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Presentation

This booklet collects the problems that were proposed at the Grups d’Estudi
de Matematica i Tecnologia (Study Groups of Mathematics and Technology,
GEMT 2008), and the reports on the solutions to these problems. The
problems belong to different areas of Mathematics and were proposed by
companies and institutions in various ways. The event took place in the
premises of the Facultat de Matematiques i Estadistica of the Universitat
Politécnica de Catalunya, Barcelona, from July 8 to 10, 2008.

We believe that the results are very satisfactory. Of course, with more
time for work and discussions the results could have been more complete.
However, it should be kept in mind that the goal of these Study Groups is
just to make a first contact with the problems, that can continue after the
event in many ways.

The participation was free of any cost for companies and institutions
and also for participants. We are especially grateful to the two institutional
co-organizers, the Facultat de Matematiques i Estadistica of the Universi-
tat Politécnica de Catalunya (FME) and the Centre de Recerca Matematica
(CRM). They both contributed by strongly supporting these Study Groups.
We also thank the Universitat Politécnica de Catalunya (UPC) and Ingenio
Mathematica (i-MATH) for their financial support. Additionally, we have
worked in coordination with the Jornadas de Consulta Matemdtica para Em-
presas e Instituciones, organized by CESGA in Santiago de Compostela, an
event with the same aims as ours.

Finally, we thank very much all the participants: the companies and
institutions that presented the problems and also the researchers, in a number
of around thirty, who contributed to the discussions and wrote the final
reports.

Barcelona, December 2008

Aureli Alabert, Enric Fossas, and Joan Sola-Morales
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Improvements in the resolution of
emission images for Nuclear Medicine
obtained using a gamma camera

by Santiago Aguadé Bruix, Nuclear Medicine,
Hospital Universitari Vall d’'Hebron, Barcelona, Spain

1.1 Introduction to Nuclear Medicine

For centuries, discoveries of the principles of physics have been applied to
knowledge of human beings. Three important findings marked the beginning
of the radiological age (use of radioactivity for the first time for scientific
and/or medical ends) at the end of the 19th century:

e the discovery of X-rays by Rontgen in 1895,

e the discovery of ionizing uranium radiation and its effect on the skin
by Becquerel in 1896, and

e the discovery of natural radioactivity by Marie Curie in 1898.

Later, successive physical developments and major technological advances
enabled the appearance and development of new specialities related to the
use of nuclear energy and ionizing radiation in industrial and medical appli-
cations.

1.2 The bases of image detection systems in
Nuclear Medicine

These systems are based on the phenomenon of solid scintillation, which is
used to detect the gamma radiation emitted by the subject of study, following
the introduction of a gamma emitter together with a molecular vehicle (from
a radiotracer) into the organism of the subject (normally via intravenous
injection).
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In the “in vivo” diagnosis this is carried out using the gamma radiation of
the radioactive isotope, habitually using a solid scintillation crystal made of
sodium iodine activated with thallium (NaI(T1)). The high atomic number
for iodine (53) makes it a good absorber of gamma rays and its optical trans-
parency is very good. The activation with thallium means that the energy
levels give rise to jumps of some 3 eV (visible ultraviolet). The quantity of
light photons is proportional to the energy deposited in the crystal.

The light produced in the crystal is captured by a photonic amplifier (the
first element of the photomultiplier tube = photodetector which converts a
photon to electron), giving rise to an electrical impulse in the photomulti-
plier that becomes higher as more light is emitted in the detection process.
Therefore, the energy deposited by the gamma ray is proportional to the
height of the electric impulse generated.

We can therefore distinguish between photons in Compton Collision (with
partial release of energy) and those experiencing photoelectrical effects (max-
imum height impulses that represent the total energy of the gamma ray). We
can also differentiate among the different energy types in incident rays, and
therefore the different gamma emitting radioactive isotopes that can be de-
tected at the same time. Now it is a simple case of counting (understood as
integrating in time) the number of impulses from each energy peak (Z) or
defining electronic windows that enable only impulses of a given height to be
counted (energy window).

There remains the problem of the spatial situation of the photons.

1.3 Gamma camera

To obtain Nuclear Medicine images, the most frequently used “in vivo” de-
tection system are the Anger gamma cameras (1958). These have provided
a qualitative leap in nuclear medical explorations since they allow morpho-
logical and functional images to be obtained from the detection of radiation
from the tracer from inside the organism.

Gamma cameras (Figure 1.1) consist of a special arrangement of a solid
scintillator detector with a filter to direct the photons, a large diameter
NaI(T1) crystal with a thickness of between i and % inches, circular or rect-
angular, which is connected to a conglomerate of photomultiplier tubes (of
19, 37, 61, or more tubes) each fitted with a circuit for pre-amplification
(Figures 1.2(a) and 1.3).

When the radiation falls on the crystal after passing through the lead
collimator that defines the direction of the registered photons (the solid angle
for each individual pinhole), a light scintillation is produced scattering light
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through the crystal. The fraction of this light that reaches the photocathode
in each photomultiplier varies inversely with the distance from the photon
interaction point, meaning that the impulse of the greatest amplitude is
registered in the photomultipliers nearest the place where the light struck
and that of the smallest in the further points.

Detectors

Gantry

Motorised
bed

Figure 1.1: Gamma camera.

Photom

Parallel hole collimator

(a) (b)

Figure 1.2: (a) Elements of the Gamma camera. (b) Parallel hole collimator.

The distribution of the amplitude pulses of the photomultipliers contains
information relative to the geometrical position in a system of Cartesian
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Figure 1.3: Pre-amplification.

coordinates centered on the detection field (X—/X+ and Y—/Y 4+, see Fig-
ure 1.4(a)), with the spatial resolution being therefore much greater than
the number of photomultipliers and clearly marked by the acquisition matrix

of the computer image (with certain limitations caused by the system as a
whole).

Figure 1.4: (a) Signal pulses. (b) Photomultiplier matrix and positioning.
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The energy of interaction is defined by the amplitude of pulse Z, which
is obtained as the sum of the all photomultiplier pulses and is proportional
to the energy released by the photon. The final information on the position
of the interaction on the crystal is obtained from the greater of the X/Z and
Y/Z signal relationships, and these are then digitalized using an analogue-
digital converter for computer processing and storage.

Carrying out this same process with each detected photon and assigning
each one a place on the image gives us the radiotracer distribution map for
the organs being studied in the detection plane (planar image, Figure 1.5).

In order to obtain volumetric information about the organ being studied,
planar images may be taken from different angles of the body (rotating the
detector head) and mathematically reconstructing the point from which each
emission comes, normally by filtered retro-projection, thus obtaining sec-
tional images (transverse, sagittal and coronal planes) and producing three-
dimensional information (Single Photon Emission Computed Tomography,
SPECT).

1.4 Questions

Improvements in planar images, which suffer from the problems of all the
elements of which the gamma camera is made, such as

e collimator (size of hole, thickness of the septum, the depth of the hole,
the total number of holes covering the detector);

e crystal (thickness of the crystal, density of the crystal, light trans-
parency, recovery speed);

e photomultiplier (sensitivity of the photodetector, number of amplifica-
tion stages, level of the exit signal);

e clectronics: preamplifiers, integrators, CAD, positioners (currently, the
digital signal (z,y, z) for every event, delay transfer time and electronic
delays),

would give a better definition of the planar images, and if they are taken
using SPECT this would also generate improvements in the images of sections
obtained from the organs being studied.

