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Abstract

Digital images are used for the evaluation and diagnosis of diabetic foot ulcers. Selecting the region of
interest in an image is a preliminary step for subsequent analysis. Most of the time, manual segmentation
is not very reliable because specialists may have different opinions regarding the ulcer border; which has
encouraged researchers to find and test automated segmentation techniques. This paper presents a computer-
aided ulcer region segmentation algorithm for diabetic foot images. The proposed algorithm has two stages:
ulcer region segmentation and post-processing of segmentation results. The first stage focused on the se-
lection of a trained machine learning model to classify pixels inside the ulcer’s region, after comparing five
learning models. We performed exhaustive experiments with our own annotated dataset of images of Cuban
patients. A second stage was needed due to the existence of some misclassified pixels. In order to solve
this, we applied the DBSCAN clustering algorithm, together with dilation and closing morphological oper-
ators. The best-trained model after the post-processing stage was the logistic regressor (Jaccard Index 0.81,
accuracy 0.94, recall 0.86, precision 0.91, and F1 score 0.88). This trained model was sensitive to irrelevant
objects in the scene, but successfully detected the patient’s foot. Physicians found these results promising
for measuring the lesion area and to monitoring the ulcer healing process during treatments, which would
significantly reduce errors.
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1 Introduction

Diabetes Mellitus (DM) is a chronic metabolic disease characterized by high blood sugar levels during long
periods. It has a high prevalence on developing countries. And, according to the International Diabetes Feder-
ation, one in 11 adults (globally about 463 million) lives with this condition [22]. As for Cuba, according to
the Cuban Ministry of Public Health, by the end of 2018 diabetes prevalence was 64.3 per 1 000 people, which
represents approximately 6.5% of the population [10].
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Foot ulcers are a significant complication of DM. Diabetic foot ulcers (DFUs) are open wounds that can
develop on the feet of people with diabetes. In Cuba 3.5% of diabetic patients develop DFUs, meaning that
more than 18,000 people are affected each year [18]. Improperly treated DFUs often precede lower extremity
amputation [14]. Of all diabetic patients who have undergone lower limb amputations, 85% have suffered from
ulcers [15].

A thorough and systematic evaluation of DFUs is essential for appropriate treatment. Etiology, location,
size, depth, severity, tissue and edges types are the main elements of DFUs clinical evaluation [15]. Periodic
monitoring of DFUs, which is currently performed manually by clinicians, is imperative to assess the progress
of ulcer healing and avoid amputations [46]. However, manual measurement of the wounds’ size is often
inaccurate, time-consuming, and can also cause discomfort to the patient [9].

One approach followed by clinicians is to take high-resolution digital images of ulcers during the initial
evaluation and also in subsequent reviews, allowing comparisons spanning distinct healing stages at different
periods of ulcer progression. Visually, the ulcer tissues have three different colors: black, indicating necrosis;
white or yellow, indicating septicity; and red, indicating granulation and healing [15, 49]. Unlike other medical
images there is no specific equipment to capture DFU images; therefore, pictures are usually taken using digital
cameras or smartphones.

Selecting the DFU region in a digital image refers to locating the boundary between the ulcer area and the
surrounding skin. This task, known as DFU segmentation, is a crucial preliminary step for subsequent image
analysis. However, due to the lack of a standard protocol regarding the position of the camera and the ambient
light conditions while taking the pictures, the images may have different scales and lighting quality. Moreover,
the problem is usually complex because ulcers can have different shapes and their position can cover several
areas of the foot [15].

DFU segmentation can be performed manually using common image processing software like ImageJ [35]
or GIMP [41]. Also, special purpose software, such as MITK Workbench, offer manual segmentation function-
alities [44]. Nevertheless, manual segmentation is highly dependent on the observer and their visual perception
[32]. The need to develop image segmentation methods that will work with images acquired in regular clini-
cal conditions and the developments in digital image processing and analysis have led a substantial amount of
research in the automatic detection and evaluation of DFUs.

Accurate and automatic DFUs evaluation strongly relies on well-segmented regions. As a result, DFU seg-
mentation has turned out to be an emergent area in the field of image segmentation. Several segmentation
algorithms have been developed to perform automated DFU region detection [16, 24, 32]. State-of-the-art ma-
chine and deep learning object detection frameworks are increasingly applied to this problem [19, 29, 46, 49].

