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INTRODUCTION

Cenozoic magmatic rocks are well exposed in the Iranian 
Plate, in the north of the Bitlis-Zagros Suture Zone (Fig. 1), 
which resulted from steep and oblique subduction of Neo-

tethyan oceanic lithosphere under the Cental Iranian Micro-
continental Block (CIMB) and Anatolian blocks during Late 
Mesozoic, Cenozoic and its subsequent collision of Arabian 
plate with Eurasia (Agard et al., 2011; Dercourt et al., 1986; 
Mouthereau et al., 2012; Stampfli and Borel., 2002).

Petrology and geochemistry of Plio-Quaternary high-Nb basalts 
from Shahr-e-Babak area: Insights into post-collision magmatic 

processes in the Kerman Cenozoic Magmatic Arc

S. Moradi1     T. Khaksar1     A. Nazarinia2     A. Hussain3

1Department of Geology, Tarbiat Modares University
Tehran, Jalal Al Ahmad, 14115-175, Iran

2Department of Geology, Faculty of Sciences, University of Hormozgan
Bandar Abbas, Iran

3State Key Laboratory of Geological Processes and Mineral Resources, Collaborative Innovation Center for Exploration of Strategic 
Mineral Resources, School of Earth Resources, China University of Geosciences

Wuhan 430074, PR China

Post-collision Pliocene-Quaternary basaltic rocks outcrop in the Kerman Cenozoic Magmatic Arc (KCMA) 
to the northwest and east of Shahr-e-Babak city. These porphyritic and vesicular basaltic rocks are composed 
essentially of clinopyroxene, olivine, and plagioclase. These basalts display alkaline affinity and negative Ta, Zr, 
Rb anomaly, but slightly negative Nb anomaly, relative to elements with similar compatibility, and positive Ba, K, 
Sr anomaly, suggesting their magma source related to subduction-accretion with implication of subducted slab 
derived components to the source. In the primitive mantle and chondrite normalized diagrams, these rocks show 
trace elements (except depletion in Nb, Ta) and Rare Earth Element (REE) patterns similar to the Ocean Island 
Basalts (OIB) and share trace and major element characteristics similar to High-Nb Basalts (HNBs). Geochemical 
analyses for major and trace elements suggest that the Shahr-e-Babak HNBs have undergone insignificant crustal 
contamination and minor olivine + Fe-Ti oxide ±clinopyroxene fractional crystallization. These HNBs derived 
from a partial melting (~5%) of garnet-peridotite mantle wedge, which have already metasomatized by overlying 
sediments, fluids, and adakitic (slab-derived) melts as major metasomatic agents in post-collision setting in the 
KCMA. We conclude that asthenospheric upwelling arising from slab break-off followed by the roll-back of 
subducting Neotethys slab also triggered metasomatized peridotite mantle wedge and caused its partial melting in 
the subduction zone.  
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The diversity of post-collision alkaline to sub-alkaline 
volcanism and plutonism, recently considered as result 
of partial melting of lithospheric mantle modified and 
metasomatized during subduction of the Neo-Tethyan 
oceanic slab (s) have occurred in the Urumieh-Dokhtar 
Magmatic Arc (UDMA) a part of the eastern Turkish, 

Armenian, and Iranian Zagros orogenic plateaus (Allen et 
al., 2013; Azizi et al., 2014; Kheirkhah et al., 2013; Neill 
et al., 2015; Özdemir et al., 2006; Saadat and Stern, 2012). 
This type of magmatism is usually characterized by within-
plate and/or subduction-related geochemical features 
(Pearce et al., 1990, 2003).
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FIGURE 1. A) Simplified geotectonic map of Iran; B) Simplified geological map of Kerman Cenozoic Magmatic Arc (Dimitrijevic, 1973; Stocklin and 
Nabavi, 1973) showing location of study area; C) Simplified geological map of the study area, northwest and east of Shahr-e-Babak (modified from 
Geological map of Iran, 1:100000 Sardic et al., 1971).
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The Pliocene-Quaternary magmatism in the southern 
part of the UDMA contains adakitic rocks and the High-
Nb Basalts (HNBs) show alkaline affinity. The HNBs are 
characterized by unusual High‐Field Strength Elements 
(HFSEs), high Nb content (>18ppm), and low Large-Ion 
Lithophile Elements/ (LILE)/HFSE and Heavy Rare Earth 
Elements/Light Rare Earth Elements (HREE/LREE) ratios 
(e.g. Azizi et al., 2014; Castillo et al., 2007; Mazhari, 
2016). They also show high, TiO2 and P2O5 content,, high 
values of Sr/Y (>25) and La/Yb (>14) ratios, and low Rb/Sr 
ratio, and Yb content (Castillo, 2008; Hastie et al., 2011). 

The study of post-collisional magmatic mafic rocks 
especially HNBs provides a unique opportunity to identify 
the asthenospheric-lithospheric properties (Carlson et al., 
2005), geodynamic processes, and tectonic settings (e.g. 
Castillo, 2012; Dilek and Furnes, 2011). The tectonic and 
magma evolution of the UDMA has been studied widely 
(e.g. Khaksar et al., 2020; Moradi et al., 2021; Nazarnia et 
al., 2018). However, very few investigations on the petrology 
and geochemistry of the alkaline basalts and HNBs, with or 
without associated adakites, have been published. The aim 
of this study is to review the petrographical and chemical 
composition of the Shahr-e-Babak HNBs, in the Kerman 
Cenozoic Magmatic Arc (KCMA), in order to provide new 
constraints on the conditions of their genesis and source 
region. The study herein suggests a tectono-magmatic 
model to explain the evolution of the post-subduction arc 
magmatism in the Shahr-e-Babak area.

GEOLOGICAL SETTING

Urumieh-Dokhtar Magmatic Arc

The Zagros Orogenic Belt (ZOB), in the central part of 
the Alpine-Himalayan orogenic belt, generated as a result 
of the NE-dipping subduction of the Neo-Tethys oceanic 
lithosphere, accretion and subsequent collision of the 
Arabian plate with the CIMB (e.g. Alavi, 1994; Berberian 
and King, 1981). The Zagros Fold and Thrust Belt (ZFTB) 
(Berberian and King, 1981; Mohajjel and Fergusson, 
2000), the Sanandaj-Sirjan Zone (SSZ), and the UDMA are 
the three major sub-parallel tectono-stratigraphic structures 
in the ZOB (Fig. 1).

