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3Objectives of thesis

� Problematic

� Lack of efficient computational tools for graph based 

structural pattern recognition

� Proposed solution

� Transform graphs into numeric feature vectors and 

exploit computational strengths of state of the art 

statistical pattern recognition



4Outline of presentation

� Introduction

� Fuzzy Multilevel Graph Embedding (FMGE)

� Automatic indexing of graph repositories for graph retrieval 

and subgraph spotting

� Conclusions and future research challenges



5Introduction

� Introduction

� Structural and statistical pattern recognition

� Graph embedding

� State of the art on explicit graph embedding

� Limitations of existing methods� Limitations of existing methods

� Fuzzy Multilevel Graph Embedding (FMGE)

� Automatic indexing of graph repositories for graph retrieval 

and subgraph spotting

� Conclusions and future research challenges
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symbolic data structure numeric feature vector

Yes No 

Data structure

Representational strength

Pattern Recognition

Structural Statistical

o o o o

Yes No 

No Yes

Yes No

No Yes

Representational strength

Fixed dimensionality

Sensitivity to noise

Efficient computational tools
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� Graph matching and graph isomorphism

� Graph edit distance

� Graph embedding

o o o o
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� Graph matching and graph isomorphism
[Messmer, 1995] [Sonbaty and Ismail, 1998]

� Graph edit distance

� Graph embedding

o o o o

� Graph embedding
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� Graph matching and graph isomorphism
[Messmer, 1995] [Sonbaty and Ismail, 1998]

� Graph edit distance
[Bunke and Shearer, 1998] [Neuhaus and Bunke, 2006]

o o o o

� Graph matching and graph isomorphism
[Messmer, 1995] [Sonbaty and Ismail, 1998]

� Graph edit distance
[Bunke and Shearer, 1998] [Neuhaus and Bunke, 2006]

� Graph embedding� Graph embedding
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Structutal PR

Expressive, 
convenient, 
powerful but 
computationally expensive 
representations

Statistical PR

Mathematically sound,
mature, 
less expensive and 
computationally efficient 
models

o o o o

representations models

Graph embedding
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Explicit GEM

� embeds each input graph into a numeric 

feature vector

� provides more useful methods of GEM 

Implicit GEM

� computes scalar product of two graphs 

in an implicitly existing vector space, by 

using graph kernels

o o o o

� provides more useful methods of GEM 

for PR

� can be employed in a standard dot 

product for defining an implicit graph 

embedding function

� does not permit all the operations that 

could be defined on vector spaces
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� Graph probing based methods

� Spectral based graph embedding

� Dissimilarity based graph embedding

o o o o
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� Graph probing based methods
[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

� Spectral based graph embedding

� Dissimilarity based graph embedding

o o o o

� Dissimilarity based graph embedding

number of nodes = 6
number of edges = 5
etc.

v = 6,5, …
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� Graph probing based methods
[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

� Spectral based graph embedding
[Harchaoui, 2007] [Luo et al., 2003] [Robleskelly and Hancock, 2007]

o o o o

� Dissimilarity based graph embedding

1

1 1

1 1

1 1 1

1

1

Spectral graph theory employing the 

adjacency and Laplacien matrices

Eigen values and Eigen vectors

PCA, ICA, MDS
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� Graph probing based methods
[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere, 2012]

� Spectral based graph embedding
[Harchaoui, 2007] [Luo et al., 2003] [Robleskelly and Hancock, 2007]

o o o o

� Dissimilarity based graph embedding
[Pekalska et al., 2005] [Ferrer et al., 2008] [Riesen, 2010] [Bunke et al., 2011]

v = d(g, P1), d(g, P2), …g

Prototype graphs
P1
P2
P3 
…
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� Not many methods for both directed and undirected attributed graphs

� No method explicitly addresses noise sensitivity of graphs

� Expensive deployment to other application domains

o o o o

� Expensive deployment to other application domains

� Time complexity

� Loss of topological information

� Loss of matching between nodes

� No graph embedding based solution to answer high level semantic 

problems for graphs



18Fuzzy Multilevel Graph Embedding

� Introduction

� Fuzzy Multilevel Graph Embedding (FMGE)

� Method

� Experimental evaluation� Experimental evaluation

� Application to symbol recognition

� Discussion

� Automatic indexing of graph repositories for graph

retrieval and subgraph spotting

� Conclusions and future research challenges
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� Fuzzy Multilevel Graph Embedding (FMGE)

� Graph probing based explicit graph embedding method

o o o o
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� Multilevel analysis of graph

Graph Level 
Information

[macro details]

Structural Level 
Information

[intermediate details]

Elementary Level 
Information

[micro details]

o o o o

[macro details] [intermediate details] [micro details]

