puturgindo y querido anieys: Sxccuremas thi Lardanza en contestar A la gunt a su.ersfor esta ra Sedo debida en frimes lugar aque en lo Animery dias thve que tahr con nuça recuencia y ademá́ a que tenva la comvicurn de que rerul teira tacil deunotian la urpotiblidad de - la exirtexcia de uma Fumeron con las riopice aledes que a IG ele theare Lem eb a defandolo
y luegs al inteulats B cióa vi due dewintrian liva aluat onvindo or ción ri que ns tal dolo tw era ban fael \&omo me pareeia delw que dem solsarto lograba $x^{\prime}<x$. Oon Cuendo vroballe que cour creo deswot raciol prueda * metodo quela deuys-narte ba Mipposebiduad Meli comade incluso quayto Mhara no hers harta pritle the sa tedo sinetodo.

Acontumacern le lexpurte Lusciuterntute la de mustraciole que he optenido cuando x $x / 2$, Ifin de que 1 ob be tweela comprobar A he emprendlelo carreefa mente las crndiaiones que debe cunplor tunew ane le, whereda Val a e e one iftetions, zudrcarle tay Que ntalozo, para lato de demirtiar que no tonste nna fmairn to φ Q $t(t)$ colomarta en el Hye anguldf $191<c \frac{\pi}{2}$ it edelemay
que en Forlo auefulo intercor Le cumifla inviformement $|f(t)|=0\left(\left|\quad t^{-5}\right|\right)(8>0) y$ Finellmente $\int_{0}^{\infty} f(t) t^{n} d t<c^{c^{\prime} n}$ ademas es ef
 nomefo que fterids posituza real poseters.
y sea $\beta=1$ jupnedury $a^{\prime}<c^{\prime \prime}<\alpha^{\prime \prime}+a_{2}$ y $t_{n}=\left(c^{\prime \prime} n / e\right)^{c^{\prime \prime}}$ entorces resulta faeil denostrar que

$$
\int_{t_{n}^{\prime}}^{t_{n}^{\prime}}\left(e^{-t \beta}-f(t)\right)^{+} t^{n} d t>K_{n} \int_{E_{n}^{\prime}}^{t_{n}^{\prime}} e^{-t \beta} d t
$$

doude lim $k_{n} \rightarrow 0$ cuando $E_{n} \rightarrow \infty$ aplicando la desigualdad de Pchwarz resulta

$$
\left.\int_{t^{\prime}}^{t_{u}}\left(1-f(t) e^{\tau^{\prime}}\right)^{+} t\right)^{2} d t
$$

donde liu $k_{n}^{\prime}=k>0$. Esto demucets
que la desiqnalslad

$$
\text { of }(t)<e
$$

He cumple entre $t^{\prime} y z_{n}$ en una sucerom de uitervalos la suma de ewnas as lonet. tudes de los enales es tupterior a $K_{u} t_{n}^{1-\beta / 2}$. Lea $a^{\prime \prime}<a_{0} / 2<a / 2$ ypece fuemry F la Arandtormacion

$$
F(z)=f\left(y^{x}\right)
$$

resulta que entre $y_{n}=t_{n}^{1 / c_{0}} y_{y}$ $y_{n}^{\prime}=t_{n}^{1 / 1 / a_{0}}$ la detiqualdal

$$
F(y)<e^{-z_{0} x_{0} \theta_{t}}
$$

Le comple en una sucetiou de in. Fermalol de lrueftud total Alyperion $a K_{n}^{\prime \prime} y_{n}^{1-\infty}$

Lea Cu el circulo centrado us in ounto del efe rical \& equepares por zo y z_{n}^{\prime} y éel evreulo concen Trics al ontervar y de radeo la mitad aphcando un tearema de Hillona, resulta que en el sute rior de co te euuple

 6) Etas curderento cou Lecho de que F(z) es acofada en el temin thano \mid arg $3 /<\pi / 2$ dermite demontrar teniendo en exerita que suphonemy $x_{0} \beta>2$ que

F $F\left(\begin{array}{l}3\end{array}\right)=0$
Lo cual demuestur la invtroféléng Lenalada

Confrendo que los velolor de x^{\prime} que a Id le vuteretan Armeipalmeite sm fofforian moy a of de tridelate no fueg -ndecarlo Hobre lttris neisea an Hequridad pero creev probar blel qu hampoeo exista dain eshy valures mugum fm abr cou las furpredodes Leval z da/ viteo seles ds) ultemm iotas en lor UDF \& eue uctozer

