Tilting mechanisms in domino faults of the Sierra de San Miguelito, central Mexico

S.-S. Xu, A.F. Nieto-Samaniego and S.A. Alaniz-Álvarez

INTRODUCTION

The southern Mesa Central of Mexico was deformed by at least three major phases of Cenozoic extension. The first extensional deformation of Eocene age is recorded by the tilting of red beds that are the oldest post-orogenic sediments (Aranda-Gómez and McDowell, 1998). The second phase of extensional deformation produced numerous tectonic basins and took place in Oligocene time, between 30 and 27 Ma. The third phase of extensional deformation post-dates Miocene volcanic units and reactivated the Oligocene faults and grabens (Nieto-Samaniego et al., 1999).

The amount of Eocene extension and the direction of the principal strain axes are unknown. For the Oligocene and Miocene phases, Nieto-Samaniego et al., (1999) estimated principal horizontal extensions of 0.20 in a 259° direction and 0.11 in a 169° direction. They recognized orthorhombic fault arrays in the Mesa Central and deduced that post-Eocene strain was three-dimensional. The faults of the Sierra de San Miguelito constitute one of the
four sets of faults that accommodated the three-dimen-
sional strain.

In order to improve the estimation of strain in the
southern Mesa Central (Fig. 1), we measured fault dis-
placements and the attitude of beds in a structural section
presented by Labarthe-Hernández and Jiménez-López
(1992) crossing the San Luis de la Paz – Salinas de Hidal-
go fault system in the Sierra de San Miguelito (SSM)
(Figs. 1 and 2). This fault system has been considered as
“domino style” because it consists of sub-parallel faults
that systematically tilt the beds to the NE (Labarthe-Her-

Domino faults are extensively observed in basins and
other continental structures (e.g. Gibbs, 1984, 1989;
McClay, 1990; Stewart and Argent, 2000). The tilting of
blocks in domino faults produced by rigid-body rotation
has been commonly accepted. In this model there is no
internal block deformation. However, other models for
explaining the tilts have been developed. For large listric
faults, some authors consider that the hanging-wall block
is deformed by simple shear in vertical planes assuming
internal block deformation by change in bed lengths (e.g.
Westaway and Kuszmir, 1993). A more general shear
model assumes that tilt in the hanging wall block is pro-
duced by simple shear in an arbitrary direction (White et

FIGURE 1 | Map of the southern Mesa Central of Mexico showing major faults. The inset shows the faults of the Sierra de San Miguelito (SSM) and the location of structural sections.
al., 1986; Dula, 1991). Layer-parallel shear produces internal block deformation and it can be recognized from stylolite teeth and cleavage oblique to bedding (Ferrill et al., 1998).

The main purpose of this study is determining the role of rigid body and internal deformations in the domino faults. Rigid-body rotation, vertical shear and inclined shear, require different relationships between fault and bed tilting. Those models predict different amounts of extension and initial fault dips using present dips of faults and beds. For analyzing inclined shear we need to know the fault shape in depth, which is not available in our case of study. We decided to test vertical shear and rigid body rotation models because the fault shapes at depth are not required and considered vertical shear as a special case of inclined shear. In this paper we apply strain analysis using dips of faults and beds in the volcanic region of the Sierra de San Miguelito. Also, we estimate the Cenozoic horizontal extension and document significant differences, depending on the model considered.

STRATIGRAPHY OF THE SIERRA DE SAN MIGUELITO

The stratigraphy of the southern Mesa Central was established from 1:50000 and 1:20000 scale geologic maps (Labarthe-Hernández et al., 1982; Labarthe-Hernández and Jiménez-López, 1992, 1993, 1994) and from Nieto-Samaniego et al. (1999 and references therein). The

![Geological map of the Sierra de San Miguelito. Geology was modified from Labarthe-Hernández and Jiménez-López (1992). Dashed line shows the area in which bed tilts and fault dips were measured along the section A-A.’](image-url)
oldest unit is the Caracol Formation which is of Cretaceous age. This unit crops out only in the SE limit of the Sierra San Miguelito and consists of limestone and sandstone (Labarthe-Hernández et al., 1982). The Caracol Formation is covered by a Cenozoic acid volcanic sequence, principally Oligocene in age. In the studied area, this Oligocene stratigraphic record includes several sedimentary and volcanic units that are superficially described here:

Portezuelo Latite. This unit consists of lava flows up to 400 m thick (Labarthe-Hernández et al., 1982) that crop out, due to fault displacements, only in a few places in the central Sierra de San Miguelito.

