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Abstract 
 

Non-destructive and online defect detection on seals is increasingly being deployed in packaging 

processes, especially for food and pharmaceutical products. It is a key control step in these processes as it 

curtails the costs of these defects.  

To address this cause, this paper highlights a combination of two cost-effective methods, namely 

machine learning algorithms and infrared thermography. Expectations can, however, be restricted when 

the training data is small, unbalanced, and subject to optical imperfections. 

This paper proposes a classification method that tackles these limitations. Its accuracy exceeds 93% 

with two small training sets, including 2.5 to 10 times fewer negatives. Its algorithm has a low 

computational cost, and does not need any prior statistical studies on defects characterization. 

 

Key words: Control, seal, machine learning, small and unbalanced training set, thermography, 

iterative image restoration 

 

 

1 Introduction 

 

To maintain an optimum throughput, the packaging industry has increasing demands for quality control. 

One of the most critical stages in the process of such industries is the sealing of materials (Figure 1). 

Package integrity is usually checked on small test samples, and offline. A small defect in sealing 

material can induce significant losses if not detected immediately. Such losses include leakage of raw 

materials used before and after sealing as well as a perturbation on the production line. A minor leakage 

forces to remove the faulty package out of line, clean the soiled area, and sometimes cancel the post sealing 

operations like over-wrapping on several batches. Leaks are not the only defects; particle contamination, 

wrinkles, bubbles, and over-sealing also affect the strength and tightness of the seal, leading to potential 

issues during the package’s life after sealing. 
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Figure 1 Horizontal sealing on a Vertical Form-Fill-Seal (VFFS) machine 

Various non-destructive and online tests have been deployed for sealing. Some of these tests rely on 1D 

variables control like the voltage and current waveforms, as in high-frequency dielectric sealing [1], or the 

energy transmitted, as in ultrasonic sealing [2]. These methods are easy and quick, but their mono-

dimensional characteristic cannot provide a real 2D integrity image of the seal. 

 

On the other hand, several non-destructive 2D sealing control methods also exist. Infrared (IR) 

thermography is one of the most attractive methods among them. It showcases various advantages like the 

absence of electrical and mechanical stress and low cost when used with uncooled microbolometers. It can 

be applied to a variety of materials, including opaque ones in the visible band. Nevertheless, it has certain 

limitations like low resolution due to a relatively high wavelength, loss of accuracy on moving objects 

(Figure 2), and compromise of pixel resolution and thermal sensitivity. 

Some commercial products offer a sealing control with IR like Qipcam from Qipack, 1420 Braine-

l’Alleud, Belgium. Their performances and image processing methods are not made available in 

publications. Some of the recent implementations rely on statistical tests and discontinuity detection [3], 

whose formulations depend strongly on the human experience. Machine learning provides a solution that can 

mitigate such pre-requisites. In this paper, various learning models are evaluated with small and unbalanced 

datasets, i.e., having a small fraction of IR images of bad sealings (called negatives) compared to good ones 

(called positives). This consideration enables a practical and quick implementation of the control whereas the 

large and balanced datasets require time-consuming runs and tests. However, it represents a technical 

challenge as the traditional machine learning models for binary classification are built for large and balanced 

datasets. Another challenge comes from optical limitations. Putting aside the loss of resolution due to the 

spatial frequency bandwidth and the quantization of thermal captures, optical blurring limits the spatial 

resolution to values higher than those related to the pixel size. This paper proposes a method to address this 

limitation. 
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Figure 2 Thermal image of a package on a conveyor belt with motion blur (two horizontal seals and one 

longitudinal seal are highlighted) 

 

2 Related work 

 

Since the early 2000s, IR thermography has been examined for sealing inspection. Umezaki et al. [4] 

noticed that cavities and insufficient adherence in plastic film seals could be visualized with IR pictures but 

not by visible light or micrographs. In the year 1994, Mitsubishi Heavy Industries, Ltd [5] patented the first-

ever application of IR thermography for sealing control.  

Al-Habaibeh et al. [6] qualified the possibility to identify abnormal laser sealing of film on food 

containers using IR thermography. Accordingly, if the number of white pixels after segmentation and 

transformation under the variance operator is higher than a set threshold, the seal is identified as bad. 