Improvements are therefore necessary in the areas of

e collimator: corrections by solid angle, correction by the distance of the
organ to the collimator;
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< —
Figure 1.5: Planar image.

e crystal: a very thick crystal diffuses the image, but it also increases the
number of gamma photons that release all the energy to the crystal it-
self, the dispersion of the light, reflection and refraction which increases
the area of visible impact;
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Figure 1.6: Acquisition of planar images from different angles and reconstruction.
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Tomographic sections

Figure 1.7: Images of the tomographic sections of a SPECT of bones in the
thoracoabdominal region.
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e photomultiplier: changing the number or distribution of the photomul-
tipliers;

e clectronics: reduction of the electronic delay time, improvement in po-
sitioning with weighted algorithms of the X /Y position.

In order to make these improvements, one could either redesign the equip-
ment (which is not feasible) or apply the necessary corrections to each image
to overcome the deficiencies in obtaining them (recommended solution that
is broadly applicable).

From a practical point of view, the images obtained are not those seen
directly by the detector. They already include default corrections for the
following characteristics:

Energy Each gamma-emitting isotope has the energy of its photons defined.
The most widely used in nuclear medicine is *™Tc (technetium 99
meta-stable) which emits gamma photons at 140 KeV. The detector
obtains a map of this energy for all the photomultipliers (individually
as an energy curve and number of events) and thereby maintains the
energetic uniformity of the whole detector.

Linearity The use of a special collimator made from a lead matrix with holes
aligned at a known distance, images of linearity (as in Figure 1.8(a))
are obtained which is how as the detector views a flat, homogeneous
emission source. This image, similar to that used for the correction of
eyeglass stigmatism, is used to generate a corrective matrix and restore
the linearity of the detector. The effect of greatest density can be seen
in the center of each photomultiplier.

Homogeneity To ensure that the detector has the same efficiency at any
point, an adjustment is made of the detection uniformity of a homoge-
neous flat source, always after the application of two initial corrections.
The image obtained must be visually homogeneous and the numerical
calculations for the minimum and maximum differences in the field of
vision and in the center of the field must be below 5%.

Despite these adjustments, the overall quality of the images is low as a
result of the detection system itself and the random nature of the radioac-
tive emissions, which are toxic in large quantities and therefore the amounts
administered to patients are very small.

Considering that the radioactive dose unit is the Becquerel (equivalent
to 1 disintegration per second, or one atom emitting 1 gamma photon per
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Figure 1.8: (a) Energy. (b) Linearity.
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Figure 1.9: Homogeneity.

second), the number of ™ Tc atoms administered in a routine study may
be from 37 to 900 MBq (mega-Becquerels), strictly controlled by legislation
that limits these values.

This involves a low photon flux, or a weak detection signal, which despite
the high level of detector efficiency, gives images with high levels of noise
(increase in the background signal) and poor contrast (very little difference
between maximum and minimum) and these are the images on which this
type of correction is really necessary.
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Routing and dimensioning problems in
transport networks

by Alpar Jiittner, Ericsson Research, Budapest, Hungary

2.1 On Resource Constrained Optimization
Problems

Here we show a method that has long been used to solve Resource Con-
strained Optimization Problems and has been found extremely effective in
practice. It is effective in the theoretical sense as well; it is proved to be
strongly polynomial. In the special case of Resource Constrained Shortest
Path Problems, a better running time estimation is also presented. In order
to define the Resource Constrained Optimization Problem in general, first let
us consider an underlying set F, a cost function c: £ — R* and an abstract
optimization problem

min { Zc(e) . Pe 73}, (2.1)

ecP

where P € 2% denotes the set of feasible solutions. We refer to this problem
as a basic problem in this chapter.

The corresponding Constrained Optimization Problem is the following.
Let d: E — R, be another given weighting, called delay, and A € R, a
given constant called delay constraint. With these notations we are looking

for the value
min { Zc(e) . PeP, Zd(e) < A}. (2.2)

ecP eeP

An important example for this is the Constrained Shortest Path Problem.
Assume that a network is given as a directed, connected graph G = (V, E),
where V' represents the set of nodes, and E represents the set of directed
links. Each link e € FE is characterized by two nonnegative values, a cost
c(e) and a delay d(e). With a given delay constraint A € R, and two given
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nodes s,t € V, the task is to find a least cost path P between s and ¢ with
the side constraint that the delay of the path is less then A.

One can define the Constrained Minimum Cost Perfect Matching Problem
and the Constrained Minimum Cost Spanning Tree Problem in the same way.

Although their unconstrained versions are easy to solve, the three prob-
lems mentioned above are N'P-hard (see e.g. [1]). A common way to find near
optimal solutions to these problems is to get rid of the additional constraint
by using Lagrangian relaxation. In this way the constrained problem turns
into a maximization of a one-dimensional concave function (see Section 2.2).

A simple way to find the optimum of the relaxed problem is to use binary
search, which is polynomial for integer costs and delays (see [2]).

Instead of using binary search, another simple and practically even more
effective method —described in Section 2.3— has been found and applied in-
dependently by several authors. After [3] it is sometimes called the Handler—
Zang method. The same method was used in [4] leading some people to call
it the BM method. Other papers aim at further improvement either on the
running time in practical cases [5] or on the quality of the found solutions [6].

Although this method has turned out to be particularly efficient in prac-
tical applications, the worst case running time of this method was unknown
for a long time.

Mehlhorn and Ziegelmann showed that for the Constrained Shortest Path
Problem the Handler-Zang algorithm is polynomial for integer costs and
delays. If c(e) € [0,...,C] and d(e) € [0,..., R] for each e € E, then it will
terminate after O(log(|[V|RC')) iterations. They also presented examples
showing that this running time is tight for small costs and delays (i.e. if
R <|V]and C < |V]).

One may observe that this problem can be transformed to an extension of
the LCFO (Least Cost Fractional Optimization) problem discussed by Radzik
in [7]. Moreover, the strongly polynomial solution method proposed in [7]
turns out to be equivalent to the Handler—Zang algorithm in this case, show-
ing that the number of the iterations made by the Handler—Zang algorithm
does not depend on the range of the cost and the delay functions, so this
method is actually strongly polynomial if the basic problem can be solved in
strongly polynomial time. This also shows that Mehlhorn’s and Ziegelmann’s
bound on the running time is not tight for large costs or delays.

Here we show that the Handler-Zang algorithm takes O(|E|?log(|E]))
iterations for arbitrary constrained optimization problem.

For the Constrained Shortest Path Problem an even better bound can
be shown. The number of iterations is proved to be O(|E|log?(|E|)) in this
case (see Theorem 7). The proofs are based on the nice technique proposed
by T. Radzik, see [8].
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2.2 Lagrangian relaxation

Lagrange relazation |9, 10| is a common technique for calculating lower
bounds, and finding good solutions to hard optimization problems. This
section shows how it can be applied to the Resource Constrained Optimiza-
tion Problem.

From now on we assume that there exists an algorithm .4(c) which runs
in time T and solves Problem 2.1 for any given cost function c.

Intuitively the presented Lagrangian relaxation method is based on the
heuristic of minimizing the modified cost function ¢y = ¢+ A - d over P for
an appropriate X. For a given (fixed) A we can easily calculate the minimal
solution py € P of the basic problem. If for A = 0 we get that d(py) < A,
then we found an optimal solution for the constrained problem as well. If
d(px) > A, we must increase A in order to increase the dominance of delay in
the modified cost function until the optimal solution with respect to ¢, suits
the delay requirements.

