
 

 Correspondence to: < hfarsi@birjand.ac.ir > 

 Recommended for acceptance by Josep LIadós 

 https://doi.org/10.5565/rev/elcvia.1044 

 ELCVIA ISSN: 1577-5097 

 Published by Computer Vision Center / Universitat Autonoma de Barcelona, Barcelona, Spain 

 

Electronic Letters on Computer Vision and Image Analysis 17(1):29-44; 2018  

A New feature extraction method to Improve Emotion 

Detection Using EEG Signals  
 

Hanieh Zamanian, Hassan Farsi
 

Department of Electrical and Computer engineering, University of Birjand, Birjand, Iran 

 

Received 14th Jan 2017; accepted 22 Jul 2018 

Abstract 

Since emotion plays an important role in human life, demand and importance of automatic emotion detection 

have grown with increasing role of human computer interface applications. In this research, the focus is on 

the emotion detection from the electroencephalogram (EEG) signals. The system derives a mechanism of 

quantification of basic emotions using. So far, several methods have been reported, which generally use 

different processing algorithms, evolutionary algorithms, neural networks and classification algorithms. The 

aim of this paper is to develop a smart method to improve the accuracy of emotion detection by discrete 

signal processing techniques and applying optimized support vector machine classifier with genetic 

evolutionary algorithm. The obtained results show that the proposed method provides the accuracy of 

93.86% in detection of 4 emotions (happy, sad, exiting and hate) which is higher than state-of-the-art 

methods. 

 

Keywords: emotion recognition, EEG, Arousal-Valence emotion model, support vector machine, neural 

network. 

 

1. Introduction 
Human brain may be considered as a computer with electrochemical process, which converts 

sensory information into electrical information (voltage). Emotions are complex set of guidelines, 

which reflect the changes in human body. A variety of emotions such as anger, depression, despair, 

hope, hate, fear, sadness, surprise, happiness and etc. have been identified, which are used to model 

a system for emotion detection. In recent years, research based on emotion recognition from EEG 

has attracted great interest from a vast amount of interdisciplinary fields in psychology to 

engineering, including basic studies on emotion theories and applications to affective Brain-

Computer Interaction (ABCI) (Mühl et al., 2014)[1]. This enhances the BCI systems with the 

ability to detect, process, and respond to affective states using physiological signals. 

https://doi.org/10.5565/rev/elcvia.1044
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Emotion variation of an individual cause significant impact on the brain signals. So, The 

Electroencephalogram (EEG) signals which reflect the electrical information of the brain are highly 

regarded during the recent years. The EEG recording devices, depending on the application, use 3 

to 256 electrodes placed on the scalp to record the relative voltages. For clinical applications 8 to 

32 EEG channels are usually required. 

For incidence of different emotions, it is possible to use music, text, video and images, to provoke 

individuals and therefore, the emotion signals can be recorded. Then the recorded signals, as the 

database are used in recognition algorithms. 

Diagnostic procedures are distinct based on the extracted features and different classification 

algorithms. In case of the EEG signal, selection of the number, and type of channels, can be 

considered as an identification parameter. 

Many features can be derived from EEG signals. These features are obtained by applying different 

transformations on the EEG signals. For example, Fourier transform focuses on a specific 

frequency bands. 

The classification task sets the boundaries of the decisions in nonlinear optimal way. So far, 

different classification methods for emotion detection based on EEG signals have been reported 

such as SVM, KNN and neural network classifiers, cited as the most widely used techniques. 

This paper is organized as follows: In Section 2, a brief systematic overview of brain signal 

analysis methods and classification procedure for feature extraction, and classifiers are identified. 

Section 3 details all required materials and protocols. We use time-frequency analysis to find 

appropriate features for different emotions, and then evaluate our emotion recognition model over 

time on the DEAP dataset. In Section 4, the experimental results are presented and compared to 

other methods. Finally, the conclusion is drawn in section 5. 

 

2.  Related works 
In emotion recognition, a vast amount of studies has been conducted for effective computing based 

on different signals. Many efforts have been made to recognize emotions using external emotion 

expression, such as facial expression [3] and speech [4]. However, some times the emotional states 

remain internal and cannot be detected by external expression. For instance, consider extreme cases 

where people do not say anything but actually they are angry, even smiley during negative 

emotional states due to the social masking. In these cases, the external emotional expression can be 

controlled subjectively and these external cues for emotion recognition may be inadequate [2]. 

