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Abstract 
This paper proposes a 3D model based pose invariant face recognition method that can recognize a face of a 

large rotation angle from its single nearly frontal view. The proposed method achieves the goal by using an 
analytic-to-holistic approach and a novel algorithm for estimation of ear points. Firstly, the proposed method 
achieves facial feature detection, in which an edge map based algorithm is developed to detect the ear points. 
Based on the detected facial feature points 3D face models are computed and used to achieve pose estimation. 
Then we reconstruct the facial feature points’ locations and synthesize facial feature templates in frontal view 
using computed face models and estimated poses. Finally, the proposed method achieves face recognition by 
corresponding template matching and corresponding geometric feature matching. Experimental results show that 
the proposed face recognition method is robust for pose variations including both seesaw rotations and sidespin 
rotations.  
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1 Introduction 

During the last few decades, research on the automatic face recognition (AFR) has received increasing 
attention, and different face recognition algorithms have been developed. [1-3] give some good reviews in 
this field. Most AFR algorithms are for face recognition under controlled conditions. For example, 
satisfactory recognition rates on face images which are uncovered, in frontal view, with neutral expression 
and controlled lighting have been reported in [7-10]. While some other recognition algorithms such as [13-
15] have been developed to tackle the variations on different lighting, small occlusions, and facial 
expressions for frontal view face images. The results are encouraging. 

The problem related to variations in poses received much attention and many algorithms have been 
developed to tackle this problem. An early attempt is the 2D appearance based approach which describes 
faces under varying pose with a set of 2D features and achieves pose analysis and face recognition by 
comparing these features. [18] presents a method for pose invariant face recognition in the entire eigen-
space. Huang et. al [16] achieved pose invariant face recognition in the view-space which is a subspace of 
the eigen-space. Demir’s method [19] is similar to that of [16], but employing a sub-LDA space as the view-
space. In [11] and [12], this problem was tackled in the discriminant waveletface space and the kernel LDA 
space respectively. [20] describes a line-based algorithm for pose invariant face recognition. These 
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appearance based methods can provide good recognition results based on dense sampling of the continuous 
pose in gallery. However this requirement not only increases the gallery size but also makes the recognition 
process more time consuming. In addition, when the gallery consists of only one front view image (such as a 
passport photo) per candidate, these methods cannot work. Therefore the 3D model based approach was 
proposed. It has stronger generalization to pose variation and is available to achieve pose invariant face 
recognition from a single frontal view, though its implementation is more complex. 

In the 3D model based approach, a 3D face model is built to represent the 3D geometry of human faces in 
2D images. This approach removes the effect of pose variations on face recognition by estimating and 
aligning poses with a 3D face model and then extracting features under a uniform pose for classification. 
Generally, pose estimation is the most critical and challenging operation in the 3D model based approach. In 
[21-22], fixed generic 3D face models were proposed to be used for all candidates. These methods can 
achieve pose estimation from a single face image based on affine transforms. However pose of a particular 
face cannot be estimated accurately by using a fixed 3D model. In [6, 17], simple adaptive 3D face models 
that can adapted to fit a particular person were proposed. The pose estimation and the model adaptation were 
achieved synchronously by using geometrical measurements. These methods can obtain effective pose 
estimation from a single face image. However, [6, 17] can only estimate the sidespin rotations of the face in 
an image with the assumption that the face has no seesaw rotation. Recently, Blanz et al [23-24] built a 3D 
morphable face model from a large set of real 3D face data for pose invariant face recognition. Based on this 
model, the pose estimation and model adaptation were achieved by hybrid geometric information and texture 
information based optimization. The reported performance of pose estimation in this system is good, but the 
optimization procedure is very complex and requires large computing time. 

This paper proposes a model based pose invariant face recognition method to recognize a face from its 
single nearly frontal view. As a generalization of Lam and Yan’s method [6], our method obtain more robust 
performance to pose variation and gives following contributions: 1) proposed a edge map based ear point 
detection algorithm, 2) presents a more general and powerful pose estimation algorithm 3) achieve 
classification by corresponding template matching and corresponding geometric feature matching. 

2 Overview of the Proposed Method 

In this paper we propose a 3D model based pose invariant face recognition method that can recognize a 
face from its single nearly frontal view, which assumes that the face has no seesaw rotation and may have 
small sidespin rotation. The proposed method is composed of four operations: (1) facial feature detection, (2) 
pose estimation and 3D model adaptation, (3) pose invariant feature extraction, and (4) classification. The 
block diagram of the proposed method is given in Fig. 1. In the operation of feature detection, beside eye 
corners, mouth corners, nose tip, eyebrow points, face contour, new facial features in the form of two lower 
joint points of the ears and the face boundary (called ear points in the following) are detected by an edge map 
based algorithm. A simple adaptive 3D face model is used to represent the 3D geometry of the face in an 
image. With the assumption that the gallery faces have no seesaw rotation, we achieve pose estimation and 

Fig. 1. Overall method architecture of the face recognition. 
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model adaptation directly for these images using Lam and Yan’s method and obtain a pose and a face model 
for each gallery face. Based on each gallery face image and the corresponding estimated face model, an 
efficient algorithm is proposed to estimate a pose and a face model for a test face. Thus the test face totally 
has M potential poses and potential face models, where M is the number of the candidates in the gallery. In 
the pose invariant feature extraction operation, we compute the facial feature points’ locations and the facial 
feature templates of frontal views and potential ones from the gallery face images and the test image 
respectively based on the estimated poses and models. Finally, the proposed method achieves classification 
by comparing the obtained template and geometric features from the gallery images and the test image. 

3 Facial Feature Extraction 

Locating facial features is an important step in face recognition. In the proposed method, the rough face 
contour, two outside eye corners  and , two inside eye corners - , two mouth corners - , 
a nose tip  and tow eyebrow points -  (see Fig. 1(a)) are located by using Lam and Yan’s method 
[6]. The ear points as shown in Fig. 6 are not used in most face recognition algorithms. They are important 
features for estimating the seesaw rotation in our algorithm. An edge map based algorithm is proposed to 
detect the ear points in this paper. In the following, we illustrate how the algorithm detects left ear point. 