The SSZ is separated from the ZFTB to the southwest 
and from the UDMA to the northeast by the main 
Zagros thrust fault and  fore-arc depressions respectively 
(Alavi,1994; Glennie, 2000).

The UDMA is considered to be an active continental 
margin (Moin Vaziri, 1991; Takin, 1972; Verdel et al., 2011) 
about 1000km long, 50km wide and 4km thick (Berberian 
and Berberian, 1981), extending from NW to SE in central 

Iran. The magmatism  in the UDMA is generally composed 
of subduction-related voluminous calc-alkaline, and locally 
tholeiitic rocks (e.g. Azizi and Jahangiri, 2008; Omrani et 
al., 2008) from Cretaceous to Quaternary age. However, the 
peak of magmatic activity is thought to have been in the 
Eocene with a notable magmatic flare-up from ~55Ma to 
~37Ma (Verdel et al., 2011). 

The younger volcanic activity in the UDMA was 
mainly alkaline (Amidi et al., 1984; Moradian, 1997) 
and associated with post-collisional tectono-magmatic 
processes (Richards, 2003). The timing of collision is 
controversial, some authors suggested it was before or 
during the late Miocene (e.g. Allen et al., 2004; Mohajjel 
et al. 2003,) while other, (Hassanzadeh,1993), proposed 
the late Miocene and/or the late Neogene. According to 
Berberian and King (1981) and Jahangiri (2007), the onset 
of the alkaline volcanic activity  in the UDMA (6-5 Ma) 
was due to the sinking of the final broken pieces of oceanic 
slab to a depth where alkaline melts were generated. 

The distinctive southeastern part of the UDMA is 
known as the Dehaj-Sarduiyeh volcano-sedimentary belt 
(Dimitrijevic, 1973) or KCMA (Fig. 1A). The KCMA is 
about 450km long and 80km wide (Dewey et al., 1973) and 
mainly composed of calc-alkaline volcano-plutonic rocks 
(Zarasvandi et al., 2007). It host porphyry copper deposits, 
several of them of large size and many of small–medium size 
(Taghipour, 2007; Zarasvandi et al., 2011). The volcanic 
and plutonic activities in the KCMA are considered to have 
reached their peaks in the middle Eocene and Oligocene-
Miocene, respectively (Hassanzadeh, 1993). 

Shahr-e-Babak region

The two investigated zones are situated in the KCMA, 
between the Rafsanjan and Nain-Baft faults (Nain-Baft 
ophiolite belt), more precisely, at 8km to the northwest 
(KH1, near to Khorsand village) and at 22km to the east 
(KH2, near to Khatoon Abad village) of Shahr-e-Babak city 
in the southern slope of the Masahim volcano, (Fig. 1B, C). 
The magmatism in this area is represented by Paleogene 
basaltic andesites, latites, tephrites, nepheline phonoliths, 
and volcano-clastic rocks (Ghadami et al., 2008; Hosseni 
et al., 2009). Oligocene-Miocene granodiorites, porphyric 
diorites and porphyric quartz diorites, Miocene-Pliocene 
adakites (Ghadami et al., 2008; Ghadami, 2009) and 
Pliocene-Quaternary alkaline volcanic rocks (Amidi et al., 
1984; Hosseni et al., 2009). 

Almost fifty Plio-Pleistocene granitoid, dacitic to 
rhyodacitic subvolcanic domes occur in the Eocene-
Oligocene volcanic and volcano-sedimentary rocks in Shar-
e-Babak area (Dimitrijevic et al., 1971, Ghadami et al., 
2008). 
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The contemporaneous eruption of mafic alkaline 
melts is a conspicuous feature in the Shahr-e-Babak area 
(Berberian and King, 1981). Pleistocene monogenetic 
basalts and trachy basalts occur in the Chah-Bagh, Takhte-
Siah, Khatoon Abad, and Khorsand localities, whereas the 
basaltic trachyandesite occurs in the localities of Chah-
Breshk and Tale-Ghorban (Hosseni et al., 2009).

There are also a series of northeast–southwest-trending 
faults, with small inferred displacements, developed in 
shear zone associated with the Nain-Baft and Rasanjan 
faults (Fig. 1A) that likely have controlled ascent and 
emplacement of magmas and ore-deposit formation in the 
Shahr-e- Babak area.

As a whole, it seems that the Tertiary volcanic rocks 
in Shahr-e-Babak area formed during three stages: i) an 
explosive volcanic event including pyroclastic material (ash 
and spinel bombs), ii) an efusive basaltic lava distributed 
around cones and vesicular basaltic rocks (scoria) and iii) 
an explosive event with vesicular basaltic rocks and bombs 
erupted in the final stage of the volcanism.

FIELD DESCRIPTIONS AND PETROGRAPHY

The Plio-Quaternary volcanism in Shahr-e-Babak area 
is represented by small basaltic scoria cones and lava flows. 
These volcanic rocks are exposed in two areas, where they 

overlie unconformably Neogene volcanic rocks (Saric and 
Djordjevic, 1971) and are usually covered by thick layers 
of Quaternary sediments (Fig. 2A). They include vesicular 
basaltic rocks, lapilli, tuff, volcanic bombs and basaltic 
lavas. 

