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Abstract

This work demonstrates that a transfer learning-based deep learning model can perform unambiguous
classification based on microscopic images of material surfaces with a high degree of accuracy. A transfer
learning-enhanced deep learning model was successfully used in combination with an innovative approach
for eliminating noisy data based on automatic selection using pixel sum values, which was refined over
different epochs to develop and evaluate an effective model for classifying microscopy images. The deep
learning model evaluated achieved 91.54% accuracy with the dataset used and set new standards with the
method applied. In addition, care was taken to achieve a balance between accuracy and robustness with
respect to the model. Based on this scientific report, a means of identifying microscopy images could evolve
to support material identification, suggesting a potential application in the domain of materials science and
engineering.
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1 Introduction

Daily human interaction with novel scenes or objects relies on the perception and identification of material prop-
erties of surfaces and objects, resulting in the enormous importance of correct identification [1]. The domain
of material identification represents a broad spectrum, ranging from identification in macroscopy to nano- and
microscopy, recognizing the materials that make up our environment is elemental to any interaction, whether
human or machine [2, 3]. In recent years, materials scientists have been able to make immense progress in the
acquisition, analysis, and comparison of structural images, proving the father of nano- and microtechnology
Feynman (1960) correct in his statement “There’s Plenty of Room at the Bottom” and allowing the technology
to advance deep into the microscales [4, 5]. Detection of materials is proving to be enormously beneficial in
macroscopy, e.g., robotics, waste separation, or autonomous driving, while it is important in microscopy to de-
tect microcracks or minute defects, as those are inextricably linked to material properties [2, 3, 6–8]. Especially
microtechnology and the ever-improving recognition of minute structures within various materials is defined
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as the hope of the economy in the twenty-first century as it changes human lifestyle and industrial structure, so
that nano- and microtechnology is also considered as the fourth industrial revolution [5, 9].

In the addressed domain of microtechnology, a materials scientist must pay attention to an abundance of
minute details when viewing microscopic images of materials to achieve optimal identification [3, 8]. This is
strongly complicated by certain shape variations, phase boundaries, or a wide range of appearances that can
also vary by illumination and shape [3, 8]. Fault diagnosis requires intensive prior knowledge on the part of an
expert, which can also lead to misinterpretation, since some forms of faults are not visible to the human eye
[10]. Therefore, the detection and diagnosis of materials is a complex and challenging task that is currently
performed by humans, leading to misinterpretation and preventing correct classification as well as diagnosis
[10, 11]. These issues of possible misinterpretation or non-identification can lead to incorrect use, addressing,
or interaction with the materials, resulting in monetary losses on the one hand, but also posing risks to the users
and environments in the particular domain on the other hand [12, 13]. In addition, the attention span of humans
is limited and explicitly in repetitive tasks this attention decreases rapidly, which can also lead to serious errors
[14, 15]. There is also the risk of identifying materials that may cause harm to human health without any
indication of potential risk from the respective material [14].

The interpretation of microscopic material image data is subject to the “intuition” of experienced researchers,
which often leaves many of the deep graphical features unused because of difficulties in processing the data and
finding the correlations, that can be optimally addressed by deep learning (DL) in particular [16, 17]. In the do-
main of materials science, the guiding ideology that can be summarized into four paradigms prevails: The first
paradigm defines the empirical trial-and-error method, the second paradigm embraces physical and chemical
laws, the third paradigm includes computer simulation, and the fourth paradigm is Big Data-driven materials
science [9]. Explicitly, the fourth paradigm can perfectly unite the other three paradigms in the aspects of
theory, experiment, and computer simulation through the continuous development of data mining technology
and artificial intelligence through machine learning (ML) in closer consideration of DL [9, 16]. DL is a way to
enable an automatic optical identification and/or characterization system for materials, requiring an algorithm
that is reliable for different materials, operates with high accuracy, is fast enough for real-time processing, and
can be easily adapted to different optical setups and different user requirements with minimal additional human
effort [17]. Through DL capabilities, generic microstructural signatures can be used to automatically find rela-
tionships in large and diverse microstructural image datasets [4, 16]. This application form of DL falls into the
rapidly developing domain of computer vision and offers a variety of techniques that have shown tremendously
promising performance in practice, where a trained network was able to extract deep graphical features such as
contrast, edges, shapes, flake sizes and their distributions, based on which key physical properties of materials
were identified [4, 17].

