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The Paleogene Liushagang Formation is part of the Fushan Sag, a continental lacustrine basin located at the 
Southeastern margin of the Beibuwan Basin, South China Sea. Further understanding of the deep-water gravity 
flow deposits in this formation will be conducive to lithologic reservoir exploration in the sag. In this study, 
three members of the Liushagang Formation, SQEls3, SQEls2 and SQEls1, from old to young, are used with 
core observation, well log data, and three-dimensional seismic data to identify four deep-lacustrine gravity flow 
lithofacies including their vertical and lateral relationships within the depositional system. The results are then 
used to establish a deep-water gravity flow depositional model. Four types of gravity flow lithofacies developed in 
the sag: sandy debrite, turbidite, sandy slump, and bottom-current deposits. Sand-rich sub-lacustrine fan deposits 
with typical turbidite channels developed mainly in the western depression, whereas distal isolated lobes formed 
by sandy debrite flow deposits occurred mainly in the eastern depression. The results obtained in this study will 
be helpful in the research of gravity flows in similar continental lacustrine environments.
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INTRODUCTION

Gravity flow deposits characterized by coarse-grained 
sandy material, are widely developed in semi-deep–deep 
lacustrine (sea) environments (Li et al., 2019). Many 
researchers have reported gravity flow reservoirs in deep-
lacustrine basins such as the Songliao (Pan et al., 2017) and 
southern Ordos basins (Yang et al., 2014) as well as in the 
Jiyang depression of the Bohai Bay Basin (Liu et al., 2017; 
Xian et al., 2016; Yang et al., 2015). Forel (1887) proposed 
high density flow for the bottom currents of the Rhône River 
to Lake Geneva. The structural sequence of this density flow 
was further detailed by Sheldon (1928), and the concept 
of turbidity current was proposed by Johnson (1938). 
Bouma (1962) and Walker (1978) established the classical 
Bouma sequence and sub-marine fan model according to 
the vertical sedimentary sequence and spatial distribution 
characteristics of gravity flows. While questioning the 
traditional turbidity current theory, Shanmugam (1996, 
1997) reviewed developments in gravity flow research of 
the previous 50 years and put forward the concept of sandy 
debris flow. He established two types of deep-water slope 
models, non-channel and channel systems, corresponding 
to mud-rich and sand-rich continental shelves, respectively 
(Shanmugam, 2000, 2013). However, sedimentary patterns 
differ among regions owing to the sedimentary structure 
background, gravity flow formation, and triggering 
mechanism. Therefore, to establish a suitable depositional 
model for deep-lacustrine gravity flow reservoirs, attention 
should be given to the sedimentary characteristics of the 
study area.

The Fushan Sag, a Cenozoic sedimentary sag filled with 
continental and marine deposits, includes the lacustrine 
facies-dominated Paleogene Liushagang Formation, which 
accumulated a thickness of 117-2452m during the rifting 
period (He et al., 2006; Shi et al., 2007) (Fig. 1A). In a 
previous study, we applied the sequence stratigraphy of Vail 
(1987) to identify the Liushagang Formation Sequence as 
a complete second-order sequence unit (Li et al., 2014; 
Ma et al., 2012) including T7 and T4 as the bottom and top 
boundaries of the sequence, respectively. In addition, three 
third-order sequence units were identified in decreasing age 
as the third, second, and first members of the Liushagang 
Formation, represented by SQEls3, SQEls2, and SQEls1, 
respectively. The bottom and top boundaries of SQEls2 
were identified as T6 and T5, respectively (Figs. 1A; 2D). 
During the SQEls2 period, the deep-lacustrine area 
expanded rapidly and created conditions enabling gravity 
flow deposition, which offers strong exploration potential 
(Li et al., 2010; Wang et al., 2014). Liu et al. (2000, 2003) 
proposed that the gravity flow deposits of SQEls2 formed 
a sub-lacustrine fan, which they divided into three units of 
gravity flow depositional facies: turbidite sedimentation, 
underwater debris flow deposition, and slump accumulation. 

