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Objectives of thesis

s+* Problematic

= Lack of efficient computational tools for graph based

structural pattern recognition

¢ Proposed solution
= Transform graphs into numeric feature vectors and
exploit computational strengths of state of the art

statistical pattern recognition
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Introduction

Structural and statistical PR

Pattern Recognition

Structural

Statistical

Data structure

symbolic data structure

numeric feature vector

Representational strength

YEos

Fixed dimensionality

No

Sensitivity to noise

No

Efficient computational tools

Yes
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Graph matching to graph embedding

“ Graph matching and graph isomorphism
“ Graph edit distance

“ Graph embedding




Introduction

Graph matching to graph embedding

“ Graph matching and graph isomorphism
[Messmer, 1995] [Sonbaty and Ismail, 1998]

> Graph edit distance

* Graph embedding
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Introduction

Graph matching to graph embedding

¢ Graph matching and graph isomorphism
[Messmer, 1995] [Sonbaty and Ismail, 1998]

¢ Graph edit distance
[Bunke and Shearer, 1998] [Neuhaus and Bunke, 2006]

“ Graph embedding
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Introduction

Graph embedding (GEM)




Introduction

Graph embedding (GEM)

Structutal PR Statistical PR
Expressive, Mathematically sound,
convenient, mature,

powerful but less expensive and
computationally expensive computationally efficient
representations models

\)[ Graph embedding J/




Introduction

Explicit and implicit GEM

Explicit GEM Implicit GEM
= embeds each input graph into a numeric = computes scalar product of two graphs
feature vector in an implicitly existing vector space, by

using graph kernels

= provides more useful methods of GEM
for PR = does not permit all the operations that

could be defined on vector spaces

= can be employed in a standard dot

product for defining an implicit graph

embedding function




Introduction

State of the art on explicit GEM

¢ Graph probing based methods
*» Spectral based graph embedding

¢ Dissimilarity based graph embedding




Introduction

State of the art on explicit GEM

¢ Graph probing based methods
[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

*» Spectral based graph embedding

*» Dissimilarity based graph embedding

number of nodes = 6
.”..&. number of edges = 5
etc.

V=65, ..




Introduction

State of the art on explicit GEM

“ Graph probing based methods
[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

*» Spectral based graph embedding
[Harchaoui, 2007] [Luo et al., 2003] [Robleskelly and Hancock, 2007]

» Dissimilarity based graph embedding

1
1 1 Spectral graph theory employing the
.‘.&. 1 1 adjacency and Laplacien matrices
1 111 Eigen values and Eigen vectors
1 PCA, ICA, MDS
1




Introduction

State of the art on explicit GEM

“ Graph probing based methods
[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

*» Spectral based graph embedding

[Harchaoui, 2007] [Luo et al., 2003] [Robleskelly and Hancock, 2007]

¢ Dissimilarity based graph embedding
[Pekalska et al., 2005] [Ferrer et al., 2008] [Riesen, 2010] [Bunke et al., 2011]

o~

9 v =d(g, P1), d(g, P2), ...

Prototype graphs
P1
P2
P3




Introduction

Limitations of existing methods

= Not many methods for both directed and undirected attributed graphs
= No method explicitly addresses noise sensitivity of graphs

= EXxpensive deployment to other application domains

= Time complexity

» Loss of topological information

» Loss of matching between nodes

= No graph embedding based solution to answer high level semantic

problems for graphs
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s Fuzzy Multilevel Graph Embedding (FMGE)
= Method

= EXxperimental evaluation
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= Discussion
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Automatic indexing of graph repositories for graph
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Conclusions and future research challenges




Fuzzy Multilevel Graph Embedding

» Fuzzy Multilevel Graph Embedding (FMGE)
= Graph probing based explicit graph embedding method
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Introduction
Fuzzy Multilevel Graph Embedding

Automatic Indexing of graph repositories
Conclusions and future research challenges