Emotional experience associates with a particular pattern of physiological activity. Unlike audio-

visual expression of feelings, using physiological activity is more objective and easier. The 

physiological activities can be achieved through non-invasive sensors. These sensors receive and 

record the electrical signals representing EEG signals which can be displayed. Many studies on 

construction of computational models to estimate the emotional state of the EEG signal are 

provided which indicated the efficiency of these models to detect the emotions. They used several 

incentives to stimulate feelings with photos, music and videos. The feelings examined in many 

studies are discrete. 

 Most of the studies are based on two steps, first is feature extraction and second, is to choose and 

apply a classification algorithm. In the following we focus on different features extracted from 

EEG signals for emotion detection. Some of these features are extracted in time domain of EEG 
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signals while others achieved in frequency domain. Therefore, we divide the features in two parts 

as follows.  

a) Time domain features 
These features are extracted from the signal in its original domain. First of all, the statistical 

properties of the signal such as mean, standard deviation and power [6-9] are mostly used. Another 

feature is entropy, which is the symbol of scattering data. However as shown in [10], the change in 

information entropy within the EEG signal may window a real change in cortical functional 

organization. Thus, the term 'entropy' may be more useful than merely a statistical measure of EEG 

pattern, but in some cases reflect the intra-cortical information flow. Also, Hjorth in 1970 [11], 

introduced some features called activity, mobility and complexity, which are then used by 

researchers for EEG emotion detection [12, 13]. Other common features in time domain include 

fractal dimension [14], non-stationary index [15], Higher Order Crossings [16, 17]. More 

explanation about these features could be found in [5]. 

 

b) Frequency domain features 
Presentation of a signal in frequency domain is possible by using Fourier transform. The mostly 

used algorithm to compute Discrete Fourier Transform (DFT) is Fast Fourier Transform (FFT). 

The most popular feature in the context of emotion recognition from EEG is power in different 

frequency bands [19, 20]. It is assumed that the signal is stationary for the duration of a trial. 

Different frequency bands are found by wavelet transform. The frequency bands of EEG signals 

slightly vary in different studies. Table 1 shows the frequency bands with relative bandwidth and 

the level of wavelet decomposition. The extracted features from the resulting representation of the 

signal in frequency domain are: average power (mean) of frequency bands [21-23], and relative 

minimum, maximum, and variance. Additionally, the ratio of mean band powers is calculated for 

each channel. A set of frequency domain features has been introduced by Hosseini and et al. in [18] 

which is called higher order spectra. 

 

Table1. Frequency bands with relative bandwidth and decomposition levels of EEG signals 

recorded at fs = 256Hz 

Level of Wavelet decomposition  Frequency band Bandwidth (Hz) 

A6 δ 1-4 

D6 θ 4-8 

D5(8-16 Hz)  

 

αslow 8-10 

α 10-12 

D4(16-32 Hz) β 12-30 

D3(32-64 Hz) γ 30-64 

 

 

    c) Time frequency domain features 

 

If a signal is non-stationary, time-frequency methods can provide additional information by 

considering dynamical changes [5]. In this category we can mention the features extracted by 

applying the wavelet transform to the signal [24, 25]. Also, Hilbert- Huang spectrum of intrinsic 

mode functions is used [26]. 
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The feature extraction methods related to other studies are presented in Table 2. After feature 

extraction, the extracted features should be classified by using an appropriate classification 

algorithm. Many algorithms have been reported for classification, among them K Nearest 

Neighbors (KNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA) and Neural network are mostly used. Some researches 

comprise several of these classification algorithms and most of them show the SVM-based 

algorithm provides better performance [34]. 

 

Table2. Some feature extraction methods used for EEG emotion detection 

Author Year Feature extraction method 

Number 

of 

classes 

Accuracy(%) 

Bajaj and Pachori [27] 2015 Multiwavelet 4 84.79 

Lin and Sourina [28] 2014 
HOC, statistical and fractal 

dimension 
4 80 

Park et al. [29] 2013 

Power of each frequency band, 

celebral asymmetry and 

coherence 

3 66.3 

Kwon et al. [30] 2013 

Power difference between right 

and left hemispheres in alpha and 

gamma band 

2 64.78 

Chung and Yoon [31] 2012 Power spectral density 3 52.2 

Hosseini and 

Khalilzadeh [32] 
2010 Wavelet and Fractal dimension 2 79.20 

Khosrowabadi and 

Roham [33] 
2010 Fractal dimension 4 81 

 

3.  Methodology  
In reported methods, the aim is to create an efficient method to find appropriate features and 

classifier. This research focuses on both feature extraction and classifier and tries to improve the 

emotion detection from the brain's signals. First of all, the number of EEG channels which will be 

later used in feature extraction procedure is required to be identified. Next, feature extraction 

procedure is applied on the database signals. Finally, the extracted features are classified and the 

efficiency of the proposed method is then evaluated. 