Morris [7] demonstrated the method to detect interrupted seals on Polyethylene 

Terephthalate/Aluminium/Poly Propylene laminated films with active IR thermography and an 

erosion/centroid-count algorithm. In this method, activation was done by employing a 4W laser source. 

D’huys et al. [8] compared the size detection limit and the influence of the recording start time of six 

image processing methods to detect defects on Oriented Poly Amide/Poly Ethylene laminated films. IR 

images were taken on a static seal in a VFFS after thermal sealing. The evaluation was done on the basis of 

total overlapped bad pixels between different processed thermal images and a digital image of the defective 

seal. 

The lowest detection limit of 0.6 mm with a probability of 95 %, along with a mean of falsely-detected 

particle percentage among the lowest was obtained by a method based on fitting of the cooling profile over a 

sequence of thermal images. A method based on a single frame led to comparable results, provided the 

capture time after sealing is the lowest possible (less than 5s). Its advantage over other methods based on 

multiple frames was its processing time. This result motivated the author of this work to focus on single 

frame methods captured immediately after the sealing. 

 

After 2010, IR control methods of seals started commercializing. However, their performance and image 

processing methods are not yet published. 

Some current implementations rely on statistical tests on random variables characterizing defects [6] and 

discontinuities detection [3]. To determine suitable thresholds, especially for new products, the statistical 

tests require substantial experience increasing time and cost. The automatic detection of thermal 

discontinuities is less dependent on experience but not exhaustive. 

To avoid such expensive and lengthy processes, Machine Learning (ML) proves to be an attractive 
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solution. The current subject is identified as a binary classification problem in the ML environment. To 

resolve it, a classifier is built with a training set of positives and negatives and then applied to infer the state 

of new images. A classification problem is said unbalanced when one class is in minority in the training set. 

Negative thermal images are much more time consuming to produce than positive ones. Hence, practical 

consideration often prompts unbalanced classification problem with negatives forming the minority class. 

Since the end of the 1990s, ML models for this problem and multidimensional data like images are an 

active research area. Recently, deep learning approaches aroused a multiplication of such algorithms. 

Early application of ML to IR thermography dates back to the 2000s
 
[9]. Since then, the deep learning 

approach has been adopted for numerous cases of material control and medical diagnosis. Cruz et al [10] 

introduced an automated scheme of controlling bottle sealings using a thermal camera. A small and 

unbalanced dataset was used for the application. Augmentation and segmentation were done artificially. The 

sum of white pixels for each row and column of a segmented image defined its signature. An Artificial 

Neural Network (ANN) was trained with these signatures. Its net contained two hidden layers with 100 and 

10 neurons, respectively. It achieved a significant precision of 98.96% and a recall of 100% on the test set.  

 

This paper investigates various ML approaches on two small and unbalanced datasets, including neural 

networks and less computational models. The selection of the prior dimensionality reduction is justified 

through this approach. The limitations of these ML approaches, as used in early publications [10], are 

exposed in the presented case, and a digital optical correction is eventually provided to address these 

limitations. 

 

3 Test setup and datasets 

 

The evaluation of ML models requires a dataset of positive as well as negative IR images. Using a semi-

automatic sealing machine, seal samples are prepared (model variant of UV D3 Inox, Thimonnier, Saint 

Germain au Mont d’Or, Rhône-Alpes, France). 

Between two heating jaws kept at a controlled temperature above the Poly Ethylene (PE) fusion 

temperature, an unsealed package composed of two laminates Polyethylene Terephthalate (PET)/ PE is 

inserted. The thermal regulation is ensured with the help of a digital controller (E5CN, Omron, Kyoto, 

Japan). Constant pressure is applied on the laminates for 2 s using jaws driven by pneumatic actuators. The 

heated package is then laid down on a horizontal aluminum plate (Figure 3). 

 

 
Figure 3 Scheme for dataset building 

One second after the release, an IR image is captured on the sealing area at a distance of 0.4 m. 

