Qrence denyes: Ami sopuso wo th

 ue ejuplor senifodo ; creo qpe relo nito el gpu Who a veer-

Ma we ti cureta que a co femumue do sh Leorema han de ser de le Miscur diake; fiveres
 frutamente en lo que prahajp en en sureufuer (yo nhileso der annllor arintutieo peo \& Ls veio (us) lo que hoy. lo cosun ear fider ths

$2 \xi^{5}$ un elemento fror $f^{\prime}(0) .$.
La demartzacion Hía neccedud de I ar cund. I vdeutided fueb honente eve un cuetradfunflo; pho wi to tade
 fecié trethenter no \sim wo Nowo ento y hahio gue relurcar pres fres mular; ' faupuro is th viebo ahi
 Act. Heath $t .72$. Cones no feppu que rote lo queres

$\left\{\right.$ Mng $\left.m_{\infty}\right\}$ comenxa, wo que fructe secuis ute yeupfo (to trae

$$
f(x)=\sum_{v=1}^{\infty} \frac{1}{2^{v}} m_{v}\left(\frac{m_{v}}{m_{v+1}}\right)^{v} \cos \left(\frac{\pi}{2}+\frac{m_{v+1}}{m_{v}} x\right)
$$

que lo to emupb to cund we y duf. $\operatorname{logm}_{n}=O\left(r^{2}\right)$ hana que la clase $C\left(\mu_{n}\right)$ de o completa en deus vuntrufa be dericiedo de Cerbe fruwise.

Una coro te reppres, cunforme: an la hag 48 del Chbs S. Relh, trueplang. Ia cond $\int|G(u)-B| d u<\infty$. Es man general o mar pacheularato que rev ℓ reureto $(\arg z \mid \angle G(i) g \rho), \mid z)=\rho$, tranef. corpormed $|z-1|<1$
\qquad pros uno $\omega(z)$ con $h<|\omega| z\left|z^{\alpha}\right|<K^{\prime} \alpha=\frac{2 G}{\pi}$ - thi prefonter a bi cre