However, our understanding of the deep-lacustrine gravity 
flow system of SQEls2 remains unclear owing to variations 
in seismic data acquisition and resolution.

The present study is based on information including drill 
core, drilling logging, and three-dimensional seismic data 
relevant to the main research area. It should be noted that 
the largest scale transgression of the Paleogene occurred 
during the SQEls2 period and formed deep-lacustrine 
mudstone throughout the sag, which made it difficult to 
identify the transgressive surface (ts) of this period (Fig. 
1B). Accordingly, we traced the maximum flooding surface 
(mfs) through the entire sag and studied the lowstand 
and extension system tracts (SQEls2EST + LST) as the 
combined target layer. Therefore, the present study aims to 
i) characterize the deep-lacustrine gravity flow lithofacies 
of the SQEls2EST + LST period, ii) combine vertical and 
horizontal lithofacies analysis with that of the depositional 
system distribution and iii) establish deep-water gravity 
flow depositional models for the Fushan Sag. Our research 
is expected to promote petroleum exploration of the 
Paleogene Liushagang Formation in the Fushan Sag and to 
provide geological support for improving the success rate 
in the area’s oilfields.

GEOLOGICAL SETTING 

The Fushan Sag is located at the southern margin of the 
Beibuwan Basin, which is adjacent to the Hainan uplift and 
the Qiongzhou Strait to the South and North, respectively 
(Fig. 2A, B). The sag is a NE-E-trending half-graben sag 
filled with more than 9,000m of Cenozoic strata in an area 
of approximately 3,000km2 (Kang et al., 1994; Shi et al., 
2007). Owing to the influence of Yanshanian tectonics, 
numerous complex structures characterized by extensional, 
rotational, and strike–slip faults are developed in the sag. 
The Central Transition Zone, a low uplifted region located 
in the middle of the Fushan Sag, divides the sag into two 
independent sub-sags known as the eastern depression and 
the western depression, respectively (Fig. 2C). Our study 
area covers four sub structural units in the sag: the southern 
slope zone, the western depression, the Central Transition 
Zone and the eastern depression (Fig. 2C; D). During the 
development of the Liushagang Formation, the main source 
of the sediment was the southern Hainan uplift. The entire 
study area forms a wide domain gently tilted to the South 
and steep terrain in places (Ma et al., 2012) (Figs. 2C; D). 
The extensional fracturing of the sag has been enhanced 
since the Paleogene under the influence of the South China 
Sea movement, volcanism and earthquakes. The volcanic 
activity is interpreted to include multiple eruptions of 
high intensity and long duration that occurred in a wide 
distribution range (Lin et al., 2015). Volcanic rock units 
reached a maximum thickness of 220m in a single well 
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developed during the SQEls2 period. Overall, the abundant 
source system, slope structure, and frequent volcanic and 
seismic activities provided the necessary conditions for the 
development of deep-lacustrine gravity flow deposits in the 
Fushan Sag. 

DESCRIPTION OF LITHOFACIES 

The data used for this analysis were provided by the 
China Southern Petroleum Exploration & Development 
Corporation. The data of 16 cores obtained in the deep-
lacustrine area of the Fushan Sag (Fig. 2C), each 218m 
in length, were used to identify four lithofacies of deep-

lacustrine gravity flows that occurred during the SQEls2EST 
+ LST period: sandy debrite, turbidite, sandy slump and 
bottom-current deposits (Fig. 3). These four types are 
defined according to their fabric, genetic mechanism, and 
rheological characteristics of sediments (Table 1).

Lithofacies 1 (Lf1): sandy debrite

According to its rheology, the sandy debris flow of Lf1 
behaves as a Bingham plastic fluid, characterised by the 
continuous interaction between viscous and non-viscous 
debris flows (Xian et al., 2012) (Fig. 3; Table 1). Elverhoi 
(2015) used flume experiments to demonstrate that gravity 
flows deposited during the same period contain turbidity 
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flows, with lower density distributed mainly at the top and 
front of the fluid and sandy debris flow with higher density 
occurring at bottom. This explains why the thick sandy 
debrite in Lf1 was deposited in the slope area of the basin. 

