INTRODUCTION

The Central Atlantic Magmatic Province (CAMP) covers an area of ca.10^7 km², spanning four continents: North and South America, Western Europe and Northwest Africa (Marzoli et al., 1999). This magmatic event consists of large tholeiitic basalts represented by dike swarms, sills, and lava flows (Fig. 1A). It occurred at the end of the Triassic (≈200Ma) during the early stages of the Pangea rifting that led to the opening of the central Atlantic ocean.
Triassic rifting and CAMP volcanism in the Saharan Atlas, Algeria

The huge eruptions of the CAMP are likely to have triggered the Triassic-Jurassic mass extinction (Tanner et al., 2004).

In Algeria, CAMP remnants outcrop in the Triassic evaporitic diapirs of the Saharan Atlas and in the Saharan Platform (Fig. 1A, B, C; Chabou et al., 2007; Meddah et al., 2007, Chabou et al., 2010; Meddah, 2010). In Morocco, they are disseminated in the High, Middle and Anti-Atlas and in the Meseta domains (Fig. 1B, C; Bertrand et al., 1982; Knight et al., 2004; Marzoli et al., 2004; Mahmoudi and Bertrand, 2007; Bensalah et al., 2011; Farki et al., 2014). In the Saharan Atlas, High and Middle Atlas and in the Meseta, the CAMP volcanic pile generally caps Triassic sedimentary series filling extensional basins (Laville and Petit, 1984; Aît Ouali, 1991; Aît Ouali and Delfaud, 1995; Piqué and Laville, 1995; Le Roy and Piqué, 2001; Yelles-Chaouche et al., 2001).

The aim of this paper is: i) to present the Triassic-early Liassic volcano-sedimentary sequence in the Saharan Atlas (Algeria); ii) to compare the geochemical characteristics of the basaltic rocks from the Saharan Atlas with those from the Moroccan Atlas; iii) to constrain the geodynamic evolution of the Atlasic basins during the early Mesozoic; iv) to assess the extent of the Central Atlantic magmatic province in Algeria, in connection with the rift evolution at the end of the Triassic.

GEOLOGICAL SETTING

The Cenozoic Maghrebian orogenic domain comprises the Tell and the Rif (Maghrebides) and the Atlasic domain (Durand-Delga and Fonboté, 1980). The Tell-Rif is interpreted as an Alpine orogen resulting from the closure of the Maghrebian Tethys (Bouillin, 1986).

FIGURE 1. A) Schematic map of the Central Atlantic magmatic province (after Bertrand, 1991; Marzoli et al., 1999; McHone, 2000; Verati et al., 2005; Chabou et al., 2007; Meddah et al., 2007; Bertrand et al., 2014); B) main geological domains of North Africa, C) distribution of CAMP volcanism in the northwest Africa with location of studied area (after Meddah et al., 2007; Meddah, 2010); D) structural outline of the western Saharan Atlas, with location of the investigated Triassic diapirs (numbers 1 to 10; cf. lithological sections in Figure 3).
The Atlasic domain (Fig. 1B) is regarded as an intra-continental orogen (Mattauer et al., 1977) developed on former mesozoic half-grabens initiated during the Triassic-Liassic rifting (Aït Ouali and Delfaud, 1995; Piqué and Laville, 1996; Piqué et al., 1998; Frizon de Lamotte et al., 2000). It is the result of strike-slip movements and reactivation of late-hercynian fractures (Mattauer et al., 1977; Piqué and Laville, 1996; Piqué et al., 1998). Clastic and evaporitic sequences were deposited in these half-grabens accompanied by tholeiitic basaltic flows (Aït Ouali and Delfaud, 1995; Piqué et al., 1998).

In the Saharan Atlas, this volcanic episode occurred during the late Triassic (Flamand, 1911; Bassoulet, 1973; Meddah et al., 2007; Meddah, 2010) and corresponds to the magmatic rifting stage, coeval with the onset of basin opening (Fig. 2). The environment was lagoonal-continental (Busson, 1974). The basaltic flows are associated with the evaporitic sediments of the Triassic diapirs. These outcrops are controlled by NE-SW anticlines (Galmier, 1970) distributed over an area of 40.000km².

