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Abstract

The research presents ERNet, a novel modification of the ResNet framework specifically designed for
the categorization of breast histopathology images. The study emphasises the crucial importance of deep
learning in addressing the urgent requirement for automated cancer diagnosis. ERNet outperforms other
ResNet variations by achieving an excellent accuracy of 95.92% on the tough Break His dataset. By pro-
viding a detailed account of the enhancements incorporated into ERNet, this work not only establishes a
new benchmark in accuracy but also paves the way for further advancements in medical image classification
research. The Break His dataset, chosen for its clinical relevance, highlights the robustness and applicabil-
ity of ERNet in real-world scenarios. While celebrating these achievements, we acknowledge the ongoing
challenges and complexities in this field, providing a foundation for future investigations into refining and
expanding the capabilities of deep learning models for cancer diagnosis.

Key Words: CBreast cancer, Histopathological analysis, Deep learning, Image classification, Enhanced
ResNet architecture.

1 Introduction:

1.1 Breast Cancer: A Call for Innovative Diagnostic Solutions

Breast cancer, which claims the lives of countless women, is the second most lethal cancer, trailing only lung
cancer [1]. Breast cancer is expected to cause 287,600 new cases and 43,250 deaths in 2022, highlighting the
critical need for breakthroughs in diagnostic approaches [2]. Early discovery is important for reaching a survival
rate of around 80%, highlighting the importance of fast and precise diagnosis. The early detection of breast
cancer has historically relied on screenings using ultrasound, mammography, and MRI. On the other hand,
more advancements are needed to tackle the complexities of cancer detection. One example of how existing
practises are intrusive and disturbing is the usual needle tissue biopsy method. In response to this pressing need,
Computer-Aided Diagnosis (CAD) systems have emerged as indispensable tools to alleviate the substantial
workload on pathologists and enhance diagnostic accuracy. The constraints of early CAD systems that relied
on Machine Learning (ML) techniques—specifically, explicit classifiers and hand-crafted features—led to a
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move towards deep learning models. This was because these systems required too much domain expertise
and too many manual trials. By automatically extracting inherent information from raw images, Convolutional
Neural Networks (CNNs) have transformed biomedical image analysis [7,8]. The adaptability of CNNs to task-
specific parameters has overcome the limitations of hand-crafted features. Further advancements, exemplified
by Deep Neural Networks (DNNs) like AlexNet and VGGNet, have spurred a shift from future engineering to
novel architectures that enhance network throughput. Despite these strides, a critical research problem persists:
the need for efficient and accurate breast cancer diagnosis through automated systems. Hand-crafted features,
while effective, pose scalability challenges across various magnifications. This necessitates a shift towards
automated methodologies that not only overcome the limitations of manual feature crafting but also enhance
overall diagnostic accuracy, with potential life-saving implications.

1.2 Addressing the Research Gap: Our Innovative CAD System

Our research aims to fill current gaps by providing an innovative CAD system in this setting. Our system em-
ploys deep feature transfer learning to extract features for breast cancer diagnosis, offering a novel approach.
Our suggested approach utilises deep learning to automate and improve the accuracy of breast cancer diagnosis,
specifically in the nonpalpable, early detectable stages. This research holds importance that goes beyond simply
making the diagnostic procedure more efficient. It also focuses on minimising the differences and inconsisten-
cies among and between observers. The system we present includes an independent segmentation method that
combines Fourier transform-based approaches. This is a crucial step towards improving the categorization of
breast cancer.

1.3 Navigating Architectural Challenges in CNNs

Divergent CNN architectures have played a crucial role in histopathological image classification. ResNets,
featuring identity shortcuts, have showcased notable success across various benchmark datasets. However, the
transparent design of ResNets has limitations, as identity shortcuts restrict representation power and skip resid-
ual blocks [14]. The identification of the collapsing domain problem led to the improvement of ResNets with
non-linear shortcuts [15]. In contrast, DenseNet’s clear and straightforward technique, dense concatenation,
enhances training in deep neural networks [16]. Although DenseNet achieves superior output with fewer pa-
rameters than ResNet, it grapples with substantial GPU memory consumption and increased training time due
to minute convolutions in the model architecture. Selecting between ResNet and DenseNet in medical images
becomes a puzzle, considering GPU resources and system performance.

