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Abstract

The aim of this paper is to suggest a method to find endogenously the points that group the individuals of

a given distribution in k clusters, where k is endogenously determined. These points are the cut-points.

Thus, we need to determine a partition of the N individuals into a number k of groups, in such way that

individuals in the same group are as alike as possible, but as distinct as possible from individuals in other

groups. This method can be applied to endogenously identify k groups in income distributions: possible

applications can be poverty and polarization studies.
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1. Introduction

The aim of this paper is to suggest a method to find endogenously the points that group the individuals of

a given distribution in k clusters, where k is endogenously determined. These points are the cut-points.

Thus, we need to determine a partition of the N individuals into a number k of groups, in such way that

individuals in the same group are as alike as possible, but as distinct as possible from individuals in other

groups.

This paper is motivated by the necessity to groups the population in different clusters to measure poverty,

deprivation, social exclusion and polarisation. However, notice that the necessity to identify a certain

number of groups in a given population exists not only in economics. In areas as medicine, psychology,

soil science, ecology and taxonomy, the partition of the population into groups is necessary to make some

inferences about property of  “natural” groups (Krzanowsky and Lay, 1988).

When we wish to define k groups (and, therefore, to identify k-1 cut-points), we face two problems:

- the identification of the best subdivision of the population into a given number k of groups, and

- the determination of the best value of k (the optimal number of groups)

To solve the first problem, we need to formulate an objective function that quantifies the adequacy of a

given partition of the population into k groups, and then to find the partition optimising this objective

function. Various objective functions have been suggested in the literature, but we found particularly

interesting the one proposed by Aghevliand Mehran (1981), successively applied to polarisation by

Gradin (2000). Taking as given the number of groups, they proposed to minimise the differences within

groups expressed as difference between the Gini index of the ungrouped population and the between-

group Gini index. Since the Gini index of the ungrouped population is fixed, we only need to maximize of

the between- group Gini index to get the best partition of the population in a given number of groups.

This method is fully explained in section 2.

To solve the second problem, the usual approach adopted is to repeat the optimisation of the objective

function for k=2,3,4,… groups, and to choose the value of k at which the final partition appears to be the
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“best”. This criterion is called stopping rule. Mariott (1971) and Krzanowsky and Lay (1988) proposed

stopping rules based on the optimisation of within-group inequality within-group inequality. But, this

criteria is not satisfactory since inequality is measured by within-group covariance that is not an

additively decomposable measure. The main contribution of this paper to the literature is to propose a

stopping rule base on the Gini index, an index normally used to analyse inequality in income

distributions. Note that some examples are presented to show how the proposed general method and

stopping rule work.

2. K endogenous population subgroups: a review.

In this section, we review a general method proposed by Aghevli and Mehran (1981) to identify the best

subdivision of the population into a given number k of groups. The problem is the following: given data

on a distribution, we wish to group the data into k groups in such way that differences are minimised

within the groups and maximised between the groups. Differences can be measured by an inequality

index. Therefore, we need some criteria to choose the adequate index.

We assume the number of groups existing in the population is given and equal to k. We consider a

particular distribution F of the population over the bounded support [a,b]. Each individual i is represented

by an attribute xi. We have n individuals such that x1<x2<…<xn. We assume the existence of k groups.

Thus, we wish to find endogenously the cut-points, y1, y2,..,yk-1, that groups the population in  k clusters

such that a<y1<y2<…<yk-1<b and nj are the individuals in the j-th group, [yj-1,yj). The cut-points gives us

a partition such that

n1 ∪  n2…∪  nk=    n and n1 ∩  n2 …∩  nk =  φ

Note that individual i belongs to the j-th group if, and only if, xi ∈[yj-1,yj). Moreover, note that the group

construction implies no-overlap among group ranges.
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Our aim is identify k groups in the population such that the dispersion internal to every group is minima.

Thus, we need to minimise the sum of the internal group dispersions, and the internal group dispersion

can be measured by the within-group inequality.

The overall dispersion can be expressed as a weighted sum of the dispersion values calculated from the

subgroups plus a term capturing the between-group dispersion. Thus,

(1) Itot=Σj
k qjIj+Ib 

 where Ij measures the inequality in group j, Itot measures the overall inequality, Ib measures the between-

group inequality, and qj depends on the population and income share going to subgroup j and on the

group position.