San Miguelito Rhyolite. This unit includes a series of domes and lava flows with a thickness of up to 450 m that forms the largest volume of Cenozoic lavas in the southern Mesa Central.

Cantera Ignimbrite. This volcanic unit is made up by acid pyroclastic products that cover all the Sierra San Miguelito (Labarthe-Hernández and Jiménez-López, 1992). The lower member consists of 2-40 m of a white to pink colored unwelded ash flow, without bedding, which was deposited on a low-topographic relief. Conformably overlying the unwelded part, there is a 350 m thick, brown to gray colored, welded ignimbrite with pink tonalities. The contact between these members constitutes a good stratigraphic marker used in the construction of the structural sections (Fig. 3).

Panalillo Rhyolite. This unit includes two members separated by a basaltic flow. The lower member consists of unconsolidated rhyolitic ash flow deposits and the upper one is formed by a rhyolitic welded ignimbrite. The unit covers unconformably the Cantera Ignimbrite and fills topographic depressions.

Halcones Conglomerate. This unit consists of poorly consolidated and sorted continental conglomerate with a thickness ranging from 2 to 15 m.

The above mentioned Oligocene volcanic units appear unconformably overlain by sandstone, conglomerate and fine grained deposits only within the grabens. These younger sediments are alluvial and lacustrine in origin and span in age possibly from late Oligocene to Quaternary.

GENERAL CHARACTERISTICS OF NORMAL FAULTS IN THE SIERRA SAN MIGUELITO

The studied area contains numerous normal faults with strikes of 300-340° (Fig. 2). Nearly all faults have SW dip-directions varying from 45° to 75°. The striations on fault surfaces are observed trending SW with pitch angles of 75-85°, which implies there is little displacement along the strike of the faults. These faults were classified as a domino system because they show uniform fault dip direction, uniform bedding dip direction and similar bed dip angles (Labarthe-Hernández and Jiménez-López, 1992). The faulting was dated by Nieto-Samaniego et al. (1999) to be between 30.0 to 26.8 Ma. Deformation began with the emplacement of the Cantera ignimbrite and ended with the emplacement of the upper Panalillo Rhyolite (Labarthe-Hernández and Jiménez-López, 1992). The distances between faults are not equal and fault size is variable (Figs.1, 2 and 3).
There are relay structures, en échelon fault arrays, and intersections of the structures (Fig. 2), which complicate the deformation within the fault blocks. In addition, most of the faults are corrugated in the strike direction (Fig. 2), and fault dips vary along strike (Fig. 4). The differential values are larger than 10°, which is not within the range of measurement errors. Corrugations could be due to overlapping or en échelon fault arrays (Ferrill et al., 1999) and are expressed as an angular undulation (Childs et al., 1995). It is improbable that layer-parallel shear occurred in the Sierra San Miguelito because the dips of bedding are not favorable to slip (Fig. 5). Additionally, we observed rough bed contacts without slickensides and bed parallel horizontal shear bands are absent. In general, we did not observe the structures indicative of layer-parallel shear, such as those reported by Ferrill et al. (1998).

INITIAL DIPS OF NORMAL FAULTS

Under the Andersonian principle of conjugate shears, domino faults satisfy the condition

$$\cot (2\delta_0) = nC,$$

where C is the coefficient of friction on the fault, δ_0 is the initial fault dip and n is +1 for reverse faults and -1 for normal faults (Westaway and Kusznir, 1993). We considered two values of C, 0.6 according to Byerlee's law and 0.8 reported by Nieto-Samaniego et al. (1997). Equation (1) shows that fault angles should be steep for the considered values of C, the expected initial dips (θ_0) are 60° and 64°.

Rigid-body rotation and vertical shear models were used to calculate the original fault dips and to determine whether our results are consistent with Andersonian theory. Table 1 shows the values of measured dips of faults (θ) and dips of beds (ϕ) measured near each fault in the hanging-block of the structural section A-A' (Figs. 2 and 3). We used these bed dips because they reflect the total rotation produced by the slip on the related fault.