1.4 Our Novel Architecture: Balancing Performance and Efficiency

DCNN architectures more practical for breast histopathology picture categorization, we offer a new design that
decreases computational cost, parameters, and GPU memory. Our proposed enhanced residual block addresses
the selection dilemma, exhibiting performance comparable to a DenseNet model but with fewer computations.
The proposed model follows a backbone similar to ResNet’s but substitutes the enhanced block for the residual
block. Importantly, the proposed network incorporates neither dense concatenation nor identity shortcuts.

1. In order to improve the accuracy of breast cancer image classification, we create a new CNN architecture.

2. We suggest combining various BreakHis dataset amplification factors to improve model performance,
employing the self-attention method.

3. The suggested model achieves the highest accuracy using deep learning approaches.

4. Training parameters are reduced by utilizing four convolutional layers with small kernels.
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1.5 Organizational Structure of the Article

This research paper is structured as follows: A synopsis of all the pertinent studies and literature is provided
in Section 2. An extensive evaluation of the suggested approach is presented in Section 3. Results and perfor-
mance metrics are detailed in Section 4. Section 5 concludes the study.

2 Related Works:

The classification of breast histology images has witnessed significant progress owing to the intricate nature
of these images, marked by challenges such as cell morphology, cell overlapping, uneven color distribution,
and stain invariance [17]. The need for accurate and automatic classification systems has driven numerous
research efforts. Early approaches involved the utilization of Machine Learning (ML) methods to extract low-
level hand-crafted features like texture, color, or morphology [18-20]. Nevertheless, as the shortcomings of
these methodologies became evident, a pivot towards the realm of deep learning emerged, where architectures
possess the inherent ability to autonomously glean features [21]. The effectiveness of deep learning models,
particularly CNNs and Recurrent Neural Networks (RNNs), has been demonstrated in several computer vision
applications, leading to significant advancements in this field [22]. On the BreakHis dataset, Spanhol et al. used
AlexNet to classify breast histopathology images. This study demonstrated enhanced accuracy in comparison
to conventional machine learning techniques [4]. Araujo et al. introduced a hybrid model that utilises CNNs for
extracting features and Support Vector Machines (SVM) for classification. This study demonstrates the efficacy
of merging diverse methodologies [23]. Bayramoglu et al. used deep learning to be magnification-independent.
This model achieved a remarkable accuracy of approximately 83% on the BreakHis dataset [24]. Rakhilin et
al. innovatively utilized deep convolutional feature representation, combining CNNs with gradient-boosting
trees for classification [25]. Togacar et al. presented the BreastNet model, incorporating attention modules
and residual blocks for improved performance [26]. Budak et al. tackled variable-sized input images using a
Bidirectional LSTM and Fully Convolutional Network (FCN), achieving an accuracy of approximately 94.97%
on BreakHis [27]. Mahesh et al. developed RestHit, a 152-layered CNN based on a deep residual network,
showcasing discriminative feature learning for histopathology image classification [28]. Recent studies have
explored architectures like LeNet, with an emphasis on incorporating prior knowledge through picture labels
[29], and enhancements to CNN models proposed by Wie et al., demonstrating promising results in binary
picture categorization [30]. The VGG-19 architecture, introduced by Simonyan et al., has been leveraged across
various cancer classifications, including breast cancer, highlighting its versatility and effectiveness [13, 32]. In
summary, the evolution from traditional ML methods to sophisticated deep learning architectures signifies
a promising trajectory in breast histopathological image classification, with each study contributing unique
insights and methodologies.

3 Proposed Approach:

3.1 Image Pre-processing:

The progression to the categorization stage hinges on the pre-processing of images. The initial phase involves
employing data augmentation, a procedure that necessitates applying various transformations to the original
input. This stage contributes significantly to the overall expansion of the dataset. The augmentation process
involves a range of transformations, such as rotations, symmetries, and translations, applied iteratively to the
input. The specific procedures employed for enhancing the pre-processing stage are outlined as follows:

• Conversion: The image can be compressed to a specified number of pixels arranged in a particular
configuration.
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• Centering the images: To ensure proper alignment, each image requires the original columns and rows to
be cropped from the edges.

