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Abstract

Mathematics stand in a privileged relationship with aesthetics: a relationship that follows 
two main directions. The first concerns the introduction of mathematical considerations 
into aesthetic discourse. For instance, it is common to mention the mathematical archi-
tecture of certain artistic productions. The second leads from aesthetics to mathematics. 
In this case, the question is that of the role and meaning that aesthetic considerations 
may assume in mathematics. It is indeed a widely held view among mathematicians, of 
whatever socio-historical context, not only to see their discipline as presenting a strong 
aesthetic dimension, but also to consider that this dimension plays a fundamental role in 
the process of developing and understanding mathematics. The main ambition of this 
paper is to show how Nelson Goodman’s aesthetics can be used to justify this point of view 
and to propose a thesis concerning the aesthetic functioning of mathematics. This first 
result allows to resituate Goodman’s aesthetics within a very classical tradition that will be 
described. Finally, the underlying ambition is to show the keys provided by Goodman’s 
theory for the philosophy of mathematics.

Keywords: mathematics; aesthetics; philosophy of mathematics; Goodman; symbolization; 
symptoms of the aesthetic.

Resumen. De los Lenguajes del Arte a los lenguajes matemáticos y de vuelta

Las matemáticas tienen una relación privilegiada con la estética, una relación que sigue 
dos direcciones principales. La primera se refiere a la introducción de consideraciones 
matemáticas en el discurso estético. Por ejemplo, es usual mencionar la arquitectu-
ra matemática de ciertas producciones artísticas. La segunda va desde la estética a las 
matemáticas. En este caso, la cuestión es la del papel y el significado que las consideraciones 
estéticas pueden tener en las matemáticas. De hecho, una perspectiva muy extendida entre 
los matemáticos, sea cual sea su contexto socio-histórico, es la de ver su disciplina no 
solamente presentando una fuerte dimensión estética, sino también considerar que esta 
dimensión juega un papel fundamental en el proceso de desarrollo y comprensión de las 
matemáticas. El principal objetivo de este artículo es mostrar cómo la estética de Nelson 
Goodman puede utilizarse para justificar este punto de vista y proponer una tesis respecto 
al funcionamiento estético de las matemáticas. Éste primer resultado permite resituar la 
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estética de Goodman en una tradición muy clásica que será descrita. Finalmente, el obje-
tivo subyacente es el de mostrar las claves proporcionadas por la teoría de Goodman para 
la filosofía de las matemáticas.

Palabras clave: matemáticas; estética; filosofía de las matemáticas; Goodman; simboliza-
ción; síntomas de lo estético. 

1. Introduction

In 1997, Nelson Goodman was awarded the title of doctor Honoris Causa by 
the university of Nancy 2. On this occasion, Goodman clearly expressed his 
wish that his theory of aesthetics should be applied to mathematics. This 
project is by no means incongruous— on the contrary, it is entirely justified. 
The approach Goodman pursues throughout his Languages of Art (1968) aims 
to provide an account of the aesthetic functioning of symbol systems in gen-
eral, whether they originate in the arts or in the sciences. So there is a place 
for mathematics among the applied studies of Goodman’s aesthetics. Moreo-
ver, construing mathematics as an object of aesthetic study is by no means a 
novelty, quite the reverse. Indeed, until the 18th century, mathematics were 
fully part of what would today be called aesthetics. For a long time, this sci-
ence played a double role, both as a model for the description of aesthetic 
properties and as a privileged field of inquiry for appraising the relevance of 
aesthetic theories.

The purpose of this study is threefold: it aims to show that Goodman’s 
analytical tools can be used to construct an argumentatively supported thesis 
concerning the aesthetic functioning of mathematics, and thereby to account 
for the role that mathematicians commonly ascribe to aesthetics in the process 
of developing and understanding mathematics (see, for example, Poincaré 
1908, 45-53, 128; Poincaré 1905, 35-37; Rota 1997, 182; Hardy 1940). It 
also aims to show how, in the final analysis, Goodman’s aesthetics can be 
resituated within an extremely classical philosophical tradition. Finally, the 
third objective is to shed light on the keys supplied by Goodman’s theory for 
the philosophy of mathematics. The first section is introductory. Properly 
speaking, its structure is not historical. Its purpose is merely to supply some 
information that allows grasping the problem of the relationship between 
mathematics and aesthetics within its historical context. In the second section, 
I will take on this question on the basis of Goodman’s work.
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2. Historical Context

