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Presentation

This booklet collects the problems that were proposed at the Grups d’Estudi
de Matemàtica i Tecnologia (Study Groups of Mathematics and Technology),
GEMT 2007. It also contains the solutions that were given. The problems
belong to different areas of Mathematics and were proposed by companies
and institutions through different ways. We believe that the results are very
satisfactory, and ways were found in all the problems to achieve the type of
solution that could be expected from an activity like this one.

The event took place in the premises of the Facultat de Matemàtiques i
Estadística of the Universitat Politècnica de Catalunya, Barcelona, from
July 9 to 11, 2007. The number of attendants —around thirty researchers—
is enough to insure the continuity of this activity for the next years. Also
the dimension of the event —three days and three problems— proved to be
satisfactory. It is of course clear that with more time available for work and
discussions the results could have been more complete. However, we have to
keep in mind that the goal of these Study Groups is just a first contact with
the problems, that can continue after the event in different ways.

Participation was free of any cost, both for companies and institu-
tions and for individual participants. We are especially grateful to the two
institutional co-organizers —the Facultat de Matemàtiques i Estadística of
the Universitat Politècnica de Catalunya (FME) and the Centre de Recerca
Matemàtica (CRM). They both contributed by strongly supporting these
Study Groups. We also thank Ingenio Mathematica (i-MATH) for financial
support. Additionally, we have worked in coordination with the Jornadas de
Consulta Matemática para Empresas e Instituciones, that are organized by
CESGA in Santiago de Compostela, an event with the same aims as ours.

Finally, we thank very much all the participants: the companies and
institutions that presented the problems and also the researchers that con-
tributed to the discussions and wrote the final reports. We also take this
opportunity to invite all of them to join us in future editions.

Barcelona, December 2007

José Antonio Carrillo, Enric Fossas and Joan Solà-Morales





Statement of the Problems





Statement of the Problems 7

Mathematical modelling of rowing in a
Catalan llagut

by Àlex de Mingo, President of the rowing team Santa Cristina
and member of Federació Catalana de Rem

1.1 Introduction

The Catalan llagut is a traditional boat that was formerly used for fishing or
to transport merchandises. It used to have a Latin sail, but when the weather
conditions were unfavourable the fishers would remove the sail and use the
oars instead. The aim to be the first to reach the harbour soon turned the way
back home in a real competition. Later on it became a tradition to organise
rowing competitions on bank holiday days, or on village festival dates.

Later on, engines changed fishers’ lives and left the oars to competitions,
thus becoming a sport rather than a way of living. Nowadays the llagut is
the kind of sports boat that is used in the Catalan league (see Figure 1.1).

Figure 1.1: Catalan llaguts
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1.2 The competition
The Catalan Rowing Federation currently has a section devoted to llagut
competitions. The boat competitions are races with four boats that must
cover a distance of 250 m four times, that is, they must turn three times.
The conditions of the location where each race takes place determines the
direction in which the regatta field is placed, but it is very common to place
the regatta field parallel to the coast, so that the public can watch the race
more confortably. As a consequence, it is very common that the depth of
the water under each boat is different, suffering differently the influence of
waves and wind. Nevertheless, it is still not clear whether a position is more
favourable than another, and if rowing closer to the coast is really harder
than rowing farther inside the sea.

1.3 Structure of the Catalan llagut
The main characteristic that makes llagut rowing so different from classical
Olympic rowing is that the rowers sit on a fixed seat rather than on a moving
seat (see Figure 1.2). One of the reasons may be that boats with a movable

Figure 1.2: Boat with a movable seat

seat seem not to be the best option for competitions in the open sea. There-
fore, the movement of the rowers is substantially different to that made by
the Olympic rowers. Figure 1.3 shows a sketch of the rowers’ movement in
both cases. In the case of a movable seat, each rower achieves the maximum
strength by propulsing himself or herself through his or her legs. On the
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contrary, when the seat is fixed, the rower’s legs are fixed and he or she must
bend the torso down in order to maintain the row inside the water as much
as possible. Each boat fits eight people that sit in couples in four rows plus

Rowing on a mobile seat

Rowing on a fixed seat

Figure 1.3: Rower’s movement on a movable seat and on a fixed seat

the cox. Therefore, rowers sit in couples, side by side, so that one rows on the
port side and the other on starboard, and they sit facing backwards. The
synchronisation of the rowers is a key point in order to achieve the best per-
formance, although the sea conditions makes it sometimes very difficult. The
rowers that seat on the back of the boat, that is, those who are in the first
seat, should be those with a better rowing technique because the rest of the
rowers must row at the pace that these two set, following their movements
as well as possible.

Nowadays the measurements of a llagut are those shown in Figure 1.4.
The minimum allowed weight is 300 kg. Regarding the oars, there are no
restrictions and each team can choose the type of oars that they want to
use. Nonetheless, they are usually 3.40 m long and the blade is about 19 cm
wide and 57 cm long. The materials used to build the boats and the oars
are usually either wood or carbonic fiber, which is lighter but also more
expensive.
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Figure 1.4: Measurements of a llagut
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1.4 Mathematical modelling and open questions
Since rowing in a fixed sit is not so popular as it is on a mobile sit and it
is not an Olympic sport, to our knowledge nowadays it does not exist any
mathematical model to analyse any aspect of this sport. Nevertheless, in
the Basque Country there is a type of boat called traineras that is used in
competitions and that is similar to the llagut, but instead of eight rowers there
are thirteen. This sport is very well known in this area, and several empirical
studies have been made based on measurements of the rowers’ performance,
velocity of the boat, etc. Several questions remain still open. Some of them
are the following:

• Throughout the years, the rowing technique has changed quite a lot.
At the beginning, most of the strength that the rowers did was made
using only their arms. Nowadays it seems to be more correct to bend
the torso and use also the abdominal muscles to push harder the oar
and to maintain the blade longer time inside the water. It would be
very interesting to understand what is the blade efficiency in each part
of the length that the blade is inside the water.

• Therefore, another interesting question is whether there is an optimal
shape for the blade to achieve the best rowing efficiency. Nevertheless
one must take into account that oar blades in the shape of a spoon are
not allowed, so the only possibility is to change its length and width.

• In each rowing period, when the oar leaves the water, rowers tend to
restart the rowing period quite abruptly in order to put the oar back
into the water as soon as possible. But this sudden movement is done
against the direction of the velocity of the boat and it seems that a
smoother movement would not create such a big inertia. However,
if the movement is done too slowly, the velocity seems to decrease.
A mathematical model of the effect may give an answer to this question.

• Another issue lies in the distribution of the rowers taking into account
their weight and their strength. The big problem here is that usually
those who are stronger are also heavier, so finding the best distribution
is not an easy problem.

• In each competition, the boat must turn 180 degrees three times. This
is not an easy manoeuvre and should be done as fast as possible. To
turn the boat, each rower must do a different movement, so the syn-
chrony is lost for a while. A good design of this manoeuvre would also
help to achieve higher velocities.
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1.5 Some links and references
Some mathematical models on rowing on a mobile sit are:

1. N. Caplan and T. Gardner, A mathematical model of the oar blade-
water interaction in rowing. J. Sports Sci. 25 (9) (2007), 1025–1034.

2. N. Caplan and T. Gardner, A fluid dynamic investigation of the Big
Blade and Macon oar blade designs in rowing propulsion. J. Sports
Sci. 25 (6) (2007), 643–650.

3. D. Cabrera, A. Ruina and V. Kleshnev, A simple 1+ dimensional model
of rowing mimics observed forces and motions. Hum. Mov. Sci. 25
(2006), 192–220.

Regarding the fixed sit rowing, there are studies made by José Manuel
Francisco, trainer of the rowing team Astilleros, in the Basque Country, who
probably is the only person who has tried to understand from a medical or
scientific point of view different aspects of this sport.
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Forecasting wind energy production
by Carles Comas, Ambio S.A.

2.1 Introduction

The use of wind energy has increased in recent years to the extent that
it now contributes an average of 10% of the energy that is consumed in
Spain, which has become the second biggest market in the world in terms of
installed power. Wind energy has to be consumed as it is produced, because
the kinetic energy provided by wind cannot be stored like natural gas in tanks
or like water in a reservoir and consumed in accordance with demand. Given
its intermittent, non-programmed and variable nature (contributing between
3% to 23%) the integration of wind energy into the electricity system involves
the challenge of managing the reprogramming or connection/disconnection
of the network of power stations depending on the demand, the capacity of
the network and wind production. The company in charge of implanting
and maintaining the high tension infrastructure required to transport the
energy generated at production centres to distribution substations is the Red
Eléctrica Española (REE). An accurate forecast of wind generation clearly
helps both producers and distributors of wind energy to manage affairs in
an orderly and programmed fashion. Moreover, following the deregulation of
the electricity market, producers and distributors now negotiate electricity
prices. The organisation in charge of managing this sales-purchase market is
the Operador del Mercado Ibérico de Energía (OMEL). Electricity prices are
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negotiated on the basis of the forecast of the demand and production. There
is a daily market where most operations are made and six inter-daily markets
where producers and distributors can adjust the daily market forecasts made
the day before. The daily market is closed at 10.00 in the morning to fix the
amount and price of electricity for the following day, i.e., 14 hours before
the start of the day. Production centres must provide an hour by hour
forecast of production for the following day. The intra-daily market works
to correct any deviations from this forecast, and is opened for 6 sessions:
16.00, 21.00, 1.00, 4.00, 8.00 and 12.00. In this market, penalties are applied
to producers that fail to comply with the forecast, either by falling short of
it or exceeding it. Until the year 2004, Kwh of wind energy were paid for
at a fixed rate that was established annually by the Spanish government in
accordance with certain defined parameters. Since 2004, wind energy has
had the option of participating in the electricity market to bring it into line
with more ‘conventional’ production centres. This can mean greater profits
for wind energy producers but also penalties should they fail to comply with
production forecasts. A wind farm as a production centre, whether it sticks
to the fixed rate or applies market negotiations must present production
forecasts:

• A wind farm that opts for the fixed rate is obliged to inform the dis-
tributor of the production forecast for every hour of the day, at least
30 hours before the start of the day. This forecast can be corrected up
to 1 hour before the closure of the 6 intra-daily sessions. The forecast
tolerance before the application of penalties is ±20%.