Now, we show how Lagrangian relaxation helps us find the value of A
that gives the best result. Moreover, the algorithm will give an upper bound
on the badness of the solution as a byproduct, based on the following well
known claim.

Claim 1 Let
L(A) = min{cA(p) : p € P} — AA. (2.3)
Then L(\) is a lower bound to Problem 2.2 for any A > 0. O

To obtain the best lower bound we need to maximize the function L(\);
that is, we are looking for the value

L* = max L(\), (2.4)

A>0

and the maximizing A*. Some more properties of the function L(\) are given.

Claim 2 L is a concave piecewise linear function, namely the minimum
of the linear functions c(p) + A(d(p) — A) for all p € P. d

Claim 3 For any A > 0 and cyx-minimal solution py € P, d(py) — A is a
subgradient of L in the point X. ]

This gives us the following:
Claim 4 If A < \*, then d(pA\) > A, and if A > \*, then d(p)) < A for

each cy-minimal solution py. O
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Claim 5 A value A maximizes the function L(X) if and only if there are

solutions p. and pg which are both cs-minimal and for which d(p.) > A and
d(pa) < A. (If p. and pg coincide, then d(py) = d(p.) = A.) O

The Handler—Zang algorithm will give these solutions along with \*.

Claim 6 Let 0 < A\ < Ao, and let pr,,pr, € P be Ai-minimal and
Ao-minimal solutions. Then c¢(py,) < c(py,) and d(px,) > d(pa,)- O

These two latter claims together mean that the A\* that maximizes the
function L(\) gives the best modified cost function, that is \* is the smallest
value for which there exists a cj-minimal solution py which satisfies the delay
constraint.

2.3 The Handler—Zang method

In this section the Handler—Zang algorithm is described.

e In the first step the algorithm sets A = 0. It calculates an optimal
solution with respect to the modified cost function c¢,. This means
that the algorithm finds the c-minimal solution. If this solution meets
the delay requirement A, it is an optimal solution of (2.2), and the
algorithm stops.

e Otherwise the algorithm stores the solution as the best solution that
does not satisfy the delay requirement A (it is denoted by p. in what
follows), and checks whether an appropriate solution exists or not: cal-
culates the d-minimal solution. If the obtained solution suits the delay
requirement, a proper solution exists, so the algorithm stores it as the
best feasible solution found up to now (denoted by py). Otherwise there
is no solution that fulfils the delay requirement, so the algorithm stops.

In the next steps we obtain the optimal A, by repeatedly updating
either p. or py with a new solution.

e Let us see the current solutions p. and py. If, for a certain A, both p,
and py are cy-minimal, then using Claim 5, this A maximizes L(\). But
it can be true only if ¢)(p.) = ¢x(pq), from which we obtain that the
only possible \ is

(2.5)
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So, we set it as the new candidate for the optimal solution. Then we
find a c)-minimal solution r. If ¢\(r) = cx(pe), then p. and py are
also cy-minimal, so we are done by setting A\* = A\ and returning py.
If cx(r) < ex(pe), then we replace either p. or pg with r according to
whether it fails or fulfils the delay constraint, and repeat this step.

2.4 Running time of the algorithm

First of all, obviously

| d(pt) = d(p?) > d(pd) >--- > A (2.6)
d(py) < d(p) <d(p}) <--- <A, (2.7)

and either d(p’) > d(pi™) or d(p}) < d(pi') for any i. Since there is only
a finite number of different solutions, the algorithm finds the optimal A in a
finite number of steps.

The following stronger result can be proved following the idea of the proof
of the strong polynomiality of the so-called Newton method for fractional
optimization problems [8].

Theorem 7 The Handler-Zang algorithm terminates after O(|E|*log |E|)
iterations, so the running time of the algorithm is O(T|E|*log |E|). O

In the case of the Constrained Shortest Path Problem, a better bound
can actually be proved:

Theorem 8 In the case of the Constrained Shortest Path Problem, the
Handler-Zang algorithm terminates after O(mlog® m) iterations, thus the
full running time of the algorithm is O(m?log® m 4 mnlog® m). ]

2.5 An open question: Handling multiple (two)
resource constraints

The presence of two resource constraints is not as clear as the single constraint
version, mainly because even the finding of a feasible solution is NP-hard
in this case. However, the Lagrange relaxation approach can also be applied
here, and if the required constraints are not hard, the resulting solution is
reasonably good. Even the Handler-Zang method extends to this case quite
straightforwardly, but nothing is known about its running time (except that
it is finite). Thus the question is: Is the Handler—Zang method (strongly)
polynomial in the case of two resource constraints?
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Ideal MHD equilibria of tokamak
plasmas

by Alfredo Portone, Fusion for Energy, Barcelona, Spain

3.1 Background

Plasma MHD equilibrium and stability play a key role in tokamak physics
and engineering since they have far reaching consequences in the design and
operation of present and future fusion devices. As a result of this, the com-
putation of axi-symmetric plasma equilibrium configurations and their sta-
bility analysis —particularly against n = 0 (i.e. axi-symmetric) displacement
modes— has been widely investigated in the past years and is presently per-
formed using a large range of computer codes [1|-[6].

The plasma equilibrium problem is often divided in two broad classes.
Firstly —mainly for the Poloidal Field (PF) system design purposes— it is
required to compute the currents in the PF coils to keep in equilibrium a
plasma with the boundary as close as possible to a pre-defined flux line 0f2
(Figure 3.1), total current I, and current density profile (typically the plasma
poloidal beta (3, and internal inductance [; are assigned). We will refer to
this as inverse equilibrium problem [7].

The position and size of each PF coil is generally known. However, in
some cases it may be requested to optimize the position and shape of these
coils to maintain the desired plasma equilibrium. This problem is generally
a constrained optimization problem and will not be considered here.

Secondly —mainly for the analysis of transient electro-magnetic pheno-
mena— it is necessary to compute the evolution of the plasma current, shape
and current profile parameters, in the presence of assigned external currents,
flowing in the PF coils (equilibrium currents) and in the surrounding metallic
structures (eddy currents). This problem is the so-called direct equilibrium
problem [3]-[4].

In between these two classes stands a third type of problem —most rele-
vant for magnetic diagnostics purposes— in which the currents flowing in the
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PF coils are specified together with the poloidal flux and/or field at some
specific locations. In that case it is requested to compute I, the plasma
boundary 0 and, possibly, £, and I; (plasma identification problem) [1].

All these problems are closely related and their solution is based on
the solution of the Grad-Shafranov equation [6] —with different boundary
conditions— inside an a-priori unknown domain €2, whose determination is
part of the problem itself.

The presence of (2, as an additional unknown complicates the solution of
the problem that, in essence, is a fairly standard elliptic type problem with a
(mild) non-linearity deriving from the fairly smooth dependence of the source
term upon the flux function .

The aim of this study should be to find an efficient algorithm for the
determination of the plasma region (2, which is the key unknown of the free
boundary equilibrium problem.

