Barcelona 8 november 1961

iblioteca de Cièncie i d'Enginyeries

fundació FERRAN SUNYER I BALAGUER

Prof. Th. L. Saaty Head Mathematics Branch Code 432 Office of Naval Research Washington 25, D.C. U. S. A.

Dear Professor Saaty,

Subject: First quarterly report of the Contract N62558-3079 NR 043-266.

The objectives of the research are, when the strip  $\Delta$  and the sequence  $\{\lambda_n\}$  have any of the usual properties, to determine the properties of the functions, holomorphic in  $\Delta$ , which we can represent in  $\Delta$  by the linear combinations of  $\{e^{-\lambda_n}\}$  with a certain precision which satisfies an adherence hypothesis.

I shall give here the main results I have hitherto obtained. Some definitions are needed first.

Let  $\Delta$  be the strip  $\{\sigma > \sigma_o, |t| < \mathcal{N} \ g(\sigma)\}$  in the s= $\sigma$ +it plane, where  $g(\sigma)$  is a continuous function of bounded variation for  $\sigma > \sigma_o$ . We shall assume g=lim inf  $g(\sigma)>0$ . Let  $\delta$ (X) be the intersection of  $\Delta$  and the vertical strip x-b  $\langle \sigma \angle$ x. Then if

Inf Sup 
$$|F(s)-\varphi(s)| \le e^{-\frac{1}{p}(x)}$$
  
 $\varphi \in \bar{\phi} \ s \in \delta(x)$ 

where  $\Phi$  is the set of the linear combinations of the  $\{e^{-\lambda_n}\}$  and where p(x) is a non-decreasing function tending to  $+\infty$  (p(x) may be equal to  $+\infty$  for x sufficiently large), we say that the linear combinations  $\varphi$  (s)  $\in \Phi$  represent F(s) in  $\Delta$  with the logarithmic b-precision p(x).

On the other hand, if the sequence  $\{\lambda_n\}$  is such that  $0 \le \lambda_n$  and  $\sum_{n=1}^{\infty} \frac{1}{n} < \infty$ , and if we set

(1) 
$$q(z) = \begin{cases} z \prod_{2}^{\infty} \left(1 + \frac{z}{\lambda_{n}}\right) = \sum b_{n} z^{n} & \text{if } \lambda_{1} = 0 \\ \prod_{1}^{\infty} \left(1 + \frac{z}{\lambda_{n}}\right) = \sum b_{n} z^{n} & \text{if } \lambda_{1} > 0 \end{cases}$$

(2)  $Q(R) = \int_0^\infty e^{-R\nu} q(r) dr$ 

the theorie of entire functions allow us to state immediatly that the function (1) is entire, and that the integral (2) converges for any R>0

Definition of the adherence hypothesis  $\Omega[g(\sigma), p(\sigma), \{\lambda_n\}]$ . We say that the functions  $g(\sigma)$  and  $p(\sigma)$ , and the sequence  $\{\lambda_n\}$  satisfy the hypothesis  $\Omega[g(\sigma), p(\sigma), \{\lambda_n\}]$  if there exists a continuous non-increasing function  $h(\sigma)$ , with  $\lim h(\sigma)=h$ , such that

$$h < g$$
,  $\log Q(\mathcal{T}(h(\sigma)) < p(\sigma) + M$   $(M < \infty)$ 

$$\int_{-\infty}^{\infty} \left[ p(\sigma) - \log Q(\mathcal{H}h(\sigma)) \right] \cdot \exp \left[ -\frac{1}{2} \int_{-\infty}^{\infty} \frac{du}{g(u) - h(u)} \right] d\sigma = \infty$$

Now using almost the same method that I use in the proof of conclusion |3 of my theorem V of [2] we (see references at the end) we can prove.

THEOREM I.- Supposing the following conditions are satisfied:

1º  $\{\lambda_n\}$  is such that  $0 \le \lambda_n < \lambda_{n+1}$  and  $\sum_{k=1}^{\infty} \frac{1}{\lambda_n} < \infty$ 2º F(s) is holomorphic function in  $\Delta$ , and the linear combinations  $\varphi(s) \in \Phi$  represents F(s) in  $\Delta$  with the logarithmic b-precision  $p(\sigma)$ .

3º The hypothesis  $\Omega[g(\sigma), p(\sigma), \{\lambda_n\}]$  is satisfied.