As early as in ancient Greece, attention was called to the affinities between 
mathematics and aesthetics, notably in Aristotle’s conception of beauty. Prop-
erly speaking, Aristotle does not formulate a theory of beauty, yet he describes 
the special characteristics of beauty. And the description he gives of them is 
found in Metaphysics M, i.e., in the book devoted to mathematics:

(...) those who assert that the mathematical sciences say nothing of the beauti-
ful or the good are in error. For these sciences say and prove a great deal about 
them; if they do not expressly mention them, but prove attributes which are 
their results or their definitions, it is not true to say that they tell us nothing 
about them. The chief forms of beauty are order and symmetry and definite-
ness, which the mathematical sciences demonstrate in a special degree. And 
since these (e.g. order and definiteness) are obviously causes of many things, 
evidently these sciences must treat this sort of causative principle also (i.e. the 
beautiful) as in some sense a cause. (Metaphysics M 1078 a 31b5)

The criteria Aristotle suggests in order to define beauty are order, symmetry 
and definiteness, and in the Poetics we find justifications of this selection based 
both on empirical examples (things that we find beautiful satisfy these criteria) 
and on theoretical explanations:

Again, a beautiful object, whether it be a living organism or any whole com-
posed of parts, must not only have an orderly arrangement of parts, but must 
also be of a certain magnitude; for beauty depends on magnitude and order. 
Hence a very small animal organism cannot be beautiful; for view of it is con-
fused, the object being seen an almost imperceptible moment of time. Nor, 
again, can one of vast size be beautiful; for as the eye cannot take it all in at 
once, the unity and sense of the whole is lost for the spectator; as for instance 
if there were one a thousand miles long. As, therefore, in the case of animate 
bodies and organisms a certain magnitude is necessary, and a length which can 
be easily embraced by the memory. (Poetics 1450b 40)

The characteristics of beauty are thus useful properties that yield an optimal 
perception of the object they apply to. So it would seem that Aristotle’s stan-
dards concerning beauty amount to standards relating to perception, and thus 
they describe the conditions of understanding. Men can understand what is 
ordered, measured and delineated far better than what is chaotic, without clear 
boundaries, etc. In other words, the things that are beautiful are the ones that 
can be described in their entirety. From an Aristotelian perspective, in contrast 
with a Platonic point of view, beauty’s fundamental usefulness is not as  
a revealer of truth but as a source of understanding. In this sense, beauty is a 
cognitive property rather than an aesthetic one.

Aristotle establishes a narrow and singular relationship between mathemat-
ics and beauty: mathematics themselves are beautiful; furthermore, they pro-
vide a model for beauty. Possibly further still, by exemplifying beauty they 
shed light on their cognitive mechanisms. If men are able to understand and 
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develop mathematics, it is because they are beautiful in the sense that they are 
governed by order, measure and limitation. In the context of this conception 
of beauty, aesthetic analysis in philosophy of mathematics is justified by rea-
soning as follows: if mathematics are beautiful in the sense suggested by Aris-
totle, and if this property is the cause of their intelligibility, then it makes sense 
to take an interest in the aesthetic aspect of mathematics in order to better 
understand the processes behind their development and understanding them. 
In other words, in an Aristotelian context, the relevance of aesthetic analysis 
to the philosophy of mathematics is justified by a coherent argument.

Broadly speaking, traces of this Aristotelian heritage concerning beauty can 
be found until the 18th century. Let me be more specific. The main charac-
teristics of beauty in circulation, such as the principle of unity in variety, sym-
metry and harmony, apply to mathematics. The authors studying these char-
acteristics used mathematics both to clarify these properties and to test their 
selection of aesthetic criteria for relevance. In particular, this means that math-
ematics are pressed into service both as a model for conceiving aesthetic crite-
ria, and as a field of experimental inquiry used to test the relevance of theo-
retical and aesthetic choices. Let us consider an example by Irish philosopher 
Hutcheson, found in his Inquiry into the Origin of our Ideas of Beauty and 
Virtue (Hutcheson 1725). He devotes special attention to the qualities of 
objects that elicit or cause the idea of beauty. Hutcheson then begins by estab-
lishing the principle of uniformity in variety:

The Figures which excite in us the Ideas of Beauty, seem to be those in which 
there is Uniformity amidst Variety. [...] But what we call Beautiful in Objects, 
to speak in the Mathematical Style, seems to be in a compound Ratio and 
variety: for that where the uniformity of bodies is equal, the beauty is as the 
variety; and where the variety is equal, the beauty is as the uniformity. [...]

First, the variety increases the beauty in equal uniformity. The beauty of an 
equilateral triangle is less than that of the square; which is less than that of a 
pentagon; and this again is surpassed by the hexagon [...].

