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Abstract

While languages convey significantly different amounts of both information per sylla-
ble and syllables per second, recent research suggests that the product of these values—
information conveyed per second—is much less variable. Using new methods of extrap-
olation and resampling, I was able to estimate the information conveyed per syllable in
a written Classical Latin corpus. I was then able to use this cross-linguistic consistency
to estimate the natural speech rate of Classical Latin, a language that has not been na-
tively spoken for thousands of years. My analysis suggests that it was spoken at a rate
significantly slower than modern Romance languages, fairly similar to modern English; a
high-level consideration of historical sound changes in Romance supports this conclusion,
lending additional credence to my results.
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1. Background

The idea that all languages are equally expressive—that, despite all the variation in phonol-
ogy, syntax, and other aspects, every language is equally suited to communication and
equally complex or sophisticated in its grammar—is ubiquitous in modern linguistics.
Joseph and Newmeyer (2012) attribute the earliest expression of this concept to Humboldt
in the 1820s, who claimed that “all [languages] contain all that is rigorously needed not
only for the correctness, but the perfection of expression”¹. By the end of the 19th cen-
tury, this idea had gained support from the study of language evolution. Passy (1890: 227)
suggested that language change is an eternal struggle between the tendencies “to get rid of
what is superfluous” and “to highlight what is necessary”², preventing any overall increase
or decrease of complexity.

Despite significant pushback, especially from those who bristled at the idea of
equating European languages with those of Africa and the Americas, this idea slowly
gained traction among the linguistic community. By 1955 it had made its way into the
Encyclopædia Britannica article on “Language”, now with a specific mention of ‘com-
plexity’: “All languages of today are equally complex and equally adequate to express
all the facets of the speakers’ culture, and all can be expanded and modified as needed”
(Trager 1955: 698). While the idea of ‘primitive’ versus ‘sophisticated’ languages per-
sists in pop culture, this hypothesis of equal complexity is now put forth as a basic axiom
in introductory textbooks. Akmajian et al. (2001: 8), for example, state plainly that “all
known languages are at a similar level of complexity,” and O’Grady et al. (2010: 8) assert
that “linguists don’t even try to rate languages as […] simple or complex.”³

However, what exactly this universal ‘expressiveness’ (or ‘complexity’ or ‘sophis-
tication’) means is far from obvious. Many typological studies, such as Maddieson (2005)
and Shosted (2006), have tried to quantify the complexity of different aspects of gram-
mar, looking for correlations between them (e.g., complicated phonology correlating with
simpler morphology)—but results have generally been inconclusive.

¹Quoted in Rémusat (1824: 8); translation from Joseph and Newmeyer (2012: 344).
²Translation from Joseph and Newmeyer (2012: 352).
³Outside of introductory textbooks, some linguists are more skeptical. Shosted (2006: 2) refers to

it as “a claim that has been, until fairly recently, more a matter of dogma than of science”, and Maddieson
(2005: 216) suggests that “[s]uch a view seems to be based on the humanistic principle that all languages are
to be held in equal esteem and are equally capable of serving the communicative demands placed on them. In
rejecting the notion of ‘primitive’ languages linguists seem to infer that a principle of equal complexity must
apply.” On the flipside, other linguists support the claim for purely theoretical reasons: Chomsky (2004:
165-166) suggests that all languages “ought to” have the same overall budget for markedness, no matter how
they spend it. Pellegrino, Coupé, and Marsico (2011: 540) suggest simply that “the assumption of an ‘equal
overall complexity’ is ill-defined.” For more discussion, see Joseph and Newmeyer (2012).
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In the 1950s, this trend of research was given a new suite of tools from the burgeon-
ing discipline of information theory. Shannon and Weaver (1949) introduced new math-
ematical models of information transmission based on concepts like entropy, noise, and
channel capacity, and mathematically-inclined linguists soon started applying these mod-
els to spoken language. Karlgren (1962: 674,676), for example, suggested that “seemingly
careless pronunciation” was actually “an efficient coding to fit the channel” of vocal trans-
mission, and in particular that “there is an equilibrium between [Shannon’s] information
value on the one hand and duration and similar qualities of the realization on the other.”

While Karlgren failed to find significant correlations between the lengths of words
and the “carelessness” of speech (Karlgren 1962), the appeal of channel-focused models
persisted. Lieberman (1963) attempted to measure the redundancy of various elements
of a sentence, and found that the less redundant (i.e. more informative) elements were
pronounced louder and longer. The word “nine” in the phrase “a stitch in time saves nine”,
for example, is extremely redundant: after hearing the five previous words, you know
exactly what’s coming next. The word “nine” in “that will be nine dollars”, on the other
hand, will significantly impact a listener’s understanding of the sentence—and thus, it
is pronounced more distinctly. Further experiments in the following decades supported
Lieberman’s results⁴, and Aylett and Turk (2004) expanded these into a general principle,
which they termed the “Smooth Signal Redundancy Hypothesis” (Aylett and Turk 2004:
34).

According to this hypothesis, speakers aim to have a similar level of redundancy
across different parts of an utterance. If a phrase has a low level of linguistic redundancy
(i.e. it is difficult to predict from context), it will show a higher level of acoustic redun-
dancy (i.e. it will be pronounced clearly and carefully), and vice versa. The experimental
evidence was promising, and Jaeger (2010) extended it into what he termed the ‘Uniform
Information Density Hypothesis’. Speakers, Jaeger predicted, should structure their syn-
tax to convey a consistent rate of information over time: sculpting their language to fit
what Shannon and Weaver (1949) would call the ‘channel capacity’ (Jaeger 2010: 3).

