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Introduccidn.~ Cuando la sucesién f_hns de los exponentes
de una serie de Dirichlet tiene una densidad méxima D< oo un teo-
rema de Bernstein nos permite afirmar que en todo segmento de la
recta de holomorfia de longitud 2/ B existe un punto singular de
la funeidn representada por la serie (tante si se supone que la se-
rie tiene un semiplane de convergencia, como si se supéne la serie
convergente golamente mediante agrupacidén de terminos. Nosotros su-
poniremos, para gimplificar las demostraciones, que las geries de
que trataremos tienen un gemiplanc de convergencia).

No obstante este teorema de Bernstein no permite conocer
la situaeién, o mejor diche la disgtribueién, de los puntos 9;252;2;
res situsdos mhe alla de la recta de holomorfia, cuande la Jéﬁaaién
puede prolangarse a traves de ella. En este caso Manﬂelbrogt obtu~

vo uh teorema cuande la funeibén puede prolongarse analiticamente a

lo largo de un canal de anchura > 2/(D°, donde D* es la aensgaaa

media superior de la sucesidn f)\ng de los exponentes.

Tn este trabajo demostraremos dos teoremas que se refieren

2 la distribucién de los puntos singulares situados mies alla de la

g

ﬂ) tcs regultados de este irabajo gon una peguena parte de los ob=

tenidos en una serie de investigaciones bajo contrate con la Ue Se

Navy



recta de holemorfia, pero que no son consecuencia de Mandelbrojt, ni
tampoco lo eontienen,?@na de las diferencias entre el teorema de

Mandelbrojt y los nuestres es gue aquel supone que
lim (/\mj_'/\n) = h>0

¥y que por lo tante el indice de condensacién de _{I\ng es nulo, mi-
entras que nosotros no hacemos ninguna hipotesis sobre el valor del

indice de condensacibn.

le= E1 primere de los teoremas gue queremos demostrar tiene

el siguiente enunciado:

TEOREMA I.~ S1 H gg la abscisa de holomorfia de

. "'A a
(1) Fs) = >.ae o (s = 0+ 1it)

¥ si {z\ng es_tal que 0=, ‘i)\n+1 y D< oo , entonces existe por
lo menos una singularidad de F(s) en todo rectangule =< < H,
ty<t =ty tal que g=-0/= 27Dy tg = tq = 2/7(D+ D)y que pueda

cmnectarso con el semiplano de gagyergancga de (1) por un eanal de

snchura > 277 T° en el cual F(s) es holemorfa. g
L.

Demostracidn.- Representemos por C(s,,R) el cireulo Ts = s, l=
R, entences, segin la terminologia en uso, un canal de anchura 2R
serd la unién de un cenjunto de circule C(s,sR) cuendo el centro

8, recorre un arco simple de Jordan Jy o0 sea

= 8(JyR) = (J CsgR)
S E‘,Z



donde S es el canal en ocuestidn. Por otra parte se dice que una
funeién F(s) puede prolengarse analiticamente de un dominio i, &
otro deminio d, a lo large del canel S si F(e) es holomorfa en S y
aij%ireula cuyo centre corresponde a,lm extremo de J es completamen-
te interior a 4, mientras que el correspondiente al otro Yy
es completamente interior a 52.

Supongamos que contrarismente a lo afirmado por el teorema

exigta un rectangulo
P=f OT<O=<p<H h=<tsty}

con [, - O = 27D, to =ty =2/ (D+ D*) tal que la prolongacién
analitica de F(s). des?e el gemiplane de convergencia de (1) hasta
(7 a le largo de un cenal de anchura > 2 D* sea pesibles Como quie-
ra que () es un dominie cerrado, es evidente que si en &1 F(s) no

posee ninguna singularidad, existe una cantidad £ > O tal que en

(3:{@"550‘5 c‘{aré < Hy ty =& <t<ty +§'5
tampoeco F(s8) posee singularidad alguna. -

'~ gin perdida de generalidad podremos suponer que la ;sarie (1)
no contiene el terminc constante, es decir que A > Oy entonges gi-

guiendo a Mandelbrojt podemos escribir

2

2 <7
/\(u);_H 1+—-; =chzgn
3 2

n

y se puele demostrar facilmente ( por ejemple Mandelbrojt [1;lema
3.3.,VII]) que si ? (s) es una funcidn holomorfa en |s - 8,/ <



