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ABSTRACT
Emerging global role of small lakes and ponds: little things mean a lot

Until recently, small continental waters have been completely ignored in virtually all global processes and cycles. This has
resulted from the neglect of these systems and processes by ecologists and the assumption that ecosystems with a small areal
extent cannot play a major role in global processes. Recent inventories based on modern geographical and mathematical
approaches have shown that continental waters occupy nearly twice as much area as was previously believed. Further, these
inventories have shown that small lakes and ponds dominate the areal extent of continental waters, correcting a century-
long misconception that large lakes are most important. The global importance of any ecosystem type in a process or cycle
is the product of the areal extent and the intensity of the process in those ecosystems. Several analyses have shown the
disproportionately great intensity of many processes in small aquatic ecosystems, indicating that they play an unexpectedly
major role in global cycles. Assessments of the global carbon cycle underscore the need for aquatic scientists to view their
work on a global scale in order to respond to the Earth’s most pressing environmental problems.
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RESUMEN
La emergencia del papel global de los pequerios lagos y charcas: el gran significado de las pequerias cosas

Hasta muy recientemente, las aguas continentales de pequerio volumen se han ignorado completamente en todos los procesos
y ciclos globales. Esto ha sido el resultado de la poca consideracion de estos ecosistemas y procesos por los ecélogos y
de asumir que los ecosistemas que ocupan un drea pequeria no juegan ningin papel importante en los procesos globales.
Inventarios recientes basados en aproximaciones geogrdficas y matemdticas modernas indican que las aguas continentales
ocupan casi el doble del drea de lo que se creia anteriormente. Ademds, estos inventarios han mostrado que las charcas y la-
gunas de pequerias dimensiones predominan en la extension superficial de las aguas continentales, corrigiendo la concepcion
equivocada de todo un siglo de que los grandes lagos eran los mds importantes. La importancia global de cualquier tipo
de ecosistema en un proceso o ciclo es el producto de su superficie por la intensidad del proceso en el ecosistema. Diversos
andlisis han mostrado la intensidad desproporcionadamente grande de muchos procesos en los pequerios sistemas acudticos,
indicando su sorprendente papel primordial en los ciclos globales. Evaluaciones del ciclo global del carbono ponen de man-
ifiesto la necesidad de que los ecologos acudticos tengan una vision de su trabajo a escala global, para poder responder a
los problemas ambientales mds preocupantes.

Palabras clave: Charcas, lagos, limnologia global, tamario de los lagos, secuestro de carbono.

INTRODUCTION science has assumed that the world’s large lakes

cover the most area and therefore are the most
Ever since Halbfass (1914) and Thienemann’s important to study (Downing et al. 2006, Down-
(1925) work cataloguing the lakes of the world, ing & Duarte 2009). In spite of this long-standing
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error of scientific reasoning (Downing 2009), our
common, human experiences tell us that small
things in life, society, or nature can be more
important than their sizes imply. For example,
part of the title of this article (“Little things
mean a lot...”) comes from song lyrics by Edith
Lindeman (no relation to Raymond) express-
ing that the tiny gestures people make have the
most value. The 19" Swiss philosopher and poet,
Henri-Frédéric Amiel, suggested that “What we
call little things are merely the causes of great
things” (Amiel 1893). Bruce Fairchild Barton,
the American publicist, politician, and author
wrote, “Sometimes when I consider what tremen-
dous consequences come from little things... [ am
tempted to think there are no little things” (Bar-
ton 1917). The 18" century German scientist,
satirist, and philosopher, Georg Christoph Licht-
enberg, noted that “the tendency of people to
consider small things as important has produced
many great things” (Friederici 1978). We should
not be misled by their small relative size into as-
suming that small lakes and ponds are unimpor-
tant. In A Case of Identity (Conan Doyle 1920),
Sir Arthur Conan Doyle (speaking as Sherlock
Holmes) suggested, “It has long been an axiom of
mine that the little things are infinitely the most
important.” Human experience suggests that we
should expect the small parts of aquatic ecosys-
tems, e.g., small lakes, ponds, puddles, marshes,
and streams, to be of disproportionately great im-
portance in world cycles and processes.