For a given distribution the overall inequality is fixed. Therefore, to minimise the sum of the internal

group dispersions (ΣiqjIj) is equivalent to maximise the dispersion between groups (Ib). In other words,

minimising the within-group differences implies maximising the between-group differences. The best

population subdivision in k groups is, therefore, computed by maximising the between group differences

(Ib). Our objective function is the between-group dispersion measured by the between-group inequality.

The partition into k groups that maximises the objective function is the optimal partition and it minimises

the within-group dispersion.

For the implementation of the procedure to select the best partition, we need to choose an inequality

measure. The latter has to be capable to be transformed in an additively decomposable index.

The decomposition of the overall inequality, in the sum of the group inequalities plus the between-group

inequality, is possible using indices of the Generalised Entropy families and their monotonic

transformations (Shorrocks, 1984). Thus, without imposing specific constrains, the only index, that can be

used to measure dispersion, is an entropy index.  However, the Gini index is decomposable, in sense of

equation (1), when the group ranges do not overlap (Lambert-Aronson, 1993). Since we are interested in
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determining non-overlapping partitions, we can also use as dispersion measure some kind of indices not

belonging to the Generalised Entropy family, but decomposable. In particular, we can use the Gini index

without imposing further constrains. However, we cannot use grouping conditions based on the variance

as proposed by Mariott (1971) and Krzanowski (1988).

The choice of the index to use is an important point in our analysis and can lead to some numerical

differences. To made this choice we referee to the following requirement:

Requirement 1. The inequality index, I, has to be decomposable in sense of equation (1).

The indices satisfying Requirement 1, as seen above, are the ones of the Generalised Entropy family and

the Gini index when the group ranges do not overlap. We choose to use the latter since it has already been

used to group a population into different clusters by Aghevli and Meran (1981) and Gradin (2000). They

minimised the within-group dispersions that are equal to the difference between the Gini index of the

ungrouped distribution (G) and the between-group Gini index. It means to minimise the error due to

grouping in the estimation of the Gini index from grouped data. Moreover, since G is fixed, to minimise

the within-group dispersion implies to maximise the between-group Gini index.

Choosing as measure of inequality the Gini index, our problem reduces to find the k-1 cut-points, y1 …yk-

1, that maximises the between-group dispersion (Gb):

(2) Max ⎨ Gb(k) ⎬=Max ⎨(1/2n2µ) Σi
k
 Σj

k
 ninj |µi-µj|⎬

where µj is the mean of group [yj-1,yj) and nj is the corresponding population share. We define G*b(k) as

the optimum value of Gb(k) for a partition into k groups. In other words, G*b(k)  is obtained grouping the

population in k groups using the optimal cut-points y*1 …y*k-1.

Finally, note that the cut-points computed maximizing the between-group Gini index have some useful

properties. First, if we multiply all the individual attributes by the same parameter, the cut-points of the
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new distribution are equal to the old cut-point multiplied by the above parameter. Second, the cut-points

depend from the individual attributes, but they do not depend on the name of the individuals. Third, if we

merge two or more identical population, we wish that the cut-points do not change.

3. Stopping Rule

In this section, we propose a stopping rule to determine the optimal number of groups, k*. The idea is to

repeat the optimisation of the objective function for k=2,3,4,… groups, and to choose the value of k at

which the final partition appears to be the “best”. To determine the best final partition, we need to define

a function, Ak, depending to the objective function (G*b) and from the number of groups (k). Such

function should remain approximately constant over k for data from a uniform population. But, the

optimal subdivision into k groups should provide a large increase in Ak if the data are from a population

that is strongly grouped round k clusters. Hence, we suggest using Ak as basis for the stopping rule: the

optimum value of k is the value that yields the maximum in Ak.

The main idea is the following. We can face two situations: a one-group distribution and a k-group

distribution (k>1). On the border between these two situations, we find the uniform distribution. Thus, we

need a function Ak able to tell us in which situation we are. For example, we should like Ak be less than

zero if the distribution is one-group distribution, and be positive if we have a k-spike distribution. But, if

the distribution is uniform, we should like Ak be equal zero for all k. Therefore, requiring Ak

approximately zero for all k when the distribution is uniform, we obtain the following effects. First, if the

dispersion in our distribution is smaller than the one in the uniform distribution, Ak will be smaller than

zero: we face a one-group distribution. Second, if the dispersion in our distribution is bigger than the one

in the uniform distribution, Ak will be bigger than zero: we face a k-group distribution (k>1).