Training a deep neural network from scratch is often not feasible because it requires a dataset of sufficient
size, and it may take a long time for convergence to be achieved than to make the experiments worthwhile. Even
if a large enough dataset is available and convergence does not take that long, it is often helpful to start with pre-
trained weights instead of randomly initialized weights [18]. Transfer learning (TL) is often beneficial when
a limited amount of annotated data is available, where manual annotations are time-consuming and require a
high level of expertise. The usefulness of TL is due in part to the fact that the first convolutional neural network
(CNN) layers capture low-level features, that are often used between different types of images such as edges
and blobs. When there are only a small number of labeled examples, TL can help to reduce the error in the test
set through a regularization effect [19, 20].

This report is structured as follows: We begin by providing an overview of the research background in the
field of materials science and related work. We then describe the methodology, including the integration of the
epochal Deming-cycle in the ML context, the dataset used for the research, and the preprocessing applied. We
then show the results of the method we implemented using an evaluated final model. Finally, the results are
discussed and brought to the scientific context.
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Related Work

In order to present the current state of material identification in the domain of ML and especially DL, relevant
work and its results are presented below to the best of our knowledge. DeCost and Holm [4] used a novel
support vector machine (SVM) in the domain of microstructure science of computer vision conceptualization
with accuracy greater than 80% at 5-fold cross-validation. Based on the knowledge gained from the previous
work, DeCost et al. [7] presented further SVMs supported by two image representation approaches, one is
CNN and the other is a middle image feature based on Bag of Visual Words (BoW). Cross-domain deep CNN
representations were used to achieve classification accuracy and thus material identification of more than 95%.
Xia et al. [13], on the other hand, focused on the extraction of road information, with material identification
elementary to the interaction with the conditions, designing a two-level structure to both extract the road sur-
face and classify materials. A deep CNN was applied, and by using a post-processing approach, it was more
consistent with that of real-world situations and achieved good results [13]. Whereas Kerr et al. [11] devel-
oped a system that outperforms humans in the task of material recognition by analysing thermal conductivity
and surface texture using SVM and ANN. In addition, Bircanoglu et al. [6] evolved a CNN for waste sorting
and achieved an accuracy of 75% by training from scratch to even 95% accuracy with TL and fine tuning.
Similar image structures to our work were analyzed in the work of Kandel et al. [21] analyzed with CNNs,
including a detailed comparison of optimizers, and the findings have also found resonance in this work. The
dataset was based on histopathology images, revealing microscopic manifestations of disease, placing the work
in the microscopic domain as well, and the outcome was measured using AUC, with ResNet achieving 93.84%.
Another deep-learning-oriented approach was taken by Wei et al. [22] to determine isotropy from images of
architectural materials. The efficiency of the algorithm was further enhanced by the use of TL and achieved
90% accuracy, providing an effective approach for mechanical design detection.

Methodology

For our research, we resorted to proven frameworks and packages in the domain of DL. We used the program-
ming environment of Google Colab in the Pro variant to have a sufficiently strong computing power, namely
a Tesla 100 GPU including 27 GB RAM, as well as to use the extensive library possibilities of Python [23].
As a basis, we used TensorFlow, which is a framework for sequential programming and is very popular in the
domain of ML [24]. For a better understanding of the classification of our models, the model-independent
LIME [25] was additionally applied, ensuring local model interpretability.

The goal of this work was to develop an effective model for the classification of microscopic images, which
can be an efficient tool for real-world applications. Our methodology has been to compare different model
and data processing approaches over recurring phases, where in the course the most effective model in terms of
predictive performance should emerge. Within and across these phases, the respective models should be contin-
uously improved, which is why we adapt the plan-do-check-act cycle according to Deming within the research
[26, 27]. This is also known under the name Deming-cycle and represents a methodology from the manage-
ment domain for the control and continuous improvement of processes [27]. This approach is transferable to
the evaluation of our models, where the focus is also on the continuous improvement of process steps within
the phases that are directly related to the desired predictive performance. The cycle will finally be terminated
by the final model, which will determine the final result.

