ON THE ASYMPTOTIC PATHS OF ENTIRE FUNCTIONS REPRESENTED BY DIRICHLET SERIES

DUP

F. Sunyer Balaguer

In homage to Brofessor Macintyre

1.- INTRODUCTION.- Let

(1)
$$\sum_{a_n \in A_n} \lambda_n^s$$
 $(\lambda_n < \lambda_{n+1}, \lim_{n \to \infty})$

be a Dirichlet series absolutely convergent at every point s and let F(s) be the entire function represented by (1). Suppose that

is a continuous function of the real variable $u(\mathcal{O} \leq u < \infty)$ such that $\lim_{n \to \infty} s(u) = \infty$. According to the theory of the almost periodic functions only if $|\mathcal{O}(u)| \to \infty$ as $u \to \infty$ the path (2) can be asymptotic. It is evident that if $\mathcal{O}(u) \to \infty$ then $F(s) \to a_0$ but these asymptotic paths are not interesting.

On the contrarywhen $\sigma(u) \to +\infty$ and $F(s(u)) \to c(c = a \text{ finite})$ constant) we have an interesting asymptotic path. In 2.I give a theorem on the number of these paths which are contained in a given strip and are distinct; when I say that two asymptotic paths are distinct. I shall suppose that between these paths F(s) is not bounded. The proof is obtained using the interesting method used by Macintyre $[\ \]$

In 3 I obtain a translation to a class of series of a

classical theorem of Wiman for the Taylor series.

2.- I again consider a continuous curve (not necessarily αm asymptotic paths)

(a)
$$s(u) = O(u) + it(u)$$

such that $s(u) \to \infty$ as $u \to +\infty$ and now I suppose that if $u_1 < u_2$ then $\mathcal{O}(u_1) < \mathcal{O}(u_2)$ and that $\mathcal{O}(0) = 0$. Then I define the strip

$$S = \left\{ s = O(u) + it : 0 \le u < +\infty, \ t(u) \le t \le t(u) + A \right\}.$$
On the other hand I write

$$M(\sigma,F) = \sup_{-\infty < k < +\infty} |F(\sigma + it)|$$

and

$$\mathbb{M}(\mathcal{O}, F, S) = \sup_{\substack{-\infty < k < +\infty \\ S \in J}} |F(\mathcal{O} + it)|,$$

With these definitions we can state the following theorem:

THEOREM I. - If

$$F(s) = \sum a_n e^{\lambda_n s}$$

where $\sum a_n e^{\lambda_n s}$ is absolutely convergent at every point s and if F(s) has n distinct asymptotics paths in S, then

$$\lim \inf \frac{\log M(\mathcal{O},F)}{e^{\pi(n-1)\,\sigma/A}} \geqslant \lim \inf \frac{\log M(\mathcal{O},F,S)}{\pi(n-1)\,\sigma/A} > 0$$

Proof. - Evidently without loss of generality we can suppose

that the n asymptotics paths $\hat{\ell}_k(k=1,2,\ldots,n)$ do not intersect.

Now consider the part $S_{\underline{\phi}}$ of S for which $\sigma \leq \underline{\phi}$ then by a method used by Macintyre [1] we can map $S_{\underline{\phi}}$ cut by the n curves $\boldsymbol{\ell}_k$ on the rectangle

(3)
$$0 \le x \le \Phi'$$
, $|y| \le A/2$ of the plane $z = x + iy$

cut along n paralels to the axis of the x_i this mapping will be represented by z=Y(s) and it is conformal except on the cuts. Then again following Macintyre we can prove.

LEMMA 1.- If I is the lower bound of the length in the s plane of all curves belonging to $S_{\overline{b}}$ and joining a point of the $\sigma=0$ to a point of $\sigma=\overline{\Phi}$ but not intersecting any curve I_k , then $\overline{\Phi}$ ' verifies the inequality

$$\underline{J}' \ge L^2/\frac{1}{2}$$
.