As shown in Figure 4, several main identification marks 
of Lf1 in the Fushan Sag were noted. In particular, floating 
mud gravel is present at the top of the core, which forms 
an irregular contact surface, and clean, massive sandstone 
with a shear zone occurs at the bottom. In addition, lath 
debris is present locally. The most typical characteristics of 
the sandy debris flow deposited during the SQEls2 period 
are gray and white fine to medium massive, clean sandstone, 
local mud gravel, lack of bedding structure and shear zone 
at the bottom, and low mud content. The mud gravel has a 
maximum particle size of 10cm and is arranged disorderly 
at the top of the sandstones. This lithofacies is distributed 
mainly in the eastern depression and is rarely developed in 
the western deep-lacustrine area. 

Lithofacies 2 (Lf2): turbidite

The turbidity current forming Lf2 turbidites 
corresponds to a Newtonian fluid, with sediment 
suspended and transported by turbulence; the main 

deposition type is hindered sedimentation (Johnson, 
1938). The massive sandstone in the core in segment A of 
the Bouma sequence, particularly the massive sandstone 
with floating mud gravel, should be interpreted as sandy 
clastic flow rather than high-density turbiditic current 
according to their formation characteristics and rheology 
(Fig. 3; Table 1). According to Shanmugam (1997), 
only the C–D–E–F segments of Bouma sequence can be 
interpreted as turbidite deposits.

In the study area, Lf2 (Fig. 5) is composed of a thin 
middle layer of fine sand to siltstone with a positive 
grain order. Sand-mud inter-bedding and horizontal 
bedding are well developed. Occasional climbing ripples 
were observed in segment C of the Bouma sequence, 
which shows that the water flow rate was lower than 
the sedimentation rate. The lower part of a complete 
positive grain order shows an obvious distinct interface. 
The lithofacies is distributed mainly in the western 
depression and occurs less often in the eastern sag. 
This is contrary to previous research by Liu et al. (2000, 
2003), who proposed that a turbidite fan developed over 
the entire sag. It is worth noting that Lf1 in association 
with Lf2 was also observed in cores obtained near the 
slope in the western region.
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Lithofacies 3 (Lf3): sandy slump

The sandy slump representing Lf3 is described as a light-
gray, medium sandstone with with twisted laminations and 
mudstone intercalations that exhibit high angular and twisted 
deformation structures that occur (Fig. 3; Table 1). Shear 
zones, irregular top contact, tensile faults, compressional 
folds, and related intrusive sandstone veins occur commonly 
at the bottom of the unit (Fig. 6). Slumped sandstones 
associated with deformational structures were previously 
described in Lake Baikal, which is the deepest lake basin in 
the world, and was designated by Shanmugam et al. (2009) 
as an independent sedimentary facies type. Steep strata 
represent synsedimentary collapse and sandstone dykes 
formed from fracturing and liquefaction of sediments under 
the action of earthquakes. The shear zone and microfolding 
at the bottom of some massive sandstone might be secondary 
structures caused by shear stress and sliding of the massive 
sandstone on its basal contact. Because these sandy slump 

rocks deposited during the SQEls2EST + LST period are 
often associated with the sandy debrite of Lf1, it is difficult 
to distinguish them in some cores. Lf3 developed mainly in 
the deep-lacustrine area of the eastern depression.

Lithofacies 4 (Lf4): bottom-current deposits

The tractive sedimentary structure is a developmental 
feature of lithofacies Lf4 (Shanmugam et al., 1993) (Fig. 3; 
Table 1), which forms from bottom-current flow. The rock of 
this lithofacies is composed of medium-gray, unconsolidated, 
very fine-grained sandstone with double mud layers (Fig. 7) 
occurring regularly in the eastern basin-floor area as inter-
bedded fine sandstones and mudstones. The thickness of 
each unit changes from a few centimeters to nearly 1m in this 
lithofacies, which appears in vertical association with Lf2.