( 0)p (3)p (1)p ( 2 )p ( 4 )p (5 )p
(8)p ( 6 )p ( 7 )p

 First of all, a 2D rotation transform is performed on the input face image I to produce an upright face 
image Iu, in which the line that holds least square distances to four eye corners is parallel to horizontal axis 

(see Fig. 2(b)). The facial feature points p  

in I

( ) , 0, ...,j
u j = 8

8u correspond to p  in I, as shown in Fig. 
2(b). Then the modified canny edge detector 
introduced in [4] is employed to obtain the edge map E 
of  (for example, Fig. 3(a)). From the detected facial 
feature points and the rough face contour in I

( ) , 0, ...,j j =

u, a 
searching region for ear points is determined in E as 
shown in Fig. 3 (b). The trivial edges in the searching 
region are eliminated. Canny edge detection may 
produce disconnected edges which correspond to the 
continuous contours in Iu. We develop a new edge 
connection operation to recover such continuity in the 
edge map E. Thus the connected edges are obtained as 
shown in Fig. 3 (c). 

(b) 
Fig. 2 Facial features in: (a) the input image I, (b) 
the upright image Iu. 
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Fig. 3 (a) an upright face image. (b) The edge map and the searching window. (b) Connected edge 
map. (c) The potential face and ear boundaries. 
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By filtering out edges that have a nonnegative slope and retaining only the largest connected edges, we 

obtain the potential face and ear boundaries Γ  as shown in Fig. 3 (d). It is assumed that the outermost curve 

in Γ , says l  (i.e. ad  in Fig. 3 (d)), should include both ear boundary and face boundary. We estimate the 
salient points on  by R/J curvature based curve partition algorithm [5]. The salient points, which are inward l
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bending points (illustrated in Fig. 4(a)) satisfying the condition that R/J curvature at these points are larger 
than a predefined threshold value, will be chosen as possible ear points. In order to exclude the false 
candidates such as the neck point (the joint point of the face boundary and the neck boundary), 
anthropocentric constraints are used to verify each possible ear point. The anthropocentric constraints are 
formed based on some prior knowledge and statistics obtained from some 200 face images. Let  denote 

the vertical distance between l ’s top end point 
tsd

utp and a possible ear point usp , and dlem  denote the vertical 
distance between and , see Fig. 4(b). If d( 0 )

up ( 4 )
up ts  > dlem or usp  is on the right side of , ( 0)

up usp  will be rejected 
as the left ear point. If no candidate is viable to pass the verification, it means that no left ear point is 
detected; otherwise the viable candidate, which holds the largest R/J curvature will be regarded as the 
detected left ear point. 
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(b)(a)  
Fig. 4. (a)Bending points on the left face and ear boundary l (b) The elements related to the 
anthropocentric constraints. 

 
 
Similarly, we can detect the right ear point. In Iu, the left ear point and the right ear point are labelled as 
 and  respectively (see Fig. 2(b)). Some examples of the detected ear points are shown in Fig. 5. (9 )

up (10 )

up

Fig. 5 The examples of ear points detected by our method. 

4 Pose Estimation and 3D Model Adaptation 

In this paper, a face image is regarded as a 2D orthogonal projection of a 3D face. While a 3D face is 
originally posed in the world coordinate system as shown in Fig. 6(a), its projection on the image plane will 
be a face image in front view. The image plane is always perpendicular to the z-axis of the word coordinate 
system. When the 3D face has a certain rotation around the origin of the world coordinate, its 2D projection 
on image plane is a face image with corresponding pose. Any rotation can be uniquely decomposed into 
three orderly rotations--seesaw rotation, sidespin rotation, and in image plane rotation, which are around x-
axis, y-axis and z-axis by xθ , yθ  and zθ  respectively. In this paper, all gallery images and test images are 
adjusted to upright face images by 2D rotation operation mentioned in section 2. In addition, it is assumed 
that the face in each gallery image has no seesaw rotation. Thus for faces in upright gallery images, only 



Qinran Chen  et al. / Electronic Letters on Computer Vision and Image Analysis 6(1):13-26, 2007       5 

small sidespin ration angles , for m=1,…M need to be estimated, where M is the number of 
candidates in the gallery. For the face in an upright test image, we need to the estimate seesaw ration 
angle

( )y g mθ −

x tθ −  and the sidespin ration angle y tθ − . In our method, a 3D face model is used for pose estimation. The 
face model will be adapted to fit a particular person in the process of pose estimation. 

4.1 The adaptive face model  

A 3D adaptive model similar to that used in Lam and Yan’s method (cylindrical volum with a less convex 
surface part as face) used to represent the 3D geometry of a head. As shown in Fig. 6(a), facial feature points 
on the 3D model are labeled as . The 3D model is originally located in world coordinates 
system under two conditions: (1) the four eye corners are coplanar on x-z plane; (2) the y-z plane is the 
symmetrical plane of the face model. Therefore we can obtain its frontal view projection on the image plane. 

( ) , 0, ...,10j j =P

 
x

z
y

0eε =
1eε =

(9)P (10)P
(4)P (5)P

(8)P
mε

(0)P (1)P (2)P (3)P
(6)P (7)P

(a) (b)
0.15eε =

y

x

o

∗∗
∗∗

eα
er

(0)P
(1)P (2)P

(3)P

 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 6 (a) The 3D face model in original pose. (b) The horizontal cross-section of the face 

model through the eye corners.  
In [6], the convexity of the less convex surface of the face model is specified by ε . When 0ε = , the less 

convex surface area becomes a flat plane, while 1,ε =  the model is a cylinder. In our method, considering 
that the convexity of the surface around mouth is evidently larger than that around eyes, we use mε  and eε  to 
specify the local convexities of the less convex surface around the mouth and the eyes respectively. In this 
paper, we set , while . With fixed 0.15eε = 0.85mε = eε , the structure of the horizontal cross-section of the 
face model passing through four eye corners is specified by parameters  and er eα  (illustrated in Fig. 6(b)). 
The arc passing through points , ,  and  is also a part of a circle. The origin of the world 
coordinates system is on this cross-section and is marked by O in Fig. 6(b). Similarly, the structure of the 
horizontal cross-section of the face model passing through two mouth corners is specified by parameters  
and 

(0)P (1)P ( 2)P (3)P

mr
mα . In addition, the information of ear points is appended in our face model with the assumption that the 

depth distance (along z-axis) between an ear point and an outside eye corner is . Thus we adapt the simple 
3D face model to fit a particular person by estimating parameters , 

er
er eα ,  and mr mα  from a 2D face image. 