The greater uniformity increases the beauty amidst equal variety, in these 
instances: an equilateral triangle, or even an isosceles, surpasses the scalenum: 
a square surpasses the rhombus or lozenge, and this again the romboids, which 
is still more beautiful than the trapezium, or any figure with irregular curve 
sides. (Hutcheson 1725, 17-18)

This quotation is a mere sample; Hutcheson’s text abounds with mathematical 
examples. What must be stressed is the double, or possibly even the triple role 
played by mathematics in this work. Indeed, they function as methodological 
model: Hutcheson gives his definitions a quasi-mathematical structure. For 
example, he does not merely state the principle of uniformity in diversity, but 
qualifies it by introducing a concept of gradation: the degree of variety being 
equal, greater uniformity increases beauty, and vice-versa. This role is very 
likely the least interesting from the standpoint of my current subject: the suc-
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cess and progress of mathematics in the 18th century probably explains the 
desire to harness their methods. The second role is that they come across as a 
source of inspiration when conceiving aesthetic criteria. The whole text in 
which Hutcheson describes the qualities that are the cause of beauty is entirely 
based on mathematical examples. These are the fuel of his inquiry and enable 
him to fine down and fledge out the primary principle of unity in variety. 
Finally, mathematics come across as an area where the results reached by Hut-
cheson in his Inquiry can be applied. Indeed, an entire section is devoted to 
the study of mathematical beauty, of the beauty of theorems, corollaries, pro-
positions, etc.

Note that the treatment of mathematics when exploring aesthetic proper-
ties is not designed to prove that mathematics are beautiful, which would seem 
not to require a demonstration, but aims to explain why we find them beautiful. 
In this sense, mathematics are used to justify the characteristics of beauty. In 
this regard, for example, the Swiss philosopher and mathematician Jean-Pierre 
Crouzas writes on the principle of unity in variety:

It is also in the speculations of this science [mathematics] more than in any 
other, that the mind rapturously discovers uniformities that always sustain 
themselves among infinite diversities. I will not go on to give examples of this 
truth, those to whom the Beautiful Sciences are known will instantly recall 
them, and those who have not yet learned them would not understand them. 
(Crouzas 1724, 190)

The influence of mathematics on speculations concerning beauty, and more 
generally on the analysis of aesthetic properties, has already been subjected to 
serious scrutiny2. Yet, to my knowledge, none of these studies highlight the 
fact that mathematics have in return been a subject of aesthetic inquiry. In 
Cassirer’s The Philosophy of the Enlightenment (Cassirer 1932), for instance, the 
role mathematics have sometimes played as a model in the history of aesthetics 
is clarified, but the fact that mathematics themselves (as well as works of art) 
were the subject-matter of aesthetic inquiries is never mentioned. I refrain from 
explaining at length the reasons of this almost systematic oversight. I will only 
mention that there are two types of explanation. One of institutional nature: 
the formation of the system of the fine arts grouped together on the basis of 
aesthetic concerns on the one hand, and the dogma of a «pure» science on the 
other, led to a clear institutional separation between art and science. And there 
is a theoretical aspect rooted in the Kantian opposition between aesthetic and 
logical judgments (Jullien 2008, 31-46).

That being so, although the aesthetic theories conceived since the begin-
ning of the 19th century turn away from mathematics, mathematicians 