Rhythmic bedding and double-layered mudstone 
are diagnostic signatures of bottom-current processes 
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(Shanmugam et al., 1993). The traction structures 
occurring in this lithofacies are interpreted to be the result 
of bottom-current reworking and represent alternating 
deposition events of traction and suspension (Shanmugam, 
2003). Similarly, deep-water tidal deposits with double 
mud layers have been documented in modern and ancient 
sub-lacustrine sediments. 

DEPOSITIONAL SYSTEM 

Lithofacies association and distribution

After analyzing the vertical and lateral variations of 
the lithofacies from more than 300 wells, we reconstructed 
the spatial distribution of deep-lacustrine gravity flows 
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in the main profile (Fig. 8). The results show significant 
differences in lithofacies association, sandstone 
characteristics, and lateral distribution of lithofacies in the 
eastern and western depressions.

From proximal to distal deep-lacustrine areas, the 
thickness of the stratigraphic units and sediment grain 

size decrease (Fig. 8A). In the proximal area, the dominant 
composition is Lf 3 deposits. For example, well W1 is 
composed mostly of coarse-grained massive sandstone 
with deformed bedding and locally interbedded mudstone. 
In deeper areas, the main lithofacies composition alternates 
between Lf1 and Lf2, whereas the typical Lf2 lithofacies 
with thinly bedded fine sandstone, siltstone and mudstone 
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is developed in the deep-lacustrine area. Multiple stages 
of the Bouma sequence can also be identified in the core, 
which indicates gradual weakening of the hydrodynamic 
conditions and depositional environment dominated by 
turbidity currents (e.g. wells W7 and W8).

The sedimentary succession in the eastern depression 
(Fig. 8C) shows a grayish-white fine sandstone unit 
(e.g. well E1) at the slope break and a rapidly increases 
in thickness of the fine sandstone unit in the lower part 
of the slope break toward the basin, which is mainly 
composed of grayish-white coarse-medium sandstone with 

medium thickness. Core observations shows that typical 
Lf3 deposits are dominant (e.g. wells E3, E4 and E5). In 
the western region, however, the sedimentary succession 
is composed mainly of gray massive sandstone, although 
the sand layer shows a gradual decrease toward the deeper 
part of the basin. This lithofacies composition is typical 
of deep-lacustrine Lf1 deposits (e.g. wells E6, E7 and E8).

Sand dispersion system

Figure 8B shows that during the SQEls2EST + LST 
period, a facies belt with a sandstone content of up to 65% 
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developed from South to North of the southern slope belt, 
with its front end extended into the western depression. 
Small-scale, NE-trending sandstone belts with a maximum 
sand content of about 10% developed near well W7. In the 
eastern region, a small-scale belt with 40% maximum sand 
content developed from east to west. Near well E7, a small-
scale North-South sand belt with a maximum sand content 
of 45% is present. The fault system has a main NE-SW 
trend and is developed mostly in the western depression. 
Sediments were supplied across the southern slope zone 
and dispersed along different paleocurrent directions. The 

main development was Northwestward; paleocurrents 
in the Northeastward and Southwestward directions 
developed at a smaller scale.

DEPOSITIONAL SYSTEM CHARACTERISTICS

Through comprehensive analysis of the lithofacies, 
changes in lithofacies assemblage, sand body dispersion 
system, and seismic data, we reconstructed the depositional 
system and its spatial distribution during the SQEls2EST 
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+ LST period. We calculated the basin subsidence through 
quantitative stratigraphic “back stripping method” to 
restore the paleogeomorphic base map (Li et al., 2016), 
onto which the depositional system was superimposed.