Lis

It is evident that the rectangle (3) is formed by at most n+1 rectangles of which n-1 are bounded by the n paralels corresponding to the $\ell_k(k=1,2,\ldots,n)$. INMENIOUS MANUAL PROPERTY AND THE PROPERTY PROPERTY AND THE PROPERTY PROPER

Under the hypothesis that we suppose it is possible to prove that these exists a value $\theta>0$ such that if $\bar{\Phi}^i>0$ we can determine a x_0 such that for every k

$$\sup_{x=x_0, y \in \Delta_{\delta}} |F(\psi^{-1}(z))| > 1$$

where ψ^{-1} is the inverse function of ψ

Therefore according to a precision of a theorem of Lindelöf we have

$$\lim_{\underline{\phi}' \to \infty} \inf \frac{\log M(\underline{\phi}', F(\underline{\psi}^{-1}), \underline{\triangle}_{\underline{\phi}'})}{e^{/t(n-1)(\underline{\phi}' - x_{\underline{\phi}})/A}} > 0.$$

Since L $\geq \!\!\!\!/\,\!\!\!/$, following the lemma 1, $\!\!\!\!/\,\!\!\!/\,\!\!\!/$ $\!\!\!\!/\,\!\!\!/$ and as

$$\mathbb{N}(\Phi, F, S) \geq \mathbb{N}(\Phi', F(\Psi^{-1}), \Delta_{\Phi'})$$

it follows theorem I.

3.- Let F(s) be amentire function represented by a Dirichlet series $\geq a_n e^{\lambda_n s}$ where the sequence $\{\lambda_n\}$ has an upper density D and is such that inf $(\lambda_{n+1} - \lambda_n) > h$. Moreover I suppose that we have defined the function $\rho(\sigma)$ such that

$$\lim p(\sigma) = \rho , p'(\sigma) \xrightarrow{} 0$$

$$\log M(\sigma, F) \leq e^{\ell(\sigma)\sigma}$$

where ρ is the Ritt's order of F(s).

On the other hand following a result of Mandelbrojt [1] there exists a sequence $\{\sigma_n\}$ such that for every

$$s = \sigma_n + 1t$$

there exists a point s' such that

$$\log |F(s^*)| > e^{\rho(\sigma_n) \sigma_n - \rho \bar{a}} (1 - \Theta(1))$$

where d = D(7 - 3log(hD)).

Now I need a result of Milloux, i. e.,

LEMMA 2.- Let f(s) be a holomorphic function in $|s| \le R$ such that

$$\log |f(S)| \leq M$$

and if on a path joining s = 0 with a point of |s| = R the function is bounded by

$$\log |f(s)| \le m$$
, $m < M$,

then for $|s| \le r < R$

$$\log |f(s)| < M - (M - m) \frac{2}{\pi} \arg \sin \frac{R - r}{R + r}.$$

If F(s) has an asymptotic path in which $\sigma \to +\infty$ we denote by s_n a point such that s_n belongs to the asymptotic path and $s_n = \sigma_n^+ + it_n$ using lemma 2 and the properties of $\rho(\sigma)$ we can prove that for every R > /TD we have

$$1 - \frac{2}{\pi} \operatorname{aresin} \frac{R - \pi D}{R + \pi D} e^{-\rho d - \rho R}$$

Therefore if f_0 is a function of D and d such that there exists a value of $R > \pi D$ which verefies

$$1 - \frac{2}{\pi} \operatorname{are} \sin \frac{R - \pi D}{R + \pi D} = e^{-\rho_0 d - \rho_0 R}$$

then for the same value of R and for $\rho < \rho_o$ we shall have $\frac{2}{1/4}$. In $\frac{2}{\pi}$ arc $\sin \frac{R - \pi D}{R + \pi D} < e^{\rho d - \rho R}$ we have proved the following:

THEOREM II. - If

$$F(s) = \sum a_n e^{\lambda_n s}$$

is a Dirichlet series convergent at every point s and if ρ_o represents the function of D and defined above where D is the upper density of $\left\{\lambda_n\right\}$ and

$$d = D(7 - 3 \log(hD))$$

then if the Ritt's order ρ of F(s) verifies $\rho < \rho_o$ the function F(s) has no asymptotic path such that $\sigma \to +\infty$.

This is the translation of a classical theorem of Wiman to the Dirichlet series.

Barcelona 1967

REFERENCES

- 1.- Macintyre, A.J.- On the asymptotic paths of integral functions of entire order (Jour. London Math. Soc. 1935)
- 2.- Mandelbrojt, S.- Séries adhérentes régularisation des suites applications (Col. Monographies sur la teorie des fonctions, Paris 1952).