= Multilevel analysis of graph

Graph Level Structural Level Elementary Level
Information Information Information
[macro details] [intermediate details] [micro details]

v/ Graph order v Node degree v Node attributes

v/ Graph size v Homogeneity of subgrapksHulgesattributes



Fuzzy Multilevel Graph Embedding

= Numeric feature vector embeds a graph, encoding:
v" Numeric information by fuzzy histograms

v Symbolic information by crisp histograms




Fuzzy Multilevel Graph Embedding

FSMFV
AG = (Vq, Eq, 1", ™) ‘ 1 |
AG; = (V2 Ez, u*%, p™) . . UL
: Fuzzy Multilevel Graph Embedding :
AGe = (Ve, Eo, 1'%, 1) (FMGE) FSMFV,
- : Vm Em :
AGm - (Vm, Em, MM ) FSMFVm

= |nput : Collection of attributed graphs

= Qutput: Equal-size numeric feature vector for each input graph




Introduction
Fuzzy Multilevel Graph Embedding

Automatic Indexing of graph repositories

Conclusions and future research challenges Fuzzy Structural Multilevel Feature Vector 23
Graph Level Structural Level Elementary Level
Information Information Information
[macro details] [intermediate details] [micro details]

Graph order | Graph size

Fuzzy histogram of node | Fuzzy histograms of numeric | Crisp histograms of symbolic

degrees resemblance attributes resemblance attributes
Fuzzy histograms of Crisp histograms of Fuzzy histograms of Crisp histograms of symbolic
numeric node attributes symbolic node attributes numeric edge attributes edge attributes




Fuzzy Multilevel Graph Embedding

Homogeneity of subgraphs in a graph

» Node-resemblance for an edge

= Edge-resemblance for a node




Fuzzy Multilevel Graph Embedding

Homogeneity of subgraphs in a graph

= Node-resemblance for an edge

= Edge-resemblance for a node

min(|a,|,|a
numeric resemblance = (2]
max(|a,|,|a,|)
a, a a,
1 if b=b
symbolic resemblance = 't b e
O otherwise




Fuzzy Multilevel Graph Embedding

Homogeneity of subgraphs in a graph

= Node-resemblance for an edge

= Edge-resemblance for a node

min(|a,|,|a
. numeric resemblance = (2} 2,)
&S max(|ay,|a,|)
(O
' i | 1 if b=h,
symbolic resemblance = _
O otherwise
GBI BT )
3




Fuzzy Multilevel Graph Embedding

= Unsupervised learning phase

» Graph embedding phase




Fuzzy Multilevel Graph Embedding

Unsupervised learning phase of FMGE

Learning
Graph dataset R Fuzzy intervals
(for computing the fuzzy
{AG1, AGz, ..., AGe, ..., AGn} T histograms in FSMFV)
Number of fuzzy intervals

(s; for attribute 7)




Introduction
Fuzzy Multilevel Graph Embedding

Automatic Indexing of graph repositories
Conclusions and future research challenges Unsupervised learning phase of FMGE

List of values of

. attribute; _ D|scret|zat|og Crisp intervals Crisp to fuzzy mtervals= s; fuzzy |-ntervals
in input collection for attribute;
of graphs

1 - . e -
. b ", -
Membership . N
. e b
weight o o
: i 7 > d

= First fuzzy interval (-, -, ..., ...)

. Last fuzzy interval (..., ..., ©, )



Fuzzy Multilevel Graph Embedding

Graph embedding phase of FMGE

Embedding ]
Graph Fuzzy Structural Multilevel Feature Vector

AGe = (Ve, Ee, p'¢, uE9) : g (FSMFV,)

Fuzzy overlapping trapezoidal intervals
(s; for attribute i)

= Numeric information embedded by fuzzy histograms
=  Symbolic information embedded by crisy histogard(P-a) It asx<b
1

if b<x<c
(x—=d)/(c—d) if c<x<d
0 otherwise

1 - . e L
Membership e .
e T
weight e o
- o ", - .,
S ~ A . d

a(Xx) =




Fuzzy Multilevel Graph Embedding

Example - FMGE

r RL: *
RL:-1 [_Angle:~
Angle: B L:1
! r—L: - — ':../.1 -k
r_NodeDegree:0.5 N~ r_RL:
r_Angle: *
2 L:1 .f“2 4 L: 0.5
4 rRL:1
r Angle: 1 N - /
3 RL:1 {3 )— RL:0.5
Angle: B Angle: B
fLo1 L1 r L:05

r_NodeDegree:1 r_RL:0.5 r NodeDegree: 0.5
r Angle: 1




Fuzzy Multilevel Graph Embedding

Example - FMGE

7. 4
r_RL:* : ‘ ;
— : 2 2
RL:1 r_Angle:* : = [
Angle: B Ll . o
rL: 1 —1)
_— . /.-""- N r-_RL *
r_NodeDegree.O.E?;{/ r_Angle: *
~— N / 3 e 3 ”
: —3 ) Rl 1% 3 3 4 ~ 3 2
: L Angle. B 2 s : :
r L1 Ll fr= 1Ii ; I : ] 3 I
— ) r RL 05 ' a L+ 0 L g = 5
r_NodeDegree:1 r,_Angie'l I hNodebegtee 0.b y . oy e { 2 3 £ 5y

