos

3-3 =67

'\lJ\

[
se verifica

(1,4,3) VUAS i[>0/ )UCR,)
cuando / ;{ / - //:, —> Q0

Dada la arbitreriedad de & ,de (1,4,2) y (1,4,3), ¥ puesto
que! ( ) es en’sera, se deducen las siguientes des:i_gualae.des

(1,4,4) //z?/ (})/_
___/;//H(j /*47/,‘ )+42;,4 /}z/;/;:zl jl=

<[ (-/.f:-) [PCR.. B cer(aivic=smac (R, )+
TTrOIULR., )7--% 60741 7(R.)
valldasén la misma corona que (1,4,2), y donde

//{%x ’/‘?Xf‘/l’w Xl

+(E<

y del mismo modo

; r L .‘
Segun el lema 3 en el dominio '
- h”"' L PP (4 0(¢ 7’__/_)/\3'1

f/r/ (71 !
|00 (R, H— TP +ocd),
existe un punto ; tal que
QoD iyl Fs (/=) (R o)

Si en la (1,4,4) se toma sL<=7+0 (7)) , de (1,4,4) v (1,4,5)
segun las propiedades L/ UQ [ ) se deduce, dividiendo por /(K. ) ¥




pasando al 1§mi‘t;e,
oy S o el T P N Ly
(1,4,6) 4/ Ejb L;)Lc;]()t—ﬁ’-r?:[})_;’ +H,

Si definimos /3, por le igualdad

=P (B [ecsT-TT 2 DY] *B,

de (1,4,6) se deduce que cualquier f’f que verifique (1,4,1) veri-
ficara asimismo b._[_n :  lo cual demuestra el teorema, En la ul‘t‘l
ne. fage de la demostracién hemos supues*to f)"f'-;"E > () 4 cuando 71l D

= () el razonamiento es inmediato.

1,5.~ E1 lema 2 nos permi‘t;iré, demostrar para una clase de fun-—

ciones meromorfas un teorema semejente al anterior, a saber:

PEOREMA IT.- Sea

=y 703
H?)*gg{)

une, func:a.én meromorfa de ordenf/ s Sl Las .l"ill’lGlOIleS en-berasi‘ (})

yF ((}) son _‘éle orden precisado equlvalente a.f /f J (de tipo res-

pectivamente - fr- y/j Ya no se anulan 81muluaneamen‘ce 'y sus desa-

;:f;f_q_llos de_Taylor son de __la_.__ forma

_4-‘ L ef) ic——t:-_.; ‘ {_Z.} (,,ZJ
= P \ ~,£f-f {'t-‘_ I: (‘,7 ) _ > {;"‘{'L 7 ‘L“;
e =i G TR e

v ' )4 " )
d > () > F b .
si ademas las densicdades |), de RLL S Ly D, de la 7 £, > satisfe~

cen a
R A
A= 27| D, D),
¢
en‘tone?s_:

1°'f-(i;x} es de orden _precisado equivalente a Pr 2

203 cualqua.era que sea la funeién deJ meromorfa y de orden pre-

\

cisado 1ni‘er:r_or a p! )" f(con solo une pos:.ble excep016n) se '!Jn.ene
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—t 7

g5 f//-i '}:_
/uza - ./ }__"’ ]’) C(

R 74 e

—=d |
\'l
f‘*\
N
L S

“donde B . ©8 una cantidad positiva que depenae_unigamente de { ,.7{'.",3 ’
yae [ ih
v L Y /\Q .

Iﬁ“DSTRAGIOJ.— 8in perdida de generalidad podemos suponer 57 [ ),

= 7?" pues, caso de no cumplirse, bastara representarf;(i;) por
F}fﬁ] ¥y viceversa, para que se cumpla, lo cual unicamente inter—
cembia el numerador J el denominador de 1a fraccién que represen-
ta | L_J) s Sin nlngun efecto p051b1e oObTG el resultado. Entonces
la prlmera parte de la conclusibn del teorems se demuestra de ma-
nera sumamente sencilla, En efecto, puesto que suponémos que/}ﬁjz

_J

& 4- ,el teorema I nos permite afirmar inmediatemente que
J .

w(i” //f')___,- >

)

Wt A
= o
E y como . *’ﬂf {/?r,;, (p f/f' resulta finalmente
3 % ( ix
Ar127 - {} / f f (rJ =,
P - (.[
v puesto que
3 »rj Y
TirF)m)mer g/ PR 0D,
r '
Zi

L W

™ ge deduce

r ‘T--(I’ |

|
g4 4. P H}’t,

Thrrr
P = o CJJ
Ademés, como quidera que
) ’ ; :J 1 l'\r_-.x'. ) ,-I.
I ol v e S MU, )+ 0(A4)
(R feg MUCEJHHLAMLLT @

resulta de las dos ultimas desigualdades quefT(;§) es de orden pre—




._..__.___-...._.—..._._._.—.‘_-—_H.—.-_.F._w—_.,_m_ﬂ-—ﬁmmmmm
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cisado equivalente a J(/’J; lo cual es la primera parte de la con-
clusidn.

Para demostrar la segunda parte supondremos que existen dos
funciones fg(gj y}%iﬁi) meromorfas y de orden precisado inferior
a F(:fﬁjtaleé'que _

] 7/ )) ‘
(5,0 i /E,j__( ECp)  (d=44),
oo [ENS /7

¥y demostraremos que en este caso E es superior a una cantidad po-
sitiva que depende unicamente de Ji, xé ,;yy{}:y4%¢{l ; que es la
segunda parte de la conclusidn. :

En primer lugar resulta fécil demostrar que es posible hallar

cuatro funciones enteras}} (;i) ,;”“(.)) ’4*5 (3] jy4, {;k)de or-

den precisado inferior a.p (f?} stales que

/b)) %)
s £ ( e \ s %'34" ' (_,'J -
9 A o Py By P
} e Li’/}) 7 '{51 L.}J

4, ¢ 5) 4y, (30~ h (3D 4, (300,

Para ello basta demostrar que toda funciédn meromorfa ¥ LEQ’ de or-
den precisado inferior a r’ /*) puede escribirse como 0001enie de
dos funciones enteras de orden precisado inferior a F{‘rj. Esto ge
demuestra como sigue: escribamos prlmero/ffij como cociente de

dos funciones enteras que no tengan ceros comunes, sea

(‘& 1
¥ f'_j—)

?_j}’ ( 5\% T I

esta represent3016n, y supongamos REE que,por ejemplo, .J (&) es

Wes o -

¢
de orden precisado equivalente o superior a F (/°) 3 como en el nu=

mero l,1, podemos escribir

P . : N

J;: ?}/ b (Z)|=FLir R L aas k, j;/'x: v O man g Ji?,) |

¥ puesto que

NP {/ )=a1( 1/ ) =ccUr,
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resulta que

¥ en consecuencis

/”"’ $H(3e" N< 2 FT S )0 UTED,

Escrlalendo, pues,.f. (%) en la forma
7

| - = jr/’}’:b_r'.
ff (3) %z( /

jE= T
1“7‘ / ﬂ’l (h f/j

A como el numerador y la fraccidn son de orden prec:u.sado inferior

a { ) { I”) tambien lo sers el denominador.