We need to specify the following function:

Ak= A(G*b,k)
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Axiom For uniform data, as k varies the function value Ak should remain constant.

Suppose x1,x2,…,xn are uniformly distributed. If k=1, the between-group dispersion is equal zero, since we

have only one group in the population: G*1=0. If k>1, the subdivision of the distribution into k groups is

optimum when the groups have equal size, equal population share and  |µj-µj+1|= 1/k (property 4). Thus,

we observe:

G*1=0

G*2=2 (1/ k3) with k=2

G*3= 2 (1+1+2) / k3 with k=3

G*4= 2 (1+1+1+2+2+3) / k3 with k=4

…

G*k= [2 Σj
k-1 j(k-j)] / k3

Hence, the subdivision of a uniform distribution into k groups, increases G*1 by the following term:

[2 Σj=1
k-1 j(k-j))] / k3

For uniform data, this implies:

G*k  -  [(2 Σj
k-1 j(k-j)) / k3 ] =  G*1 = 0 for all integer k>1

Theorem The function Ak must have the following specification:

Ak= c [G*k - [(2 Σj
k-1 j(k-j)) / k3]] with c∈R++

Then, we can define the following stopping rule.

Stopping Rule The optimal value of k is the value that maximises Ak.
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4 Examples

In this section, we show three simple distributions in order to illustrate how the proposed method works.

In the first example, we consider one-spike distribution; in the second one, we study a two-spike

distribution; and, in the third one, we analyse a three-spike distribution.

Example 1.

Let’s consider the distribution

x=(0.1, 0.2, 02, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8,

0.8, 0.9)

It is a one-group distribution as we can observe in the follow figure:

The results for the maximization of the between-group Gini index, for k=2 and k=3, are showed in the

table below. We observe that Ak is less than zero for all k>1, which implies that our distribution is a one-

group distribution.

.

 cut-points       Ak

k=1      --- 0
k=2 0.5 -0.09
k=3 0.4; 0.7 -0.0979

0.5
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Example 2

Let’s consider the distribution

x=(0.1, 0.1, 0.1, 0.2, 02, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0.5, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8, 0.8, 0.9,

0.9, 0.9)

It is a two-group distribution as we can observe in the follow figure:

The results for the maximization of the between-group Gini index, for k=2 and k=3, are shown in the

following table. We observe that the stopping rule selects k=2. In other words, Ak is maximum for the

subdivision of the distribution into two groups.

Example 3

Let’s consider the distribution

X n times
0.1 13
0.2 1
0.5 13
0.9 20

It is a three-group distribution as we can observe in the follow figure:

 cut-points     Gb       Ak

k=1      ---       --- 0
k=2 0.6 0.272 0.022
k=3 0.4; 0.8 0.30048 0.0044837

0.5
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The results for the maximization of the between-group Gini index, for k=2,3,4 are shown in the table

below. We observe that the stopping rule selects k=3. In other words, Ak is maximum for the subdivision

of the distribution into three groups.

 cut-points     Gb       Ak

K=1      --- 0 0

K=2 0.9 0.2668 0.0168
k=3
k=4

0.5; 0.8
0.2;0.5;0.9

0.3253
0.3264

0.0290
0.0139

5. Conclusions

We proposed a new method to determine k-1 endogenous points that groups the population in k

subgroups, where the number of groups (k) is endogenous.

The first part of the problem is, given data on a distribution, to group the data into k groups in such way

that differences are minimised within the groups and maximised between the groups. Using the genral

method proposed by Aghevliand Mehran (1981), we maximise the between-group Gini index finding the

optimal partition of the distribution in k groups, with k given.

0.1 0.2  0.5         0.9
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Our contribution is in the method that endogenously determines the optimal number of groups, k*. This

method is called stopping rule. The idea is to repeat the optimisation of the objective function for

k=2,3,4,… groups, and to choose the value of k at which the final partition appears to be the “best”. To

determine the best final partition, we defined a function, Ak, that remains approximately constant over k

for data from a uniform population. We proposed to use Ak as basis for the stopping rule: the optimum

value of k is the value that yields the maximum Ak.

Finally, note that results should never be accepted uncritically but should always be examined to make

sure they are meaningful. Graphical analysis is useful to do so. Moreover, it should always be

remembered that we cannot use our method to determine two, or more, groups in a unimodal distribution.

Further research is necessary to extend this method to group individuals belonging to the same cluster in k

sub-groups.
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