In [43], the authors used SVM to determine the wound boundaries of DFU images. Those images were
taken using a specific capture box created by the authors where patients place their feet and physicians take the
picture with a smartphone. A superpixel segmentation was applied using the Simple Linear Iterative Clustering
(SLIC), and then a two-stages cascade classifier was used. They obtained a mean sensitivity (recall) of 73.3%,
and 94.6% specificity.

The annotation and estimation of DFU boundaries using images were proposed by Dhane et al. [11]. Their
approach involved a gray level based fuzzy similarity measure using spatial information of the images. Then, a
fuzzy spectral clustering (FSC) was applied on the best color channel found after computing the mean contrast
for 26 different color channels of 14 color spaces. Then, the segmented regions were processed using several
morphological operations. The FSC approach was tested on 70 images, obtaining an accuracy of 91.5%, a
Jaccard Index of 79.0% and a sensitivity (recall) of 87.3%.

The goal in [1] was to develop a method for segmenting, measuring and characterizing the clinically chronic
wounds through images. The first step of the proposed method was to create a Red-Yellow-Black-White prob-
ability map (RYKW), which guided the segmentation process using an optimal thresholding. They reported an
average segmentation precision of 75.1%.

In [42], a deep learning method based on a variant of deep convolutional neural networks (ConvNet) was
proposed. For the segmentation task, they reported an accuracy of 95.0% and a Jaccard Index of 47.3%.
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This paper proposes a pixel features based two-step hybrid machine learning algorithm for automatic DFU
segmentation with results not far from state-of-the-art algorithms reported in literature. We used a group
of pixel-based features to train four machine learning models for classifying pixels that belong to the ulcer.
Generally, classification algorithms can assign elements to the wrong class. Therefore, we performed a post-
processing step to improve segmentation. First, we removed misclassified pixels from the segmented region
using DBSCAN clustering to discriminate isolated pixels and small groups. We chose this algorithm as it is
more robust compared to other clustering methods like fuzzy clustering [25]. We also applied the erosion op-
erator followed by the closing operator in order to fill the remaining holes inside the ulcer region, and isolate
pixels close to the wound edges [7].

The results of our research are relevant for designing a computer-aid software that helps Cuban physicians
monitor DFU healing during treatment. For now, this process is done manually with the corresponding draw-
backs of this measuring method, that we already mentioned.

The remainder of this paper is organized as follow: Section 2 explains the proposed pipeline for DFU
automatic segmentation. Section 2.1 details the feature extraction, classification models for determining the
pixels belonging to the wound, and the results of the classifiers. Section 3 shows why and how we made the
ulcer area refinement. Section 4 presents the dataset construction, image pre-processing, and the results of the
post-processing stage. Finally, we present conclusions and remarks.

2 Proposed method

This section explains the sequence of steps followed in the DFU segmentation algorithm (see Figure 1). The
first and primary step is feature extraction. Many machine learning algorithms, like the one used in this work,
require a numerical representation of the objects under study. Since we are working with images, in which the
color of the objects is essential for their classification, a vector numerical representation of the pixel’s color
is sought. This vector is what we define as pixel features. Section 2.1 explains the pixel features extraction
process in detail.

The feature extraction step is followed by a supervised classification one. Supervised classification is a
machine learning technique that maps an input feature vector to an output label based on a set of correctly
labeled training data. The output labels that are defined for our supervised classification process are ulcer
and non-ulcer. Given these labels, the segmentation of the image is carried out. Five different classifiers [3]
are used: Random classifier (DC), Decision Tree (DTC), Gaussian Naive Bayes (GNB), Logistic Regression
(LR), and Support Vector Machine (LSVC). The results of this step are shown in Section 2.2. Finally, a post-
processing step is performed. This step is necessary because pixels assigned to the wrong class may appear.
Details of this post-processing are shown in Section 3.

Dummy classifier (DC) or Random classifier is a type of classifier that makes predictions without trying to
find patterns in the data, and classifies using only simple rules. To predict the class label it uses one strategy,
completely ignoring the trends in the training data, which makes the classifier’s behavior completely indepen-
dent of the training data. In this work the stratified strategy was used, it generates predictions by respecting the
class distribution of the training data. A DC is used as a baseline to compare with other classifiers performance.