The Shahr-e-Babak basaltic rocks are generally 
highly porphyritic. They show vesicular texture and are 
dark gray or brown to black colour with a red leaching 
patch, that most probably formed due to the presence of 
iron oxides/hydroxide phases during evolution of these 
rocks (Fig. 2B). Different types of volcanic bombs are 
seen in the studied area, e.g. bread-crust bombs, cylindric 
bombs, cannonball bombs, spindle bombs, pear and 
toothpaste shaped bombs (Fig. 2C-E,). Bombs show 
relatively low porosity (~20%) as compared with other 
basaltic rocks, and sometimes include partly epidotized 
fragments from the Naein-Baft ophiolite mélange and 
particles of rock that are probably from the cryptodome 
intruded immediately before the volcanic eruption 
(Fig. 2F). The Shahr-e-Babak basaltic rocks have been 
classified as olivine basalt and tracky basalt. Porphyry 
texture is the dominant texture of these rocks, though 
glomeroporphyry and sieve textures in plagioclase 
and, rarely, in clinopyroxene are also observed (Fig. 
3A, B, D). The basalts are composed of phenocrysts of 
olivine, clinopyroxene and, rarely, plagioclase, and titano-
magnetite as accessory mineral (Fig. 3A) embedded in 
glassy to fine-grained groundmass consisting of microlitic 

A B  C

FED

FIGURE 2. A) View of basaltic rocks covered by Quaternary sediments; B) Vesicular basaltic rock from Shahr-e-Babak; C) Bread-crust bomb; D) 
Spindle shaped bomb; E) Toothpaste shaped bomb; F) Basaltic rock with fragments of older rocks.
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plagioclase, small olivine, clinopyroxene, and opaque 
minerals with amygdaloidal texture, rarely filled by calcite 
and quartz (Fig. 3C). The vesicles show primary porosity 
of the rocks which are generated via degassing during lava 
extrusion (Navarro et al., 2020). 

Olivine phenocrysts are homogeneously distributed 
in the groundmass; however, in some places, they form 
glomeroporphyry texture along with clinopyroxen 
minerals. They are subhedral to euhedral, mostly fresh 
but some are altered to iddingsite along the margins 
and cracks (Fig. 3D). Clinopyroxene phenocrysts 
(augite) are the second most abundant mafic mineral 
in these basaltic rocks. They are mostly euhedral, 
some subhedral, up to 1-5mm long, and fresh. The 
plagioclase is confined to the groundmass with length 
<0.5mm as small laths, fresh and show albite and 
Carlsbad twinning with weakly to strongly develop 
trachytic texture (Fig. 3A).

ANALYTICAL METHOD

Based on microscopic observations, we selected 15 
samples of basalt for whole-rock chemical analysis to 
be performed in the analytical laboratories of the SGS 
Minerals, Toronto, Canada. Major oxide abundances were 
determined by X-Ray Fluorescence (XRF) and recalculated 
to 100%, volatile free (Table 1). Approximately a 50g split 
of each sample was pulverized to fine powder in an agate 
ring mill. The powdered samples were dried at 75–90°C 
to eliminate adsorbed water, ignited at 950±50ºC and 
then fused with 50% lithium metaborate (LiBO2) and 
50% lithium tetraborate (Li2B4O7) in a fluxer to produce 
a glass disc. The glass disc was analyzed on the sequential 
XRF spectrometer. Quantitative determination was 
made through previously prepared calibration standards. 
Data reduction was done using laboratory information 
management system software that performs all necessary 
calculations automatically to calculate the percent oxide for 
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FIGURE 3. A) Clinopyroxene and olivine phenocrysts in a porphyric basalt; B) Olivine phenocryst with absorbed margins in a basaltic rock; C) 
Amygdaloidal basalt; D) Clinopyroxene and idingisitized olivine phenocrysts. Abbreviation from Whitney and Evans (2010): Pl= Plagioclase; Ol= 
Olivine; Cpx= Clinopyroxene; Qz= Quartz.
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each element and the percent total major-element content 
of the sample, including Loss On Ignition (LOI). The 
detection limit was 0.01wt% of the oxide.

Trace elements of the bulk rock were analyzed with 
Inductively Coupled Plasma–Mass Spectrometry (ICP-
MS). Approximately 0.1g of powdered rock samples were 
fused by Na-peroxide in graphite crucibles and dissolved 
using dilute HNO3. The fused solution was aspirated into 
the ICP-MS where the ions were measured and quantified 
according to their unique mass. The used detection limit 
was vary during analysis for different elements. It was 

5ppm for Cu, Ni, V; 2ppm for Mo; 1ppm for Ag, Ga, Hf, 
Nb, Sn, W; 0.5ppm for Co, Ta, Tl, Y, Zr; 0.2ppm for Rb; 
0.1ppm for Ce, Cs, La, Nd, Sm, Th, Yb and 0.05ppm for 
Dy, Eu, Er, Gd, Ho, Lu, Pr, Tb, Tm.

RESULTS

Whole-rock geochemistry

The major and trace element concentrations in the 
samples are presented in Table 1. Whole-rock SiO2 content 

