

15 October 1967

PROGRESS REPORT NO.1

PROPERTIES OF A SPACE OF ENTIRE FUNCTIONS
OF A INFINITE ORDER

1 JULY 1967 - 30 SEPTEMBER 1967

F. SUNYER BALAGUER

UNIVERSITY OF BARCELONA

THIS RESEARCH HAS BEEN SPONSORED BY THE MATHEMATICS BRANCH,
OFFICE OF NAVAL RESEARCH, WASHINGTON D.C. UNDER CONTRACT
F61052 67 C 0106. (ONR Task 043-266)

Let $\{n_k\}$ be the sequence of natural numbers corresponding to $F(z)$ such that

$$\begin{aligned} d_n &= 0 & \text{for} & \quad n \notin \{n_k\} \\ d_n &\neq 0 & \text{for} & \quad n \in \{n_k\} \end{aligned}$$

therefore we shall have

$$F(z) = \sum d_{n_k} z^{n_k}$$

and if we put (see eighth report of the contract N62558-14484)

$$\sum r_k(\sigma) d_{n_k} z^{n_k}$$

the correspondence between β and $R[F]$ would be one-to-one, but since the sequence $\{n_k\}$ depends on the equivalence class $R[F]$ I think it is not possible to prove that the correspondence between Z and $\beta X(Z/R)$ is a homeomorphism with the topology which we assign to Z (compact open topology) and with the product topology assigned to $\beta X(Z/R)$. And I think it would be very difficult (perhaps impossible) to utilize the theorem of Fubini.

In order to define a metric outer measure in Z I am trying to follow another method.

In the first place I consider in every equivalence class $P = R[F]$ the member such that

$$-\frac{\pi}{2} < \arg d_n \leq \frac{\pi}{2}$$

and then I write

$$F(z, \sigma) = \sum r_n(\sigma) d_n z^n.$$

Then to each $u \in \beta X(Z/R)$ corresponds a $F \in Z$. This correspondence $\varphi(u) = F$ is not one-to-one because to distinct points u can correspond the same F . However this correspondence has properties which are interesting ^{for} my object.

It is evident that the functions which correspond to two or more points u are the F which have some $d_n = 0$. Therefore it is interesting to know the properties of the set K of all equivalence class corresponding to functions which have some $d_n = 0$. I have stated the following theorem which give ^{an} interesting property of K :

THEOREM XXVII.- According to the metric outer measure defined in Z/R (eighth report contract N62558- 4484 NR 043-266) K is of measure zero.

On the other hand if we represent by K_1 the set formed by all equivalence class corresponding to functions which have some d_n such that

$$|\arg d_n| = \frac{\pi}{2}.$$

Then I have proved

THEOREM XXVIII.- According to the metric outer measure defined in Z/R the set K_1 is of measure zero.

Finally if we consider a set $A \subset Z$ and such that every $F \in A$ verifies

$$R[F] \notin K_1 \cup K$$

we shall say that A has the property p_1 . Then I have stated

THEOREM XXIX.- If the set $A \subset Z$ is closed and has the property p_1 then

$\phi^{-1}(A)$ is closed.

I think that the theorems XXVII, XXVIII and XXIX will permit me to define a metric outer measure adequate to my object but I have not yet a complete proof and I think that it will be very elaborate.

In the next quarter I shall try to complete the proof (if it is possible) and from the definition deduce the measure of some interesting subsets of Z.

F. Sunyer Balaguer
Angel Guimera 66 pral. 2^o
Barcelona - 17, Spain