This study uses the Brea kHis dataset, which stands for Breast Cancer Histopathological Image Classification,
to evaluate how well our methodology works. Parana state, Brazil’s Pathological Anatomy and Cytopathology
Laboratory acquired the BreakHis dataset in January 2014 as part of a clinical inquiry. There is a wealth
of information regarding the benign and malignant tumour classifications and categorizations in this dataset.
Malignant tumour types include ductal carcinoma, lobular carcinoma, mucin-laden carcinoma (colloid), and
papillary carcinoma, whereas benign tumour types include adenosis, fibroadenomas, tubular adenomas, and
phyllodes tumours.For the sake of our research, we split the dataset in half, using 70% of the images as training
and 30% as a test set. Network models that used the same picture preparation methods and training parameters
were used in all of the comparison experiments. In order to obtain the experimental data for each network, the
mean of the results from five training rounds was calculated.Deep learning models’ operational performance is
strongly impacted by the amount of the training dataset. To address the problem of overfitting, a large amount
of data is required, since the models are built using complex architectures. Data augmentation techniques
like horizontal flipping, zooming, and rotation can be used to the given dataset to fix this issue. The number of
training samples can be efficiently increased using these strategies.HE staining is used to distinguish nuclei from
other parts of the tissue in the obtained biopsy samples. However, as different staining methods, raw materials,
and scanners are used, the HE stains can vary. It is essential to normalise the stain for every HE stained image
before training them in the proposed model to ensure that the colours remain consistent. Vahadane et al. [35],
Macenko et al. [36], and Reinhard et al. [37] proposed three important approaches for stain normalisation,
among others. For our experiment, we choose to use the Macenko et al. technique because of its stellar
reputation from previous studies [38,39]. Equation 1 shows the optical density (OD) image of a concentration
picture taken using this method, which makes use of Singular Value Decomposition (SVD) and a logarithmic
function:

OD = −log(I/IO) (1)

In this context, OD denotes the matrix containing values of optical density. Meanwhile, I and I0 refer to the
image intensity and the illuminating intensity that respectively correspond to the breast histology tissue sample.

3.2 The significant difference be

The significant difference between denseness and resnet can be figured out as follows:

• Densenet: The features of every prefatory convolutional block are used by the densenet model.

• Resnet: In this case, the model uses one former feature map.

The common ideology that hooks up with densenet and resnet is a connection to feature maps of each and every
preceding convolutional block [40]. From the findings of the related works, it is observed that dense link resides
in ResNet as well as DenseNet [41]. The mathematical expression for convolution in DNNs is as follows:

Fl = hl + Fl−1 (2)

Here: Fl = current feature map. Fl1 = preceding feature map. hl indicates the convolutional weights or filters.
In pre-trained networks such as VGG-16 [13], Fl1 typically represents only the preceding feature map. How-
ever, in the context of DenseNet, Fl1 consolidates the feature maps from all previous convolutional blocks, as
mathematically denoted by the expression:

Yl = x0||x1||.....||xl (3)
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Here: Fl is the current feature map. hl represents the convolutional weights or filters. x0,x1,. . . ,xl are the
previous feature maps from all previous convolutional blocks up to layer l. denotes the concatenation operation.
equation (2) can be replaced as follows:

Fl = hl ∗ (x0||x1||.....||xl) (4)

Original ResNet formulation:

Yl = Yl−1 + x− l (5)

Enhanced formulation considering all previous feature maps:

Yl = x0 + x1 + .....+ xl (6)

Substitute Yl1 in equation (5) with the enhanced formulation (6):

Fl = hl ∗ (x0 + x1 + .....+ xl) (7)

From equation (6), it’s evident that ResNet, despite its original formulation using only the immediate preceding
feature map Yl1, can be enhanced to incorporate connections to all previous convolutional blocks (x0,x1,. . . ,xl).
This modification reflects a more extensive integration of information from earlier layers, potentially enhancing
the network’s representational capabilities. ResNet uses a summation function for connecting previous feature
maps, whereas DenseNet uses concatenation, which is the minute difference between them [42]. From the
above analysis, we conclude that the gap between ResNet and DenseNet is their connection methods, namely
summation, and concatenation. The process of densely concatenating before the convolution procedure is
analogous to densely summing after the convolutional operation. Hence we can, Eq.3 can be expressed in
another form:

=
(
h0l ||h1l ||h1l

)
∗ (x0||x1||xl)

Fl = hl ∗ (x0||x1||.....||xl) (8)

=h0l ∗ x0 + h1l ∗ x1 + ........h1l ∗ x1

Here he = h0l ||h1l ||h1l it is obtained by division of single convolutional weight hl into many smaller weights of
convolution H.