4.2 Pose estimation and model adaptation 

Suppose there are M face images in nearly front view in the gallery, one image per candidate. With the 
assumption that the face in each gallery image has no seesaw rotation, we can estimate , , 

, , and ,  from each gallery face image using Lam and Yan’s method. 
These 5 parameters specify the 3D model which fits the face in the m-th gallery image. The facial feature 
points in the m-th gallery face image are represented by corresponding to

( )y g mθ − ( )e gr m−

( )e g mα − ( )m gr m− ( )m g mα − 1, ...,m = M

( , ) ,m j
u g−p ( )j

up on Fig. 2(b), j = 1,…,10. 
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Fig.7. The projection of the left eye corner, the left ear point and the left mouth corner on y-z
plan (when 0y tθ − = o  and ( ) 0y g iθ − = o ), for (a) the test face (b) the i-th gallery face. 
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For a test image, we propose a new algorithm to estimate x tθ −  and y tθ − , and to achieve 3D face model 
adaptation by estimating parameters e tr − , e tα − , m tr − , and m tα − . Let  j = 1,…,10 represent the facial feature 
points in the test face image. Assuming that the test image is a face image of the i-th ( ) candidate in 
the gallery, we first estimate the corresponding potential seesaw rotation angle . As the test face is not 
surly same as the i-th gallery face,  is a potential 

( ) ,j
u t−p

[1, ]i M∈
( )x t iθ −

( )x tθ − i x tθ − . Suppose that both the test face and the i-th 
gallery face have no sidespin rotation 0y tθ − = o  and ( ) 0y g iθ − = o . The left ear point, the left outside eye point 
and the left mouth corner on the test face are projected on y-z plane, and the projections of these facial 
feature points are denoted by W, U and V respectively as shown in Fig. 7(a). The corresponding facial 
feature points on the i-th gallery face are also also projected on y-z plane, and the projections of these three 
facial feature points are denoted by W′, U′ and V′ respectively as shown in Fig. 7(b). Line segments WQ and 
W′Q′  are perpendicular to UV and U′ V′, with intersection Q and Q′. Thus we have following equations:  

(| | ( ( )) | |) / | | /x t lee t lem ttg i d dψ θ
− −

+ + =WQ QU UV
−  ,                                                                                               (1)  

(| | ( ) | |) / | | ( ) / ( )lee g lem gtg d i d iψ
− −

′ ′ ′ ′ ′ ′ ′+ =W Q Q U U V                                                                                              (2) 

where  denotes the vertical distance between the left out side eye corner lee td −

(0 )
u t−p  and the left ear point (9)

u t−p  
on the test image, d  denotes the vertical distance between lem t−

(0 )
u t−p  and the left mouth corner ( 4)

u t−p ,  
denotes the vertical distance between the 

( )lee gd i−
( ,0 )i
u g−p  and ( ,9 )i

u g−p  on the i-th gallery image, and d  denotes the 
vertical distance between the p  and . As it is assumed that the test face and the i-th gallery face 
belong to the same person, we have 

lem g−
( ,0 )i
u g−

( ,4 )i
u g−p

k ′ ′=WQ W Q , k ′ ′=QU Q U , ψ ψ ′= , and k ′ ′=UV U V . The 
scaling factor k is used to remove the size difference of the test face and the i-th gallery face. Thus the 
corresponding potential seesaw rotation angle of the test face can be formulated as follows: 

1
( ) ( )

( ) tan (( (| | ( ) | |) | |) / | |)lee g lem g

x t

lee t em t

d i d i
i tg

d d
θ ψ− − −

−

− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + −WQ QU QU WQ ψ− .                                                  (3) 

Based on the i-th adapted gallery face model and facial feature points on the i-th gallery image, ′ ′W Q , 
′ ′and U V ψ ′ can be computed by following equations:  

1tan (( ( ) sin( ( )) ( ) sin( ( )) / ( ))m g m g e g e g lem gr i i r i i d iψ α α−
− − − − −′ = − ,                                                                                 (4) 

2 2 1( ( )) ( ( )) cos(tan ( ( )/ ( )) )lee g e g lee g lem gd i r i d i d i ψ−

− − − −
′ ′ ′= + ⋅WQ − ,                                                                                 (5) 

2 2 1( ( )) ( ( )) sin(tan ( ( )/ ( )) )lee g e g lee g lem gd i r i d i d i ψ−

− − − −
′ ′ ′= + ⋅QU −

iθ

                                                                                 (6) 

From (3)-(6), the corresponding seesaw rotation angle x t−  can be computed. As ( ) ( ) ( )lee g gd i− − , lemd i
lee t lem td d− −  as well as the parameters of the i-th gallery model are independent to y tθ − ( )y g iθ − and , the 
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proposed algorithm is available to compute  for any ( )x t iθ − y tθ −  and  (without the requirement of 
 and ). In the same way, another corresponding potential seesaw rotation angle for the test 

face can be computed using the information provided in the right feature points. We average these two 
corresponding potential seesaw rotation angles as the final . In this paper, we assume that the seesaw 
rotation angle of the test face is in range of -25°to +25°. Thus if  or , it will be set at 
25°or -25°respectively. If we do not detect any ear point on the i-th gallery face image or on the test face 
image, then  is assigned to be zero.   