Preliminary experiments with both production and comprehension have supported
this hypothesis, suggesting that Shannon and Weaver’s information theory might be, in
fact, a good model of human language (Jaeger 2010: 29; Meister et al. 2021: 970-971).
If so, this could offer a new way of measuring languages’ complexity, using information-
theoretic methods. As Pellegrino, Coupé, and Marsico (2011: 539) put it, “[l]anguage is
actually a communicative system whose primary function is to transmit information. The
unity of all languages is probably to be found in this function, regardless of the different
linguistic strategies on which they rely.”

Since then, many authors have continued to examine language ‘complexity’ through
this lens (Coupé et al. 2019; Oh 2015; Pellegrino, Coupé, and Marsico 2011). In particu-
lar, while acquiring acoustic data is still fairly time-consuming, access to written corpora
has grown dramatically in recent years. Corpora with hundreds of millions of tokens have
become common, and web-based English corpora easily reach the billions. Oh (2015)
takes advantage of this data, analyzing the information density in written corpora from 18
languages and proposing a number of different metrics to investigate the Uniform Infor-
mation Density Hypothesis in greater depth.

⁴See Aylett and Turk (2004: 32) for further references on these studies.
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Some linguists, conversely, have questioned whether information-theoretic entropy
is an appropriate metric for measuring the information content of natural language. After
all, Shannon and Weaver (1949: 8) themselves specifically note that “[t]he word informa-
tion, in this theory, is used in a special sense that must not be confused with its ordinary
usage. In particular, information must not be confused with meaning.” Information theory
defines ‘information’ as a specific mathematical quantity, based on signals sent through a
channel. But is that necessarily the same as the meaning that humans try to convey through
language?

Pellegrino, Coupé, and Marsico (2011) searched for a different cross-linguistic
measure of semantic density, in order to analyze how meaning (rather than Shannon’s
information) is encoded for verbal communication. The metric they came up with was
based on the ratio of syllables in parallel corpora—in other words, the number of syllables
that experienced translators use to convey the meaning of a particular text in a language,
compared to the number of syllables needed to convey that same text in a control language.

Using this measure, they found a striking negative correlation between the density
of semantic meaning per syllable (‘meaning density’⁵) and the number of syllables spoken
per second (‘speech rate’) in different languages. In the end, they rejected the hypothesis
that the amount of meaning conveyed per second was uniform between languages—with
a note that “[t]he very small size of the sample (N=seven languages) strongly limits the
reliability of the results” (Pellegrino, Coupé, and Marsico 2011: 550). They were also
limited by relatively small corpora—20 texts of five sentences each—and were not able to
control for the effects of individual translators’ style⁶.

These results byOh (2015) and Pellegrino, Coupé, andMarsico (2011)were brought
together by Coupé et al. (2019), who first showed that one of Oh’s corpus-based informa-
tion density metrics was a good (and easier-to-calculate) proxy for Pellegrino, Coupé, and
Marsico’s meaning density⁷, then applied it to a wide variety of languages using larger
written corpora. They found that the amount of information conveyed per second (‘infor-
mation rate’) was extremely consistent across the languages surveyed: while not perfectly
constant (speech rate varies significantly by speaker and circumstance, for example), this
average information rate varies much less by language than speech rate or information
density, and seems to generally stay within a particular narrow band. They suggest that
this ‘optimal range’ is a result of “universal communicative pressures characterizing the
human-specific communication niche” (Coupé et al. 2019: 6). In other words, information
rate is a property of how humans use language to communicate, on a larger scale than any
individual language: “social and neurocognitive pressures […] define an optimal range
for [information rate], around which the complex adaptive system (consisting of each lan-
guage and its speakers) hovers” (Coupé et al. 2019: 6).

⁵‘Meaning density’ is my own terminology, to avoid ambiguity; Pellegrino, Coupé, and Marsico
(2011) and Oh (2015) call it ‘information density’ (ID) or occasionally ‘semantic information density’, while
Coupé et al. (2019) call it ‘syntagmatic density of information ratio’ (SDIR).

⁶It should be noted, though, that their corpora were significantly larger than those used in previous
studies. For more details, see Pellegrino, Coupé, and Marsico (2011: 545).

⁷However, the sample size in Pellegrino, Coupé, and Marsico’s study was fairly small. The rela-
tionship between ‘information’ and ‘meaning’ certainly merits further study, especially now that parallel
corpora have become more available.
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The present study is a new application of Coupé et al.’s results. Speech rate is
normally calculated through recordings of native speakers, which is impossible for a dead
language like Classical Latin⁸. However, Oh’s methods of calculating information density
are based on written corpora, which do exist for a number of extinct languages. If we
assume the optimal information rate is constant across time and culture, can we calculate
the information density from a corpus, and thereby ‘reverse engineer’ the speech rate?

2. Methods

2.1. Entropy
The concept of entropy, as used in this study, was first proposed by Shannon and Weaver
(1949) as a way of quantifying information content. Shannon’s model of communication
involves an ‘information source’ emitting a series of discrete ‘signals’, one after another;
in my model, the information source is a speaker (or writer) of a language, and the signals
are syllables.

The ‘entropy’ of an information source then measures how much information, on
average, each new signal conveys—or, equivalently, howmuch is not known about a signal
before it is seen⁹. The original formulation from Shannon and Weaver (1949: 50) is now
known specifically as the Shannon entropy:

(1) H = −
∑
x

P (x) logP (x)

Here x is a type of signal and P (x) is the probability of that signal. Intuitively, this
means that information sources with more balanced probabilities will have higher entropy
(if some types of signals are much more common than others, it is easier to guess what is
coming next), and information sources with more types of signals will have higher entropy
(if there are more possibilities, it is harder to guess what’s coming next).