The IR camera (FLIR E50, FLIR Systems Inc., Wilsonville, OR, USA) has an IR resolution of 

240 × 180 pixels, an angular spatial resolution of 1.82 mRad, a thermal sensitivity below 0.05 °C at 30 °C, 
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and a spectral range between 7.5 and 13 um. The deduced spatial resolution is 0.728 mm per pixel and the 

thermal resolution is about 3 times fold or 2.184 mm when dispersion and aberrations are considered [11]. 

Its parameters (ambient temperature, humidity, reflected apparent temperature and material emissivity) 

are set according to the camera’s standard procedure. 

The temperature measurement of an IR camera makes assumptions of reflection, transmission as well as 

absorption factors of the material and the environment. Some of these assumptions were not verified. For 

instance, it assumes constant transmission and absorption factors of the material within the spectral range, 

which is not the actual case. 

The best way to reduce temperature errors would be to use a narrow spectral range within which the 

laminate foils exhibit constant optical factors. This narrow band could be chosen to obtain a highly 

transmissive upper foil (PET) and a highly reflective inner sealing foil (PE). In this way, the IR capture of the 

sealing area approximates an IR capture of the sealing foil alone, which reveals some of the critical defects 

like leaks and incomplete sealing. 

However, to compare different seals, the control method does not need an absolute temperature 

measurement but only a repetitive process. Also, some defects can be revealed only by the upper foil (for 

example, surface holes or wrinkles). Hence, having an IR capture with an upper foil partially transmissive is 

desired. 

 

Four groups of captures are prepared: two groups for positives captured on 15
th
 June 2017 and 18

th
 July 

2017; two groups of negatives captured on the same days (Table 1). 

Seals are qualified as good ones only after a 50 N shear stress and visual checking. 

Various defects are produced: insertion of coffee powder/hear/bread grain between plastic laminates, 

hole piercing through one laminate of diameter 1 to 3 mm, and placing piece(s) of Teflon
TM

 adhesive on the 

surface. Each type of defect is enumerated in Table 1.Some raw images are shown in Figure 4. 

 

Date Good seals 

(Positives) 

Bad seals 

(Negatives) 

List of defects 

15/06/2017 30 24 3 (coffee powder), 2 (1 mm hole),2 (2 mm 

hole),2 (2 mm hole), 5 (Teflon
TM

 adhesive 

bands), 5 (hair), 5 (bread grain) 

18/07/2017 15 19 3 (coffee powder), 2 (1 mm hole),2 (2 mm 

hole),2 (2 mm hole), 4 (Teflon
TM

 adhesive 

bands), 3 (hair), 3 (bread grain) 

Table 1 Datasets of June and July 2017 

 

 
Figure 4 Some raw images from 2017’s dataset (bad seal on left, good seal on right) 
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4 Prior treatments and dimensionality reduction analysis 

 

Prior treatments are applied to the dataset for dimensionality reduction and metrics (Figure 5). 

Following successive treatments are performed: 

 

 Initially, a Region of Interest (ROI) is selected to ignore the objects lying outside the sealing area. 

 A 5 × 5 Gaussian kernel is applied to smooth the sharp edges and reduce the noise prior to 

segmentation and Principal Component Analysis (PCA). 

 Filtered ROI is then converted into a grayscale image. 

 Global thresholding is done to remove the cold pixels and the outer region of sealing. Since the ROI 

has a bimodal histogram, Otsu’s method fits here. However, this thresholding could delete some 

useful information, as cold pixels within a hot area could exist in case of a defect. Thus, the distorted 

metrics which are valuable for classification like energy, entropy, mean, and variance are calculated 

on the ROI before thresholding and saved for later use. 

 To avoid distortion on pictures, no resizing is done to a fixed size as they have different ratios of 

height over width. 

 
Figure 5 Prior treatments on IR images 

An extensive comparison of good and bad seals has been made using classical metrics: mean, variance, 

and energy. Through Boxplots of these metrics, it can be inferred that none of them can be independently 

used to distinguish positives from negatives (Figure 6). 