( )y g iθ −

0y tθ − = o ( ) 0y g iθ − = o

( )x t iθ −

( ) 25x t iθ − > o ( ) 25x t iθ − < − o

( )x t iθ −

Based on the estimated , we can further estimate corresponding, and ,  and  using 
the geometric information about two outside eye corners and the face contour in the test face image. Let ei

( )x t iθ − ( )e tr i− ( )e t iα − ( )y t iθ −

Π  
represent a circle that passes through the outside eye corners on the corresponding potential model of the test 
face and centers at the origin of the word coordinate system. Let eiΘ  be the projection of eiΠ  on the image 
plane. If , ei  should be a line passing the outside eye corners ( ) 0x t iθ − = o Θ (0 )

u t−p  and  in the test image (Lam 
and Yan’s algorithm just consider this situation), otherwise ei

(3)
u t−p

Θ  should be an ellipse passing the outside eye 
corners in the test image as shown in Fig. 8. (11)

u t−p ( 11 ) ( 11 )( , )u t u tp p− −  represents the middle point between  x y (0 )
u t−p  and 

. In this paper, we assume that  and (3)
u t−p (0 )

u t−p (3)
u t−p  are not occluded in an image. aip( , )

aiai px yp  and bi bibi p( , )px yp  
represent the two end points of the long axis of the ellipse eiΘ  respectively. ( , )

ci cici p px y eip  is the center of Θ . 

Fig.8 eiΘ , the projection of
eiΠ in test image when ( ) 0x t iθ

−
> o  and (a) ( ) 0y t iθ

−
= o , (b) ( ) 0y t iθ

−
> o . 

y
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∗ ∗ ∗

aip
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u t−p

(3)
u t−p(11)

u t−p

bip

aip

cip

(b)

The ellipse ( , )ei x yΘ  in the test image can be formulated as follows: 

( ) cos( ( )) cos ( ) sin( ( )) cos( ( )) sin
cie t y t e t y t x t px r i i r i i i xθ λ θ θ λ

− − − − −
= + + ,                  

(7)  

( ) sin( ( )) sin
cie t x t py r i i yθ λ

− −
= − +                                                                                                            

(8) 
where (0, 2 )λ π⊂  is the independent variable and ( cipx , cipy ) denotes the location of the ellipse’s center. 

, ( )e tr i− cipx  and cipy  are given by: 
( 0 ) ( 3 )( ) (2 cos( ( )) cos ( ))e t u t u t y t e tr i i iθ α

− − − − −
= −p p ,                    

(9)  

(11)

(0) (3)tan( ( )) tan( ( )) cos( ( ))( / 2)
ci u t

p y t e t x t u t u t p
x i i iθ α θ

−
− − − − −

= − − +p p x ,                     
(10)  

( 11 )

( 0 ) (3)tan( ( )) sin( ( )) (2 cos( ( )))
ci u t

p e t x t u t u t y t p
y i i iα θ θ

−
− − − − −

= −p p y+ .                                                                        (11)          

Combining (9), (10) and (11), we rewrite (7) and (8) as follows:  

( 11 )

( 0 ) ( 3 ) ( 0 ) ( 3 )

( 0 ) ( 3 )

cos (2 cos( ( ))) tan( ( )) cos( ( )) sin (2 cos( ( )))

      tan( ( )) tan( ( )) cos( ( ))( / 2)
u t

u t u t e t y t x t u t u t e t

y t e t x t u t u t p

x i i i

i i i x

λ α θ θ λ α

θ α θ
−

− − − − − − − −

− − − − −

= ⋅ − ⋅ −

− − +

+p p p p

p p

i
,      

(12)   

(11)

(0) (3) (0) (3)sin( ( ))sin (2cos( ( ))cos( ( ))) tan( ( ))sin( ( )) (2cos( ( )))
u t

x t u t u t x t e t e t x t u t u t y t p
y i i i i i iθ λ θ α α θ θ

−
− − − − − − − − − −

= − ⋅ − + − +p p p p y (13

) 
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Then we try to locate aip  and bip  on eiΘ  on the image plane. One of ( , )
ai aiai p px xp  and ( , )

bi bibi p px xp  is 
represented by symbol ( , )

i ii p px xp . We have:  
( ) cos( ( )) cos ( ) sin( ( )) cos( ( )) sin

i i i cip e t y t p e t y t x t p px r i i r i i i xθ λ θ θ λ− − − − −= + +

ci

,                          (14) 

( ) sin( ( )) sin
i ip e t x t p py r i i yθ λ

− −
= − + ,                                                            (15) 

2 2( ) ( ) ( ( 2))p p p p e tx
i ci i ci

x y y r i
−

− + − =

=

p y t x ti iλ θ θ− −=

 .                                                                                                           (16) 
Thus the following equation can be conduced from (14), (15) and (16): 

2 2 2(cos( ( )) cos( ( ))) (tan( )) sin(2 ( )) cos( ( )) tan( ) (sin( ( ))) 0
i ix t y t p y t x t p y ti i i i iθ θ λ θ θ λ θ

− − − − −
− − .                                   (17) 

tan( ) tan(( ( )) / cos( ( ))
i , ( )1tan tan(( ( )) / cos( ( ))ai  and p y t x ti iλ θ θ−

− −= ( )1tan tan(( ( )) / cos( ( ))
bip y ti it xθ θ π−

− −λ = +  
are hence obtained from (17). Referring (12) and (13), we found that the pair of locations of aip  and bip  in 
image plane are determined by e t−  and y t− . According to statistics obtained from some 100 face 
images, e t−  should be in range of 35° to 65°. In this paper we assume y t− . Thus based on 
dense sampling e t−  and , we can compute K possible pairs of aip  and bip  
which are represented by k ai biΦ . In the following, Φ =  will be used to 
approximate all possible pairs of ai

( )iα iθ
iα iθ ∈ − o o

iα ∈ o o

k k k K=p p K

( )
( ) ( ) [ 30 ,30 ]