We have compared different TL approaches with different base models that bring the advantage of pre-trained
weights. This allows us not to develop the model from scratch, but to work with the knowledge of established
models and add the final layers that should perform the final classification. In the first respect, we have cho-
sen state-of-the-art architectures from different years of the ImageNet large scale visual recognition challenge
(ILSVRC) for the comparisons, namely VGG16 [28], Xception [29], EfficientNetB0 [30], ResNet50V2 [31],
and InceptionV3 [32], which have shown exceptional performance and popularity in the literature. In addition,
a custom model architecture, named APANnet, was also designed to ensure the effectiveness of TL, training
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the model from scratch. In the following of this paper, the individual steps within our research are described
in chronological detail to give the reader the best possible insight. This work was developed following the
methodology of the design science research approach of Hevner et al. [33], which aims to improve problem-
solving capabilities by creating innovative artifacts, which in this work argues for the ML algorithm according
to the developed guidelines. The methodology evaluated and finally used is shown in figure 1, which builds
sequentially on each other.

Figure 1: Overview of the methodology used
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Dataset

In this work, we used a self-collected dataset consisting of a total of approximately 306,000 microscopic mate-
rial surface images that have a size of 300 × 300 pixels. These are assigned to 15 different classes, with 12%
of the total retained for the validation dataset for each class. In advance, one class was removed, which was
composed of four other classes, which would negatively affect the classification of the model, since a clear
assignment would no longer be possible. The individual classes include microscopic images from different do-
mains, such as bainite, which represents a microstructure that can form during heat treatment of carbon steel, or
AlSi9Cu3, a cast aluminum alloy with good strength properties, such as high thermal conductivity and chemi-
cal resistance [34, 35]. A complete listing of all classes, including their explanations and the available sets of
training and validation samples, is shown in table 1.

Table 1: Explanation of the data set including the respective number of training and test data

Class Explanation Train Validation
AlSi9Cu3 Cast aluminium alloy 15,056 1,883
Bainite Crystalline microstructure within steel 12,191 1,525

Boron Nitride
Material that consists of boron and nitrogen covalent
bonds

12,284 1,537

Fabric Not further specified 44,236 5,531
Films Coated
Surface

Not further specified 1,454 183

Graphene
Carbon allotrope where the carbon atoms are arranged in
a two-dimensional honeycomb lattice

5,201 651

LiB Lithium-ion battery 68,792 8,600
Magnet Metal with magnetic field 6,955 870
Molybdenum
Disulfide

Compound consisting of molybdenum and sulfur 16,146 2,019

Non-Crimp Fabric Basalt fibres 3,640 456
Palladium Palladium nanoparticles on carbon surface 4,780 599
Particles Not further specified 18,864 2,358
Patterned Surface Not further specified 17,467 2,184
Powder Not further specified 6,328 792
Tungsten
Ditelluride

Inorganic chemical compound formed by the reaction
of tungsten with tellurium

38,581 4,824

After the initial manual review of the data, it was recognized that the Graphene, Molybdenum Disulfide,
Boron Nitride, and Tungsten Telluride classes had largely identical features to the human eye, as did images
containing only green coloration with no other discernible patterns. The green coloration is due to a sili-
con dioxide (SiO2) matrix in which the materials were embedded to identify certain elements and phases on
microscopy images. Depending on the thickness of the layers of the embedded material, the color changes, in-
dicating a similar oxide thickness of the addressed classes. These immense similarities crystallized early on as
the main challenge in classification, which will be discussed in detail later in the work through the approaches
chosen to solve it. A comparison of the classes addressed and their visual discrimination issues is shown in
figure 2.
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Figure 2: Comparison of the visual similarities of the four addressed classes

Preprocessing

For the preprocessing, it was primarily important to be able to optimally estimate the training data, which was
approached by analyzing the distribution of the classes to provide an effective basis for the models. The result
of this consideration was the distribution in figure 3, which represents an unbalanced dataset. This distribution
was intentionally used for the baseline results to test self-regulation and behavior in the presence of under- and
over-representation of classes.