• A wind farm that negotiates market prices must provide a daily fore-
cast and intra-daily forecasts in accordance with the protocol of the
electricity market. The penalties for incompliance with production
are established in the sales-purchase contracts negotiated with market
agents.

2.2 Models for forecasting production
The forecast of wind production depends at least on the wind forecast. A
wind forecast is an important element of a weather forecast and is made on
the basis of physical models, which are known as numerical forecast models.
When forecasting 24–48 hours in advance, they are the best possible option.
Physical models forecast wind speed and direction, and also air temperature,
within a network of 10 × 10 Km points, which is fine for making general
forecasts. There is therefore a clear interest in having tools for forecasting
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wind production, not only in the medium term (24–48 hours) but also in the
short term (0–6 hours), that can enable producers to operate more reliably
in intra-daily electricity market sessions.

2.3 Data for consideration
The first information to take into consideration is the weather forecast. For
example, the forecasts made by the Servei Meteorològic de Catalunya supply
a forecast 48 hours in advance with a temporal resolution of 3 hours for the
nodes in a typical 8 Km network. By interpolation, a forecast is obtained for a
point inside the network, which coincides with the location of the wind farm’s
weather station. The forecast can provide the wind speed, wind direction,
temperature and the pressure at the height of the wind turbine hub, at the
coordinates of the weather station. The wind farm’s weather station measures
at least the speed and direction of the wind in averages for 10 minute periods
at the height of the wind turbine hub. This means that data is available for
time periods up to the last ten minutes. Finally, data can also be obtained
for the number of wind turbines in operation and the production series for
the wind farm as a whole in averages for 15 and 60 minute periods, as well
as historical records of the farm’s power curve over time, which is important
because the conditions in January are not the same as they are in August.

2.4 Objective
To provide an hour-by-hour forecast for a wind farm’s production 24 hours
or more in advance along with the associated uncertainty.

Figure 2.1: Ideal power curve of a typical wind turbine
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Figure 2.2: Wind farm power curve: contribution of the individual curves of
each wind turbine in a multitude of situations

Figure 2.3: Daily electric power curves: forecasted demand, program
reduction and real demand

2.5 References and internet documents
1. M. Lange and U. Focken, Physical Approach to Short-Term Wind Power

Prediction, Springer, 2005

2. www.canwea.ca/images/uploads/File/Resources/FinalGHReport.pdf

3. www.uwig.org/forecst_overview_report_dec_2003.pdf

4. journals.tubitak.gov.tr/engineering/issues/muh-06-30-1/
muh-30-1-4-0504-3.pdf

5. ams.confex.com/ams/84Annual/techprogram/paper_68284.htm
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Figure 2.4: Wind map from the Catalan Weather Service

6. anemos.cma.fr/download/publications/
pub_2003_paper_EWEC03_ComplexTerrain.pdf

7. www.ceem.unsw.edu.au/content/userDocs/
IssuesPaper-WindEnergyForecasting-v12.pdf

2.6 Links
1. www.omel.es

2. www.ree.es

3. www.garradhassan.com/services/ghforecaster/

4. www.aeeolica.org/html/observatorio_eolico.html

5. www.meteologica.es/meteologica/eolicabil.htm
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Diagnosis of multiple faults in the
network of rain gauges in the Barcelona
sewage system
by Vicenç Puig, Universitat Politècnica de Catalunya, Dept. ESAII

3.1 Problem statement
The Barcelona sewage system includes a network of 23 rain gauges that collect
information about rain intensity in real time (every 5 minutes). Figure 3.1
shows the distribution of the rain gauges on a map of Barcelona.

Figure 3.1: Distribution of rain gauges on a map of Barcelona

This information is sent to the control centre that the CLABSA com-
pany, which manages the Barcelona sewage system, operates in the Zona
Franca district (Figure 3.2). Using the information on rain and the level
of the collectors provided by the network of limnimetres (water level gauges),
the control system installed at the control centre must decide how to move the
sluice gates that are installed in the sewage system in order to prevent the
streets from flooding or any overflow into the sea, while at the same time
maximising the volume of water treated at the Besòs and Llobregat treat-
ment plants.
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Figure 3.2: Picture of the CLABSA Control Centre

The problem presented below is that of designing a diagnosis system
based on models that can diagnose multiple sequential faults in rain gauges
(Figure 3.3).

The model-based diagnosis involves constructing a model of the rain
gauges by exploiting the fact that there is a major degree of correlation
between the closest measurements.

Figure 3.3: Model-based diagnosis

Once the two previous issues have been settled, we now have a structure
of rain gauge models that will be used to detect and isolate faults. For
example, if employing the criterion of making use of a minimum of 3 rain
gauges in the model of each of the rain gauges and the most correlated are
selected, we would obtain the incidence matrix shown in Table 3.1.

The rows show us which models intervene in each of the rain gauges
while the columns show the rain gauges and which models they are served
by. This table is the basis for diagnosing faults. When a set of models show
that they are not consistent with the data measured by the rain gauges, the
table can show us which rain gauge is failing. For example, if the models
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Table 3.1: Incidence matrix

of P8, P15 and P18 are inconsistent with the data given by rain gauges P8,
P15 and P18, respectively, this implies that the rain gauge that is failing is
P1, because this is the only rain gauge that intervenes in all these models.
Evidently, so we can isolate the faults in all of the rain gauges, all of the
columns in this matrix have to be different. The problem that now arises is
that although at first we can see that the columns for the previous matrix
are different after the failure of a rain gauge, there is a need to generate a
new table by eliminating the file corresponding to the failing rain gauge and
replacing it by its model into the other models where it was used.

This means that the crosses in the previous table corresponding to the
model of the failing rain gauge are propagated in all the models that use it.
Consequently, after several failures columns can start repeating and therefore
we may longer be able to isolate faults. Thus, the following questions arise:

• What should the previous table ideally be like in order for the repetition
of columns due to the sequential failure of rain gauges to take as long
as possible to appear?

• What is the maximum number of sequential faults that can arise before
columns start repeating?

A possible answer could be that the number of times a rain gauge is
used in each model should be the same (i.e. there are no privileged rain
gauges). This would lead to the following question:
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• What would the spatial distribution be in order for, when we select the
3 most correlated examples, we end up with an incidence matrix that
complies with the condition that the number of times a rain gauge is
used by one of the models is the same?

Given that the initial table that we have of the current distribution of
rain gauges in the Barcelona network does not comply with the condition
that the number of times a rain gauge appears in each model is the same,

• Which rain gauges should we move (the minimum possible number in
order to limit financial costs) in order to get the spatial distribution
that would lead to the ideal table of incidences?

• Could we achieve the ideal distribution considering the fact that we
have a fixed number of rain gauges?

In order to answer the previous questions, we have to be able to model
how the correlation varies between the rain gauges and the distance. The
following question is:

• How can we describe the variation in the correlation of the rain gauges
with distance, in such a way that when they are moved one will know
how this will vary the correlations with the remainder? How can this
be done if we consider not only the distance but also displacements on
the “x-y” plane?

In the literature on fault diagnosis one way of dealing with the case of
sequential faults is to transform the incidence matrix by means of a trans-
formation that makes the resulting matrix diagonal. The question is:

• Can this be applied in the case of the rain gauge incidence matrix?

• If we cannot, would it be possible to transform the matrix into a semi-
diagonal matrix?

Having overcome all these problems, we can now turn to dealing with
the problem of the limnimeter network in the Barcelona sewer system. Limni-
metres are sensors that measure the level of the collectors in the sewage
system. Like rain gauges, they are connected to the control centre and are
used by the control system to decide how to optimally manage the sluice
gates that decide where water should be sent. In this case, the diagnosis
models are obtained on the basis of the models of the system. The following
is a presentation of the matrix of incidences for the case of the limnimetres
in the Barcelona network:
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Table 3.2:

The difference here is that these models are dynamic models (described
by difference equations). This implies that when a limnimeter fails and we
want to substitute it with its model, an observer has to be constructed. But
to do this, the resulting system after the loss of a limnimeter has to be
observable. Thus the following questions arise:

• Which limnimetres are critical in that if we lose them due to a fault we
lose observability?

• Is there any way that we can avoid there being critical limnimetres, by
repositioning, or maybe by adding new ones?

• If we could decide how to position the limnimetres from the outset,
what would be the ideal location in order for the problem of column
repetition to take as long as possible to arise?
That solved, the problems with limnimetres could also be dealt with

using sluice gates. The problem now, apart from whether we would be able
to isolate sluice gate faults sequentially, is as follows:

• How many sequential sluice gate faults could we have before losing
control of the system?

• Where should we place the sluice gates in order to delay the problem
of losing control of the system as much as possible?

• What degradation would we experience in the control of the system
after the failure of each sluice gate?

• From what moment could we consider that the degradation is so great
that control is now unacceptable?

• Where should we position the sluice gates in order to delay the degra-
dation of the control of the system?
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Mathematical modelling of rowing in a
Catalan llagut
by M. Aguareles, X. Mora, M. Noguera, and M. Pellicer

4.1 Introduction

The Catalan llagut is a traditional boat that nowadays is used in Catalonia in
local rowing competitions. It is similar to the boat used in classical Olympic
rowing, but with a main and important characteristic that makes both ways
of rowing substantially different: the seats are fixed and cannot move, while
in an Olympic rowing boat the seats move. This is why the movement of the
boat is achieved by bending the torso rather than bending the legs as it is
the case in Olympic rowing.

The rowing in a llagut is not a very well understood mechanism. Several
different problems were proposed in the GEMT, but we concentrated on
two main aspects (developed in the sections below): the stroke efficiency
and the effect of the rower movement on the boat in terms of inertia. As
there are no models of llagut rowing, our approach is based on the work
of [1], where the modelling of a sliding seat boat is developed. Despite of
the differences between the two types of rowing that we have pointed out
before, some parts of the work of [1] can be adapted and used in our case.
In some other works, like for instance [2] or [3], the very important issue of
the design and performance of the oar’s blade is considered. We will not
focus on this issue —on the contrary, in this work we are concerned with a
more general approach to give some insight into the rower’s performance in
fixed-seat rowing competition.