For my purpose, though, Oh (2015) suggests a slightly different model. In actual
speech, signals do not exist in a vacuum devoid of context—mathematically, they are not
independent. Consider, for example, English letters as signals. Without any context, the
entropy is fairly high, since there are quite a lot of common letters to choose from. But right
after a Q, the next letter is almost certain to be a U; a reader can be very confident what letter
is coming next, giving the source an extremely low entropy in this situation. To model this,
Shannon andWeaver (1949: 52) also propose what is now called the ‘conditional entropy’:

(2) Hc = −
∑
x,c

P (c, x) log
P (c, x)

P (c)

⁸Oh also investigated the speech rate of bilinguals in Oh, Coupé, and Pellegrino (2013). The results
were not conclusive but suggest that the speech rate of L2 speakers can vary significantly from L1 speakers,
meaning classicists who become fluent later in life cannot reliably tell us the speech rate of native speakers
in ancient Rome.

⁹Hence the name ‘entropy’. In statistical mechanics, entropy is a measure of uncertainty.
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Here c is some representation of the context. In Oh’smodel, specifically, the signals
are syllables of a language, and the context is the preceding syllable within the same word
(making it a syllable bigram model)¹⁰. This is the metric used by Coupé et al. (2019), who
term it ID (Information Density)¹¹:

(3) ID = −
∑

syllable,
context

P (context, syllable) log
P (context, syllable)

P (context)

My implementation follows Oh’s (2015: 39) method exactly, using frequencies in
a large corpus to approximate signal probabilities. Notably, I only consider context within
a single word, not between words. This limitation was imposed by the corpora Oh used,
many of which only provide individual word frequencies. I continue with it both to ensure
my results can be compared directly against Coupé et al.’s (2019), who hewed similarly
closely to Oh’s methods, and to avoid the question of which boundaries (phrase, clause,
sentence, paragraph, book) context should be able to cross¹².

2.2. Representation
The input to the bigram model discussed in section 2.1 is a broad¹³ phonemic representa-
tion, with syllable boundaries marked. Since my corpus consists of plain text, I need a way
of converting it to this phonemic representation. I accomplish this in three steps: augment-
ing the original orthography with additional data, converting the augmented orthography
to a phonemic representation, and breaking this representation into syllables.

Fortunately, Classical Latin orthography is very close to phonemic. The Latin al-
phabet was still being modified during the Classical era, and deliberately-archaic spellings
were rare¹⁴. This means that, for the most part, Classical orthography is thought to accu-
rately represent the way the language was spoken at that time (Allen 1978: 9). However,
some phonemic distinctions remain unrepresented, such as vowel quantity and vowels ver-
sus semivowels:

(4) ALIVM /a.li.um/ ‘another’
(5) ALIVM /a:.li.um/ ‘garlic’
(6) VOLVIT /wo.lu.it/ ‘she wanted’
(7) VOLVIT /wol.wit/ ‘it rolls’

¹⁰See Oh (2015: 41) for a worked example, using a toy language for demonstration; see Pellegrino,
Coupé, and Marsico (2011: 545) for a discussion of using syllables versus phonemes as units.

¹¹As mentioned in section 1, comparison with Pellegrino, Coupé, and Marsico’s (2011) meaning
density suggests this is a good measure of semantic content, though this relationship deserves further study.

¹²See, however, the comments in section 5.
¹³Though since the entropy is calculated on the syllable level rather than the phoneme level, and

context is taken into account, the narrowness of the transcription is less important than for Shannon entropy.
¹⁴Archaisms were rare, but not unheard of. The archaic forms quom ‘when’ and com ‘with’ both

became cum in Classical times due to a sound change, for example, leading some authors to use archaizing
spellings to distinguish them. While the homonymy muddies the waters somewhat, the numbers here are
illuminating: quom is attested 780 times in the corpus, com 3, and cum 55,738.
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To account for this, I first convert the corpus to an ‘augmented’ or ‘annotated’
orthography, which distinguishes a from ā, u from v, and so on. This orthography is often
used in introductory textbooks and is given here in italics, as opposed to SMALLCAPS for
the original orthography found in the corpus; by design, it unambiguously represents all
native phonemic differences.

Manually annotating a text in this way is generally straightforward—metered po-
etry and etymology reveal the quantity of most vowels, for example—but is extremely
time-consuming. As a result, most documents in the corpus have never been manually
annotated. For my analysis, I rely on an automatic annotation system developed by Winge
(2015)¹⁵, the heart of which is a customized version of Crane’s (1991) Morpheus database.
Winge (2015: 27) reports an accuracy exceeding 98% on classical texts, which is sufficient
for my purposes.

The conversion from augmented orthography to phonemic representation is very
regular, and mostly consists of handling quirks of the writing system. The augmented
orthography is unambiguous, but still sometimes uses one letter for a sequence of multiple
phonemes (x /ks/) or vice versa (qu /kw/)¹⁶. Following Allen (1978), I generally assume
that a distinction in writing indicates a distinction in pronunciation—for example, the fact
that the Greek letters Y and Z were borrowed during this period to transcribe loans implies
that educated speakers really did pronounce them differently from I and S, and they should
be treated as distinct phonemes. Similarly, spelling variations in transparent compounds
like ad-sum~as-sum ‘I am here’ are taken to indicate actual variation between analogical
and expected pronunciations¹⁷.