Figure 3: Number of data from the training dataset per class

A key component for training with image data is data augmentation, which expands the existing dataset
within the training by adding modified copies of the original data [36]. Added to this is the benefit that aug-
mentation thereby regulates overfitting and increases the amount of data available for training, allowing the
model to recognize more specific patterns [36]. Explicit overfitting is a fundamental problem in the domain
of DL, where the model learns a very high variance function to perfectly model the training data, but has a
significantly weak generalization capability and would not work in a real-world environment [36]. In addition
to the size of the dataset, data augmentation promotes quality, using a number of techniques, such as geometric
transformations, colour space augmentations, kernel filters, shuffling images, or randomly deleting sections
[36]. In all models, we used the augmentation layers of the Keras API [37], defining the settings per phase
identically for each to ensure comparability. Over the time of the research, the following settings emerged as
most effective for our final model in terms of predictive performance, as well as training efficiency: random
rotation (factor = 0.4), random translation (height factor = 0.4; width factor = 0.7), random horizontal and verti-
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cal flip, as well as random contrast (factor = 0.5), and random zoom (height factor = 0.4), with all values being
experimentally justifiable in terms of effectiveness across the phases. Another important aspect for training our
models in terms of predictive performance, but also training speed, was the normalization of the data before it
is passed into training. In this case, the goal was to have the input values centered in a distribution around 0
with a standard deviation of 1 by calling the mean and variance of the data pre-computed at runtime, which is
a efficient statistical approach [37, 38]. Explicitly, for our image data, this means that those were normalized
from (0, 255) to a range (-1,+1).

Phase 1: First comparison of the models

The goal of the first phase was to compare the selected five TL approaches, as well as the APANnet, and
use the first results to select the three best architectures for further research. The APANnet consisted of three
convolutional layers and subsequent max pooling layers. In addition, several dense layers and a flat layer were
integrated. Due to the fact that we are using an unbalanced dataset, balanced accuracy is used as the primary
comparison metric for the evaluation, although other common metrics are not ignored, which is maintained
within the research. To this end, simple accuracy was intentionally captured in the paper, despite the presence
of an unbalanced data set, in order to show the difference towards balanced accuracy. The training procedure
for each model was an initial training over the attached layers to the base model, and a subsequent fine-tuning,
again only over the attached layers over 5 epochs each. Here we used the premise that the base models have
sufficient prior knowledge and therefore our added layers should reach this level of knowledge. The results of
each model are described in table 2.

Table 2: Results of phase 1

VGG16 Xception EfficientNetB0 ResNet50V2 InceptionV3 APANnet
Accuracy 74.1% 73.0% 73.1% 73.1% 70.7% 65.8%
Bal. Accuracy 83.4% 81.9% 83.2% 81.5% 78.8% 71.8%
Kappa 71.3% 70.0% 70.1% 70.1% 67.5% 62.3%
Precision 71.5% 77.0% 75.7% 74.9% 73.4% 69.4%
Recall 74.1% 73.0% 73.1% 73.1% 70.7% 65.8%

The VGG16-based TL approach resulted as the current most effective architecture with 83.4%, followed by
the EfficientNetB0 with 83.2%. The analysis of the training showed that the ResNetV50 has more optimization
potential compared to the Xception model, why we shortlisted the ResNetV50 as the third architecture and
will thus no longer consider the Xception, the InceptionV3, and the in-house APANnet for the further course
based on the results. As suspected, the main problem across all models was the comparatively weak correct
assignment of the Graphene, Molybdenum Disulfide, Boron Nitride, and Tungsten Telluride classes, which
will be addressed primarily in the following steps. In addition, the unbalanced distribution of classes across all
classes could degrade performance, which should also be fixed and would highlight a common problem of DL
with imbalance.