Coming to ResNet, we re-define the Eq.6 as follows :

Fe = hl ∗ (x0 + x1 + .....+ xl)

= hl ∗ x0 + hl ∗ x1 + ........hl ∗ x1 (9)

In the context of practical usage, denseNet needs a huge amount of training time. Also, the process of concate-
nation requires additional GPU resources. The advantage of the DenseNet model is its flexibility in utilizing
preceding feature maps. From the above-shared philosophy, we summarise that the major difference between
DenseNet and ResNet is convolutional weights Hl that are shared for every previous output or not. By combin-
ing features of both DenseNet and ResNet, we develop an enhanced residual block designed to overcome the
drawbacks of the models. In general, residual block is illustrated as mentioned in Figure 1. Proposed Architec-
ture of Enhanced ResNet for Breast Cancer Image Classification approach. We introduce a new terminology
in the residual block, ER(), indicating a modified shortcut in the novel approach. This modified block contains
a 1x1 convolutional block accompanied by two 3x3 convolutional blocks. Here ER() is a weight-normalized
connection that contains channel-wise weight with normalization. Now eq.8 is re-defined as follows:
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Figure 1: Comparison of the proposed method with state-of-art methods

Fl = hl ∗ ER0
l (x0) + hl ∗ ER1

l (x1) + ................+ hl ∗ ERl−1
l (xl−1) + hl ∗ xl

= hl
⌊
ER0

l (x0) + hl ∗ ER1
l (x1) + ................+ hl ∗ ERl−1

l (xl−1) + hl ∗ xl
⌋

(10)

Mathematically, ERli (xi) is equivalent to Wi1 (xi) x N(xi). The enhanced ResNet version utilizes the same
backbone architecture of ResNet[17]. The core difference between our proposed and ResNet models is that
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normalize each previous feature map into the same scale to prevent no previous feature map from predominating
over the total summation. The Equation (10) represents the current feature map Fl in a neural network layer.
Here, hl signifies the convolutional weight for the current layer, and ERli(xi) denotes a modified shortcut
associated with the enhanced residual block. This modified shortcut, ERli, includes a 1x1 convolutional block
accompanied by two 3x3 convolutional blocks, operating on the previous feature maps xi. Equation (10)
captures the combined impact of the enhanced residual block on features from all previous layers. Additionally,
the term hlxl corresponds to the contribution of the current layer’s feature map without any modification. The
entire equation is then multiplied by hl, the convolutional weight for the current layer, which is shared across
both the enhanced residual block and the direct contribution of the current layer. The updated ResNet model’s
architecture is shown in Figure 1. The architecture has one root block, sequential residual blocks, and an FC
layer. The numerical inside the blocks 64,128,256., denotes the number of convolution channels. Every module
is built with a single Block A and a number of Block B in stages 1 to 4. The sequence of the output feature map’s
size from the root module to stage 4 is as follows :[7,14,28,56,112]. Also, from root to stage 4, convolutional
layers follow the order of [64,256,512,1024,2048]. Hence the last output feature map developed from the stage
is 7x7x2048. The average pooling layer and FC layer are designed at the end, where APL does the average
feature map of every channel from 7x7 to a single value, thus forming a 1x1x2048 feature map and FC layer
with the help of softmax function generates two values, describing whether the image is benign or malignant.
Figure 2 (a) illustrates the convolutional block, and Figure 2(b) illustrates the enhanced identity block.

(a) Convolutional block.

(b) Identity block.

Figure 2: Proposed Architecture of Enhanced ResNet for Breast Cancer Image Classification.