KH2
Sample Sm-26 Sm-02 Sm-06 Sm-10 Sm-15 Sm-16 Sm-19 Tm-03 Tm-06 Tm-16 Tm-23 Tm-24 Km-03 Km-05 Km-06
Major elements (wt%)
SiO2 49.0 48.9 47.8 49.5 48.3 48.3 49.4 45.4 47.4 48.5 46.7 47.2 46.3 48.9 46.6
TiO2 1.3 1.3 1.3 1.3 1.2 1.3 1.3 1.2 1.2 1.3 1.2 1.3 1.1 1.3 1.4
Al2O3 14.0 14.0 13.6 13.8 13.5 13.8 13.9 14.0 13.7 14.0 13.8 14.1 13.2 13.7 12.9
FeOt 9.1 8.9 8.9 9.2 9.2 9.2 9.3 8.6 9.0 9.1 8.9 9.2 9.1 9.2 9.6
MnO 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
MgO 10.3 9.9 8.0 9.4 10.1 10.0 10.4 8.5 8.9 8.8 6.7 8.0 8.8 9.8 9.7
CaO 9.2 9.9 11.4 9.7 9.7 9.6 9.9 11.4 10.0 9.9 11.1 10.6 12.4 9.8 11.5
Na2O 3.4 3.2 3.5 3.6 3.4 3.1 3.6 2.7 2.8 3.3 2.7 3.3 2.7 3.4 4.1
K2O 1.8 1.7 2.0 1.9 1.8 2.0 1.6 1.9 1.8 2.3 2.8 2.5 2.1 1.9 1.6
P2O5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.5 0.5 0.7
LOI 0.9 2.0 2.6 1.0 1.3 1.2 0.8 4.0 2.8 1.7 3.4 2.5 2.9 1.4 2.0
Mg# 66.8 66.4 61.6 64.7 66.2 65.9 66.7 63.7 63.6 63.1 57.1 60.9 63.2 65.4 64.3
K2O/Na2O 0.5 0.5 0.6 0.5 0.5 0.6 0.4 0.7 0.6 0.7 1.0 0.8 0.8 0.6 0.4
Trace elements (ppm)
V 238.0 245.0 227.0 247.0 239.0 249.0 249.0 274.0 259.0 265.0 330.0 261.0 210.0 237.0 269.0
Co 46.0 46.4 43.1 45.3 46.6 44.8 46.1 41.9 41.8 40.6 39.9 40.2 42.1 43.8 43.4
Ni 240.0 236.0 195.0 205.0 244.0 201.0 225.0 170.0 172.0 168.0 157.0 155.0 176.0 197.0 117.0
Zn 79.0 79.0 85.0 87.0 81.0 89.0 86.0 90.0 93.0 95.0 95.0 94.0 90.0 82.0 91.0
Cu 72.0 69.0 71.0 52.0 79.0 71.0 55.0 112.0 122.0 54.0 27.0 146.0 64.0 66.0 107.0
Ga 16.0 16.0 16.0 17.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 15.0 16.0 16.0
Rb 36.8 28.6 40.1 38.2 40.2 41.0 14.8 45.2 32.1 26.8 52.1 62.4 40.0 41.2 45.1
Sr 710.0 880.0 770.0 960.0 670.0 840.0 760.0 1010.0 1030.0 1420.0 4420.0 1020.0 760.0 1420.0 1020.0
Y 18.2 18.1 17.9 18.6 17.7 18.6 18.2 17.3 17.4 17.2 16.9 17.1 16.4 18.8 17.7
Zr 108.0 109.0 104.0 109.0 104.0 108.0 107.0 109.0 110.0 108.0 107.0 109.0 90.7 111.0 106.0
Nb 20.0 30.0 20.0 30.0 20.0 30.0 30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 30.0
Mo <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Sn 1.0 1.0 <1 1.0 <1 <1 <1 1.0 <1 <1 1.0 3.0 <1 <1 3.0
Cs 0.7 0.5 0.7 0.7 0.8 0.7 0.9 0.8 0.8 1.1 0.7 1.1 0.8 0.8 1.4
Ba 700 690 760 730 690 770 900 1350 2180 1390 1360 1360 920 720 1350
La 28.3 28.3 27.4 28.7 28.3 30.2 28.6 31.2 31.1 30.5 31.1 31.4 27.4 28.3 39.0
Ce 56.5 57.3 55.6 58.4 58.0 60.3 57.9 65.9 66.6 65.8 65.8 66.4 57.3 57.1 83.8
Pr 6.8 6.9 6.6 7.0 7.0 7.2 7.0 8.1 8.2 8.1 8.2 8.2 7.0 6.9 10.3
Nd 26.7 27.0 25.7 27.1 26.9 27.7 27.1 32.4 32.9 32.2 32.1 32.1 28.1 26.9 39.2
Sm 5.0 5.0 4.7 5.2 5.0 5.1 4.8 5.9 5.9 5.9 5.9 5.9 5.0 5.1 6.7
Eu 1.5 1.6 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.4 1.5 1.7
Gd 4.0 4.5 4.3 4.4 4.2 4.4 4.1 4.5 4.5 4.7 4.3 4.5 4.0 4.5 4.8
Tb 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.7 0.7 0.6 0.6 0.5 0.6 0.7
Dy 3.6 3.9 3.7 3.9 3.8 3.7 3.8 3.8 3.8 3.5 3.6 3.7 3.3 3.8 3.7
Ho 0.8 0.7 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Er 2.0 2.1 2.0 2.2 2.0 2.3 2.0 1.9 2.0 1.9 1.9 1.9 1.7 2.1 1.9
Tm 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Yb 1.8 1.7 1.9 2.0 1.7 1.9 1.8 1.6 1.7 1.7 1.6 1.7 1.7 1.8 1.7
Lu 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.3 0.3
Hf 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Ta 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.5 0.6 0.6 0.6 0.6 0.6 1.0 1.0
W <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Tl <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Th 4.0 3.9 3.8 4.0 3.9 4.2 4.0 3.9 4.0 4.0 4.1 4.2 3.6 4.0 5.2
U 1.0 0.9 1.0 0.9 1.0 1.0 1.0 1.0 0.7 1.2 1.3 1.3 0.8 1.0 1.1
Eu/Eu* 1.02 1 0.98 0.98 1 0.99 1.03 0.94 0.94 0.95 1 0.92 0.93 0.96 0.9
Sum_REE 138.24 140.15 135.22 142.35 140.31 146.18 140.63 158.65 160.09 157.84 158.06 159.24 138.63 139.91 194.73

Table 1   Major and trace  elements in the studied rocks
KH1

TABLE 1. Major and trace elements in the studied rocks



G e o l o g i c a  A c t a ,  2 0 . 8 ,  1 - 1 9  ( 2 0 2 2 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 2 . 2 0 . 8

M o r a d i  e t  a l . Insights into source and magmatic processes post-collisional high Nb-basalts

7

of these basaltic samples ranges between 45.4 and 49.5wt%, 
with high Na2O+K2O content (~4.6–5.8wt%). All samples 
have MgO>6.7wt% with Mg number from 57.1 to 66.8. 
The LOI values are 0.9 to 3.4wt%, except in one sample 
with 4wt% (Table 1). These rocks are classified as basalt 
and trachybasalt in the SiO2 versus total alkali (Na2O+K2O) 
diagram (Fig. 4A). In the Zr/Ti versus Nb/Y diagram (Fig. 
4B), the studied samples plot in the alkali basalt field. The 
samples plot in the alkaline series in the SiO2 versus K2O 
diagram (Fig. 4C) and slightly fall within the transition 
field between potassic and sodic series in the Na2O versus 
K2O diagram (Fig. 4D). 