This first episode of opening was followed by an episode of carbonate sedimentation without magmatism, corresponding to the post-magmatic rifting stage and assigned to the lower-middle Lias (Aït Ouali and Delfaud, 1995; Yelles-Chaouche et al., 2001, Meddah et al., 2007). This second episode is part of the carbonate platform, set
Triassic rifting and CAMP volcanism in the Saharan Atlas, Algeria

Magmatic rifting stage
Post-magmatic rifting stage

Carbonated sedimentation
Volcano-evaporitic sequence

Preponderantly detrital
Saliferous detrital

Predominantly biochemical
Lagoonal environments

Gradual opening
Triassic Basin

Birth of basin
Deepening of basin

El-Khoder
Birth of basin
Deepening of basin

FIGURE 3. Stratigraphic sections (location of sites in Figure 1D; same legend as in Figure 2).
up during the early deepening of the basin (Fig. 3) in a lagoonal-marine to marine environment (Flamand, 1911; Aït Ouali and Delfaud, 1995; Piqué et al., 1998; Yelles-Chaouche et al., 2001). This episode ended during the Domerian and was followed by the upper Lias post-rift filling of the basin (Aït Ouali and Delfaud, 1995; Yelles-Chaouche et al., 2001).

STRATIGRAPHIC SECTIONS

Based on detailed mapping of the diapiric sites (e.g., Fig. 2), 10 stratigraphic sections are reported in Figure 3. Intersites correlations allow to establish a lithological sequence subdivided into two groups. The lower group consists of Triassic volcano-evaporitic deposits corresponding to the magmatic rift stage. The upper group consists of Rhaetian-Hettangian limestones corresponding to the post-magmatic rift stage. At the eastern end of the Saharan Atlas, beyond the longitude 5ºE, the diapiric sites are constituted by undifferentiated whitish saliferous marls, lacking magmatic or carbonate material.

Magmatic rift stage

The lower group is characterized by three volcanic units interlayered with a siliciclastic-evaporitic sequence (Figs. 2, 3): the lower volcanic unit B1 (5 to 7m thick), the intermediate volcanic unit B2 (1.5 to 3.5m thick) and the upper volcanic unit B3 (4 to 6m thick). Each volcanic unit consists of several thin basaltic flows, 0.5 to 1m thick. Individual lava flows show a massive aspect at the base and evolve towards a vesicular upper crust (Fig. 4). The vesicles are millimeter-sized and rounded. In the massive part of the flows, the basaltic rocks have well-preserved magmatic textures and mineralogy. Most basaltic lavas display a fine to medium-grained aphanitic structure, except the Djénien Bou-Rezg basalts from the lower unit which contain millimeter-sized grains of olivine phenocrysts. Dominant textures are intergranular to subophitic (Fig. 5A, D, E), sometimes with a glomeroporphyritic tendency in the lava flows of unit B2 (Fig. 5C). The petrography of the volcanic units is relatively homogeneous. Mineral assemblages are composed by partially resorbed olivine, Ca-plagioclase, clinopyroxene (augite) and minor amounts of titanomagnetite (Fig. 5A, E). A granophyric interstitial phase has been observed in the B1 lava flows from Tiout (Fig. 5B). This primary mineral assemblage is typical of the continental tholeiites forming the CAMP province, particularly in Morocco (e.g., Bertrand, 1991). As a whole, the basalts from the Saharan Atlas are more altered than those from Morocco (Meddah et al., 2007). The main alteration phases include mica-type (after plagioclase), epidote and calcite (after pyroxene) and iddingsite-chlorite (after olivine).