4 Results and Discussion:

4.1 Training Process:

Spanhol et al.[4] generated the BreakHis dataset, which we utilised to analyse characteristics of breast tissue
using a variety of histopathology images. It includes 7,909 photos from 82 patients and was created through
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a collaborative effort at the PD lab in Brazil. There are 5,429 that show cancerous situations and 2,480 that
show benign ones. Scanning at magnifications ranging from 40x to 400x yielded these photos. With great
care, we divided the dataset in our lab, allocating 70% for validation and training and 30% for testing. In the
training domain, we applied a 5-fold cross-validation method that expertly divides the stage (about 70% of the
dataset) into five acts. At each iteration, the training ensemble consisted of 54 plays, with 16 plays receiving
spotlight validation. Imagine this spectacle unfolding on the canvas of NVIDIA GeForce GTX GPUs, directed
by an Intel i7 9th gen processor and orchestrated within the grand theater of the Tensorflow framework. The
narrative of network training follows the Adam optimization algorithm, where learning rates 1 and 2 dance to
the tempo of 0.0001, 0.6, and 0.8, respectively. With a chosen ensemble of 16 for the mini-batch size, our
proposed model undergoes a 100-epoch journey. Embedded within the manuscript’s pages, Equation (11) takes
center stage as the protagonist, representing the binary cross-entropy loss function. It serves as a sonnet of
quantification, measuring the poetic difference between predicted probabilities and actual labels in the binary
ballet of classification, creating a narrative in pixels and numbers.

Loss =
N∑
j=1

yijlog(pij)(11)

4.2 Data Augmentation

To improve the CNN models’ performance, the suggested methodology uses a thorough data augmentation
pipeline to supplement the training dataset. The process begins with the utilization of an Image Data Generator,
which accepts a collection of input images and subsequently applies a sequence of transformations to each
image in the input batch. These transformations include arbitrary translations and rotations, aimed at imparting
invariance to spatial changes and orientations, respectively. Additionally, each image in the training dataset
undergoes an initial downsizing to 224x224 pixels, ensuring a standardized input size for the neural network.
Using the Augmentor Python module, we apply further augmentation techniques including flipping and crop-
ping to further diversify the dataset [43,44]. Flipping creates mirror images, while cropping involves extracting
regions of interest, collectively introducing variations to enhance the model’s ability to generalize. The result-
ing augmented images are depicted in Figure 3. Following the augmentation process, the images are converted
into matrix forms and subjected to normalization, a crucial step to scale pixel values to a standard range. The
test dataset, in contrast, is loaded into the model without further modification, maintaining raw photographs.
In the context of breast cancer image classification, this augmentation strategy does more than just increase the
dataset cardinality—it also promotes translation and rotation invariance, guarantees consistent input sizes, and
introduces diversity for more robust feature learning—all of which reduce the risks of overfitting.

Figure 3: Breast Histopathology images after augmentation
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4.2.1 Performance Metrics

Improving classification performance is the goal of the suggested approach, which makes use of confusion
matrix components. A thorough evaluation of the proposed model in relation to other methods for assessing the
system’s performance is aided by a number of aspects. Among the several measures used, accuracy stands out
as a measure of how well the model predicts outcomes in general. The mathematical expressions for Sensitivity,
F1-Score, Accuracy, and Precision are given in Equations 12, 13, and 14, respectively.

Accuracy = (
TP + TN

T P + F N + T N + F P
) (12)

Precision =
TP [CorrectlyClassifiedhistopathologicalImages]

T P + F P [TotalPredictedhistopathologicalImages]
(13)

F1 − Score =
2 ∗ Precision ∗Recall

Precision ∗Recall
(14)

Sensitivity = (
T P

T P + F N
) (15)

Precision, defined by Equation 13, quantifies the accuracy of positive predictions. In the realm of medical image
classification, precision holds particular importance as it signifies the proportion of identified malignant cases
that are genuinely malignant. Given the potential severe consequences of false positives in medical diagnoses,
precision emerges as a critical metric. Contrarily, the model’s accuracy in detecting positive cases is evaluated
by Recall or Sensitivity according to Equation 15. In the context of medical imaging, especially in cancer
detection, the repercussions of missing a positive case (false negative) can be detrimental. Therefore, recall is
indispensable for minimizing false negatives and ensuring the capture of as many true positives as possible
Equation 14 defines the F1-Score as a measure that attempts to provide a fair evaluation of a model’s overall
performance by considering both recall and precision. This metric is particularly valuable in situations where
there is an uneven distribution between positive and negative classes, as commonly encountered in binary
classification tasks. In the context of medical image classification, striking a balance between precision and
recall is imperative, as an excessively aggressive or conservative model could lead to undesirable consequences.
Equation 12 measures model accuracy by comparing the number of successfully classified photos to the total
number of images.