Primitive mantle normalized (Sun and McDonough, 
1989) spider diagram of trace-element abundances for the 
Plio-Quaternary basalts in the studied area show that these 
rocks are enriched in LILEs compare to HFSEs (Fig. 5B). 
Most of the samples show positive Sr, K, Ba anomaly and 

negative Zr, Rb, and Ta, but slightly negative Nb anomaly. 
The studied basaltic rocks are considered as HNB with Nb 
concentration from 20 to 30ppm. 

The plot of REE normalized by chondrite (Sun and 
McDonough, 1989; Fig. 5A) shows an enrichment of 
LREE than HREEs for the Shahr-e-Babak HNBs with La/
YbCN= 9.7-13 and around 100 to 200 times chondrite for 
the LREE and about 10-20 times chondrite for the HREE. 

The REE content in these samples is high, ranging 
from 135.2 to 194.7ppm (average= 150ppm). The 
average values of Eu*/Eu and Ce/Ce* are 0.97 and ~1, 
respectively, which basically do not show a Eu anomaly. 
All samples show similar trends, suggesting similar REE 
fractionation degrees and magma source. They are well 
correlated with Ocean Island Basalt (OIB) (Fig. 5A) and 
are distinct from Enriched Mid Oceanic Ridge Basalt 
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(E-MORB) and Normal Mid Oceanic Ridge Basalt 
(N-MORB).

DISCUSSION

Role of fractional crystallization

The Mg# values of the Shahr-e-Babak HNBs (57,1–
66,8) do not show a significant difference from those of 
the original basaltic magma (65–70) (Frey et al., 1978), 
suggesting that the basaltic  magma did not experienced 
significant fractional crystallization.

The low SiO2 content (45.4–49.5wt%), high MgO 
content (≥6.6wt%), and total FeO content (>11wt%) are 
also distinctive features that indicate slight fractionation 
nature of these samples. Thus, the Shahr-e-Babak HNBs 
probably are not representative of primary melts (Wilson, 
1989), but their compositions do not reveal significant 
modification through fractionation of mantle-derived 
melts. Considering of the relatively high Ni (155–244ppm) 
content in the studied HNBs than unfractionated mafic 
magmas (Ni= 200–450ppm) (Table 1) also rule out the 
highly fractionated olivine as the important mafic phases 
in basaltic rocks. Moreover, the studied HNBs show a high 
content of Cr (234–374ppm) compared to the reported 
values for the primary magmas (142ppm; Hughes, 1982), 
which provide a good geochemical indicator of slight 
clinopyroxene fractionation during magma evolution. 
These evidence show that they can considered as enough 
primary to investigate the magma source and genesis in 
this region.

The elevated concentrations of Ba and Sr together in 
the samples compared to the average OIB (Fig. 5B) is 
probably attributed to incompatible behavior of these 

elements during fractionation of mafic phases (i.e. olivine 
and clinopyroxene). The absence of a Eu anomaly also 
suggests that they probably crystallized much less than 
about 18% plagioclase prior to extrusion (John et al., 
1968). Geochemical modeling of the studied HNBs (Fig. 
6A) suggests a clear olivine and magnetite fractionation 
during magma evolution. However, these modifications are 
minor and insignificant.

The La versus La/Yb diagram (Fig. 6B) show that 
most of the samples follow a positive correlation with the 
partial melting trend, while three samples are plotted along 
both partial melting and fractional crystallisation trends 
and two samples (from KH1) are plotted along fractional 
crystalization. The studied samples also are plotted as a 
cluster possibly affected by partial melting, in the high 
La/Sm ratio versus La concentration (Fig. 6C), imply that 
these trace elements are more likely controlled by partial 
melting than fractional crystallization during evolution of 
magma in this area.

Effects of crustal contamination

It is well known that when hot basaltic magma traverse 
through continental crust some chemical components from 
the crust may play a significant role in the petrogenesis 
of the magma-derived rocks (Ashwal, 2021). The studied 
HNBs exhibit enrichment in LILE and LREE but 
depletion in Nb, Ta and HREE, as characteristic feature of 
magmas in active continental margin volcanism (Nagudi 
et al., 2003) and subduction zones (Wilson, 2007). Thus, 
these HNBs may derived from a metasomatized mantle 
wedge above the subducting oceanic crust with negative 
anomalies of HFSEs (i.e. Nb and Ti Wilson, 2007) and/or 
affected via the contamination and magma mixing with 
crustal material during magma ascent and emplacement 
(Wilson, 2007). 
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Trace element ratios have been routinely used to 
investigate crustal contamination in basaltic rocks. Th/
Yb and Ta/Yb ratios are almost independent of fractional 
crystallization and/or partial melting, thus they can reveal 
source variations and crustal contamination. Source region 
metasomatism caused by subduction processes, results 
enrichment in Th and higher Th/Yb ratios than Ta and Ta/Yb 
respectively. Crustal contamination also increases Th/Yb 
ratios relative to Ta/Yb ratios due to the higher abundance 
of Th relative to Ta in the crustal rocks (Fadaeian et al., 
2022). In the Th/Yb versus Ta/Yb diagram (Pearce, 1983) 
(Fig. 6D), the HNBs are plotted with Th/Yb ratios higher 
than the mantle array. However, it is difficult to distinguish 
the effects of crustal contamination on the magma 

composition from metasomatism caused by subduction 
components. Thus, the high Th/Yb ratio in most samples 
is unlikely to be the result of crustal contamination solely.

On the other hand, Th/Ta ratio ranges from 4 to 7, 
which fall between the original mantle ratio (Th/Ta= 
2.3) and continental crustal (Th/Ta= 10) ratio (Sun and 
McDonough, 1989), which indicates insignificant crustal 
contamination in the evolution of the HNBs. 