3.2 Free boundary equilibrium problem

The basic equilibrium equation for any toroidal axi-symmetric plasma is ob-
tained starting from the single fluid MHD equilibrium equation and quasi-
static Maxwell laws [7]:

VxB = uj (3.8)
V-B = 0 (3.9)
jxB = Vp (3.10)

In the set above, (3.8) holds in the volume occupied by the plasma
(V,) whereas (3.9-3.10) hold in the whole space (R?*). By writing (3.8-3.9)
in cylindrical (r, ¢, z) co-ordinates under the assumption of axi-symmetry
0/0¢ =0, B and j can be expressed as:

B = B,+B,=V¢xVp+ IV (3.11)
J = Jotde =VT xVo+ Lt/ Ve

In (3.11), ¢(r,z) = [ r'B.(r',z)dr’ is the poloidal magnetic flux per
radian, p is the plasma kinetic pressure (zero outside V), T' = rB,/ o is
the poloidal current per radian with B, the toroidal field and L is an elliptic
operator (see below).

We can then formulate the free boundary equilibrium problem (3.8-3.10)

as:
o (1ov\ o (1o
or (?E) 0z (?@) = Lo =i, (3.12)
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Vacuum region 0€2,

Plasma boundary 0€2)

Plasma region €2,

A J

Limiter point

k-th poloid@d (PF) coils

Ck

Figure 3.1: Poloidal plane.

where
rp’ + <@> TT inQ,
r
Jo» = 3.13
v Ck in Qk ( )
0 in €,

In (3.13), Q, is the unknown plasma cross-section in the poloidal (r, z) plane
(Figure 3.1), Q, is the vacuum region surrounding €2,, where there is no
current flow and €2, is the generic region with prescribed toroidal current
density Cj. In €, p and T" depend only upon % and the prime denotes the
derivative with respect to .
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3.3 Numerical solution

The set (3.12-3.13) is usually solved by re-casting it as a non-linear eigenvalue
problem [9]:

Ly = \f (r,@) in €2,
)\/ fdQ = pol, (3.14)
Qp
where the eigenvalue A plays the role of a scaling factor for the plasma current

density to match the total plasma current I, [7] and the auxiliary variables
are defined as:

@ = (77Z)_77Z)a)/(¢b_¢a)

Yo = sup¥ (3.15)
Q

Yy = sup (Yr,vx)
QUON

In (3.14), 1, is the maximum value of the poloidal flux v inside the whole
computational domain 2 = €,U(},, corresponding to the flux at the position
of the plasma magnetic axis and v, is the maximum value of the poloidal
flux ¢ among all the possible limiter (1) and saddle points (¢x).

By definition, a limiter point is a point on 0€2 where the corresponding
iso-flux line for the poloidal flux 1 is tangent to 0€2 and completely enclosed
inside €.

On the other hand, a saddle point is a point in € U 02 containing a
stagnation (or X-point) for the flux function ¢ and the corresponding iso-
flux line is completely enclosed inside 2. At a saddle point the gradient of ¢
vanishes and the Hessian is neither positive nor negative defined.

The free boundary equilibrium problem is solved numerically by re-form-
ulating the equations in weak form and solving them by the finite element
method. The solution is sought among the linear combinations of finite
element basis functions by expanding ¢ on the finite element basis func-

tions (¢, ():
N M
Y(rz) =D G2+ Gl 2)e=ET+ ("o (3.16)
=1 =1

In (3.16), ¢ and ¢ denote the vector of nodal values and basis functions
associated with the N nodes inside Q = €2, U €}, whereas ¢ and ( refer to
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the M nodes on the boundary 0f2. In discrete form, the set to be solved
during each iteration is:

APyt = )

Pt = sup ™ty (3.17)
Q

wénJrl) = sup < (Ln+1)’ E?H))
QUAN

3.4 Goal of the study

The aim of this study should be to find an efficient and robust algorithm to
evaluate 2" and Qbén“) with the corresponding magnetic axis and bound-
ary iso-flux line positions.

Such an algorithm will start from the knowledge of ®+V) in the grid
points inside Q and of ™) on 90 as well as the functional dependences

of 1 through the finite element basis and it will evaluate ((znﬂ), ¢,§n+1)

and 9O Y.
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Improvements in the resolution of
emission images for Nuclear Medicine
obtained using a gamma camera

by Sonia Fernandez-Méndez and Jordi Saludes

4.1 Introduction

A gamma camera is a device used to image gamma radiation emitted by ra-
dioisotopes [1], through a technique known as scintigraphy. The applications
of scintigraphy include nuclear medical imaging, to view and analyse selected
tissues of the human body. Radionuclides are injected, inhaled or ingested
by the patient, and fixed to the organ of interest, emitting gamma rays. The
gamma camera receives these gamma rays to produce an image.

A gamma camera consists of one or more crystal planes, optically cou-
pled to an array of photomultiplier tubes. The crystal scintillates in response
to incident gamma radiation, producing a faint flash of light (called event),
which is detected by the photomultipliers. The sum of events for every photo-
multiplier gives a bidimensional image with the relative spatial count density.

Nevertheless, to obtain reliable spatial information about the gamma
emissions a method for correlating each detected photon with its point of
origin is required. The conventional method is to use a collimator, which is
a thick sheet of lead with thousands of adjacent holes. This plate is placed
just in front of the detection crystal, blocking photons that do not come
from a given cone of directions. Finally, the reconstructed image reflects the
distribution and relative concentration of radioactive tracer elements present
in the organs and tissues.

To get 3D volumetric information of the organ of interest, several planar
images from different angles of view may be taken, leading to the so called
SPECT (Single Photon Emission Computed Tomography). Usually two or
three detectors are slowly rotated around the patient’s torso, providing planar
images for about 90 equally spaced angles. Using these planar images, a
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Figure 4.2: Siemens gamma camera [5].

tomographic reconstruction [2, 3|, based on a filtered back projection, can
then be computed to get cross-sectional images of patients.

Although gamma cameras are nowadays widely used in image diagnos-
tics, for many applications the images obtained do not provide conclusive
information, due to their poor resolution and contrast. For instance, the
thickness of a normal heart is about 1.2 ¢cm and most of the left ventricle
muscle is minimum about 0.8 cm, whereas a common gamma camera can
differentiate two separate sources of gamma photons located at a minimum
of 1.8 cm apart, at 5 cm away from the camera face. Furthermore, the spa-
tial resolution decreases rapidly at increasing distances from the camera face.
Thus, the need for improvement in this technology is apparent.

The poor resolution of the images is due to several factors such as the low
levels of radiation permitted for human patients, the influence of the collima-
tor, the properties of the crystal and the electronic/computer postprocessing.
In particular the collimator plays an important role:
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e A normal collimator attenuates more than 99% of incident photons,
and limits the sensitivity of the camera system:;

e The size of the collimator holes affects the result (larger holes lead to
more blurred images, but smaller holes limit the sensitivity);

e There can be some crosstalk between holes, blurring the result.

In addition, the images obtained from the gamma camera are not exactly
the images received by the device. Some corrections are applied, as a postpro-
cess of the image, such as the linearity or homogenization corrections. Due
to the effect of the discrete holes in the collimator, the image obtained from a
regular square grid is far from being regular. The linearity correction is close
to a stigmatism correction to reduce this effect and try to reproduce straight
lines with uniform intensity. The homogeneity correction aims at making
the detection of radiation from a planar source uniform. Both are “make-up”
techniques to improve the obtained image, but which unfortunately reduce
the reliability of the data.

