

Cotutelle PhD thesis

**Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic Document Images** 

## presented by Muhammad Muzzamil LUQMAN

mluqman@{univ-tours.fr, cvc.uab.es}

Friday, 2<sup>nd</sup> of March 2012

## **Directors of thesis**

Dr. Jean-Yves RAMEL Professor University of Tours, France

de Barcelona

**Dr. Josep LLADOS** Professor UAB, Spain

**Co-supervisor** 

**Dr. Thierry BROUARD** Assistant Professor University of Tours, France







## **Higher Education Commission Pakistan**

www.hec.gov.pk

3

## Problematic

 Lack of efficient computational tools for graph based structural pattern recognition

# Proposed solution

 Transform graphs into numeric feature vectors and exploit computational strengths of state of the art statistical pattern recognition

4

### Introduction

- Fuzzy Multilevel Graph Embedding (FMGE)
- Automatic indexing of graph repositories for graph retrieval and subgraph spotting
- Conclusions and future research challenges

- Structural and statistical pattern recognition
- Graph embedding
- State of the art on explicit graph embedding
- Limitations of existing methods
- Fuzzy Multilevel Graph Embedding (FMGE)
- Automatic indexing of graph repositories for graph retrieval and subgraph spotting
- Conclusions and future research challenges

Fuzzy Multilevel Graph Embedding Automatic Indexing of graph repositories Conclusions and future research challenges

|                               | Pattern Recognition     |                        |
|-------------------------------|-------------------------|------------------------|
|                               | Structural              | Statistical            |
| Data structure                | symbolic data structure | numeric feature vector |
| Representational strength     | Yes                     | No                     |
| Fixed dimensionality          | No                      | Yes                    |
| Sensitivity to noise          | Yes                     | No                     |
| Efficient computational tools | No                      | Yes                    |

Graph matching to graph embedding

- Graph matching and graph isomorphism
- Graph edit distance
- Graph embedding

# Graph matching and graph isomorphism

[Messmer, 1995] [Sonbaty and Ismail, 1998]

- Graph edit distance
- Graph embedding



# Sraph matching and graph isomorphism

[Messmer, 1995] [Sonbaty and Ismail, 1998]

# Graph edit distance

[Bunke and Shearer, 1998] [Neuhaus and Bunke, 2006]

# Graph embedding



Fuzzy Multilevel Graph Embedding Automatic Indexing of graph repositories Conclusions and future research challenges

Graph embedding (GEM)



Fuzzy Multilevel Graph Embedding Automatic Indexing of graph repositories Conclusions and future research challenges

Graph embedding (GEM)

### **Structutal PR**

Expressive, convenient, powerful but computationally expensive representations

**Graph embedding** 

## **Statistical PR**

Mathematically sound, mature, less expensive and computationally efficient models

Fuzzy Multilevel Graph Embedding Automatic Indexing of graph repositories Conclusions and future research challenges

## **Explicit GEM**

- embeds each input graph into a numeric feature vector
- provides more useful methods of GEM for PR
- can be employed in a standard dot product for defining an implicit graph embedding function

## Implicit GEM

- computes scalar product of two graphs in an implicitly existing vector space, by using graph kernels
- does not permit all the operations that could be defined on vector spaces

- Graph probing based methods
- Spectral based graph embedding
- Dissimilarity based graph embedding

# Graph probing based methods

[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

- Spectral based graph embedding
- Dissimilarity based graph embedding



number of nodes = 6 number of edges = 5 etc.