The formation and evolution of the Fushan Sag 
occurred during the second episode of rift leading to a 
stage of regional lake expansion. The sag expanded to the 
maximum and the water body deepened rapidly in a quiet 
lacustrine sedimentary environment. Three depositional 
systems developed during this period: braided river 
delta, fan delta, and deep-lacustrine system dominated 
by gravity flow deposits (Fig. 9). The braided river delta 
largely dominated the depositional system in the western 
region and was distributed from the southern slope zone 
to the deep-lacustrine area. The braided river delta plain 
subfacies developed at a small scale. The braided river 
delta front subfacies are dominated by mouth bar deposits, 
and the distal bar is developed in the front of the mouth 
bar, indicating the delta’s strong construction capacity. 
The eastern region of the sag is dominated by the braided 
river delta, which formed by the sediments from the 
Southeast uplift, whereas the smaller delta front deposits 
are developed in the central area. The fan delta deposits 

are developed mainly in the Yunlong uplift in the Northeast 
area, and the paleocurrent is relatively simple, presenting 
the characteristics of coarse clastic deposits under rapid 
accumulation. Overall, the provenance system in the eastern 
depression is weaker than that in the western depression. 

Two different types of deep-lacustrine gravity flows 
produced different deposits in the eastern depression and 
the western depression. In the western depression, at the 
rolling anticline on the downthrow of the Meitai fault, sub-
lacustrine fan deposits dominated by turbidity currents are 
developed with typical turbidite channels and fan-shaped 
external morphology. In the eastern depression, however, 
the isolated distal lobes were formed mainly by sandy 
debris flow deposition with no typical turbidite channels or 
the presence of a complete fan shape (Fig. 9).

BASIN STRUCTURAL STYLE AND
DEPOSITIONAL MODEL

In a rifted lacustrine basin, the development of the 
depositional system depends on the distribution and 
migration history of sand sediments. The diffusion, 
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transportation, and accumulation of these sediments are 
closely related to the structural style of the basin (Zhu et 
al., 1993). Therefore, to understand the evolution of the 
deposition system, it is of great importance to analyze 
the sedimentary system-basin structural pattern under the 
sequence stratigraphic framework. Accordingly, we analyze 
the main structural styles of the eastern depression and 
the western depression and identified the corresponding 
depositional mode.

Sub-lacustrine fan setting

Western multistage fault terrace belt

During the SQEls2EST + LST period, the sequence 
structural style in the western depression was composed of 
two main parts. From the basin margin slope belt to the 
deep-lacustrine area, the multistage fault terrace belt and 
rolling anticline structure developed successively (Wang et 
al., 2014) (Fig. 10). The main paleogeomorphic style of 
the southern slope zone was a multistage fault terrace belt, 
whereas mainly parallel faults developed in the western 
region. After entering the Paleogene, the rapid extension 
of the Fushan Sag and the activity of the Hainan uplift, 
under the influence of the basin-controlling Lingao fault, 
enabled the formation of the Meitai reverse secondary 
regulating fault. Among the multistage fault step zones, 
the fault distance at fault F1 began to increase until the 

fault distance of the Meitai fault reached its maximum. 
Syndepositional faults also had a profound effect on the 
sedimentation and stratigraphic formation. In this process, 
the secondary faults derived from the Lingao fault and the 
Meitai fault were adjusted, thus forming the double traction 
rolling anticline structure in the western deep-lacustrine 
area, which received its material supply from multiple 
directions.