Lakes, especially small ones, are ignored
globally

Globally, lakes and ponds are generally ignored
as being insignificant or are thought of only as
reservoirs where water and materials are held for
a short time before delivery to streams, rivers,
and the oceans. Terrestrial ecologists, climatolo-
gists, and oceanographers tend to think of con-
tinental waters as “plumbing” that delivers or
transports water, with little processing. Recently,
this has been shown to be an incorrect assump-
tion (Cole et al. 2007, Downing 2009, Tranvik
et al. 2009). Further, scientists studying lentic
waters have long known that they process glob-
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Figure 1. Frequency analysis of use of “lake” or “lakes” ver-
sus “pond” or “ponds” in the title of scientific publications in-
dexed by the Web of Science over the last century. Absolute
frequency is dependent on the literature indexed by Web of Sci-
ence and the completeness of index coverage. Andlisis de fre-
cuencias de la utilizacion de la palabra “lake” o “lakes” versus
“pond” o “ponds” en los titulos de las publicaciones cientificas
indexadas en la Web of Science durante el siglo pasado. Las

[frecuencias absolutas dependen de la bibliografia indexada y

la cobertura de dicho indice.

ally important materials. The concepts of nutri-
ent and material retention and spiraling have been
rudiments of limnology for several decades.

The study of small aquatic systems has lagged
behind larger-lake limnology over much of the
past century. An analysis of publications on
“ponds” versus “lakes” in the publications in-
dexed by Web of Science (Fig. 1) suggests the
bias of ecologists and limnologists toward study-
ing larger water bodies as well as the differential
rates of growth of publications in these areas (see
also Qertli et al. 2009). This analysis shows that
studies titled as pond studies constitute only about
25 % of the aquatic publications indexed in any
given year. Further, although the rate of growth
in the publication of pond studies increased at an
average 19 % per year from 1940-1980, lake studies
increased extremely rapidly during the boom
years of eutrophication remediation. Publications
entitled as pond or lake studies have decelerated
in the past decade, with rates of growth in pond
analyses decelerating more than those of lakes.
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Table 1. Analyses of global cycles and processes completely omitting any reference to ponds or small lakes. Andlisis de ciclos y
procesos globales omitiendo totalmente cualquier referencia a charcas o lagunas.

Cycle or budget Reference

Carbon (Goody & Walker 1972, Bolin 1983, Schimel et al. 1995, Intergovernmental Panel on Climate Change 2001,
United States Climate Change Science Program 2003)

Energy/Radiation (Christopherson 1994, Kiehl & Trenberth 1997, Hermann 2006)

Greenhouse gases CO,: (Thorneloe et al. 2002)
CH,: (Weissert 2000)

N,O: (Seinfeld & Pandis 1998)

(Rosswall 1983, Chameides & Perdue 1997, Bin-le et al. 2000, Roy et al. 2003, Raven et al. 2004)

Nitrogen

Oxygen (Cloud & Gibor 1970, Goody & Walker 1972, Walker 1980, Keeling et al. 1993)
Phosphorus (Graham & Duce 1979, Richey 1983, Lerman 1988)

Silicon (Goody & Walker 1972, Nelson et al. 1995, Tréguer et al. 1995)

Sulphur (Freney et al. 1983, Raven et al. 2004)

Water (Clarke 1991, Hinrichsen et al. 1998, Winter et al. 1998)

That small aquatic ecosystems are currently per-
ceived as irrelevant to global problems is, how-
ever, undeniable. One needs only to look at
schematic diagrams of various global material
cycles to see that limnology and aquatic ecology
have been left behind. Nowhere is this more ob-
vious than in global analyses of the carbon cy-
cle (e.g., Schimel et al. 1995). All continental
waters are frequently absent from these global
views. The carbon they store and any process-
ing of this material they do (e.g., burial, emis-
sion) are completely omitted. Small, continental
aquatic ecosystems are ignored in virtually all
global views and processes (Table 1).

Lakes, ponds, rivers, and streams are of global
importance

Although they have been ignored, limnologists
know that our systems are significant in global cy-
cles. Nowhere is failing to consider them more seri-
ous than in the global carbon budget. Accuracy of
estimation of the global carbon budget is critical be-
cause it will determine how effectively society can
respond to the challenge of global climate change.