2.	 See, among others: Kristeller, Paul Oskar, Renaissance Thought and the Arts, Princeton, Prin-
ceton University Press, 1999; Kivy, Peter, The Seventh Sense, A Study of Francis Hutcheson’s 
Aesthetics and its Influence in Eighteenth-Century Britain, New York, Burt Franklin &Co. 
Inc, 1976 or Le Lionnais, François, Les grands courants de la pensée mathématique, Paris, 
Blanchard, 1962.
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themselves continue to give accounts of what they view as the essential role 
of the aesthetic aspect of mathematics. On this topic, Poincaré puts forward 
a genuine, coherent and argued thesis. Not only does he defend the aesthetic 
aspect of mathematics from an evaluative or quantitative point of view (math-
ematics possess aesthetic properties of their own), but he also defends the 
functional role of aesthetics in the development and understanding of math-
ematics3. The meticulous analysis of Poincaré’s thesis can serve to define the 
stakes and approaches that are intrinsic to the study of aesthetics in mathe-
matics. For example, Poincaré’s thesis concerning the evaluative aspect of the 
aesthetics of mathematics is only valid within a framework defined by a met-
aphysical assumption according to which nature is the source of all beauty, 
one of this assumption’s corollaries being an ontological assumption concern-
ing the status of beauty. For its part, Poincaré’s thesis on the role of aesthetics 
is based on a methodological assumption according to which mathematics are 
the only tool suitable to describe the world of natural phenomena (Jullien 
2012). Poincaré’s argument is therefore rather costly in terms of ontological, 
metaphysical and methodological constraints. This does not affect its sound-
ness; it does however make it difficult to generalize. The genesis of Poincaré’s 
thought is not based on a specific theory of aesthetics; this may be one of the 
reasons why he is compelled to introduce assumptions. In his defence it can 
be said that finding a strong theory of aesthetics that can be applied to math-
ematics is no easy task. Indeed, at least two conditions apply if one is to suc-
cessfully carry out an aesthetic analysis of mathematics in the hope of testing 
the legitimacy that mathematicians grant to the aesthetic aspect of mathemat-
ics. First, analytical tools not linked to a specific ontology are required: the 
importance given to aesthetics in mathematics is not idiosyncratic to a group 
of mathematicians who subscribe to a specific ontology of mathematics.  
If, therefore, aesthetic analysis aims to remain as broadly relevant as possible, 
it must not restrict its sphere of validity to a given family within the ontology 
of mathematics. Second, given the powerful cognitive role aesthetics are 
granted in mathematics, the choice of an aesthetic analytical tool must also 
account for how aesthetics can contribute to our understanding. In short, one 
should be in possession of a theory of aesthetics both economical in onto-
logical terms and explicit regarding the relationship between the functioning 
of aesthetics and cognitive value. This is where Nelson Goodman’s aesthetics 
comes in.

3.	 One can read for example, in Science and Method: «Now, what are the mathematical entities 
to which we attribute this character of beauty and elegance, which are capable of developing 
in us a kind of aesthetic emotion? Those whose elements are harmoniously arranged so that 
the mind can, without effort, take the whole without neglecting the details. This harmony 
is at once satisfaction to our aesthetic requirements, and an assistance to the mind which it 
supports and guides.» (Poincaré 1908, 59).
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3. Goodman and Mathematics

In Languages of Art, Goodman presents a general theory of symbols and he also 
develops a symptomatological approach to the aesthetic functioning of symbol 
systems. The thesis that I defend here is a double one: it purports first to sub-
stantiate the validity of a Goodmanian analysis of mathematics, and second to 
highlight the role mathematics can play in interpreting Goodman’s aesthetics. 
My approach might therefore seem unconventional in some respects. Indeed, 
it is often said that there is a before and an after Goodman, that his work marks 
a significant turning point in the history of aesthetics. I do not dispute this. 
On the other hand, I believe that when it is considered from the standpoint 
of the history of the relations between mathematics and aesthetics, Goodman’s 
theory is in fact very classical.

The theory of aesthetics developed by Goodman fits within his broader 
theory of symbolization. His project consists in analyzing the referential oper-
ations of symbol systems, from which he proposes to deduce the operations of 
aesthetics. His original assumption is that although very much in evidence in 
the field of art, aesthetic operations are not the exclusive province of works of 
art; they can be present in a wide variety of symbol systems, including also 
scientific symbol systems4. Hence, there is no direct argument against applying 
Goodman’s theory to mathematics. Indeed, from a technical point of view, 
one can show without the slightest difficulty that mathematics may be con-
strued as symbol systems in Goodman’s sense.

More precisely, mathematics can be construed as a non-disjunctive union 
of symbol systems, all of which are constructed according to the same elemen-
tary or basic symbol scheme. The latter would be made up from the usual 
marks5: a literal and numerical alphabet (the first letters of the classical alpha-
bet, a, b and c are often earmarked for constants, the letters f, g, h for functions 
and the final letters x, y, z for unkowns), operators ( =, +, /), quantifiers or, as 
well as syntactic construction rules (e.g., the real addition of two numbers is 
written by placing both numbers on either side of the + operator).

4.	 «(...) my study ranges beyond the arts into matters pertaining to the sciences, technology, 
perception, and practice. Problems concerning the arts are points of departure rather than 
of convergence. The objective is an approach to a general theory of symbols.» (LA, xi). 
See also LA, 262-265.