For rigid-body rotation, tilt angles of beds and faults are equal. So, when present-day fault dips and bed tilt are given, initial fault dips ($\delta)$ can be obtained from

$$\delta = \theta + \delta.$$

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>α (°)</td>
<td>225</td>
<td>245</td>
<td>220</td>
<td>239</td>
<td>210</td>
<td>250</td>
<td>200</td>
<td>215</td>
<td>238</td>
<td>226</td>
<td>246</td>
<td>220</td>
<td>245</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>θ (°)</td>
<td>35</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>26</td>
<td>38</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>26</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>δ_0 (°)</td>
<td>54</td>
<td>45</td>
<td>63</td>
<td>54</td>
<td>64</td>
<td>45</td>
<td>75</td>
<td>55</td>
<td>58</td>
<td>75</td>
<td>65</td>
<td>67</td>
<td>64</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>ϕ_0 (°)</td>
<td>89</td>
<td>70</td>
<td>117.5</td>
<td>88.7</td>
<td>122</td>
<td>99</td>
<td>143</td>
<td>102</td>
<td>99.6</td>
<td>107.2</td>
<td>113</td>
<td>95.1</td>
<td>102</td>
<td>98.5</td>
<td>93.4</td>
</tr>
<tr>
<td>δ_v (°)</td>
<td>64</td>
<td>56</td>
<td>69</td>
<td>58</td>
<td>70</td>
<td>56</td>
<td>78</td>
<td>62</td>
<td>63</td>
<td>76</td>
<td>69</td>
<td>69</td>
<td>68</td>
<td>67</td>
<td>68</td>
</tr>
</tbody>
</table>

N: progressive number assigned to measured faults; α: dip-direction of faults; θ is dip of beds near the fault in the hanging-wall; δ: the present-day dip of faults; δ_0: the initial angle of faults calculated according to the rigid-body rotation model; δ_v: the initial angle of faults calculated according to vertical shear model.
We calculated initial fault dips from the section A-A’ in Fig. 3 and the result is shown in Table 1. All of the initial fault dips are steeper than the optimal values predicted by the Anderson normal faulting regime (between 60-64°), and some of them are higher than 90°.

Considering the vertical shear model of Westaway and Kusznir (1993), θ, δ, and the original fault dip (δ0) are related by

\[
\tan\delta_0 = \tan\theta + \tan\delta,
\]

Equation (3)

We calculated δ0 values for the faults according to equation (3) (Table 1). Three initial fault dips (faults 1, 8 and 9) are in the expected range from Anderson model, but considering a compass error of ± 5° only three faults are out of range.

Table 1 shows that initial fault dips for vertical shear are more consistent with Anderson theory and initial fault dips for rigid-body rotation are more consistent with original fault dips near 90°. Considering progressive deformation, some faults could be formed later and, in our analysis they appear with very steep original dips, even greater than 90°. Faults 3, 7 and 10 in Fig. 3 could represent this case. Another explanation for the obtained steep original fault dips is that faults were originally vertical. Very steep normal faults (70-90°) have been reported in volcanic rocks such as in Yucca Mountain, Nevada (Ferrill et al., 1999) and in the Bullfrog Hills, Nevada (Maldonado, 1990). These steep faults were proposed to be the result of shear failure of rocks with relatively high friction angles, or formed by tensile failure mode (Mandl, 1988).

Faults of the Sierra de San Miguelito show better adjustment for the vertical shear model. However, it is possible that faults were formed with very steep dips and also some show a geometry suggesting that they were formed in advanced stages of progressive faulting. These uncertainties do not permit an unequivocal choice between rigid body rotation and vertical shear models from our initial fault-dip analysis.

THE CHANGE OF BED TILT ACROSS THE STRIKE OF FAULTS

One of the most evident characteristics in the area is that the dip-direction of all beds is NE. In order to determine the changes in bed tilting due to faulting across different fault blocks, we measured the structures carefully along section A-A’. This section was selected because: 1) systematic data could be obtained; 2) it crosses many faults and 3) it is nearly parallel to the average dip direction of the faults.

For the rigid-body rotation model, the bed tilt across a fault block is uniform and obeys equation (2). For the vertical simple shear model, an ideal isolated fault produces strain that changes with distance from the fault (Fig. 6A). This vertical shear is considered as distributed (Westaway and Kusznir, 1993). In the field, bed tilts would appear as in Fig. 6B, which indicates the bed tilt is larger near the fault planes. Figure 6C shows the distribution of bed tilt in a block bounded by two faults with the same displacement and attitude. The continuous line in Fig. 6C indicates the general tendency of bed tilt, and the dotted line shows the minor internal deformation that can be produced by small secondary faults or other deformation mechanisms. A more complicated case is shown in Fig. 6D, in which the distribution of bed tilt is not symmetrical when fault displacements are very different.