Phase 2: Optimization of the 3 best models

The second phase focused on solving the challenge of the four posed classes, which was addressed through
more aggressive augmentation. The hypothesis was that further transformations would highlight the differ-
ences within the classes, meaning that larger parameters were defined for each method, for example expanding
the horizontal flip to a vertical and horizontal flip. Additionally, a random inversion was defined in the augmen-
tation, which is a pixel operation that determines the opposite color of the respective color space, thus inverting
the colors [39]. The hypothesis was that the inversion could cause more patterns to stand out, which could help
to distinguish them better.
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To compensate for the unbalanced distribution of each class, class weights were included to computationally
balance the dataset, which has led to successful results in other work and is a popular method for improving
predictive performance in these cases [40, 41]. To calculate the appropriate class weights, starting from the class
with the most representation relative to each of the other classes, the relation was calculated that those have
the same level and thus each class is assigned the same representation for training. In addition, our approach
in this phase was to test the models with the base models VGG16, EfficientNetB0, and ResNetV50 for various
hyperparameters, as well as to further specify their attached layers. Primarily addressed were the optimizer, the
batch size and the learning rate (in pre-training and fine-tuning). Therefore, that the optimizer has a significant
impact on the result, SGD [42], Adamax [43], RMSprop [44], and FTRL [45] models were considered for
comparison. For the training, 5 epochs each were used in the pre-training and fine-tuning, which led to the
results in table 3.

Table 3: Results of phase 2

VGG16 EfficientNetB0 ResNet50V2
Accuracy 85.7% 85.3% 75.2%
Bal. Accuracy 84.2% 81.4% 81.8%
Kappa 83.6% 83.0% 72.5%
Precision 83.1% 85.1% 78.6%
Recall 85.7% 85.3% 75.2%
AUC 99.1% 98.9% 97.6%
Optimizer Adamax Adam Adam
Learning Rate 0.001 0.001 0.001
Batch Size 128 128 64
Augmentation augm. & invert augm. augm.
Class Weights calculated calculated calculated

The individual changes significantly improved the performance of all models compared to the first phase,
with the VGG16-based model performing best with a balanced accuracy of 84.2%. Derived from the train-
ing process, the models still offer potential for improvement, which will be exploited in the upcoming phase.
Comparing the optimizers, here using the VGG16 based model, Adamax turned out to be the most effective.
However, Adam also outperformed the other models with a balanced accuracy of 82.99%. In comparison,
RMSprop with 81.54%, and SGD with 80.81% remained significantly behind, whereas FTRL performed enor-
mously weak. This pattern was largely detected in the other models, so Adam and Adamax were used for the
next phase. The challenging nature of the Graphene, Molybdenum Disulfide, Boron Nitride, and Tungsten Tel-
luride classes could be partially improved, yet it became clear that harder sample eliminations may be a likely
solution to achieve better performance. Inversion could not bring the desired effect, which is why this issue
should be reconsidered. In addition, LiB and Fabric (not further specified) are perfectly assigned, involving
an enormous amount of training data, which does not seem to be necessary to this extent due to the very good
differentiability. Due to this, a decimation of the two classes is considered, which should effectively reduce
the training time and could improve the classification performance of the four challenging classes, as more
emphasis could be put on those.

Phase 3: Evaluation of a final model

To solve the challenge of the four classes that are difficult to classify, a machine elimination of the overlap-
ping images and the predominantly green colored content was performed. For this purpose, the property of
images was used, with the help of the fact that each image consists entirely of pixels. These pixels contain
color information that varies in value depending on the coloring and allows the visible properties to be uniquely
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determined using numerical values. The upstream definition of each image to the size of 224 x 224 ensured
that each image contains a total of 50,176 pixels in sum. For this purpose, each image was provided as an RGB
(red, green, blue) model so that the color depth, which represents the number of bits in a pixel, is equal to 24
bits evenly distributed among the red, green, and blue components, resulting in 8 bits per color component.
This results in the calculation per image according to the respective color intensity: height x width x channel
x color depth. Based on this, the sum of all pixel values can be used to calculate whether an image is almost
primarily green and thus likely for potential misclassification due to the highly similar appearance within all
four classes. These pixel sum values can vary due to slight color changes in the image or barely visible frag-
ments. Therefore, thresholds (upper and lower limits) were defined through manual observations to remove the
cross-class images for the addressed classes from the dataset once the pixel sum values were within the domain.
This self-evaluated innovative method allows for the cleaning of data that could eventually potentially belong
to any of the four classes and bias a result, decimating the dataset, but still providing sufficient training data
through data augmentation. It is important to mention that only images were removed from the training dataset
and the predefined validation dataset remains unchanged. This is important because in practice challenging
similar images can occur, which makes it important that for the validation the model learns to classify such
images. This procedure can reduce the final accuracy, which is nevertheless consciously accepted in order to
create a more robust model for the application. This trade-off between robustness and accuracy is a well-known
phenomenon for DL, where we aim to balance these properties [46, 47].