( ) [35 , 65 ] ( ) [ 30 , 30 ]y t iθ − ∈ − o o

( ( ), ( )), 1, ..., , 1, ...,k k
p  and bip for e t− and y t . Let e t− , 

y t−  represent the sample values of e t−  and y t−  corresponding to the kΦ . The smaller the 
sampling interval is, the larger K is and the more efficient the approximation is. For our application, we set 
the interval at 1  for sampling both e t−  and , so as a result K is equal to 1800. According to the 
geometric character of our face model, it is given that among all possible pairs of ai

( ) [35 , 65 ]iα ∈ o o iθ − ∈ − o o i k
i kθ iα iθ

i

( ) [ 30 , 30 ] ( , )α
( , ) ( ) ( )

o ( )α ( )y t iθ −

p  and bip , only the true 
one will appear on the face contour in the test image and the true one will definitely appear on the face 
contour. Let ai

d  represent the shortest distance from ai  to the detected face contour and bi
d k  

represent the shortest distance from bip  to the detected face contour. d  is the sum of 
and . Then we estimate ai

( )cp k kp cp

k
( ) ( )

( ) ( )
icp k

( )
aicpd k ( )

bicpd k p  and bip , e t− , e t−  and y t−  by ai , bi , ( )r i iα c cp( ) ( )iθ ( )p ( )
( ( ) ( ) ) 2ai bic c−p p ,  and respectively, where the d  is the smallest one among 

icp , 1 . We can estimate the corresponding m tr − , m t−  and y t−  in the same way 
but using the geometric information about two outside mouth corners and the face contour in the test face 
image. We average the two potential sidespin rotation angles estimated by using the eye corners information 
and the mouth corners information respectively as the final potential sidespin rotation angle .  

( , )e t i cα − ( , )y t i cθ − c
d k k K= i iα iθ

M=

( )
icp

( ), 1, ..., c K≤ ≤ ( ) ( ) ( )

( )y t iθ −

In this paper, the proposed algorithm is employed to estimates the pose and the 3D face model of the test 
face, assuming that the test image is an image of the m-th candidate in the gallery for m . Thus we 
obtain M potential poses and M potential models for the test face image referring to all candidates in the 
gallery. Among these potential poses, the i-th one will be regarded as the matched potential pose, if the test 
face and the i-th gallery face really belong to one person. The matched potential pose consists of matched 
potential seesaw rotation angle 

1, ...

ym tθ −  and matched potential sidespin rotation angle ym t− .  θ

(b)(a) 
Fig.9 Some test faces in (b) and their matched potential poses obtained by the proposed algorithm referring 
to the corresponding gallery faces in (a). The poses of the test faces and the gallery faces estimated by Lam
and Yan’s algorithm are also given in parentheses for comparison. 

5 , 20.5ym t xm tθ θ− −= =o o

( 3.6 , 0 )y t x tθ θ− −= =o o

8 , 16.1ym t xm tθ θ− −=− =o o

( 6.3 , 0 )y t x tθ θ− −=− =o o

18 , 8.9ym t xm tθ θ− −=− =o o

( 15.2 , 0 )y t x tθ θ− −=− =o o

( 1.4 , 0 )y t x tθ θ− −= =o o ( 3.1, 0 )y t x tθ θ− −=− =o o ( 0.8 , 0 )y t x tθ θ− −= =o o

 
Fig. 9 shows some examples to illuminate the performance of the proposed algorithm for pose estimation. 

The images in Fig. 9.(a) show some test faces and the images in Fig. 9.(b) show the gallery faces belonging 
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to the same person. The matched potential poses of these test faces, which are estimated by the proposed 
algorithm, are shown in Fig. 9(b). For comparison, the poses of these test faces and gallery faces estimated 
by Lam and Yan’s pose estimation algorithm [6] are also given in the parentheses. The result shows that the 
proposed pose estimation algorithm can obtain effective and general estimate of poses (including both 
seesaw and sidespin rotations) for test faces. 

5 Pose Invariant Feature Extraction and Classification 

Based on estimated pose and 3D face model of each gallery faces, we reconstruct a set of facial feature 
points’ locations , on the frontal view of each gallery face from 

u g u gu g p p− −− , for m = 1,…,M, using affine transform. Similarly, based on the M 
potential poses and corresponding potential models of the test face, M sets of facial feature points’ locations 

, m = 1,…,M on the corresponding M potential frontal views of the test 
face are reconstructed from . For m = 1,…,M, point set re 
normalized and aligned to ( , , besides  and  are normalized to  and . 
We define as follows:  

( , ) ( ( , ), ( , )), 1, ..., 8
us g us g

m j
us g p px m j y m j j

− −− =p
( , ) ( ( , ), ( , )), 1, ..., 8m j x m j y m j j =p

8 a
8

( , ) ( ( , ), ( , )), 1, ...,8
us t us t

m j
us t p px m j y m j j

− −− =p
( ) ( ( ), ( )), 1, ..., 8

u t u t

j
u t p px j y j j

− −− =p ( , ) , 1, ...,m j
us t j− =p  

) , 1, ...,m j
us g j− =p ( )e tr m− ( )m tr m− ( )e gr m− ( )m gr m−

( ), 1, ...wD m m M=
8

( , ) ( , )

9 10
0j=

Corresponding geometric features matching is then preformed by computing wD , for m = 1,…,M to 
measure the similarity between the test face and each gallery face. N (

( ) ( ) ( ) ( ) ( )m j m j

w j us t us g e t e g m t m gD m k k r m r m k r m r m
− − − − − −

= − + − + −∑ p p .                                                          (18) 
m

N M≤ ) faces in the gallery which 
satisfy w D

mD δ≤  ( Dδ  is a threshold) are chosen as qualified gallery faces and passed on for the further 
recognition process. Corresponding to these N qualified faces in the gallery, N potential poses and potential 
models are remained for the test face. Based on the n-th remained potential pose and corresponding potential 
model, for n = 1,…,N, the eyes and eyebrows template e tT − , the nose template n tT −  and the mouth 
template m tT −  in the n-th potential frontal view of the test face are synthesized by affine transform. We 
also synthesized the eyes and eyebrows template e gT − , the nose template n gT −  and the mouth template 

 in the frontal view of the n-th qualified gallery face, for n = 1,…,N. Then e tT − , n tT − and m t−  
compared to e gT − , n gT − and m gT −  by correlations, for n = 1,…,N. The larger the correlations are, the 
more similar to the test face the corresponding qualified face in the gallery is. This comparison is referred to 
as corresponding template matching. Combining the results of the corresponding geometric feature matching 
and corresponding template matching, we can achieve final classification and find a qualified face in the 
gallery which is most like the test face.  