5.	 Broadly speaking, a symbol system is made up of a set of basic (atomic) elements, a list of 
explicit combinatory rules used to construct complex elements from the atomic elements 
and rules for their interpretation. The «mark» is the material aspect of the atomic or com-
plex elements. For example, an «a» is a mark in the symbol system of the Latin alphabet. 
A character is the class defined by a set of marks that are equivalent to one another. For 
example, any inscription of «a» belongs to the character «a», its font or colour notwithstan-
ding. Finally, Goodman draws a distinction between symbol scheme and symbol system 
by stipulating that in the first case only syntactic considerations come into play, whereas in 
the second semantic considerations also apply. In other words, a symbol system is a symbol 
scheme correlated with a field of reference (See all LA and especially, Ch.4 «The Theory of 
Notation,» LA, 127-173).
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There is no harm in construing this scheme as the basic scheme of all 
mathematical symbol systems. The worst this could result in is a degree of 
cumbersomeness and redundancy, present also in other kinds of symbol sys-
tems. A primary analysis leads one to divide the various mathematical symbol 
systems into three main families:

1) 	The family of applied mathematics, in which the characters of the scheme 
are interpreted in relation to the physical world of natural phenomena.

2) 	The family of the various ontological or methodological approaches to 
mathematics, in which the interpretation or the presentation of a mathe-
matical object is restricted by ontological or methodological constraints.

3) 	The family of particular subsets of mathematical objects that are inter-
preted according to a predefined list of axioms or properties.

If one considers a symbol system obtained by referring the basic scheme to 
one of the members of the first family, it is possible for some of the characters 
to be vacant. For example, an equation describing a physical phenomenon for 
which a negative root could not be interpreted. In this case, two sorts of 
vacancy are possible:

—	A semantic vacancy: some characters have no concordant phenomenon,
—	A syntactic vacancy: some phenomena do not concord with any character.

In the second family, the characters of the scheme are referred and interpreted 
according to the constraints linked to a specific approach. For example, the 
quantifiers («there exists» or «for all») have no concordant elements in the 
context of a constructivist mathematical system.

Finally, the third family, which is the largest, comprises the particular 
systems that can be obtained on the basis of specific rules or axioms. For 
example, if the basic scheme refers to whole numbers, then the square root 
of two, which is a valid character within the symbol system, does not com-
ply with any element of the set of natural whole numbers. The combina-
tory rules will receive different interpretations depending on the sub-set 
under consideration: such is the case, for example, of the addition of two 
whole numbers contrasted with the addition of two vectors of the same 
plane. These families are clearly not independent from one another. The 
interpretation of a symbol within a system belonging to the first family 
(implying that one uses it to refer to the physical world) is dependent on a 
prior interpretation within a system belonging to the third family, and pos-
sibly to the second as well.

In any event, the initial conditions required in order to apply Goodman’s 
aesthetics, i.e., a given symbol system, are satisfied by mathematics.

In Goodman’s work, the purpose of the analysis of the languages of art and 
of symbolization in general is not to provide an ontological explanation of 
reference — to determine why such and such a predicate applies to such and 
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such an object — but to pin down the various types of reference. This onto-
logical parsimony is especially worthwhile regarding the aesthetic analysis of 
mathematics, since it provides a glimpse of what results might be obtained 
independently from any ontologically restrictive conception of mathematics. 
Finally, Goodman’s aesthetics is squarely functional and cognitive in nature, 
which leaves room for a possible argumentative framework supporting the the-
sis of aesthetics’ cognitive role in the process of demonstration. From a theo-
retical standpoint, the choice of Goodman’s theory in order to describe the 
aesthetic aspect of mathematics is justified.

So what comes to light from effectively applying Goodman’s theory to 
mathematics? The results that I came to and discussed in Esthétique et mathé­
matiques — une exploration goodmanienne (Jullien 2008) (Aesthetics and math­
ematics — a goodmanian exploration) first show that Goodman’s theoretical 
instrumentarium can be adapted to mathematics. Goodman’s aesthetics is based 
on a symptomatology. When discussing the modes of symbolization, Goodman 
identifies five symptoms revelatory of an aesthetic dimension6. First of all, there 
are the two syntactic requirements termed syntactic density and relative syntactic 
repleteness, a semantic requirement called semantic density, and finally two 
requirements pertaining to reference, exemplification, which is a mode of refer-
ence, and multiple and complex reference, which is a route of reference. I propose 
to recall the definition of each of these symptoms while attempting to show 
how they can be put to use in mathematics.

a) Syntactic density (LA, 135-137)

Syntactic density characterizes symbol schemes that offer no means of drawing 
up a complete list of each and every character entering into their composition. 
In a syntactically dense scheme, one cannot comprehensively review its char-
acters or isolate them from each other.