Pongamos shora
(R hIECIHL,
(1,5, 2)1

’ e ~{ {- /f})‘:ﬁ}ij}/‘),n
17&‘5,(‘)"}‘)’} 2 .

como,f; (% \ vy F(§ ) no tienen ceros en comujn, es evidente que los |
con;lurrl;os de los ceros de)"f (ajyf'tﬁj ,,F f’” ) difieren solemente
por la adicion & lo sumo de unsa suceslén Forma s, por ceros de %;;( )

e igualmente paras los conjuntos de los ceros de H, ij y I Lj) ’f &)

que difieren a lo sumo per la adicidn de una sucesién de ceros de

_‘}'4 (4 ) 3 ¥ puesto que ,}, ri) ¥ ,; ( j son de orden preclsado in-

E fexuor ap; : /, queda demostrado '
3 // w1 HD) BEip), L
-~ 5 J’fnz} |
T i ver) |
i 1 L/ /’fﬁ¢ﬁ )J _ ;
\ - :’/;lf i \_)677'_ l

- Ahore b:Len;r aombinando debidamente las (1, 5, 1) se obbienen fa—-l

cilmente ,—

\L‘j ( )'}’Lcéa) /}’J/k)}} C)_'J/F{ )' : i
(1;5,4}j | |

\_ :7’ 3 7‘L§J—' Lj)H(lJ
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v de estas imualdaaes, apllcando el resultado ya eitado de Berns-

b CCA)
R | ‘; =y b/ 1 P k . s ""Li. '7{;'."’,: /-h?:/ k f/'_/’! g T
‘/ﬁ/r‘/:‘v‘ 1;" ("“-:i.:[‘ {_ j‘tfl - L’ L, %f’f[{/%" -_._?{ _1.-}_-——'2{?"-;——"' e { L
A 2 2 L (K;;) : Hj =i : U (L o)

donde pueden presentarse dos casos (suponemos gin perdida de gener:

lidad, [, = T, )

es*bucliaremos separadamente estos dos casos.

En el primer caso, si “ es inferior a una centidad positiva
que depende unicamente de//w y dean D5 y podremos, en virtud de
(1,5,3), aplicar el lems 2 a M2 T all, 3 ) s recordando la (1 544

se deduce, enlendo en cuenta nuevemente que las ’j- son de orden
precisado inferior aP (77}, que

! L R BT T | ;’:“D‘_
(1,5,5) //f;}}';’!iﬁ{b_(_f\:ﬂjf‘f{‘)"f/{ {_"\,.‘I_, i‘?')_,])f: 17 s = 7) "
3 ' Jg $

de 1o cual se deduce que, si b eg inferior = une, cantldad positi-
vae que depende Unicamente de (' ¥y de s [ Ll sera pos:l_ble hellar

una cantidad ’ > +tal que, a partir de un valor 7/, , en el domi-—
WLD

’g"f Z (K. T‘i ) -y '/; L.Qf ¥+ s —J

se verificara, en virtud de (1,5,3)
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1o cual estarse en contradicceidn con el lema 3; esto termina la de—
mostracidn en el primer caso.

En el segundo caso, O sea cuando

‘ﬁ}thjgij:f

15 demostracidn debe variarse, pues no es posible demostrar la de-—
sigualdad (1,5,5). En este caso la demostracidn se efec‘tuara’i en
la siguiente forma: Si"[;;“f_’::,ﬁj ;  de nuevo, cuando (2 es inferior
& uns centided que depende unicemente de f—-__, podremos aplicar el |
lema 2 & ff,{ 5)7 8 H, ( )y demostrar le existencis de una canti-

dad £ > ¥ ‘de una suces:.dn /{{ ¢ ¢ de modo que en el dominio

L

G [T e

.
//!lr

AeafsloGirtR,, g

-...,_.\t’

se cumpla a partir de un valor de -ii,

//2/// L

de nuevo en contradiccidn con el lema 3.

~1 = = ] 1
I UK. )

<
2

QL) ~

Finalmente, si’ Lf’ - ETJ ,cuando f es inferior a una cemti-
dad que depende Unicemente de 1’i ;e sers. posible a.f:n.mxar solamen~

te que el lema 2 es aplicable a L,r{ ' ], pero por otra pa.x‘te, es

'

)
A

posible hallar -/ f_’ >~ () de modo que

i e . = T f
. }ﬂf{_z( K'n I'1J) '/f(
N A 2 d A —e——T /'“‘m:—. ? {
(1,5,6) AL R ','ﬁ’vy{‘t "_—""""‘"_'._;_'"‘ ,r/_._F F '
M=ol fzwed+é ULR») :

) ¢ g c
pues de no ser cierto.; para nlngun velor de (, esta ultime desi-

gualdad, podriamos a'ol:i.car a f‘#, { 71 )el lema 2, utilizando en lu- -

gar de la suceslén }{,] ¢ la -5 ., ,W&m ydonde 7<= X, </ 5:; y re-

-~
lf

sultaria que parsa f:' su:flclen’cemen'te pequeila +tendriamos
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b M}

n:rl JL[( ' &

contrariamente a la definicidn de’zll. Por lo tanto, de (1,5, 4) ¥
(1,5,6), aplicando a H, [))el lema 2, lo cual es posible segun hems
mos visto, resulta flnalmente que si f§ es mnferior & una cantidad
positiva que depende vnicamente de [; sen el dominio

) D)

,r_?’*:’fﬁl-"“/‘“*'gf'w M% (ECCK 1 )= | <TUD), 1

"\-

!
se cumplira asimismo en este caso, y a partir de un valor de <L,
la desigualdad