( )n n
n

n n
n n T n

n n n

Fig.10. (a) A test face image. (b) The corresponding gallery face image which captures the same person as
the test face image. The facial feature templates of the test face synthesized using Lam’s method (c), o

( )
( )

( ) ( )
( )m gT n− ( ) ( ) ( )

( ) ( ) ( )

In this section, the operations of normalization, alignment, and correlation in our method are same as 
those in Lam and Yan’s method. In our method, the operations of synthesizing facial feature points’ 
locaitons on frontal view and synthesizing facial feature templates in frontal view are similar to 
corresponding operations in Lam and Yan’s method except for considering extra estimated seesaw rotation. 
In the operation of geometric feature matching, we use 9 facial feature points and 2 estimated model 
parameters to replace the 15 facial feature points used in Lam and Yan’s method, because the 6 facial feature 
points on the face contour are not pose invariant features in our case when the seesaw rotation is considered. 
The implementation of these operations can be referenced to [6]. 

Fig. 10 (a) and (b) show a test face image and a gallery face image of the same person respectively. Fig. 
10 (c) and (e) show facial feature templates of the test face and the gallery face synthesized by using Lam 
and Yan’s method. Fig. 10(d) shows facial feature templates of the test face synthesized by using our method 
based on the matched potential pose and the matched potential face model. Compared to the facial feature 
templates shown in Fig. 10(c), the facial feature templates shown in Fig. 10(d) are more like in frontal view 
and have more similarity to those shown in Fig. 10(e).  

(a) (b) (c) (d) (e) 

f 
the test face synthesized using our method based on the matched potential pose (d), and of the gallery face
synthesized using Lam and Yan’s method (e).
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6        Experimental Results 

6.1 Testing the proposed algorithm for detecting ear points 

This section gives the testing of the proposed algorithm for detecting ear points using 280 face images in 
ORL database (accessible at http://www.cam-orl.co.uk/ facedatabase .html). We first manually marked the 
ear points on each of these test images. Totally there are 453 visible ear points on these face images. The 
computed ear points on these images were obtained by the proposed algorithm. Our algorithm detected 378 
ear points on 231 face images, and detected no ear points on the other 49 images. The average distance mcD  
between each of the 378 computed ear points and its corresponding manually marked one is 1.88 pixels. 

6.2 Evaluating the proposed pose estimation algorithm using synthetic data 
We generate random 3D synthetic faces (see example in Fig. 11.) of different particular persons using 

commercial software “FaceGen Modller 3.0”, which is developed by Singular Inversion Inc. 
(http://www.facegen.com). The 3D synthetic face is then normalized according to the distance of the two 
outside eye corners and thus with the assumption that the projection system used here is an orthogonal 
projection system, the distance of the two eye corners in the frontal view projection is fixed at 200 pixels. 

z x  x (a) 

We examined the performance of the pose estimation algorithm for a test image under the condition that 
we have the same candidate’s nearly frontal view image in the gallery. 20 synthetic faces were randomly 
generated. Each synthetic face was first rotated with a uniformly distributed random rotation parameter set 
( , , ), and the face image projected from the rotated synthetic face was used as 
its gallery image. Similarly we generated 6 test images for each synthetic face with 6 uniformly distributed 
random rotation parameter sets ( , , 

0x gθ − = o [ 5 , 5 ]y gθ − ∈ − o o 0z gθ − = o

( ) [ 25 , 25 ]x t iθ − ∈ − o o ( ) [ 30 , 30 ]y t iθ − ∈ − o o ( ) 0z t iθ − = o ), . The facial 
feature points and face contours of gallery images and test images are marked manually, as shown in Fig. 12. 
In order to simulate the facial feature points extraction error, Gaussian random noise with standard variance 

2 d

1, 2..., 6i =

σ  was added on the x-and y-coordinates of the marked facial feature points in both gallery data and test 
data. Using the proposed pose estimation algorithm, we recover the pose of each test face  ( , ( )x t iθ −

′ ( )y t iθ −
′ ), 

. The absolute seesaw rotation error and the absolute sidespin rotation error defined as: 1, 2, ..., 6i =
( )6

11 2 ( ( ) ( ) )xerr x t x ti i iθ θ θ− −=
′Δ = −∑  and ( )6

11 2 ( ( ) ( ) )yerr y t y ti i iθ θ θ− −=
′Δ = −∑  were utilized to measure the accuracy 

of the recovered poses. Finally, the average xerrθΔ and yerrθΔ  for 20 synthetic faces were calculated. The 
performance of the proposed pose estimation for test images with different 2 dσ  is shown in Fig. 13. For 
comparison, we recovered the sidespin rotations of all test images using Lam and Yan’s algorithm under the 
same condition and then computed the average absolute sidespin rotation error which is shown in Fig. 13 (b). 

From Figs. 13(a) and (b), we observe that xerrθΔ  and yerrθΔ  increase with the increase of 2 dσ . For our 
proposed pose estimation algorithm, they are smaller than 5.4  and  respectively when 2

o 6.5o 4dσ ≤ . It is 
found that even when 2 0dσ = , xerrθΔ  and yerrθΔ  are not equal to zero. Such systematic error is produced 
mainly because of the structural difference between the synthetic faces and the simple adaptive face model 
used in our algorithm. Sidespin rotation estimation is not independent to seesaw rotation estimation and our 

Fig. 11. Two examples of synthetic face
generated by “FaceGen Modller 3.0”. 

y  y  z  Fig. 12. Orthogonal projections of rotated synthetic 
face with marked facial feature points and face 
contours. (a) gallery data (b) test data. 

