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Abstract

This paper proposes a 3D model based pose invariant face recognition method that can recognize a face of a
large rotation angle from its single nearly frontal view. The proposed method achieves the goal by using an
analytic-to-holistic approach and a novel algorithm for estimation of ear points. Firstly, the proposed method
achieves facial feature detection, in which an edge map based algorithm is developed to detect the ear points.
Based on the detected facial feature points 3D face models are computed and used to achieve pose estimation.
Then we reconstruct the facial feature points’ locations and synthesize facial feature templates in frontal view
using computed face models and estimated poses. Finally, the proposed method achieves face recognition by
corresponding template matching and corresponding geometric feature matching. Experimental results show that
the proposed face recognition method is robust for pose variations including both seesaw rotations and sidespin
rotations.
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1 Introduction

During the last few decades, research on the automatic face recognition (AFR) has received increasing
attention, and different face recognition algorithms have been developed. [1-3] give some good reviews in
this field. Most AFR algorithms are for face recognition under controlled conditions. For example,
satisfactory recognition rates on face images which are uncovered, in frontal view, with neutral expression
and controlled lighting have been reported in [7-10]. While some other recognition algorithms such as [13-
15] have been developed to tackle the variations on different lighting, small occlusions, and facial
expressions for frontal view face images. The results are encouraging.

The problem related to variations in poses received much attention and many algorithms have been
developed to tackle this problem. An early attempt is the 2D appearance based approach which describes
faces under varying pose with a set of 2D features and achieves pose analysis and face recognition by
comparing these features. [18] presents a method for pose invariant face recognition in the entire eigen-
space. Huang et. al [16] achieved pose invariant face recognition in the view-space which is a subspace of
the eigen-space. Demir’s method [19] is similar to that of [16], but employing a sub-LDA space as the view-
space. In [11] and [12], this problem was tackled in the discriminant waveletface space and the kernel LDA
space respectively. [20] describes a line-based algorithm for pose invariant face recognition. These
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appearance based methods can provide good recognition results based on dense sampling of the continuous
pose in gallery. However this requirement not only increases the gallery size but also makes the recognition
process more time consuming. In addition, when the gallery consists of only one front view image (such as a
passport photo) per candidate, these methods cannot work. Therefore the 3D model based approach was
proposed. It has stronger generalization to pose variation and is available to achieve pose invariant face
recognition from a single frontal view, though its implementation is more complex.

In the 3D model based approach, a 3D face model is built to represent the 3D geometry of human faces in
2D images. This approach removes the effect of pose variations on face recognition by estimating and
aligning poses with a 3D face model and then extracting features under a uniform pose for classification.
Generally, pose estimation is the most critical and challenging operation in the 3D model based approach. In
[21-22], fixed generic 3D face models were proposed to be used for all candidates. These methods can
achieve pose estimation from a single face image based on affine transforms. However pose of a particular
face cannot be estimated accurately by using a fixed 3D model. In [6, 17], simple adaptive 3D face models
that can adapted to fit a particular person were proposed. The pose estimation and the model adaptation were
achieved synchronously by using geometrical measurements. These methods can obtain effective pose
estimation from a single face image. However, [6, 17] can only estimate the sidespin rotations of the face in
an image with the assumption that the face has no seesaw rotation. Recently, Blanz et al [23-24] built a 3D
morphable face model from a large set of real 3D face data for pose invariant face recognition. Based on this
model, the pose estimation and model adaptation were achieved by hybrid geometric information and texture
information based optimization. The reported performance of pose estimation in this system is good, but the
optimization procedure is very complex and requires large computing time.

This paper proposes a model based pose invariant face recognition method to recognize a face from its
single nearly frontal view. As a generalization of Lam and Yan’s method [6], our method obtain more robust
performance to pose variation and gives following contributions: 1) proposed a edge map based ear point
detection algorithm, 2) presents a more general and powerful pose estimation algorithm 3) achieve
classification by corresponding template matching and corresponding geometric feature matching.