For the most part, my transcription is phonemic, rather than phonetic. Stress, for
example, does not seem to have been contrastive in Classical Latin—it is entirely pre-
dictable based on the segments of a word—and therefore I do not include it in my repre-
sentation (Allen 1978: 83; Inst. Or.: I.5.30). There are, however, two specific types of
non-phonemic detail reflected in my transcription.

First, I include any phonetic detail that could impact syllabification. Classical Latin
does not seem to have made a phonemic distinction between /j/ and /jj/, for example, but
/j/ between vowels within a root seems to have acted as both a coda and an onset¹⁸. So I
represent phonemic /j/ in this environment as geminate /jj/, to ensure it is represented in
both syllables. Intervocalic /w/, on the other hand, only seems to have acted as an onset¹⁹
(e.g. avis [a.wis] ‘bird’, Spanish ave), so I always represent it as /w/.

¹⁵The system is available at https://github.com/Alatius/latin-macronizer, with an online
demonstration at https://alatius.com/macronizer/.

¹⁶See data/latin/process.py for the full details.
¹⁷Compare Allen (1978: 22): “It is in fact uncertain to what extent in educated speech the analogical

spellings may also have been reflected in pronunciation.” My choice to take these spellings at face value
was in part motivated by ease of implementation.

¹⁸In poetic meter, a syllable before /j/ behaves as closed, and its reflexes in certain Romance languages
are consistently geminate: major [maj.jor] ‘greater’ > Italian maggiore.

¹⁹The one exception, based onmeter, seems to be unassimilated Greek names in poetry. The difficulty
of identifying these names consistently, plus uncertainty in how /w/ codas may have contrasted with /Vw/
diphthongs in actual speech, led me to ignore this in transcription. These names are infrequent enough that
this is unlikely to have a significant impact on the results.

https://github.com/Alatius/latin-macronizer
https://alatius.com/macronizer/
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The other exception is complete neutralization. This is often reflected in Classical
orthography already: for example, the distinction between /k/ and /kw/ is neutralized before
/u/ and /u:/, giving sequ-or ‘I follow’ but sec-undus ‘following’. Sometimes, though,
morphological spellings hide this neutralization: equus ‘horse’ is written with qu under the
influence of forms like equī ‘of the horse’, even though grammarians like Velius Longus
(De Orth.: 59.2-8) indicate a pronunciation [ekus]. Similarly, urbs ‘city’ is written with b
under the influence of forms like urbis ‘of the city’, but was almost certainly pronounced
with a voiceless stop [urps], as suggested by Quintilian (Inst. Or.: I.7.7). I transcribe these
words as /ekus/ and /urps/.

Syllabification, finally, is a muchmore thoroughly-studied topic. Classical metered
poetry treats closed and open syllables differently, so formulating rules of syllabification
has long been of interest to poets and poetry scholars, and syllable codas also impacted
certain sound changes in Romance. For this I used an algorithm fromCLTK (Johnson et al.
2014–2021), specially modified to remove certain hyperforeignisms specified by ancient
authors²⁰.

The syllabified, near-phonemic transcription can then be converted into unigram
and bigram frequency lists, which form the input to equation 3.

2.3. Extrapolation
In previous studies, Coupé et al. (2019) and Oh (2015) mostly used corpora with tens or
hundreds of millions of tokens²¹. However, the entire surviving corpus of Classical Latin
literature contains fewer than seven million tokens (Packard Humanities Institute 1991)—
hundreds of times smaller than English Wikipedia²², and on the same order of magnitude
as a single month of the New York Times²³. The first iteration of my study was limited to
an even smaller corpus, with less than two million tokens. And while it seems clear that
a larger corpus results in a more accurate estimate, it is not clear how large of a corpus is
necessary, or whether mine is sufficient.

²⁰For example, pt does not seem to ever have been a valid onset in Latin; poetic syllabifications like
ru-ptus ‘broken’ are in imitation of Greek.

²¹See Oh (2015: 30-31) for a list of corpora used. Notably, while Oh did use some corpora that
were significantly smaller (such as Robert’s Wolof corpus with 0.07 million tokens), this likely affected the
accuracy of the entropy estimates. Robert’s corpus does not seem to be available online, but is discussed in
Robert (2017), among other places.

²²English Wikipedia consists of over 3.9 billion tokens at the time of initial writing, according to the
“Size of Wikipedia” page (Wikimedia Foundation 2021).

²³This is a rough back-of-the-envelope calculation, based on reports of averaging 150 articles per
weekday, 250 articles per Sunday, and 622 words per article (Menendez-Alarcon 2012; Meyer 2016). These
numbers are far from rigorous, but serve as an intuitive point of reference for the size of the Classical corpus.
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One classic solution to the problem of limited data is bootstrapping, a way of artifi-
cially enlarging a dataset (Efron 1892; Oh 2015). But as Oh (2015: 55-56) demonstrates,
bootstrapping does not seem to be a good tool for estimating entropy. In a natural-language
corpus, Zipf’s law (and its various extensions) predicts that a significant number of types
will only occur once in the corpus—and even more valid types will never appear at all
(Davis 2018). In Latin, for example, the word audīverās ‘you had heard’ appears only
once²⁴, and its relative audīverint ‘they might have heard’ is completely unattested, pre-
sumably by sheer accident. Bootstrapping a dataset like this will very often change a
frequency of 1 to 0, but can never change a frequency of 0 to 1, skewing the distribution.
This may be the cause of some instability noted by Oh (2015: 56).