/g/f‘l._}/““-ff/ﬁf{ \-“L,l._/_-?:_;—} L/(&m,)’
v &

desigualdad que de nuevo esta en contradiccidn con el lems 3,
Como en todos los casos, si 5 es inferior a una cantidad po-
. zym L . nga B
sitiva que depende unicamente de 7, y de'“?[J hemos llegado a

una contradicecidn con el lema3, hemos demostrado el teorema. Sin
L‘(_, s

embargo creo debo =mlig senalar la aparente contradiccidn entre el

-

enunciado, donde é( depende ademas ae.i y'z:ylh, de-ﬁ y,quﬁ,,y

el resultado final de la demostra016n en que la cantidad p051t1va

Y i

que debe sobrepasar [ depende unlcameﬂie de { y de 772 ,@;3 es
débida a que, pare concretar, hemos supuesto quefwm{);:zﬁtémien—
' : B
tras que en el enunciado solamente se supone que se cump%e al me-
mos una de las dos desigualdades
_ ~
an D= = P D“‘*<,

A
|

81 en lugar de suponer que se cumple la primere hubiesemos supu-
)

esto que se cumple la segunda, la cota inferior de la £ que ve=-
rifica (1,5,1), o sea (1,5,3), dependeris unicamente de } , ¥ de

v/ (), « Por lo tanto, el enunciado es correcto, :

<

) 3
1,64~ El teorema I puede tambien modificarse en otra direc. .




g;;' cidén, pero para ello necesitemos introducir nuevas notaciones, Sea

A el angulo
j@jﬁﬁ%@/:& 0,

A 3
t 3 entonces I J sera llamada la amplitud delmm éngulo A, ¥

gy { r : /‘f\. 3 “/// f _.)

) } £ <A -_F - -
repregentara el numero de cerosg de f,(ﬁd)lnterlores a la intersec-
" / ! g v : '
cibdn del angulo /| con el eireulo. (¥ /< j,
NE=
Con estas notaciones podemos ya enunciar el teorems que nos in-

teresa

TEOREVMA III.- Sea

: s ] J
)j_'-_" 17 \’ = X C’t :” {:F
RN /} ;_____. < \? |
! o= @

pgdo un angulo /} de amplltud<zlr ,/.//; , Si la densidad max1maf

r! \ . ) e |

ae la suce516n f verifics

-
— N s o
P 4

= /\

dondejfl es una determinada cantidad que depende unlcamenﬁe de

¥ de . entonces_wgggigs uiera que sean las funciones X ?:é&y

AR O LLONCeS, gluiiars due seEn a8 LU A ?\

Z %‘ enteras y de orden precisado eggiva;entghafj{fﬁ . donde_' |
/ 5

5 Ly es un orden precisado tal gme A
¥

‘T:/ (_ f‘ij

et = -J'

//M fq/”” /_/

3
sera satlsiecha

T A, /(% z“‘ ~B

'//{/ /J/{z e “—'———7—‘-"_"_"_##* 54
o
p=oe ()

donde fﬁ es una canmldad positiva gue depende unlcamente de O

e e
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kS
DEMOSTRACION.- Igual que anteriormente,y pare simplificar, pon-

dremos .

vy dadas las propiledades clésicas de los productos canénicos de
Weierstrass que podemos limitar a los de orden no entero, puesto
que acpuslmente suponemos que el angulo /\ no incluye la totali-
dalli del plano, si

(1’691)

podemos emnstruir une funcidn 7’{2)‘holomorfa en /\ que tenga en

este angulo los nismos ceros que k{(ﬁ\ y ¥ que verifique

,'

(1,6,2) Jipze FEMCEAG

!‘1._(‘ -rff)

S | ; i 1 - e L ; / ' -
dondey%]gy’;ﬂ}k{)representa el maximo deh?;gﬁjf en la gixeunfes
J ? ) h /T‘ ’;
. . N A oy ’
rERRx® interseccidn de /| y) 155; L

Por otra parte, el lema de Bernstein ’1 ,lema II ' aplicandolo

a f iﬁ  nos permite establecer que dada una su08316n de puntos
[ T»Q que tiende al infinito y que verifica g '
T2} | .~

| o qéi/ Ptéjfjﬂéwjj = (Y :[;ﬁj.) .

A AT i
e £ ‘ ' 8
A1 o /fa?yﬂdmr.r g
L. F

( .
existe otra sucesidn n 5 3’ { tal que

Nt [
T o) l . 4 '
o By g, RGO gD,
w3, L ze g MOPL P

Por lo tanto, aplicando el lema 3 resulta que, en cualquier |

} f 04 -7 . e
angulo /) de amplitud superior aﬁdeE)-, se verifica

T A L
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f0g ML/, B
UL

En consecuencia , sinZ} i:j}ﬂz.en el ahgulo /\,de igual bisec-

(1,6,3) i =
BAEL

triz- que /\ pero de emplitud 1gual a la mitad, se cumple, en vir-
tud de (1,6,2) y (1,6 93)

AP, H2)
/K// ﬁ——(\}/ﬁ =7-8
P- or L ( F,)

Ahora bien como hemos supuesto que 4 O > ?T}ﬁ) por la teoria
cla51ca de las funciones holomorfas Y sin ceros en wn angulo cuya |
amplitud es superior a)f-/}) ’ resultara que 81zq2,es el angulo
de igual bisectrigz que,4 ¥y de amplitud

A0,=0+ 5%,
’4f .

}
se cumplira

f 15 —y 1_;"“
",fa — N L/ C 'rr{ )

donde (¥ depende unicemente de Py de U . De esto se deduce la

' B "
o M "o

existencia de una sucesién de puntoss }”.g interiores a'/\, y'que

tlenden al infinito, en los cuales

vl

¥

o

gl < - - CimBu gy o _

Y T.o0T by |
Y puesto queff{?lfﬁ’Lx } no tiene ceros en /\ esta misma desi-

gualdad se cumple en unas curvas que partiendo de loslﬁg' termlnan-

L aq

en un punto frontera de/ﬂ . Por lo tanto, aplicando un resultado
muy conocido de Milloux en su forma mes preéisa (vease por ej.
Nevanlinna { 12, pag. 95-100] ) resulta finalmente que en el inte- |

_ |
rior de /\ existen uma sucesidn de circulos o




(1,6,4) [A~-2"|=0 V],

donde depende unicamente de f), oY f;, en ios cuales
..Za-y;f(/HC(,aAJ/;(‘;){H By

_ ¥ j S -
ademas, es Tfacll demostrar gue cuandofgziig* puede elegirse ¢

completamente independiente de B s por lo tanto, sif}_ademés de

4 : |
cumplirse la desigueldad ubtimamente indicada, cumple asimismo la

BeLc*d-8B)
£y ’

J -4 = J b | 0 r -
en los circulos (1,6,4) se verificara, dadas lag propiedades diﬁif
P 5 tf .

