Defincions i Motacions: P desipua un coryinet perfecte de diàmetre te $\delta(P)$ intervals contipus els intervals $\left(a_{j}, b_{j}\right)(j=1,2, \ldots) . P_{1}$ derijuaré el coryiunt deb punts de segona especia de $P(=P$ mennss ds puit, $\left.a_{j}, b_{j}\right) i O$ el complementari de P.

Signi $j(x)=\infty$ per $x \in P_{1} \quad i \quad j(x)=j$ per $x \notin P_{1}$ on j es tal que $x \in\left[a_{j}, b_{j}\right]$. Sigui $j_{x}(x)=j(x)$ quan $j(x)<n \quad i \quad j_{n}(x)=n \quad$ quan $\quad j(x) \geq n$.

Sigui $p_{1}(x), p_{2}(x), \ldots, p_{n}(x), \cdots$ una 2nccessió de wolinomis tals pue $p_{1}(x) \neq p_{2}(x)$ itals verificuine la segrient condició recurrent sobrer n :

$$
\begin{equation*}
\left|p_{n+1}^{(2)}(x)-p_{d_{n}(x)}^{(2)}(x)\right|<\varepsilon_{n+1} \quad \text { per } x \in \delta(P) \text { i } r=0,1, \ldots, n-1 \tag{1}
\end{equation*}
$$

(2)

$$
\begin{aligned}
& p_{n+1}^{(a)}\left(a_{j}\right)=p_{j_{n}(x)}^{(n)}\left(a_{j}\right) \\
& p_{n+1}^{(n)}\left(b_{j}\right)=p_{j_{n}(x)}^{(n)}\left(b_{j}\right) \quad \text { pen } \quad \begin{array}{l}
j=1,2, \ldots, n+x \\
n=0,1, \ldots, n
\end{array}
\end{aligned}
$$

essent els ε_{n+1} nombres voritius tals que
(3)

$$
\sum \varepsilon_{n}<\infty
$$

Les condicions (2) permeten afirmar que la sunció Cn+1 $P_{j_{n+1}}(x)$, que està formada per troser dels polinomis $p_{1}(x), p_{2}(x), \ldots p_{n+1}(x)$ ant els punts de juntura $a_{j}, b_{j} j=1, \ldots, n$, tó derivades fins a l'ordre n. Per recurrencia de les condicious (2) quede demostrat que les funcious $p_{j_{x}}(x)(x)$ tenen deriodes fims a e^{\prime} codre $n-1$, juss espect u arbitrasi. Pu el lema demestrats sahen. alestheres que un cop
fixcats els polinomis p_{1}, \ldots, p_{m} ipretant $p_{j_{\mu}(x)}(x)$ eosisteisen sempue polinomi) $p_{n+1}(x)$ 期 venificuni simuitinuc ment. les condicious (1) i(2).

Rata unccossió definida de le mavera precedert "tates les zurescosions de derivades corverfericere urriforme ment in oे (P).

En efecte." ker tata parclla ε, i es pot definiz $n_{i}(\varepsilon)$ tal pure
(4)
(5)

$$
\sum_{m>n_{i}(\varepsilon)} \varepsilon_{m}<\varepsilon
$$

$$
n_{i}(\varepsilon)>i
$$

alesthores donat ε es verifica

$$
\left|p_{s}^{(i)}(x)-p_{t}^{(i)}(x)\right|<\varepsilon \quad \text { per tot } s>t>n_{i}(x)
$$

per tot $x \in \delta(P)$
En efecte i $x \in P_{1}$ de (2) es segueix

$$
\left|p_{s}^{(i)}(x)-p_{t}^{(i)}(x)\right| \leqslant \sum_{m=t}^{s-1}\left|p_{m+1}^{(i)}-p_{m}^{(i)}\right|<\sum_{m=t}^{\delta-1} \varepsilon_{m}<\sum_{m=t}^{\infty} \varepsilon_{m}
$$

d'per tant d'acord anob (4): (5) tenim

$$
\left|p_{s}^{(i)}(x)-p_{t}^{(i)}(x)\right|<\varepsilon
$$

prix $\dot{t}>x_{i}(x)$.
Per altre part ii $x \notin P_{1}$ i $x \in \delta(P)$ alesheres per cade x oxistrix un j tal pue $x \in\left[a_{j}, b_{j}\right] i d^{\prime} a$ and anbe () , ((1) (5) $i \quad s>t>n_{i}(x)$ tindrens

$$
\left|p_{J}^{(i)}(x)-p_{t}^{(i)}(x)\right|<\left|p_{s}^{(i)}(x)-p_{j}^{(i)}(x)\right|+\left|p_{t}^{(i)}-p_{j}^{(i)}\right|<\varepsilon_{s}+\varepsilon_{t}<\varepsilon
$$

Queden, donss, denioitredes ber anuryen-aies uniformes.
Pu íttion per $\rightarrow x \in\left[a_{j}, b_{j}\right] \quad i n>j$ sesons (2) tenim

$$
\left|p_{m}(x)-p_{j}(x)\right|<\varepsilon_{n} \text {, es a dic, } \lim _{m \rightarrow 0} p_{M}(x)=p_{i}(x)
$$

de neavera we $\lim f_{n}(x)$ es infinitament denirable en $\delta(P)$ i is un polivomi en des pents de of ene varíe anus els inturales coutsitus OV.O.