3.1. Database 
The proposed algorithm is tested on a benchmark multimodal dataset known as the DEAP dataset 

which is prepared by recording EEG signals of 32 participants while watching 40 different kinds of 

music videos. In this dataset, the data was acquired with a 32 channel BioSemi acquisition system. 

Figure 1, shows the location of the electrodes on the scalp.  All people who participated were 

healthy, aged between 19 and 32 and also half of the total participants were female. These music 

videos, used as stimuli, were classified into different emotions utilizing the affective tags [35]. 

Participants rated each video in terms of the levels of arousal, valence, like/dislike, dominance and 

familiarity. EEG signals of the participants were down sampled to 128Hz before using. Note that 

the website: Http://www.eecs.qmul.ac.uk/mmv/datasets/deap allows loading the data in appropriate 

format for MATLAB. 

 

https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
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Figure 1. Location of 32 electrodes on the scalp 

 

3.2. Channel selection 
As mentioned in sub section 3.1, the dataset used for testing the proposed algorithm contains 32 

channel data, which is available in 63 seconds with frequency of 128Hz. So, there is a huge amount 

of data for each person to be processed. This causes some problems: first, the huge amount of data 

needs a huge storage memory and second, the procedure of processing requires a long time. 

Because of these two disadvantages, we decided to reduce the amount of data whereas there is no 

declination in the classification accuracy. For the data used in this research, we found 7.5 second 

data is appropriate for convenient feature extraction in our proposed algorithm. Although this 

causes a great reduction of the data to be processed, however it can be even lower if we choose 

some special channels and use just their data.  

If the algorithm is developed for real-time applications, the required time for feature extraction and 

the number of channels used should be minimized. If more electrodes are used, the comfort level of 

the user who wears the device is affected as well. Thus, our main objective is to propose an 

algorithm performing with adequate accuracy in real-time applications [34]. 

  Different methods have been reported to determine the most effective channels, mainly based on 

trial and error or heuristic optimization algorithms, [14, 34, 36, 37]. In this research, according to 

the results of the reported methods two groups of channels are compared. One group contains 3 

channels including P7, P3and PZ, and the other contains 7 channels including P7, P3, PZ, PO3, O1, 

CP2 and C4. Thus, the amount of data is greatly reduced. 

3.3. Feature extraction 
The proposed feature extraction method includes 2 general parts: Gabor wavelet features and 

intrinsic mode functions features. In following, each part is explained.    

A) Gabor feature extraction 

Gabor filters (sometimes also called Gabor wavelets or kernels) have shown as a powerful tool for 

feature extraction. They represent band-limited filters with an optimal localization in the spatial 
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and frequency domains. In the spatial domain, a family of 2D Gabor filters can be defined as 

follows [38]: 

 (   )  
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   ))   (       )               
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where                  ,                  ,         (   )⁄  , and     
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Each filter represents a Gaussian kernel function modulated by a complex plane wave whose center 

frequency and orientation are defined by the parameters    and   , respectively. The parameters γ 

and   determine the ratio between the center frequency and the size of the Gaussian envelope and, 

when set to a fixed value, these parameters ensure that Gabor filters of different scales and a given 

orientation behave as scaled versions of each other. It has to be noted at this point that with fixed 

values of the parameters γ and   the scale of the given Gabor filter is defined uniquely by its center 

frequency   . Commonly the values of the parameters γ and   are set to √2. The last parameter of 

the Gabor filters,     , denotes the maximum frequency of the filters and is commonly set to 0.25. 

Researchers typically use Gabor filters with four or five scales and six or eight orientations, i.e., u= 

1, 2, …, p- 1 and v= 1, 2, …, r-1, where p=4 or 5 and r=6 or 8, which results in a filter bank of24 or 

40 Gabor filters [39]. Simulation of the Gabor wavelet contains two steps: 1- construction of Gabor 

filters with mathematical formula. 2- Convolution the filters with a two dimensional matrix.  