### Introduction Fuzzy Multilevel Graph Embedding Automatic Indexing of graph repositories

Conclusions and future research challenges

# Graph probing based methods

[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

# Spectral based graph embedding

[Harchaoui, 2007] [Luo et al., 2003] [Robleskelly and Hancock, 2007]

Dissimilarity based graph embedding





Spectral graph theory employing the adjacency and Laplacien matrices

Eigen values and Eigen vectors PCA, ICA, MDS

# Graph probing based methods

[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

# Spectral based graph embedding

[Harchaoui, 2007] [Luo et al., 2003] [Robleskelly and Hancock, 2007]

# Dissimilarity based graph embedding

[Pekalska et al., 2005] [Ferrer et al., 2008] [Riesen, 2010] [Bunke et al., 2011]



- Not many methods for both directed and undirected attributed graphs
- No method explicitly addresses noise sensitivity of graphs
- Expensive deployment to other application domains
- Time complexity
- Loss of topological information
- Loss of matching between nodes
- No graph embedding based solution to answer high level semantic problems for graphs

- Introduction
- Fuzzy Multilevel Graph Embedding (FMGE)
  - Method
  - Experimental evaluation
  - Application to symbol recognition
  - Discussion
- Automatic indexing of graph repositories for graph retrieval and subgraph spotting
- Conclusions and future research challenges

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories |      | 0000 |
|----------------------------------------------------------------------------------------------|------|------|
| Conclusions and future research challenges                                                   | FMGE | 19   |

- Fuzzy Multilevel Graph Embedding (FMGE)
- Graph probing based explicit graph embedding method

$$\phi: G \longrightarrow \mathbb{R}^n$$
$$AG \longmapsto \phi(AG) = (f_1, f_2, ..., f_n)$$

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories | ntroduction<br>Tuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories |    |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----|
| Conclusions and future research challenges                                                   | FMGE                                                                                        | 20 |
|                                                                                              |                                                                                             |    |

Multilevel analysis of graph

| Graph Level     | Structural Level       | Elementary Level |
|-----------------|------------------------|------------------|
| Information     | Information            | Information      |
| [macro details] | [intermediate details] | [micro details]  |

| ✓ Graph order | ✓ Node degree          | ✓ Node attributes        |
|---------------|------------------------|--------------------------|
| ✓ Graph size  | ✓ Homogeneity of subgr | raplas End geapthributes |

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories |      | 0000 |
|----------------------------------------------------------------------------------------------|------|------|
| Conclusions and future research challenges                                                   | FMGE | 21   |

- Numeric feature vector embeds a graph, encoding:
  - ✓ Numeric information by <u>fuzzy</u> histograms
  - ✓ Symbolic information by crisp histograms

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories |      | 0000 |
|----------------------------------------------------------------------------------------------|------|------|
| Conclusions and future research challenges                                                   | FMGE | 22   |
|                                                                                              |      |      |



- Input : Collection of attributed graphs
- **Output :** Equal-size numeric feature vector for each input graph

| Introduction                               | 0.0                                        |    |
|--------------------------------------------|--------------------------------------------|----|
| Fuzzy Multilevel Graph Embedding           |                                            |    |
| Automatic Indexing of graph repositories   |                                            |    |
| Conclusions and future research challenges | Fuzzy Structural Multilevel Feature Vector | 23 |

| Graph Level     | Structural Level       | Elementary Level |
|-----------------|------------------------|------------------|
| Information     | Information            | Information      |
| [macro details] | [intermediate details] | [micro details]  |

|                         |                             |                              | _     |
|-------------------------|-----------------------------|------------------------------|-------|
| Fuzzy histogram of node | Fuzzy histograms of numeric | Crisp histograms of symbolic |       |
| degrees                 | resemblance attributes      | resemblance attributes       | • • • |

Graph order Graph size

. . .

| Fuzzy histograms of     | Crisp histograms of      | Fuzzy histograms of     | Crisp histograms of symbolic |
|-------------------------|--------------------------|-------------------------|------------------------------|
| numeric node attributes | symbolic node attributes | numeric edge attributes | edge attributes              |

| Introduction<br>Fuzzy Multilevel Graph Embedding |                                     | <b>0</b> 0 0 0 |
|--------------------------------------------------|-------------------------------------|----------------|
| Automatic Indexing of graph repositories         |                                     |                |
| Conclusions and future research challenges       | Homogeneity of subgraphs in a graph | 24             |