2  Overview of the Proposed Method

In this paper we propose a 3D model based pose invariant face recognition method that can recognize a
face from its single nearly frontal view, which assumes that the face has no seesaw rotation and may have
small sidespin rotation. The proposed method is composed of four operations: (1) facial feature detection, (2)
pose estimation and 3D model adaptation, (3) pose invariant feature extraction, and (4) classification. The
block diagram of the proposed method is given in Fig. 1. In the operation of feature detection, beside eye
corners, mouth corners, nose tip, eyebrow points, face contour, new facial features in the form of two lower
joint points of the ears and the face boundary (called ear points in the following) are detected by an edge map
based algorithm. A simple adaptive 3D face model is used to represent the 3D geometry of the face in an
image. With the assumption that the gallery faces have no seesaw rotation, we achieve pose estimation and
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model adaptation directly for these images using Lam and Yan’s method and obtain a pose and a face model
for each gallery face. Based on each gallery face image and the corresponding estimated face model, an
efficient algorithm is proposed to estimate a pose and a face model for a test face. Thus the test face totally
has M potential poses and potential face models, where M is the number of the candidates in the gallery. In
the pose invariant feature extraction operation, we compute the facial feature points’ locations and the facial
feature templates of frontal views and potential ones from the gallery face images and the test image
respectively based on the estimated poses and models. Finally, the proposed method achieves classification
by comparing the obtained template and geometric features from the gallery images and the test image.

3  Facial Feature Extraction

Locating facial features is an important step in face recognition. In the proposed method, the rough face
contour, two outside eye corners p andp® , two inside eye corners p“-p®, two mouth corners p*’ -p*,
a nose tip p® and tow eyebrow points p-p (see Fig. 1(a)) are located by using Lam and Yan’s method
[6]. The ear points as shown in Fig. 6 are not used in most face recognition algorithms. They are important
features for estimating the seesaw rotation in our algorithm. An edge map based algorithm is proposed to
detect the ear points in this paper. In the following, we illustrate how the algorithm detects left ear point.

First of all, a 2D rotation transform is performed on the input face image | to produce an upright face
image I, in which the line that holds least square distances to four eye corners is parallel to horizontal axis

(see Fig. 2(b)). The facial feature points p!”, j=0,..,8

in I, correspond to p”, j=0,..,8 in I, as shown in Fig.
2(b). Then the modified canny edge detector
introduced in [4] is employed to obtain the edge map E
of (for example, Fig. 3(a)). From the detected facial
feature points and the rough face contour in I, a
searching region for ear points is determined in E as
shown in Fig. 3 (b). The trivial edges in the searching
region are eliminated. Canny edge detection may
produce disconnected edges which correspond to the
continuous contours in lu. We develop a new edge
Fig. 2 Facial features in: (a) the input image I, (b) Cconnection operation to recover such continuity in the
the upright image 1. edge map E. Thus the connected edges are obtained as
shown in Fig. 3 (c).

(@) (b) ©) (d)

Fig. 3 (a) an upright face image. (b) The edge map and the searching window. (b) Connected edge
map. (c) The potential face and ear boundaries.

By filtering out edges that have a nonnegative slope and retaining only the largest connected edges, we
obtain the potential face and ear boundaries " as shown in Fig. 3 (d). It is assumed that the outermost curve

in T, says 7 (i.e. ad in Fig. 3 (d)), should include both ear boundary and face boundary. We estimate the
salient points on ¢ by R/J curvature based curve partition algorithm [5]. The salient points, which are inward
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bending points (illustrated in Fig. 4(a)) satisfying the condition that R/J curvature at these points are larger
than a predefined threshold value, will be chosen as possible ear points. In order to exclude the false
candidates such as the neck point (the joint point of the face boundary and the neck boundary),
anthropocentric constraints are used to verify each possible ear point. The anthropocentric constraints are

formed based on some prior knowledge and statistics obtained from some 200 face images. Let d_ denote

the vertical distance between ¢ ’s top end point p,and a possible ear point p,, and d.. denote the vertical
(0)

distance between p” and p'”, see Fig. 4(b). If d, > dw,0r p,, is on the right side of p”, p,. will be rejected
as the left ear point. If no candidate is viable to pass the verification, it means that no left ear point is
detected; otherwise the viable candidate, which holds the largest R/J curvature will be regarded as the
detected left ear point.

(4)

u
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Fig. 4. (a)Bending points on the left face and ear boundary ¢ (b) The elements related to the
anthropocentric constraints.

Similarly, we can detect the right ear point. In lu, the left ear point and the right ear point are labelled as
p” and p!"” respectively (see Fig. 2(b)). Some examples of the detected ear points are shown in Fig. 5.

u

Fig. 5 The examples of ear points detected by our method.

4 Pose Estimation and 3D Model Adaptation

In this paper, a face image is regarded as a 2D orthogonal projection of a 3D face. While a 3D face is
originally posed in the world coordinate system as shown in Fig. 6(a), its projection on the image plane will
be a face image in front view. The image plane is always perpendicular to the z-axis of the word coordinate
system. When the 3D face has a certain rotation around the origin of the world coordinate, its 2D projection
on image plane is a face image with corresponding pose. Any rotation can be uniquely decomposed into
three orderly rotations--seesaw rotation, sidespin rotation, and in image plane rotation, which are around x-
axis, y-axis and z-axis by 6,, 6, and @, respectively. In this paper, all gallery images and test images are

adjusted to upright face images by 2D rotation operation mentioned in section 2. In addition, it is assumed
that the face in each gallery image has no seesaw rotation. Thus for faces in upright gallery images, only
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small sidespin ration angles 4, ,(m), for m=1,...M need to be estimated, where M is the number of
candidates in the gallery. For the face in an upright test image, we need to the estimate seesaw ration
angle g, ., and the sidespin ration angle 6, .. In our method, a 3D face model is used for pose estimation. The
face model will be adapted to fit a particular person in the process of pose estimation.

