Significance of atmospheric deposition to freshwater ecosystems in the southern Iberian Peninsula

Rafael Morales-Baquero¹, Elvira Pulido-Villena, Otilia Romera, Eva Ortega-Retuerta, Jose Mª Conde-Porcuna, Carmen Pérez-Martínez and Isabel Reche

Departamento de Ecología e Instituto del Agua. Universidad de Granada, 18071 Granada, Spain.
¹Corresponding autor (rmorales@ugr.es)

SUMMARY

The Iberian Peninsula is close to the Saharan Desert, which is the biggest source of atmospheric aerosols of the World. Currently, it is recognized that atmospheric deposition of aerosols over ecosystems is a significant source not only of elements with gaseous phases but also of rock-derived ones. In the last years we have been quantifying the atmospheric flux of elements and substances of biogeochemical interest on the aquatic ecosystems of the South Iberian Peninsula, and their impact on their functioning and structure. The results we are obtaining indicate that atmospheric contribution of P and Ca are essential to explain the functioning of high mountain lakes, and that atmospheric input of organic matter partially supports the pelagic food web of these ecosystems. In this article we offer a summary of some of the results obtained to date.

Key words: atmospheric deposition; phosphorus; nitrogen; calcium; soluble organic matter; lakes.

INTRODUCTION

Biogeochemical cycles impose strong restrictions to the organization of the Biosphere (Margalef, 1997). Therefore, Ecology needs to understand the causes and consequences of the global mobilization and distribution of elements. In this sense, the atmosphere is a major component of the Biosphere (sensu Vernadsky) as well as a pathway throughout which elements can be mobilized among ecosystems. However, we are far from having a complete comprehension of its role in Biogeochemistry.

Traditionally, the atmosphere has been considered the main source of elements with gaseous phases, such as N, for terrestrial and aquatic ecosystems. By contrast, atmospheric contribution of rock-derived elements, such as P or Ca, has been considered of minor relevance, highlighting the role of weathering inputs and sediment releases particularly in Limnology. This paradigm has prevailed over decades in studies on nutrient budgets in fresh-water ecosystems (Rodhe, 1948; Vollenweider, 1968, 1975, 1976). Due to anthropogenic activity, atmospheric nitrogen deposition in the Northern hemisphere significantly increased in the 70s and 80s and its effects on lake chemistry were intensely studied (Sullivan et al. 1990, Stoddard et al. 1999), whereas atmospheric inputs of phosphorus were not considered.
Currently, it is well established that the atmosphere can mobilize amazing quantities of dust from the arid areas of the world (Schlesinger, 1997), and the role of the atmosphere as a vehicle for rock-derived elements has been recently revindicated (Chadwik et al., 1999). These authors found that the tropical ecosystems of Hawaii depend critically on phosphorus supplied by the atmosphere coming from the Central Asian Desert. At a global scale, the Sahara Desert is the largest arid area in the world and, consequently, it is the origin of the largest loads of dust to the atmosphere (D’Almeida, 1986). This dust is transported towards the Atlantic by the predominant westerly winds and towards the Mediterranean basin influenced by the presence of cyclones (Moulin et al., 1997).

Saharan dust contains high quantities of particulate matter, soluble minerals and organic carbon (Talbot et al., 1986). The effects of dust deposition in aquatic and terrestrial ecosystems are now receiving attention (Ridame and Guieu 2002; Okin et al., 2004) and there is a considerable interest in assessing the effects of dust deposition on marine ecosystems (Guerzoni et al. 1999; Herut et al., 1999, 2002; Lenes et al., 2001). A particular scientific effort has been done to determine the availability of dust-derived P to primary producers (Migon and Sandroni, 1999; Ridame and Guieu, 2002; Markaki et al., 2003). Although the potential relevance of atmospheric P deposition for freshwater ecosystems has been previously exposed (Peters, 1977), the effects of P atmospheric inputs on lake biogeochemistry have been scarcely studied (Gibson el al, 1995).