Moreover, low Nb/La ratios (<1.0) in the basaltic 
rocks are a key index and reflect crustal contamination in 
the magma evolution (Kieffer et al., 2004). The studied 
HNBs from KH1 location have Nb/La ratios from 1 to 1.1 
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indicating that crustal signature is insignificant in these 
rocks, but those basalts from KH2 location with Nb/La 
ratios from 0.6 to 0.9 reflect some crustal contamination. 

In the Nb/Th versus Nb/La (Fig. 7A), and Rb/La versus 
Th diagrams (Fig. 7B), all the samples plotted close to 
the mantle composition, ruling out significant crustal 
contamination. Zr/Nb ratio can be used to determine 
the influence of continental crust on the mantle derived 
magma. The Zr/Nb ratio ranges from 3.5 to 5.6, in the 
HNBs  being this range similar to the range observed  in the 
OIB mantle sources (3.2-5), lower than those of continental 
crust (16.2) and primitive mantle (14.8), and far lower 
than normal-MORB (30) (Saunders et al., 1988; Weaver, 
1991a), which ruled out significant crustal contamination. 
Therefore, more likely the composition of the studied HNBs 
was mainly controlled by compositional differences in the 
source region and by mantle partial melting.

Role of the slab components 

The Shahr-e-Babak HNBs formed in a continental 
margin environment and are different from continental 
intra-plate basalts in term of trace elements (Fig. 6D). 
Subduction-related magmas are characterized by high Ba/
Nb (>28) and Ba/Ta (>450) ratios (Fitton and Dunlop, 1985; 
Gill, 1981). These ratios range from 23 to 109 and 720 to 
3633, respectively in the studied samples which, indicate 
that the subduction components play an important role in 
the source region. 

In order to determine the influence of subduction 
materials on the source of the basaltic samples, we used 
the Th/Nb versus Ba/Th diagram (Orozco Esquivel et al., 
2007) (Fig. 8A). The variable Th/Nb along with variable 
Ba/Th ratios is resulted from the addition of both hydrous 
fluid and melt to the source. Similar behaviors are also 
inferred from Th/Nb versus La/Nb plot (Fig. 8B). The Th/
Nb versus La/Nb diagram is used to distinguish between 
melt (high Th/Nb and low La/Nb) and fluid (low Th/Nb 
and high La/Nb) components as slab-derived material in 
the subduction zones. In this diagram, the studied HNBs 
indicate a transitional nature between the melt and fluid 
trends (Fig. 8B). 

Hastie et al. (2013) also developed the Th/La versus 
(Ce/Ce*)N diagram (Fig. 8C) to determine the slab-
derived components in the petrogenesis of arc related 
magmatic rocks. The studied samples are plotted in the 
volcanic detritus field on a subvertical trend corresponding 
to a mixture between continental detritus/GLOSS II and 
N-MORB. This confirms that the mantle source region has 
been enriched by melts derived from subducted sediments 
in the studied area. 

 According to Ayers (1998), the presence of long-
lasting phases containing Nb, Ta, Ti elements such as rutile, 
sphene, apatite and ilmenite in eclogite-facies rocks in 
subducted oceanic crust or non-melted mantle wedges can 
be considered a reason for negative anomalies of compatible 
elements in the mantle wedge derived magmatism. 
Therefore, these evidences suggest slab melting also played 
a critical role in the genesis of the Shahr-e-Babak HNBs.

Source of the Shahr-e-Babak High-Nb basalts

Trace element compositions of Shahr-e-Babak HNBs, 
especially their enrichment in the LILEs and strong 
fractionation between LREE and HREE are similar to OIB 
(Fig. 5B), but they show no obvious negative Nb anomalies 
or even positive Nb anomalies similar to OIB. 

Two different types of HNBs have been proposed in the 
volcanic arcs: i) HNBs originated from the OIB source 
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mantle (similair enriched, OIB-like isotopic and OIB-
like trace element signature; Castillo, 2008; Gazel et al., 
2011) and ii) HNBs from enriched mantle wedge that was 
metasomatized by slab-derived adakites in amphibolite 
or eclogite facies (similair N-MORB like isotopes and 
OIB-like trace elements; Defant et al., 1992; Imaoka et 
al., 2014; Straub et al., 2013). The enriched (plume-type) 
mantle source (first HNB type) is achieved either through 
influx of asthenospheric mantle through slab windows 
(Castilli et al., 2008) or mixing between enriched (plume-
type) and depleted components within mantle wedge (e.g. 
Macpherson et al., 2010).

HNBs are usually found simultaneously or as younger 
magmatism with adakites in orogenic belt at least in 
Iran geology (e.g. Azizi et al., 2014; Hastie et al., 2011; 
Mazhari, 2016). Furthermore, the close association of 
the high-Nb basaltic rocks with adakites arises the idea 
that HNBs are usually generated in subduction zones 
from a depleted mantle wedge (essentially MORB like) 
metasomatized by adakitic magmatism (Defant and 
Kepezhinskas, 2001; Hastie et al., 2011; Kepezhinskas et 
al., 1995; Kepezhinskas et al., 2019; Sajona et al., 1993; 
Wang et al., 2007).

Adakitic plutonism and volcanism in the vicinity of the 
studied HNBs have been reported in the Shahr-e-Babak 
area. The source of adakite series in the Dehaj area are 
considered as a partial melting product of eclogitized mafic 
lower crust (Kheirkhah et al., 2013). Adakitic plutonic 
rocks in northwest of Shahr-e-Babak (Ghadami and 
Nazarnia, 2022) and the Meiduk and Parkam (Alirezaei 
et al., 2017) are attributed to partial melting of garnet 
bearing to amphibolitic lower continental crust and 
lithospheric mantle respectively. Ghadami et al. (2008) 
suggested a slab melting mechanism for post-collisional 
Plio-Pleistocene adakitic volcanism from Javazm, north-
west of Shahre-Babak. The Plio-Pleistocenic subvolcanic 
porphyritic andesitic-dacitic domes in Anar- Dehaj (Shaker 
ardakani, 2016) with adakite signitures also attributed to 
slab melting and underplating of basaltic magmas under 
thick Plio-Pleistocene continental crust.