4.1 The adaptive face model

A 3D adaptive model similar to that used in Lam and Yan’s method (cylindrical volum with a less convex
surface part as face) used to represent the 3D geometry of a head. As shown in Fig. 6(a), facial feature points
on the 3D model are labeled as P, j=0,..,10. The 3D model is originally located in world coordinates
system under two conditions: (1) the four eye corners are coplanar on x-z plane; (2) the y-z plane is the
symmetrical plane of the face model. Therefore we can obtain its frontal view projection on the image plane.

4 y
& =0
(0 p® P (©) 9, o
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pc P
g g, =0.15
() (b)

Fig. 6 (a) The 3D face model in original pose. (b) The horizontal cross-section of the face
model through the eye corners.

In [6], the convexity of the less convex surface of the face model is specified by ¢. When ¢ =0, the less
convex surface area becomes a flat plane, while &£ =1, the model is a cylinder. In our method, considering

that the convexity of the surface around mouth is evidently larger than that around eyes, we use ¢ and ¢, to
specify the local convexities of the less convex surface around the mouth and the eyes respectively. In this
paper, we set ¢, =0.15, while &, =0.85. With fixed ¢,, the structure of the horizontal cross-section of the

face model passing through four eye corners is specified by parameters r, and ¢, (illustrated in Fig. 6(b)).

The arc passing through points P, P®,P® and P is also a part of a circle. The origin of the world
coordinates system is on this cross-section and is marked by O in Fig. 6(b). Similarly, the structure of the

horizontal cross-section of the face model passing through two mouth corners is specified by parameters r,
and «, . In addition, the information of ear points is appended in our face model with the assumption that the
depth distance (along z-axis) between an ear point and an outside eye corner is I,. Thus we adapt the simple
3D face model to fit a particular person by estimating parameters r,, «,, I, and «, from a 2D face image.

4.2 Pose estimation and model adaptation

Suppose there are M face images in nearly front view in the gallery, one image per candidate. With the
assumption that the face in each gallery image has no seesaw rotation, we can estimate 6, ,(m), r.,(m),
aey(M), Ty(m), and a,,(m), m=1,..,M from each gallery face image using Lam and Yan’s method.
These 5 parameters specify the 3D model which fits the face in the m-th gallery image. The facial feature
points in the m-th gallery face image are represented by p!™,”, corresponding top{” on Fig. 2(b), j = 1,...,10.
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Fig.7. The projection of the left eye corner, the left ear point and the left mouth corner on y-z
plan (when 6, =0" and &,_4(i) =0°), for (a) the test face (b) the i-th gallery face.

For a test image, we propose a new algorithm to estimate ¢,, and 6, ., and to achieve 3D face model
adaptation by estimating parameters r..,, a.., r,., and «,.. Let p{%, j = 1,...,10 represent the facial feature
points in the test face image. Assuming that the test image is a face image of the i-th (i [1, M]) candidate in
the gallery, we first estimate the corresponding potential seesaw rotation angle 6, (i) . As the test face is not
surly same as the i-th gallery face, 6, (i) is a potential 4, .. Suppose that both the test face and the i-th
gallery face have no sidespin rotation 6,., =0" and 6, (i) =0°. The left ear point, the left outside eye point
and the left mouth corner on the test face are projected on y-z plane, and the projections of these facial
feature points are denoted by W, U and V respectively as shown in Fig. 7(a). The corresponding facial
feature points on the i-th gallery face are also also projected on y-z plane, and the projections of these three
facial feature points are denoted by W', U’ and V' respectively as shown in Fig. 7(b). Line segments WQ and
W'Q'’ are perpendicular to UV and U’ V', with intersection Q and Q'. Thus we have following equations:

(WQItg(y +6, (I)+|QUN/|WI=d, /d, 1)
(WQ g )+ QU N/ UV |=d, ()/d,, () (2)
where d,,_, denotes the vertical distance between the left out side eye corner p;, and the left ear point p.”,
on the test image, d,, , denotes the vertical distance between p,”, and the left mouth corner p*, d,. , (i)
denotes the vertical distance between the p{{ and p{? on the i-th gallery image, and d.,, denotes the
vertical distance between the p{"; and_p{? . As_it is assumed that the test face and the i-th gallery face
belong to the same person, we have ‘WQ =k|W'Q' ,TQU| = k|Q'U'r, w =y, and ‘UV‘ = kTWr The
scaling factor k is used to remove the size difference of the test face and the i-th gallery face. Thus the
corresponding potential seesaw rotation angle of the test face can be formulated as follows:

d d ) — = — S
6. () =tan (—————(WQ'|tg(y)+| QU )-IQU )/ IWQ ) -y (3)

dlee—l / de"kl

Based on the i-th adapted gallery face model and facial feature points on the i-th gallery image, W'Q’,
U'V'and ' can be computed by following equations:

z//'_:tan (g (D) SIN(_g (1)) = T_g () SIN(e_y (D)) / Diemg (D)) ()
WQ=(d 0 +(t, 0 -ooten’ (A, @/, D)), &
Q_U" = \/ (@, @)+ 0) -sintan”(d,. ()/d,, ,@)-¥) (6)

From (3)-(6), the corresponding seesaw rotation angle 6,.(i) can be computed. As d.ee,g(i)/d.em,g(i),
et /din @s Well as the parameters of the i-th gallery model are independent to 6, and 6, (i), the
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proposed algorithm is available to compute 6, (i) for any 6, and 6, ,(i) (without the requirement of
6,.=0 and 6, ,(i) =0"). In the same way, another corresponding potential seesaw rotation angle for the test
face can be computed using the information provided in the right feature points. We average these two
corresponding potential seesaw rotation angles as the final 6._(i). In this paper, we assume that the seesaw
rotation angle of the test face is in range of -25°to +25°. Thus if 6,_.(i) > 25" or 6. (i) < =25, it will be set at
25°0r -25°respectively. If we do not detect any ear point on the i-th gallery face image or on the test face
image, then 6, (i) is assigned to be zero.

Based on the estimated &, (i), we can further estimate corresponding, and r._ (i) , «._. (i) and 6,_ (i) using
the geometric information about two outside eye corners and the face contour in the test face image. Let 11,
represent a circle that passes through the outside eye corners on the corresponding potential model of the test
face and centers at the origin of the word coordinate system. Let ®, be the projection of 11, on the image
plane. If 6,.(i) =0, ®, should be a line passing the outside eye corners p” and p in the test image (Lam
and Yan’s algorithm just consider this situation), otherwise ©, should be an ellipse passing the outside eye
corners in the test image as shown in Fig. 8. p™) (x,e, y,e ) represents the middle point between p” and
pt . In this paper, we assume that p!” and p® are not occluded in an image. p. (X, .Y, ) and pu (X, Y. )

represent the two end points of the long axis of the ellipse ©, respectively. p.(x,., Y, ) is the center of ©,.

X
. p®

(3)
(0) 11) P
®) Pu- ,ﬂf—'pﬁit —./ )

y A
Py Pai /! ‘/*—’ /
{ ,—/ pci -
[ ___.f'
pbi ""ﬁ-___-f"f-a
(a) (b)
Fig.8 ©, the projection of 11, in test image when 6_ (i) >0" and ()8, (i)=0", (b)6,_ (i)>0".

The ellipse ©_(x,y) in the test image can be formulated as follows:

x=r_(i)cos(6,  (i))cos+r_(i)sin(d, _ (i))cos(d_(i))sind+x |
)

y =1, ()sin(o, , ()sin 2 +y,

(8)

where 1 < (0,27) is the independent variable and (x,,, vy, ) denotes the location of the ellipse’s center.
r_ (i), x, and vy, are given by:

r_ (i) =|p® -p?|/(2co0s(6, . (i) cos a, (i) ,

9)

x, =—tan(d (i) tan(e, () cos(d,  ())(p,”, —p |/ 2) +X ., ,

(10)

y, =tan(e, ())sin(g,_ (1)) p -p /(2 cos(d,_, (1)) + Yoo - (11)

Combining (9), (10) and (11), we rewrite (7) and (8) as follows:

x=cos Z-[p” —p?|/(2cos(a, (i) + tan(6, (i) cos(d, (i) sin 4 -
—tan(@,_ (i) tan(e,_ (1)) cos(d,_, (i))( 12)+ X o

(12)

y=-sin(@_(i))sin A-

)

p? -p?|/(2cos(a,., (1))