However, a representation of these two classes along three metrics: mean, variance, and entropy (or 

energy), improves the separation (Figure 7).  
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Figure 6 Boxplots of empirical means, variances and energies, for the dataset of 15th June 

 
Figure 7 Spatial representation of images along 3 metrics, for 15th June dataset 
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A PCA is performed to improve further separation. The principal axis are determined with part of the 

dataset of positives in the training set (see below for further details), followed by a calculation of Principal 

Components (PC) of every positive and negative along these axes. Before PCA, each positive is flattened to 

1D, standardized, and added as a line to a matrix of positives. A similar process is done for negatives. PCA is 

exclusively conducted on these two matrices. 

With a variance of 0.99, PCA leads to 27 principal components for the dataset of 15
th
 June and 4 

components for the dataset of 18
th
 July dataset. 

 

The distance between two classes is computed for various linear decompositions (Table 2). 

 

Linear decomposition of pictures Minimum Euclidian 

distance between classes 

Mean distance 

between classes 

Ward distance 

15
th
 June dataset    

3 D (mean, variance, energy) 13 17 237 

27 D (PCA with a variance of 

0.99) 

1337 3647 7680 

30 D (above PCA with a 

variance of 0.99 + mean, variance, 

energy) 

1337 3647 7684 

372 D (sums of pixels per 

column and row) 

66 221 967 

18
th
 July dataset    

3 D (mean, variance, energy) 38 43 170 

4 D (PCA with a variance of 

0.99) 

993 2186 1667 

7 D (above PCA with a 

variance of 0.99 + mean, variance, 

energy) 

994 2187 1675 

372 D (sums of pixels per 

column and row) 

180 834 1579 

Table 2 Distances between classes for different linear decompositions 

A calculation is done on three different types of distances. This calculation proves that as compared to a 

simple 3D decomposition, the decomposition of each picture along its PC increases the distance between the 

classes. This separation can be marginally improved by adding three other metrics to the PC. 

The decomposition in 372 vectors corresponds to a similar prior treatment used by Cruz et al. [10]. This 

prior treatment resulting to these 372 dimensions consists of: 

 

 ROI extraction 

 Gaussian Filter 

 Grayscale conversion 

 Binary conversion (Thresholding) 

 A calculation of sums of each row and each column to obtain a vector of 102 rows and 270 columns 

(372 components). 

 

This decomposition exhibits lower distances between classes than the PCA decomposition, and its 

higher dimension induces higher computational costs whatever the ML model used after. This outcome holds 

if the Gaussian filter is suppressed and the grayscale conversion is substituted by a Hue Saturation Value 

(HSV) conversion as in [10].This has led to discard this decomposition in the presented work.  
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5 Anomaly detection 

 

The practical distribution of images across the known classes is skewed: negatives are in the minority as 

compared to positives. This problem is identified as anomaly detection. 

5.1 Workflow 

 

Dataset is split into two sets: one for building the classifier (“training data”) and the other for its testing 

(“test data”). For ML algorithms with few parameters and relatively low complexity like Support Vector 

Machine (SVM), the training data is partitioned into two subgroups: one for training and one for the pre-test. 

k combinations of subgroups of training and pre-test are evaluated in this paper (“k-fold cross validation”). 

The classifier is evaluated on the training data as an average of rates over the k combinations for each set of 

model parameters (“hyperparameters”). These rates refer to an evaluation metric like balanced accuracy or 

f0.5 score to quote a few, chosen to get the best performance on test data. 

After a training phase, the classifier is evaluated on the test set with the following metrics: False Positive 

Rate (FPR), False Negative Rate (FNR), and Area Under the Receiver Operating Characteristic (ROC) Curve 

(AUC). To achieve minimum variance and acceptable bias within the acceptable calculation costs, the 

hyperparameters and the evaluation metrics of a model are iteratively updated. 

 

The training data used here is unbalanced as the ratio of negatives over positives is less than one. At 

least two configurations of training data are tested for each model: inclusion of 70% or 80% of all positives, 

inclusion of 40% of all negatives.The first five models listed below can accept only one class in the training 

set, avoiding the production of faulty seals. As such, they are also tested without any negatives in the training 

data.  

 

Seven models of unbalanced classifiers are compared in the June 2017 dataset:  

 

 One Class Classification – Support Vector Machine (OCC-SVM) 

 Isolation forest 

 Local outlier factor 

 Robust covariance matrix estimation 

 Deep Support Vector Data Description (Deep SVDD) 

 Unbalanced Convolutional Neural Network (CNN) 

 Unbalanced SVM 

 

Each model, except Deep SVDD, is fed with the PC, mean, variance, and energy of pre-processed 

images as described earlier. 