The report is structured as follows. In Section 4.2 we analyse an aspect
of the stroke efficiency which is the angle of catch in which the oar is inserted
into the water. That is, without taking into account limitations coming
from the rower, we wonder which is the best angle to insert/take out the oar
into/from the water in order to minimise energy losses. In Section 4.3 we face
a second aspect on the efficiency of the stroke, namely the relation between



28 Mathematical modelling of rowing in a Catalan llagut

the force made onto the oar and the resulting velocity of the boat. Again,
we do not take into account restrictions due to the rower. In Section 4.4 we
change our point of view by considering only the rower movement and not the
oar, and we study its effect onto the velocity of the llagut by analysing the
forces that are created. This is important in order to understand the recovery
part of the rowing (the part in which the oar is taken out from the water and
placed back in its catch position). We try to verify that a smoother recovery
is better than a quicker but sudden one.

This report is based on contributions from the discussions held at the
Grups d’Estudi, which included the following members: Maria Aguareles,
Xavier Alameda, Enric Fossas, Antoni Guillamon, Albert Mas, Xavier Mora,
Miquel Noguera, Marta Pellicer, Peregrina Quintela, and Noemí Ruiz.

4.2 Aquatic phase: angles of catch and finish

It is important for the rower to insert the oar at the right time so that no
missed or splashed water occurs. As it is pointed out in [1], the way to
achieve such an optimal stroke is by inserting or extracting the blade of the
oar into or from the water in the precise moment in which the blade’s absolute
velocity has the same direction as the oar (see Figure 4.1). In this way the
insertion and extraction of the blade into and from the water, which is a
movement in the vertical plane perpendicular to the water, is done so that
the relative velocity of the blade with respect to the water is purely in this
direction. This means that the insertion and extraction becomes as smooth
as possible and, as a consequence, the amount of energy that is lost in this
process is minimal. Of course, this condition is independent of the way the
rowing is done, that is to say, it does not depend on whether the seat moves
or not. What will make the difference is the way the rower moves in order
to achieve the corresponding angles of catch and finish, which may induce a
different inertia moment on the boat and might therefore affect the resulting
boat velocity. The effect of the inertia of the rower into the boat is discussed
in Section 4.4.
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Figure 4.1: Cross-section of a llagut with one oar
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The absolute velocity vo of the oar depends on the velocity vb of the
boat and also on the relative velocity vo/b of the oar with respect to the boat
through the relation

vo = vb + vo/b. (4.2.1)

In a reference system fixed on the boat, the movement of the blade is purely
angular, since its length is fixed and we assume, as a first approximation, that
the oar is rigid and cannot bend. Therefore, the velocity vo/b of the oar (or the
blade) with respect to the boat is perpendicular to the oar itself. Hence, the
non-splashing condition does actually say that the absolute velocity vo of
the oar must be perpendicular to the relative velocity vo/b of the oar with
respect to the boat. Then, writing all the velocities in terms of the angle of
the oar with respect to the boat (see Figure 4.2), one finds that

vb = ±vb cos φ eφ + vb sin φ er (4.2.2)
vo/b = vo/b eφ (4.2.3)

where er and eφ stand for the unitary vectors in the direction of the oar and
in the direction perpendicular to the oar respectively. Upon using (4.2.1) the
absolute velocity of the oar reads

vo = (±vb cos φ + vo/b) eφ + vb sin φ er,

so the non-splashing/non-missing condition becomes

±vb cos φ + vo/b = 0, (4.2.4)

and thus, while the blade is inside the water vo · eφ > 0. Hence the optimal
angles of the oar with respect to the boat to put it into the water and to take
the blade out are

cos φmax/min = ±vo/b

vb
. (4.2.5)

From the experience of the rowers it is commonly accepted that the best way
to row is by inserting the blade at an angle that is smaller than the angle
of extraction. One of the questions that was asked to the GEMT was if
this way of rowing had actually any theoretical base that supported it. The
analysis of the angles shows that this way of rowing is indeed consistent with
condition (4.2.5), due to the fact that, when the blade is about to be taken
out, the rower is in a position to be able to perform the maximum strength
and therefore the relative velocity of the oar with respect to the boat is also
greater, which produces φmax to be greater than φmin. As the boat accelerates
and vb becomes larger, the angle of catch can be smaller, while the finish angle
at which the blade is taken out can be kept large due to the fact that the
rower can also move the oar faster (the opposition of the water is weaker).
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Figure 4.2: Velocities of the oar, the boat and the oar with respect to the
boat by means of the angle of the oar with respect to the boat

4.3 Relation between oar force and velocity

In this section we discuss how the force that the oar applies into the water
changes the boat’s velocity. We again focus on the results in [1] and adapt
conveniently the expressions to the fixed-seat rowing modality.

We now write a one-dimensional model for the movement of the boat,
where we do not consider effects like the pitch of the boat as it moves, which
in a more refined model should definitely be taken into account. This pitch
effect is related to the analysis of the inertia driven by the rowers as they
bend their torso up and down, which is analysed in Section 4.4, but it is
also strongly dependent on sea waves. It is important to remark that this
pitch effect, that in a sliding seat competition is not important, may become
crucial when considering fixed-seat rowing in the sea.

We use the same notation as in [1]: Fhand stands for the force that the
rower applies to the oar; −Ffoot is the propulsion force that the rower does
with his or her feet and abdominal muscles in order to move his or her torso
backwards (see Figure 4.3 for a sketch of the rower’s movement); Flock is the
force that the oar applies on the boat through the oarlock; Fboat is the drag
force of the boat in the water; −Foar is the force that the oar applies onto
the water (and θ is the oar angle in a plane parallel to the water), which
has the direction perpendicular to the blade. We also denote by xR and mR

the position of the centre of gravity of the rower and his or her mass, while
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Figure 4.3: Fixed-seat and sliding-seat rowing: sketch of rower’s movement

xb and mb are the position of the centre of gravity of the boat and its mass,
and xo and mo are the position of the centre of gravity of the oar and its
mass (see Figure 4.4). Having all these magnitudes defined, we follow [1] in
writing the force balance equations for the rower, the oar and the boat:

− Fhand + Ffoot = mRẍR, (4.3.1)
Fhand − Flock + Foar cos θ = moẍo, (4.3.2)
− Fboat + Flock − Ffoot = mbẍb. (4.3.3)

The positions of the oar and the rower can be expressed in terms of xb, the
position of the centre of mass of the boat:

xo = xb + dL/F + d sin θ,

xR = xb + xB/F + rxS/B

where dL/F is the horizontal distance between the oarlock and the rower’s
feet, and d is the distance between the oarlock to the oar’s centre of mass.
As for xB/F and xS/B, they represent the distance between the seat and
the feet (which is fixed in this case) and the distance between the seat and the
shoulders (see Figure 4.4). Finally, r stands for the ratio of the rower’s center
of mass height hR to the shoulder’s height hs, both measured with respect to
the seat. These relations can be differentiated twice to find the corresponding
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Figure 4.4: Representation of some magnitudes involved in the modelisation

relation between the accelerations in terms of ẍb, obtaining

ẍo = ẍb + dθ̈ cos θ − dθ̇2 sin θ, (4.3.4)
ẍR = ẍb + rẍS/B. (4.3.5)

The drag force due to the water in this type of problems is usually considered
to be

Fboat = C1ẋ
2
b , (4.3.6)

where C1 is the boat drag coefficient, which must be determined from drag
tests. Hence, combining equations from (4.3.1) to (4.3.6), the following
second-order differential equation is obtained

(mR + mb + mo)ẍb = −C1ẋ
2
b + Foar cos θ −mRrẍS/B −mod(θ̈ cos θ− θ̇2 sin θ).

(4.3.7)
We can now simulate the rower’s performance in one stroke using equation
(4.3.7) and considering xb as the unknown of the problem. As for the other
magnitudes, they will be set conveniently according to a prescribed rower’s
performance along with some other assumptions that we now describe.

As for Foar, we use as a very first approach the one given in [1],

Foar = C2

(
lθ̇ + ẋb cos θ

)2

, (4.3.8)

where C2 is the coefficient for the blade force and l stands for the length
of the oar that is outside the boat. At this point we note that this might
not be the best model for the oar’s force when it is being used in the sea,
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which might become rough or at least is always rougher and denser than
the typical river or channel water where sliding-seat competitions take place.
As a matter of fact and from our point of view, in order to obtain a better
model for the force of the oar, an experiment should be designed to obtain
data that give some clue on the type of interaction blade/water that is really
taking place in the case of rowing in the sea.

On the other hand, the angle that the oar forms with respect to the
boat is related to the rower’s coordination by

dL/F − s sin θ = xB/F + xS/B − xH/S

where s stands for the length of the oar that is inside the boat, that is
to say, the distance between the oarlock and the rower’s hands (see [1] for
details). As for xH/S , it represents the distance between the hands and the
shoulders (see Figure 4.4). Hence, differentiating the above expression twice
with respect to time we obtain

s θ̈ cos θ = ẍS/B − ẍH/S + s θ̇2 sin θ, (4.3.9)

since, in our case, xB/F is fixed. Using equations (4.3.7), (4.3.8), and (4.3.9),
we now simulate the rower’s performance in one stroke, meaning that we
focus on the evolution of several magnitudes from the catch time until the
rower finishes the stroke.

As for the rower’s movement under consideration and the hypothesis
that have been used for the simulations, they are as follows:

1. The distance between the feet and the seat is constant: xB/F = 1 m
(the seat does not slide).

2. The rower is initially bent forward with his or her back at an angle
of 2/3 radians and his or her arms are completely stretched. Then
the rower moves backwards until he or she lies at an angle also of 2/3
radians, still keeping the arms stretched. The angle of the body is taken
as a linear function of time. This movement takes one second.