A few years ago, some of us attempted to in-
tegrated fragmentary knowledge on the role of
inland waters into the global Carbon (C) cycle

(Downing et al. 2006, Cole et al. 2007). The in-
formation available at the time indicated that, far
from being neutral conduits of C from lands to
the sea, inland waters process large amounts of
carbon buried in freshwater ecosystems or de-
gassed to the atmosphere. Since that time, we
have learned that the first calculations underes-
timated the area covered by virtually every cat-
egory of inland waters (Downing et al. 2006,
Downing 2009, Downing & Duarte 2009). Those
estimates demonstrated that inland waters may
process about 1 Pg/y (petagram/year) more C
than was previously thought to be delivered to
them. This was more than double the amount
back-calculated as the landscape’s contribution to
rivers and the sea through the supposedly neu-
tral conduit of inland waters. These numbers are
being revised upward quite rapidly (e.g., Tran-
vik et al. 2009) and now show a very active
processing of C by aquatic ecosystems (Fig. 2).
Traditional analyses have calculated the loss of
C from the landscape simply as the amount de-
livered to the sea by rivers but these calcu-
lations have ignored the role of inland waters
in emitting and burying C.

Cole et al’s (2007) calculations are being
rapidly revised upward, underscoring the need
for limnologists to engage in global limnology



12 J. A. Downing

$ZE\0.9 Pgly (in)
Ngutraf =i 0.9 ng’y
Pipe (out)
2.9 Pgly (in) 1.4 Pgly

! COz evasion

;L
-

¢0.6 Paly ~~  09Pgly

sediment burial (out)

Active
Pipe

Figure 2. Illustration of the quantitative and qualitative differ-
ences between the “neutral pipe” model suggesting the inland
waters transport carbon without processing it, and the “active
pipe” model (Cole et al. 2007) in which preliminary estimates
of the global burial of C by aquatic ecosystems and the evasion
of CO, by aquatic ecosystems is admitted. The original view of
these models has been revised to reflect more recent data (Tran-
vik et al. 2009). This revision suggested that the large burial
and evasion of carbon by aquatic ecosystems requires that ex-
port from land is almost three-times greater than previously be-
lieved. (Pg/y = 10 grams/year). Esquema de las diferencias
cuantitativas y cualitativas entre el modelo de “conducto neu-
tro” en donde las aguas continentales transportan el carbono
sin procesarlo y el modelo de “conducto activo” (Cole et al.
2007) en el cual se admite el entierro global de C'y la liberacion
de CO, por los ecosistemas acudticos. El esquema original de
estos modelos se ha revisado para reflejar los datos mds re-
cientes (Tranvik et al. 2009). Esta revision sugiere que el promi-
nente entierro y liberacion de C por los ecosistemas acudticos,
requiere que se exporte desde las zonas terrestres una cantidad
casi tres veces mayor de lo que anteriormente se creia.

(Downing 2009). This lacuna is very obvious
considering the under-emphasis of the global
role of small aquatic ecosystems. The former
view that Earth’s important compartments are
ocean, atmosphere, and land, connected toge-
ther by the assumed neutral pipes and conduits
provided by large lakes and rivers was a major
error. An accurate understanding of global cy-
cles requires seeing the biosphere as a network
of inter-connected metabolically active sites, in-
cluding small lakes and ponds.

Why might small lakes and ponds be very
important?

It has recently been suggested that the global im-
portance of any set of ecosystems is determined
by the product of the amount of the biosphere
they constitute and the intensity of the process
of interest within them (Downing 2009). Down-
ing (2009) also explored ways of “scaling-up”
measurements made in small lakes and ponds for
evaluating their global role. The global role of
small lakes and ponds has been doubly missed
in the past because the spatial extent of lakes has
been underestimated as well as the fraction of the
world’s lakes that are small (Lehner & Doll 2004,
Downing et al. 2000).

An early inventory of the world’s lakes was
first published in 1914 (Halbfass 1914) and
was expanded to include August Thienemann’s
analysis of the lakes of Europe (Thienemann
1925). At that time, Thienemann (1925) sug-
gested that around 2.5 million km? or about 1.8 %
of the land surface, is covered with lakes and
ponds, and that global lake area is dominated by a
few very large lakes (Downing 2009). This view-
point was fundamentally unchanged for about 70
years (Schuiling 1977, Herdendorf 1984, Mey-
beck 1995, Kalff 2001) except that Robert Wetzel
(1990) felt that the world’s lake area is dominated
by small lakes and ponds (Downing et al. 2006).