 

5.2 Results and discussion 

 

An interesting observation can be inferred from three models: OCC-SVM, Deep SVDD and Unbalanced 

SVM. Other models give less satisfactory results and are not discussed here. 

The Table 3 sums up the results: 

 

Model False Positive Rate (FPR) False Negative Rate (FNR) 

OCC-SVM w/o data augmentation 0 >50 

Deep SVDD w/o data augmentation <15 >30 

Unbalanced SVM 6.67 to 100 (details in Table 4) 0 to 2.56 (details in Table 4) 

Table 3 FPR and FNR of three models 
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OCC-SVM, from Schölkopf et al [12], is trained by minimizing the FNR. It leads to an FPR of 0% and a 

high FNR on test data (>50%), regardless of the configuration. With an increase in the quantity of trained 

data, its FNR tends to decrease. Data augmentation methods are evaluated, but they do not compensate for 

the lack of data. 

 

Deep SVDD, from Ruff et al [13], is trained by minimizing the mean distance of each training data to a 

hypersphere center in a feature space. The feature space is an output of a CNN whose weights are optimized 

for the above-mentioned minimization. LeNet is the chosen architecture of CNN.  

For all the configurations, AUC exceeds 87%. AUC has also been evaluated for an artificial data 

augmentation of 100 more images for each class. It is observed to reach 97% in case of 80% of positives in 

training data and inclusion of 0% to 40% of negatives (Figure 8). Though these scores are high, the false and 

positive-negative rates depend strongly on the set value of the threshold. Deep SVDD outputs for each test 

data the squared difference between distance from this test data to the hypersphere center and its radius. An 

outlier should have a positive score, whereas an inlier or positive should have a negative score. Accordingly, 

the logical threshold should be zero. However, the best threshold found is non-zero and is a function of the 

configuration of the test, the parameters of the model, and the run. This makes the data classification 

impossible with the optimum performance metrics observed on the ROC curve. 

 

 
Figure 8 ROC curve and AUC score in deep SVDD (batch size = 3, number of epochs = 150, training 

data = 80% of positives augmented) 

The SVM in which the minority class (negatives here) is given more importance or more weight over 

the majority class for the definition of the decision function is identified as the unbalanced SVM. Introduced 

by Yang et al. [14], the penalty term of negatives is fixed higher than that for the positives in the training set. 

To maximize the evaluation metrics during the classifier building, different class weightings are tuned along 

an exhaustive search. In this case, the metric does not have much influence on the results: f0.5 score, f0 score, 

balanced accuracy, and AUC lead to almost similar results. 

It is evaluated over five iterations of k-fold cross-validation, where k ranges between 2 to 5 depending 

on the size of the training set. 

Two main types of augmentation were further tested: augmentation of all datasets, augmentation of the 

minority class of the training set with Synthetic Minority Oversampling Technique (SMOTE), or variants 

like Borderline-SMOTE, Borderline-SMOTE SVM, and Adaptive Synthetic Sampling (ADASYN).  

SMOTE has two arguments tuned for maximization: number of the nearest neighbors of negatives taken 

to increase the minority class size, and data augmentation ratio. 

Some results are listed in Table 4. 
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Composition of the training set False Positive Rate 

(FPR) 

False Negative Rate 

(FNR) 

AUC 

Without augmentation    

70% positives + 10% negatives 100 0 0.96 

70% positives + 40% negatives 6.67 0 0.99 

80% positives + 10% negatives 100 0 0.96 

80% positives + 40% negatives 6.67 0 0.99 

With overall data augmentation and 

Borderline-SMOTE SVM 

   

70% positives + 10% negatives 61.8 2.56 >0.95 

70% positives + 40% negatives 18.92 2.56 >0.95 

80% positives + 10% negatives 60.9 0 >0.95 

80% positives + 40% negatives 20.27 0 >0.95 

With ADASYN    

70% positives + 10% negatives Not enough negatives 

70% positives + 40% negatives 10 0 0.97 

80% positives + 10% negatives Not enough negatives 

80% positives + 40% negatives 10 0 0.97 (Figure 9) 

Table 4 Performance of Unbalanced SVM after PCA with different training sets and data augmentations 

In SVM, the inclusion of negatives in training data is mandatory. In the case of 40% of negatives in the 

training set (Figure 9), the best results are achieved without data augmentation or with ADASYN. 