Every year, the Iberian Peninsula receives intrusions of air masses loaded with dust from the Sahara Desert (Querol et al., 2003). Their deposition rates are poorly known and published data comes mainly from the Northeast of the Iberian Peninsula and is linked to rainfall (Camarero and Catalan, 1996; Avila et al., 1997). Nevertheless the Iberian Peninsula shows a strong gradient in the rainfall with minimum values in the Southeast where the dry deposition is predominant. During the last years, we have been developing a program to study wet and dry deposition in the Southern part of the Iberian Peninsula, and their effects on biogeochemistry of high mountain lakes and reservoirs of this area. Our goal is to quantify the atmospheric inputs of elements and substances relevant for the biogeochemical cycles of aquatic ecosystems, as representative of atmospheric deposition in the Southwest Mediterranean, and to establish direct links between such inputs and freshwater ecosystem responses. Here, we offer a summary of some of the more relevant results obtained to date.

DEPOSITION OF PARTICULATE MATTER (PM)

Data on dry and wet deposition obtained on a weekly basis during two years at 1000 m and at 2900 m a.s.l. (only ice-free periods), conforms to a Mediterranean regional pattern with gro-
wing values, as distances from Sahara are shorter and closer to the Eastern latitudes (Goudie and Middleton, 2001). The mean PM total (dry + wet) deposition in Sierra Nevada at 1000 m. (11.2 g m⁻² yr⁻¹ Morales-Baquero et al., 2006) is higher than the values reported for Catalonia (Montseny) (5.3 g m⁻² yr⁻¹, Avila et al, 1997) and the Alps (0.2 to 0.4 g m⁻² yr⁻¹ Wagenbach and Geis, 1989; De Angelis and Gaudichet, 1991), similar to the values registered in Corsica (12-12.5 g m⁻² yr⁻¹, Bergametti et al., 1989; Löye-Pilot et al., 1986) and lower than those reported for the East Mediterranean area (36 to 72 g m⁻² yr⁻¹ Herut and Krom, 1996). Although rainfall can washout high quantities of PM, the contribution of dryfall to the annual total PM inputs registered in Sierra Nevada (79 %) was much higher than the wet deposition, emphasizing the importance of dry deposition in areas where the rain is scarce (Morales-Baquero et al., 2006).

Several evidences point out that Saharan dust dominates PM deposition in the Southwest Iberian Peninsula: 1) dry PM deposition exhibited a similar seasonal pattern to Saharan dust export toward the Mediterranean basin, which is characterized by maximum values particularly during spring and summer (Moulin et al. 1997); 2) there was a positive relationship between dry PM deposition and TOMS aerosol index (Fig. 1), which is a suitable estimator of Saharan dust content in the atmosphere (Chiapello et al., 1999); and 3) we registered higher PM deposition at 2900 m than at 1000 m which is consistent with the dynamics of Saharan dust transport, with maximum loads mobilized between 1500 and 4000 m (Talbot et al., 1986). Furthermore, the analysis of dust deposition depending on the air masses’ origin, determined by using backward trajectories analysis (HYPLIT model, NASA) have clearly shown higher dust deposition when the air masses come from the South or Southwest rather than from other directions (Fig. 2). All these results reveal a significant and regular atmospheric transport of material from the African Continent to the South of the Iberian Peninsula.

Figure 2. Synchronous measurements of dry PM deposition in three collectors located in sites up to 40 km distant in the Granada province and near three studied reservoirs. The values are cumulative data from weekly measurements during spring and summer of 2004 segregated according to the origin of the air masses for each corresponding week. Origins were determined by analysing 5-day backward trajectories at 3000 m asl using the HYSPLIT model (NOAA, Air Resources Laboratory). It is evident that PM deposition is higher when air masses arrive from the South or Southwest. Medidas sincrónicas de la deposición seca de material particulado (PM) en tres colectores situados en localidades separadas hasta en 40 km dentro de la Provincia de Granada y cercanos a tres embalses en estudio. Los valores son datos acumulados de medidas semanales durante la primavera y verano de 2004, separados de acuerdo con el origen de las masas de aire en cada semana. Los orígenes se determinaron analizando retrotrayectorias de 5 días a 3000 m smn calculadas aplicando el modelo HYSPLIT (NOAA, Air Resources Laboratory). Es evidente que la precipitación de PM es más elevada cuando las masas de aire llegan del Sur o Suroeste.
NITROGEN AND PHOSPHORUS DEPOSITION