4.3 Qualitative Analysis

4.3.1 a. Confusion matrix and ROC curves

The evaluation of the proposed optimized CNN model’s performance is visually depicted through the confusion
matrix (Fig. 4) and ROC curves (Fig. 5), offering valuable insights into its classification accuracy across
different magnification factors. In Fig. 4, the confusion matrix highlights the correct and misclassified image
classifications for each magnification factor. Specifically, at a 40x magnification factor, the model accurately
classifies 666 images out of 728, reflecting a commendable performance. Similarly, at 100x magnification,
725 images are correctly classified out of 785, indicating the model’s robustness at this level of magnification.
Notably, with a 200x magnification factor, the model achieves even higher accuracy, correctly classifying 801
out of 835 test images. At 400x magnification, the model maintains strong performance, accurately classifying
683 images out of 760.
Fig. 5 displays ROC curves, offering a comprehensive visualization of the model’s discrimination ability across
four magnification factors. These curves illustrate the trade-off between sensitivity and specificity at different
decision thresholds, providing insights into the model’s performance nuances. Including ROC curves for each
magnification factor enhances interpretability, showcasing the model’s adeptness in balancing true positive and
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Figure 4: Confusion matrix of the proposed model. (a) 40x images (b) 100x images (c) 200x images (d) 400x
images

Figure 5: ROC curves of the proposed model. (a) 40x images (b) 100x images

false positive rates.
These visualizations validate the proposed optimized CNN model’s overall effectiveness and reveal perfor-
mance nuances under varying magnification conditions. Such detailed analyses are crucial in real-world appli-
cations where medical images vary in resolution. The combination of the confusion matrix and ROC curves
offers a thorough assessment of the model’s strengths and areas for improvement, contributing to a nuanced
understanding of its performance in breast cancer image classification.
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4.3.2 b. Ablation study

The proposed enhanced ResNet architecture aims to boost the classification accuracy of the BreakHis dataset.
To achieve more efficient results, experiments were conducted on ResNet-50, ResNet-36, ResNet-101, and
ResNet-18, all incorporating enhanced residual blocks. All ResNet models demonstrated strong performance
on the BreakHis dataset, with ResNet-50 standing out by achieving superior results in accuracy, recall, pre-
cision, and F1-score—recording values of 95.75%, 96.03%, 97.5%, and 96.76%, respectively. In terms of
computational complexity, ResNet-50 exhibits an advantage, requiring fewer parameters and FlOPS. The ex-
perimental findings, detailed in Table 1, highlight ResNet-50 as the top performer with the highest accuracy
(95.75%) and a well-balanced F1-score (96.76%).

ResNet Variant Accuracy (%) Flops (G) Parameters(M) Precision (%) Recall (%) F1(%)
ResNet-50 95.75 7.8 25.56 97.5 96.03 96.76
ResNet-34 93.34 6.2 21.70 93.68 92.81 94.17
ResNet-101 95.92 9.2 45.6 96.25 94.23 95.86
ResNet-18 93.22 3.4 11.6 92.07 91.05 93.17

Table 1: Evaluation Metrics for Enhanced ResNet Model

The proposed ResNet model achieved varying accuracies across different magnification factors: 95.7% (40x),
93.54% (100x), 95.91% (200x), and 83.82% (400x). The highest accuracy was observed at 200x magnification.
Table 2 offers a comprehensive overview of accuracy, sensitivity, precision, and F1-score achieved through the
proposed approach. Classification results at different magnification factors are visually presented in Fig. 6,
while Fig. 7 compares our model with state-of-the-art methods, specifically those employing the enhanced
ResNet architecture for breast cancer prediction.

Magnification Factor
Performance metric 40x 100x 200x 400x

Accuracy (%) 91.45 93.54 95.91 89.82
Sensitivity (%) 95.91 93.28 96.03 91.67

Precison(%) 91.24 96.75 97.56 92.34
F1-score(%) 93.6 90.2 95.4 87.0

Table 2: Classification Performance Across Varied Magnification Factors for the Enhanced ResNet Model

Figure 6: Classification Results with different magnification factors

To identify significant differences among means, we use a Multiple Range Test for both the model and filter fac-
tors, enabling a detailed analysis for each. Notably, existing literature lacks an in-depth statistical exploration of
the significance and influence of employing diverse deep learning models and histological image preprocessing
in the context of breast cancer, particularly regarding the system’s behavioral dynamics. This emphasizes the
uniqueness and importance of our comprehensive investigation in advancing the understanding of these critical
aspects.
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Figure 7: Comparison of the proposed method with state-of-art methods

Observations: The model maximises accuracy at 200x (95.91%) and maintains a balanced sensitivity, precision,
and F1-score.