The sedimentary sequence evolves from detrital gypsiferous lithologies below the B2 basaltic unit to detrital saliferous lithologies upwards. Mingling relationships are observed between sedimentary and volcanic materials at the base of B1 and at the top of B2 and B3 lava units (Figs. 3, 6). In Ain-Ouarka area, the B1 lava flows penetrate hematite-bearing, locally saliferous, red claystones, resulting in a mixture of both lithologies (Fig. 6). The B2 lavas penetrate argillaceous limestones (1.5m thick) displaying laminar stromatolitic structure in Djénien Bou-Rezg, Ain-El-Hadjadj and Méhérise areas and penetrate carbonated clay (3.5 to 4m thick) in Tiout and Ain-Ouarka areas (Fig. 6). The B3 lavas penetrate red carbonated clay (0.2 to 0.3m thick) in Djénien Bou-Rezg, Ain-El-Hadjadj, El-Hendjir, Tiout and Chellala Dahrania areas. In Ain-Ouarka and Djebel Melah areas, these same lava flows penetrate black clay-siliceous limestone with laminar stromatolitic structure (Fig. 6). This latter facies has 1.5 to 2.5m thick and contains the bivalve *Gervillia praecursor* Quenstedt (Flamand, 1911; Bassoulet, 1973).
Syn-sedimentary tectonics has been observed in layers associated with the volcanic flows of the various units. The tectonics is ductile in the argillaceous limestone with laminar stromatolitic levels associated with the B2 lava flows (Fig. 7A), whereas it is more brittle in the black clay-siliceous limestone with laminar stromatolitic levels associated with the B3 lava flows and in the limestones which top the volcano-evaporitic sequence. In the latter two cases, the disruption of sedimentary layers, with reverse fault, is characterized by the formation of monogenic breccias (Fig. 7B, B', C).

Post-magmatic rift stage

As it is the case in the whole Atlasic area (Aït Ouali, 1991; Aït Ouali and Delfaud, 1995; Piqué et al., 1998), carbonate sedimentation predominates after volcanism ceases all over the study area except in Ain-Ouarka and Djebel Melah where saliferous marls are deposited (Figs. 2; 3). Carbonate deposits consist of finely bedded limestones with laminar stromatolitic structure, dolomites and marls. They contain the bivalve *Isocyprina* (*Eotrapezium*) aff. *germari* (Dunker) assigned to Rhaetian-Hettangian (Bassoulet, 1973). In Ain-Ouarka, saliferous marls are overlain by the Djebel Chémarikh dolomite containing the ammonite Caloceras sp. Planorbus zone (Mékahli, 1995), whereas in Djebel Melah, they are overlain by limestones with the bivalve *Mytilus* cf. *psilonotii* Quenstedt (Flamand, 1911; Bassoulet, 1973). The latter limestones are overlain by the Hettangian-Sinemurian dolomite (Aït Ouali, 1991; Aït Ouali and Delfaud, 1995). These paleontological data are consistent with the late Triassic age assigned to the magmatic rift stage.

GEOCHEMISTRY

Analytical methods

The analyzed samples represent 9 areas (8 areas from the western part and one area from the central part of the Saharan Atlas). 34 samples (12 from the unit B1, 5 from the unit B2 and 17 from the unit B3) have been analyzed for major and trace elements (Cr, Ni, Co, Sc, V and Y) using X-ray fluorescence (XRF spectrometer Phillips PW 1404) at the Earth Science Laboratory, University of Lyon. H$_2$O- and H$_2$O$^+$ are loss on ignition measured at 100ºC and 1100ºC, respectively. The precision is 1 to 2wt.% for major elements and 10 to 15wt.% for trace elements. Rare earth elements (REE) and Rb, Sr, Zr, Nb, Ba, Hf, Th, U and Ta were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at the Ecole Normale Supérieure de Lyon on eight samples from the three lava units, selected among the least altered. Rock powder (200mg) was dissolved in a mixture of 3ml...
HF and 1ml HNO₃ during 48h on a hot plate (130°C) under a 50bars pressure. The solutions were evaporated, dried and the residues dissolved in 25ml HNO₃ (0.5N). These solutions were diluted to 0.1ml and analyzed with a VG Element plasma quadripole II ICP-MS with electron multiplier. The precision is 3 to 15wt.% according to each of the elements. The standard used for all analyses was BHVO-1. The major and trace element compositions are listed in Table I, Appendix I.