In addition the LiB and Fabric classes were decimated by approximately 58% and 45%, respectively, ran-
domly deleting images to bring the sum of images to a similar level. Compared to this downsampling measure,
the images of Graphene were quadrupled and Films Coated Surface doubled, using duplications of the existing
image data, with a 180°-rotation and a vertical and horizontal flip. The increased sample number was intended
to increase training effectiveness and improve the balance of the dataset, which was used alongside the class
weights to increase their effectiveness as well. A dynamic learning rate through an exponential decay schedule
was considered as another optimization option. This is based on the consideration that in training it may be
useful to reduce the learning rate with increasing duration by an exponential decay function on the optimization
steps, where initial and final learning rates were determined [48]. At this stage of the research, the training was
extended and 10 epochs were chosen for pre-training and 5 epochs were chosen for fine-tuning, which led to
the results in table 4.

Table 4: Results of phase 3

VGG16 EfficientNetB0 ResNet50V2
Accuracy 85.0% 85.8% 85.7%
Bal. Accuracy 89.7% 89.8% 91.5%
Kappa 83.0% 83.8% 83.8%
Precision 91.1% 88.4% 91.6%
Recall 85.0% 85.8% 85.7%
AUC 99.0% 99.0% 99.1%
Optimizer Adam Adamax Adamax
Learning Rate 0.001 0.001 0.001
Batch Size 128 64 64
Augmentation augm. augm. augm.
Class Weights calculated calculated calculated
Pixel-Value used used used

The changes regarding the green image-classes resulted in a significant increase in accuracy, with the
ResNetV50 providing the best results and not the VGG16 as before. A balanced accuracy of 91.5% was
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achieved with the displayed hyperparameters. It is important to mention that the augmentation without an
inversion gave better results for all models, which is why this methodology was discarded and clearly outper-
formed by the elimination based on the pixel sum values. Despite the improved values, we believe there is still
potential to improve predictive performance, with the help of further adjusted and evaluated pixel sum ranges,
as well as partial adjustment of hyperparamaters, which will be tired into our final model for this research. The
use of dynamic learning rates across training has also been able to perform well, yet a learning rate of 0.001
for each model has produced the best results. In addition, LIME was integrated to analyze the relevant domains
for the classification of the four problem classes and to obtain a model interpretability [25]. The addressed
classes were sequentially evaluated which generally showed a similar pattern with respect to the mainly green
images. The domains for the classification of the classes are shown in green and the domains that speak against
the class are shown in red. As shown in figure 4, the model, in this case the VGG16-based, did not use the
pattern recognizable to humans for the classification, but draws the information from other regions, which is
a surprising finding. Predominantly, the right domain of the images was defined as contra, which is an inter-
esting discovery and is addressed with a centered vertical reflection in the augmentation for the final model.
For the resulting ResNetV50-based model, the individual methodological steps were finally fine-tuned. It was
significantly important to use the gained knowledge of the research to be able to further improve the result.

Figure 4: Model interpretation of the classification
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Final Model

For our final model, we used a TL approach with the popular ResNetV50 [31]. In this approach, the fully con-
nected layer at the top of the ResNetV50 network was truncated and replaced with layers evaluated via research
to integrate specific knowledge and make the final classification. The addition of further layers was important,
both to take advantage of TL, but also to be able to train specifically for the problem of multiclassification. The
structure of the entire model is shown in figure 5.