< R>JT 7* entonces la funeién
c;}ga(s) = 3 (-llnen?? (2n) ()

seréd una funcidn holeomorfa en el eircule

le = 8,l<R =/D*y y ademée
(2) l@‘(eo)!z;m,

donde K depende unicamente de Ry B°* y {)\n% Y M es el mbximo de
Igg(s)l en C(s,yR)e

Por lo tante puesto que en la definicidén de ﬁ{ podemos ele-
gir 5 tan pequena come queramos, es evidente gue es pesible supo-
ner que el canal S gue permite prolongar analiticamente F(s) desde
el semip‘lana de convergencia de (1) hasta [ ’ tiene una anchura igu-
al a 2){D° + 2f. En consecuencia la funcién F*(8) que se deduce de

F(s) del mismo mode que QJ se deduce de ¢ serd holomorfa en
|
. : g | . |
ﬁr-f@; +)[D* =¢ sl ~)[D* + &4 tyH(D -Es_tgtg—@ +65

| l
y puede prolongarse analiticamente desde el semiplanc de convergen-
t

cia de (1) hasta este rectangule PL a lo largo de un canal fde an-

chura 2% -
& ‘lks resulta

Por otro lado 51{1') (s) = e

A . =\ 8
(3) (e Kl =d'(e) == (-12AFe F =0

ademis dado cualquier circule complesamente interior al semiplano

de convergencia de (1) y para cualquier ’V}O podra elegirse un k



tal gque
I w8
(4) | F(s) = %; a e l<’17 si m>kg.

Por lo tanto si el cireule tiene un radio R>/ID* como hemos supu-

esto, resultara de (2), (3) y (4)
TF (s))<X 7]

y puesto queay puede elegirse tan pequena como se quiera y ademis

s_ recorre un arco de Jordan, tendremos finalmente

G

(5) F*(g) = O

y esta misma ldentidad se cumpliré en el rectangulo f, puesto que
7 (8) puede prolongarse analiticamente desde el semiplano de conver-
gencia de (1) hasta P,e

Del hecho que F(sg) es holomorfa en F? y que (5) se cumple
en f 4 se deduce( por ejemplo como en mi trabaje [2]) que F(s) es el
limite de una sucesién tnxnnmhtnxxtnnnxxitnzainsx&f ugifo“mamente
convergente en PL de combinaclones lineales de fﬁe An J§; %nwtances,
seglin un resultade de Schwarts [3,prpriete VIII, page 135y F(s) se-

ré holomorfa en el semiplano

0> 0 +)(P*= §<H

contrariamente’ a la hipotesis de que H es la sbscisa de holomorfia
de F(s). Esta contradiccién demuestra que la suposicién de que F(s)

puede prolongarse analiticeamente & le largo de un canal de anchum



7 2)(P*hagta ,04 en el cual supenemos que és holomorfa es absurda
para cualguier valor de E, 1o cual aeﬁuestm que F(s) tiene por lo |
menos una gsingularidad en '9 cuando este cumple lasg condiciones del
teorema, es decir el teorema queda demostrado.

2¢- Una demogtracidn gemajante, como veremos, nos permitira

demecstrar

TEOREMA II.- Suponmiendo gue ¢ Ap{ verifica las mismas con-
diciones gue en el teorema I, existird por lo menos una singularidad
de F(s) en cualguier eclrcule |s - s,|< 2/(D° tal gue O;<H -)(Dy ¥
gue pueda conectarse con el semiplano &e convergencia de (1) por un
canal de snchura > 2/{D* en el cual F(s) es holomerfa,

Demostracibn.- Es evidente que si la afirmacién del teorema
fuese falsa, existiria un eircule |s = salég/fﬁ' + & en el cual F(s)
ne tendris ninguna singularided y gue este eircule pedria conectarse
ecn el gemiplano de convergencia de (1) per un ecansal de anchura ®
2/7D* + 2§, todo esto para un determinade valor de { > 0.