If one construes mathematics as a symbolic language, then they are plainly 
not syntactically dense. Indeed, if only those mathematical objects that are 
linked to linguistic notations and mathematical symbolism proper (operator 
symbols, quantifiers) are taken into consideration, with mathematical figures 
being disregarded, then it is always possible to ascertain whether a mark 
belongs to a single character by examining either its intrinsic structure or its 
context. In other words, one can always isolate each character from the system, 
so syntactic density is not satisfied. This deficiency, if it truly is one, should 
not be viewed as an aesthetic shortcoming, but only as a singular trait due to 
the fact that mathematics can be construed as a language and are therefore not 
syntactically dense. However, mathematics are not merely a language, as for-

6.	 The first four symptoms are defined in LA, 252- 254; the fifth, multiple and complex 
reference, is coined in WW, 91. Moreover, in case a reminder is needed, a symptom is not 
a decisive criterion, but a clue that tends to reveal something (LA, 254-255).
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malism once believed: the use of figures can be an essential part of a demon-
stration7.

b) Relative syntactic repleteness (LA, 228-230) 

Another syntactic requirement listed among the symptoms is relative syntactic 
repleteness. Relative syntactic repleteness is a property that applies to pictorial 
systems, which allows to establish a gradation between maximum saturation 
and minimum saturation (attenuation). Saturation is measured according to 
the number of syntactic aspects that are contingent to the interpretation of the 
system. In a word, saturation is characterized when all the syntactic aspects of 
a system, or the better part thereof, are relevant to the system’s operation. 
Goodman’s famous example consists in drawing a comparison between the 
curve of an electrocardiogram and a sketch of mount Fujiyama by Hokusai 
(LA, 229). These two systems, he explains, might be perfectly identical, but 
whereas in the curve of the electrocardiogram only the relative height of the x 
and y axes are relevant, in the sketch of mount Fujiyama each and every aspect 
plays a part: the fineness or thickness of line, the colour of the ink, etc. The 
sketch is saturated, the curve is attenuated.

Since it is a manifestly syntactic property, applying it to linguistic systems 
would seem not to make sense. Indeed, calligraphy and its offshoots aside, 
most texts, whether they are of a literary nature or not, are attenuated in the 
sense that their symbolic functioning is not altered by modifying a wide vari-
ety of syntactic properties (the font, the medium, or the colour of the ink can 
all be changed without consequence, for example). In a text, the distinction 
between essential and contingent syntactic aspects is generally clear. But does 
the same apply to the notation of mathematics? One of the differences between 
mathematics as a symbol system and any given symbol system is that, in the 
first case, the rules for combining the symbols afford more freedom than in 
the second. In linguistic systems, the rule of linear concatenation prevails. In 
the case of mathematics, symbols are combined according to various laws or 
using operators, with the properties of the latter offering several different nota-
tional possibilities for the same object. For example, in the real closed field R, 
a polynomial P(x) may be noted x4+9x5-12, or -12+x5 9 + x4 or a number of 
other different ways generated thanks the commutativity and symmetry of mul-
tiplication and addition in R. In a purely linguistic system, the degree of latitude 
available when selecting a syntactic symbol is restricted to the mark, i.e., inscrip-
tion. Such choice has no incidence on the system’s functioning. In mathemat-
ics, the breadth of choice is greater, and one can select not only the mark, but 
also the reciprocal organisation of the symbols. So introducing the concept of 
saturation in mathematics as a symbol system is justified.

7.	 I have shown elsewhere that the demonstrative role that certain types of mathematical 
figures can play convincingly warrants introducing syntactic density as an analytical tool 
(Jullien 2008, 199-255). 
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c) Semantic density (LA, 152-154)

Obviously, semantic density is the semantic counterpart of syntactic density. 
The symptom of semantic density thus characterizes systems featuring mul-
tiple characters, with concordance-classes (i.e., the set of labels with which a 
character concords) ordered in such a way that between any two of them, 
there is always a third. Broadly speaking, semantic density applies to systems 
in which the freedom of interpretation is very extensive. This breadth derives 
from the categorial overlap that density implies. Semantic density is inherent 
to all linguistic systems, although it can vary: multiple interpretations would 
be out of place when reading a recipe or a specification sheet, whereas under-
standing the functioning of a literary or poetic text positively requires that 
they should be taken into account. If mathematics are not strictly reducible 
to a linguistic system, neither are they entirely foreign to such a type of sys-
tem. And as such, they are semantically dense. I support the thesis that den-
sity in mathematics is by no means contingent, but rather plays a constitu-
tional role (Jullien 2011). In this regard, I side with Poincaré’s maxim that 
mathematics are the art of giving the same name to different objects8. It is the 
semantic density of mathematics or, in other words, the richness of their 
symbolic fabric that makes it possible to draw relationships between very dif-
ferent objects.