Decision tree classifier (DTC) builds a hierarchical structure to split the dataset into homogeneous groups.
It as a finite, acyclic, and directed graph that contains a unique node that has no parent called root. Each node
of the tree has one parent, except the root, and there is a unique path from the root to every node of the graph.
Each non-leaf node of the tree represents a test on a feature set, also called split. The leaves are associated to
labels (or categories). To classify an unseen instance, various tests are conducted, starting from the root, until
reaching a leaf node. The computational complexity of the decision tree is associated to its depth and average
nodes per level [17].

Naive Bayes classifiers are a collection of classification algorithms based on Bayes ‘Theorem. It is an easy
way to predict classes both in binary (two class) and multiclass classification problems [17]. They belong
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Figure 1: Pipeline of the proposed method. The first stage is the classifier training stage using an stratified
5-fold cross-validation to select the best classifier, which is then used to obtain the segmentation. Then, an
improvement stage is performed, obtaining the final segmentation.

to the family of learners that use the maximum a posterior rule to perform the inference process. They give
probabilities that a given pattern belongs to a specific class, and in the case that the independence of the data
attributes assumption fits, the algorithm performs better compared to other classification models. It does not
require as much training data [17]. Gaussian Naive Bayes (GNB) is an extension of Naive Bayes to real-valued
attributes, most commonly by assuming a Gaussian distribution. The Gaussian or Normal Distribution is the
easiest to work with because you only need to estimate the mean and the standard deviation from your training
data.

Logistic Regression developed by statisticians is mostly used for binary classification problems. It predicts
the probability of an incident based on a set of values used as predictors. The learning function is a logistic one
depending on optimal parameters which minimize the classification errors.

Support Vector Machine classifier (LSVC) [27] aims at finding the optimum hyperplane that separates in-
stances of different classes. In a binary classification problem, the hyperplane must maximize the margin
between both classes and the margin is defined as the minimum distance from instances of different categories
to the hyperplane. The hyperplane is built using a kernel function; in this work a linear function. SVM is a
widely used machine learning technique [47].

2.1 Feature extraction

For this work, we used pixels as samples; therefore, we needed to obtain features that represent them and create
their features vector. Images store color intensity values for each pixel that depends on a color space [36].
Color plays an important role in DFU image segmentation, because they are related to different tissue features.
Mukherjee et al. [28] implemented a classifier for different ulcer tissues. The images were transformed to
HSL color space and the S component was selected as feature. Dhane et. al. [11] used 26 color channels for
classifying the ulcer pixels.

Hence, we used the following features: intensity values of red, green and blue image components (RGB),
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normalized RGB or chromaticity (Cro), average intensity of the three color channels [39], red-green channel
contrast (rg), red-blue channel contrast (rb) and green-blue channel contrast (gb) [39], the standard deviations
for each RGB channel using a window of radius 2, hue (H), saturation (S) and value (V) in a HSV color space
[34]; hue (a∗), saturation (b∗) in a L*a*b* color space [5]; and the luminance (Y ), blue chrominance (Cb) and
red chrominance (Cr) components of a YCbCr color space [36].

We used combinations of all these features (Table 1) to characterize each pixel and their neighborhood using
color information. We did not use all possible features because it could lead to a wrong generalization of the
learning model [31].

Identifier Combination
1 RGB
2 HSV
3 LAB
4 YCbRb
5 RGB,Cro,I,RG,RB,GB
6 HSV,Cro,I,RG,RB,GB
7 LAB,Cro,I,RG,RB,GB
8 YCbRb,Cro,I,RG,RB,GB
9 RGB,HSV
10 HSV,LAB
11 RGB,LAB
12 RGB,YCbRb
13 AB,Cb,Cro
14 RGB,HSV,LAB,YCbCr
15 Cro,H,GB,neigh2std
16 LAB,neigh2std
17 RGB,Cro,neigh2std
18 RGB,Cro,I,rg,rb,gb,neigh2std

Table 1: Feature combinations that define 18 different experiments for each classifier.

2.2 Classifier results

We used a 5-fold stratified cross-validation [20], which balances the proportion of the classes between the
created subsets [12, 40] and allows the evaluation of the performance of the learning model during the training
stage [40]. We used the following metrics to evaluate the results of the segmentation: accuracy, recall, precision,
F1 score, area under the precision-recall curve (AUCPR) [6], and Jaccard Index (JI) [48].

We compared the results of the five classifiers mentioned in subsection ??. They were trained using the
feature combinations in Table 1. Figures 2-4 shows its metrics values using 5-fold stratified cross-validation.