Entonces igual que en la demostracién del teorema I podria

demostrarse que en el elrculo |8 - s |< &y ;E severifiaa

(s) =0 ;

t

1.

y por lo tante puede demostrarse, como anteriormente que en este ul-

timo eircule F(s) seria el limite de una gucesidén uniformemente con.
-Ans .

vergente de combinaciones lindales de f e j

Ahora bien aplicando un resultado de Kahane [4y teorema 3,
pag. 96] resultaria finalmente que F(s) seria holomorfa en el semi-

plane



g >0, +/(P<H

en contradiceién con el hecho de que H es la abscisa de holomorfia
de P(s). Este contraiiceién demuestra que el teorema es cilerto.
3.~ T1 teorema de Manielbrojt de gue hemos hablado en la in-

trodueeidn admite la hipotesis
(8) iim ( Nyyq=Ay) = 10>0

y con esta hipotesis y suponiendo tambien queilli D<o afirms que
daflo un canal S de anchura > 2)‘(!5‘ que parte del semiplane de con-
vergeneia 8¢ (1) y euyo areo J de Jordan recorride por el centro de

los eirculos que lo compenen tiene un punte s, tal que

o< g,— 35" (3 - leg (nb*))
donde (7, es la abseisa de convergencia de (1), entonces en S existe
por lo menos un punto singular de F(s)e

Pueste que cuande (6) se verifica (; = H y como la expresi-

on Sl 3D (3 - log(hD*)) puede ger,segin los casos, superiory e in-

eluso muy superior, a laj cantidades fE= (D, el teoremy de Man-
delbrojt no puede contener nuestros teoremas ni cuando se?a&mite-ﬁ’
la (6). Asimismo puesto que ni el rectangulo de nuestro teorema I
ni el eireulo de radio 2/{D° de nuestro teorema IIyes pusikied: posi-
ble afirmar que en todos los casocs sean interieres a los e¢irculos
de radio > /(D' que intervienen en el teorema de Mandelbrojt, ninguno
de nuestros teoremas contiene al del mencionade Profesor. Es décir

que como hemos dicho en la introduceidn los dos teoremas demostrados



en este trabajo y el de Mandelbrojt son indepeniientes, incluso sgin
tener en cuenta que nuestros teoremas no presuponen que se verifi-

que la condicion (8).
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SOBRE LOS PUNTOS SINGULARES DE LAS
FUNCIONES REPRESENTADAS POR SERIES

DE DIRTCHLET

por F. Sunyer Balaguer

RESUNMEN

51 en una serie de Dirichlet la sucesién ?)W1§ ie los
exponentes tiene una densidad méximedddl T finite, es clasico se-
tuslmente un resultads d¢ Bermstein que afirma que en cualquier
segmento de la recta de holomorfia de lengitud 27D existe al
menes un punto singular. Perc este resultado no permite saber la
situaeién de los puntos singulares situaios més alla de la recta
de holomorfia cuanfe la funcién pucde prolongarse analiticamente
a traves de ellas es deeir, cuando la recta fermada por todos
los puntos cuya abseisa es igual 2 la de holomorfia noe es una
cortadura para la funeidn. En este sentide Mandelbrejt demostro
un resultade cuanio la funcidn puede prolongarseé & io largo de

un canal de anchura > 2/(D*, donde B* es la densiiad media supe-

pl

‘plor de 7,3 :
En este trabajec demostraremos dos leoremas en ?a nisma

direeccidn que el de Mandelbrejt, pere que no son consecuencia de

41 ni tempoec lo contienen. KEetoe teeremas son los siguientes:

TEOREMA I.~ S1 H es la abscisa @e holomorfia de

(1) R(s) = Sae T



y sl 8")\5«% es tal gue O <)\, < hgq X D<oo, entonces existe al

menos una sigularidsd e F(s) en tedo rectamgulo U, < ¢ < J<H,
ty= t<tg tal que 0, -0, = 210", ty- ty= 2/T(D + D*) y que pue-

da conectarse con el semiplane 4s convergencis de (1) por un ca-
nal de anchura > 2/15° en el cual F(s) gea holomorfa,

TEOREMA II.~ Suponienfo que ')\, { yerifica las mismas

condiciones que en el tecrema I, existiré por lo menos una sin-

gularidad de F(s) en _cualouisr eircule ls - s < 2 JTD* 1al gque

- —
J,<«H =~J/lDy ¥ cue nueda consetarge con el gemiplano de conver-

zenois de (1) por un canal de anchura >2/(B° en el cual F(e)

es holomorfa.

Lag demostraciones de estos dog teoremas se apoyan en
unes resultaics de Schwartz y Kehane, y en un procedimiento mio

que he utilizado en diversas cuestiones.