d) Exemplification (LA, 52)

Exemplification is a specific mode of reference that links an object with a label 
that applies to it: an object exemplifies a label if and only if the object refers 
to the label and the label denotes the object (i.e., applies to it). Broadly stated, 
one speaks of exemplification when one highlights a particular aspect of an 
object. In mathematics, exemplification is a recurring mode of reference. In 
the equality «x = 2n», for example, the internal relationship expressed by the 
equality predicate usually exemplifies a label such as «to be even». Exemplifica-
tion plays an essential role in any process of mathematical demonstration:  
in fact, it comes across as a demonstration technique in its own right. Indeed, 
the better part of mathematical demonstrations progress through what could 
be called sampling steps, which consist in transforming a given inscription 
until a sample of a particular label is obtained. I will return to this point later.

A straightforward example of the use of exemplification in mathematics 
can be found in problems of indeterminate structure. Take the following 
rational function:

f(x) = 
 

8.	 «(...) mathematics is the art of giving the same name to different things» (Poincaré 1908, 
34).
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When studying the behaviour of this function when x tends towards infinity, 
an elementary valuation establishes that the infinite limit of this function is 
infinity. Now, if one wishes to understand why and how this function tends 
towards infinity when x tends towards infinity, the notation selected above to 
represent function f is of little help. However, a simple transformation makes 
it possible to rewrite the function as follows:

f(x) = 

These two notations are strictly equivalent: they share the same extension 
(same truth value) and intension (they both represent the same function).  
Yet, contrary to the first, the second notation makes it possible to understand 
how the function behaves at infinity. Indeed, the second notation makes plain 
the fact that the function possesses an oblique asymptote with an equation y 
= 3x+2 when x tends towards infinity. In other words, the perception of the 
function’s behaviour at infinity is optimised by the second representation  
(i.e., the second equation’s notation) of the function. The difference between 
these two logically equivalent notations is exemplificational: the second nota-
tion is a sample of the label «to have an oblique asymptote», of which the first 
is merely an instance. This example also makes it possible to understand the 
interpretation of the repleteness requirement in mathematics. The syntactic 
structure of the second notation is replete, in the sense that altering the orga-
nisation of its syntax would affect its interpretation, i.e., its proper symbolic 
functioning.

e) Multiple and complex reference (WW, 68)

Finally, Goodman introduces multiple and complex reference, which points 
to the multiple varieties of referential species that apply to any single object. 
Multiple and complex reference occurs when «a symbol performs several inte-
grated and interacting referential functions, some direct and some mediated 
trough other symbols» (WW, 68).

Goodman’s inquiry into the symptoms of the aesthetic follows an analysis 
of the various types of reference, in particular denotation, exemplification and 
their main varieties (representation, description, expression, etc). In order to 
study them, Goodman distinguishes and isolates these different varieties of 
reference. This methodological imperative does however present the disad-
vantage of suggesting a complete mutual autonomy and independence of 
these types of reference. Yet a symbol may very well refer by following a ref-
erential chain or path made up of several referential steps, each of which is 
arrived at through different types of reference. Moreover, the artificial seg-
mentation of the different modes of reference leads to a view of reference as 
being static, whereas the process of reference is quite the opposite: a dynam-
ic process throughout which the referential varieties of the same symbol may 
interact with each other. Where this obtains, multiple and complex reference 
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occurs. Multiplicity points to the fact that a symbol may have several refer-
ential functions. These can be unilateral or not: a symbol can exemplify 
several labels, it can also work as a label under some facets and as a sample 
under others. Complexity brings into play a kind of transitivity of reference, 
or at the very least reflects a form of indirect reference. Reference is not 
always transitive: the fact that symbol S refers to predicate T, which in turn 
denotes S’, does not necessarily imply that S refers to S’. But when such is 
the case, i.e., when reference truly is transitive, then one can speak of complex 
reference. In this context therefore, complexity does not carry connotations 
of complication (each and every reference is individually straightforward), but 
points to the number of referential steps that lead from a symbol to that 
which it refers to.

In mathematics, the use of the dual referential status (i.e., exemplifica-
tional and denotative) of its symbols makes it possible to build a demonstra-
tion. In other words, mathematical reasoning is constructed from a web of 
multiple and complex references. Mathematical demonstrations cannot be 
reduced to a mechanical chain of arguments following a direct referential path 
(i.e., without inverting denotational hierarchy). Indeed, when one wishes to 
demonstrate that a result applies to all objects of a specific class, one selects 
any object belonging to the class in question as representative of its class, and 
makes use of what it can be shown to exemplify. The representative of a class 
has both a denotative function (it denotes the elements of its class), and an 
exemplificational function (it refers to one of its aspects).