Major and trace element composition

Loss On Ignition (LOI) ranges from 1.27 to 4.31wt.%, which indicates significant alteration, in agreement with the petrographic observations. The alteration process was likely responsible for a post-magmatic increase in the amount of total alkalis (e.g. K₂O varies between 1.3 and 4.65wt.% with an extreme value at 7.16wt.%; Na₂O varies from 0.35 to 3.5wt.%). The rocks are therefore shifted...
out of the CAMP field in the total alkalis versus silica classification plot (Le bas et al., 1986; Fig. 8A). However, based on less mobile elements such as Ti, Zr, Nb, Y (Floyd and Winchester, 1975; Winchester and Floyd, 1977), the rocks closely match other CAMP basalts such as those of the lava flows in the Moroccan Atlas (Fig. 8B, C). They are classified as subalkaline basalts and andesitic basalts (Fig. 8B) and continental tholeiites (Fig. 8C). All are low-Ti tholeiites, with TiO$_2$ contents ranging from 1.02wt.% to 1.58wt.%, and low P$_2$O$_5$ (0.10–0.20wt.%) and Zr (95–161ppm) contents. The TiO$_2$ content decreases from the lower to the upper unit (Table I). The rocks are moderately differentiated with Mg-numbers [Mg#] ranging between 0.53 and 0.64.

Chondrite-normalized Rare Earth Elements (REE) patterns (Fig. 9A) exhibit a negative slope, with significant enrichment in Light Rare Earth Elements (LREE) compared to the Heavy REE (HREE). Notably, the LREE enrichment decreases from the lower ([La/Yb]n=6) to intermediate ([La/Yb]n=4) and to the upper ([La/Yb]n=2.5) units. In the Mid-Ocean Ridge Basalt (MORB) normalized multi-element spider diagram (Fig. 9B), the studied samples display a strong enrichment in Large Ion Lithophile Elements (LILE) compared with High Field Strength Elements (HFSE), with a distinct negative anomaly in Nb. The variability of Ba and Rb is likely due to alteration processes.

DISCUSSION

Basalts in the Saharan Atlas: the easternmost witness of the CAMP

Basalts in the Saharan Atlas are low-Ti continental tholeiites which match the chemical compositions of other CAMP lava flows, especially those from the Moroccan Atlas (Marzoli et al., 2004; Mahmoudi and Bertrand, 2007), based on major and trace elements the least sensitive to alteration processes (Fig. 8B). Notably, the three lava units identified here show the same chemical evolution as the three major units from Morocco. This evolution is characterized by a decreasing LREE/HREE (e.g. La/Yb) ratio from the base towards the top of the
lava pile (Fig. 9A), suggesting that similar magma sources and processes were operating in both regions. Upward fractionation of La/Yb for a constant Dy/Yb ratio argues for partial melting occurring in the spinel stability field and precludes the involvement of garnet in the mantle source, as discussed by Thirlwall et al. (1994) and Bogaard and Worner (2003). The data are best reproduced by a model of batch partial melting of a spinel lherzolite, which would require increasing degrees of partial melting from approximately 6–10wt.% for the lower unit to 10–15wt.% for the intermediate unit and 15–20wt.% for the upper unit (Fig. 10). In the absence of isotope data, further assessment of the mantle sources is beyond the scope of this paper (see discussions in Callegaro et al., 2014; Merle et al., 2014).

The volcanic sequence in the Saharan Atlas differs from the Moroccan one in two points: i) the younger, so-called recurrent, lava unit observed in the Moroccan High Atlas (Bertrand et al., 1982; Marzoli et al., 2004) is lacking in the Saharan Atlas; ii) the thickness of the lava sequence is considerably reduced from west (up to 300m in the Moroccan High Atlas, ibid.) to east (10–15m in the Saharan Atlas, Fig. 2). No lava flows remnants are observed beyond 5ºE. The volcanic sequence in the Saharan Atlas is therefore the easternmost witness of the CAMP recorded to date in northwest Africa, 1000km away from the Moroccan High Atlas. It represents the vanishing activity of this large igneous province.