4.1.1 General remarks

After a presentation by Dr. Santiago Aguadé from Hospital Universitari de
la Vall d’Hebron, describing the main issues related to gamma camera imag-
ing, the GEMT devoted two days to exploring different strategies for the
improvement of gamma camera images. The conclusions of this work are
summarized in this manuscript, and come from discussions during the meet-
ing, with contributions by Xavier Alameda, Sonia Ferndndez, Enric Fossas,
Xavier Gracia, Pablo Gutiérrez, Fernando Martinez, Josep Masdemont, Xevi
Roca, Carmen Safont, Jordi Saludes, and Yolanda Vidal.

Two different approaches were adopted. The first approach aims at im-
proving the images irrespective of their origin, using image improving tech-
niques such as non-linear filters, super-resolution algorithms and MS-VST
techniques (see Section 4.2).

The second approach proposes a simple model for the collimator compo-
nent (see Section 4.3). Modelling of the scintillator or the photomultiplier
sensor was not attempted.

4.2 Image improving techniques

4.2.1 Non-linear diffusion

Inspired in the use of partial differential equations, non-linear diffusion tech-
niques have been extensively studied [6, 7, 8]. Convolving with a Gaussian
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kernel gives an elementary denoising technique that corresponds to the so-
lution of the linear heat equation with the image as initial datum. Other
diffusion equation could be used for denoising, such as

d
1 = V(eVi),

where ¢(z,y) is the diffusivity function. In the case of constant ¢, we obtain
the classical diffusion equation with homogeneous diffusivity: all features of
the image are smoothed equally in this case.

This is not what we want, since we expect the edges to remain crisp. An
improvement would be to make ¢(x,y) sensitive to the local features of the
image and, thus, make the equation one of non-linear diffusion type. For
instance, using a function ¢ that depends entirely on |VI|, Perona and Malik
showed in [6] that one can avoid diffusing the image in the neighborhood of
an edge, while allowing the diffusion process to smear high-frequency noise in
regions far from the edges. Since the diffusivity function c is scalar, the pro-
cess is called isotropic non-linear diffusion. Another possibility is to consider
anisotropic diffusion schemes like

d
—J= I
L =v(CVI),

where C' is now a matrix steering the diffusion process in directions other
than the image gradient. This case and the use of the diffusion tensor has
not been considered in this paper.

Figure 4.3 shows the application of the Perona—Malik non-linear filter to
a gamma camera image. The processed images have been obtained with a
Matlab code available in [9]. Results are shown for 10, 20, 30, 40, 50 iterations
(time steps), for a diffusion given by ¢ = 1/(1 + (|[VI|/K)?), with edge
threshold parameter K = 1, and time step At = 0.2. The gradient in
the diffusion coefficient formula is computed through a convolution with a
Gaussian with 62 = 1. The smoothing, but shape preserving, effect of the
non-linear filter can be clearly observed. The image is clearly improved after
just 10 iterations, with a much clearer edge definition. After 30 iterations the
image almost reaches the stationary image (it is very close to the image with
40 or 50 iterations). This technique may be useful for applications in which
edge (or any boundary detection) of organs is of interest. Nevertheless, a
proper tuning (depending on the particular example and result of interest)
of the parameters and number of time steps is mandatory.
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30 iter 40 iter 50 iter

Figure 4.3: Perona—Malik non-linear filter with K = 1, At = 0.2, ¢ = 1,
using the Matlab files in [9)].

4.2.2 Multiple-frame super-resolution techniques

Super-resolution techniques aim to enhance the resolution of an imaging sys-
tem, usually by acquiring more graphic information (considering several im-
ages of the same object), or by reconstructing the details lost due to the
deficiencies of the optical system [11]. The most widely used super-resolution
techniques are the multiple-frame algorithms, because they can be applied
in any situation, without profound knowledge of the optical system. By fus-
ing together several low-resolution images, one enhanced-resolution image is
formed; see for instance |10, 12].

Figure 4.4 shows an example of super-resolution image processing using
the PhotoAcute software, available in [10]. Five consecutive images, cor-
responding to rotations of the gamma camera with an angle increment of
4 degrees, are considered to clearly improve the resolution of the third im-
age. This example illustrates how standard multiple-frame algorithms can
be successfully applied in the context of gamma camera images.

Nevertheless, super-resolution algorithms based on the knowledge of the
gamma camera device faultiness, or on the back-projected reconstruction
[13], are also very promising and merit further investigation.
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Original image Superresolution image
128 x 128 pixels. Zoom x 2 256 x 256 pixels. No zoom

Figure 4.4: Super-resolution using PhotoAcute software [10].

4.2.3 MS-VST

Denoising techniques based on preprocessing the image using variance stabi-
lization transform (VST) have been used. The approach of [14] describes a
way to combine it with multiscale analysis via filter banks. This technique
has proved valuable in fields like astronomy and astrophysics, which deal
with extremely faint signals (modelled after Poisson processes) arranged on
a grid and can be considered an extension of the Anscombe VST [15, 16].
The definition of ridgelets as 1-D wavelet transform to the slices of the Radon
transform is effective on finding global lines of the image [17].

Figure 4.5 shows the application of the multiple-scale variance stabiliza-
tion transform (MS-VST) to a gamma-camera image. The quality of the
original image is too poor to obtain a satisfactory result. In Figure 4.6 a sim-
ple pre-process of the original image has been considered: the closer available
images, corresponding to a gamma camera rotation of —4 and 4 degrees, have
been translated —1 and 1 pixels respectively, and overlapped to the original
image. The application of MS-VST to the overlapped image is shown.
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Original MS-VST

Figure 4.5: MS-VTS image processing.

overlapping overlapping + MS-VST

Figure 4.6: MS-VTS image processing applied to a superposition of three
consecutive images.

4.3 Collimator model

4.3.1 Modelling the imaging process without absorption

The collimator unit aims at blocking any ray which does not come from a
direction perpendicular to the imaging plane. This is achieved by an array
of long perforations on a lead layer positioned directly on top of the image
sensors. In this way, the collimator effect can be modelled by

= [ (=) s

where g(z) denotes the emission rate of point z € Q C R?, y € II, where
() denotes the compact support of g, and II is the imaging plane. The map
c: S* — R, describes the absorption of the collimator walls and Hj, denotes
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the sensitive area of the k sensor. Ideally, ¢ will be a Dirac’s delta centered
on the direction perpendicular to Il but in real devices there is a fair amount
of crosstalk between adjacent sensors (see Figure 4.7).

Figure 4.7: Simulation of collimator effect on the incidence direction of the
gamma ray for a honeycomb grid consisting of hexagonal perforations with
aspect ratio 50.

Initial Radon + Perona—Malik

Figure 4.8: Radon processing (inverse Radon transform + Radon transform)
and Perona—Malik non-linear filter.

Figure 4.8 shows a preliminary test of image improving using the standard
Radon transform. Matlab library functions are used for the Radon transform
(radon) and for the back-projection (iradon). The back-projection is com-
puted from all the images, corresponding to a 360° rotation of the gamma
camera. Then, the resulting 3D object (containing information of all the
available images) is projected with the Radon transform to get new planar
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images. The goal of this approach is to use all the available information to
get a better image for a given angle. It can be interpreted as adding in-
formation from the events counted in other images to improve the current
image. The processed image seems to have better quality than the initial
one. For instance, a better definition of the ribs is observed. The non-linear
Perona—Malik filter is also applied to improve the image further.

It is worth mentioning that this is a preliminary test. A proper definition
of the Radon transform, and the corresponding back-projection, taking into
account the absorption of the tissues has to be considered. The presence of
the back ribs appearing in the front image evidences the negative effect of
obviating the absorption of the tissues.