Depositional model of sub-lacustrine fan

In the western depression, the multistage fault terrace 
was the main location of the events triggering gravity flow. 
The concave bottom formed by the rolling anticline was 
the main unloading point for deep-lacustrine gravity flow 
deposits, whereas the long and gentle slope belt between 
the multistage fault terrace and the rolling anticline was the 
transportation area for these deposits. Figure 11 illustrates 
the proposed depositional model for the western depression. 
During the differential transport process of the delta front 
deposit, the water body at the top gradually mixed with the 
lower part and formed a turbidity current after turbulence 
transformation, which enabled the mixed fluid to continue 
the transport to the deep-lacustrine area. In front of the 
deltaic deposition, the model included three stages. First, 
when the turbidity reached the first-order fault at the down-
dropped block of the Meitai fault, its energy decreased 
owing to the fault resistance. Most of the turbidity at the 
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bottom crossed the slope break zone under the influence 
of turbulent transportation to form large-scale contiguous 
sedimentary bodies in the deep-lacustrine area. This 
flow was dominated by turbidites with normal grading, 
which is analogous to the channelized turbidite model of 
Lake Baikal (Nelson, 1999) (Fig. 11A). Second, as the 
hydrodynamic condition weakened, the movement of the 
channelized turbidite fan decreased (Fig. 11B). Third, the 
hydrodynamic energy weakened enough to form low-density 
turbidity currents that passed the extension antithetic fault 
terraces, which are interpreted as non-channelized turbidite 
deposits (Fig. 11C). When turbidity currents are inherently 
low in sediment concentration, true high-density turbidity 
currents cannot exist. Thus, we distinguished only normal 
and low-density turbidity currents in the basin floor area.

Our model is analogous to the conventional turbidite 
fan model (Nilsen, 1980; Walker, 1978) which includes 
turbulent and low-density turbidity currents. According to 
the sandstone content of 33%-70% in the sub-lacustrine 
depositional system in the western depression, our sub-
lacustrine fan is closer in similarity to the sand-rich sub-
marine fan model (Reading and Richards, 1994) based on 
a small-scale fan composed of the deposits transported 
from the sand-rich continental shelf through incised valleys 
or faults with distribution controlled mainly by tectonic 
patterns. Considering the tiny displacement of the faults 
in the rollover anticline system and natural safety barriers 

(Chen, 1999; Poblet, 2007) on both sides (Meitai fault 
and Lingao fault), we determined that the depositional 
environment for sub-lacustrine turbidite fan in the western 
depression was flat and quiet.

During the SQEls2EST + LST period, the sub-lacustrine 
fan deposits were distributed mainly in the deep-lacustrine 
part of the downthrow of the Meitai fault in the western 
depression. In the plane distribution, with the Meitai fault 
serving as the dividing line, the sub-lacustrine fan was 
distributed in front of the braided river delta front deposits 
to occupy the lacustrine area of the western depression. 
Influenced by faults in the W-E direction, the sub-lacustrine 
fan tended to migrate from the West to the East. The fan 
body is overall symmetrical, which indicates homogeneity 
of the sedimentary topography and the characteristics of a 
single-channel supply source (Fig. 11). 

Sandy debrites setting

Eastern flexure slope break

The fault activity is weaker in the eastern depression, 
which had a smaller influence on the transformation 
of the original slope zone and the distribution of 
sedimentary sand. In addition, the flexure slope break 
zone is widely developed in this area (Fig. 12) (Ma et 
al., 2012). The flexure slope break zone was formed 
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FIGURE 11. A Formation mechanism model of the western sub-lacustrine fan setting including turbidite channels and lobes deposited dominantly 
by turbulent flows. A, B and C represent three turbidite-phase lithofacies, respectively, which indicate weakening of the hydrodynamic conditions 
toward the basin floor area.
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generally on the early hidden faults with typical 
flexure slope break points, which can be considered 
as a transitional style between the slope type and the 
fault block paleogeomorphology. The flexure slope 
break zone developed early in the SQEls2 period and 
is distributed mainly in the southern slope zone of the 
eastern depression. The specific distribution range 
extends from the southern to Southeast slope zones. The 
seismic profiles show that the stratum thickness is lowest 
at the slope break point and increases after crossing the 
slope break point. The slope break point divides the 
slope into three components: a gentle slope zone near 
the sub-basin margin, a flexure slope break belt, and the 
slope base. The slope break in the eastern region is more 
gentle than that in the western region, and the slope area 
below the slope break is longer, which provides sufficient 
slope area and length for the formation of a sandy debris 
flow (Fig. 12). 