FSMFV: 4,3,2,2,1,3,0,0,1,1,0,2,1,2,0,0,3,0,2,0,0,2,1
* Node degree: [-0,-0,1,2] and [1,2,00,00]
= Attributes {L,RL}: [-e0,-00,0.5,1], [0.5,1,1.5,2] and [1.5,2, c0,00]
* r_Angle: [-00,-00,0,1] and [0,1, oo,0]

» Resemblance attributes: [-,-0,0.25,0.5], [0.25,0.5,0.75,1.0] and [0.75,1.0, o0,0,]

= The symbolic edge attribute Angle has two possible labels




Introduction

Fuzzy Multilevel Graph Embedding
Automatic Indexing of graph repositories
Conclusions and future research challenges

Experimental evaluation of FMGE

Dataset Size Classes Avg Max Attributes®
Train | Valid | Test V El ||V | |E|l |V E
Letter LOW 750 750 750 15 4.7 3.1 8 6 2:0 0:0
Letter MED 750 750 750 15 4.7 | 3.2 9 7 | 2:0 0;0
Letter HIGH 750 750 750 15 4.7 4.5 9 9 2:0 0:0
GREC 836 836 | 1628 22 11.5 | 122 | 25 | 30 | 2:1 1;1
Fingerprint 500 300 | 2000 4 S e T S 1:0
Mutagenicity | 500 500 | 1500 2 30.3 | 30.8 | 417 | 112 | 0;1 1:0
# Number of attributes is given as a pair “numeric;symbolic”.
. IAM graph database
v .. Graph classification experimentations _
d tering experimenitations T
DEC S LTS r




Fuzzy Multilevel Graph Embedding

Graph classification experimentations

Diataset Graph edit distance Dissimilarity FMGE FMGE
based reference system based embedding resemblance: AVG | resemblance:STT)
Bunke et al. [Bunke and Riesen, 2011h]
[k-NN classifier| [SVM classifier] [1-NN classifier] [1-NN classifier|
Letter LOW 99.3 99.3 |
Letter MED 04.4 94.9
Letter HIGH 89.1 92.9
GREC 82.2 92.4
Fingerprint 79.1
Mutagenicity 66.9

. Supervised machine learning framework for experimentation, employing the training,
validation and test sets
. 1-NN classifier with Euclidean distance.

. Equal-spaced crisp discretization and the number of fuzzy intervals empirically selected

on validation dataset




Fuzzy Multilevel Graph Embedding

Graph clustering experimentations

Dataset FMGE feature vector space

correctly clustered graphs (%)

Letter LOW
Letter MED
Letter HIGH
GREC

Fingerprint

Mutagenicity
o *

. Merged training, validation and test sets

. K-means clustering with random non-deterministic initialization

. The measure of quality of K-means clustering w.r.t. the ground truth : ratio of correctly
clustered graphs to the graphs in the dataset

. Equal-frequency crisp discretization for automatically selecting the best number of fuzzy

intervals




Fuzzy Multilevel Graph Embedding

Graph clustering experimentations
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GREC, Fingerprint and Mutagenicity

. The average Silhouette width ranges between [-1, 1]. The closer it is to 1, the better the is
the clustering quality.