Lehner and D&ll (2004) performed a full
inventory of world lakes by using GIS of satellite
imagery to count all of the world’s moderately
sized to large lakes, but could not count small
lakes and ponds (< 0.1 km?). Their data suggested
a Pareto distribution (Pareto 1897, Vidondo et
al. 1997) that appears to fit lake-size distribu-
tions down to 0.001 km? (Downing et al. 2006).
A similar relationship was also found to fit the
abundance and size-distribution of the world’s
constructed lakes and analyses of regional data
showed that constructed farm ponds bore a con-
sistent relationship to agricultural land area and
precipitation (Downing et al. 2006). These re-
sults suggest that there are 304 million natural
lakes in the world and they cover about 4.2 mil-
lion km?. This area is nearly twice that assumed
by several others (Schlesinger 1997, Kalff 2001,
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Figure 3. Global size distributions of numbers and land area
covered by natural and constructed lakes. Data are re-plotted
from the original publication (Downing et al. 2006). The fig-
ure shows that size distribution of natural lakes and constructed
lakes are similar and that global lake area is dominated by
small lakes, not large ones as 20" century analyses suggested
(Halbfass 1914, Thienemann 1925, Schuiling 1977, Herden-
dorf 1984, Meybeck 1995). Distribucion global del niimero y
supeftficie de los lagos construidos y naturales. Datos repro-
ducidos de la publicacion original (Downing et al. 2006). La
figura muestra que el tamario de los lagos naturales y los cons-
truidos es similar y que el drea global estd dominada por los
lagos pequerios y no por los grandes como sugerian los andlisis
efectuados en el siglo XX.

Wetzel 2001, Shiklomanov & Rodda 2003) and the
area is more strongly dominated by small lakes and
ponds (Fig. 3) than past analyses have suggested.

How small are the smallest lakes and how long
do they last?

Many pond ecologists work on water bodies even
smaller than the lowest interval on figure 3. If one

uses the Pareto distribution to project the num-
ber of water bodies on Earth in the range of
0.0001-0.001 km? (100-1000 m?), the result ac-
centuates the dominance of small water bodies
on continents. It is likely that there are about
3.2x 10° natural ponds in this size-range and
they have an area of around 0.8 billion km?.
Whether these ecosystems are permanently
aquatic or become semi-terrestrial at certain
times of the year, or whether they wax and wane
over the course of geological time is not fully
known. Our ability to catalog and map small fea-
tures is, as yet, new, and we will learn how these
small landscape features contribute to the inter-
face of terrestrial and aquatic ecology.

Most of the Pareto distributions we have ana-
lyzed (Downing et al. 2006) had some curvature
toward the small sizes of lakes, implying that they
had been underestimated in inventories, removed
from the landscape through erosion, deposition,
and landscape alteration, or both. It seems quite
likely that the residence time of small water bodies
on a landscape may be low enough that some small
systems disappear over time or are replaced by pro-
cesses of pond formation. Some may be essentially
hydric soils for part of the year. Any alteration of
the land surface, including the filling of depressions
can result in new small depressions that accu-
mulate water and generate an aquatic ecosystem.

The intensive activity of small aquatic ecosys-
tems and their dimensions make them more dy-
namic in time than large water bodies. I know,
for example, of many small ponds that I knew as
a child that are no longer part of the aquatic land-
scape. Likewise, however, I know of many mod-
ern small ponds that did not exist a few decades
ago. One can estimate the relationship between
the sizes of lakes or ponds and their likely life-
spans following some assumptions about dimen-
sions and morphometry. If the mean depth (m)
of a lake is assumed to be 12.1 VL’, where L’ is
the average of effective length and breadth (km)
(Gorham 1958, Straskraba 1980), figure 4 shows
the likely life-span of these lakes and ponds, as-
suming that lakes are elliptical in shape with
length about double the breadth.

If sediment deposition is around 1 mm/y then
very small lakes and ponds (< 0.01 km?) will



14 J. A. Downing

10,000,000

_ - 0.1 mmly
1,000,000 o
P _ 0.5 mmly
-7 7 1 mmi
Pt Pl ¥
100,000 - Pt
- s /’Smm.fy
- 7 .7 ~10 mmly

10,000

Length of life (y)

1,000

100

0.001 001 0.1 1 10 100 1000 10000
Average effective length (km)