Figure 2 shows that LSVC is the classifier with the best recall value, with all but one feature combination,
reaching a maximum of 0.96 for feature 16 (LAB, neigh2std). However, we cannot select this classifier
based only on this result, because if a binary classifier labels all samples as the target class it will have a
maximum recall. This would mean that all samples in the target class were correctly classified, but nothing is
known about the precision of the classification. There may be many false positives (FP ), affecting precision.

In Figure 3 we can notice, in general, good precision with DTC, having a maximum of 0.75 with the feature
combination 4 (YCbRb). However, combination 16 (LAB, neigh2std) for LSVC, which has the highest
recall, has a precision value of 0.41. In this particular case, we preferred to find a balance between recall and
precision, and in order to do so, we analyzed the AUCPR metric (Figure 4).

We can see that LR has the best values for the AUCPR metric, except for combinations 2, 3, and 4 (HSV, LAB
and YCbRb, respectively) which are outperformed by DTC. Also, LSVC shows better results for combination
14 than the other classifiers (RGB, HSV, LAB, YCbCr). Finally, the two best values were obtained by LR with
0.86 for combination 6 (HSV, Cro, I, RG, RB, GB), and DTC with 0.86 for combination 4 (YCbRb).

After analyzing these results, the classifiers DTC, LR and LSVC were selected with feature combinations 4,
6, and 14, respectively, because they were the ones with the best AUCPR values. These three models were
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Figure 2: Recall values of each feature combination for every classifier. The maximum recall value (0.96) was
reached for LSV C on feature combination 16.

Figure 3: Precision values of each feature combination for every classifier. The maximum precision value
(0.75) was reached for DTC on feature combination 4.

Figure 4: AUCPR values of feature combination for every classifier. The maximum AUCPR value (0.86) was
reached for LR, DTC, and LSV C on feature combinations 6, 4 and 14, respectively.
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re-trained with the entire dataset and used on the validation set.

Figure 5 shows that LR has the best results on the validation dataset with combination 6 (HSV, Cro, I, RG,
RB, GB). Therefore, it was selected among the ones used in this research as the best supervised binary classifier
to perform the pixel-wise segmentation.

Figure 5: Classifiers results on the validation set. The logistic regression model with the combination 6 had the
best results (highlighted in bold).

Figure 6 shows images with segmentation results. We can see that there are groups of isolated points,
deformation, and gaps in the regions of interest of the DFU, because of misclassified pixels. We think this
is a direct consequence of the lack of uniformity in the image acquisition process (unwanted objects in the
frame, elements with color information similar to the ones in the region of interest of the DFUs and their
internal tissues). For this reason, we applied a segmentation improvement process, which is described in the
next section.

Figure 6: (a) Original images, (b) Segmented images using LR and feature combination 6, (c) Ground-truth
images.
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3 Post-processing

Binary classifications algorithms are defined as a function approximation. The goal is to estimate that function
based on a labeled training set to be able to make predictions on unknown samples [30]. The approximation
nature of this process does not always yields perfect results, therefore, we performed a post-processing step to
improve segmentation. First, we removed misclassified pixels from the segmented region using an unsuper-
vised clustering algorithm to discriminate isolated pixels and small groups. We use the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm which is a model capable of generating groups
with arbitrary form and with high scalability [45]. Finally, we use morphological operators on the final group.

After creating groups using DBSCAN, and with the one with the higher density selected, we proceed to
apply morphological operators [4] using an ellipsis shaped structuring element with 5 pixels as diameter. The
goal of this process is to fill holes inside the ulcer region, and also remove isolated pixels close to the edges.
We apply the erosion operator followed by the closing operator.

3.1 Procedure describing the DBSCAN clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a base algorithm for density-based
clustering. It is able of finding clusters of different shapes and sizes from a large amount of data containing
noise and outliers [25].

The algorithm proceeds by arbitrarily picking up a point in the dataset (until all points have been visited). If
there are at least 10 points within a radius of 0.3 to the point then we consider all these points to be part of the
same cluster. The clusters are then expanded by recursively repeating the neighborhood calculation for each
neighboring point. We used the sklearn [33] implementation of DBSCAN for Python programming language.

3.2 Morphological operators

Morphological operators allow image processing by introducing transformations from the shape perspective.
Set theory is the basic mathematical foundation of morphological operators that were first defined for binary
images and later extended for use in grayscale images. In the same way morphological operators can be used in
color images, either because they are transformed into grayscales ones or because they work with the intensities
in each of the color channels, for example, in RGB space (see Nixon, Mark S.; Aguado, Alberto S., ”Feature
Extraction and Image Processing for Computer Vision”, Third Edition, Elsevier, 2012).