4.3.2 Modelling with absorption

However, if we are to take into account the effect of body absorption while
considering the collimator ideal, the tool of choice will be the attenuated
Radon transform [18]

Ryg(0.5) = | exp(-Dp(r.0%))g(o) d

z-0=s
where 0%+ is the unit vector perpendicular to 8 € S' counterclockwise from 6
and p is the absorption per unit length at the point and D is the divergent
beam transform:

Df(a,0) = /OOO f(a+10)dt.

The following cases should be considered:

® [, = lip constant in a compact convex domain K containing the support

of f;

e 4 locally constant.

Attenuated Radon transform is a special case of general Radon transform

R (0, 5) = / B0 @)

for which conditions for inversion had been found. See e.g. [19, 20, 21, 22|.
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4.4 Concluding remarks

The two days meeting of the GEMT group opened and explored several
possibilities for the improvement of gamma camera images. The prelimi-
nary results, reflected in this manuscript, encourage further effort in several
research lines such as super-resolution algorithms, image overlapping and
back-projected reconstruction using proper Radon transforms. Note that all
these strategies take advantage of a particular property of gamma camera
images: several low resolution images of the same object are available, and
may be combined to get a higher resolution image.

Examples confirm that general purpose super-resolution algorithms are
successful tools for image improving, with high availability, that can be easily
applied to gamma camera images. However, simpler algorithms especially
designed for gamma camera images could be easily developed. For instance,
given the radius of rotation of the gamma camera, and the increment in the
angle between consecutive images, a linear transformation could be applied
to neighboring images in order to overlap them to the image of interest.
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Routing and dimensioning problems in
transport networks

by Roc Alabern and Aureli Alabert

5.1 Introduction

We study here the problem of handling two or more constraints in the Re-
source Constrained Shortest Path Problem. We produce a counterexample
showing that the Handler-Zang method, which is a good algorithm in the
one-constraint case, cannot be extended in a straightforward manner to the
general case, so that the complexity of the problem remains open.

In Section 2, we describe the problem and the corresponding extension of
the Handler-Zang method. In Section 3, the immediate problems and ques-
tions raised by the method are exposed. Section 4 contains a paradigmatic
very simple counterexample, where the pitfalls in which the algorithm may
incur are clearly seen, therefore suggesting the need for further research in
this direction. Section 5 summarises the open questions.

This report is based on contributions from the discussions held at the
Grups d’Estudi, which included the following people: Roc Alabern, Aureli
Alabert, Anna Bosch, Adrian Galdran, Xavier Munoz, Aleix Ruiz de Villa,
Oriol Serra, Vaida Spokaite, Noélia Viles.

5.2 Handling multiple (two) resource
constraints

The problem we will study in the following lines is a generalisation of the
Single Constraint Shortest Path Problem, for which an efficient algorithm
(namely, the Handler-Zang method) exists. Specifically, the new Constrained
Optimization Problem is the following:

Let di: E — R, dy: E — R, be two different weighting functions, and
Ay € Ry, Ay € R, two given constants. The cost function to be minimized
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is c: E — R, and P € 2% denotes the set of feasible paths. We are then
trying to solve the following minimization problem:

min{Zc(e) : PeP, Zdl(e) < Ay, ng(e) < AQ}.

ecP ecP ecP

Of course, this problem is harder than the one with a single constraint, but
we can try to apply Lagrangian relaxation again. So, instead of minimizing
c under the given constraints, we will try to minimize

min { Zc(e) + Midi(e) + Aoda(e) : P € 77}:

ecP

where Aq, Ay are two fixed real numbers.
We will write this relaxed problem, for reasons that will be clear later, in
the following way:

min { Y e(e) + Mldife) — Ar) + Aolds(e) — Ag): P e 79}.

Choosing A, Ay equal to zero we will find a solution that minimizes
the cost. Choosing A; large enough and )\, equal to zero we will find a
solution that satisfies ) .pdi(e) < Ay if such a solution exists. On the
other hand choosing Ay large enough and A\; equal to zero we will find a
solution that satisfies ) _pda(e) < Ay if it exists. After these observations
a first question comes up easily: Do we have any control over how to find a
solution that satisfies both constraints at the same time? Even in the case
when feasible solutions exist, we cannot choose any easy value for \;, Ay to
find just one feasible solution, whereas in the one-dimensional case, i.e., only
one constraint, it was a straightforward task.

In the case of one constraint it has been important that the region

{(x,y) ER”: y= c(e) +z(d(e) - A)}

ecP
where

P = argmin{ Zc(e) +Ad(e): Pe 77}
ecP
is convex and has a unique maximum which splits R* into two regions (0, «)
and [o,00). The first region can be characterised by the values of A for
which argmin {}",_pc(e) + Ad(e) : P € P} is not feasible, and the second
corresponds to those A for which it is feasible.



Answers to the problems 45

We can rewrite them in a way that is useful for generalisation. Let A\ be
some fixed positive value. If

Py = argmin{ Z cle) + Xod(e) : P e 77},

ecP

then Py is feasible if and only if ) .5 d(e) < A; in other words, the line
> eep, €(€) + A(d(e) — A) is non-decreasing with respect to A. In the same
way, [y is not feasible if and only if >, d(e) > A, meaning that the line
> eep, €(€) + A(d(e) — A) is decreasing with respect to A. Define

FroN) = cle) + Ad(e) — A).

eePy

Then the solution that we can find for )\, is feasible if and only if % Fro <0.
In the case of two constraints, we have to define, for some fixed \y and [,

Py = argmin{ Zc(e) + Xo(d(e) — Aq) + Bo(d(e) — Ag) : P € 73},

ecP

and a corresponding function fy, g, with two variables as

Prosa(XB) = Y ele) + Ald(e) — Ar) + B(d(e) — Ag).

ecPy

With these notations, we find that a solution F, does not satisfy any of
the two constraints if %f)\o,ﬁo > 0, % Fro.8, > 0; it satisfies the first one, but
not the second one if % Fro.8, < 0and % Fro,8 > 0; it satisfies the second one
but not the first one if %f)\o,ﬂo <0, % Fro.8o > 0; and finally, it is feasible
and satisfies both at the same time if %fmﬁo <0, %fmﬁo < 0. These four
different cases define four different regions for the values (\g, 3y). Let us call
them Ay, A, A3, A4 using the same order in which they have been presented.

In any case, the generalisation of the Handler—Zang algorithm must rely
on using three different planes instead of two lines. Those three planes, which
we will call f g1, fiz g2, fag g, intersect in one point (NG, 56, Frp (N6, 35))-
The minimization of the relaxed problem with values \j, ) will give us a
new plane fy s that could replace any one of the three old planes.

In Figure 5.1 we can see three points which are coloured in blue, yel-
low and green. Let us assume that they are the starting points (A, 33) for
1 =1,2,3. Each of these points has an associated plane fAé i The three
planes intersect at one point, which is depicted in orange. And this point
has also an associated plane. This new plane, passing through the red point
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Figure 5.1: Handler-Zang method with two restrictions.

in the figure, will replace one of the old three planes. So the next point in
this process will be one of the pink points. No matter which of the pink
points is selected, it will lie below the orange point. Hence the sequence of
those points is decreasing, thus ensuring the convergence of the process, since
cycles will not be possible, and the number of planes is finite.