- Node-resemblance for an edge
- Edge-resemblance for a node

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories | Graph Embedding<br>ng of graph repositories |    |
|----------------------------------------------------------------------------------------------|---------------------------------------------|----|
| Conclusions and future research challenges                                                   | Homogeneity of subgraphs in a graph         | 25 |

- Node-resemblance for an edge
- Edge-resemblance for a node

numeric resemblance =  $\frac{\min(|a_1|, |a_2|)}{\max(|a_1|, |a_2|)}$ 



symbolic resemblance =  $\begin{cases} 1 & \text{if } b_1 = b_2 \\ 0 & \text{otherwise} \end{cases}$ 

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories | ph Embedding<br>of graph repositories |    |
|----------------------------------------------------------------------------------------------|---------------------------------------|----|
| Conclusions and future research challenges                                                   | Homogeneity of subgraphs in a graph   | 26 |

- Node-resemblance for an edge
- Edge-resemblance for a node



numeric resemblance = 
$$\frac{\min(|a_1|, |a_2|)}{\max(|a_1|, |a_2|)}$$

symbolic resemblance = 
$$\begin{cases} 1 & if \ b_1 = b_2 \\ 0 & otherwise \end{cases}$$



| Introduction                               | ntroduction                             |    |  |
|--------------------------------------------|-----------------------------------------|----|--|
| Fuzzy Multilevel Graph Embedding           | uzzy Multilevel Graph Embedding         |    |  |
| Automatic Indexing of graph repositories   | utomatic Indexing of graph repositories |    |  |
| Conclusions and future research challenges | FMGE                                    | 27 |  |

- Unsupervised learning phase
- Graph embedding phase

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories | 0000                                   |
|----------------------------------------------------------------------------------------------|----------------------------------------|
| Conclusions and future research challenges                                                   | Unsupervised learning phase of FMGE 28 |







- First fuzzy interval (-∞, -∞, ..., ...)
- Last fuzzy interval (..., ..., ∞, ∞)

#### Introduction Fuzzy Multilevel Graph Embedding Automatic Indexing of graph repositories

Conclusions and future research challenges

### Graph embedding phase of FMGE



Numeric information embedded by fuzzy histograms



| Introduction<br>Fuzzy Multilevel Graph Embedding |                | 0000 |
|--------------------------------------------------|----------------|------|
| Automatic Indexing of graph repositories         |                |      |
| Conclusions and future research challenges       | Example - FMGE | 31   |





## FSMFV: 4,3,2,2,1,3,0,0,1,1,0,2,1,2,0,0,3,0,2,0,0,2,1

- Node degree: [-∞,-∞,1,2] and [1,2,∞,∞]
- Attributes {L,RL}: [-∞,-∞,0.5,1], [0.5,1,1.5,2] and [1.5,2, ∞,∞]
- Image: [-∞,-∞,0,1] and [0,1, ∞,∞]
- Resemblance attributes: [-∞,-∞,0.25,0.5], [0.25,0.5,0.75,1.0] and [0.75,1.0, ∞,∞,]
- The symbolic edge attribute Angle has two possible labels

### Introduction Fuzzy Multilevel Graph Embedding Automatic Indexing of graph repositories

Conclusions and future research challenges

| Experimental | evaluation | of FMGE |
|--------------|------------|---------|
|--------------|------------|---------|