Depositional model of sandy debrites

Figure 13 illustrates the proposed depositional model 
of sandy debrite in the eastern depression. In front 
of the deltaic deposition, the model is composed of 
three parts. First, in the area close to the flexure slope 

break point, as the slope germinates and hinders the 
further transportation of the braided river delta in the 
upstream side of slope break, the proximal area in the 
downstream side of the slope break is dominated by the 
sandy slump of Lf3 (Fig. 13A). The term “slump” in the 
case refers to both the process and the deposit, which is 
interpreted to be a coherent mass of sediment that moved 
on a concave-up glide plane and underwent rotational 
movement, causing internal deformation (Shanmugam, 
2009, 2013). Second, sandy debrites dominate the area 
between the gentle slope and the base of slope zone, 
which is similar to the non-channelized debrite model 
of Shanmugam (2000) and Zou (2012). The recognition 
of sandy debrites in this study conflicts with the results 
of previous research of channelized turbidite fan 
deposition. In addition to the lack of turbidite channels, 
the topography, coarse granularity, high sediment 
concentration, inverse grading, floating mudstone clasts, 
and sharp and irregular upper contacts exclude the 
presence of turbidity currents (Fig. 13B). Third, as a 
laminar flow transfers into turbulent flow, from the base 
of the slope to the basin floor area, turbidity currents are 
generated with parts being reworked by bottom-current 
(Fig. 13C). Therefore, isolated or lenticles deposits 
occur in the eastern seismic profiles.

mmffss

GGeennttllee  SSllooppee FFlleexxuurree  ssllooppee  bbrreeaakk BBaassee  ooff  ssllooppee

BB CC

    11  kkmm

    
11

00
00
  mm

ss
    
    
    
TT

WW
TT

SE NW  iinnttrruussiivvee  iiggnneeoouuss  rroocckk

mfs
EE88EE77

SEDD NW

Lithofacies 3

Lithofacies 1

AA

  TT66

  TT66

 T5

  TT55

  TT55

  TT66

LLiinnee  ppoossiittiioonn

bb

bb’’

mmffss

SSMMTTDD  ddeeppoossiitt

CC

  SS22

ssllooppee  bbrreeaakk  ppooiinntt  ssllooppee  bbrreeaakk  ppooiinntt  

ssllooppee  bbrreeaakk  ppooiinntt  

  SS22

  SS22

FIGURE 12. A) Seismic line showing the stratigraphic pattern of the eastern depression sequence, which is divided into three main components: 
gentle slope, flexure slope break, and slope base. The maximum flooding surface (mfs) is revealed in the seismic section by combining the using 
lithologic logs. B) Chaotic low-amplitude reflection representing intrusive igneous rock. C) Chaotic low-amplitude reflection with continuous high-
amplitude reflection interpreted as sandy debrites deposition. D) Schematic cross-profile showing mapped horizons, borehole locations, and general 
sediments distribution of the SQEls2EST + LST period. SMTD: sand mass transport deposition.



Y.  L i  e t  a l . 

G e o l o g i c a  A c t a ,  2 0 . 3 ,  1 - 1 8  ( 2 0 2 2 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 2 . 2 0 . 3

Depositional evolution of a deep-lacustrine gravity flow system

16

DISCUSSION

Formation conditions of deep-lacustrine gravity flow

During the SQEls2EST + LST period, the intensified 
rifting activity led to the rapid expansion of the sag 
followed by a rapid increase of subsidence thus forming 
a deep-lacustrine environment. During the development 
of the Liushagang Formation, the main source of 
the sediments was the southern Hainan uplift. The 
topography of the study area is a wide and gentle landform 
inclined towards the South (Fig. 2C), which created 
favorable topographic conditions for the development 
of deep-water gravity flows. During the early stage of 
the SQEls2 period, the drainage system developed 
progressively, and the deltaic system prograded onto the 
lake basin, providing with the material for the formation 
of sandy debris flows. Finally, during the Paleogene 
period, volcanic activity occurred in the Fushan Sag 
region. Violent volcanic eruptions triggered frequent 
earthquakes, and multistage flooding that occurred 
during the maximum lake expansion period provided a 
trigger mechanism for the formation of gravity flows. 
In summary, the high sediment supply, slope structure, 
and volcanic and seismic activities provided favorable 
conditions for the formation of deep-lacustrine gravity 
flow deposits in the Fushan Sag.