3. After this second, keeping the back’s inclination, the rower tucks his or
her arms. This is modelled by using a linear function in time for xH/S

that changes in 0.5 seconds from 0.75 metres to zero.

4. The length of the back is assumed to be hS = 0.6 m.

As initial condition we assume that the boat is already moving at a velocity
of 3 m/s, so we are actually simulating the effect of one stroke when the boat
has been already accelerated, that is, after the competition has started.
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With these hypotheses, we obtain an approximated Foar from equation
(4.3.8), and an approximated θ from equation (4.3.9). Then we use equa-
tion (4.3.7) with these approximations and obtain the corresponding rower’s
performance.

The results are shown in Figure 4.5. The upper pictures show that
the velocity of the boat increases when the rower tucks his or her arms,
which is due to the fact that the oar’s force onto the water does also increase
very much in this period, as can be seen in the bottom left picture. As for
the evolution of the oar’s angle (bottom right picture), we find that when
the rower performs this movement the oar is moved slower the first second,
but then it is moved faster before the stroke finishes. The strokes are very
often performed this way, since this last pulling of the oar helps the rower
to achieve the inertia to then stand up and start the next stroke. But the
picture for the velocity (upper right) also shows that by doing this non-
smooth movement the velocity at some point decreases, although at the end
of the stroke a higher velocity is achieved. Therefore it would be interesting
to model some other rower’s performance that was smoother to see whether
the boat achieved a higher velocity at the end of the stroke. In Section 4.4
we will see how this non-smooth movement affects the velocity of the boat.

This analysis does only consider the phase of the period where the oar
is inside the water. A complete analysis should couple equation (4.3.7) with
a model of the forces and velocities when the oar is outside of the water.
This second analysis should take into account the rower’s change in his or
her body’s acceleration.

4.4 The effect of the rower movement onto the
llagut velocity

In this section we are concerned with the influence of the rower movement
on the boat displacement. Thus, from now on we will imagine a non-rowing
rower, that is, a rower without oars but only moving himself or herself in a
certain given way. Moreover, we will think of the rower as a unique point
with its centre of gravity moving on a line (forward and backwards).

Although it may seem strange, this simplification makes sense since we
are concerned with a better understanding of how the recovery movement has
to be done, which is one of the questions we were asked for. The recovery is
the aerial phase of the stroke, when the oars are taken out from the water
and the rower bends forward (opposite to the advance of the boat) in order
to be ready for the next stroke. Since during this process the oars are not
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Figure 4.5: Upper pictures: (left) evolution of the velocity and position of the
boat, (right) velocity of the boat. Bottom pictures: (left) oar force, (right)
oar angle

making any force to progress, the rower has to do this movement as quick
as possible. But doing it too quickly introduces an acceleration against the
inertia of the boat. Consequently, we have to achieve a certain balance
between both factors.

The relation between the rower’s movement and the boat displacement
is given by equation (4.4.3). We are going to explain this model, which also
follows from the one given in [1] when the present assumptions are used.

If we denote by xR the absolute position of the rower and by mR his or
her mass, the linear momentum balance for the rower gives

mRẍR = −F (4.4.1)

where F stands for the force that the rower is doing against the boat. De-
noting by xb the absolute position of the boat and by mb its mass, the linear
momentum balance for the boat gives

mbẍb = F − C1ẋb|ẋb| (4.4.2)
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where C1 is the boat drag coefficient. Observe that, since in this part we
may consider forward and backward movement of the boat, and that since
the drag force always acts against this, we have to consider ẋb|ẋb| instead of
ẋ2

b as in the previous section. Here we assume that the only forces acting
on the boat are the reaction force from (4.4.1) and the drag force, which
is typically taken in the form given in equation (4.4.2). Note that in both
equations the oars do not play any role.

We now consider xR/b as the position of the rower relative to the boat,

xR/b = xR − xb.

This new variable allows to combine equations (4.4.1) and (4.4.2) into the
following one, that determines the motions of the boat when the motion of
the rower is given:

mbẍb = −C1ẋb|ẋb| − mRẍR/b. (4.4.3)

Our aim is to check with some examples whether a too quick recovery
movement has a negative effect, as it seems to be commonly accepted. Using
equation (4.4.3), we now look at the distance covered by the boat for different
kinds of rower actions. More specifically, we have computed this distance
during a fixed interval of time for four kinds of rower actions.

(a) Symmetrical catch and finish. We consider a rower doing the re-
covery movement at the same velocity as the catch one, that is, moving
forward and backwards at the same velocity. More particularly,

xR/b(t) = sin

(
2πt

T

)

where T is given.

(b) Slow catch, fast recovery. This has been modelled by the function

xR/b(t) = sin

(
2πt

T

)
− 0.25 sin

(
4πt

T

)
.

(c) Fast catch, slow recovery. This has been modelled by the function

xR/b(t) = sin

(
2πt

T

)
+ 0.25 sin

(
4πt

T

)
.
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(d) Still rower. We are interested in comparing the displacement obtained
with the fast/slow recovery movements with the one obtained when the
rower makes no action, that is,

xR/b(t) = 0.

We wonder if it could be even better (in terms of achieving a larger
displacement of the boat) doing nothing rather than doing a bad move-
ment.

Also, we have tried these four kinds of xR/b in two cases: a boat moving with
a certain initial velocity and a boat initially at rest. The distances covered
by the boat in each case can be seen in Figure 4.6. As the rower is facing the
back part of the boat, the catch movement takes place when ẋR/b > 0, while
the recovery part is when ẋR/b < 0. The slopes of xR/b in each part give the
velocity at which each movement is done.

As we can observe in the graphics, there is no difference (qualitatively
speaking) between the case of a boat with initial velocity and a boat initially
at rest (apart from the last one, as it is obvious). The only difference is the
total covered distance, as it should be expected.

However, the kind of rower action has a significative effect. We can see
that in case (c) the boat goes forward all the time. However, in case (b)
eventually moves backwards!

We remark the amazing fact that (c) eventually moves backwards is a
consequence of the quadratic character of the friction term. If we assumed
a linear damping term (that is, mbẍb = −C1ẋb −mRẍR/b), we would observe
no difference between the solutions, qualitatively speaking. In this case the
difference would only be the total covered distance (see Figure 4.7).

After these examples, the nowadays accepted opinion among some
fixed-rowing coaches that a quick recovery reduces the efficiency of the stroke
seems to be correct. It even seems that a rowing technique following case (d)
would be better than the one following (b). But in the real problem this
recovery phase is combined with the catch one (which includes the oar forces
and so the equation that models the complete rowing is not (4.4.3)). More-
over, in a more realistic approach we should take into account that the re-
covery has to be done with a certain velocity in order to start the next stroke
with strength enough. This could be the subject of a future work. Anyway
the results of this section are a strong evidence in favour of the fast catch-slow
recovery strategy.
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Figure 4.6: (Left) position of the rower’s centre of gravity, (centre) displace-
ment of the boat with initial velocity, (right) displacement of the boat initially
in rest for the four types of rower movement
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Figure 4.7: (Left) position of the rower’s centre of gravity, (right) displace-
ment of the boat with initial velocity for the four kinds of rower movement
in the case of a linear damping
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Fine prediction of energy power
production in wind farms
by R. Alabern, J. A. Carrillo, J. Escalante, A. Ferreiro, J. Rosado,
and A. Ruiz-de-Villa

5.1 Technological need: wind power prediction
Clean energy production systems and environmental policies have as a side
effect a much more complicated management scenario for the electric mar-
ket. The energy produced by wind farms cannot be stored and it has to be
immediately absorbed by the electrical national network. Due to the natural
oscillations of this source of energy, the network has to establish strict inter-
vals of expected energy production to adapt itself the response of the overall
electrical national network.

For instance, if the prediction is that wind will not blow strong enough
one day, the carbon-feeded power-plants will have to be ready to start up to
avoid any electric shortage or blackouts. This is the reason why wind farms
must provide the electrical distributor with their power prediction with 14
hours in advance for each of the 24 hours starting at 0.00 of the (D +1)-day,
or day to be predicted, numbered from 0.00 to 23.00, i.e., at least before
10.00 of the D-day or prediction day.

This prediction can be changed or tuned at most one hour before each
of the intra-day sessions marked at 16.00 and 21.00 of the D-day. Moreover,
the prediction can be changed or tuned for the remaining hours at 1.00, 4.00,
8.00 and 12.00 of the day of prediction. There is a tolerance of 20% for
avoiding penalization for under/over-production.

In order to assess this prediction, we assume the following inputs:

• The Local Weather Forecast usually giving wind direction θ and speed u,
pressure and temperature T in a coarse scale, typically of the order of
10 kilometers.
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• The historic data of wind power produced by the specific wind farm
during several years of management. This can be complemented by the
local wind rose of the wind farm; see a typical wind rose in Figure 5.1
and the historical data of wind speed and direction. These data are
collected by a single meteorological station located at the wind farm.

• The historic data of the velocity errors E committed by the weather
forecast prediction with respect to the local measurements.

Figure 5.1: Wind rose in Bridgeport, Connecticut, for February 1961

The technological problem proposed by Ambio S.A. is how to use these
inputs to obtain the best possible prediction of energy power generated by
the wind farm. Another important issue is how to estimate the risk of pe-
nalization due to over/under-production.

This report is based on the discussions in the group formed by R. Ala-
bern, J. A. Carrillo, J. Escalante, J. Ferré-Borrull, E. Ferrer, A. Ferreiro,
F. Martínez, A. Pérez, J. Rosado, A. Ruiz-de-Villa, and F. Utzet.
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5.2 Physical considerations and numerical
models

The first important point to focus on is that the energy power obtained from
a single wind turbine depends nonlinearly on the wind speed. Assuming the
wind blades are optimally directed perpendicular to the wind direction, the
energy power equation is

Energy =
1

2
ρ A u3 (5.2.1)

where ρ is the air density, A is the area of the rotor and u is the average
wind speed through the rotor. This relation is called the Betz law of wind
energy; see Figure 5.2. This nonlinear dependence implies that small changes
in wind speed produces much larger differences in energy output. Moreover,
the wind turbines have a minimum wind speed to operate around 3–4 m/s
and they saturate their response between 15 and 20 m/s depending on wind
turbine models. Moreover, if the wind speed is larger that 25 m/s they stop
operating to avoid structural damages.

