Pratical activity

Circular Bioeconomics Stories:

Make bioplastic from MILK

biobased economy

economy

Learning Scenario

Purpose and Methodology

- Combine Circular Bioeconomy concepts with STEM disciplines
- Student Centred Learning: the student is the learning process center, will work with minimal guidance and take initiative
- Collaborative Learning: promote effective teamwork
- Project-Based Learning: the student is offered an activity based on: identification and problem solving

Circular Bioeconomy Concepts underlying the course

BIOMASS

Expired milk

BIORAFFINERY

Casein extraction process

TRANSFORMATION

Bioplastic

Connection with STEM disciplines

Biology- Chemistry- Tecnology

Acid-base reactions

Proteins

Polymers

Colloidal solutions

Introduzione al problema plastica

Resource extraction Production

Distribution Consumption Disposal

waste

Introduzione al problema plastica

How is plastic made?

monomer

polymer

polimero (polipropilene)

monomers

poli(etilenglicole tereftalato) (PET)

monomeri (etilenglicole) (acido tereftalico)

Biopolymers

proline

Milk

Chemical composition:

WATER 87,5%

FAT 3,9%

PROTEINS 3,4

LACTOSE & MINERALS 5,2%

37,5% 3,9% 3,4% 5,2% Ca²⁺

80%

Casein

Micelles

PO₄²-

Casein

Tyndall Effect

CASEIN Chemistry

Main methods:

Chemical denaturation: treatment with chemical substances (acids, alcohol, salts...).

Thermal denaturation: by heat or cooling Mechanical denaturation: by agitation

CASEIN Chemistry coagulation

MATERIALs LIST	
Skim Milk 80 mL	Tablespoons
White vinegar 8 mL (acetic acid 5%)	Bunsen burner or hot plate
Becker (100 mL)	strainer
Thermometer	Measuring cup

CASEIN Chemistry coagulation

heat up the milk until 50° 60°C

coagulation what happened?

Casein processing

CASEIN film preparation

Dry time: 2 days

Bioplastic vs Plastic

BIOPLASTIC

VS

PLASTIC

- obtained from renewable sources
- biodegradable
- biodegradation produces nontoxic products
- Is new

- obtained from NO-renewable sources
- degrades in a very long time
- > the degradation produces toxic products and microplastics that enter into the food chain.

Galalith

- one of the first plastics
- invented in 1897

 was used until the 1930s to produce buttons, white piano keys.

Not only bioplastics

- In the 1937 LANITAL
- wool-like protein fiber
- not susceptible to moths
- currently used for allergic or very sensitive skin such as early childhood