(0) (3)
puft - pufi

P, —P,, / (2c08(8., (i) cos(er,, (i) +tan(e, , (i) sin(@, , ()|p,”, —Py, / (2c0s(6, (M) +y ., (13
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Then we try to locate p, and p,, on ®, on the image plane. One of p.(X,,, X, ) and pu (X, , X, ) IS
represented by symbol p;(x,,x, ) . We have:

x, =1 (i)cos(6,  (i))cos A, +r, (i)sin(d, (i))cos(d, (i))sind, +X, , (14)
y, =t ()sin(6_())sini, +vy, (15)
(x, =% ) +(y, -y, )" =(r (@) . (16)
Thus the following equation can be conduced from (14), (15) and (16):

(cos(6, (i) cos(d, , (1))’ (tan(4, ) —sin(26, (i) cos(@,_, (1)) tan(2, ) - (sin(6,, (i)’ =0. (17)

tan(4, ) = tan((6 (i))/ cos(@. (1)) , 4. =tan" (tan((6,..(1))/ cos(6. (1)) and A, =tan" (tan((6),..(i))/ cos(6.. ())) +#
are hence obtained from (17). Referring (12) and (13), we found that the pair of locations of p_, and p,, in
image plane are determined by «, (i) and 6,.(i). According to statistics obtained from some 100 face
images, «, (i) should be in range of 35° to 65°. In this paper we assume 6,_ (i) € [-30",30"]. Thus based on
dense sampling <, (i) €[35,65] and 4,..(i) [-30°,30°], we can compute K possible pairs of p_ and p,,
which are represented by &, (p,(k).p,(k)).k=1,..,K . In the following, ®,  k=1,.,K will be used to
approximate all possible pairs of p, and p, for «, (i) e[35,65]and &,.(i) €[-30',30"] . Let «, (i,k),
0,..(i,k) represent the sample values of «, (i) and 6,.(i) corresponding to the ® . The smaller the
sampling interval is, the larger K is and the more efficient the approximation is. For our application, we set
the interval at 1" for sampling both «, (i) and 6, (i), so as a result K is equal to 1800. According to the
geometric character of our face model, it is given that among all possible pairs of p, and p, , only the true
one will appear on the face contour in the test image and the true one will definitely appear on the face
contour. Let d,, (k) represent the shortest distance fromp, (k) to the detected face contour and d., (k)
represent the shortest distance from p,(k) to the detected face contour. d. (k) is the sum of
de, (k) and d,, (k) . Then we estimate p, and p, , r (i), «_ () and 6,() by p,(c), p,(c) ,
(Ipai (€) — pui (€) )/2 , a, . (i,c) and 6, (i,c) respectively, where the d, (c) is the smallest one among
d, (k),k=1,..,K, 1<c< K. We can estimate the corresponding r__ (i), «, (i) and 6, (i) in the same way
but using the geometric information about two outside mouth corners and the face contour in the test face
image. We average the two potential sidespin rotation angles estimated by using the eye corners information
and the mouth corners information respectively as the final potential sidespin rotation angle 4,_(i).

In this paper, the proposed algorithm is employed to estimates the pose and the 3D face model of the test
face, assuming that the test image is an image of the m-th candidate in the gallery for m=1,..M . Thus we
obtain M potential poses and M potential models for the test face image referring to all candidates in the
gallery. Among these potential poses, the i-th one will be regarded as the matched potential pose, if the test
face and the i-th gallery face really belong to one person. The matched potential pose consists of matched
potential seesaw rotation angle 6, and matched potential sidespin rotation angle 6, ..

(93/4 =14.0,, :00)(0;/4 =31.4, :OQ)(G)H =08,6,,=0) Ot =5 1O =205 Ot =800, =161 Om =180 =89
@,.=36.,4.,=0)0.=-63,6,=0)@,=-152,4_,=0)
(a) (b)
Fig.9 Some test faces in (b) and their matched potential poses obtained by the proposed algorithm referring

to the corresponding gallery faces in (a). The poses of the test faces and the gallery faces estimated by Lam
and Yan’s algorithm are also given in parentheses for comparison.

Fig. 9 shows some examples to illuminate the performance of the proposed algorithm for pose estimation.
The images in Fig. 9.(a) show some test faces and the images in Fig. 9.(b) show the gallery faces belonging
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to the same person. The matched potential poses of these test faces, which are estimated by the proposed
algorithm, are shown in Fig. 9(b). For comparison, the poses of these test faces and gallery faces estimated
by Lam and Yan’s pose estimation algorithm [6] are also given in the parentheses. The result shows that the
proposed pose estimation algorithm can obtain effective and general estimate of poses (including both
seesaw and sidespin rotations) for test faces.