(1,6,5) J@jHLf;)}é 0, ;

aplicando nuevamente el lema 3 veremos que, si [) es inferior a
una cierta CantidadAﬁl{qus depende unicemente de (=, o sea de F
v de {7, en el interior de los circulos (1,6,4) existiran puntos
en 1los cuales
. - ‘,‘ i o Ui - |
£ L fp A1 F |
_/;4/4 fHC,}))-‘-" 7 /.,% F) -
lo cual esta en contradiccién con (1,6,5). En consecuencia, si
[)‘:élq , 12 E" que verifica (1,6,1) no puede ser inferior 2 una

can‘tldad o W R R ALl pOSi—b iva B‘j Clue de Pende Iini canme n‘be ’_de {) y

77 s Pues de lo contrario se llega a un absurdo; Esto termina la

demostracidn del teorems IIT _ .

¥
i

> 1,7.— La condicidn lagunar de la serie de Taylor que represen—
ta la funcidn Fk_ﬁj puede expresarse, en lugar de hacerlo .como
neste shors mediente la densided méxima, por medio de la densidad
media superior. Representando, pues por E;* la densidad media su-
perior de%_?;;% puede enanciarse el siguiente teorema, semejante

i

la teoreme I, pero que no lo contiene ni esta contenido en é1

TEOREMA IV.- Sea

T
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una_funcidn entera de orden {/ ¥ de tipo 1 del orden precisado
PU’* ' Si 3 ﬁ'* - A, (donde A es una cierta cantidad que depen-

de u.n:.camente de p s ¥ cumple /—*‘/‘\L = 4/.{3’& i/ /Ufe"" ///( ),Ien-

tonces, _cualesqulera que sean __lg.s 11111.':3.010:cuaaaw{fr ( 5 ;7_: s, y}é (() en—.

teras y de orden prec:.sado inferior a 0/, resu.lta

By

i r""J (o
L LLTED g

1157 - J
'] A \J ‘_ f’f,d

. : i __-#
donde b,-_ depende unlcamente de ,u ¥ de D

DEIvIOSTRACIOI\T.— Primeramente podremos repetir lo dicho en la
demostracidn del teorema I hasts obtener la formula (1,4,4), lue—-
go la demostrac:l.dn debe continuerse del siguiente modo:

Segun Mandelbrojt _/_;_l, teorema a, pag. 3663 cualguiers que

sea el punto 27"5 en el interior del dominio definido por

|3 D+t

g 15,

donde ¢ es una cantidad positive arbitraria, existe un punto 3"

en el cual se cumple

J’;{?}‘f‘ i":;l,\j:" "
. : 7 ~d 17 okl
'- (1,7g1) !

E . .H/L}{ Q. }Jn} {(/ J/ 7\, \%7';?/5[_ . Dﬁ Lo h)'i

donde |7, :{ ;1{ | como generalmente venimos haciendo ().

Ahors bien, a partir de un valor cie K tambien segun un resul&-}
tado de Handelbrog-b [11 Pag. 355? Yy apoyesndonos en que, segu.n
Dvoretzky L’ﬂ ) < 00 , tendremos
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i

71052/\* %r/ (HJD—FHLUFD gy
'ZK -

(1,7,2)

S J}\\\\*—_/r \

¥ .o . 5 ., Tk -
/ P8 D347 (EDT) ¢,

o

My
-‘ - - 3
Ademas, 81 escribimos

M) =iz ()4, /pfe)
H__\'-..Ol /

es evidente que, para {°, suficientemente grande, de (1,7,1) y de

(1,7,2) se sigue

f&;/ﬂ = /{?M(P/
donde f; = g ;y*¢ i _ 3 feg (€D 7))

Por otra parte Valiron [15, pag 32] demuestra que para las

/

funciones cnteras de orden finito se verifics

fsz M(Pr)= (/"0(/))%& ML F)

¥ en consecuencia

L

/ Ny foat Mol i f’f’hé F R PR
(1,7,3) JZ”]ZZ’/F(_ é")'/?.f/“{)(-f')),{za’g'/l’/{/ 27T 13— o)

Si en la fdrmuls (1,4,4) ‘tomamos

4;/\4 <7D /*“1“
J‘L'\j'

2 =Ko, r‘fff%’ (a H+e- /L_.CJ(,LR HI* 55 ;)

de (1,4,4) yde (1,7,3), pesando 2l limite y kmmsmim teniendo on

Iy en la (1,7,3)

( - . - . -
cuenta que (- es arbitraria, se deduce que toda f? que verifica

(1,4,1) verificara tembien

7¢_ﬁ b}/J/ ’_H.;Vrf-:’tji ' |
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donde

y donde,si D*:z {//6

4 .
L. INT
1,/5772 b= oS x L%;? o7 (el )-wichr (T D) < ") 7
- . oA ;__-.“-.— /-.’5\ - .
y sisii2< 4/2 , entonces (;)/:{,w_.

31 ahora definimos la cantidad As que interviene en el enun-
ciado del teorems IV, como el extremo superior de las cantidades

Aais F que verifica

, \ »
NIAK J?uV/LFW7+&A(*5&?”L*+fv4 229 =0

’TA‘Z']L'E; fC-/

. i
resulta 1nmed1atamente {*7/40 = //»6 y,{ﬂ,, iy = 7/ . Ademas,
mlesto que por hlpotequs 77 D HH/—}‘ ’ resul ﬁa que en todos los ca-

208 (/,Lﬁ 7 3 ¥, en consecuencia, gi defininos 8 por
| ) ot -
fBChJ?+£g @Q

se deduce que, si {‘)‘ cunple (1,4,1) debe cumplir asimismo // H,{
=t _
¥y muesto que 7/, o 4,: dependen unlcm'lente de (~ ¥ de D s 10 mis=-

mo s@ueederé con f’ﬁ y ¥y DO lo tanto, el teorema queds completa-

"~

mente demostrado.