(b) 

http://www.cam-orl.co.uk/%20facedatabase
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algorithm can get a better seesaw rotation estimation, so the performance of the sidespin rotation estimation 
in our algorithm is better than that in Lam and Yan’s, see Fig. 13(b). Although the proposed pose estimation 
algorithm used in our face recognition method cannot estimate the pose with very good accuracy, it is more 
general and is more efficient to be used to improve the face recognition result compared with the pose 
estimation algorithm used in Lam and Yan’s method, as illuminated in section 6.3. 

6.3 The performance of the face recognition method 

In this section, we present a set of experiments using ORL face image database and IIS face image 
database (accessible at http://smart.iis.sinina.edu.tw) to illustrate and compare the performance of the 
proposed method and Lam and Yan’s method for face recognition under varying poses. The comparisons of 
face recognition results at different seesaw rotation angles between the two methods are emphasized here. 

ORL face image database includes 10 different face images of 40 distinct candidates (see examples in Fig. 
10). Generally, faces in the images of this database satisfy the assumptions of our method: (1) xθ  is about in 
range of –25º to 25º, (2) yθ  is about in range of –30º to 30º, and (3) the two outside eye corners are not 
occluded. Lam and Yan [6] also conducted experiments based on ORL face image database. In their 
experiments, a face image in a nearly frontal view for each of the 40 candidates is chosen to construct the 
gallery and other 160 images, in which one half is in a nearly frontal view and the other half shows different 
amounts of pose variations, are selected to be test images. In 
these test images, there are only about 28 images with distinct 
seesaw rotation (with matched potential seesaw rotation angle 

). In our experiments, we utilized the same gallery 
named gallery A and used the same test images as test set 1. 
Also, we formed test set 2 by 82 face images with distinct 
seesaw rotation. In IIS database, there are 100 persons and 30 
pictures with different poses for each person (see examples in 
Fig. 14). We chose a nearly frontal view face image for each 
person from IIS database to construct another gallery B. 
Accordingly, 800 images which meet assumptions (1), (2) and 
(3) of our method were chosen from IIS database to be test 
images called test set 3. We automatically detect facial feature 
points and manually marked them on each image in gallery A, 
gallery B, test set 1, test set 2 and test set 3. In our system, the 
facial feature points are detected automatically. However for 
comparison of the recognition performance, the manually 
marked facial feature points were also used in the following 
experiments in the same way as that the automatically detected 

5xm tθ − > o

Fig. 13. Performance of pose estimation under different 2D noise on measurement of marked facial feature
points: (a) xerrθΔ  by using the proposed pose estimation algorithm; (b) yerrθΔ by using the proposed pose
estimation algorithm and by using the pose estimation algorithm applied in Lam and Yan’s method,
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Fig. 14. Examples of face images in IIS 
face image database. 
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ones were used. Thus there are 6 test data source TS1A, TS1M, TS2A, TS2M, TS3A and TS3M in our 
experiments. TS1A and TS1M represent the data sources use face images in Test set 1 with automaticlly 
detected and manually marked facial feature points respectively. The others are similar.  

Overall recognition index 1t iR N =  is used to evaluate the performance of the 
recognition methods in our experiments, where M is the number of faces in the gallery database, t  is the 
number of test images and 

1 (1 ) ( ( ) ( 1))tN r i M= − −∑
N

( ) 0, ..., 1r i  is the position of the correct object on the similar list in which 
all objects in the gallery are sequenced according to their similarity to the test face. The gallery face that best 
matched the test one is placed on top of the list, while the least matched one is at the bottom. Thus R is in 
range of 0 to1. The larger R is, the better result is. Actually it is an effective and convincing measurement of 
the recognition result. We also used recognition rate 

M= −

' /f tR N , where N= fN  is the number of test images 
that are recognized correctly, to measure the recognition performance in our experiments. In order to 
investigate the effect of the seesaw rotation to our face recognition method, we performed three experiments 
on TS2A, TS2M, TS3A, and TS3M. In the first and the second experiments, the performance of the 
geometric feature matching and facial feature template matching in our method  are evaluated. The final face 
recogniton performance of our mehtod is investiged in the third experiment. For comparesion, the final 
recognition performance of Lam and Yan’s method and  the performance of both geometric feature matching 
and facial feature template matching in that mehtod were also be tested. The overall recognition index R at 
different values of xm tθ −  (the matched potential seesaw rotation angle) of these experiments were illustrated in 
Fig. 15, (a)(b)(c) for test set 2, (d)(e)(f) for test set 3, (a)(d) for geometric feature matching, (b)(e) for facial 
feature template matching and (c)(f) for final face recogniton. 

The experimental results shown in Figs. 15 indicate that the proposed method can achieve rubust face 
recognition even when the test faces hold distinct seesaw rotation and it has better recognition performance 
than Lam and Yan’s method. It can be found, gernarally the larger seesaw rotation the test faces hold, the 
more obvious advantage of our mehtod is demonstrate compared to Lam and Yan’s method. This advantage 
is obtained mainly because our method estimates the seesaw rotation and to some extent removes such pose 
variation on the test face classification 

Fig. 15. The tested recognition performances at different seesaw rotation: (a)(b)(c) on test set 2, (d)(e)(f) on 
test set 3, (a)(d) for geometric feature matching, (b)(e) for template matching, (c)(f) for final face recognition.
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Table. 1 gives a comparison of overall recognition rate  for our method and Lam and Yan’s method on 
test set 1, test set 2 and test set 3 (using manually marked facial points and detected facial feature points 
respectively). As there are only a few faces in test set 1 holding distinct seesaw rotations, the advantage of 
our method is not prominent. However since all faces have distinct seesaw rotation, the advantage of our 
method is more obvious in test set 2 and test set 3. 