Notably, however, the issues with bootstrapping arise from sampling with replace-
ment. By sampling without replacement, we can ensure the distribution is preserved. The
result is always smaller than the original corpus, but by functionally discarding tokens at
random, we can quite reliably create a smaller corpus that maintains the proper distribu-
tion. Oh (2015: 57) uses this technique to demonstrate that estimated information density
increases sharply with corpus size, then appears to converge (see figure 1). I replicated her
results for English and German, randomly discarding from the corpora to create smaller
sub-corpora and calculating the information density from them. I then attempted to fit a
curve to the convergence. In particular, the hyperbola shown in equation 8 fit extremely
well²⁵; it relates the estimated entropy (y) to the corpus size (x) with four parameters tuned
through least-squares fitting. The results are shown in figure 1.

(8) y = a− b(x− c)−d

To test the extrapolation, I randomly sampled two million tokens from the English
and German corpora (without replacement), then extrapolated from these smaller sub-
corpora (each approximately the size of our original Latin corpus). The results are shown
in figure 2. For English, extrapolating from the smaller sub-corpus gave an information
density of 7.00 bits per syllable, compared to 6.98 calculated from the sub-corpus, 6.98
calculated from the full corpus²⁶, or 6.99 extrapolated from the full corpus. For German,
extrapolating from the smaller sub-corpus gave an information density of 6.11 bits per
syllable, compared to 6.08 calculated from the sub-corpus, 6.08 calculated from the full
corpus, or 6.10 extrapolated from the full corpus. This implies that two million tokens is
sufficient for a good estimate on its own, but also gives me confidence in my method of
extrapolation.

²⁴Terence’s Phormio, line 573: “So why did you stay there for so long, I must ask, once you had
heard the news?”

²⁵This curve was found empirically to have the best least-squares fit out of several tested, including
other hyperbolic curves as well as exponential a(1− exp(−b(x− c))) and logarithmic a ln(b(x− c)).

²⁶This number differs slightly from Oh’s (2015: 61) 7.09 due to differences in the corpus; the exact
corpus used by Oh was not available.
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Figure 1. The convergence of estimated information density for German, approximated by equa-
tion 8.
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Figure 2. Information density extrapolated from small sub-corpora of English and German (solid
line), compared to the result calculated from the entire corpus (dashed line). The difference sug-
gests that expanding the full corpora by another order of magnitude would give us a slightly
higher information density.
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2.4. Jackknifing
Even if the number of tokens is sufficient for a good estimate, using the entire corpus of
surviving literature raises another issue: how do we know that the corpus is representa-
tive of the language? When I discarded tokens from the English and German corpora, I
discarded at random, ensuring the result followed the same distribution as the full corpus
(and redoing the frequency calculations each time to account for the altered corpus size).
But we have no way of knowing whether the works of literature that didn’t survive had the
same distribution as the ones that did²⁷.

In some ways, this is a problem that cannot be overcome. Barring a new archae-
ological find or rediscovered manuscript, the details of the literature that didn’t survive
are simply unknowable. But using the corpus I do have, I can analyze the effect of each
individual source on the results, giving a sense of how much my result could be swayed
by any particular lost source.

For this purpose, I assume that the differences between authors are more significant
than the differences between works. In other words, the loss of Ovid’s Medea is unlikely
to make a significant impact on the calculations, since many other works by Ovid survive.
The loss of the complete works of Cornelius Gallus, on the other hand, could matter a
great deal, since he would have offered a completely different authorial voice and style—
possibly with a much higher or lower information density than the others.

To estimate the impact of the limited pool of authors, I propose a new technique I
term ‘author jackknifing’, named after jackknife resampling in statistics (Efron 1892). In
this technique, I calculate the information density of the entire corpus, with one particu-
lar author removed—for example, I would calculate the information density of the entire
corpus minus the works of Ovid, or the entire corpus minus the works of Livy. The distri-
bution of these values, then, gives a sense of the impact an individual author could have,
and I can take the standard deviation of this distribution as an approximation of the stan-
dard error. If this uncertainty is low, that suggests that a single author’s style is unlikely
to have a large impact on the results, and I can be more confident in my estimate.

3. Results

The corpus I used is the PHI Latin Corpus, published by the Packard Humanities Institute
(1991). It contains, in their words, “essentially all Latin literary texts” from before 200 CE,
plus a few later works that are deemed important and distinctly Classical in style²⁸. Nearly
every text that is recognizably Classical Latin and part of a published work is included,
regardless of length or genre. In particular, I used version 5.3 as distributed on CD, in
conjunction with CLTK’s index (Johnson et al. 2014–2021), as it made it easier to access
full texts than the newer web interface. This version of the corpus includes 329,228 types
and 7,240,273 tokens²⁹, from 362 authors.

²⁷There is also a question of how accurately written literature represents the spoken language, but
this is an issue with any written corpus. Following Oh (2015) and Coupé et al. (2019), we ignore it here.

²⁸For example, the corpus includes the commentaries of Servius Honoratus, from the fourth century
CE.

²⁹These numbers differ from the ones in table 1 because the values here include Justinian and table 1
does not.
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However, most of these 362 authors have relatively little contribution—for exam-
ple, Cornelius Dolabella’s only surviving text is the two words mortem ferre ‘to bring
death’³⁰. Including these would make author jackknifing somewhat useless, since it is
clear that two words from an unknown author cannot significantly impact the entropy of
a seven-million-word corpus. So, for the purposes of jackknifing specifically, I included
only authors who contributed more than 100,000 tokens, as shown in table 1.