1,8.- En el teorema III puede asimismo subsiituirse D por D f

; | Lo
veriando unicamente el valor de .ﬁ_{, pero despues de lo ‘dicho en

los numeros snteriores creo innecesario dar el enunciado y la de-
mostracidn de este teorema. ‘

Por el contrario damos a continuacidn sin demostracidn, pues-
to que el lector podra demostrarlo sin grande dii‘icul‘tédes, los
enunciados de un leme y dos bGeoremas que demuestran a:iue en algu- |

nos resultados anteriores cuando la funcidn es de crecimiento muy

regular respecto al orden precisado }D {/7), la expresidn
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L E A H)
L ———"—" )
P25 &5 ( IC\-")
puede substituirse por
) A IJM {— //.j’ ‘// H}
,%iw B ":“‘,“,g,**" ,-.
.uff” = UL )
es decir, en alguno‘% resultados anteriores el hecho de que .'5 ’? \
sea de crecimiento muy regular se transmite a -/ (! J//é! F j{)?

Los enunciados en cuestion son los siguientes:

LEMA 4.- _Sea 7&'( o una funcidn entera de orden | ¢ ¥ de orden

e S it

preclsado eq_u:l.valen‘te a[ (1) Si

"//1//’// ’ ”Hj f“ '6 L

f) = e // )
i ¥y si
O .. N
| ) O e )
E | ZL‘L’L’- ‘—'*1'.!?;:;;,_:“' I

donde C,0 ;/)es una eonsw;ante _seme jente a L (P, entonces, exig=

ol -"'i’f/\ = b - (:' 7
te una suces:.éna P r Lo f =eoftel que, para ) K ,< /(2K

2 = 0

Jffj’é/f(j;{a:k% )V‘; f[\ }tj// :’/( Vs .,f Y7y, (*(( f{,mf}f + |

4278 Fo (), fffz/f“’“"”fJ ! |
o ‘wb' i

. —

con i

|
i
ST

-lff

i ,,_‘,,.f, ‘\
(A=0(in(1= /%ﬂw ptralIB ()

donde f 2 j&n la misna. fu_ncnSn que 1ntervlene en el lema i.

mk

TEOREMA V.- Ses
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una fu_nc:_én entera de tipo 1 del orden precisado P{F"‘_;‘ y tal que

- .

A, I
SRR——

B r o e
O S MR F) ,
“,,’( /_‘/i ——-_gf:._.-___‘ I R ‘: }I_r"‘ — LJ
___V_é_'_ﬂ_’___?'_!__ - - L Ll
Vs = ox2 L/ (. "\ ,\

Sl una al menos de ILas dos condlclones.
13 “r !, <

2& 77 /‘\ o (AQ es 18. mlsma que en el “teorema IV}

se cumple-_ em.onc__:_e_g_, _cualesquiera que sean lag func:.ones : ( )}#C

y}l ( 14} enteras y de orden precisado inferior a ¢ ([}, se V@I’lfl—
can,

7 i 'y 7 sy RN 53

J:’/f 77 -”_’ L ' 1L ?L-‘ ] { 2 ‘ K s 1

/‘/’d"f’}’f’ T e -{_ e - ey ! f
_‘___5__________ i ,': P ,;,—1.‘ [ ¥

P Bt L {- fos

i '}
donde l) = ‘ff‘_i- scuando es la Drlmera COI’J.dlClOﬂ. la que se cumple,
= ) S Al B 2 ks

D= 4/ ”é " cunado es la Seguﬁda condlc_:_Ldn la que es sa'blsfecha.

TEOREMA VI.-— Se a

' Fes)- > KN
rrci

una funcidn entera de '[::Lpo 1 del oraen precz_saqo

O ( jJ)y que ve-

Sy _4‘??/""'% F)

> i)

"Dado un angulo A\ de amplltudj (7> fL/O , si la densiged maxima

\ i A ;. o o A e T
N de f: ;/# -~ verifica )
=
L"E - j 4 7/
donde j es una cler'La cantldad que depende unlcamen‘be de i” de
oy de ,;;..- . Fn‘bonoes,cualeqqulera que sean 1as fu.nca.ones& (A
=i TL [ I\’I enteras y de orden prem.sado gqulvalen‘te X RO

| ‘1
donde [ , 7" verj_flc_e}._
e - i e AT e A S h
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..______‘_"..
P, LT TN
n
] ’-a/,zrt{: /}f SOV ST - ; 3 !
A T ‘) o R =
ey Pot AL
T - s e

sers, setisfecha

7y e’ fflj, /\ ///ff ; L_‘ ‘- } ] R
Wi el jm__ﬁfhl_p o i
Mo - ULr) 4

donde fi;&epende ﬁnicamegfe de;; y de Uy de,ﬁu,

Una vez demostrado el XemzxEER lema 4, los teoremas V y VI se
demuestran a partir de €1 como losg resultados correspondientes se

demostraban a partir del lema 1.

o
\
¥
it

| .

&

i

.

b

.
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CAPITULO TIT

| ORDEN INFINITO

2yle— En primer lugar demostraremos un lems que nos es indis-
rensable para la demos‘cracidn de los resultados que nos interessn
En todo egte cap:_'bulo, segu_a dl,jlmos en la 1ntroducc:.6n emplearemo

unos ordenes casi igvales a log de K L I-Tlong.

LEMA 5.~ Sean P (r*) yfz‘ ;°) dos ordenes infinitos que verifi-

e E—————— R e R ——
&l -

can

gt 3 7

N (P AN
pUr=opa (O /),

Si f [ﬁ) es una funcidn de orden infinito iﬂ ({?) , para f\:{ suficien

temente grande, ex18‘t1ran s:Lemnre dos valores h yh s que satis—

__f_;«_;_cen a
= S [} - 1 =Y R},
’—i.‘c‘:kfc__ f\‘,—}——‘-’-ﬂj_-_ -.\l-\-— \.4“—}\ == |
WL R )] [][1/ CIL\
'7' — . VT
¥ teles aue, pare N,=/3/<K, , la funcion £(%) es acotada

inferiornente por la desigusldad

£

sglp—is ]

Il e
y esto culauigra que sea O con bal que sea mayor que O,
! " ; T '
DEMOSTRACION.— Supondreros que f ( j) no se anula en el origen,

puesto que, si esta condicién no se cumpliera y f ¢ ?) taviera en
el origen un cero de orden 4% , se podria razonar soorezu'j)/ﬁ %
y le desigualdad que el leme afirme, seria verificada a fortiori