Difference analysis of deep-lacustrine gravity flow

Deposition system. During the SQEls2EST + LST 
period, the braided river delta front prograded and reached 
the Meitai fault near the basin center, leading to the 
formation of a more extensive and farther advanced far-
sand dam deposit with finer-grained sediments. In contrast, 
the delta front in the eastern region did not advance to the 
deep-lacustrine area; instead, the sediments accumulated 
above the flexure slope break zone. The sandy debrites were 
formed by the reworking of sand-rich braided channel-
estuarine bar sediments. The sediment is coarser and the 
sandstone layers are thicker in the eastern region than those 
of the distant sand bar in the western region. 

Basin structural style

During the SQEls2EST + LST period, tectonic activity 
along the Central Transfer Zone led to the basin partitioning, 
resulting in differential subsidence and different structural 
styles in the eastern depression and the western depression. 
The slope break served as the hinge of the sediment energy 
change. In the western depression, under the control of 
the multistage fault terrace, the sediments were graded 
several times. Thus, only fine sediments reached the deep-
lacustrine area to form a turbidite fan. In the eastern 
depression, however, the slope is relatively gentle. Most 
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FIGURE 13. Sedimentary model for the formation of sandy debrites in the eastern region. Deposits range from sandy slumps to sandy debrites 
originated from dominantly laminar flows, which in turn generates turbidites on the basin floor. A, B and C represent the three types of gravity flow 
lithofacies, respectively. SMTD: sand mass transport deposition.
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of the sediment in this area crossed the slope break point 
to reach the deep-lacustrine area. Therefore, the eastern 
depression is composed mainly of isolated coarser sand 
units.

CONCLUSIONS

Through observation of 16 cores obtained in the deep-
lacustrine area of the Fushan Sag, we determined that four 
types of deep-lacustrine gravity flow lithofacies formed 
during the SQEls2EST + LST period: sandy debrites, 
turbidites, sandy slumps, and bottom-current deposits. The 
sediment grain size, genetic mechanism, and rheological 
properties differ among the lithofacies.

From the near source area to the deep-lacustrine area in 
the western depression, the sedimentary succession exhibits 
gradual changes from thick to thin layers and coarse to fine 
sediment, which reflects the sedimentary environment of 
a quiet water body, low-energy hydrodynamic conditions, 
and dominated by turbidity currents. In the eastern region, 
the thickness of the sand body increases rapidly in the 
lower part of the slope toward the basin and the lithology is 
mainly gray to white medium-coarse sandstone of medium 
thickness, which is typical of deep-water sandy debris flow 
deposits.

During the SQEls2EST + LST depositional period, 
two different structural styles developed in the eastern 
depression and the western depression of the Fushan Sag. 
In the western region a multistage fault terrace belt and a 
rolling anticline structure developed successively from the 
slope belt of basin margin to the deep-lacustrine area. In 
the eastern depression, however, the fault activity had little 
influence on the transformation of the original slope zone 
and the distribution of sediments, and the structural style of 
a flexure slope break zone is dominant.

Two different types of deep-lacustrine gravity f low 
developed in the two depressions during the SQEls2EST 
+ LST period. In the western region, sub-lacustrine fan 
deposits dominated by turbidity currents developed, 
with typical turbidite channel deposits and fan shaped 
lobes. In the eastern region, however, the isolated 
distal lobes were formed mainly by sandy debris f low 
deposition and do not exhibit typical turbidite channels 
or fan-shaped lobes.

Generally speaking, the differences in deep-water 
gravity flow deposition between the eastern depression and 
the western depression were caused by the distance to the 
sediment source, the water depth, the steepness of the slope 
break and the length of slope area below the slope break, 
and the basin floor topography at the deposition site.
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