5 Pose Invariant Feature Extraction and Classification

Based on estimated pose and 3D face model of each gallery faces, we reconstruct a set of facial feature
points” locations pi? (X,.. (M, j), ¥o.. (M, ), j=1..,8 , on the frontal view of each gallery face from
P (%o, (M, ), Ye, (M, ), j =1,...,8, for m = 1,...,M, using affine transform. Similarly, based on the M
potential poses and corresponding potential models of the test face, M sets of facial feature points’ locations
Pat (X (M, ), ¥, (M, j)),j=1..8, m=1,..,Mon the corresponding M potential frontal views of the test
face are reconstructed from p'”(x,. (i), V.. (i), j=1...8. For m = 1,...,M, point set pI'’, j=1,..8 are
normalized and aligned to p&"), j=1,...,8, besides r_ (m) and r,_ (m) are normalized to r,_,(m) and r,_,(m).
We define D (m),m =1,..M as follows:

(m.j) (m.j)

8

D,(m) =Dk, |p"” —p! r.(m-r_ (m). (18)

Corres’ﬁonding geometric features matching is then preformed by computing D], for m = 1,...,M to
measure the similarity between the test face and each gallery face. N (N < M) faces in the gallery which
satisfy D] <&, (6, is a threshold) are chosen as qualified gallery faces and passed on for the further
recognition process. Corresponding to these N qualified faces in the gallery, N potential poses and potential
models are remained for the test face. Based on the n-th remained potential pose and corresponding potential
model, for n = 1,...,N, the eyes and eyebrows template T_ (n), the nose template T _ (n) and the mouth
template T, (n) in the n-th potential frontal view of the test face are synthesized by affine transform. We
also synthesized the eyes and eyebrows template T, ,(n), the nose template T, ,(n) and the mouth template
T..,(n) in the frontal view of the n-th qualified gallery face, forn=1,...,.N. Then T_(n), T, (n)and T (n)
compared to T.,(n), T,_,(n)and T,_,(n) by correlations, for n = 1,...,N. The larger the correlations are, the
more similar to the test face the corresponding qualified face in the gallery is. This comparison is referred to
as corresponding template matching. Combining the results of the corresponding geometric feature matching
and corresponding template matching, we can achieve final classification and find a qualified face in the
gallery which is most like the test face.

In this section, the operations of normalization, alignment, and correlation in our method are same as
those in Lam and Yan’s method. In our method, the operations of synthesizing facial feature points’
locaitons on frontal view and synthesizing facial feature templates in frontal view are similar to
corresponding operations in Lam and Yan’s method except for considering extra estimated seesaw rotation.
In the operation of geometric feature matching, we use 9 facial feature points and 2 estimated model
parameters to replace the 15 facial feature points used in Lam and Yan’s method, because the 6 facial feature
points on the face contour are not pose invariant features in our case when the seesaw rotation is considered.
The implementation of these operations can be referenced to [6].

Fig. 10 (a) and (b) show a test face image and a gallery face image of the same person respectively. Fig.
10 (c) and (e) show facial feature templates of the test face and the gallery face synthesized by using Lam
and Yan’s method. Fig. 10(d) shows facial feature templates of the test face synthesized by using our method
based on the matched potential pose and the matched potential face model. Compared to the facial feature
templates shown in Fig. 10(c), the facial feature templates shown in Fig. 10(d) are more like in frontal view
and have more similarity to those shown in Fig. 10(e).

R A e

+k,|r (m)-r (m)| +k,

A e B
L S
(@) (b) (©) (d) (e)

Fig.10. (a) A test face image. (b) The corresponding gallery face image which captures the same person as
the test face image. The facial feature templates of the test face synthesized using Lam’s method (c), of
the test face synthesized using our method based on the matched potential pose (d), and of the gallery face
svnthesized usina Lam and Yan’s method (e).
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6  Experimental Results

6.1 Testing the proposed algorithm for detecting ear points

This section gives the testing of the proposed algorithm for detecting ear points using 280 face images in
ORL database (accessible at http://www.cam-orl.co.uk/ facedatabase .html). We first manually marked the
ear points on each of these test images. Totally there are 453 visible ear points on these face images. The
computed ear points on these images were obtained by the proposed algorithm. Our algorithm detected 378

ear points on 231 face images, and detected no ear points on the other 49 images. The average distance D,
between each of the 378 computed ear points and its corresponding manually marked one is 1.88 pixels.

6.2 Evaluating the proposed pose estimation algorithm using synthetic data

We generate random 3D synthetic faces (see example in Fig. 11.) of different particular persons using
commercial software “FaceGen Modller 3.0”, which is developed by Singular Inversion Inc.
(http://www.facegen.com). The 3D synthetic face is then normalized according to the distance of the two
outside eye corners and thus with the assumption that the projection system used here is an orthogonal
projection system, the distance of the two eye corners in the frontal view projection is fixed at 200 pixels.