In this paper, the matrix which has to be convolved with the Gabor filter bank is constructed by the 

data of each selected channel in each row. The next step is extraction of appropriate features from 

constructed matrices after the convolution. In this study, three features including energy, mean 

amplitude and oriented Gabor phase congruency pattern (OGPCP) are used and detailed as follows: 

a) Energy  

Due to the convolution of Gabor filters and creation of two-dimensional matrix, there are two 

dimensional matrices equal to the number of filters as outputs. Two-dimensional Fourier transform 

for each output matrix is needed for calculation of energy. For example, if Gabor filters are 

calculated by 5 scales and 8 different orientations, we have 40 filters totally, which are then 

convolved with the EEG signal. Therefore, 40 matrices are constructed, and their energies are used 

as features. 

b) Mean amplitude 

This feature is obtained by calculating the mean of the total range of output matrix elements. 

c) Oriented Gabor phase congruency pattern(OGPCP)  

Gabor magnitude varies slowly with the spatial position unlike the (Gabor) phase which contains as 

known, very different values even if it is sampled at image locations only a few pixels apart. This 

causes that it is difficult to extract reliable and discriminative features from the phase responses. 

The reason is that most of the existing methods use only the (Gabor) magnitude to construct the 

Gabor feature vector [40]. To overcome this problem, in [39] a new approach for extracting these 

features was reported called OGPCP. As our knowledge, these features have not been used for 

EEG emotion recognition so far. For output matrix,     (   ), the OGPCPs are calculated as: 

      (   )  
∑     (   )     (   )   

   

∑ (    (   )   )
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Where      (   ) denotes the phase angle of the Gabor filter (with a center frequency    and 

orientation   ) at the spatial location (   ), while   (   ) represents the mean phase angle at 

the v-th orientation [39] . 

B) Features based on intrinsic mode functions 

The aim of this step is to obtain features from intrinsic mode functions (IMFs). The empirical mode 

decomposition approach is a data dependent analysis which decomposes nonlinear and non-

stationary signals to symmetrical components, which are known as intrinsic mode functions. 

(IMFs) [42]. It should be noted that, the IMFs obtained from the EMD method satisfy two 

following conditions:  

1- Number of maxima and number of minima should have difference of at most one. 

2- The mean value of two envelopes, one formed by connecting local maxima and another 

formed by connecting local minima of the signal should be zero. 

IMFs can be derived from a signal s(t) using iterative process known as sifting process, explained 

by the following steps [41]: 

1- Extraction of local maxima and local minima from signal s(t). 

2- Obtaining the envelope     ( ) and     ( ) by connecting all the maxima and minima 

respectively.  

3- Computing the average of     ( )  and     ( )   as: 

 

 ( )  
    ( )       ( )

 
                                                     

(6) 

 

4- Extraction of d(t) from s(t) as:  

 

 ( )   ( )   ( )                                                                     (7) 

 

5- Whether the d(t) fulfils the above mentioned conditions for IMF or not. 

6-  Repeat steps 1–5, for  ( ) until it satisfies the conditions for IMF. 

Once the IMF is obtained, define     ( )   ( ). Now a residual signal g(t) can be obtained 

as g(t) = s(t) -     ( ), which serves as the new signal to extract the next IMF by applying 

sifting process. The sifting process is repeated until the residual obtained becomes monotonic 

function which means that no more IMF can be extracted.  
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Figure 2. Sample signal of channel P7 and its IMFs 
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Finally, the signal s(t) can be represented as the sum of IMFs and a residual [41]: 

 ( )  ∑    ( )   ( )

 

   

                                            
(8) 

Where M is number of extracted IMFs and R(t) is residual. As an example Fig. 2 shows the IMFs 

of one channel data, where the horizontal and vertical axes represent time and magnitude of each 

signal, respectively. 

In this study, for each signal just 3 primarily of the intrinsic mode functions are calculated and then 

the features are extracted from them. For each calculated IMFs, five characteristics including 1) 

maximum frequency b) center frequency c) Root Mean Square d) entropy and e) variance are 

computed. 

a) Maximum frequency 

IMF maximum frequency is considered as the frequency in which 95% of energy of the IMF signal 

is available before it. In this study, the first and second IMF maximum frequencies are calculated 

as features for each channel. For example, with the choice of 7 channels, 14 elements of the feature 

vector are related to the frequency of maximum frequency of IMFs. 

b) Central frequency 

 The central frequency for the IMFs is defined as the frequency in which 50% energy of IMF 

signals is available before it. In this study, only the central frequency of first IMF for each channel 

is intended as the feature.  

c) Entropy 

Entropy is a statistical model of the signal which can also provide physical information. 