Bed tilt data from 16 blocks are shown in Fig. 7. Measurements for each block were made very near section A-A’ and are located within the area limited by dashed line in Fig. 2. The curves in blocks 10, 11, 12, 13 and 15 show little differences among bed dips. In those cases it is not possible to conclude that bed tilts were produced by vertical shear and could be interpreted as having originated by rigid body rotation, with internal tilts produced by minor faults. In contrast, for blocks 1, 2+3, 4, 5, 6, 7, 8, 9, 14 and 16, the curves resemble Fig. 6. Tilts of beds suggest that most of the blocks could have been deformed by vertical or inclined shear. In addition, the original fault dips are in agreement with Anderson theory if vertical shear is considered. From the analysis of bed tilts and original fault dips, we interpret that vertical or inclined shear
occurred along the section. However, in many cases it is difficult to discard rigid body rotation and it is not possible to choose a unique model. More probably, different amounts of both mechanism occurred, not only along the section but also along the strike of the faults.

ESTIMATION OF EXTENSION STRAIN DUE TO NORMAL FAULTS

For vertical shear, the extension across any planar normal fault is equal to its heave. Thus, the horizontal distance between the footwall cutoff of one fault and the hanging-wall cutoff in the next fault will remain constant as deformation proceeds, maintaining its initial value \(L_0 \) in Fig. 8. So, we have \(DC = BC' = L_0 \) and the heave is \(h = D'B \). The vertical simple shear causes the initially horizontal surface between faults to be progressively tilted by an angle \(\theta \). Thus, the present length \(L_b \) of a bed is \(AC' \). Using trigonometry,

\[
AB = L_b \sin \theta, \quad \text{and} \quad L_0 = L_0 \cos \theta. \tag{5}
\]

Then,

\[
h = D'B = AB \cot \theta = L_b \sin \theta \cot \theta. \tag{6}
\]

We calculated \(L_0 \) and \(h \) using \(L_b \), \(\theta \), (measured) and equations (5) and (6) (Table 2). To estimate the extension we use, for the measured heaves, the equation \(e_{\text{vm}} = \frac{\sum h_m}{\sum L_0} \) and the total extension obtained is \(e_{\text{vm}} = 0.19 \). For the calculated heaves, we use the equation \(e_{\text{vc}} = \frac{h}{\sum L_0} \) and obtained a total extension of \(e_{\text{vc}} = 0.2 \) (Table 2).

In addition, we compare our results with extension calculated by a rigid-body rotation mechanism. For rigid-body rotation, extension \((e_r) \) is calculated from

\[
e_r = \frac{\sum D'C' - \sum AC'}{\sum AC'} \tag{7}
\]

obtaining a total extension \(e_r \) of ca. 0.10.

In order to test the better model we compare the results with extensions obtained from the strain ellipsoid calculated by Nieto-Samaniego el al. (1999) using the model of Krantz (1988) for three-dimensional strain: \([\lambda_1 = 1.44, \text{oriented } 259^\circ/11^\circ; \lambda_3 = 1.232, \text{oriented } 169^\circ/02^\circ; \text{note that } \lambda = (1+c)^2] \). We apply the equation (Davis and Reynolds, 1996, p. 69)

\[
\frac{1}{\lambda_1^2} = \frac{1}{\lambda_3^2} + \frac{1}{\lambda_3^2} - \frac{1}{\lambda_1^2} - \frac{1}{\lambda_2^2} \cos^2 \alpha \tag{8}
\]

where \(\lambda \) is the quadratic extension for the analyzed direction, \(\lambda_1 \) and \(\lambda_3 \) are the maximum and minimum quadratic extensions, respectively, and \(\alpha \) the angle measured counterclockwise from \(\lambda_1 \) to the analyzed direction. The extension we use, for the measured heaves, the equation \(e_{\text{vm}} = \frac{\sum h_m}{\sum L_0} \) and the total extension obtained is \(e_{\text{vm}} = 0.19 \). For the calculated heaves, we use the equation \(e_{\text{vc}} = \frac{h}{\sum L_0} \) and obtained a total extension of \(e_{\text{vc}} = 0.2 \) (Table 2).
FIGURE 7 Distribution of bed tilts within the blocks shown in Fig. 3. Solid line indicates average tendency. Distance was measured from the southwest fault of each block.
FIGURE 7: Continue.
There are several sources of error that produce dispersion in data and the calculated values making it impossible to obtain accurate results. Thus the obtained results are considered as an approximation, which can be used for supporting the presence or not of rigid body rotation. The main sources that we identify are:

1) The coexistence of rigid-body rotation mechanism and inclined shear. This may cause a decrease in the calculated strain. 2) Measurement error: the bedding of volcanic rocks is generally not as clear as in sedimentary rocks. This probably produces errors in field data acquisition. The measurement error for bed tilt is estimated ≤ 5°. 3) The change of bed tilt. As mentioned above, bed tilt varies largely across a block. For this reason the average bed tilts (θi in Table 2) were used to calculate extension. 4) Fault corrugation: this feature would cause an error in the fault dip data because the measured points are not exactly on the points of intersection between the fault and the section. 5) Fault intersection: slip distributions near the line of intersection between two faults often show multiple slip directions (Nicol et al., 1996; Nieto-Samaniego and Alaniz-Alvarez, 1997; Maerten et al. 1999). The normal faults in San Miguelito also developed minor transverse faults that could produce oblique displacements.

THE ROLE OF SMALL FAULTS, JOINTS AND CLEAVAGES DURING VERTICAL SHEAR

Joints and cleavages

After vertical shear occurs, initial beds are tilted, thinned and lengthened (Fig. 8, Table 2). The extension of beds of individual blocks (εbed) varies from 0.02 to 0.15. In fragile units near the surface, the extension is probably accomplished by minor faults distributed within the blocks. The most evident joints in ignimbrites are columnar. Two sets of joints sub-perpendicular to each other cut rocks into rhomboidal or rectangular blocks. We also observed a set of minor faults with strikes parallel to the normal faults and dips of 72-90°. The frequency is 2 minor faults for each meter along most of the cross sections. The slickensides on some minor faults and joints are observed to be nearly vertical, consistent with vertical shear. Some sub-vertical fracture cleavage zones were observed, which maintain its orientation sub-vertical to the major faults.

In the previous analysis we show that the tilting of beds were not only owing to the rigid body rotation and that vertical or inclined shear contributed to liberate deformation in the domino faults of Sierra de San Miguelito. The absence of layer parallel shear in these rocks and the presence of sub-vertical joints and minor faults suggest that they could liberate the internal extension of beds required for the vertical shear model. In order to test this idea we estimate the amount of extension due to small faults and compare it with the extension of beds obtained by applying the vertical shear model.

Finite strain due to small faults

Previous work

For many deterministic fractals, the scale invariance is obvious, but in nature self-similarity is statistical and it refers to the geometry shown by a specific parameter of the physical object. Some parameters of natural faults such as length, displacement, spacing or clustering, show a self-similar geometry (e. g., Walsh et al., 1991; Marrett and Allmendinger, 1992; Poulimenos, 2000). The self-similarity of these parameters is reflected by their power-law distributions and a plot in log-log space is commonly used to determine it.

Length (L) and displacement (D) of faults show power-law distributions and the relationship between them is crucial for strain determination because length is obtained more easily than displacement. Scholz and Cowie (1990) proposed that, if a relationship between L and D is established, the total brittle strain could be calculated when only one parameter is known.

Theoretical background

If fault displacements obey a power-law distribution, we can write
\[N = a_1 r^{C_d}, \]
\[(9) \]
where \(N \) is the number of displacements larger than or equal to \(r \); \(a_1 \) is a constant and \(C_d \) is the exponent of the cumulative displacement distribution.

The relationship between \(L \) and \(D \) has been discussed in the literature. There are two main points of view: one of them proposes that \(L \) and \(D \) are lineally related (Opheim and Gudmundsson, 1989; Scholz et al., 1993; Clark and Cox, 1996). The linear relationship has been documented analyzing a single rock type and tectonic setting (Cowie and Scholz, 1992; Dawers et al., 1993). If the relationship between displacement and length of faults is linear, the exponent of fault-length and fault-displacement cumulative distribution must be the same. Then, it is possible to calculate the finite strain by using the fault-length distribution alone.