Z X > X (b)
J} Fig. 12. Orthogonal projections of rotated synthetic

Flg. 11. Two examples of synthetlc face  face with marked facial feature points and face
generated by “FaceGen Modller 3.0”. contours. (a) gallery data (b) test data.

We examined the performance of the pose estimation algorithm for a test image under the condition that
we have the same candidate’s nearly frontal view image in the gallery. 20 synthetic faces were randomly
generated. Each synthetic face was first rotated with a uniformly distributed random rotation parameter set
(6.,=0, 06,,e[-5,5], 6., =0), and the face image projected from the rotated synthetic face was used as
its gallery image. Similarly we generated 6 test images for each synthetic face with 6 uniformly distributed
random rotation parameter sets (6. (i) e[-25,257], 6,..(i) [-30°,30°], 6...(()=0"), i =1,2...,6 . The facial
feature points and face contours of gallery images and test images are marked manually, as shown in Fig. 12.
In order to simulate the facial feature points extraction error, Gaussian random noise with standard variance
o,, was added on the x-and y-coordinates of the marked facial feature points in both gallery data and test
data. Using the proposed pose estimation algorithm, we recover the pose of each test face (6, (i), 6,.. (i)),
i=12,..,6. The absolute seesaw rotation error and the absolute sidespin rotation error defined as:
A =1 2(Z2,(|6,()) - 6..(i)])) and Ab,.. =1/2(Z?, (|6} (i) -6, (i)|)) were utilized to measure the accuracy
of the recovered poses. Finally, the average A6, and A6,. for 20 synthetic faces were calculated. The
performance of the proposed pose estimation for test images with different o,, is shown in Fig. 13. For
comparison, we recovered the sidespin rotations of all test images using Lam and Yan’s algorithm under the
same condition and then computed the average absolute sidespin rotation error which is shown in Fig. 13 (b).

From Figs. 13(a) and (b), we observe that A6, and A#d,.. increase with the increase of o,, . For our
proposed pose estimation algorithm, they are smaller than 5.4° and 6.5 respectively when o,, <4. It is
found that even when o,, =0, A6, and Aé,, are not equal to zero. Such systematic error is produced

mainly because of the structural difference between the synthetic faces and the simple adaptive face model
used in our algorithm. Sidespin rotation estimation is not independent to seesaw rotation estimation and our
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algorithm can get a better seesaw rotation estimation, so the performance of the sidespin rotation estimation
in our algorithm is better than that in Lam and Yan’s, see Fig. 13(b). Although the proposed pose estimation
algorithm used in our face recognition method cannot estimate the pose with very good accuracy, it is more
general and is more efficient to be used to improve the face recognition result compared with the pose
estimation algorithm used in Lam and Yan’s method, as illuminated in section 6.3.

9 12
gt 11¢
107
7 ol
. 6 g
Q}Q 5t N Tr
< ‘%&’ Q
4’ <] 5t
3 4
2 3

1t 2r -O-our algorithm

Ir - -Lam's algorithm ||
00 1 2 3 4 5 6 7 8 00 1 2 3 4 5 6 7 8

The standard variance Oy, of 2D Gaussian noise The standard variance 0,4 of 2D Gaussian noise

(@) (b)
Fig. 13. Performance of pose estimation under different 2D noise on measurement of marked facial feature
points: (a) A@,. by using the proposed pose estimation algorithm; (b) AG,. by using the proposed pose

xerr yerr

estimation algorithm and by using the pose estimation algorithm applied in Lam and Yan’s method,

6.3 The performance of the face recognition method

In this section, we present a set of experiments using ORL face image database and I1S face image
database (accessible at http://smart.iis.sinina.edu.tw) to illustrate and compare the performance of the
proposed method and Lam and Yan’s method for face recognition under varying poses. The comparisons of
face recognition results at different seesaw rotation angles between the two methods are emphasized here.