Apliquemos ahora el lema de Bernstein 'EL, lema Iﬂ » tomando

¢
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v o
- i

( R=F, (* i)

ﬂ; WOLR, \,,

o | .Y iy g
= ! -—f—- “-—-'-—-r—._::_c:-*-_._-_-—-—._. Y o 5
\b \¥ b i (R,) ) P,

segun las hlpot951s sobre el valor en el origen y las propiedades

de los ordenes tendremos, para K suflclmntemente grendes ij}Ji#
A+0(7)

j/ ﬂL,)/;r w (,Q)j :
//z[/fu i<l (R, )A].fm’”;

por ctra parte, segun Hiong [o [, el numero de ceros deff(g ) en
-

ecte mismo 01rculo es inferior a

[j// p P = Treid)
Ve ( \i)J )

. " ‘ - / . .

por consiguiente el numero de los pequefios circulos que intervie-
. i . . /

nen en el lema de Bernstein es tembién inferior a este numero, y

como guiera que, en virtud de (2,1,1), le suma de los EEXR dlame—

tros de estos pequefios circulos es inferior s

~ ,

g B (et .
| /z/é wc/\q)/

y [ vrmy e B3
v £ 7 i (K.J
. v
"se ve sin dificultad que, en la corona

B il

K

4 <2 g e e -
[\J [jj k /{; W h sJ :

existe como)

7

(2,1,2) %-.ﬁhﬁ;jfffm%aﬁ_ ( S A )
lv\\FJ’ {éﬁl'!/(’&) 5’ _{A/tpyffﬂ)

que no tiene nlngun punto comin con los requefios circulos repeti-




A0
damente mencionados. En ragzon de la expresidn que nogotros hemos
tomado para & y 7] el valor de :L?”; &) sera inferior a

-T-if‘(-\ 8/

%Z@I4/(k )

Y, por consiguiente, al exterlor de los pequefios circulos tendre-

)

nos
St8i/) -

(24153) Z¢ ;{;f 1}7 ‘"--f Jz/i" 1K, )7 LL‘;,:;(R;).__‘{Hdm,

la expresidén (2,1,2) y 1a desigzaldad (2,1,3) demuestran el lema
5

2,24~ THOREMA VII.- Sea

- }“ﬂ-, y)
r_ (! ) = L,Lr‘:‘? K
K=p

N

v

una funcuﬁn entera de orden 1nf:|.n1to Ff i) . Sl ]a 'Fu_nomn de dens1

et . — PR,

dadD ‘;f) c“to 3 1& K 7 verlflca,

TN B e B
D Db §re s (6=p=1),
-[ = &

"F.:‘Y—_‘Sl ]',/ le\ , i./ {.f }-’y r’ (f),.ordenes I’espectlvos def —) },/ (_)“)

y/g‘ 7 b ) ” son ‘t;a.les que

e e L s o S

,;Q.,('f/ﬂ)""; I{_r\/’:’ P{Vj) (Ud ~ '}i v = 7‘/ j) / '

es imposible (cualesquiérs . que sean las funciones enteras '/;l’_ é)

 — —

; i, ,,f (§) STI{ (;) y Cuyos oruenes sat:v. facen a. las ogndlclones

anterlores) q_ue la :Lderv‘bldad

(852,1) f;,fr’ibf (})*[”" (5)¢€

sea satisfeche para ninguna func idn enters ;— (A »
e e e e e it 5 . Bttt '

"
rn
.«f"\‘-@-‘

) ;
I}EMOSTRACION +— Segun el resultado ya uwtilizado de Mandelbrojt

fll, teorema 3:7 en el dominio
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cualguiera que sea ;“vl s, existe un punto %2’ en el cual

g

(2,2,2) Juzld ¢ 2hi=
Jiff L&;)I

QW

“:’//(722/'(-:21 v”:{ {/K]ZZP—- f’/})? /\ 7( fi ('_{fj ,Fx

Egcribiendo como anteriormente

EE it ([/;'ij 2 f’;).

=ke o0

de (2,2,2) @e deduce

(2,2,3) ,/J;Z//*(-a;f)/::—/}iﬂ«t{f ) “/g;?’ /\:/z/;[fi_ ﬁﬁ)jj

=K (})+ 4hora bien, segin Hiong, tendremos

. o - 77 +0¢])
(2,2,4) FCF)< Lk ]

en la (2,2, 3) k: es una funcidn de pj que representaremos por

41

pero en esta el valor de K no es arbitrario como en la (2,2,2),

K V7). Ademafa renxeoevltc.,remos por ,ﬁ (/) el velor de . [ cuando K

- 4 - - *
¥, por la Teoriz clasica de las fTunciones enteras, deduciremos,

X . g . .
teniendo en cuenta lag propiedades de los ordenes de Hiong, que

o

M )= Ma"/f".)[i'f-”tf")j S ;

"~ en consecuencia, dada una sucesidn 3}« 'tal’que
Fi ) N , 4 =0 .')
\4"",5'-'72{’{‘/01(& Fig / (v (_ﬁ )J
se cumpliré
=00 ,‘,-'

j&y /U/ (K.)= ﬁ“f?’i/(_’_ K. )j .

Por otrae perte, segin Mendelbrojt 11, pag. 355} de (2:2;4)

se deduce
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f‘ﬁ.‘ﬁt;" Cifp
(232r5) /l,// u‘zir U")}L - ' )‘\

Asimismo, segun Mandelbrojt L:LO, lema VIJ, de la condicidn

P
A7 D(4) "< o0 |
,‘ o DT

‘ge gligue

J

(242,6) A z/q[ FLCE) < F (=75

donde (- es una constante.
Ahore, b:Len, apliquemosg a Zl / ) el lema. 5 tomando /{',h en lugar

i
de /~, s segun egte leme podremos elegir un () tal que

‘y Pt i ./'/_ F} 3
& P comag e gal 4 T

0< D=7 5
A T

¥y que existan ,{’: Jyﬁ ,f de modo que

f‘ W i~y i , A__._"'_ Sy
v “"‘{\ ‘ r -._ s T T = I % d"‘/ir -_(_;_; R )
[ . i N vy WEK
i.w-’(. R “7
J que, para;f e f{ j{/\:f

(2,2,7) %égi}ﬁthiﬁ)