| 0  | 0 |
|----|---|
| ×. | × |
| -  | J |

| Dataset      | Size  |       | Classes | A  | vg   | Μ    | ax  | Att | ${f ributes^a}$ |     |
|--------------|-------|-------|---------|----|------|------|-----|-----|-----------------|-----|
|              | Train | Valid | Test    |    | V    | E    | V   | E   | V               | Е   |
| Letter LOW   | 750   | 750   | 750     | 15 | 4.7  | 3.1  | 8   | 6   | 2;0             | 0;0 |
| Letter MED   | 750   | 750   | 750     | 15 | 4.7  | 3.2  | 9   | 7   | 2;0             | 0;0 |
| Letter HIGH  | 750   | 750   | 750     | 15 | 4.7  | 4.5  | 9   | 9   | 2;0             | 0;0 |
| GREC         | 836   | 836   | 1628    | 22 | 11.5 | 12.2 | 25  | 30  | 2;1             | 1;1 |
| Fingerprint  | 500   | 300   | 2000    | 4  | 5.4  | 4.4  | 26  | 25  | 2;0             | 1;0 |
| Mutagenicity | 500   | 500   | 1500    | 2  | 30.3 | 30.8 | 417 | 112 | 0;1             | 1;0 |

<sup>a</sup> Number of attributes is given as a pair "numeric;symbolic".

IAM graph database



#### Introduction Fuzzy Multilevel Graph Embedding

Automatic Indexing of graph repositories Conclusions and future research challenges

Graph classification experimentations 34

| Dataset      | Graph edit distance    | Dissimilarity                          | FMGE              | FMGE              |
|--------------|------------------------|----------------------------------------|-------------------|-------------------|
|              | based reference system | based embedding                        | resemblance:AVG   | resemblance:STD   |
|              |                        | Bunke et al. [Bunke and Riesen, 2011b] |                   |                   |
|              | [k-NN classifier]      | [SVM classifier]                       | [1-NN classifier] | [1-NN classifier] |
| Letter LOW   | 99.3                   | 99.3                                   | 97.1              | 97.1              |
| Letter MED   | 94.4                   | 94.9                                   | 737               |                   |
| Letter HIGH  | 89.1                   | 92.9                                   | 60.5              | 619.55            |
| GREC         | 82.2                   | 92.4                                   | 977.55            | 97.5              |
| Fingerprint  | 79.1                   |                                        | 74.9              | 73.5              |
| Mutagenicity | 66.9                   |                                        | 68.6              | 68.6              |

- Supervised machine learning framework for experimentation, employing the training, validation and test sets
- 1-NN classifier with Euclidean distance.
- <u>Equal-spaced crisp discretization</u> and the number of fuzzy intervals empirically selected on validation dataset

### **Graph clustering experimentations**

| 3 | 5 |
|---|---|

| Dataset      | FMGE feature vector space      |  |  |  |
|--------------|--------------------------------|--|--|--|
|              | correctly clustered graphs (%) |  |  |  |
| Letter LOW   | 89                             |  |  |  |
| Letter MED   | 60                             |  |  |  |
| Letter HIGH  | 41                             |  |  |  |
| GREC         | 82                             |  |  |  |
| Fingerprint  | 57                             |  |  |  |
| Mutagenicity | 82                             |  |  |  |

- Merged training, validation and test sets
- K-means clustering with random non-deterministic initialization
- The measure of quality of K-means clustering w.r.t. the ground truth : ratio of correctly clustered graphs to the graphs in the dataset
- <u>Equal-frequency crisp discretization</u> for automatically selecting the best number of fuzzy intervals

#### Introduction Fuzzy Multilevel Graph Embedding

Automatic Indexing of graph repositories Conclusions and future research challenges







GREC, Fingerprint and Mutagenicity

 The average Silhouette width ranges between [-1, 1]. The closer it is to 1, the better the is the clustering quality.







- Unsupervised learning phase is performed off-line and is linear to:
  - ✓ Number of node and edge attributes
  - ✓ Size of graphs
- Graph embedding phase is performed on-line

### Introduction Fuzzy Multilevel Graph Embedding

Automatic Indexing of graph repositories Conclusions and future research challenges

- 2D linear model symbols from GREC databases
- Learning on clean symbols and testing against noisy and deformed symbols