Figure 4. Potential life-time of aquatic ecosystems of a range
of sizes. The calculations were based on assumed rates of sedi-
mentation spanning the range of those observed in oligotrophic
to eutrophic lakes and the assumptions that the mean depth (m)

of a lake is around 12.1 VL' , where L’ is the average of effec-
tive length and breadth (km) (Gorham 1958, Straskraba 1980),
and length is approximately double the breadth. Duracion po-
tencial de los ecosistemas acudticos de diferentes tamarios. Los
cdlculos se han basado en las diferentes tasas de sedimentacion
estimadas de las observadas en lagos, desde oligotrdficos a
eutrdficos, y en el supuesto de que la profundidad media (m) de

un lago seria 12.1 L', en donde L' es la media de la longitud y
anchura efectivas (Gorham 1958, Straskraba 1980), siendo la
longitud aproximadamente el doble de la anchura.

have lifetimes of <1000 y. In even more oligotro-
phic landscapes where sediment deposition rates
are < 1 mm/y, small lakes and ponds might take
1000-10,000 y to disappear. In highly erodible,
nutrient-enriched environments, however, sub-
stantially sized small lakes and ponds may disap-
pear in a few decades through filling and succes-
sion. This temporal dynamic is a unique feature
of the limnology of small lakes and ponds and
accentuates our need to understand their function
as well as their succession and origination.

Ponds and small lakes play an active global
role

The global importance of any ecosystem type is
determined by the product of the aerial extent of
that ecosystem across the Earth and the intensity
of processes in them, relative to other ecosys-
tem types (Downing 2009). Indeed, the global

dominance of limnological processing only re-
quires that these processes be more than 33-times
greater (on an areal basis) in lakes than in ter-
restrial environments and more than 115-times
greater than in the world’s oceans. If globally im-
portant rates and processes are the same in small
(< 1 km?) lakes and ponds as they are in larger
ones, small lakes and ponds constitute at least
a third of the processing by aquatic ecosystems
on the planet (Fig. 3). For small lakes and ponds
to dominate inland aquatic processing, rates and
processes in small systems need only be double
those seen in larger ones. Knowledge of the “in-
tensity”” of processes is an important need in or-
der to participate in global science.

Many aquatic rates, processes, and quantities
are more intense, complex, or abundant in ponds
and small lakes than in larger lakes. The biotic
complexity and richness of small aquatic systems
is well-known. For example, macrophyte cover-
age is greater in smaller lakes (Duarte et al. 1986)
leading to enhanced production and habitat com-
position. In the pelagic zone, too, small lakes
have more complex thermal structure than large
ones (Xenopoulos & Schindler 2001).

Small lakes and ponds are important to the
maintenance of regional biodiversity and stabil-
ity. Small lakes have greater waterfowl species
richness per unit area than large lakes (Elmberg
et al. 1994). Small lakes and ponds promote
enhanced regional biodiversity in aquatic birds,
plants, amphibians and invertebrates because of
low fish biomass and high richness and abun-
dance of aquatic plants (Scheffer er al. 2006).
Smaller lakes have a greater proportion of small
non-game fish species such as the Cyprinidae
(Matuszek et al. 1990); small non-game fish are
often overlooked by fish management. Biomass
size spectra show more negative coefficients in
small lakes indicating a greater dominance of
small, active organisms (Cyr & Peters 1996). Fig-
ure 5 shows data on biodiversity in well-studied
lakes analyzed by Dodson et al. (2000). The data
indicate that small lakes contain many more
species of virtually all taxa, per unit area, than do
large lakes. Although no particular meaning should
be attributed to the existence of such a correla-
tion (km? appears in both axes), even moderate
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Figure 5. Species-richness per unit area of various aquatic
taxa in lakes of different sizes (Data from Dodson et al. 2000).
If individual lakes in the same region have slightly different
community structure, the figure implies that small systems en-
hance regional biodiversity. Riqueza de especies por unidad de
superficie de varios grupos taxonomicos en lagos de diferente
tamario (Datos de Dodson et al. 2000). Si los lagos individua-
les de una region tienen comunidades ligeramente diferentes, la
figura indica que los sistemas pequerios aumentan la biodiver-
sidad regional.

differences in community structure among small
lakes and ponds suggest that higher regional biodi-
versity can be maintained by 100 km? of small lakes
than would be contributed by a single 100 km? lake.
This, plus the preference of recreational boaters
for large lakes (Reed Andersen ef al. 2000), may
help explain why small lakes are known to be
more resistant to invasion by exotic and nuisance
species than are large ones (Winfield et al. 1998).