Fuzzy Multilevel Graph Embedding

Time complexity of FMGE

s

u

T 350 -

c

S

o 300 | .
A, }
W 250 - 7

w - -

= 200 4 e

m .__._.-

b —

O sp 4 -

U -

= 100 --"

o e

B0 50 - T

+E .__.l"'-

- i e

E u T T T T T T T T T T T T T T T
H 0 200 400 GO0 800 1000 1200 1400

Total number of node and edge attributes
in one graph (average)
. Unsupervised learning phase is performed off-line and is linear to:
v" Number of node and edge attributes
v' Size of graphs

. Graph embedding phase is performed on-line




Fuzzy Multilevel Graph Embedding

Application to symbol recognition

= 2D linear model symbols from GREC databases

= Learning on clean symbols and testing against noisy and deformed symbols

T1- Clean T4 - Level-3 'Reference system
T2- Level-1 T5 - Binary degrade
T3- Level-2

95 | T
90

85

80 |

75

70 [

65

60 | |

55 F

T1 ‘TZ‘T?: ‘T4‘T5

B Without fuzzy intervals
B With fuzzy intervals

Recognition rate (%)

T1‘T2‘T3‘T4‘T5 T1‘T2‘T3‘T4‘T5 Tl‘TZ‘TS‘Td‘TS Tl‘Tz‘TS‘Td‘TS

20 models 50 models 75 models 100 models 125 models

T1‘T2T3T4T5 ‘

150 models

[ DD[J AN ZAN S

Model Level-1 Level-2 Level-3 Mocd GRECHD Degde 1




Fuzzy Multilevel Graph Embedding

SESYD dataset

Application to symbol recognition

Learning on clean symbols and testing against noisy symbols

Recognition

Recognition

Model Quer}-’ rate (match rate (a
. symbol ‘
Noise 53{111]]0] {E‘Fl[‘h with match in
(C]ﬂSSC‘-S} N _ l topmost top-3
class)
result) results)
Level-1 16 100 847 95 %
Floor plans Level-2 16 100 79% 90 %
Level-3 16 100 6% 87 %
Average recognition rate 80% 91%
Level-1 21 100 69% RA%
Electronic diagrams | Level-2 21 100 66% 88%
Level-3 21 100 61% 85%
Average recognition rate 65% 8T%

Model

= Level-1 = = Level-2 = = Level-3 =




Fuzzy Multilevel Graph Embedding

Summary and discussion - FMGE

= Not many methods for both directed and undirected attributed graphs
v FMGE: Directed and undirected graphs with many numeric as well
as symbolic attributes on both nodes and edges
= No method explicitly addresses noise sensitivity of graphs
v FMGE: Fuzzy overlapping intervals
= EXxpensive deployment to other application domains

v FMGE: Unsupervised learning abilities




Fuzzy Multilevel Graph Embedding

Summary and discussion - FMGE

= Time complexity
v" FMGE: Linear to number of attributes
Linear to size of graphs
Graph embedding performed on-line
= Loss of topological information
v FMGE: Multilevel information (global, topological and elementary)

Homogeneity of subgraphs in graph




Fuzzy Multilevel Graph Embedding

Summary and discussion - FMGE

= Loss of matching between nodes

= No graph embedding based solution to answer high level semantic

problems for graphs




Automatic indexing of graph repositories

43

“* Introduction
“ Fuzzy Multilevel Graph Embedding (FMGE)

% Automatic Indexing of graph repositories for graph
retrieval and subgraph spotting
= Method
= Experimental evaluation - application to content spotting in
graphic document image repositories

= Discussion

% Conclusions and future research challenges




Automatic Indexing of graph repositories

Subgraph spotting through explicit GEM 44

= Bag of words inspired model for graphs
= |ndex the graph repository by elementary subgraphs

= Explicit GEM for exploiting computational strengths of state of

the art machine learning, classification and clustering tools




Automatic Indexing of graph repositories

Subgraph spotting through explicit GEM 45

= Unsupervised indexing phase

= Graph retrieval and subgraph spotting phase




Automatic Indexing of graph repositories
Subgraph spotting through explicit GEM 46