Figure 5.2: Expression of Betz’ law by the Danish Wind Industry Association

The local weather forecast service provides the results of pressure, tem-
perature, wind speed and direction for each of the points of a mesh of size
10 kilometers. This mesh is very coarse for being able to capture local wind
effects, orography, roughness or any local characteristic of the wind farm.

One possibility is then to downscale the numerical solution of the fluid
mechanics equations to the wind farm scale. In order to do that, there are
some possibilities depending on the availability of computational resources:

• To perform a numerical interpolation to induce values of the wind speed
and direction at the points where the windmills are situated based on
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the prediction at the points given by the local weather forecast and the
values obtained at the local meteorological weather station of the wind
farm.

• Use some highly sophisticated engineering software for computational
fluid mechanics such as FLUENT [1], to incorporate local roughness
and landscape, turbulent effects, wind wake effects and the overall
behavior of the wind farm using the data of the weather forecast as
boundary conditions.

The first option is quite inaccurate and then surely not reliable due to
the coarseness of the mesh and the sparseness of the interpolating points.
Nonetheless, it can give a trend of the expected values. The second option is
not realizable in real time due to its heavy numerical cost but it can be done
off-line for certain typical conditions of wind in the local wind farm or for a
certain number of “normal conditions”. For instance, a wind farm situated at
the Ebro river will have many days in which the wind blows from northwest
(cierzo). Off-line simulation results in these specific conditions will surely be
quite accurate and can be used inside neural networks; see Section 5.4.

Due to these considerations, we propose as possible answer to this tech-
nological need a statistical model which could include as additional informa-
tion some of the prediction outputs obtained from these numerical compu-
tations based on physical models. Let us sketch our strategy depending on
the availability of the different inputs:

1. To perform a fine data analysis of the historical measurements of the
total energy production of the wind farm in order to cluster them in
terms of wind directions and seasons or other relevant parameters, see
next section. Assuming no other input is given, then our solution is
based on a direct evaluation of these clustering curves at the weather
prediction.

2. To find a distribution fitting the historical errors committed by the
prediction in the past; see next section. Based on the error distribution,
we propose the following procedure:

2.1. By a Montecarlo type algorithm, we use the clustering curves and
error distribution to find expected values for the power production
at all needed times. Moreover, we can estimate the probability of
penalization; see Subsection 5.3.1.

2.2. Independently, we can adjust a time series to improve the short-
time prediction, i.e., the intra-day sessions; see Subsection 5.3.2.
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2.3. Make use of the extreme value theory to fit the tails of the wind
speed probability density function to improve the prediction of
penalty risk for unusual violent wind speed conditions; see Sub-
section 5.3.3.

3. Neural networks can be used to tune final predictions based on the
different above possibilities; see Section 5.4.

5.3 Data analysis
The main purpose at this stage is to obtain the power curve associated to a
wind farm. Figure 5.3 shows its typical energy output.

Figure 5.3: Power production in a wind farm

Based on its S-shape, increasing character and the saturation phenom-
ena, it is reasonable to adjust a curve to this cloud of points with one of these
two possibilities:

1. Using cubic splines: this method allows us to do a very good interpo-
lation of the data and it is not difficult to code it up.

2. Using the logistic/sigmoidal function:
Pmax

1 + Ce−ku

where Pmax is the saturation energy power. This curve is typically
used to model the population growth in an environment with limited
resources, sales of a product where the total number of sales is limited
or patient’s response to medication. Least-squares method can be used
to estimate the parameters of the sigmoid function. This is usually
contained in any commercial software package.
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Figure 5.4: Typical shape of the resulting power curve

In Figure 5.3, we observe a certain number of values outside the over-
all trend which should be removed before adjusting the curve. It is then
necessary to do a first study of outliers.

Actually, the curves should be adjusted after a clustering of the data
has been performed. For the clustering, it seems natural to consider one of
the next two options:

1. The wind direction θ and the temperature T .

2. The wind direction θ and the seasons.

The temperature is important because of air’s density. When the air is cooler,
it is denser so it produces more energy; see (5.2.1). The difference between
the two options is that the first one gives us a better partition of the data.
However, the result using this one does not need to be better than the second
one, which is actually easier, because we can do the partition in only three
blocks (Winter, Spring–Autumn, Summer).

To simplify the exposition, let us take the second option for which we
propose a not-hierarchical common algorithm for the wind direction. This
one assumes that we already have k clusters and then it distributes the data
in a way that minimize the residual variance. The algorithm proposed is
called the H-averages and the way to find the first k clusters is using the
wind rose, Figure 5.1.

There is usually a predominant wind direction for which we assume
not having outliers, so it is natural to think that we have two angles that
concentrate all the information about the direction of the wind for this wind
farm. Then the directions of the wind are angles of the interval (θ0, θk).

Let us consider {(θi−1, θi)}k
1, with

θi = θ0 + i
θk − θ0

k
,
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as a partition of this interval to obtain the first k clusters. Then we take the
centroid (average value) c0

k of each cluster and call it the initial seed. The next
step is to assign the values to each of the centroids in a way that minimizes
the residual variance. Once we have all the values in a new sequence of
clusters, we take the new centroids c1

k and consider them as new seeds. We
repeat iteratively this process. It is necessary to give a stopping criteria, e.g.,
we can limit the number of iterations.

In the data analysis, we can also fit a probability distribution to the his-
toric data of the prediction errors E with respect to the park measurements.
For instance, in [3] it was assumed that such errors for the wind velocity are
normally distributed componentwise, thus E ∼ N .

5.3.1 Montecarlo

By sampling the error distribution of the velocity E obtained in the data anal-
ysis and taking into account the wind velocity from the weather forecast, we
get a sampling of the expected wind direction and speed. Now, we compute
the estimate of the power output by reading the corresponding value from the
adjusted curve to the corresponding cluster and wind speed. Moreover, from
this sampling we can give the probability of paying a penalization.

These ideas can be used also to plan the contract policy. Wind farm
owners may agree in different contracts and rules in the electric market which
are usually quite complex. Contracts will have a gain function of the form
Gainsa(u, θ), where Gainsa is a explicit function for a given market agreement
denoted by a. Here, we assume that this function depends only on wind speed
and direction.

We can calculate gain expectation for the market agreements given the
actual weather forecast. Again, by sampling the error distribution, we will
get possible values for the wind velocity (u1, θ1), (u2, θ2), . . . , (un, θn). Then
the expected value of the gain is

E [Gainsa(u, θ)] ≈ 1

n

n∑
i=1

Gainsa(ui, θi),

and taking large statistics in order to get a stable value of gains for each
possible contract, we can decide the best choice for our objectives using
market rules and their complexity.

5.3.2 Short-term prediction

Another important issue is to incorporate the new weather information ob-
tained along the day to improve the predictions in the intra-day sessions.
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Moreover, we can see how different the weather forecast information is be-
having from the real local data. We want to use this information to correct
our prediction.

To estimate this error, we propose to use time series techniques because
their computational cost is very low. These techniques are based on statistical
models, hence they need the previous statistical study in Section 5.2. The
idea is that the errors between the physical prediction and the real data until
a given moment will explain (and let us correct) the prediction of the desired
time horizon. For instance, if we denote by Yt the real wind data, by Y p

t the
physical prediction for the moment t and by et = Yt−Y p

t the error, for a time
horizon tT and in a given moment tk < tT we are looking for a functional
equation like

etT = f(etk , etk−1
, . . . ),

or equivalently
YtT = Y p

tT
+ f(etk , . . . , etk−m

),

using as lags m ≥ 0 as we need. Usually

f(etk , . . . , etk−m
) = β + α0etk + · · · + αmetk−m

+ ztk ,

where β and αj , 0 ≤ j ≤ m, are parameters which need to be estimated
using statistical tools, and ztk is another error with a certain probability
distribution. There are different functional equations. To know which one
fits better, it is necessary to use historical data. Once we know the functional
equation and we have estimated its parameters, the model is ready to be used.
In the future, the only maintenance needed is to review with some frequency
the estimated parameters.

5.3.3 Extreme values

As it can be seen in Figure 5.5, the shape of the wind speed-power curve
shows maximum efficiency for high wind speed. But just a little range of
high speed is desirable since an extreme speed will cause the stopping of the
machine for security reasons. The problem arises in estimating the power
supplies when extreme wind speed has been forecasted. For a regular speed, a
continuous range of possible power production is given depending on several
considerations regarding the actual wind farm. On the other hand, when
critical values of wind speed are forecasted, the possible supplies of power
can vary between maximum efficiency and no production at all. Often, the
consequence of a bad prediction is a penalty from the government.

We assume that the areas which are chosen to set a wind farm have
rare extreme wind speed, otherwise the farm would be closed most of the
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Figure 5.5: Generalized wind speed-power curve and associated pdfs

time. Therefore, the statistical study of this rare events arise as a natural
solution. In this direction, many authors agree that the distribution of wind
speed follows a Weibull function, regarding the facts that the power curve is
zero with no wind and the tail of the pdf. The Weibull function is defined as

G(x) =

{
1 − exp

[
− (

x−λ
δ

)β
]

if x ≥ λ

0 otherwise,

where λ, δ and β are the constants known as location, scale, and shape
parameters, respectively, and such that δ > 0 and β > 0. In Figure 5.6 we
have plotted several Weibull distributions. Extreme value theory is a branch

Figure 5.6: Weibull distribution for different scale and shape parameters

of statistics born fifty years ago and used to study the probability of large
storms causing substantial flooding along coasts with areas under sea level
such as Holland. Thus, it has been deeply studied and applied with success
into other areas such as the study of records; hence many existing results
might prove be applicable in wind farm studies.