Table 1. The composition of the corpus

Author Genre Century Types Tokens
Total 321,447 6,387,500
Cicero Everything 1st BCE 85,020 1,165,502

Justinian Law 6th CE 40,599 852,973
Livy History 1st BCE 55,308 520,674
Pliny Science 1st CE 68,237 392,178

Servius Grammar 4th CE 52,524 373,819
Seneca Philosophy 1st CE 50,723 362,937

Quintilian Rhetoric 1st CE 40,092 321,209
Ovid Poetry 1st BCE 36,787 222,745

Plautus Comedy 3rd BCE 27,352 166,390
Tacitus History 1st CE 33,744 161,368
Gellius Notes 2nd CE 24,636 118,021

Columella Agriculture 1st CE 26,019 115,811
“S. H. A.”³¹ Biographies 4th CE? 23,892 107,893
Apuleius Novel 2nd CE 30,735 103,901
Celsus Religion 2nd CE 15,736 102,035
Others 189,907 2,153,017

Using this corpus for analysis, and these fifteen authors for jackknifing, two outliers
immediately became apparent.

The first involves Justinian. The Digesta of Justinian is one of the later (post-200-
CE) works included in the CLTK corpus: a fifty-volume compilation of legal precedents
and decisions. Since many of these precedents are from the Classical period, it makes
some sense to include them in the corpus. However, they are also extremely formulaic
and repetitive (note the very low type/token ratio in table 1)—to the point that they signif-
icantly lower the overall information density of the corpus, as shown in figure 3. Since the
Digesta was compiled much later than the other works in the corpora, we feel comfortable
excluding it as an outlier.

³⁰Quoted in Quintilian (Inst. Or.: VIII.2.4). A fair number of authors are primarily (or only) known
to us through ancient quotations, raising questions about their authenticity or their usefulness for corpus
analysis; discussion of some of these problems, and the general practices of quotation in this era, can be
found in Hoek (1996). I follow the decisions of the Packard Humanities Institute in this area, separating out
quoted authors wherever the compilers of the corpus deemed it useful to do so.

³¹Scrīptorēs Historiae Augustae, literally the “authors of the Augustan History”. The actual identity
of the author, or authors, is unknown.
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Figure 3. Estimated information density with and without the Digesta

104 105 106 107 108

Corpus Size (tokens)

5.40

5.60

5.80

6.00

6.20

In
fo

rm
at

io
n 

De
ns

ity
 (b

its
/s

yl
)

With Digesta
Without Digesta

The second involves Cicero. He was an incredibly prolific writer, and due to
the praise of early Christian church fathers, his works were preserved better than most
others’—it is estimated that over 75% of the surviving writings from his lifetime are his
(Harrison 2008). Even looking at other time periods, his works make up over 18% of my
corpus. As such, he has a much greater impact on my information density estimate than
most other authors, through sheer volume (as can be seen in figure 5).

Arguments could bemade to exclude his works from the corpus as an outlier, due to
this impact, and also what some have called his “extremely poor vocabulary”³² (Albrecht
2017: 136). Arguments could also be made to include his works in the total corpus but
exclude them from the jackknifing, since some consider Cicero’s works definitional to the
‘Classical’ style, rather than being just another author (Albrecht 2017: 136). In the end,
the decision was made to include his works both in the corpus and in the jackknifing. Even
if his vocabulary was deliberately limited, his works are still an important example of Latin
written in the Classical period, and from a descriptive standpoint I believe his authorial
style should factor into the uncertainty the same as any other author’s.

Using this corpus (with Justinian excluded but Cicero included), the results of the
extrapolation can be seen in figure 4. The information density calculated from the entire
corpus is 6.204 bits per syllable, extrapolated to 6.216 bits per syllable.

The results of author jackknifing are shown in figure 5. The mean of the extrapo-
lated entropy of the fourteen resampled corpora is 6.220 bits per syllable, with a standard
deviation of 0.0198. This standard deviation approximates how much any particular lost
author could impact the results, and I take it as a measure of the uncertainty in the estimate.

³²This is not to suggest that he didn’t know many words, but rather that he deliberately strove for
consistency and clarity in his vocabulary, discarding many synonyms and alternate constructions as a result.
In his works on oratory, he describes this as a key component of good speech.
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Figure 4. Estimated information density from the entire corpus
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Figure 5. Results of author jackknifing. The visible outlier (in purple) is the corpus without Ci-
cero.
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According to Coupé et al. (2019), the mean information rate across languages is
39.15 bits per second, with a standard deviation of 5.10. From this, I calculate a recon-
structed speech rate:

SR =
IR

ID
= 6.29 syl/sec(9)

σSR =

√(σIR

ID

)2

+
(σID

ID

)2

= 0.82(10)

Notably, the uncertainty in the information density value (σID) is so small com-
pared to the natural variation in IR (σIR) that it becomes negligible. The effect of different
authorial styles on the information density estimate is completely drowned out by the size
of the ‘optimal range’ for IR, suggesting that this corpus is diverse enough to be confident
in the results.

4. Discussion

Compared to Coupé et al.’s (2019) empirical data, these results—6.29 syllables per second
with a standard deviation of 0.82—seem quite reasonable. The rate is fairly similar to
that of English, with some other languages being much faster and others much slower.
The uncertainty is significantly smaller than many of the differences between languages,
showing that our results are precise enough to be meaningful. And the uncertainty is also
fairly similar to the variations reported in Coupé et al.’s experiment.

Figure 6 compares our reconstructed speech rate for Classical Latin against the
data gathered by Coupé et al. (2019) for Vietnamese, English, and Japanese. Tickmarks
indicate the mean and one standard deviation above and below; for living languages, the
‘violin’ of the plot shows the distribution of measurements of actual speech rate, while for
Latin, it’s approximated by a normal distribution with our calculated mean and standard
deviation.