� Graph order
� Graph size

� Node degree
� Homogeneity of subgraphs in graph

� Node attributes
� Edge attributes
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� Numeric feature vector embeds a graph, encoding:

� Numeric information by fuzzy histograms

Symbolic information by crisp histograms

o o o o

� Symbolic information by crisp histograms
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o o o o

� Input    : Collection of attributed graphs

� Output : Equal-size numeric feature vector for each input graph
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Graph Level 
Information

[macro details]

Structural Level 
Information

[intermediate details]

Elementary Level 
Information

[micro details]

o o o o

Graph order Graph size

Fuzzy histograms of 
numeric node attributes

Crisp histograms of 
symbolic node attributes

Fuzzy histograms of 
numeric edge attributes

Crisp histograms of symbolic 
edge  attributes

Fuzzy histogram of node 
degrees

Fuzzy histograms of numeric 
resemblance attributes

Crisp histograms of symbolic 
resemblance attributes

…

…
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� Node-resemblance for an edge

� Edge-resemblance for a node

o o o o
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� Node-resemblance for an edge

� Edge-resemblance for a node
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� Node-resemblance for an edge

� Edge-resemblance for a node
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� Unsupervised learning phase

� Graph embedding phase

o o o o
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o o o o
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o o o o

� First fuzzy interval (-∞, -∞, …, …)

� Last fuzzy interval (…, …, ∞, ∞)

1 2          3         4          5          6         7          8         9
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o o o o

� Numeric information embedded by fuzzy histograms

� Symbolic information embedded by crisp histograms
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o o o o

RL : 1
Angle: B L: 1

L: 1

1

2

r_L:   1
r_NodeDegree:0.5

r_RL: *
r_Angle: *

r_RL: *
r_Angle: *

r_L: 0.5
r_NodeDegree: 0.5

2

3

4

RL : 0.5
Angle:    B

L: 1

L: 12

3

4

r_L:   1
r_NodeDegree:1

RL : 1
Angle: B

r_RL: 1
r_Angle: 1

r_RL: 0.5
r_Angle: 1
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o o o o

L: 1 L: 0.5

1

2

3

4

L: 1

RL : 1
Angle: B

r_RL: 1
r_Angle: 1

r_RL: *
r_Angle: *

r_RL: *
r_Angle: *

RL : 1
Angle: B

RL : 0.5
Angle:    B

r_L:   1
r_NodeDegree:0.5

� Node degree: [-∞,-∞,1,2] and [1,2,∞,∞]

� Attributes {L,RL}: [-∞,-∞,0.5,1], [0.5,1,1.5,2] and [1.5,2, ∞,∞]

� r_Angle: [-∞,-∞,0,1] and [0,1, ∞,∞]

� Resemblance attributes: [-∞,-∞,0.25,0.5],  [0.25,0.5,0.75,1.0] and [0.75,1.0, ∞,∞,]

� The symbolic edge attribute Angle has two possible labels

FSMFV: 4,3,2,2,1,3,0,0,1,1,0,2,1,2,0,0,3,0,2,0,0,2,1

L: 1Angle: B

r_RL: 0.5
r_Angle: 1

Angle:    B
r_L: 0.5

r_NodeDegree: 0.5
r_L:   1

r_NodeDegree:1
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o o o o

� IAM graph database

� Graph classification experimentations

� Graph clustering experimentations
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o o o o

� Supervised machine learning framework for experimentation, employing the training, 

validation and test sets

� 1-NN classifier with Euclidean distance.

� Equal-spaced crisp discretization and the number of fuzzy intervals empirically selected 

on validation dataset
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o o o o

� Merged training, validation and test sets

� K-means clustering with random non-deterministic initialization

� The measure of quality of K-means clustering w.r.t. the ground truth : ratio of correctly 

clustered graphs to the graphs in the dataset

� Equal-frequency crisp discretization for automatically selecting the best number of fuzzy 

intervals
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Letter-LOW, Letter-MED and Letter-HIGH

o o o o

Letter-LOW, Letter-MED and Letter-HIGH

GREC, Fingerprint and Mutagenicity

� The average Silhouette width ranges between [-1, 1]. The closer it is to 1, the better the is 
the clustering quality.
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o o o o

� Unsupervised learning phase is performed off-line and is linear to:

� Number of node and edge attributes

� Size of graphs

� Graph embedding phase is performed on-line
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� 2D linear model symbols from GREC databases

� Learning on clean symbols and testing against noisy and deformed symbols

o o o o
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� SESYD dataset 

� Learning on clean symbols and testing against noisy symbols

o o o o
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o o o o

� Not many methods for both directed and undirected attributed graphs

� FMGE: Directed and undirected graphs with many numeric as well

as symbolic attributes on both nodes and edgesas symbolic attributes on both nodes and edges