From our point of view, an effort to study the possibilities of including
extreme value theory in the model of power prediction of wind farms would
be of considerable importance.
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5.4 Neural networks

Neural networks (NN) have shown themselves as a powerful tool when people
have to deal with an overcoming amount of data for which the way it has to
be taken into account is not evident.

The key words to understand NN are architecture and learning. A NN
consists of a set of cells where an activation function is implemented, which
are distributed in several groups (or layers) and interconnected. Some of
them get an input value, process it, and send the result to the cells they are
connected to, which get it modified by a weight added by the connection link
and do the same, till the last set of cells produce the output.

Figure 5.7: Three-layer network with bias

The number of cells in the NN and the way they are separated in layers
and interconnected, which determines the flow of the data, is what we call
architecture of the NN; the process by which the weights added by the links
is fixed is known as learning process. For a better understanding of NN, the
reader can refer, for instance, to [2, 5].

As an example of how NN can be used in prediction, in [4] the authors
present a three-layer neural network with four entries, which correspond to
velocity and direction of the wind registered in each of the meteorologic
stations of the park and one exit corresponding to the power production, for
each one of the mills. With this, they achieve short term predictions which
improve the results obtained by other ways.

Due to our restrictions, we cannot offer here an appropriate architecture
for the particular case of our study, but some general ideas which have to be
tested.

The three-layer model is optimal in a forward propagation architecture
with linear activation functions in cells belonging to the intermediate layers,
so it would be a good starting point. For the input layer we have to decide
which data we want to use (the forecast prediction, the values registered in
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our station, the results of numerical simulations, a combination of both...),
and for the output layer, a sigmoidal function adjusts naturally the power
curve of the mills, thus a cell with an activation function of this kind for
every mill should be tried. Studying separately each mill shall simplify the
learning process and do the model more adaptable; summing the different
outputs, we will get a prediction for the total production of the park.
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Multiple fault diagnosis of rain sensors
for the sewer net in Barcelona
by Aureli Alabert, José Ignacio Burgos, and Jordi Saludes

6.1 Introduction

The sewer network of Barcelona uses a set of 23 rain sensors for collecting
real-time data of rain intensity. By merging this information with the data
collected from the level sensors in pipes, the central control system manages
the opening/closing of sewer gates to avoid flooding, while trying simultane-
ously to maximize flow to the water processing plants.

Rain sensors are liable to fail in intense rain conditions, which is pre-
cisely when they are most needed. To make things worse, more than one
sensor uses to fail in these episodes. Therefore, a procedure to detect and
isolate faults in the rain sensor net is of capital importance, as it is also the
ability to reconfigure the net after a fail. Moreover, due to the nature of
the failures it is not possible to model the errors of the sensors as a random
Gaussian distribution.

A fault-tolerant net is usually built by exploiting the redundancy of
the data: Since near sensors tend to deliver correlated data, a way to detect
faulty sensors is to provide a set of equations binding readings from close
sensors, that the system must fulfil (up to a prescribed admissible error) at
any time.

This paper introduces three different approaches to the problem. They
can be read and implemented independently. In Section 6.2, we describe
the method of robust estimation to detect outliers in a random sample; this
method may provide an alternative approach to detect and isolate faulty
sensors. Section 6.3 deals with the optimal design of the set of models that
help in the detection of the failure of a sensor; this approach can be applied
with the initial set of sensors as well as with the subset of working sensors
once one or some of them have been discarded. Section 6.4 is devoted to
infer models from the geometry of the net.
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The conclusions presented here come from discussions held during the
GEMT meeting by A. Alabert, J. I. Burgos, O. Farràs, S. Oliva, C. Padró,
X. Muñoz, J. C. Naranjo, A. Rodríguez, J. Saludes, and J. Solà-Morales.

6.2 Robust fitting
When modeling the 23 rain sensors of the sewer network of Barcelona, we
are interested in detecting faulty sensors. Faulty sensors are sensors that
provide a measurement that is uncorrelated with the real data it should
provide. Typical examples are obstructed sensors that always report zero
rain. Therefore we cannot model such errors as random Gaussian noise in
the measurements. The usual least square methods for adjusting a model
to a sample are based on the assumption of Gaussian errors and, therefore,
are not applicable in this case. In this section we will review the problems
that the least square method has in the presence of outliers and how robust
estimates can overcome these difficulties.

Given a collection of data {x1, . . . , xN}, we will make the following
assumptions:

1. Most of the data are reasonably correct. This means, for instance, that
the data correspond to the phenomenon we are studying plus a random
error that can be modeled with a Gaussian distribution. But there is
the possibility that some of the data have a significant error due to
malfunction of the measure device. These data will be called outliers
and clearly cannot be modeled using a Gaussian distribution.

2. There is a good model for the phenomenon we are studying. For in-
stance, there is a parametric model that depends only on a few number
of parameters, that can be adjusted to the data. Moreover we have a
knowledge of the statistics of this model. In particular we have some
knowledge of the distribution of the discrepancy between the model
and the correct data.

With these assumptions we seek a method to detect the presence of
outliers and, what is also important, identify them. Since we are assuming the
existence of a good parametric model, we can design a strategy for detecting
outliers as follows:

1. First we adjust the model to the data.

2. Using the knowledge of the model statistics, we can design a test that
tells us if the data are consistent with the model. Therefore we can
detect the presence of outliers.
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3. We can now compare the data with the results predicted by the model.
In order to identify the outliers, we are now tempted to determine that
the outliers are those data that show bigger differences between the
experimental result and the predicted result.

Note however that, if the method we use to adjust the model is not
robust enough, the presence of even a small number of outliers can ruin com-
pletely the fitting of the model, making it unusable to identify the outliers.
As an example, we represent in Figure 6.1 the result of adjusting a line to
(a) a set points that follow a line plus some random Gaussian error, and (b)
the same set with three outliers.

(a) Linear regression without outliers (b) Linear regression with outliers

Figure 6.1: Linear regression

We can see that the outliers have a very strong influence on the result,
ruining completely the adjusting process. The reason of the strong influence
of the outliers in the result is precisely the fact that we are minimizing the
square of the error. Thus the points with a big error have an even bigger
weight in the minimizing process. Recall that the least square method is jus-
tified by the assumption of Gaussian errors, and the Gaussian distribution
decays with the exponential of minus the square of the error, thus making
very unlikely the presence of points with errors much higher than the stan-
dard deviation. If this assumption is fulfilled then the least squares method
produces the best result. Nevertheless, if the errors do not follow a Gaussian
distribution, the least squares method may not be the optimal choice.

In the last decades, a lot of effort has been devoted to the design of
statistic estimators that are tolerant to the presence of outliers. These kind
of estimators are generically known as robust estimators.

A classical example of a robust estimator is the median. Assume that
we have a sample {y1, . . . , yn} of a random variable Y that can be written as

Y = μ + X,
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where μ is a parameter and X is a random variable with zero mean. If X
follows a Gaussian distribution, then the maximum likelihood estimate for
the parameter μ is the arithmetic mean of the sample. By contrast, if n is
odd and X follows a Laplace distribution with probability density

f(X) =
1

2b
exp

(
−|X|

b

)
,

then the maximum likelihood estimate is the median of the sample. It is very
easy to see with an example that the presence of an outlier has a very strong
influence on the arithmetic mean, whereas it has a very small influence on
the median. The median is therefore a robust estimator. In the same way as
we can define the arithmetic mean as the estimator M that minimizes

n∑
i=1

(yi − M)2,

when n is odd we can define the median m as the estimator that minimizes
n∑

i=1

|yi − m|.

This consideration leads us to one of the main methods to design robust
estimators: instead of minimizing the sum of the squares of the errors, we
minimize the sum of the absolute values. However, there is a problem mini-
mizing the sum of absolute values of the errors, because the resulting function
is not differentiable, making it difficult to find the minimum. To solve this
problem we regularize the function to minimize. To this end we choose a
small regularizing parameter ε > 0 and define the minimization function as

F =
∑

i

√
(e2

i + ε2),

where the sum runs over all the points in the sample, and ei is the error of
the point i. Observe that

√
(e2

i + ε2) ∼
⎧⎨
⎩ε +

e2
i

2ε
if |ei| � ε,

|ei| if ε � |ei|.
Therefore, for small errors we have the good differentiability properties of the
x2 function, whereas for big errors we have only linear growth, that provides
us with the required robustness. For each value of ε we obtain a different
estimator. Then the robust estimator is the limit when ε goes to zero.
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We will now develop with some detail a method to solve an overdeter-
mined system of linear equations that uses these ideas of robust estimators.
We consider the equation

Ax = b,

where A is an n × m matrix with n > m and rank m, while b is a column
vector of dimension n and x is the vector of unknowns, of dimension m. We
denote by at

i the i-th row of the matrix A. The above equation is equivalent
to the system of equations

at
ix − bi = 0, i = 1, . . . , n,

that has more equations than unknowns. We seek an approximate solution
of this system of equations. To this end, for some ε > 0, we minimize the
function

F =

n∑
i=1

√
(at

ix − bi)2 + ε2.

The optimal solution will be obtained by equating to zero the gradient of F
with respect to X. Let D(X) be the diagonal matrix whose i-th entry is

Di,i =
1√

(at
ix − bi)2 + ε2

.

Then the solution of the minimization process is the solution of the equation

AtD(X)AX = AtD(X)b.

This nonlinear equation can be solved iteratively as follows. Let X0 be any
starting solution. For instance, we can choose X0 = 0. We let X1 be the
solution of the system of linear equations

AtD(X0)AX = AtD(X0)b.

Then the solution at the n-th iteration will be the solution of the system of
linear equations

AtD(Xn−1)AX = AtD(Xn−1)b.

It is possible to show that this iterative process is always convergent.
Recall that the problem of adjusting a line to a set of points is a par-

ticular case of an overdetermined system of equations. Given a set of points
{(xi, yi)}i=1,...,n we seek the best solution to the system of equations

xia + b = yi, i = 1, . . . , n,

where now the unknowns are a and b.
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Figure 6.2: Robust regression with outliers

Figure 6.2 represents the result of applying the robust regression method
to the set of points containing three outliers. As we can see, the presence
of outliers has almost no effect on the result of the regression allowing us to
clearly identify the outliers.