Then for any finite rectangle  $\chi = \{\sigma < \sigma \leq a, |t| \leq \alpha\} \subset \Delta$ , we have  $F(s) \in K(\{\lambda_n\}, \chi)$ , where  $K(\{\lambda_n\}, \chi)$  denote the closure of  $\mathbb{R}$ 

the linear combinations  $\varphi(s) \in \Phi$  in the rectangle  $\chi$ , with the topology of uniform convergence.

If, instead of  $\mathbf{g}(\mathbf{z})$  and  $\mathbb{Q}(\mathbb{R})$ , we had taken  $\bigwedge(\mathbf{z})$  and  $\mathbb{L}(\mathbb{R})$  of Mandelbrojt, we should have stated a similar result, but we should have only proved that  $\mathbb{F}(\mathbf{s}) \in \mathbb{K}(\left\{ \left. \begin{array}{c} \lambda_n \\ \end{array} \right\} + \left\{ - \left. \begin{array}{c} \lambda_n \\ \end{array} \right\}, \chi$ ).

Let  $W(\Delta, \{\lambda_n\}, b, \Omega)$  be the class of the functions F(s) holomorphic in the strip  $\Delta$  and such that the linear combinations  $\varphi \in \Phi$  represent F(s) in  $\Delta$  with a logarithmic b-precision p(x) so that the hypothesis  $\Omega(g(\sigma), p(\sigma), \{\lambda_n\})$  be satisfied.

Then, combining theorem I and two results of Schwartz [1, pag.38-39 and 57-58] we obtain.

THEOREM II. - When

1º  $\{\lambda_n\}$  is such that  $0 \le \lambda_n < \lambda_{n+1}$  and  $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$ 

2º  $\Delta = \{\sigma > \sigma_o, |t| < \pi g(\sigma)\}$ , where  $g(\sigma)$  is a continuous function of bounded variation in  $\sigma_o < \sigma < \infty$  such that  $g(\sigma) > 0$  and  $\lim_{\epsilon \to 0} g(\sigma) > 0$ .

Then  $F(s) \in W(\Delta, \{\lambda_n\}, b, \Omega)$  if, and only if,

(i): F(s) is holomorfic in the half-plane  $\sigma > \sigma_o$ .

(ii): There exists a Dirichlet series  $\sum d_n e^{-\lambda_n s}$  and a sequence  $\{n_{ij}\}$  of natural numbers such that

$$\lim_{k = \infty} S(s) = F(s)$$

uniformly in every domain

$$\sigma \geq \sigma_0 + \xi$$
  $\left| \frac{t}{\sigma - \sigma_0 - \xi} \right| \leq C$ 

for any  $\mathcal{E} > 0$  and any C > 0, where

$$S_{n_{\xi}}(\mathbf{s}) = \sum_{n=1}^{n} d_{n} e^{-\lambda_{n} S}$$

and where the sequence  $\{n_{ij}\}$  depends only on  $\{\lambda_{ij}\}$  Biblioteca de Ciêncies i d'Enginyeries

As an immediate consequence, we obtain the following:

COROLLARY. - Let  $\{n_k\}$  be a sequence of natural numbers such that  $\sum_{k=1}^{\infty} 1/n_k < \infty$ . Let  $\Phi$ , be the set of the polynomials  $\Psi(z) = a_0 + \sum_{k=1}^{\infty} a_k z^{n_k}$ . If the function f(z) is holomorfic in the domain  $\{0 < |z| < 1$ ,  $|\arg z| < \infty \}$  and if

Inf 
$$\sup_{\substack{\theta \times < |z| < x \\ |arg z| < \alpha}} |f(z) - f(z)| < e^{-\beta(x)}$$
 (0<\th>0<\th>1)

holds. Then, supposing that for  $\xi > 0$  sufficiently small

$$\int_{0}^{+\infty} p(x) x^{\frac{\pi}{2}-1+\epsilon} dx = -\infty,$$

the function f(z) is holomorfic in the circle |z| < 1.

In the next quarter I shall endeavouz to treat the similar topics of those above considered but when  $\sum_{k=1}^{\infty} \frac{1}{\lambda_{m}} = \infty$  and the upper density of  $\{\lambda_{n}\}$  is finite.

## REFERENCES

Schwartz, L. - Etude des sommes d'exponentielles. (Actualités scientifiques et industrielles 959, Deuxième édition)

Sunyer Balaguer, F. - Aproximación de funciones por sumas de exponenciales (Collectanea Math. vol. V, pag. 241-267, 1952).

Sincerely yours,

F. Sunyer Balaguer Angel Guimera 66 pral. 2º Barcelona - 17, Spain