4.1. Comparison
Now that we know the estimated speech rate is plausible for a language in general, a more
interesting question arises: how does it compare to its descendants, the modern Romance
languages? Figure 7 compares my reconstructed values for Latin against the measured
values for the four Romance languages included in Coupé et al.’s (2019) study: Catalan,
French, Italian, and Spanish.

Notably, Latin seems to be spoken significantly slower than all the Romance lan-
guages tested, often by at least one standard deviation. Spanish, the fastest of them, is
more than an entire syllable per second faster.
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Figure 6. Our reconstructed speech rate for Classical Latin, compared to measured speech rates
of living languages: Vietnamese, English, and Japanese
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Figure 7. The speech rate of Classical Latin compared to modern Romance languages: Catalan,
French, Italian, and Spanish
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The next question is, are there phonological reasons for this? In other words, are
there significant phonological differences between Classical Latin and its modern descen-
dants that would explain this significant difference in speech rate? In table 2 I reproduce
some phonological data from Oh (2015) for comparison³³. ‘C’, ‘V’, and ‘T’ indicate the
size of the inventory of consonants, vowels, and tone/stress features; ‘Complexity’ and ‘In-
dex’ are measures of syllable complexity proposed by Maddieson (2013) and Maddieson
et al. (2013) respectively (the ‘index’ being roughly equivalent to the maximum number of
segments in a single syllable); and ‘SE’ and ‘ID’ are the Shannon entropy and information
density reported by Oh (2015), both in bits per syllable.

Table 2. Phonological statistics for Classical Latin compared to modern Romance languages:
number of consonants, vowels, and tone/stress features; complexity and complexity index; Shan-
non entropy and information density.

Language C V T Complexity Index SE ID
Latin 21 17 0 Complex 7 8.71 6.22

Catalan 25 8 2 Moderate 4 8.10 5.49
French 22 15 0 Complex 7 8.39 6.68
Italian 27 7 1 Complex 6 8.32 5.29
Spanish 27 5 1 Moderate 5 8.32 5.43

Romance data taken from Oh (2015: 44-45).

Notably, the Shannon entropy (SE) of Classical Latin—that is, the syllable entropy
without context, as formulated in equation 1—is much closer to that of modern Romance
languages than the information density (ID). I attribute thismainly to the presence of stress.
Phonemic stress, as found in many Romance languages, increases the number of possible
syllables immensely (since, for example, stressed á and unstressed a become phonologi-
cally distinct syllables). This increase in the syllable inventory then greatly increases the
Shannon entropy. But the information density incorporates context as well, and in context,
stress matters much less—in stress-accent languages, there tends to be one and only one
ictus per word, not an independent binary “stressed/unstressed” property for each syllable.
Latin lacks phonemic stress but has phonemic vowel length, which is a property of each
individual vowel rather than the word: pila ‘ball’, pīla ‘mortar’, pilā ‘with a ball’, pīlā
‘with a mortar’. So while the effects of stress and vowel length on the Shannon entropy
are similar, their effects on the information density are very different.

³³An estimate of syllable inventory size based on corpus measurements is also reported by Oh (2015),
but not included here. Her method of estimation involves looking at the most frequent lemmata in the corpus,
and our Latin corpus has not been lemmatized.



18 Isogloss 2022, 8(4)/4 Daniel Stelzer

The ‘Complexity’ and ‘Index’ values, while fairly similar here, can also obscure
significant differences in syllable structure. Latin generally allows up to three consonants
in a coda: urbs /urps/ ‘city’, calx /kalks/ ‘chalk’. Italian, on the other hand, does not allow
any clusters in codas (Hall 1944). The reason for the similar ‘Index’ and ‘Complexity’
values is the analysis of diphthongs—the /ae

“
/ in Latin saepe ‘often’ is taken as a single

segment, while the /ai
“
/ in Italian assai ‘very’ is taken as two segments, for phonologi-

cal reasons—and the number of possible diphthongs is much smaller than the number of
possible consonant clusters.

4.2. Historical Phonology
Leaving aside Maddieson et al.’s (2013) index, I suggest a broader look at the history of
the Romance languages, and what sorts of common phonological changes these languages
shared.

Figure 8. The vowel inventories of Classical Latin (left) and early Romance (right)

Vowel changes: Classical Latin had twelve phonemic monophthongs, /i y e a o

u/ with a binary length distinction, and at least³⁴ three phonemic diphthongs, /ae
“

oe
“

au
“
/.

Early in Proto-Romance, the length distinction became a quality distinction, and a series
of mergers resulted in seven phonemic monophthongs /i e E a O o u/ and one diphthong
/au

“
/, as shown in figure 8. Alkire and Rosen (2010) refer to this as the ‘Great Merger’,

and its effects can be seen in almost all Romance languages³⁵; most underwent further
mergers, especially when unstressed (Alkire and Rosen 2010; Boyd-Bowman 1980). The
main result of this was to cut the number of possible syllables nearly in half.

Cluster breaking: While Classical Latin allowed /s/ before stops in onsets, West-
ern Romance varieties historically did not.

(11) strictus ‘tight’ → Spanish estrecho
(12) sponsa ‘fiancée’ → Old French espose → French épouse
(13) scriptus ‘written’ → Catalan escrit

³⁴Some analyses, such as Allen (1978), consider other diphthongs phonemic as well, but others, such
as Alkire and Rosen (2010) and Boyd-Bowman (1980), include only these three. In this paper, I follow
Allen for most matters of Classical phonology and phonetics (including table 2), but Alkire and Rosen
(2010) specifically in discussions of historical development (including figure 8).