Small lakes and ponds are also known for high
productivity. Fish productivity generally declines
with increasing lake size, indicating that small-
est lakes have highest production per unit area,
often by several orders of magnitude (Rounsefell
1946, Hayes & Anthony 1964, Youngs & Heim-
buch 1982, Downing et al. 1990) (Fig. 6). Lake
size appears to act on biomass and fish-size distri-
bution because after the effects of body mass and
biomass are accounted for, fish production (per
unit area) may be higher in larger lakes (Downing
& Plante 1993). Small lakes and ponds can be sub-
stantially more biologically active than large lakes.
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Figure 6. Fish yield and lake-size data summarized by
Youngs & Heimbuch (1982) from other sources (Ryder 1965,
Oglesby 1977, Matuszek 1978). The solid line is a least-squares
regression of the data showing the average trend in production
with lake size (2 = 0.39, n = 27). Produccién pesquera en
relacion con el tamaiio del lago. Datos recogidos por Youngs
& Heimbuch (1982) de diversas fuentes (Ryder 1965, Oglesby
1977, Matuszek 1978). La linea sélida representa la regresion
por minimos cuadrados, mostrando la relacion de la pro-
duccion con el tamaiio del lago (t* = 0.39, n = 27).

Carbon-processing is intense in small lakes
and ponds

Information is beginning to emerge showing that
carbon processing intensity is very great in small
water bodies. Stable isotope analyses indicate
that smaller lakes and ponds may be more het-
erotrophic than large ones, processing substan-
tial amounts of terrestrial or external carbon (Post
2002). Dissolved organic carbon concentrations
are therefore significantly negatively correlated
with lake size (Xenopoulos et al. 2003). Surface
CO, concentrations are much higher in smaller
lakes than large ones (Kelly et al. 2001). In an-
other large data set taken from across Finland,
CO, concentrations and aerial CO, evasion de-
clined sharply with increasing lake size (Korte-
lainen et al. 2006). Oxygen concentrations tend
to be lower in ponds and small lakes than in
larger ones (Crisman et al. 1998), enhancing
greenhouse gas (GHG) emissions and carbon se-
questration. Potential methane emission is much
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Figure 7. Measured methane concentrations in lakes from
around the world related to the sizes of lakes. Data are from
Bastviken et al. (2004). Concentraciones de metano en lagos
de diferentes partes del mundo, en relacion con el tamario de
los lagos. (Datos de Bastviken et al. 2004).

greater in small lakes than large ones (Michmer-
huizen et al. 1996). Using a data compilation
from around the world, Bastviken et al. (2004)
showed that concentrations of methane, and per-
haps therefore losses to the atmosphere, are
greatest in small lakes and ponds (Fig. 7). Low
oxygen concentrations in small lakes (Crisman et
al. 1998) and the relationship between low oxy-
gen and elevated N,O (Knowles et al. 1981) sug-
gest that N,O emissions from ponds and small
lakes can be much higher than those of larger
lakes. Rates of organic carbon sequestration per
unit area in the sediments of small lakes has been
suggested to be at least an order of magnitude
higher than that of larger lakes (Dean & Gorham
1998, Stallard 1998, Downing et al. 2008).

Pond size, eutrophication, and carbon
sequestration: some examples

The global importance of an aquatic process or
quantity depends, to some degree, upon the ex-
tent of the ecosystem type in the biosphere. Like-
wise, seemingly unimportant ecosystems, even
those that cover only a small area of the land sur-