'R

TS1A TS1M TS2A TS2M TS3A TS3M 

Our method 87% 91% 78% 81% 77% 80% 

Lam&Yan’s method 84% 89% 67% 69% 70% 74% 

 

 

 Table 1. Recognition rate comparison 

7      Conclusions 
This paper proposes a 3D model based pose invariant face recognition method that can recognize a face 

from its single nearly frontal view. The proposed method, using an analytic-to-holistic approach and a novel 
algorithm for estimation of ear points, can recognize faces of large rotation.  Experiments were carried out to 
test the proposed ear point detection algorithm which was shown to have good accuracy. Using this 
algorithm and an improved face model, we develop a more general pose estimation algorithm. Experimental 
results show that the proposed pose estimation algorithm can effectively estimate both the seesaw rotation 
and the sidespin rotation of the test face. Based on the general pose estimation, pose invariant features and so 
more accurate face recognition can be obtained by corresponding template matching and corresponding 
geometric feature matching. Experimental results show that the proposed method is more robust to pose 
variation compared to Lam and Yan’s method and has a good performance for pose invariant face 
recognition. 

 

References 
 
[1]  R. Chellappa, C. Willson, and S. Sirohey, “Human and Machine Recognition of Faces: A Survey,” 

Proc. IEEE, vol.83 (5), pp. 705-740, 1995. 
[2]  M. A. Grudin, “On internal representations in face recognition systems,” Pattern Recognition, vol. 33 

(7), pp. 1161-1177, 2000.  
[3]  A. Pentland, “Looking at People: Sensing for Ubiquitous and Wearable Computing,” IEEE Trans. 

Pattern Analysis and Machine Intelligence, vol. 22 (1), pp. 107-119, 2000. 
[4]  F. Mokhtarian and R. Suomela, “Robust Image corner Detection Through Curvature Scale Space,” 

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20 (12), pp. 1376-1381, 1998. 
[5]  A. Rosenfeld and E. Johnston, “Angle detection in digital curves,” IEEE Trans. Comput., vol. C-22, 

pp.875-878, 1973. 
[6]  K. M. Lam and H. Yan, “An Analytic-to-Holistic Approach for Face Recognition Based on a Single 

Frontal View,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20 (7), pp. 673-686, 
1998. 

[7]  R. Brunelli and T. Poggio, “Face Recognition: Features vs. Templates,” IEEE Trans. Pattern Analysis 
and Machine Intelligence, vol. 15 (10), pp. 1042-1053, Oct. 1993. 

[8]  P. N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using 
Class Specific Linear Projection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19 (7), 
pp.711-720, 1997. 

[9]  S. Li and J. Lu, “Face Recognition Using Nearest Feature Line,” IEEE Trans. Neural Net- works, vol. 
10 (2), pp. 439-443, 1999. 



14   Qinran Chen  et al.  / Electronic Letters on Computer Vision and Image Analysis 6(1):13-26, 2007 

[10]  M. S. Bartlett, J.R. Movellan, and T.J. Sejnowski, “Face Recognition by Independent Component 
Analysis,” IEEE Trans. Neural Networks, vol. 13 (6), pp. 1450 –1464, 2002. 

[11]   J.-T. Chien and C.-C. Wu, “Discriminant Waveletfaces and Nearest Feature Classifiers for Face 
Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24 (12), pp. 1644-1649, 
2002. 

[12]  J. W. Lu, K.N. Plataniotis, and A. N. Venetsanopoulos, “Face Recognition Using Kernel Direct 
Discriminant Analysis Algorithms,” IEEE Trans. Neural Networks, vol. 14 (1), pp. 117-126, 2003. 

[13]  Y. S. Gao and M.K.H. Leung, “Face Recognition Using Line Edge Map,” IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 24 (6), pp. 764 –779, 2002. 

[14]  A. M. Martinez, “Recognition of Partially Occluded and/or Imprecisely Localized Faces Using a 
Probabilistic Approach,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 
(1), pp. 712-717, 2000. 

[15]  L. Wiskott, J. M. Fellous, N. Kruger, and C. von der Malsburg, “Face Recognition by Elastic Bunch 
Graph Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19 (7), pp. 775-779, 
1997. 

[16]  F. J. Huang, Z. Zhou, H. J. Zhang, and T. Chen, “Pose invariant face recognition,” in Proc. of 4th 
IEEE International Conference on Automatic Face and Gesture Recognition, pp.245-250, March 
2000. 

[17]  Y. Gao, M. K. H. Leung, W. Wang and S. C. Hui, “Fast Face Identification under Varying Pose from 
a Single 2-D Model View,” IEE Proceedings, vol. 148 (4), pp. 248 –253, 2001. 

[18]  Murase, and S.K. Nayar., “Learning and Recognition of 3D Objects from Appearance” in IEEE 2nd 
Qualitative Vision Workshop, New York, NY, June 1993. 

[19]  E. Demir, L. Akarun, and E. Alpaydin, “Two-stage Approach for Pose Invariant Face Recognition,” in 
Proc. International  Conference on Acoustics, Speech, and Signal Processing, vol.6, pp. 5-9, Jun. 
2002. 

[20]  O. De Vel and S. Aeberhard, “Line-based Face Recognition under Varying Pose,” IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 21 (10), pp. 1081 -1088, 1999. 

[21]  G. C. Feng, and P.C. Yuen, “Recognition of Head-and-Shoulder Face Image Using Virtual Frontal-
View Image,” IEEE Trans. Systems, Man and Cybernetics, Part A, vol. 30 (6), pp. 871 –882, 2000. 

[22]  Q. Chen, H. Y. Wu, S. Shioyama, and T. Shimada, “Head Pose Estimation Using Both Color and 
Feature Information,” in Proc. 15th International Conference on Pattern Recognition, vol. 2, pp. 842 -
845, Sept. 2000. 

[23]  V. Blanz, S. Romdhani, and T. Vetter, “Face Identification Across Different Poses and Illuminations 
with a 3D Morphable Model,” in Proc. IEEE 5th International Conference on Automatic Face and 
Gesture Recognition, pp. 100–105, 20-21 May 2002. 

[24]  V. Blanz and T. Vetter, “Face Recognition Based on Fitting a 3D Morphable Model,” IEEE Trans. 
Pattern Analysis and Machine Intelligence, vol. 25 (19), pp. 1063 –1074, 2003. 

http://www.cvpr.org/2006/

	7      Conclusions