Performance starts to degrade when the ratio of positives over negatives increases in the training set. Out of 

all seven models, the unbalanced SVM, with its relatively low complexity compared to the neural networks 

used in a former publication [10], offers the best performance on the dataset. 

 

 
Figure 9 ROC curve and AUC score in Unbalanced SVM (training data = 80% of positives, 40% of 

negatives augmented with ADASYN) 
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6 Alleviating the effects of blur 

6.1 Inclusion of an iterative deconvolution in workflow 

 

In the above-mentioned ML runs, some negatives remain misclassified for all the models. These 

negatives are seals with small defects like the inclusion of coffee powder or 1 mm holes. 

Possible reasons for this include hardware and numerical limits of the thermal spatial resolution. 

 

Numerically, image resolution is significantly affected by the quantization and all post-processing steps. 

Raw data in compressed format (jpeg), 8-bit grayscale conversion, and low pass filtering are the key factors 

that affect the resolution. 

On the hardware front, the camera has a number of pixels and a Field of View (FOV), limiting the 

optical resolution to 0.728 mm. According to this consideration and without taking diffusion into account, a 

defect of size less than 0.728 mm cannot be detected (see chapter 3). Considering the diffusion, the 

spreading’s area of a defect expands with time making it possible to detect the defects smaller than the 

optical resolution. This encourages capturing the images after a diffusion time, sufficient for a defect to 

exceed the thermal sensitivity of the camera. Thus, diffusion helps for some defects smaller than the optical 

resolution. The initial image can be restored with its defects and without diffusion by a reverse scattering 

algorithm [15]. Reverse scattering can also deduce heat power sources [16] from the 2D conduction equation 

and successive thermal frames. This can help if the capture time is not optimal. However, its numerical cost 

can prevent it from being used for quick control. 

The other hardware limit is due to the optical imperfections: diffraction and aberrations. Diffraction 

causes an airy disk of diameter between 24 and 42 um, depending on the wavelength. This effect is seen on 

the focal plane array with the chosen optics and configuration (f-number of 1.3, focal length of 18 mm, 

diameter aperture of 47 mm, and distance image to the lens of 400 mm). Similar to diffusion, the initial 

image without diffraction can be restored by reversing the Fresnel approximation of the Huygens-Fresnel 

model, which is valid in this case. However, if the pixel size exceeds 21 um (42/2 = 21 um), diffraction is 

transparent on the picture according to the Rayleigh criterion. Inverse diffraction does nothing more than 

distorting the image. Also, the method of inversion should bother the inherent noise [17].  

Aberrations models are more complex. A way to model the aberrations (and diffraction) is the use of the 

impulse response of the optics, known as the Point Spread Function (PSF). Output image after the optics is 

defined as the convolution of the input image and the PSF. However, this definition is valid only when the 

PSF is a function of the difference between input and output plane coordinates. This assumption is known as 

“shift-invariance”. Over certain regions of the input plane, high-quality optical systems are often considered 

as “shift-invariant “. Input image restoration can be deduced directly by applying a 2D inverse Fourier 

transform of the PSF to the output. However, this process amplifies the noise at high frequencies, which 

makes the inversion unreadable. Deconvolution of the PSF is instead made with models smoothing the effect 

of noise, like the Wiener filter [18] or the Richardson-Lucy algorithm [19]. Some models need to identify the 

PSF and eventually the noise. Others, known as blind deconvolutions [20], cope without the knowledge of 

PSF. 

 

In this work, to enhance the spatial resolution, the Gaussian low pass filter is canceled and a PSF 

deconvolution is undergone on all the datasets with the Richardson-Lucy algorithm. 