ORL face image database includes 10 different face images of 40 distinct candidates (see examples in Fig.
10). Generally, faces in the images of this database satisfy the assumptions of our method: (1) 6, is about in
range of —25° to 25° (2) ¢, is about in range of -30° to 30°% and (3) the two outside eye corners are not
occluded. Lam and Yan [6] also conducted experiments based on ORL face image database. In their
experiments, a face image in a nearly frontal view for each of the 40 candidates is chosen to construct the
gallery and other 160 images, in which one half is in a nearly frontal view and the other half shows different
amounts of pose variations, are selected to be test images. In
these test images, there are only about 28 images with distinct
seesaw rotation (with matched potential seesaw rotation angle
0,..>5). In our experiments, we utilized the same gallery
named gallery A and used the same test images as test set 1.
Also, we formed test set 2 by 82 face images with distinct
seesaw rotation. In I1S database, there are 100 persons and 30
pictures with different poses for each person (see examples in
Fig. 14). We chose a nearly frontal view face image for each
person from 1IS database to construct another gallery B.
Accordingly, 800 images which meet assumptions (1), (2) and
(3) of our method were chosen from IS database to be test
images called test set 3. We automatically detect facial feature
points and manually marked them on each image in gallery A,
gallery B, test set 1, test set 2 and test set 3. In our system, the
facial feature points are detected automatically. However for
comparison of the recognition performance, the manually
marked facial feature points were also used in the following Fig. 14. Examples of face images in IIS
experiments in the same way as that the automatically detected face image database.
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ones were used. Thus there are 6 test data source TS1A, TS1IM, TS2A, TS2M, TS3A and TS3M in our
experiments. TS1A and TS1M represent the data sources use face images in Test set 1 with automaticlly
detected and manually marked facial feature points respectively. The others are similar.

Overall recognition index R:l—(l/Nt)Zi”z‘l(r(i)/(l\/l -1)) is used to evaluate the performance of the
recognition methods in our experiments, where M is the number of faces in the gallery database, N, is the
number of test images and r(i)=0,..,M -1 is the position of the correct object on the similar list in which
all objects in the gallery are sequenced according to their similarity to the test face. The gallery face that best
matched the test one is placed on top of the list, while the least matched one is at the bottom. Thus R is in
range of 0 tol. The larger R is, the better result is. Actually it is an effective and convincing measurement of
the recognition result. We also used recognition rate R'= N, /N,, where N, is the number of test images
that are recognized correctly, to measure the recognition performance in our experiments. In order to
investigate the effect of the seesaw rotation to our face recognition method, we performed three experiments
on TS2A, TS2M, TS3A, and TS3M. In the first and the second experiments, the performance of the
geometric feature matching and facial feature template matching in our method are evaluated. The final face
recogniton performance of our mehtod is investiged in the third experiment. For comparesion, the final
recognition performance of Lam and Yan’s method and the performance of both geometric feature matching
and facial feature template matching in that mehtod were also be tested. The overall recognition index R at
different values of 6, (the matched potential seesaw rotation angle) of these experiments were illustrated in
Fig. 15, (a)(b)(c) for test set 2, (d)(e)(f) for test set 3, (a)(d) for geometric feature matching, (b)(e) for facial
feature template matching and (c)(f) for final face recogniton.

The experimental results shown in Figs. 15 indicate that the proposed method can achieve rubust face
recognition even when the test faces hold distinct seesaw rotation and it has better recognition performance
than Lam and Yan’s method. It can be found, gernarally the larger seesaw rotation the test faces hold, the
more obvious advantage of our mehtod is demonstrate compared to Lam and Yan’s method. This advantage
is obtained mainly because our method estimates the seesaw rotation and to some extent removes such pose
variation on the test face classification
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Fig. 15. The tested recognition performances at different seesaw rotation: (a)(b)(c) on test set 2, (d)(e)(f) on
test set 3, (a)(d) for geometric feature matching, (b)(e) for template matching, (c)(f) for final face recognition.
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Table. 1 gives a comparison of overall recognition rate R* for our method and Lam and Yan’s method on
test set 1, test set 2 and test set 3 (using manually marked facial points and detected facial feature points
respectively). As there are only a few faces in test set 1 holding distinct seesaw rotations, the advantage of
our method is not prominent. However since all faces have distinct seesaw rotation, the advantage of our
method is more obvious in test set 2 and test set 3.

TS1A | TSIM | TS2A | TS2M | TS3A | TS3M

Our method 87% | 91% | 78% | 81% | 77% | 80%

84% | 89% | 67% | 69% | 70% | 74%

am&Yan’s method

Table 1. Recognition rate comparison

7  Conclusions

This paper proposes a 3D model based pose invariant face recognition method that can recognize a face
from its single nearly frontal view. The proposed method, using an analytic-to-holistic approach and a novel
algorithm for estimation of ear points, can recognize faces of large rotation. Experiments were carried out to
test the proposed ear point detection algorithm which was shown to have good accuracy. Using this
algorithm and an improved face model, we develop a more general pose estimation algorithm. Experimental
results show that the proposed pose estimation algorithm can effectively estimate both the seesaw rotation
and the sidespin rotation of the test face. Based on the general pose estimation, pose invariant features and so
more accurate face recognition can be obtained by corresponding template matching and corresponding
geometric feature matching. Experimental results show that the proposed method is more robust to pose
variation compared to Lam and Yan’s method and has a good performance for pose invariant face
recognition.
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