CAMP volcanism and rift evolution in the Saharan Atlas

In northwest Africa, the formation of small Triassic-Liassic intracontinental basins was controlled by the reactivation of older Hercynian structures during rifting events at the onset of the dislocation of the Pangea (Laville and Petit, 1984; Laville and Piqué, 1991; Piqué and Laville, 1995, 1996; Piqué et al., 1998). In the Saharan Atlas, small basins were initiated by tilted block faulting during the Upper Triassic (Rhaetian), as attested by geophysical studies (Kazi-Tani, 1986; Yelles-Chaouche, 2001; Belfar, 2004).

In the study area, the CAMP volcanism punctuates the early development of these rift basins (Fig. 11). The three lava units were outpouring in a lagoonal-continental environment, closely linked and sometimes imbricated with evaporitic deposits, forming the volcano-evaporitic sequence of rifting. As the rifting progresses, the degree of melting increases from 6–10wt.% for the lower lava unit up to 15–20wt.% for the upper lava unit.

Syn-sedimentary tectonics is attested by the disruption of the sedimentary beds associated with the volcanic units, resulting in the formation of monogenic breccias. These structures are similar to those described in the Briançonnais zone (French
Triassic rifting and CAMP volcanism in the Saharan Atlas, Algeria

The cessation of the volcanic activity coincides with the transition from a dominantly evaporitic sedimentation (synmagmatic-rift stage) to the progressive marine incursion resulting in the development of the Liassic carbonate platform (postmagmatic-rift stage).

CONCLUSIONS

i) The three basaltic lava-flow units from the Triassic-Liassic basins of the Saharan Atlas share the same stratigraphic position (Upper Triassic) and the same chemical composition as those from the CAMP in Morocco. As such, they are part of the CAMP volcanism.

ii) CAMP volcanism in the Saharan Atlas differs from its Moroccan counterpart because of widely lower volumes of lavas emitted. The thickness of the lava pile is 10-15m, compared to ca. 300m in the Moroccan high Atlas, 1000km away. Hence the Saharan Atlas basins host the easternmost witnesses of CAMP volcanism recognized until now which represent the vanishing activity of the CAMP. No CAMP remnant was recorded so far beyond 5ºE.

iii) CAMP lava flows from the three units are closely associated and imbricated with Triassic sedimentary levels which display syn-sedimentary tectonic features indicative of an extensional paleo-stress field.

iv) Modelling the upwards decrease of LREE enrichment suggests increasing melting rates of a spinel-bearing lherzolite, from 6–10wt.% for the lower unit up to 15–20wt.% for the upper unit. This evolution accommodates the ongoing rifting which ultimately led to the disruption of the Pangea and opening of the central Atlantic ocean.

ACKNOWLEDGMENTS

This work was supported by the ministry of higher education and scientific research of Algeria. Chantal Douchet and Paul Capiez are acknowledged for their analytical assistance. An anonymous reviewer and the Section Editor of Geologica Acta are acknowledged for their helpful comments.

REFERENCES

Triassic rifting and CAMP volcanism in the Saharan Atlas, Algeria

FIGURE 11. Sketch of the geodynamic evolution of the Ksour Basin (Western Saharan Atlas), during the Triassic-Lias. Legend as in Figure 2.
Continental Flood Basalts of the Central Atlantic magmatic province. Science, 284, 616-618.

Manuscript received February 2016; revision accepted October 2016; published Online January 2017.
TABLE I

<table>
<thead>
<tr>
<th>Lower unit</th>
<th>Intermediate unit</th>
<th>Upper unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>Site 2</td>
<td>Site 3</td>
</tr>
</tbody>
</table>

Gross (wt.%) and trace (ppm) element composition of the volcanic units (Saharan Atlas, Algeria). Site numbers correspond to the diapiric setting.

APPENDIX I