Partial melting of subducting oceanic slab in the 
amphibolite–eclogite transition (i.e. in low-water fluid 
conditions) led to titanite stability in the residual slab 
(König et al., 2010). The residual titanites liberate Nb 
into a slab melt than Ta preferentially (Zhang et al., 2015). 
Moreover, rutile also preferentially retains Ta over Nb, 
beacuse DNb is lower than DTa in rutile/melt pair during 
high pressure melting (Xiong et al., 2011). Thus Nb will be 
released into slab derived melt and subsequently, Nb will be 
enriched in mantle wedge after metasomatism by flux from 
hot oceanic lithosphere (Zhang et al., 2015). Moreover, 
adakitic magmas (slab melt) are characterized by high Sr/Y 
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and (La/Yb)N ratios and low YbN values. Thus, when the 
mantle wedge is metasomatized by adakitic magmatism, 
it also should show similar chemical compositions to 
adakite (Tang et al., 2010; Wang et al., 2007). Chemically, 
the studied HNBs also show similarity to a mantle wedge 
metasomatized by adakitic melts with high Sr/Y. 

As discussed in the crustal contamination section, trace 
elements have not been affected by significant fractional 
crystallization. Therefore, we used trace and rare earth 
element ratios as key parameters to determine the studied 
HNBs source. These samples with low Zr/Nb coupled with 
high Zr/Y and Nb/Y ratios (3.5–5.6, 5.5–6.3 and 1.1–1.7 
respectively), are different with those of Depleted Mantle 
(DM) and its related melts (e.g. N-MORB and oceanic arc 
basalt) but resemble the source of OIB.

Different sources have been proposed for OIB magmas. 
For example many researchers consider the fertile lower 
mantle peridotite (e.g. Woodhead, 1996), while others 
suggest a lithospheric mantle source contaminated by 
carbonatite/plume derived melts as source the OIB magmas 
(Mazahari, 2015; Nakamura and Tatsumoto, 1988). Plotting 
of the samples in the Zr/Y versus Nb/Y diagram (Fig. 9A) 
suggests that they are more likely derived from OIB-like 
mantle. However, other distinct geochemical index of the 
studied HNBs, i.e. Nb/U (14.9-32.3 with average 23.7), 
displays compositional differences with both N-MORB 
and OIB (Nb/U 50; Hofmann, 2004). 

In the La/Sm versus La modeling diagram (Aldanmaz 
et al., 2000) (Fig. 9B), the Shahr-e-Babak HNBs 
with high MgO (>6.6) plotted in the garnet lherzolite 
consistent with the 5–7% partial melting. In the studied 
samples, the trace elements and REE ratios contain Dy/
YbCN> 1 (= 1.3 to 1.5), low to moderate Y (<25ppm), 
low Yb< (2ppm), Y/Yb= 9.3-10.8 and (Ho/Yb)N= 1.1-
1.3, suggesting that garnet (=Y/Yb> 10 and (Ho/Yb)N> 
1.2) rather than spinel was a residual phase in the mantle 
source during the partial melting processes in the studied 
area (Ge et al., 2002). 

The similarity between this study and recent works 
(e.g. Castillo et al., 2007; Sajona et al., 1996) demonstrate 
that unlike OIB lavas, HNBs are not generated from a pure 
mantle plume source or metasomatism of the mantle by 
carbonatite/ mantle plume melts. Consequently, Shahr-
e-Babak HNBs were generated within garnet lherzolite 
mantle wedge (in asthenospheric mantle) metasomatized 
by fluids, overlying sediments and adakitic melt derived 
from subducted Neotethys oceanic crust.

Ce/Yb ratio in basaltic rocks is very sensitive to the 
lithospheric thickness (Ellam, 1992) due to their high 
stability during fractional crystalization. High Ce/Yb ratios 
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(29.2-49.3) in the studied samples also correspond to 
smaller melt fractions and/or garnet control (depth higher 
than 110–120km in the studied area). 

In summary, based on the combined interpretation 
of gravity, topography data sets (Monilaro et al., 2005), 
geophysical-petrological methodology (Tunnini et al., 
2015), and trace elements geochemistry (Ce/Yb, and Nb/La 
(0.6 to1.1)), it appears that the mantle source for the HNBs 
in Shahr-e-Babak area is located in the upper portion of the 
mantle asthenosphere.

GEODYNAMIC IMPLICATIONS

Post-collision alkaline magmatism was produced by 
a complex combination of geodynamic and petrogenetic 
processes during the evolution of the Alpine–Himalayan 
collision belt, from west-to-east though Turkey, Iran and into 
Pakistan (Allen et al., 2013; Azizi et al., 2014; Mazahari, 
2015; Neill et al., 2015).

There is not consensus on the timing of the onset 
collision of the Arabia and Eurasia; it has been suggested the 
Late Cretaceous (Alavi, 1994; Berberian and King, 1981), 
the middle Miocene–Pliocene (Berberian and Berberian, 
1981; Stöcklin, 1968), and the late Miocene–Pliocene 
(McQuarrie et al., 2003). Post-collisional alkaline rocks in 
the UDMA are reported locally as alkaline and shoshonitic 
OIB like volcanic rocks in Saray (Shafaii Moghadam et al., 
2014), Qom-Aran (Amidi, 1977; Emami, 1981), Moghan 
(Amraee et al., 2019), Saveh (Caillet et al., 1978), Marand 
(Ahmadzadeh et al., 2010), Ahar (Dabiri et al., 2011), 
Qom-Baft, and Anar (Ahmadian et al., 2014; Saadat et al., 
2010).

Post-collisional magmatic activites (volcanism and 
plutonism) in NW of the KCMA are reported as adakite-
like rocks (Alirezaei et al., 2017; Ghadami et al., 2008; 
Ghadami et al., 2009; Ghadami, 2016; Kheirkhah et al., 
2020), alkaline volcanism (Amidi, 1984; Hassanzadeh, 
1993; Hosseini et al., 2009; Moradian, 1997), Late Pliocene 
to Quaternary shoshonitic rocks in Bardsir (Atapour, 
1994), the Quaternary Qal’eh Hasan Ali Maars (Milton, 
1977), adakite-like porphyritic granodiorites of the Kuh-e 
Panj-type (Haschke et al., 2010; Hou et al., 2011; Shafiei et 
al., 2009), 1 to 2Ma Anar volcanic rocks (Pang et al., 2016) 
and Pleistocene alkali basalts in the south west of Anar area 
(Hosseini et al., 2009). The geochemical characteristics 
of the studied Shahr-e-Babak HNBs also represent post-
collision magamtism in a continental arc setting in the 
KCMA (Figs. 6D; 9C).