The second point of view proposes a non-linear relationship between \(L \) and \(D \) based on a log-log graph of worldwide fault data set, including multiple lithologies and tectonic environments. There is large scatter in the \(L-D \) plot, and the data are enveloped by two parallel lines showing a relation of \(D \propto L^{1.5} \) (Marrett and Allmendinger, 1991; Walsh et al., 1991)

Method

The displacements and fault lengths were measured on maps and sections with scales of 1:50000 and 1:20000 (Labarthe-Hernández and Jimenez-López, 1992, 1993, 1994). We calculated the relationship between fault length and displacements by selecting the points where the sections intersect the main fault and by discarding those cases where there are branches that distribute the total displacement in two or more associated faults. Multi-line data set was used for one-dimensional analysis because a single cross-section cannot provide a large enough number of faults to provide a reasonable estimation. The fault displacements were measured along four cross sections (Fig. 1). Note that the faults could be crossed in two or more points; in that case we used the displacement measured in the respective point of intersection.

Calculation of strain

We plotted lengths and displacements of faults in the graph of Fig. 9A. The graph \(L-D \) shows a large dispersion, apparently indicating a non-linear relationship for the faults of the Sierra de San Miguelito. In order to estimate the displacement distribution, we used the cumulative plots (Figs. 9B and C). Note there are both censoring (right truncation) and left truncation in Fig. 9B. The censoring has been interpreted as an underestimation of the large-scale values (Jackson and Sanderson, 1992; Pickering et al., 1995). The left truncation indicates incomplete sampling in our studied area (e.g. Pickering et al., 1995). After eliminating left truncation we obtained an exponent value of 0.63. Plotting the data of each section separately, this method was proposed by Yielding et al. (1996), we obtained an envelope slope of 0.66. Although the availa-
where \(h_s \) is the sum of the heaves for the small faults, \(h_n \) is the smallest heave of the large faults and \(N \) is the number of faults observed in one-dimensional sampling. We calculated \(h_s \) using \(C_d = 0.63 \), \(h_n = 28 \) (see Table 2) and obtained \(h_s = 601.42 \) m. This result is near to the value obtained for the heaves due to bed stretching calculated from the vertical shear model \((\sum h_d = 635 \) m, see Table 2), suggesting that tilt and lengthening of beds really result from displacements on small faults. If \(C_d = 0.66 \) is used, \(h_s = 680.12 \) and this value is larger than the heaves due to bed stretching. These results show that displacement of small faults can accommodate the horizontal strain required by the vertical shear model. From Table 2, we obtain \(\sum L_0 = 9211 \) m, and using the cumulative curve of Fig. 9B, which produce a more accurate exponent, the extension due to small faults is \(e_s = h_s/\sum L_0 = 0.065 \) which is ca. 33% of the total extension.

CONCLUSIONS

The calculated initial fault dips are not consistent with the angles predicted by Anderson theory, opening up two possibilities: 1) deformation took place by vertical or inclined shear, or 2) faults formed with original dip angles near 90°. The initial dip angle analysis does not permit an unequivocal choice between those possibilities.

The dip of beds shows that tilts were larger near the faults bounding blocks. It is impossible to produce this tilt pattern by rigid body rotation. We interpret that internal block deformation is the main evidence of vertical or inclined shear.

Vertical shear produces greater extension than rigid-body rotation. We calculated the extensions along one section obtaining \(e_v = 0.20 \) for vertical shear and ca. \(e_r = 0.10 \) for rigid-body rotation. The value of extension for vertical shear is in good agreement with the previous estimation \((e_v = 0.18)\) for the Mesa Central reported by Nieto-Samaniego et al. (1997, 1999). The rigid-body rotation model underestimates the lengthening by up to 8%.

Although we do not have a good data base, a power-law distribution of fault displacements in the Sierra San Miguelito is supported by the available information. The stretching of beds required by the vertical shear model could be produced by small faults, and probably joints played an important role during vertical shear. The calculated extension due to small faults \((e_v = 0.065)\) is ca. 33% of the total extension considering large and small faults.

Generalizing, our data show that vertical or inclined shear took place in meso- or even small-scale faults in the volcanic rocks of Sierra de San Miguelito, and the model of Westaway and Kuszniir (1993) can be applied in order to calculate extensions. The bed strain required by vertical shear probably was accommodated by displacement along small faults or joints in shallow crustal levels.

ACKNOWLEDGEMENTS

Thanks to R. Westaway for explaining to us the method of extensional calculation for vertical shear. We wish to thank D. J. Sanderson, Alan Morris, David Ferrill and Barbara Martiny for their pertinent suggestions in an earlier version of the manuscript. Comments of F. Sábat and an anonymous reviewer are acknowledged. This work was supported by projects PAPIIT-IN113399 and CONACYT-33087-T.

REFERENCES

Tilting mechanisms in domino faults of central Mexico

Manuscript received March 2003; revision accepted October 2003.