Neurophysiological evidences show that it is possible to estimate the information from entropy as a 

measure of cortex performance. The change in entropy of EEG signals shows a real change in the 

function of the cerebral cortex. So, entropy, besides on a statistical measure of EEG pattern, in 

some cases, can reflect cortical information within the brain [10]. In this study, Shannon entropy is 

calculated to extract the IMFs features. 

d) Root Mean Square (RMS) 

Generally, the root mean square of the signal actually represents the average power signal. In this 

study, the root mean square of IMFs is used as extracted features. In this study, we used first three 

IMFs for root mean square. 

e) Variance 

In probability theory and statistics, variance is a measure of dispersion. In this study, the statistical 

data was used for extraction of features from the IMF. Again, like the entropy and root mean 

square, the 3 IMFs data are used to extract features from each channel which are 3 features 

belonging to variance for each channel. 

C) Production of feature vectors 

By this point, two sets of features have been extracted: the first set is related to applying Gabor 

wavelet transform on image. This set contains magnitude features such as mean and energy and 

also phase characteristics as OGPCP. The second set the features obtained by the intrinsic mode 

functions. The extracted features of this set are maximum and central frequency, entropy, root 

mean square and variance, as mentioned above. 
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3.4. Classification 
At this stage, the appropriate classification algorithm is applied to improve the accuracy of emotion 

recognition in accordance with the input feature vector compared to other existing methods. So, in 

this step, the goal is to find appropriate classifier for the generated feature vector.  

SVM is a machine learning algorithm which is simple and has a high detection speed and accuracy. 

The idea of support vector machine is to find optimized hyper planes with maximum margin of 

separation. 

In this research, the genetic optimization algorithm is used to find the optimized hyper planes. 

According to our knowledge on the emotions of EEG signals, optimized support vector machine 

has not been used. So, in addition to the innovations presented for feature extraction step, also, 

there is a new idea in the classification step, which is use of multi-class SVM optimized with 

genetic algorithm. 

SVM has decisive parameters; some of them depend on the type of kernel function chosen for 

SVM algorithm. The kernel functions map the data, which is not separable linearly in its original 

space, to other space with more dimensions and separable linearly. There are some common kernel 

functions introduced, like Radial basis functions (RBF), sigmoid, linear, etc. In this study, the RBF 

kernel function is used. Choosing this function, two parameters should be determined which are 

called gamma and C. These values have important influence on performance of the classifier. The 

effect of these two parameters on accuracy of classification is shown in table 3. 

Table3.Tthe effect of SVM parameters on classification accuracy 

 

Gamma (×    ) 4 7 

C 9 10 9 10 

Accuracy (%) 91.16 89.09 93.86 91.08 

 

3.5. Cross Validation‬‬ 
 Based on a technique called cross-validation, the training data is divided into k subsets. k-1 subsets 

are used for training and the unused one is used to evaluate the performance. This action is 

repeated k times and each time one new subset is considered for evaluation. In this process, all 

training data are once used for evaluation. We used 10-fold cross validation. 

 

4. Results 
In this experiment, an emotion representation model based on the valence-arousal model is 

adopted. Each dimension has ranging from 1 to 9. We segmented the Valence Arousal (VA) space 

to four quadrants according to the ratings. LALV, HALV, LAHV, and HAHV denote low 

arousal/low valence, high arousal/low valence, low arousal/high valence, and high arousal/high 

valence, respectively  . The EEG data is then labeled according to participants’ ratings of valence 

and arousal. The segmentation of the Valence Arousal (VA) space to four quadrants shows four 

general emotional states: happy, sad, exiting and hate.  