### Application to symbol recognition

- SESYD dataset
- Learning on clean symbols and testing against noisy symbols

|                          |         |                   | Quory                                 | Recognition | Recognition |
|--------------------------|---------|-------------------|---------------------------------------|-------------|-------------|
|                          |         | Model             | symbol                                | rate (match | rate (a     |
|                          | Noise   | $\mathbf{symbol}$ | (onch                                 | with        | match in    |
|                          |         | (classes)         | (each<br>class)                       | topmost     | top-3       |
|                          |         |                   | classj                                | result)     | results)    |
|                          | Level-1 | 16                | 100                                   | 84%         | 95 %        |
| Floor plans              | Level-2 | 16                | 100                                   | 79%         | 90 %        |
|                          | Level-3 | 16                | 100                                   | 76%         | 87 %        |
| Average recognition rate |         |                   | · · · · · · · · · · · · · · · · · · · | 80%         | 91%         |
|                          | Level-1 | 21                | 100                                   | 69%         | 89%         |
| Electronic diagrams      | Level-2 | 21                | 100                                   | 66%         | 88%         |
|                          | Level-3 | 21                | 100                                   | 61%         | 85%         |
| Average recognition      | 65%     | 87%               |                                       |             |             |



| Automatic Indexing of graph repositories<br>Conclusions and future research challenges | Introduction<br>Fuzzy Multilevel Graph Embedding                                       | 0 0 0 <b>0</b>                   |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------|
|                                                                                        | Automatic Indexing of graph repositories<br>Conclusions and future research challenges | Summary and discussion - EMGE 40 |

- Not many methods for both directed and undirected attributed graphs
  - ✓ FMGE: Directed and undirected graphs with many numeric as well

as symbolic attributes on both nodes and edges

No method explicitly addresses noise sensitivity of graphs

✓ FMGE: Fuzzy overlapping intervals

- Expensive deployment to other application domains
  - ✓ FMGE: Unsupervised learning abilities

| Introduction                               | 0 0                           | 000 |
|--------------------------------------------|-------------------------------|-----|
| Fuzzy Multilevel Graph Embedding           |                               |     |
| Automatic indexing of graph repositories   |                               |     |
| Conclusions and future research challenges | Summary and discussion - FMGE | 41  |

- Time complexity
  - ✓ FMGE: Linear to number of attributes

Linear to size of graphs

Graph embedding performed on-line

Loss of topological information

FMGE: Multilevel information (global, topological and elementary)
Homogeneity of subgraphs in graph

| Introduction<br>Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositorios |                               | 0 0 0 <b>0</b> |
|----------------------------------------------------------------------------------------------|-------------------------------|----------------|
| Conclusions and future research challenges                                                   | Summary and discussion - FMGE | 42             |

- Loss of matching between nodes
- No graph embedding based solution to answer high level semantic problems for graphs

- Introduction
- Fuzzy Multilevel Graph Embedding (FMGE)
- Automatic indexing of graph repositories for graph retrieval and subgraph spotting
  - Method
  - Experimental evaluation application to content spotting in graphic document image repositories
  - Discussion
- Conclusions and future research challenges

- Bag of words inspired model for graphs
- Index the graph repository by elementary subgraphs
- Explicit GEM for exploiting computational strengths of state of the art machine learning, classification and clustering tools

- Unsupervised indexing phase
- Graph retrieval and subgraph spotting phase

- Unsupervised indexing phase
- Graph retrieval and subgraph spotting phase



- Unsupervised indexing phase
- Graph retrieval and subgraph spotting phase



- Unsupervised indexing phase
- Graph retrieval and subgraph spotting phase



- Unsupervised indexing phase
- Graph retrieval and subgraph spotting phase



### Content spotting in document images 50



- SESYD dataset
- Corresponding graph dataset is made publically available

http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD\_graphs.zip

|                           | Image       |      | Attributed graph |       |
|---------------------------|-------------|------|------------------|-------|
|                           | Backgrounds | 8    | Avg. order       | 212   |
| Electronic diagrams       | Models      | 21   | Avg. size        | 363   |
| Electronic diagrams       | Symbols     | 9600 | Node attribs.    | 4     |
|                           | 18210.      |      | Edge attribs.    | 2     |
|                           | Documents   | 800  | Graphs           | 800   |
|                           | Queries     | 1000 | Graphs           |       |
|                           | Backgrounds | 2    | Avg. order       | 359   |
| Architectural floor plans | Models      | 16   | Avg. size        | 733   |
|                           | Symbols     | 4216 | Node attribs.    | 4     |
|                           |             |      | Edge attribs.    | 2     |
|                           | Documents   | -200 | Graphs           | 200   |
|                           | Queries     | 1000 | Graphs           | =1000 |