Saharan dust contains significant quantities of phosphorus. In fact, this source accounts for 30-40% of the total atmospheric flux of phosphorus into the Northwestern Mediterranean (Guieu et al., 2002). In Sierra Nevada the mean deposition of total phosphorus (TP) was 513 µmol m⁻² yr⁻¹ (Morales-Baquero et al., 2006), that is similar to deposition attributed to Saharan dust in Corsica (about 500 µmol m⁻² yr⁻¹, Bergametti et al., 1992), lower than the deposition measured in the East Mediterranean (1300 µmol m⁻² yr⁻¹, Herut et al., 1999), and higher than in Catalonia (100 µmol m⁻² yr⁻¹-only wet deposition-, Avila et al., 1998).

The P deposition in our studies showed a similar pattern to PM deposition, with maximum values in spring and summer. In fact, we found a significant correlation between PM deposition and TP deposition (n= 107; r= 0.45; p< 0.001).

In contrast, total nitrogen (TN) deposition (39.6 mmol m⁻² yr⁻¹, Morales-Baquero et al., 2006) was always lower than other sites from the Mediterranean basin (55 mmol m⁻² yr⁻¹ in the Northwest (Guerzoni et al., 1999) and about 50 mmol m⁻² yr⁻¹ in the East (Herut et al., 2002; Markaki et al., 2003), only inorganic fractions in both cases), making the anthropogenic impact over that area evident since N deposition is mostly linked to anthropogenic activity (Driscol et al., 2003). TN deposition did not show a clear season pattern and was not correlated to PM deposition. In addition, wet deposition contributed more than 50% to N inputs, whereas most P inputs over our study area were linked to dry deposition (72%). The differences in the N and P inputs are also reflected in the molar TN:TP ratio of the atmospheric deposition, which varies seasonally from values as low as 11.9 in spring or summer to values >100 in fall or winter.

The atmospheric inputs coming from Saharan dust appear to affect the biogeochemistry of the high mountain lakes from Sierra Nevada. The relatively high atmospheric inputs of P during summers were previously suggested as the responsible for the enhancement of P deficiency, as the summer progress, in lakes with bigger catchments areas (Morales-Baquero et al., 1999). The lakes with relatively smaller basins reflect the atmospheric N:P ratio more closely than the inputs from watersheds. In fact, N:P ratios of atmospheric inputs significantly relate to N:P ratios of lakes, affecting nutrient status (Morales-Baquero et al, 2006) (Fig. 3). In addition, we found a direct connection between atmospheric TP input and the response of phytoplankton (Morales-Baquero et al., 2006) (Fig. 4), demonstrating the importance and bioavailability of the P delivered from the atmosphere in natural conditions.

CALCIUM DEPOSITION

It is well known that Saharan dust contains high quantities of calcium carbonate (Löye-Pilot et al., 1986), which significantly increases the pH of rainwater and its deposition is an important input of Ca to terrestrial ecosystems (Avila et al., 1997). The mean total atmospheric inputs of calcium at 1000 m registered in Sierra Nevada
were slightly higher than those reported for the Northeastern Iberian Peninsula, an area also influenced by Saharan dust inputs (24.8 mmol m^-2 yr^-1; Avila et al., 1997; 1998), and clearly higher than the reported for Northern Europe (6.1 mmol m^-2 yr^-1; Hultberg and Ferm, 2004). Like P deposition, Ca dry deposition was prevalent (64 % of total deposition), and showed the same seasonal pattern of PM dry deposition. Consequently, PM and Ca dry deposition were correlated (r=0.60; p<0.001; n=106). The influence of Saharan dust in Ca deposition is showed by the 50 % mean increase when Saharan intrusions over the Iberian Peninsula occur (Fig. 5).