. Por lo tanto, si elegimos
' EI.” {}
27 o R - ok W |
o K, K- el K] 0 SR |
i ;:I\\ :}rr: ) - : » ﬁ ey } / L (_ .}‘I e )’l_‘-':l {_4 L = I“ = of == _,.: ) J
E k - i’ I
puesto que
| ¢ ) i e 17 il _{.—QC" ;
/';'P-;':‘Z.}. ;{./f- L\, jf/: ;\ _",7;{ :_!',?/l v ‘_\ ,\ ; }
1/ oo

7

) _
y el dominio en que se cumple (2,2,3) es interior, segun la elec-

¢ién de ©" y de ~ , a2l en que se verifica la (2,2,7)s de (2,2,3), |
(2’2’5)9(2-’2,6) J (2;2,7) se sigue ‘
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- o 1=0¢L)
E ! ,«J WA VR

(2,2,8) ;// !’(ﬁ),rr’b'“‘l f{{_ 'Jl [ L,_?\..;.ﬁ_{:;

sl suponemos, pues, la existencia,en contra de lo que afirma el

teorema, de une funcidn entera 7’ %) que cumple (2,2,1), haebremos

demostrado que todo punto de la circunferencia/%/= K"’ se hella
.

F;
o

2 una distancia inferior a

vl [”

de un punto 7' en que se verifice

“1L£//¢ L f“*“‘ﬁ:viﬁﬂﬁf{ﬁjj }

- a4

A Lo . . o .
o sea, puesto que el orden de.%; (£ \es inferior por hipotesis g

Ly F;‘
P(.[J) y

g 4

0 Yix) )i JiveR.) ]
(242,9) ( \ -_"IJ !

donde{ﬂ_[%‘j representa la parte real de (/,
Por otra parte, sea cuel sea 5 , el lema 5 nos permite afir-

. . . D/
mer le existencia de un K tal que

P
5. &K _ D
]-1.-[. = ‘_._"/""\—__ il );\, < ;\ s e SR e
i e “f./*.\ # J 4 B tar2 7Y
gy LK) 127 v LK
7 . gl
o 2= K :
y tal que, para '~ , ="' ,se cumpla siempre -
e
) y
- o
b1 Ny ¥ ) P
"l‘. ! i B ‘! e i1 ( e K‘J.— - /
Aol ¥ LA == wh, / KG-'. = M 7
L PRI - !
‘ {
i [
¥, como quiera que, paras cuaslquier velor de 7 (/3/=/7 ), se ve-

rifica
B ) o ] réli
‘) @t e inv G‘F
" [ % /
Leglg ix) etV ]
Y S -
7 )
para/'%/ n‘ﬁ "y tendremos
. 140010
N PAre o F o T s T
R L]'/i—:l—’l [ <. I/-’/L,f(_'_lf J
\1:;- N e L o - ey
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¥y une rormula de Carathecdory (vease por ej. Landau 19, pag. 29@?

K,
PRI = WER ) )

Finalmente, recordando que cualquier punto de la circunfernci
i y 55 M s .
; :}=f  se halla a una distancia inferior 2
A “
g T - a-C

5 I A \

(R iy k H

ek, | L}-al

de un punto 7' donde se verifica la (2,2,9), resulta, en toda la

AR
circunferencia Jq}f'h.h

K T =K! PrenT_im0 f w |
NLTFAUZNCTCR) - 8 55~
At
s . - N 7‘,‘ i, ;"J B : . 7+ O “_.!v.\’![_"rl —-b) |—" o R .; ]
— !Hn{f{,- [’ f‘\. ‘ﬂ‘l-)‘_; o fr/ ff, ) L_ / "L { /\ , l‘f_:l ;_:‘_t"V{,'k;ml! .

donde'i se halla comprendide en el segmento rectilineo que va de

e

y & & . Estas desigualdades demuestran

iR

r L] . 12 ‘.
| £ =V
.- ) j"-l
en todos los puntos de{% = K , , donde, yL,tJendc el injlnlto con
‘¥l 410 cual es imposible puesto quel{y 8] es una funcion entersa

gin ceros.

293e= AHora podriamos enunciar y demostrar un teorema cuya re
lacién con el teoreme VII seria la misma que existe entre el II ¥y
el T,pero ello nos impondria en primer lugar lz definicidn de k=
una clase de ordonos que, aaemas de las propiedades de los de

Hiong, cumplieran otras

cqndicionea.a—

propiadas. A esta definicidn ya suficientemente laboriosa, segui-
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/ . s v < . g
ria una demostracidn que, sin ser dificil requiere un espaclo que
en conjunto haria esta memoris interminable. En consecuencia pre-
fiero pasar directemente sl enunciado y demostracidén de un teore-

mo, sene jante al III, pero para las funciones de orden infinito,

TEOREMA VIII.- Sea

- \
T T
(2)=/ T« .
| 5 ’-i-)_'}. )
Joze
una funcidén en-l,e;:e_u__de orden infinito [ (). 8i la funcidén de den-
eidad ) il ae 4w verifica
. BB ey B
~ v '; r . 73
Jrvri DI £ < (G et
[4 g5 '

Lailk 18 AR RRT 4 B AT TR A A I TR A 1l 15 ull#.

entoncea, cualquiera que sea el angulo

mEm y el valor xmex finito x,f (S'!-Il excepc:_.d_n) resulta

f,z Jel 2N, //"/H'H’ J) f;,/
z“, o ""'T"j"";'__‘.”,’"f',,,}
=¥ Ty WL 2.

_donde DL f'\.}'f {[-L)) +tiene el significado que le hemos dado

en el ne, 1,64

) o 4 .
DEMOSTRACION. - Construyamos como indica Hiong /38/ el produc-— 3
to candnico 7 ( /a, ) con los ceros de f‘-"_,‘: ) =~ /i interiores a' /i . Si A
oorrt ﬂarz.amen'te;‘lo que afirme el teorema se cumpliera |
- /’ /,] / 18] 1
= " ;j o/ )/ { .f" = .-’ /| p
; = /.’ e - / i ! -— [
ks I/»[, P U e ._._-——‘fj p——rm e -% “n _/ =t
L il )
= W fy // Y
J
resuliaria
= Brocds
- /
.-/ﬁ.*, /!ff]f;' LL (, )_ ¢ |
.'f |
\
Ahore bien, ravonando como en el n2. anterior al demostrar -

(@59,8) 5 4 eqﬂ_‘tara que ,paracualquier angulo /w interior a /| , e-




i 5 L 3
! xiste una su09816n‘1f

Jeg MK, N

o nE U
¥s por lo tanto,

i (/

puntos 3;

h ]
[
Gt §
VS

/.