The structuring or structural element defines the shape with which the operation is performed. It is important
to define the center, the neighborhood and its dimension. Structural elements could be rectangular or non-
rectangular.

3.2.1 Erosion and Dilation

The basic morphological operations are Erosion (⊖) and Dilation (⊕). In a binary image the pixels that belong
to the image, foreground, have the value 1 and those with value 0 belong to the background. The operations
are performed by positioning the center of the structuring element in each pixel of the image. The structural
elements also define the neighborhood [38].

In the ”eroded” image each visited foreground pixel “goes” to the background (value 0) if any pixel of the
neighborhood defined by the structuring element is from the background. When ”dilating” the image the visited
background pixels remain in the background if none of the neighborhood is from the foreground. If at least one
is from the foreground, its value is changed to 1.

It is easy to see that the effect of erosion removes details from the image, thins the contours and often discon-
nects some structures. On the contrary, dilation increases pixels in the foreground, thickens edges, structures
and fills some small spaces in relation to the dimension of the structuring element.
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Figure 7: Erosion and Dilation operations by graphics (Figure from [38].

Thus explained the operations can be seen that when moving to grayscale images the erosion corresponds
to the application of the minimum between the pixels. For this reason, by successively eroding the image
becomes darker while the dilation that corresponds to the determination of the maximum between pixels makes
the image lighter in successive applications.

3.2.2 Opening and Closing

Opening and Closing are combinations of erosions and dilations. Opening = Erosion followed by dilation
A ◦B = (A⊖B)⊕B and Closure = Dilation followed by Erosion A •B = (A⊕B)⊖B.

The effect on the image of an Aperture is the removal of small isolated objects and very fine connections
between objects. Closure eliminates small gaps, captures small regions, and joins small objects.

3.2.3 Application of morphological operators in post-processing of segmentation results

Frequently segmentation produces images with thin and partially disconnected edges and small objects inside
the image. Thus post-processing plays an important role.

To improve the results the obtained image is dilated followed by a closing to remove small unconnected
parts from the segment border and to remove small objects also in the interior. Due to the shape of the segment
(diabetic foot ulcer) the best results were obtained with an ellipse structuring element. For more details see
Figure 8 and the comments in 4.3.

4 Results

In this section we present how the dataset was created and processed in the experiments as well as the perfor-
mance metrics used. We also report the results of the segmentation task before and after the post-processing
improvement step.

4.1 Dataset construction

We used 140 images taken at the Diabetic Foot Clinic at the National Institute of Angiology and Vascular
Surgery (INACV, by its Spanish acronym) in Havana, Cuba, from a group of 30 patients during the treatment
with Heberprot-P® [2]. The digital camera was attached to the FrameHeber 03 [8], a device developed at the
Center for Genetic Engineering and Biotechnology, Cuba (CIGB, by its Spanish acronym) with a resolution of
3648× 2736 pixels.

Photographs were not captured in a controlled environment. This lack of uniformity and control causes the
existence of color information similar to the ulcer tissues on the image background. This could lead to wrong
segmentation results by the proposed method.
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After image acquisition and patient’s follow-up [42], images were manually cropped so that the foot appeared
as the main element of the scene. Then, they were resized to smaller resolutions while maintaining the aspect
ratio.

Finally, 37 images with different types of ulcers were selected. Those images were manually segmented
by the authors, using the software DFUlcer-UH: Annotation Tools® [21]. Then, the constructed dataset was
divided into two groups: 70% (26 images) for training, and 30% (11 images) for validation.

4.2 Subsampling

Among the 26 images used in the training set, there is a total of 9,744,190 pixels. The number of pixels
belonging to the class “ulcer” represents approximately 25% of the total number of pixels. This imbalance
between classes poses a problem, because classifiers cannot generalize the behavior of the minority class, and
thus, the performance decreases in terms of prediction of this class [23]. A random subsampling [26] was
performed on the majority class in the training set, discarding elements from the “no ulcer” class until both
classes had the same number of samples.