The original EEG data of DEAP dataset is down sampled to 128 Hz and preprocessed with a band 

pass frequency filter 4.0-45.0Hz, also, the EOG artifacts are removed. So, we just extracted the 

mentioned Gabor and IMF features from the EEG data without any preprocessing. Then, the Multi 

Class SVM classifier with RBF kernel optimized by genetic algorithm is selected to classify the 



H.Zamanian et al. / Electronic Letters on Computer Vision and Image Analysis 17(1):29-44, 2018       39 

 
 

extracted features into four classes. To use the entire dataset for training and testing the classifier, a 

10-fold cross-validation scheme is adopted. All experiments are performed with 10-fold cross-

validation and the performance of the classification is evaluated through the classification accuracy 

rate. 

Table 4 shows the effect of two different selected groups of EEG channel signals on emotion 

classification accuracy for 4 aforementioned classes. The experiments are achieved by two 

different Gabor filters, one is the filter with four scales and six orientations (4×6) and the other is 

the filter with five scales and eight orientations (5×8). The first group of channels contains P7 ،P3 

and PZ and the second group includes P7 ،P3, PZ, PO3, C4, O1 and CP2.  

Table4. Classification accuracy for two selected groups of channels and different Gabor filter sizes  

 

 

 

 

 

 

 

 

Choosing more channels and longer Gabor filters causes larger feature vector, but table 4, shows 

that the length of the feature vector is not directly proportional to the performance of the system. In 

this sense, sometimes with extending the feature vector length, the performance of detection 

accuracy is become even lower. So, we can conclude that the efficiency of the system performance 

is related to the effective extracted features, and not to the number of extracted features. On the 

other hand, the length of the feature vector is less, the greater the processing speed can result. This 

table shows that with selecting just 3 channels, named P7 ،P3 and PZ and the Gabor filter with four 

scales and six orientations (4×6) provides effective feature vector that results better classification 

accuracy. In this case, the length of the feature vector was 264. 

 For fair comparison between different methods of EEG emotion recognition, some factors must be 

identical between them. Since different datasets sampled by different frequencies provide different 

information for the recognition system, it is needed the input signal should be identical. In addition, 

different emotion stimuli cause different level of reaction in different persons. The second factor is 

the number of classes which has to be the same. 

 Table 5, shows the comparison between the proposed method and several recent introduced 

methods. As shown, the proposed method is able to significantly improve the EEG emotion 

detection accuracy. In this table, only the reported method in [2] used the DEAP dataset as input, as 

same as the proposed method. It is obvious that the proposed algorithm enhances the accuracy of 

emotion detection compared to other algorithms. Table 6, also, demonstrates the confusion matrix 

of the four aforementioned emotional states by the proposed method. 

 

 

Number of selected 

channels 
Gabor filter size Classification accuracy (%) 

3 

4×6 93.86 

5×8 90.28 

7 

4×6 93.74 

5×8 90.41 
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Table5. Classification accuracy for two selected groups of channels and different Gabor filter sizes  

 

authors Year published 
Classification 

algorithm 

Classification 

accuracy (%) 

Bajaj and Pachori 

[27] 
2015 SVM 84.79 

Zheng et al. [2] 2016 SVM 69.67 

Li and Lu [43] 2009 LDA, KNN 83.04 

Lin et al. [44] 2010 SVM 82.29 

Wang et al.[7] 2011 SVM 66.50 

Proposed method 2016 Evolutionary SVM 93.86 

 

 

Table6. Confusion matrix for Classification of four emotional states by the proposed method (%) 

 

Emotions Happy Sad Exiting Hate 

Happy 95.3 0.3 2.8 1.6 

Sad 0.4 94.8 1.2 3.6 

Exiting 4.35 2.2 91.35 2.1 

Hate 1.1 2.2 2.7 94.0 

Accuracy(%) 95.3 94.8 91.35 94.0 

 

 

5. Conclusion 
This study was conducted to improve the accuracy of detecting the emotions based on the EEG 

signals. In general, studies with this subject have several basic steps. The first step is the 

preparation of appropriate data. In this step, the DEAP database was used to validate the proposed 

algorithm. The second step is extracting the features which were proposed by innovative features 

extracted based on filtering the data with Gabor filters and also, applying the intrinsic mode 

functions. The experimental results show that selection of 7.5 seconds in length for input data and 3 

channels provide acceptable results. The last step is choosing suitable classification algorithm. We 

found that the multiclass SVM algorithm enhanced by the Genetic evolutionary algorithm provides 

better performance.  

At the end, it was shown a dramatic improvement in accuracy of diagnostic emotions. 93.86% is 

detection accuracy of the proposed algorithm which is able to detect 4 different emotional states 

based on the EEG signals. 
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