t:’,‘fd
donde |2 = !

ra de /\

. A
riony & "\

’

los circulos
(2’3’1)

donde

R, P oA (=)
A I17 P A - I
A 0 VL \..,,/",“(_; 2

en los cuales

/ fff ./{.
i

R Y=o = wl )]

tantas vecesg utilizado, seria fa011 demostrar que en todo ./

' )
y aplicando a estas dos ultimas desigualdades el teorema de Millo

[5-4.1<

es una centidad positiva arbitraria,

J
i Bl que

- f =D CT)
Jj)37!’1 (K. )_2 ]

= -7 f— J'L‘ r"}
|

:'2 ) :7! :'ff//(’__ fﬁ } {

L
7 by s
i/

En consecuen01a, la teorid de las fun01ones ‘holomorfaes y sin
ceros en un angulo nos permite afirmar que en Todo angulo,\, que

contenga. . \4 ¥ que este contenido en /\ ex1st1ra una sucesgidn de

L S - )

. : - oo
Jjaﬂ}. aaeras esta misma desigualdad se cumpllra en uns

sucesidn de curvas que partiendo de los 7 terminan en la fronte-

= #

Por otra parte, apllcanao el lema de Bernstein Fl ,lemg IIf

4/| .4;

£ ,Qﬂ ) L )_h_/,/, (/] /

que hemos citado anteriormente, se demuestrs f301lmenue que, en

"

ge verifica

JESE ((f,,,../

Yo inte—
o

ux

al
ig




(2,3,2) /:Lf'" -A)<=[wer)]”

kplicando a [ 32 ~-/ el resultado ya utilizado de Mandelbdojt
L;l, teorema aj resulta

/4
(233r3) ’ o
Loty W = Y s = Do i s |
; > Jr 7/ ATt A 1~y N~ g [FLF D,
y o s
donde*’f es un punto del circulo
o 7
- i = ) F o)
= [ e g Sl ) - Q i ["
_5 ‘;\ il !'—-:_%--f H/ ﬁ _fr 7 j ( [l e )J
f O T - X N

v si en (2,3,3) tomemos para 14 un velor fijo cualquiera con la
sola, condlcién,qua/,, /;ﬁ [ se seguira
) s Bt =B P
(243,4) ,jg_'f,'-:z ’; = jx) - / —{ ,_ ac -}_j' ;
; - é;

eg arbitraria, las desigualdades (2,3,2) v (2,3,4) son incompati-

¥ ei en. (2,3,1) tomamos\f , lo cual es posible puesto quej{

bees., Por lo tanto, sl suponemos gue el teorema no ge cumple lle- |

gamos a un absurdo,

244e= Igual que pera las funciones de orden finito para las

de orden anfinito, s8i se supone que "’EL)es de cr901mlento regu- ys

lar del orden infinito ;:[}:?, es decir, cuando se cumplem L
|

e

fﬁﬁ fﬂ M ( Fﬁfi’ -/
Iy P d -4,
Fi= o 4/ 5!4/"

en la conclusidn del teorema anterior puede subSultulrsel%z” poT

4%%¢¢,_. Vas concretamente podemos enunciar el +teorema siguiente:

TEOREMA IX.- Sea

ﬂ.,” T,,;
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NOTAS QUE DEBEN FPIGURAR AL PIE DE PAGINA

]
o

()o=

o)

08 numeros entre parentesis sngulares remiten a la bibliogra

fia del final del trabajo.

y
() .~Bsta memoria no me ha sido hoslble consultarla, solemente co-
nozce de ella lo que Polya indica en la suya.

L]

) C '3 3
() e~ Usamos i-ffrjen 1ug T deS \45, para subrayar que se trata de
una pgucesidn de NMImeros enteros, puesto que en la teorisa de

lag series de Dirichlet la 7;‘ Vﬁhabitualmente representa una
i

) ) ; :
sucegibén de numerow positivos cualegquiera.

: 5 e o A D
migmo cierto cuandol <« = 7/4 , pero, en es—

par

()~ BL lema es as
te caso la transformacidn correspondiente no puede efectuar-—

/ I
se, segun dEkErm se Vera en la demostra cidn, y ewntonces la

conxtante( 'f” *"?"?TCuandor:~~ﬁ>Q, ¥y por lo tanto, el lemm |

o mi

pierde importancia en las apllca01ones. ', _ =

[

t
t - T / P - ! s A
() e~ Bvidentenente, cuandog:<;7Lff{xéjx)ﬂasmo puede eleflirse 4/ /
i - ! o JE- I oy ]
o, que }??:.ﬁﬂf'J, pero para fijar el wvalor de -7/. hemos he-

cho la segunda eleccidn.

A pesar de que %}[Jﬁjpuede ser de orden precisado inferior
1 e

-
Ty
°
i

a,F!{rfﬁe incluso de brden inferior afx, 1= demostracidn,puq—

de, incluso en este caso, efectuarse de modo que los resul-




tados continuen validos. Lo mismo podre decirse para;;%)),

jue pronto definirenos.
c]- -

() o= Ahora ¥ hastae el final de este capitulg /¢ representaré,
como en los lemas 1 y 2, el entero mﬂs préximo a /7 (cuan-
do existan dos enteros igualmente prox1mos a!, s €ngonces
P repremenbara, como anteriormente, el mayor de ellos).
En reelidad los teoremae I, II, IV y V ‘ienen su maximo in-
teres cuando F' es entero, pues en caso contrario los reo-

remas clésicos, sin condicidén lagunar, ya den una cots in-—

ferior positiva para URDU
- 2 /R sy gy
71l 17 //_z_/ﬁ[_i’_
“Fg FH - - ¥~ 1y
fr= " L ([

no obstante, en muchos casos (en particular cuando ¥ es
proxime & un entero) los teoremas T, II, IV y V mediante
la introduccidén de una condicidn lagunar dan una acotscidn

mejor que los teoremas clasicos,

1]

().—]ﬁl/ify la./ (}F) se definen a partir de o }ff casi del mis-

mo modo que lMandelbrojt las define s nartlr de ; N\ ¢, no
.~ s an
obstante, la existencia de.z, = J introduce pequelas Varia-nves

ciones en las definiciones mencionadas, pars estas waria- {0 1

. W

ciones puede consultarse mi memoris )17