My purpose is not to provide a detailed interpretation of all these symp-
toms, but to show what the use of this symptomatology can contribute to an 
analysis of mathematical reasoning. I should mention straight away that the 
role these five symptoms play is apparent throughout all of mathematics’ 
operative modalities. For example, one can show that many mathematical 
demonstrations rely on a multiple and complex referential chain, whose assem-
bly relies on sampling phases. These in turn are made possible, first by draw-
ing on semantic density, and second by a process of saturation. Consider a 
classical theorem structure: we are presented with a series of hypotheses and  
a conclusion. If we term H the label that can be constructed from the hypoth-
eses of a mathematical proposition, and C the label that applies to the conclu-
sion of this proposition, then the process of verifying the proposition can be 
represented as follows: we select an object such as H applies to it and we 
transform the object using valid rules in order to make explicit the object’s 
possession of C. So the first step is a matter of denotation (the task is to select 
any object as long as it is denoted by H, i.e., as long as H applies to it), 
whereas the second step is a matter of exemplification (the task is to select 
among the possible notations those that exemplify C). The same symbols thus 
take on different referential functions throughout the course of the demonstra-
tion. Drawing on semantic density expresses the possibility of choosing 
between the various concordant elements of the same character. Finally, exem-
plification comes into play through a process of saturation when selecting the 
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syntactic representative of a mathematical object. For example, the classical 
demonstration of the following proposition: «all differentiable real functions 
are continuous» illustrates the process described above. In this instance, the 
label H is «to be differentiable (and real)» and the label C is «to be continu-
ous». The demonstration is direct, it consists in taking into consideration any 
function f denoted by the label «to be differentiable». This property f is then 
translated into mathematical notation (exploitation of semantic density), then 
the notation is transformed (repleteness process) until f’s possessing the label 
C: «to be continuous» has been made plain; in other words, until a notation 
has been arrived at that allows for the exemplification by f of label C. The 
proposition is then proved.

4. Conclusion

That the interpretation of Goodman’s aesthetics does not give rise to difficul-
ties is one thing, understanding what this approach to mathematics can con-
tribute is another. I would say that beyond offering a means of showcasing the 
aesthetic functioning of mathematics and understanding their cognitive role, 
the Goodmanian analysis of mathematics’ main contribution is to account for 
certain phases and connections in mathematical reasoning that are inaccessible 
to standard logic. In particular, exemplification makes it possible to study the 
role of a mathematical symbol in the context of a chain of reasoning from  
the standpoint of its intension, whereas standard logic would only take its 
extension into account. The fact that Goodman’s theory provides a key to 
certain phases of mathematical reasoning makes it possible to situate Good-
man’s aesthetics within the historical perspective introduced in the first part 
of this paper. Indeed, the list of the five symptoms of Goodman’s aesthetics, 
which is the framework of his theory, remains fairly programmatic: Goodman 
is rather sparing in his remarks concerning the interpretation of these symp-
toms. The detailed interpretation that I needed to construct, bearing in mind 
the concrete use I wished to make of Goodman’s symptoms, yields a sort of 
feedback from mathematics to Goodman’s theory. Indeed, by sharpening 
Goodman’s theoretical instrument on mathematics, one manages to fine down 
and specify the symptoms, particularly in the case of exemplificational systems. 
These cases are not studied by Goodman and he merely indicates a slight 
modification of his terminology (LA, 233-234). In fact, things are far less 
straightforward and all the terms in play need to be recast (Jullien 2008, 
17-19). As the backdrop of this investigation, mathematics have nonetheless 
proven to be a most propitious field for understanding Goodman’s pro-
gramme. In this respect, one finds oneself in the wake of an extremely classi-
cal, pre-Kantian and post-Aristotelian tradition that credits mathematics with 
a dual role as a model and an object of analysis for aesthetics.

I therefore construe the relationship between Goodman’s aesthetics and 
mathematics as being dialectic rather than unilateral. Mathematics can be 
pressed into service by Goodman’s aesthetics in order to interpret and under-
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stand the symptoms of the aesthetic, and Goodman’s aesthetics are an ana-
lytical tool for mathematics. In this dialectic we encounter once more the 
nature of the bond that has linked mathematics to aesthetics from ancient 
Greece until the end of the 18th century. My approach aims to resituate this 
dialectic within the modern framework of the issue of the relationships 
between mathematics and aesthetics, whose boundaries can be safely drawn 
using Poincaré’s and Goodman’s approach.
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