In order to apply the above considerations to the rain sensors of the
sewer system of Barcelona we need first a good parametric model of the rain
in Barcelona with few parameters. The Mediterranean rain is very difficult
to model due to its chaotic nature, although averages on time should be
susceptible to be modeled with a bi-quadratic model. Therefore we suggest
to use historical data to test whether such a model can be used to detect
faulty sensors. Note however that the discussion in this section is just a
glimpse on the use of robust estimators for the detection of outliers. We
recommend to consult the vast literature on the subject before starting a
study in this direction.

6.3 Combinatorial optimization
At present, the detection of a faulty sensor is carried out by checking its
reading against a predicted outcome. The prediction is produced by a linear
model involving three other sensors which are known to be highly correlated
with the first one.

The relation between sensors and models of sensors can be summarized
in an incidence table. For our purposes, this table will be defined formally
as a matrix X = (xij), with

xij =

{
1, if sensor j appears in the model of sensor i,
0, otherwise.

Our goal is to obtain automatically an incidence matrix for a given set
of sensors, with the essential requirements that:
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• The columns of the matrix must be different, so that in case of detecting
significant deviations in some models, the responsible sensor can be
immediately spotted.

• The correlations among sensors in a model must be as high as possible.

Such an automatic procedure could be used both in the construction of
the initial matrix of 23 sensors (off-line computation) and in the construction
of new matrices with less sensors (on-line computations), once the failure of
a sensor has been asserted, in order to be able to immediately detect new
failures. When applied to this on-line setting, the viability of the method
will depend on the necessary computation time, which should be checked
experimentally and will depend in turn on the machine in which the algorithm
runs.

6.3.1 How to create an incidence matrix

Assume we have n sensors. Consider variables xij with 1 ≤ i ≤ n, 1 ≤ j ≤ n,
defined as above. We have to decide on the value of these n2 variables xij.

We impose the following conditions:

1. Each sensor has to be present in its own model. Therefore, we can fix
xii = 1 for 1 ≤ i ≤ n, and there are only n2 − n variables left to decide
upon.

2. In addition to their own sensor, three more sensors must be present in
each model. This can be expressed by saying that the sum of each row
of the matrix must be exactly equal to four, and therefore translates
into the n conditions

n∑
j=1

xij = 4, 1 ≤ i ≤ n.

3. We want all columns to be different. This amounts to say that, when
subtracting any two columns j and k, the sum of the squares of the
difference column must be greater or equal to 1:

n∑
i=1

(xij − xik)
2 ≥ 1, 1 ≤ j < k ≤ n.

We have here n2/2 − n/2 conditions.
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On the other hand, from all possible incidence matrices satisfying these
constraints, we are interested in the one with the highest possible correla-
tion among the sensors taking part in the same model. There are different
possibilities to consider, but the simplest one is just requiring that the sum
of all correlations among the chosen sensors for all models be the greatest
possible. If we denote by C(i, j) the correlation (estimated from historical
data) among the sensors i and j, we would like to maximise, by choosing
convenient values 0 or 1 of the decision variables xij , the quantity

n∑
i,j=1

C(i, j)xij.

Indeed, we are adding here the correlations between sensors i and j only if
sensor j appears in the model of sensor i, that is, if xij = 1. If there are
significative negative correlations between sensors, then it is better to replace
C(i, j) by |C(i, j)|, but this is not important in the following discussion. We
thus arrive at an optimization problem that can be formulated as:

max
n∑

i,j=1

C(i, j)xij

subject to:
xii = 1, 1 ≤ i ≤ n,

n∑
j=1

xij = 4, 1 ≤ i ≤ n,

n∑
i=1

(xij − xik)
2 ≥ 1, 1 ≤ j < k ≤ n,

xij ∈ {0, 1}, 1 ≤ i ≤ n.

This is a binary programming (also called 0-1 programming) problem with a
linear objective function and nonlinear constraints.

Conceptually, the simplest way to tackle this problem is to linearize it,
that is, to transform the problem into a linear one, in the manner explained
below, and apply a standard method for solving linear problems with binary
variables. For instance, the so-called branch and bound method performs well
for binary problems, and the algorithm can be found in most optimization
books (see, for instance, [4]). The drawback of linearizing is the introduction
of many auxiliary 0-1 variables, and also of many new restrictions, so that
the dimension of the resulting mathematical programming problem is even
higher.
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A second way is to study the nonlinear problem directly, exploiting its
particular structure. It seems indeed feasible to devise an algorithm with a
better performance than linearization plus branch and bound. In case the
latter reveals as impractically slow, this possibility deserves closer attention.

6.3.2 Linearization of the optimization problem

The third set of constraints above, where the nonlinearities appear in the
form of quadratic functions, are equivalent to

2

n∑
i=1

xijxik + 1 ≤
n∑

i=1

(xij + xik), 1 ≤ j < k ≤ n,

taking into account that xij = x2
ij .

We still have the cross products xijxik, but they can be linearized with
the introduction of a new family of decision variables αijk defined as

αijk = xijxik, 1 ≤ i ≤ n, 1 ≤ j < k ≤ n.

Observing again that all variables take values in {0, 1}, it can be easily seen
that for each i and j, the last equality is equivalent to the system of linear
inequalities {

xij + xik ≥ 2αijk

xij + xik − αijk ≤ 1.

Therefore, the nonlinear constraints can be replaced by the set of linear
constraints ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
2

n∑
i=1

αij + 1 ≤
n∑

i=1

(xij + xik), 1 ≤ j < k ≤ n,

xij + xik ≥ 2αijk, 1 ≤ i ≤ n, 1 ≤ j < k ≤ n,

xij + xik − αijk ≤ 1, 1 ≤ i ≤ n, 1 ≤ j < k ≤ n.

We arrive at a linear binary programming problem with n3/2+n2/2−n
decision variables and n3 − n2/2 + n/2 constraints. In the case n = 23, this
means 6,325 variables and 11,914 constraints.
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Figure 6.3: Voronoi cells (blue) for the nowadays sensor net (red) inside the
convex hull (yellow)

6.4 Triangulations

Before considering the problem of finding faulty sensors, we must consider
how we estimate rain intensity at a given point using the readings from the
sensor net. In the following R will be the set of the 22 sensors, and for r ∈ R
we will denote by r(t) the reading of rain intensity by r at time t. (The
geographical coordinates of one of the sensors were not known at the time of
writing this report.)

6.4.1 Piecewise constant rain intensity

Let us first assume the rain intensity is piecewise constant. More precisely,
we will assume that rain intensity is constant in a circular patch. There can
be more that one patch and they can be moving in time.

With no more information, the best guess we can do on rain intensity
at a given point comes from the reading of the nearest sensor. To assign each
point to its nearest neighbor, we can use the Voronoi diagram V(R) (see
[1, 2]) which gives a partition of the plane consisting of polygonal regions.
The Voronoi cell for a sensor r contains the points which are closer to r than
to any other r′ ∈ R.

Some of these regions are unbounded (this is the case for the ones
corresponding to sensors in the convex hull of the net). It is clear that we
cannot estimate rain for points far away from the net. In the following we
will assume that we are interested only on points inside the convex hull.
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Figure 6.4: Delaunay triangulation for the actual net

6.4.2 Delaunay triangulation

The dual of the Voronoi diagram V(R) is the Delaunay triangulation D(R)
(see [1, 2]). Both the Voronoi diagram and the Delaunay triangulation consist
of polygons (cells and triangles), delimited by edges and vertices. Being dual
means that inside each Voronoi cell there is a vertex of a Delaunay triangle,
and that each Voronoi vertex corresponds to a triangle in the Delaunay trian-
gulation. The Delaunay triangulation has remarkable geometrical properties
that will help at improving our detection models. For instance:

1. {r, s} is an edge of D(R) if and only if there is a circle incident with r
and s not containing any other site of R.

2. The circumscribed circle of a triangle in D(R) does not contain any
other site.

3. The maximal enclosing radius of a triangulation T is the maximal ra-
dius of circumscribed circles of triangles of T . Then D(R) minimizes
the maximal enclosing radius among all triangulations of R; see [1, 2].
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6.4.3 Fault detection and isolation

We will describe a set of models for the sensor net. A model is a system of
equations, in terms of the sensors readings, that we expect to be satisfied
provided that all the sensors that appear in the model are working well. Let
us call Delaunay graph the pair (R, E), where R is the set of nodes and E
the set of edges of triangles in D(R).

The simplest of all models able to do fault detection consists on com-
paring two sensors r, s ∈ R, that is: In absence of faults, we state r(t) = s(t)
as null hypothesis. As soon as the difference between r(t) and s(t) is large
enough to reject this null hypothesis, we know that there is a fault on r
or s. We identify the model r(t) = s(t) with the edge {r, s} ∈ E of the
Delaunay graph. Thus, this class of models corresponds to subgraphs of
the Delaunay graph.

At this point, it seems natural to bind sensors which are near, for one
expects them to have similar readings. This is where Delaunay triangulation
comes to help: Suppose we are wondering if a sensor r is working fine. Any
model r(t) = s(t) will help to decide it in the positive sense if r, s fall in the
same rain patch. However, it follows from Property 1 above that if {r, s} is
not an edge, then each circle containing r and s also contains another u ∈ R.
Thus, any rain patch covering r and s also covers u and the information
about the goodness of r could also be derived from the model u(t) = r(t).
Put in another way: Models relating Delaunay edges can assert performance
for rain in cases while any other combination could not.

Increasing the degree of the model graph

A minimal set of models will be a matching for the Delaunay graph, i.e., a
one to one correspondence between two halves of R. This is fine if we were
interested only on detecting a fault, but we want also to know which sensor is
at fault (namely isolating the fault). So if we were to be able to discriminate
the faulty one, we will need more than one model for each sensor.

Let us consider these alternatives ordered by node degree:

Matching. Each sensor appears in exactly one model. Acceptable only for
detecting faults.