The most efficient geodynamic mechanisms during 
generation of post-collisional alkaline and HNBs in 
subduction zones are mantle plumes and/or upwelling 
asthenospheric mantle (e.g. Liu et al., 2018; Niu et al., 
2012; Wang et al., 2015) associated with local extension 
regime or lithospheric delamination mechanisms (Guo et 
al., 2007), and/or the opening of slab detachment (slab 
break-off) within modern arc-trench systems (Gazel et al., 
2009; Gill, 1984; Keskin, 2003) Both proposed mechanisms 
provide a way to initiate partial melting of mantle wedge.

A mantle plume usually leads to a dynamic uplift over 
an area 1000–2000km in diameter (Hill et al., 1992; Ritter 
and Christensen, 2007), which is not seen in the studied 
area. Lithospheric delamination leads to the upwelling of 
the hot asthenosphere and melting of the asthenosphere 
in shallow depth close to the Moho, but the Shahr-e-
Babak HNBs formed at considerable depth (>110km) 

 Shahr-e-Babak alkaline basalts

A) Collision time (Late Miocene-Early Pliocene?) B) Post-collision time (Late Pliocene-Quaternary?)

UDMA (KCMA)
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FIGURE 10. Geodynamic model of change of tectonic regime from A) collisional time to B) post-collisional time. SCLM= Subcontinental Lithospheric 
Mantle. 
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and also the geophysical studies (Clark, 1993; Saric and 
Mijalkovic 1973) also show that the crust beneath the NW 
of the KCMA has a thickness of 45–55km. Hence, the 
lithospheric delamination mechanism is not also favoured 
for the genesis of the studied HNBs.

The occurrence of adakitic volcanism in the vicinity of 
the Plio-Quaternary HNBs in Shahr-e-Babak area shows that 
break-off episodes played an important role in their generation 
following a Paleogene slab rollback as suggested for the 
UDMA mamatism (Ghorbani et al., 2014; Moradi et al., 
2021; Verdel et al., 2011). On the basis of the data presented 
herein and the occurrence of adakitic rocks in the NW of 
the KCMA, the following scenario could be suggested for 
HNBs in this area: After collision of the Arabian and Iranian 
blocks caused by slab pull force during subduction of the 
Neotethyan oceanic lithosphere, the slab break-off  occurred 
due to an approximately 30% decrease in the velocity of the 
Arabian plate (Mouthereau et al., 2012; Verdel et al., 2011). 
A modeling from Molinaro et al. (2005) based on the gravity, 
geoid and topography data sets also highlights a thinned 
lithospheric mantle below the KCMA which is attributed 
to recent slab break-off. Oceanic slab break-off provides 
a reasonable explanation for the origin of post-collisional 
magmatism (Davies and von Blanckenburg, 1995). 

Slab break-off had led to thermal perturbation by 
upwelling of hot asthenosphere which has prepared the 
appropriate conditions for partial melting of amphibolite or 
eclogite from detached subducting slab (Berberian, 1981; 
Martin, 2005) to produce adakitic magmas (Ahmadzadeh et 
al., 2010; Azizi et al., 2014; Ghadami et al., 2008; Ghasemi 
and Talbot, 2006; Kouhestani et al., 2017; Omrani et al., 
2008). Subsequently the adakitic liquids metasomatized 
mantle wedge for a long period of time. The thermal flux 
originating from the deep asthenosphere and uprising 
through the oceanic slab break-off, probably provided the 
excess heat, triggered the partial melting of metasomatized 
mantle wedge, and produced the HNB magmas in the 
Shahr-e-Babak during Plio-Quaternary (Fig. 10). This 
geodynamic model has been proposed already for other 
post-collisional alkaline magmatic rocks widely distributed 
throughout the Tethyan orogenic belt (e.g. Aguillon-Robles 
et al., 2001; Azizi et al., 2014; Kepezhinskas et al., 2022; 
Hastie at al., 2011; Hussain et al., 2020; Mazhari, 2015; 
Wang et al., 2008; Zhu et al., 2018). 

It is noteworthy that extensional regime usually suggeted 
during post-collision magmatism in Zagros orogeny due to 
asthenospheric mantle upwelling oceanic plate fallowing 
rollback and subsequent slab break-off (Azizi et al., 2014; 
Boccaletti et al., 1976; Razavi and Sayyareh; 2010).

The time span between initiation of continental collision 
and slab break-off varies from 10 to 20  million years for 

young (weak) and old (strong) slabs, respectively (Van 
Hunen and Allen, 2011). Transition from tholeiitic-calc-
alkaline (Noorizadeh et al., 2018) to alkaline (Taghipour, 
2007), adakitic magmatism (Ghadami et al., 2008; Shaker 
Ardakani, 2016), and finally the occurrence of OIB‐like 
asthenospheric mantle indicates the maturation of arc 
magmatism (Zarasvandi et al., 2015). 

CONCLUSIONS

i) The post-collision Plio-Quaternary Shahr-e-
Babak HNBs contain mainly olivine, clinopyroxene 
and plagioclase, and generated in a continental margin 
(extensional) setting. These alkaline basalts, show a high 
Nb content (>20) and geochemical features comparable 
with those of OIB.

ii) The geochemical signatures of the samples suggest 
that the HNBs derived from a low degree partial melting (<5-
7%) of the garnet peridotite mantle wedge metasomatized 
by adakitic melts at considerable depth (>110).

iii) A slab break-off model is suggested to explain 
direct asthenosphere heat flow for melting of subducting 
slab to produce adakitic slab melts and also trigger mantle 
source of the HNBs.
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