PSF is not measured; instead, the expression of the PSF is estimated iteratively to maximize the 

performance of the classifier on the training data. Once the optimal PSF is identified, its deconvolution is 

applied to the test data prior to its classification (Figure 10). The shape of PSF is considered Gaussian. 

Optimization consists then of finding its size and standard deviation.  
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Figure 10 Pipeline of classification with iterative PSF deconvolution 

 

6.2 Results and discussion 

 

With the above-mentioned pipeline, the test sets of June and July 2017 datasets are classified. FPR and 

FNR are null in both cases, with 30% or 40% of all negatives and 80% of all positives in the training set 

(Table 5). FPR is a bit higher, 5 to 9%, in the case of the June 2017 dataset and inclusion of 10 or 20% of 

negatives. With deconvolution, the results are overall improved compared to previous ones without. 
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Model Composition of the 

training set 

False Positive 

Rate (FPR) 

False Negative 

Rate (FNR) 

Accuracy 

Dataset of June 2017 (test 

setup described in chapter 3) 

    

Unbalanced SVM + 

SMOTE 

80% positives + 40% 

negatives 

(ratio = 2.5) 

0 0 1 

Unbalanced SVM + 

SMOTE 

80% positives + 30% 

negatives 

0 0 1 

Unbalanced SVM + 

SMOTE 

80% positives + 20% 

negatives(ratio = 5) 

5 0 0.96 

Unbalanced SVM + 

SMOTE 

80% positives + 10% 

negatives (ratio = 10) 

9.1 0 0.93 

Dataset of July 2017(test 

setup described in chapter 3) 

    

Unbalanced SVM + 

SMOTE 

80% positives + 40% 

negatives 

0 0 1 

Unbalanced SVM + 

SMOTE 

80% positives + 30% 

negatives 

0 0 1 

Unbalanced SVM + 

SMOTE 

80% positives + 20% 

negatives 

(ratio = 3.1) 

0 0 1 

Unbalanced SVM + 

SMOTE 

80% positives + 10% 

negatives 

(ratio = 6.3) 

0 0 1 

Table 5 Performance of the SVM classifier with PSF deconvolution. Ratio = number of positives per 

number of negatives in training data 

By averaging the test times of ten random images, the time needed to classify one single image is 

evaluated to be 57 ms. It considers:  

 

 the second training configuration as listed in Table 5. 

 the inclusion of all prior treatments of Figure 10 (grayscale conversion, deconvolution, PCA). 

 execution with a 1.9 GHz processor Intel® Core
TM

 i7 running on Windows 10 operating system. 

 

Integration in a packaging machine should account for the additional time required to capture, amplify, 

serialize, digitize, compress an image, and transfer it to the hard drive where the classification is done. For an 

uncooled camera with a USB 2.0 transmission interface and a compression to jpeg format, the frequency of 

all these operations can reach 20 to 30 Hz, resulting in a maximum of 50 ms per frame. 

The overall time of control of seals defects results in 107 ms, enabling integration in the packaging 

process with throughputs until 33,500 packages/h. This fits the majority of the current applications. It must 

be noted that the time required to physically accept or reject a package on an actual production line is not 

counted in the throughput calculation as these operations are performed after the control step on the same 

line. Also, the overall time is conservative; it can be significantly boosted by code optimization and up-to-

date hardware (fast multi-GPUs, high-speed camera). 
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7 Conclusion 

 

To support the quality assurance of industrial and critical processes, seal defect detection is an essential 

utility. The Infrared non-destructive test is a low-cost and practical solution to integrate on a production line. 

For obtaining reliable results, conventional methods based on statistics need a thorough experience on 

defects characterization. On the contrary, machine learning methods avoid this condition, and their 

performances have been proven to specific cases but at the cost of high computational expenses. In this 

paper, different machine learning approaches are evaluated. Weighted SVM combined with dimensionality 

reduction and minority data augmentation methods is observed to give correct results for two practical cases 

of small and unbalanced training sets containing a minimum ratio of negatives. Improved performance is 

finally achieved by inserting an iterative PSF deconvolution of images in the ML pipeline. Accuracy is over 

93% for both datasets, achieving 100% with sufficient negatives in the training sets. This approach has a low 

computational cost compared to deep learning models, thereby providing faster anomaly detection. 
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