� No method explicitly addresses noise sensitivity of graphs

� FMGE: Fuzzy overlapping intervals

� Expensive deployment to other application domains

� FMGE: Unsupervised learning abilities
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o o o o

� Time complexity

� FMGE: Linear to number of attributes 

Linear to size of graphsLinear to size of graphs

Graph embedding performed on-line

� Loss of topological information

� FMGE: Multilevel information (global, topological and elementary)

Homogeneity of subgraphs in graph
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o o o o

� Loss of matching between nodes

� No graph embedding based solution to answer high level semantic 

problems for graphs



43Automatic indexing of graph repositories

� Introduction

� Fuzzy Multilevel Graph Embedding (FMGE)

� Automatic indexing of graph repositories for graph

retrieval and subgraph spotting

� Method

� Experimental evaluation - application to content spotting in

graphic document image repositories

� Discussion

� Conclusions and future research challenges
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� Bag of words inspired model for graphs

� Index the graph repository by elementary subgraphs

� Explicit GEM for exploiting computational strengths of state of 

o o o

the art machine learning, classification and clustering tools
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� Unsupervised indexing phase

� Graph retrieval and subgraph spotting phase

o o o
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� Unsupervised indexing phase

� Graph retrieval and subgraph spotting phase

o o o

φ

Resemblance attributes Cliques of order-2 FSMFVs
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� Unsupervised indexing phase

� Graph retrieval and subgraph spotting phase

o o o

INDEX

FSMFV clusters using an
hierarchical clustering technique Classifier
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� Unsupervised indexing phase

� Graph retrieval and subgraph spotting phase

o o o

φ

Resemblance attributes Cliques of order-2 FSMFVs
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� Unsupervised indexing phase

� Graph retrieval and subgraph spotting phase

o o o

INDEX

Classify

Set of result 
graphs

resultinisclique

jandibetweenedgean

jandibetweenedgeno

jiAGk

2

1

0

),( =

∑
=

×=
2

0

)(
z w

z
zscore

z is a value in adjacency matrix (either 0, 1, 2)
|z| is frequency of value z in neighborhood
and
w is number of connected neighbors looked-up
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o o o
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� SESYD dataset

� Corresponding graph dataset is made publically available

http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_graphs.zip

o o o
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Electronic diagrams: (517K 2-node subgraphs) (455 classes) (~17h)

Recall

P
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ci
si

on

2-clique based FMGE spotting system
Heuristic based FMGE spotting system [Luqman, 2010]
Heuristic based reference system [Qureshi, 2008]
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Architectural diagrams: (306K 2-node subgraphs) (211 classes)

Recall

P
re

ci
si

on

2-clique based FMGE spotting system
Heuristic based FMGE spotting system [Luqman, 2010]
Heuristic based reference system [Qureshi, 2008]
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� Loss of matching between nodes

� Score function is a first step forward

o o o

� No graph embedding based solution to answer high level semantic 

problems for graphs

� FMGE based framework for automatic indexing of graph 

repositories



57Conclusions and future challenges

� Introduction

� Fuzzy Multilevel Graph Embedding (FMGE)

� Automatic indexing of graph repositories for graph retrieval 

and subgraph spotting

� Conclusions and future research challenges
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� Last two decade’s research on structural pattern recognition can 

access state of the art machine learning tools

� An impossible operation in original graph space turns into a realizable 

operation with an acceptable accuracy 

o o

operation with an acceptable accuracy 

� Application to domains where the use of graphs is mandatory for 

representing rich structural and topological information and a 

computational efficient solution is required

� Feature vector not capable of preserving the matching between nodes 

of a pair of graphs
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� Unsupervised and automatic indexing of graph repositories

� Domain independent  framework

� Incorporating learning abilities to structural representations

o o

� Incorporating learning abilities to structural representations

� Ease of query by example (QBE)

� Granularity of focused retrieval
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� Ongoing and short term

� Dimensionality reduction

� Feature selection

o o

� Feature selection

� More topological information

� Medium term

� Detection of outliers for cleaning learning set

� Multi-resolution index using cliques of higher order (≥3)
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� Long term

� Surjective mapping of nodes of two graphs

o o



62List of publications

Journal paper

Pattern Recognition (under review, submitted December 2011) 1

Book chapter

Bayesian Network by InTech publisher 1

International conference contributions
ICDAR 2011, ICPR 2010, ICDAR 2009 3

Selected papers for post-workshop LNCS publication
ICPR 2010 contests, GREC 2009 2

International workshop contributions
GREC 2011, GREC 2009 2

Francophone conference contributions
CIFED 2012, CIFED 2010 2



Thank you for your attention.
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