face, can be important globally if the intensity
of a process is extremely high. Even the small-
est ponds are very abundant on Earth. A conser-
vative estimate is that small agricultural ponds
cover about 77,000 km? worldwide (Downing et
al. 2006, Downing & Duarte 2009). Farm ponds
and tanks appear to be increasing at rates from
0.7 % per year to 60 % per year in various re-
gions as increasing pressure is put on agricultural
lands to provide food for growing populations.
Previous analyses of roles of constructed
lakes in important global rates like organic C
burial (e.g., Cole ef al. 2007) have calculated
global deposition and carbon content of sediments
derived mostly from large water bodies (Dendy
& Champion 1978, Mulholland & Elwood 1982,
Dean & Gorham 1998, Stallard 1998). Because
these data seemed limited and ignored the active
and abundant small lakes and ponds on Earth, we
recently used repeated bathymetric analyses and
direct measures of sediment characteristics to es-
timate the likely rate of burial of organic C in
the sediments of eutrophic lakes and impound-
ments (Downing et al. 2008). In the 40 lakes
we studied (triangles, Fig. 8), we found that sedi-
ment organic carbon burial rates were higher than
those assumed for fertile impoundments by pre-
vious studies and were much higher than those
measured in natural lakes. Organic carbon burial
ranged from a high of 17 kg C/m*/y to a low
of 148 g¢ C/m?/y and was significantly greater in
small impoundments than large ones (Fig. 8).
These analyses suggest that median organic C
sequestration in moderate to large impoundments
may be double the rate assumed in previous anal-
yses and exceeds rates of carbon sequestration
found in any ecosystem in the world. Median
areal C burial rates in these lakes were 10-times
those seen in wetlands, 100-times those docu-
mented in tropical forests, 1000-times those as-
sessed in tropical and boreal forests, and 10,000-
times those estimated for the world’s oceans. Ex-
trapolation suggests that each year, Earth’s cur-
rent moderately sized impoundments may bury
4-times as much C as the world’s oceans. The
world’s farm ponds alone seem likely to sequester
more organic carbon each year than the oceans and
33 % as much as the world’s rivers deliver to the sea.
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Figure 8. Sediment organic carbon burial rates compared among types of aquatic and terrestrial ecosystems. Data on oligotrophic
and eutrophic lakes and impoundments in Asia, the United States, central Europe, and Africa are from Mullholland & Elwood (1982).
Data from Downing et al. (2008) are for lakes in an agriculturally eutrophic region of the Midwest United States; the solid line shows
a least squares regression of these data. Observations made by Biggs (2008) are for small ponds in the United Kingdom. Data from
Sobek et al. (2009) include a variety of lakes worldwide, including Lake Baikal at the extreme right of the graph. Terrestrial data are
from Schlesinger (1997) and data on marine vegetated areas are from Duarte et al. (2005). Carbon burial in the world’s oceans were
calculated after Sarmiento & Sundquist (1992) assuming the world’s oceans have an area of 361 million km?. Arrows at right indicate
median levels of carbon sequestration in diverse ecosystem types. Comparacion de las tasas de entierro de carbono en diferentes
tipos de ecosistemas acudticos y terrestres. Los datos de lagos y embalses oligitroficos y eutrdficos de Asia, Estados Unidos, Europa
Central y Africa proceden de Mullholland & Elwood (1982). Los datos de Downing et al. (2008) correponden a lagos en una region
agricola y eutrdfica del Oeste Medio de Estados Unidos y la linea solida representa la regresion por minimos cuadrados de estos
datos. Las observaciones de Biggs (2008) corresponden a pequerias charcas del Reino Unido. Los datos de Sobek et al. (2009)
incluyen una variedad de lagos de todo el mundo, con el lago Baikal en el extremo derecho del grdfico. Los datos terrestres son de
Schlesinger (1997) y los de dreas marinas vegetadas de Duarte et al. (2005). El entierro de carbono en los océanos se ha calculado
de acuerdo con Sarmiento & Sundquist (1992) asumiendo que los océanos ocupan una superficie 361 millones de km?. Las flechas
de la derecha indican la mediana de los niveles de secuestro de carbono en diversos tipos ecosistemas.

Eutrophication and landscape alteration may play
important roles in determining C burial in lakes.
C burial rates in eutrophic lakes are nearly an or-
der of magnitude higher than those found in olig-
otrophic lakes of similar size (Fig. 8). Small lakes
in agricultural regions (Downing et al. 2008)
have very high rates of burial but are in the
same range as the small UK ponds, impound-
ments around the world, and lakes with high sed-
iment loads. For example, Lake Wohlen (Sobek
et al. 2009), a mesotrophic, short water residence
time (2 days) impoundment in the Aare River
has C sequestration rates of 570-1140 g C/m?/y.
Therefore, it appears that extremely high rates
of C burial are typical of small lakes, lakes with
high rates of primary production due to eutroph-

ication, and lakes receiving substantial loads of
riverine or watershed-derived organic sediments.
Small lakes and ponds make up around a third of
the area of continental waters but have rates of C
burial that exceed those of larger lakes by an order
of magnitude or more. It is likely, therefore, that
carbon sequestration by the world’s small lakes
and ponds dominates carbon burial by aquatic
ecosystems. Because aquatic ecosystems seem to
provide substantial carbon burial worldwide, ponds
and small lakes may be the most important sites
in the biosphere for organic carbon sequestration.