4.3 Post-processing results

The unsupervised clustering algorithm DBSCAN [13] was applied to the classification result to create groups of
nearby pixels using the Euclidean distance in the two-dimensional space. We only considered those with more
than 100 pixels in order to discard groups representing noise. Then, we selected the region with the maximum
number of pixels, and dealt with the gaps applying a dilation operator followed by a closing operator (Figure
8) with an elliptical structural element with a diameter of 5 pixels[4, 37]. Figure 9 shows an example of the
segmentation improvement process.

Figure 8: Pipeline of the segmentation improvement algorithm.

Figure 9: (a) Original image (b) Segmented image (c) Image after segmentation improvement.
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To validate the post-processing performance, we improved the binary images obtained by the classifier on
the validation set, and compared them with the ground-truth image, using the quality measures. Figure 10
compares these results with the ones without improvement. The metrics in Figure 10 make it clear that the
post-processing leads to significant improvement on the validation set. The JI showed maximum improvement
indicating a better overlap of the segmented region with the ground-truth. Figures 11 and 12 show the best and
worst results of the refinement process, respectively.

Figure 10: Metrics results for LR classifier using feature combination 6 before and after segmentation improve-
ment algorithm.

Figure 11: Results with higher JI . (a) Original image. (b) Ground-truth. (c) Image after segmentation im-
provement. (d) Refined segmented image. (e) Mask after segmentation improvement applied on the original
image.

When compared our results with the state-of-the-art methods, our method has a higher precision and JI
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Figure 12: Results with lower JI . (a) Original image. (b) Ground-truth. (c) Image after segmentation improve-
ment. (d) Refined segmented image. (e) Mask after segmentation improvement applied on the original image.

(Figure 13). Also, the recall and acccuracy results are relatively close to the best ones (Figure 14). Although
the algorithms in the literature were not run over our dataset, this comparison is an indicator of the reliability
of our results. Figures 13 and 14 show that our results are not far from the state-of-the-art.

5 Conclusions and Discussion

We proposed a novel two-step hybrid algorithm to perform the DFU region segmentation. It combines an au-
tomatic image segmentation algorithm based on binary pixel-wise classification with an unsupervised density-
based clustering method to improve the first initial segmentation.

We were unable to get access to a free annotated dataset of DFU images. Therefore, we built an annotated
dataset to train learning models. We trained and compared four machine learning algorithms to select the best
one after the improvement step.

We could not compare our method with other state-of-the-art methods, because the learning models and the
dataset used in the cited research were not available.

Figure 13: JI and Precision values of the proposed method versus the state-of-the-art reviewed methods.
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Figure 14: Recall and Accuracy values of the proposed method versus the state-of-the-art reviewed methods.

Even though images were not captured in a controlled environment, the proposed algorithm showed promis-
ing results. The logistic regressor gives the best result: with a Jaccard Index of 0.81, an accuracy of 0.94, a
recall of 0.86, precision of 0.91, and an F1 score 0.88. Then, our method can be successfully used to perform
the DFU region segmentation.
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nologı́a, 2015.

[9] D. Y. T. Chino, L. C. Scabora, M. T. Cazzolato, A. E. S. Jorge, C. Traina-Jr., and A. J. M. Traina. Segment-
ing skin ulcers and measuring the wound area using deep convolutional networks. Computer Methods and
Programs in Biomedicine, 191:105376, 2020. doi: 10.1016/j.cmpb.2020.105376.

[10] Ministerio de Salud Pública de Cuba. Anuario Estadı́stico de Salud. Dirección Nacional de Registros
Médicos y Estadı́sticas de Salud, 2018.

[11] D. M. Dhane, M. Maity, T. Mungle, C. Bar, A. Achar, M. Kolekar, and C. Chakraborty. Fuzzy spectral
clustering for automated delineation of chronic wound region using digital images. Computers in Biology
and Medicine, 89:551–560, 2017. ISSN 0010-4825. doi: 10.1016/j.compbiomed.2017.04.004.

[12] N. A. Diamantidis, D. Karlis, and E. A. Giakoumakis. Unsupervised stratification of cross-validation
for accuracy estimation. Artificial Intelligence, 116(1):1–16, 2000. ISSN 0004-3702. doi: 10.1016/
S0004-3702(99)00094-6.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996.

[14] C. M. A. L. Garcı́a, R. Rodrı́guez, V. Ruiz, L. Rodrı́guez, L. Acosta, R. Febles, C. Pancorbo, S. Cantero,
O. Vázquez, and M. Moliner. Reducción de las amputaciones con Heberprot-P en la terapia local del pie
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