Figure 5: Structure of the final model

In the process of research, the individual layers were experimentally adjusted based on theoretical founda-
tions. Due to the fact that overfitting is a big problem for DL, we integrated dropout layers, within the training
step, whereby random neurons, according to the chosen rate, are set to 0, which is supposed to curb overfitting
[49, 50]. The remaining inputs are not set to 0, to be eventually scaled up by (1/(1 - rate)), so that the sum
over all inputs remains unchanged [49]. In addition, a spatial-dropout 2D-layer was used, which performs the
same function as Dropout, but with the difference that full 2D feature maps are deactivated instead of individual
elements [51, 52]. This was deliberately incorporated because if neighboring pixels of feature maps are highly
correlated, then a regular dropout will not optimally regulate activations and will tend to reduce the effective
learning rate. In such a case, which may typically occur in a network, a spatial-dropout 2D-layer is intended to
promote independence between feature maps [52]. In addition to this, an additive zero-centered Gaussian noise
was integrated to mitigate overfitting as well. Gaussian noise acts as a regularization layer that is only active at
training time and represents a natural choice as a corruption process [37].

Only depthwise separable convolutional-2D-layers were used in our model instead of “traditional” ones.
This has the background that separable convolutional-2D-layers first perform depthwise spatial convolution
and then pointwise convolution, which promises a fast computation and is understood as an extreme version
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of an inception block [37]. The activation function ReLu [53] was used for each of those layers, due to the
fast computational possibility, the speedy convergence, and the non-negativity of the outputs [54]. In addi-
tion, the respective padding ensured that the output had the same height and width as the input [37]. Batch
normalization was performed before each activation function, which should make the model faster and more
robust by normalizing within mini-batches to a mean of 0 and a standard deviation of 1 for the next input
[55, 56]. The exception was the last activation function, where batch normalization was added downstream to
make the effect of ReLu additionally more robust [56]. Also integrated is a global max-pooling 2D layer, a
sampling-based discretization process used to shrink the feature map by sliding an H × W block with a pool
size according to the input size over the data, where H is the height and W is the width of the block [57]. The
goal is to shrink the input representation to reduce dimensionality and allow assumptions to be made about the
features and patterns it contains [57]. This is followed by a flatten layer, which finally converts the matrix to a
1-dimensional array before the final classification [58]. For the final classification, a softmax activation func-
tion was chosen that outputs a probability vector where the elements are non-negative and sum to 1, effectively
solving a multiclassification problem [59].

Elementary for the performance of a model are the chosen hyperparamaters, explicitly the batch size and
the learning rate can bring a significant performance difference, whereby both are in a high correlation to each
other, which should be considered in the definition [60, 61]. This means that, in general, a high learning rate
(Learning Rate ¿ 0.01) performs better when a large batch size (Batch Size ¿ 256) is chosen, while conversely,
a low learning rate should be chosen for a small batch size [61]. Furthermore, the stack size should be a power
of 2 to fully utilize the computational capabilities of GPUs [61]. Considering this correlation, we chose a
batch size of 64 and a learning rate of 0.001 for initial training of our model, thus supporting the theory. In this
process, all layers of ResNetV50 were frozen and only the appended layers were trained, which is in accordance
with the maxim of TL [62]. For fine-tuning, we chose a lower learning rate of 0.00001 to fit all layers of the
entire model to the task. In combination with the learning rate, the choice of optimizer is also elementary, and
in this case Adamax [43] was chosen, based on Adam but generalized by the infinity norm, which gave the best
performance.

Results

The final model achieved the following results. Training included initial training – freezing the baseline model
– and fine-tuning, each performed over 10 epochs, resulting in a total of 20 epochs of training with varying
focus. The model was able to achieve a balanced overall accuracy of 91.54%, with the hyperparameters defined
to the values described, which is the best possible result. The algorithm also achieved an Accuracy of 86.02%, a
Kappa of 84.11%, and an AUC of 99.11%. Table 5 summarizes additional performance indicators that provide
a deeper insight into how the classifier performs.

Table 5: Results of the final model

ResNetV50-based Model
Accuracy 86.02%

Balanced Accuracy 91.54%
Kappa 84.11%

Precision 92.07%
Recall 86.02%
AUC 99.11%
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Discussion

DL classification of microscopic surface images provides an effective way to enable interpretation of the mate-
rial image efficiently without human interaction through the learned patterns. Based on the results of the pre-
sented model, conclusions about its effectiveness can be drawn, which may allow its application in real-world.
The accuracy of 91.54% was achieved by a balance between accuracy and robustness, which was ensured on
the one hand by the preprocessing and on the other hand by the model architecture. In the preprocessing, only
the training dataset was deliberately adjusted with respect to the elimination by the pixel sum values and the
previously retained validation dataset was retained. This resulted in a diminished final accuracy, but a more
robust model [46, 47]. This robustness was also addressed by dropout and noise layer, extending the trade-off
between robustness and accuracy, which is common to current methods for training robust networks [46].