³⁵The famous exception is Sardinian.
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This prohibition eventually weakened in some languages (such as Modern French),
and the epenthetic vowels mostly disappeared in Italian—stretto, sposa, scritto—though
relics like iscritto survive in fossilized phrases³⁶ (Alkire and Rosen 2010). But the primary
effect was to break up inherited consonant clusters, increasing the number of syllables per
word and decreasing the number of possible onsets.

Coda loss: Classical Latin allowed a wide variety of coda consonants, including
stops, nasals, and fricatives. Many of these disappeared in the development of Romance,
especially word-finally:

(14) habētis ‘you all have’ → Italian avete
(15) ferrum ‘iron’ → Catalan ferro
(16) amābat ‘she was loving’ → Spanish amaba

Certain codas were already being lost in the Classical period—poetry and inscrip-
tions indicate that coda /m/, while phonologically present, was no longer realized as a
separate segment³⁷—and some Romance branches took this process farther than others.
Latin servōs ‘slaves’, for instance, became Spanish siervos but Italian servi (via an in-
termediate *servoj). This contributed, again, to a decrease in the inventory of possible
syllables.

Consonant loss and gain: Some Classical consonants merged or disappeared
without a trace in Romance, while some others arose out of previously non-phonemic
contrasts:

(17) hortus ‘garden’ → Old French ort
(18) chorus ‘chorus’ → Spanish coro
(19) fāgeus /fa:geus/ ‘beech’ → Italian faggio /faddZo/

The result is a similar number of consonants in Classical Latin and its descendants,
as reported in table 2. While the inventory of consonants varies significantly, its size is
similar between Latin and the Romance languages surveyed.

Syncope: Many unstressed medial vowels were deleted very early in the history
of Romance. This change happened early enough to appear in inscriptions, and in a few
cases the effects are even visible during the Classical period:

(20) calida ‘hot’ → Latin calda³⁸ → Italian calda
(21) viridis ‘green’ → Spanish verde
(22) altera ‘other’ → Old French altre → French autre

This created more consonant clusters—but, crucially, did not significantly increase
the inventory of syllables, or allow syllables to appear in more contexts. All of these
clusters and syllables existed in the language before the syncope process took place.

³⁶Some older speakers have also been reported to preserve the epenthetic vowel when theword follows
a consonant: alla Svizzera but in Isvizzera.

³⁷In other words, it was probably realized as nasalization of the preceding vowel instead of as a
consonant [m].

³⁸The emperor Augustus is quoted by Quintilian (Inst. Or.: I.6.19) as calling the longer form “super-
fluous” and telling his grandson to avoid it.
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French vowel changes: French is one of the less conservative Romance languages,
phonologically, and in particular it has a significantly larger vowel inventory than Italian,
Spanish, or Catalan. These vowels stem from a variety of dramatic changes from early
Gallo-Romance, often conditioned by surrounding consonants which later disappeared
(Pope 1934; Boyd-Bowman 1980):

(23) forestem ‘forest’ → forêt /fOKE/
(24) dentem ‘tooth’ → dent /dÃ/
(25) pedem ‘foot’ → pied /pje/

The result is a much larger vowel inventory than the other Romance languages
surveyed. This increased the French syllable inventory significantly; I hypothesize that
this contributed to the language’s relatively high information density, as shown in table 2.

In summary, I believe there are several historical reasons to expect modern Ro-
mance languages to have smaller syllable inventories than Latin. This reduces the infor-
mational load on each syllable and the difficulty of recognizing syllables, allowing the
language to be spoken faster. While syllable frequency likely plays an important role as
well, it is notable that the Romance language closest in speech rate to Latin, out of those
surveyed, is French—which has a significantly larger vowel inventory than the rest.

5. Conclusion

In this study, I used a variety of tools to analyze the information density of Classical Latin
from a written corpus. Applying my newmethods of extrapolation and author jackknifing,
I came up with an information density of 6.216 bits per syllable, with a standard error
of 0.198. Applying these values to Coupé et al.’s (2019) information rate distribution,
I predict a mean speech rate of 6.29 syllables per second, with a standard deviation of
0.82—significantly slower than the modern Romance languages tested by Coupé et al. I
believe these results make sense, based on a broad overview of historical developments in
Romance.

I believe these methods of extrapolation can be applied to other corpora. While I
demonstrated that two million tokens is enough, more research is required to determine
how small a corpus is sufficient for a good extrapolation. Future work might put a lower
bound on this, and potentially apply it to other languages with less written data available.

I have also looked at a handful of prominent historical sound changes to explain
these results, but in a language family as well-understood as Romance, this has barely
scratched the surface of the potential. With a more detailed investigation of one particular
language’s historical phonology, it might be possible to trace the evolution of the lan-
guage’s speech rate over time and quantify the effect of particular phonological changes.

Finally, the Latin corpus may offer an opportunity to expand on Oh (2015) and
Coupé et al.’s (2019) work. They relied solely on within-word context due to the limita-
tions of the available corpora—for many languages, it can be difficult to find good corpora
that are both phonemically annotated and include broader context. But Latin orthography
is quite close to phonemic, as discussed in section 2.2, and between-word sandhi effects
in Latin have long been studied for the same reason as syllabification: they have a signif-
icant impact on metered poetry. This could make it a good test subject for the effects of
inter-word context.
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The recent advances in the study of linguistic information are exciting, and I believe
they have significant potential. Reconstructing phonetic properties of long-dead languages
may be only the beginning.

Supplemental Materials

The source code used for this analysis can be found at https://github.com/dstelze
r/latin-speech-rate.
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