These findings should not be misconstrued to
suggest that small lakes and ponds are perfect
sinks for excess carbon. Small oligotrophic lakes
may evade substantial allochthonous C as CO,
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(Kelly et al. 2001, Kortelainen et al. 2006). Small
lakes and ponds can be quite eutrophic so CH,
and N,O release may be substantial (Knowles et
al. 1981, Michmerhuizen et al. 1996, Bastviken
et al. 2004), exacerbating atmospheric problems.
This analysis suggests, however, that an accurate
view of the global carbon budget will be elu-
sive unless small lakes and ponds are analyzed,
understood, and considered.

Global research needs for small aquatic
ecosystems

Global understanding of the role of small lakes
and ponds in processes throughout the biosphere
requires inventories of water bodies and knowl-
edge of the important rates and processes they
mediate (Downing 2009). There are three impor-
tant steps. (1) We need to identify patternsin glob-
ally important quantities, rates, and processes, and
understand how they covary with lake and pond
characteristics. (2) We need to create scaling rules
for these quantities, rates, and processes that will
permit meaningful up-scaling to a global level.
(3) Because society depends upon reliable global
science, we need to derive numerical and statistical
methods to ensure that global calculations are
accurate and precise enough to be comparable
to other global estimates. Accomplishment of
these tasks will advance us substantially toward
estimating human- and climate-mediated effects
on the global role of small aquatic ecosystems.

Many variables are in need of global scaling.
For example, understanding the conversions of
carbon in small lakes and ponds is of very high
priority, in order to contribute substantially to
discussions of global climate change. Likewise,
understanding of patterns in nutrients in these
water bodies, as well as fluxes and conversions
of important gasses (e.g., N,O, NH,) and met-
als (e.g., Hg), will improve global understanding
of the role of small water bodies in global nu-
trient, gas, and toxin budgets. Remarkably, small
lakes and ponds have not yet been integrated
into global heat and water budgets so recognition
of patterns in water and energy fluxes amongst
aquatic systems is also important. Small aquatic
ecosystems are disproportionately important sites

for the production of food so it is important to
evaluate global patterns in production.

We need to quantify and understand the role
of small water bodies in the functioning of the
biosphere. We do this by asking whether the
quantity or process is large or small with respect
to other types of ecosystems and whether we can
make an estimate of that quantity or process that
is well enough constrained to be reliable. These
questions cause us to ascertain whether the pro-
cess is likely great enough to justify a more ac-
curate and precise answer and how likely we
are to be able to define the answer more pre-
cisely. Therefore, much of this task is making
estimates of biosphere-level rates and processes
attributable to small lakes and ponds, compar-
ing these to estimates made for other ecosys-
tems, and refining and improving our estimates
to yield more accurate and precise assessments
of the global role of small aquatic systems.

CONCLUSIONS

Recently, limnologists and aquatic ecologists
have discovered that aquatic ecosystems are
much more plentiful in the biosphere than had
been believed. This is especially true for small
lakes and ponds because new analyses show
that they cover as much or more area as large
lakes. Because historical inventories underesti-
mated the areal extent of small water bodies,
limnologists have spent relatively little effort
studying them so their importance to global and
biosphere processes has been under-appreciated.
Emerging studies now show that ponds and small
lakes are more active in nearly every process than
large lakes, terrestrial, and marine ecosystems.
The large area covered by small aquatic systems
and the intensity of activity mean that they may
be among the most important ecosystems in the
world. Considering the global carbon cycle, for
example, ponds and small lakes sequester car-
bon at rates that are orders-of-magnitude greater
than virtually all other global ecosystems. This
compensates for the small area they cover rel-
ative to terrestrial and marine ecosystems, sug-
gesting that carbon sequestration by ponds may
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be as great as or greater than that of forests, grass-
lands, and all the world’s oceans. There are several
knowledge gaps, however, including information
on gas evasion and several other factors, so an active
research agenda on small lakes and ponds is needed
to bring them into the arena of global limnology
and ecology. Work in such a high-priority arena
is important to our science and careers but
especially to understanding the role of small aquatic
systems in the biosphere. Preliminary information
suggests that they may be amongst Earth’s most
important and active environments.
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