4.4 Discussion

The discussion section of the study would benefit from a more profound exploration of the clinical implications
stemming from the obtained results. Specifically, it is crucial to delineate how these findings might translate into
meaningful advancements in real-world breast cancer diagnosis and treatment. First, the suggested Enhanced
ResNet-50 model has great promise as a useful clinical tool due to its consistently good accuracy, precision,
recall, and F1-score, especially at a 200x magnification factor. The model’s strong performance in differenti-
ating between benign and malignant breast histopathology images, regardless of magnification level, implies
a promising future for improving breast cancer diagnostic accuracy. The augmented dataset, enriched through
various transformations, contributes to the model’s improved generalization and robustness. In real-world clin-
ical scenarios, where the availability of diverse and extensive datasets is often limited, such augmentation
techniques can prove instrumental. The model’s consistent high performance across different ResNet variants
and magnification factors further emphasizes its versatility and applicability to diverse clinical settings. Not
only that, but the suggested architecture features an improved residual block, which is a methodological inno-
vation with potential for wider use in medical picture analysis. Researchers and physicians can gain a more
nuanced understanding of the suggested approach’s performance in contrast to current procedures through the
thorough ablation investigation and comparison with state-of-the-art methods. The findings presented in the
study, particularly the detailed performance metrics and comparative analyses, have the potential to influence
decision-making processes in clinical settings. A highly accurate and reliable breast cancer classification model
could serve as a valuable adjunct to pathologists, aiding in quicker and more precise diagnoses. This, in turn,
may lead to more timely interventions and personalized treatment plans for patients, thereby enhancing overall
healthcare outcomes.

5 Conclusion:

In Conclusion, this paper introduces a novel Enhanced ResNet architecture to advance breast histopathologi-
cal image classification. Leveraging ResNet as the backbone network, our proposed model enhances accuracy
through innovative changes in its architecture, particularly in the design of the identity block with ER shortcuts
featuring weight-normalized connections. This unique design not only mirrors the benefits of dense connections
but also mitigates the resource-intensive nature of DenseNet models, making it more practical for real-world
applications. When applied to the BreakHis dataset, our proposed model achieves an impressive accuracy of
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approximately 95.9%. The conducted ablation study, comparing our model with other ResNet architectures,
provides further validation of its superior performance. Notably, our results exhibit substantial improvements
compared to state-of-the-art methods, showcasing the efficacy of our proposed approach in breast cancer image
classification. Looking forward, future research could broaden the scope by designing a multi-class classifica-
tion model for nuanced categorization of breast histopathological images. Another avenue is the development
of a magnification-independent classification system to address challenges posed by images captured at vary-
ing levels of magnification. These directions have the potential to enhance our understanding of breast cancer
image classification, fostering the creation of more versatile and robust models for real-world clinical applica-
tions. The proposed Enhanced ResNet architecture paves the way for ongoing exploration and innovation in
the field of medical image analysis.
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J. A. (2015). Stain specific standardization of whole-slide histopathological images.IEEE transactions on
medical imaging, 35(2), 404-415.https://doi.org/10.1109/TMI.2015.2476509.

[19] Nateghi, R., Danyali, H., Helfroush, M. S. (2017). Maximized inter-class weighted mean for fast and
accurate mitosis cells detection in breast cancer histopathology images.Journal of Medical Systems, 41(9),
1-15. https://doi.org/10.1007/s10916-017-0773-9.

[20] Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A. (2015). Stacked sparse autoen-
coder (SSAE) for nuclei detection on breast cancer histopathology images.IEEE transactions on medical
imaging, 35(1), 119-130. https://doi.org/10.1109/TMI.2015.2458702.

[21] Ronnerberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Neural Networks for Biomedical
Image Segmentation.Computer Science Department,University of Freiburg, https://doi.org/10.1007/978-
3-319-24574-428.

[22] Shen, D., Wu, G., Suk, H. I. (2017). Deep learning in medical image analysis.Annual review of biomedical
engineering, 19, 221. https://doi.org/10.1146/annurev-bioeng-071516-044442.
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