5.3 Problems and questions arising

Choosing three combinations of (Ao, ) we will have three different initial
planes. Choosing, for instance, both coordinates equal to zero, the first one
only equal to zero, and the second one only equal to zero, respectively, will
give us three different planes each one on the regions A;, A,, Az, and none
of them on A, if we are unlucky. So we cannot ensure a way to start the
algorithm with one plane that belongs to the feasible domain.

Starting with those three planes we can find the intersection and the
plane associated to that point. If the plane associated to that point is one
of those three previous planes, the algorithm cannot go further. But if it
is different, then we can replace one of them by this new plane, ensuring
that still a convex surface is defined by taking the minimum of the chosen
planes. In this way it is clear that there are no possible cycles and it can
be proven that the sequence of points (intersections of three planes) gives
rise to a decreasing sequence that converges in a finite number of steps. So
the natural question is: Is the final solution given by this algorithm feasible?
Unfortunately this is not always the case, as can be seen in some examples.
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5.4 Some counterexamples to the convergence
of the algorithm

With the following example we will show that the algorithm may converge to
a non-feasible solution. Consider a graph with the values (¢, d;, ds) of each
arc as drawn in the Figure 5.2 and represented in tabular form in Figure 5.3.

incoming

(405,4,4)

(410,0,6)

(410,4,0) (500,1,1)

outcoming

Figure 5.2: Counterexample to convergence with two constraints.

C d, d
P 1405| 4 4
P 1410 4 0
P 1410 O 6
P | 500] 1 1

Figure 5.3: The example of Figure 5.2 in tabular form.

There are only four different solutions, so that there are only four planes
in this problem. Each plane has a different sign for their partial derivatives,
so whenever a plane is minimum, it defines at that point what kind of region
we have. Remember the four regions defined before: Ay, Ay, Az, As. The
four regions in this example are as shown in Figures 5.4(a), 5.4(b) and 5.4(c).

If we draw the graph of the minimum of those four planes in the example
we will see something similar to Figure 5.4(d). And it is easy to see that with
this example, or any other with slightly changed numbers, the algorithm may
converge to a maximum which is non-feasible, or converge to some point that
is not a maximum, and maybe even not feasible.
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Bo

4
feasible
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non-feasible

A

2
non-feasible

1
non-feasible

v

Ao

(c) (d)

Figure 5.4: Four regions and graph for the example in Figure 5.2.

5.5 Open questions

The open questions are about the way to solve the problems that we have
seen in the last example. The idea that came up in the discussion was to try
to find a new good algorithm in some sense, and that, starting with a feasible
plane, keeps at least one feasible plane at each step. The first problem that
comes up with this idea is how to start with a feasible plane. To find a
non-optimal feasible solution in the case of two constraints seems by itself a
good problem to study. One possibility that was discussed was to develop
some numerical algorithm to find an optimal solution for large values of both
variables \g and ;. But how large one of them must be with respect to the
other is not clear, and there seems to be no easy way to study this relation
in order to find a feasible solution.
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Ideal MHD equilibria of tokamak
plasmas

by J. Blasco, P. Diez, M. Pellicer, and A. Rodriguez-Ferran

6.1 Introduction

A tokamak is a device that confines a plasma by means of a toroidal magnetic
field (see http://en.wikipedia.org/wiki/Tokamak). The ultimate goal
is the generation of energy through nuclear fusion. Several experimental
tokamaks are currently in operation. A world-wide consortium (including,
among others, the European Union, USA, Russia, Japan, and China) has
launched the ITER initiative (Figure 6.1), “aimed at demonstrating that
this energy source [fusion| can be used to produce electricity in a safe and
environmentally benign way, with abundant fuel resources, to meet the needs
of a growing world population” (see http://www.iter.org).

Figure 6.1: The ITER device (from http://www.iter.org).
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In a tokamak, the confining magnetic field is generated by means of exter-
nal coils (the term “tokamak”, of Russian origin, stands for “toroidal chamber
with magnetic coils”). For stable equilibria, azimuthal (i.e., rotational) sym-
metry is required.

6.1.1 General problem

A well established result in the field of magnetohydrodynamics (MHD) is that
plasma equilibrium under such axi-symmetric conditions can be modelled by
means of the so-called Grad-Shafranov equation (see, for instance, [2] and
the references therein), which reads

j(\I/) n QP
LY =3 with j=<jo in Q¢ (6.18)
0 in QV U QA

In Equation (6.18), ¥ is the flux function, L is the 2D Laplacian-type
operator in cylindrical coordinates,

o2 (L) (Lovy
or \ por Or 0z \ por 0z

with po the magnetic permeability, and j is the electric current, which de-

pends on the flux function in the plasma §2p, is constant in the coils 2 and

is zero in Qy (void inside the chamber) and Q4 (outer domain); see Fig-

ure 6.2. This partial differential equation is complemented with appropriate

boundary conditions.

The Grad—Shafranov equation is nonlinear due to the flux-dependent cur-
rent in the plasma. This nonlinearity, however, is mild and not a significant
difficulty. The main issue is that plasma equilibrium is a free-boundary prob-
lem: the plasma domain €2p is unknown a priori, and part of the solution.

Our problem is hence the determination of the plasma domain 2p and the
flux function ¥ that satisfy Equation (6.18), by means of numerical methods,
such as the finite element method or more advanced discretisation techniques.

6.1.2 Specific problem

Based on the underlying physics, one can argue that the boundary 0Qp of
the plasma (i.e., the interface between 2p and Qy/) is the minimal isoline of
the flux function W:

U (0€Qp) = constant, minimal.
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Figure 6.2: Problem domain.

Two main types of such critical isolines are possible, characterised by
two different critical points; see Figure 6.3. First, a simple closed isoline
tangent to the chamber wall in a limiter point (i.e., a local minimum of ).
Second, a self-intersecting isoline at an X-point (i.e., a saddle point of ¥).
The resulting equilibrium configurations are termed “limited plasma” and
“diverted plasma” respectively.

limiter

first wall .- point
diverted
plasma

.- X-point

limited
plasma

Figure 6.3: Critical isolines.
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The envisaged approach is based on the iterative determination of the
critical isoline: one solves the Grad—-Shafranov equation with an initial guess
for Qp, computes the critical isoline (i.e., a new guess for Q2p) as a postprocess
of the solution and repeats this process up to convergence.

In this context, our specific problem can be stated as follows:

Given a finite element solution ¥y of the Grad—Shafranov equa-
tion, characterised by its nodal values, find the critical isoline.

In proposing an algorithm for this purpose, it is important to bear in mind
that linear finite elements are the preferred option, so the Hessian matrix of
the flux function ¥ is not readily available. Alternative procedures for the
classification of critical points are required.

This report is based on contributions from the discussions held at GEMT,
which included the following people: Marino Arroyo, Jordi Blasco, Josep M.
Burgués, Pedro Diez, Xavier Cabré, Miquel Noguera, Marta Pellicer, Antonio
Rodriguez-Ferran, Josep Sarrate, Joan Sola-Morales.

6.2 Classification of critical points via the
index of a critical point

6.2.1 Motivation

In this section we propose an alternative and efficient way of facing the
problem of classification of critical points of a vector field: the index of a
critical point.

Essentially, we are thinking of the winding number of the gradient field
along a closed, simple and small enough curve around the critical point.
These notions can be found in Ch. V, § 36 of [1] or in Appendix II of [3], and
we include them here for the self-containedness of the present report.