It can be positively emphasized that the material images, which are visually elementary different, can be
classified almost perfectly, which, in contrast to a human scientist, is significantly more efficient, in terms of
time and cost. This can be attributed in part to the fact that the model takes a different focus when viewing the
image data and can recognize patterns alternatively, unlike the human brain [63]. Fundamental to this is the
nature of pattern recognition as an inexact science, allowing different approaches, sometimes complementary,
sometimes competing, to the approximate solution of a given problem [63].

The chosen approach to the methodology – dividing the research into sequential phases – made it possible
to effectively evaluate a final model from a selection of models, which also makes the individual steps com-
prehensible to fundamentally support research based on them and allow further artifacts to emerge [33]. This
continuous improvement is due to a cycle of planning, executing, checking, and acting, which took place for
each model, and was modeled after the Deming-cycle (PDCA-cycle) [26]. Although the PDCA-cycle origi-
nated from the management domain and was defined for the control and continuous improvement of processes,
this procedure can be transferred into the ML domain, whereby also the characteristics are forced, as pointed
out in the research. The continuous pursuit of improvement based on the Deming-cycle must nevertheless be
finalized at a justifiable stage of research, which we define by the final model based on the good results.

In terms of the different base models, the performance was similar when compared, with VGG16 outper-
forming the other models for the most part, until elimination by pixel sum values, which allowed ResNetV50 to
achieve the best results. This indicates that deeper data cleaning by the evaluated methodology has a significant
impact on predictive performance. Thus, the hard elimination of the probably noisy data by the pixel value
sums has a significant part in the good result. The evaluated method is an effective option in the present case
because the Graphene, Molybdenum Disulfide, Boron Nitride, and Tungsten Telluride classes have a strongly
similar visual appearance and the basic coloration of the classes produces similar pixel value sums. The in-
novative methodology yielded an information gain of about 8% accuracy from phase 2 to 3, underscoring its
effectiveness.

Despite the extensive processing, the four classes addressed pose a difficulty for the model, although it
was still possible to classify with more than 50% correctness for each class and basically achieve an initial
predictive gain better than random guessing. In the domain of microstructures, it is difficult for humans to
distinguish between materials, while our model makes possible initial real-world applications across classes.
Explicitly for distinguishing the addressed four classes, our model can provide valuable information that can
support humans, with which, in case of uncertainty, a collaboration of human and machine comprehension
should lead to an even better decision. Thus, our model is effective without human interaction, but can also be
used valuable in combination with humans for discrimination. This interplay may come into play most strongly
once attention span in humans begins to wane and potentially fail to recognize patterns and become prone to
misinterpretation, allowing the model based on machine classification to contain this danger [15].

In the domain of multiclassification with deep architectures, as performed in this work, the models are often
prone to degradation problems that can degrade performance [31]. This also occurred in this work, which is
why the mesh depth was not extended beyond a certain point, always examining this with respect to balanced
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accuracy. This issue will be explicitly addressed in future work, as it may further improve overall performance.

Conclusion

In this work, an effective transfer learning-based deep learning model was developed for the classification of
microscopic material surface images. The model achieved an overall balanced accuracy of 91.54%, which is
the first of its kind to set new standards and define a first predictive gain in this domain with the selected dataset.
An innovative pixel sum value methodology was used, allowing effective elimination of noisy samples. It was
also shown that a TL approach for specific images can be a very effective methodology that should become
more relevant in the future. Going further, our model’s ability to automatically identify materials from image
content can conceivably have applications in materials research as well as construction, as accurate material
recognition is a fundamental component to success in design, construction, and maintenance of small and
large-scale construction projects [64]. By providing an objective, image-based assessment using the in-house
dataset, this work contributes to materials research and technology acceptance of a new IS artifact [65]. This
novel ML approach is accurate, inexpensive, fast, and robust, and extends material identification analysis in the
domain of materials research and engineering.
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