The atmospheric inputs of Ca are a determining factor for the Ca content in the Sierra Nevada lakes. We have recorded the Ca concentrations during three ice-free periods in two lakes: Rio Seco and La Caldera, with and without superficial outlets respectively. Ca concentration was always higher in La Caldera Lake (107.6 ± 1.1 µM) than in Rio Seco Lake (37.4 ± 1.1 µM). Ca concentration in both lakes showed a significant synchronous dynamics (r=0.63; p< 0.001; n= 35). This fact suggests a climatic control, which could also be due to evaporative processes during summer. Nevertheless, analysing the in-lake variation of the 18O isotope, as a surrogate for evaporation, and the total direct Ca deposition to lakes, it has been possible to establish that Ca deposition is positively affecting the Ca concentration in both lakes. Furthermore, a mass estimate of Ca inputs to lakes and basins, realized on an annual basis, showed that atmospheric inputs can fully explain the Ca concentrations found in both lakes (Pulido-Villena et al., 2006). Therefore, the atmospheric Ca deposition appears to be a key factor to understand the high Ca content (and related variables, e.g. the acid-neutralizing capacity) of some lakes in Sierra Nevada in comparison with the central Europe high mountain lakes (MOLAR, 1999).

ORGANIC MATTER DEPOSITION

Among the soil components mobilized as aerosols by the atmosphere, there are important
quantities of particulate and water-soluble organic carbon (W-SOC) (Talbot et al., 1986). Its deposition rates and ecological effects are poorly known, although it has been reported that atmospheric wet deposition of W-SOC to oceans can be similar to the dissolved organic carbon (DOC) derived from global river discharge (Willey et al., 2000). The atmospheric deposition of W-SOC is expected to be very significant in oligotrophic high mountain lakes where these compounds have low concentrations (<1 mg l⁻¹) but play important functions, such as the regulation of ultraviolet radiation attenuation (Laurion et al., 2000; Reche et al., 2001).

The total summer cumulative atmospheric deposition of W-SOC collected at 2900 m in Sierra Nevada was 20-mmol m⁻², and about 50 % of this quantity arrived with the dry deposition of PM. Total PM deposition showed a direct relationship with total W-SOC deposition (r=0.62; p<0.001; n=33) (Pulido-Villena, 2004). These rates demonstrate that there is a substantial input of organic carbon, potentially bio-available, from the atmosphere to Sierra Nevada lakes. In fact, an analysis of the pelagic food webs, using a stable isotope approach, showed that this source of carbon might be essential for the food-webs in these lakes (Pulido-Villena et al., 2005). Fig. 6 shows the carbon stable isotope signature of the pelagic food web of La Caldera Lake. δ¹³C of the zooplanktonic community revealed species-specific differences in their food sources, probably as a result of an ecological niche segregation. The cladoceran *Daphnia pulicaria* relied mainly on bulk particulate organic matter (POM) whose isotopic signature (δ¹³C = -24.5 ‰) was heavier than that estimated for phytoplankton (δ¹³C = -32.5 ‰). The most

Figure 6. Food web interactions in La Caldera lake as deduced from a ¹³C isotope analysis of their major components. The three crustacean species appear clearly segregated in their respective food sources. The significance of atmospheric inputs of organic Carbon is deduced from the high values of δ¹³C signature of POM in the lake (after Pulido-Villena et al., 2005). δ¹³C of phytoplankton for La Caldera was estimated using a fractionation factor of 20‰ and the values of δ¹³C of dissolved inorganic carbon measured by us. δ¹³C values for atmospheric inputs after Eglinton et al. (2002). Interacciones en la red trófica de la laguna de La Caldera según se deducen de un análisis del isótopo ¹³C en sus principales componentes. Los tres crustáceos mayoritarios aparecen claramente segregados en sus respectivas fuentes de alimento. La importancia de las entradas atmosféricas de carbono orgánico se deduce de los altos valores de δ¹³C de la materia orgánica particular (POM) en la laguna (de Pulido-Villena et al., 2005). El δ¹³C del fitoalga en La Caldera se estimó usando un factor de fraccionamiento del 20‰ y los valores del δ¹³C del carbono inorgánico disuelto medidos por nosotros. Valores de δ¹³C de las entradas atmosféricas según Eglinton et al. (2002).
plausible explanation for this discrepancy is that POM was composed not only of phytoplankton (and derived biota and detritus) but also of terrestrial organic matter, which is usually enriched in 13C. Since the basin of La Caldera Lake is rocky, the atmospheric inputs of organic matter, mainly derived from Sahara, could explain the heavy signal of POM in La Cadera. In this regard, the measured atmospheric input of W-SOC in La Caldera may represent as much as 33% of the dissolved organic carbon concentrations found in this lake (Pulido-Villena et al., 2005). Furthermore, a recent study by Eglinton et al. (2002) reported that the isotopic signature of total organic carbon in atmospheric dust derived from the Sahara Desert is especially heavy (c.a. -18‰) suggesting the presence of biomass and burning residues derived from predominantly C4 vegetation accumulated in the soils.