nd future research challenges Experi



Electronic diagrams: (517K 2-node subgraphs) (455 classes) (~17h)

000

54

### **Experimental evaluation**

1.0





Architectural diagrams: (306K 2-node subgraphs) (211 classes)

000

| Introduction<br>Fuzzy Multilevel Graph Embedding |                                | 0 0 <b>0</b> |
|--------------------------------------------------|--------------------------------|--------------|
| Automatic Indexing of graph repositories         |                                |              |
| Conclusions and future research challenges       | Discussion – subgraph spotting | 56           |

- Loss of matching between nodes
  - ✓ Score function is a first step forward
- No graph embedding based solution to answer high level semantic problems for graphs
  - FMGE based framework for automatic indexing of graph repositories

- Fuzzy Multilevel Graph Embedding (FMGE)
- Automatic indexing of graph repositories for graph retrieval and subgraph spotting
- Conclusions and future research challenges

00

- Last two decade's research on structural pattern recognition can access state of the art machine learning tools
- An impossible operation in original graph space turns into a realizable operation with an acceptable accuracy
- Application to domains where the use of graphs is mandatory for representing rich structural and topological information and a computational efficient solution is required
- Feature vector not capable of preserving the matching between nodes of a pair of graphs



- Unsupervised and automatic indexing of graph repositories
- Domain independent framework
- Incorporating learning abilities to structural representations
- Ease of query by example (QBE)
- Granularity of focused retrieval

| Conclusions and future research challenges                                   | Future research challenges | 60  |
|------------------------------------------------------------------------------|----------------------------|-----|
| Fuzzy Multilevel Graph Embedding<br>Automatic Indexing of graph repositories |                            |     |
| Introduction                                                                 |                            | 0 0 |

## Ongoing and short term

- Dimensionality reduction
- Feature selection
- More topological information

### Medium term

- Detection of outliers for cleaning learning set
- Multi-resolution index using cliques of higher order (≥3)

| Automatic Indexing of graph repositories<br>Conclusions and future research challenges | Future research challenges | 61 |
|----------------------------------------------------------------------------------------|----------------------------|----|
| Introduction<br>Fuzzy Multilevel Graph Embedding                                       |                            | 00 |

## Long term

Surjective mapping of nodes of two graphs

## List of publications

| Journal paper                                                                       |   |
|-------------------------------------------------------------------------------------|---|
| Pattern Recognition (under review, submitted December 2011)                         | 1 |
| Book chapter                                                                        |   |
| Bayesian Network by InTech publisher                                                | 1 |
| International conference contributions<br>ICDAR 2011, ICPR 2010, ICDAR 2009         | 3 |
| Selected papers for post-workshop LNCS publication<br>ICPR 2010 contests, GREC 2009 | 2 |
| International workshop contributions<br>GREC 2011, GREC 2009                        | 2 |
| Francophone conference contributions<br>CIFED 2012, CIFED 2010                      | 2 |

Thank you for your attention.



Cotutelle PhD thesis

**Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic Document Images** 

## presented by Muhammad Muzzamil LUQMAN

mluqman@{univ-tours.fr, cvc.uab.es}

Friday, 2<sup>nd</sup> of March 2012

## **Directors of thesis**

Dr. Jean-Yves RAMEL Professor University of Tours, France

de Barcelona

**Dr. Josep LLADOS** Professor UAB, Spain

**Co-supervisor** 

**Dr. Thierry BROUARD** Assistant Professor University of Tours, France