= Unsupervised indexing phase

= Graph retrieval and subgraph spotting phase

Resemblance attributes Cliques of order-2 FSMFVs




Automatic Indexing of graph repositories

Subgraph spotting through explicit GEM 47

= Unsupervised indexing phase

= Graph retrieval and subgraph spotting phase

FSMFV clusters using an
hierarchical clustering technique Classifier




Automatic Indexing of graph repositories

Subgraph spotting through explicit GEM 48

= Unsupervised indexing phase

= Graph retrieval and subgraph spotting phase

. s P .
o>t > . >

Resemblance attributes  Cliques of order-2 FSMFVs




Automatic Indexing of graph repositories

Subgraph spotting through explicit GEM 49

= Unsupervised indexing phase

= Graph retrieval and subgraph spotting phase

Adjacency matrix of a result

» N0 edge between i and'jPre

] clique for which score is computed

éliqueis in result

—>

cliquegaving tH2 same clusltep|label as

ligue L égrap

DEdenot ha € 53
as ond of the ZFees in t

result
label

graph

v

zisava 1ceAd matrix (either 0, 1, 2)
_ |z| is frequency of value z in neighborhood
Classify

and _
score = (074 7S numBer of condcte Meighbors looked-up




Automatic Indexing of graph repositories

Content spotting in document images

r ' rﬁ r3

Focused retrieval results T

2-clique based
FMGE subgraph

[ I I QBE spotting system

INDEX OF
DOCUMENT REPOSITORY




Automatic Indexing of graph repositories

Experimental evaluation

= SESYD dataset
= Corresponding graph dataset is made publically available

http://www.rfai.li.univ-tours.fr/PagesPerso/mmlugman/public/SESYD _graphs.zip

Image Attributed graph
Backgrounds 8 || Avg. order 212
T — Models 21 || Avg. size 363
ectronic diagrams 1 , 2 ;
= ® Symbols 9600 || Node attribs. 4

Documents S00
(Queries 1000 ||
Backgrounds 2 || Avg. order
. Models 16 || Avg. size
Architectural floor plans Riibils 1916 || Node attribs. 4
Edge attril 2
Documents 200

Queries 1000




Automatic Indexing of graph repositories

Experimental evaluation

| ——
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Automatic Indexing of graph repositories

Experimental evaluation

ES
Start Stop
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Automatic Indexing of graph repositories

Precision

Experimental evaluation

1.0~ -————— o
it = N
0.9¢ = = L\f -I: T Bl = (O o
0.8t T S SS—
| B - | [ pp—— .- - —— -, — - — — - — — — .- ——— . ""'-.D
Q.7+ \-\_
\.
0.6f N
\.
0.5+ \
. ......... _.\.
0.4_ \'\_\
“m

0.3+
02 & 2-clique based FMGE spotting system

' —m— Heuristic based FMGE spotting system [Lugman, 2010]
0.1+ _=. Heuristic based reference system [Qureshi, 2008]

0 L L | | | | | | |

|
0.1 0.2 0.3 0.4 0.5 | 0.6 0.7 0.8 0.9 1.0
Recall

Electronic diagrams: (517K 2-node subgraphs) (455 classes) (~17h)




Automatic Indexing of graph repositories

Experimental evaluation

Precision

0.9 —0- 2-clique based FMGE spotting system
' —&— Heuristic based FMGE spotting system [Lugman, 2010]
0.1} -e- Heuristic based reference system [Qureshi, 2008]

. . | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

Architectural diagrams: (306K 2-node subgraphs) (211 classes)




Automatic Indexing of graph repositories

Discussion — subgraph spotting

= Loss of matching between nodes

v Score function is a first step forward

= No graph embedding based solution to answer high level semantic

problems for graphs

v FMGE based framework for automatic indexing of graph

repositories




Conclusions and future challenges
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Automatic indexing of graph repositories for graph retrieval

and subgraph spotting

L)

*
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Conclusions and future research challenges

Conclusions

Last two decade’s research on structural pattern recognition can

access state of the art machine learning tools

An impossible operation in original graph space turns into a realizable

operation with an acceptable accuracy

Application to domains where the use of graphs is mandatory for
representing rich structural and topological information and a

computational efficient solution is required

Feature vector not capable of preserving the matching between nodes

of a pair of graphs




Conclusions and future research challenges

Conclusions

» Unsupervised and automatic indexing of graph repositories
= Domain independent framework
» |ncorporating learning abilities to structural representations
= Ease of query by example (QBE)

= Granularity of focused retrieval




Conclusions and future research challenges

Future research challenges

% Ongoing and short term
= Dimensionality reduction
» Feature selection

= More topological information

* Medium term
= Detection of outliers for cleaning learning set

= Multi-resolution index using cliques of higher order (23)




Conclusions and future research challenges

Future research challenges

s Long term

= Surjective mapping of nodes of two graphs
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Thank you for your attention.
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