The atmospheric inputs of organic matter can be a source of food not only for indiscriminate filter-feeding animals such as *D. pulicaria*, but also for bacteria. In fact, a bacteria culture enriched with atmospheric dust showed higher growth efficiency on atmospheric W-SOC than on lake DOC (Pulido-Villena, 2004). Therefore, the food webs of the high mountain lakes of Sierra Nevada can be partially supported by a source of energy originated in terrestrial ecosystems from other continents and whose transport is regulated by global atmospheric circulation patterns.

MICROORGANISMS AS AEROSOLS

Although the microbial component of aerosols is known since the 19th century, it has not received attention up to the present decade. Aerosols can mobilize about 10^{18} cells per year (Griffin et al., 2002) and these air-transported microorganisms can survive long distances suspended in dust particles. However, their colonizing abilities and outcompeting success are almost unknown. The deposition, viability, and expansion of these invading microorganisms can affect the indigenous microbiota, particularly in remote lakes with high ecological value. In an ongoing project (ECOSENSOR, Fundación BBVA) we have selected remote lakes from the Arctic area, Antarctica, Patagonia, and high mountains to establish microbial biogeography patterns. We pretend to assess the role of the atmospheric long-range transport of microorganisms as a dispersal mechanism affecting microbial biodiversity patterns, since the spatial structure appears to contribute significantly to lake bacterial composition (Reche et al., 2005). Some preliminary experiments in our laboratory have also confirmed the existence of viable bacteria linked to dust deposition.

CONCLUSIONS

From the results obtained to date, it appears evident that the deposition of elements and compounds mobilized as aerosols by the atmosphere plays a significant role in the biogeochemistry of high mountain lakes from the Southern Iberian Peninsula. This deposition is related to dust exported from the Sahara desert on an annual basis, implying a regular intercontinental transfer of material. The deposition occurs mostly in dry form, and its effect on terrestrial and aquatic ecosystems needs to be addressed.

The dryfall of particulate matter is a climatic variable that, contrary to rainfall, has been scarcely considered. This variable is connected to global atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). High positive NAO years involve high dust export from the Sahara to the Mediterranean basin (Moulin et al., 1997). The increase in the transport of aerosols that the recent models of climatic change have predicted, will probably lead to an increase in the input of mineral nutrients and W-SOC to freshwater ecosystems. In areas, such as the Mediterranean basin with long periods of absence of rainfall, the dryfall is continuously reaching aquatic ecosystems where the soluble components appear to have consequences, which we are now beginning to understand.

From Margalef’s legacy two major ideas have emanated and inspired this ongoing research. First, that biogeochemical cycles impose strong
restrictions to organization of the Biosphere, and second, that high mountain lakes are the finest sensors available to detect changes in the troposphere. We have now evidences that the atmosphere can supply both gaseous and rock-derived elements essential for the biogeochemistry of Sierra Nevada high mountain lakes that are particularly sensible to variations in that supply. Since we are very grateful to the work of Margalef, these pages are a little tribute to him.

ACKNOWLEDGEMENTS

Financial support was provided by the projects CICYT AMB99-0541 and MCYT REN03-03038.

REFERENCES

RIDAME, C. & C. GUIEU. 2002. Saharan input of phosphate to the oligotrophic water of the open