Union of cycles. Each sensor appears in exactly two models. The resulting
graph is the disjoint union of cycles. A set of models in this class
consists on taking a subset T of the triangles of D(R) in such a way
that, for all r ∈ R, there is exactly one triangle Δr ∈ T having r as
vertex. Then take the models given by the edges of triangles of T .
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Higher degree sets. Other configurations with more models per node are
also possible. A decision procedure for this kind can be as follows.
Given r ∈ R, consider the partition of the neighbors of r, Nr = Hr ∪Ir,
where s ∈ Hr if {s, r} ∈ E and the corresponding model holds and
u ∈ Ir if {s, r} ∈ E and the corresponding model fails. If there is a
circle C such that {r} ∪ Hr ⊂ C but Ir ∩ C = ∅, then r is not faulty.

6.4.4 Piecewise linear rain intensity

A more sophisticated model for rain intensity comes from assuming that it
is locally described by a linear function of the position,

I(x, y; t) = A(t)x + B(t)y + C(t). (6.4.1)

Since the function depends on three parameters, we will need to sample at
least three points. Thus, to estimate the rain intensity at a point we will
need the closest three sensors to this point. Given a set of three sensors
Δ = {r1, r2, r3} ⊂ R, the linear estimation of I(t) at a point p will be

Î(p; t) =
3∑

i=1

αiri(t), (6.4.2)

where (α1, α2, α3) are the barycentric coordinates of p respect to Δ, that is
the triple of real values fulfilling

p =

3∑
i=1

αiri;

3∑
i=1

αi = 1.

Again we want to use triangles with near vertices to minimize the pos-
sibility of being only partially covered by a rain patch. For this, we look once
more at D(R), since Property 3 above ensures that triangles Δ ∈ D(R) have
the smallest enclosing circle. Therefore, in the following we will consider only
configurations derived from Delaunay triangulations.

Models on quadrilaterals

Since three readings are necessary to estimate a local linear function as
(6.4.1), it is clear that we will need at least one more sensor to build a
model suitable for fault detection. This can be done by joining two adjacent
triangles Δ1, Δ2 ∈ D(R) with associated estimating functions Î1 and Î2 as
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Figure 6.5: Estimating triangles for some sensors in the net

in (6.4.2), to form a quadrilateral. The validity of the join model can be
checked by evaluating

|Î1(r2; t) − r2(t)| + |Î2(r1; t) − r1(t)|,

where r1,r2 are the vertices of the quadrilateral not in the common diagonal,
namely r2 ∈ Δ2 \ Δ1 and r1 ∈ Δ1 \ Δ2. Using the aforementioned duality
between Voronoi diagrams and Delaunay triangulations, the problem reduces
to compute a matching for the graph of the vertices and edges of the Voronoi
diagram.

Coarsening the net

Another approach to detect and isolate faulting sensors works by comparing
the readings of each sensor r ∈ R against a piecewise linear estimation given
by the rest of the net R \ {r}. More precisely, for each r ∈ R, we compute
the triangle Δr ∈ D(R \ {r}) that contains r and compare r(t) with Îr(r; t),
where Îr is the linear estimation corresponding to Δr as in (6.4.1). Figure 6.5
shows the reduced triangulation for some sensors.
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Figure 6.6: Areas for each Voronoi cell

6.4.5 Assessment of the geometry of the actual net

To finish, we will show some of the deficiencies of the sensor net regarding
the actual geometry and propose some actions to correct them.

Voronoi diagram and Delaunay triangulation

Notice that some of the sensors are located very near the convex hull (see
Figure 6.3), and therefore have extremely large cells. (See the areas in Fig-
ure 6.6.)

Improving the sensor net geometry

As mentioned above, the Delaunay triangulation is the dual graph of the
Voronoi diagram: Each region corresponds to a vertex of the triangulation
(a sensor position) and each triangle corresponds to a Voronoi vertex. In par-
ticular, edges of Voronoi are dual of Delaunay edges and the lines supporting
those cut orthogonally the ones supporting these. This does not mean that
the actual edges cut, nor that the nearest sensor to a given point must be a
vertex of the Delaunay triangle containing it. In this case the triangulation
will be a Pitteway triangulation [3]. It is clear that in the present state the
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sensor does not admit such a triangulation, for each triangle edge should cut
the corresponding edge of the Voronoi dual and this is not the case, as we can
see from the figure. It is advisable to rearrange the net to become Pitteway.

Also, to make the cells more even, there is the Lloyd’s algorithm [5].
In short, this algorithm moves the sites of the Voronoi diagram towards the
centroids of the corresponding Voronoi cell. Although this algorithm tries to
move all sites simultaneously, economic considerations may, in practice, force
us to move only some.

Golden sensors

Completing the net with extremely reliable sensors (golden sensors) will be
an alternative to improving the net geometry. Optimal position for these
sensors should be further investigated.

6.5 References
1. Ding-Zhu Du, Frank Hwang (eds.), Computing in Euclidean Geometry,

Lecture Notes Series on Computing 4, World Scientific, 1995.

2. Jacob E. Goodman, Joseph O’Rourke (eds.), Handbook of Discrete and
Computational Geometry, CRC Press, 1997.

3. M. L. V. Pitteway, Computer Graphics Research in an Academic En-
vironment, Datafair 1973.

4. H. M. Salkin, K. Mathur, Foundations of Integer Programming, North-
Holland, 1989.

5. Stuart P. Lloyd, Least squares quantization in PCM, IEEE Transac-
tions on Information Theory 28, no. 2 (1982), 129–137.



69

Participants

Maria Aguareles (MA1, UPC)

Roc Alabern Palau (DM, UAB)

Aureli Alabert (DM, UAB)

Xavier Alameda i Pineda (CEBSIAM, UPC)

José Ignacio Burgos Gil (DAiG, UB)

José Antonio Carrillo de la Plata (DM, UAB i ICREA)

Carles Comas (AMBIO S.A.)

Joan Escalante Esteve (DM, UAB)

Oriol Farràs (MA4, UPC)

Josep Ferré-Borrull (DEEEA, URV)

Albert Ferreiro Castilla (DM, UAB)

Edgar Ferrer Serrano (DM, UAB)

Enric Fossas (IOC, UPC)

Jaume Franch Bullich (MA4, UPC)

Toni Guillamon (MA1, UPC)

Fernando Martínez (MA2, UPC)

Albert Mas Blesa (DM, UAB)

Àlex de Mingo (Federació Catalana de Rem)

Margarida Mitjana Riera (MA1, UPC)



70 Participants

Xavier Mora (DM, UAB)

Xavier Muñoz (MA4, UPC)

Joan Carles Naranjo del Val (DAiG, UB)

Miquel Noguera Batlle (MA2, UPC)

Sergio Oliva (IME, Univ. Sao Paulo)

Carles Padró (MA4, UPC)

Marta Pellicer Sabadí (DIMA, UdG)

Agustí Pérez Foguet (MA3, UPC)

Vicenç Puig (ESAII, UPC)

Peregrina Quintela (IMAT, Univ. Santiago de Compostela)

Antonio Rodríguez-Ferran (MA3, UPC)

Jesús Rosado Linares (DM, UAB)

Aleix Ruiz de Villa Robert (DM, UAB)

Noemí Ruiz Munzón (DM, UAB)

Jordi Saludes (MA2, UPC)

Joan Solà-Morales (MA1, UPC)

Frederic Utzet (DM, UAB)

Mauricio Wagensberg (AMBIO S.A.)

Sebastià Xambó (MA2, UPC)



71

Contents

Presentation 3

Statement of the Problems 5

1 Mathematical modelling of rowing in a Catalan llagut 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The competition . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Structure of the Catalan llagut . . . . . . . . . . . . . . . . . 8
1.4 Mathematical modelling and open questions . . . . . . . . . . 11
1.5 Some links and references . . . . . . . . . . . . . . . . . . . . 12

2 Forecasting wind energy production 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Models for forecasting production . . . . . . . . . . . . . . . . 14
2.3 Data for consideration . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 References and internet documents . . . . . . . . . . . . . . . 16
2.6 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Diagnosis of multiple faults in the network of rain gauges in
the Barcelona sewage system 19
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 19

Answers to the Problems 25

4 Mathematical modelling of rowing in a Catalan llagut 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Aquatic phase: angles of catch and finish . . . . . . . . . . . . 28
4.3 Relation between oar force and velocity . . . . . . . . . . . . . 30
4.4 The effect of the rower movement onto the llagut velocity . . . 34
4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Fine prediction of energy power production in wind farms 41
5.1 Technological need: wind power prediction . . . . . . . . . . . 41
5.2 Physical considerations and numerical

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Montecarlo . . . . . . . . . . . . . . . . . . . . . . . . 47



72 Contents

5.3.2 Short-term prediction . . . . . . . . . . . . . . . . . . . 47
5.3.3 Extreme values . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Multiple fault diagnosis of rain sensors for the sewer net in
Barcelona 53
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Robust fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Combinatorial optimization . . . . . . . . . . . . . . . . . . . 58

6.3.1 How to create an incidence matrix . . . . . . . . . . . 59
6.3.2 Linearization of the optimization problem . . . . . . . 61

6.4 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.1 Piecewise constant rain intensity . . . . . . . . . . . . 62
6.4.2 Delaunay triangulation . . . . . . . . . . . . . . . . . . 63
6.4.3 Fault detection and isolation . . . . . . . . . . . . . . . 64

Increasing the degree of the model graph . . . . . . . . 64
6.4.4 Piecewise linear rain intensity . . . . . . . . . . . . . . 65

Models on quadrilaterals . . . . . . . . . . . . . . . . . 65
Coarsening the net . . . . . . . . . . . . . . . . . . . . 66

6.4.5 Assessment of the geometry of the actual net . . . . . . 67
Voronoi diagram and Delaunay triangulation . . . . . . 67
Improving the sensor net geometry . . . . . . . . . . . 67
Golden sensors . . . . . . . . . . . . . . . . . . . . . . 68

6.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Participants 69

Contents 71