6.2.2 Informal definition

In order to get an intuition, let us first give an informal point of view of
this approach. Let us consider a vector field V= 7(x,y) on the oriented
Euclidean plane. Consider also a closed curve v without any singular points
of the vector field on it. Choose an initial point P = (x¢,yo) on the curve.
Observe that we can associate to this point P the vector \_/>(P) = \_/(xo, Yo)
of the vector field. If we now move the point P along the curve, the as-
sociated vector X_/(P) will rotate. We can count the number of complete
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rotations of this vector until P reaches its initial position again. We count
the revolution as positive if ‘—/(P) rotates in an anticlockwise direction, and
negative otherwise.

So, the total number of rotations of the vector on the curve is called the
winding number of V on ~ or the index of v on V.

Several remarks can be made. The first is noticing that the index does
not change under small deformations of the curve, whenever the perturbed
new curve does not pass through a critical point of the field. Also, it can be
seen that a curve with a non-zero index encloses —at least— one singular
point of the vector field in its interior.

We now define the index of a critical point of a vector field as the index
of a sufficiently small and closed, positively oriented curve, that encloses this
point but no other singularities of the vector field in its interior. Observe
that the previous remarks imply that this definition does not depend on the
chosen curve, if it is small enough. For instance, we can consider a small
positively oriented circumference.

Essentially, this index counts the number of turns that a vector field is
making around the singularity. In Figure 6.4 we can see two examples for
the index of a critical point. We have represented a vector field that is the
gradient of a function with a maximum (at the top) and one with a saddle
point (at the bottom). We want to compute the index of each point, so we
choose a closed curve (in green) that encloses only this singularity for each
case. In both pictures we can see the rotation of a vector of the vector field
on the green curve around the singularity. An anticlockwise rotation results
in index 1 for the maximum, while a clockwise rotation gives index —1 for
the saddle point.

If the curve (for instance the oriented boundary of a certain region) en-
closes several singularities, it also makes sense to compute the corresponding
index. In this case, we have the following result.

Theorem 1. Let us consider a domain €2 with v = 0S) as the oriented curve
giving the boundary. Suppose that the domain contains several singularities
of the vector field in its interior (but not on the boundary). Then the index
of the curve v 1s equal to the sum of the indices of the singular points that
are inside the domain ).

The index of the region will be referred to as the global index. We can
see an example of how this index is computed in Figure 6.5. In it, we have
three maxima (index +1), two minima (index +1) and three saddle points
(index —1). So, the global index of the domain 2 can computed as

Indg =3-(+1)+2-(+1)+3-(-1) =2.
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Figure 6.4: Vector field of a maximum (top) and of a saddle point (bottom).

6.2.3 Connection with the tokamak plasma
configuration

What is the use of the index in our problem, which is to find the critical
isoline of W that gives the physical configuration of the plasma inside the
chamber? The first thing to notice is that, for the tokamak plasma, only
a few configurations are possible. Essentially, knowing the kind of critical
isoline is possible in our case when we know the number of maxima and
saddle points of the vector field ‘—/ = VV that are inside the chamber. This
is possible using the global index of €2, UQ2p and, if necessary, the local index
of each singularity.

For instance, as we have seen in Figure 6.3 of Section 1, we have two
possible plasmas: a diverted one (the case of a maximum and a saddle point
in its interior) and a limited one (only a maximum in the interior). Observe
that the global index allows us to distinguish between these two possible
configurations, as it is 0 for the diverted plasma and +1 for the limited one.
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Figure 6.5: For many singularities the indices are added up. In the figure,
the global index of the region is 2.

In Section 6.3 we propose an algorithm in which the index is used to
distinguish between the most usual cases for the plasma configuration.

6.2.4 Formal definition in a continuous setup

A rigorous definition of the index can be given (again, see [1| and [3] as
references). Let us consider a vector field V : Q — S! with norm 1, given

in polar coordinates. That is, X_/)(x, y) = (r(z,y),0(x,y)), where r stands for
the radius and @ for the angle. Let us now consider a closed and oriented
curve on this field, v : St — Q.

Definition 2. The index of v on X_/> is

1
Ind,y = 2— fd@
v
5

As df is the variation of the angle and we are integrating it along the
curve, it is clear that the previous definition corresponds to the informal one
for the index given above. This definition allows us to rigourously prove all
the informal results given in this section. Actually, all this relates to the
so-called topological degree theory.

6.2.5 Definition in a discrete setup

For the discrete case, the computation of the index in the case of a tokamak
plasma turns out to be quite simple. As we will be using linear elements, the
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gradient (that is, the vector field we are interested in) will be constant on each

H
element. Let us call V; the normalized gradient vector on the ith-element,
that is,

V= (VV); .
[(VE)

Given a discrete and closed curve 7 (for instance, the one in Figure 6.6) we
can see that it passes through a finite number of elements (9 in this figure).

H
So, we will have the corresponding V; for each element. Let us call o; the

angle between V; and ‘7—1) Then, the (discrete) index of v on the gradient
vector field is:

Figure 6.6: Discrete computation of the index.

The global index of a domain I' is computed in the same way: we just
have to consider the boundary of the domain as the curve ~.

6.3 Proposed algorithm

In this section we present the numerical algorithm proposed for the deter-
mination of the plasma region 2p. The algorithm aims at determining €2p
from a given solution ¥ represented by a Finite Element nodal field. The
overall idea of the proposed scheme consists in locating the singular points of
W through the vanishing of the gradient, computing the global and the local
indices of VU and classifying the state according to the number of singular
points and the values of the indices.
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6.3.1 Computation of the gradient and gradient
recovery

Step 1 consists in computing V' = VW on every element; for linear triangular
elements, V' is piecewise constant. A gradient recovery technique has then to
be employed to have V' evaluated at the nodal points. This can be achieved
by a weighted average of the elemental values on the elements to which the
node belongs (weighted by the element area) or by an L? projection onto the
Finite Element space.

6.3.2 Singular points detection

Step 2 consists in locating the singular points of ¥. The norm of the gradient
is computed on each node, and singular points are signalled when ||V|| <
tol ||V||max, Where tol is a suitable tolerance. This yields the singular points
P fori=1,..., Nging-

6.3.3 Computation of the index

In Step 3 the global index Indgg, of 9€y on VW is computed by the discrete
algorithm described in Subsection 6.2.5 applied to the nodal representation
of 0Qy, the external boundary of the vacuum region . The local indices
Indyg, around each singular point P; are computed on patches §2; of elements
surrounding F;. The conservation of the property Indso, = Zfif‘g Indyg,
can be a good check for this phase.

6.3.4 Classification of cases

In Step 4 the state of the system is classified according to the number of
singular points detected and the values of the global and local indices com-
puted. The most frequent cases are reflected in the Table 6.1. The situation
in each of these cases is the following:

1. NON-EXISTENCE OF CLOSED MAGNETIC SURFACES.

2. LIMITED PLASMA. There is a tangent isoline. Its isovalue is found
as the maximum of ¥ on the boundary 02y, which is achieved at the
limiter point.

3. NON-EXISTENCE OF CLOSED MAGNETIC SURFACES. An X-point ex-
ists, but none of the two branches of its isoline lies within the chamber,
and there is no other critical point in the chamber.
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4. A maximum P; and an X-point P, exist. The isovalue of interest is
the value of ¥ in P,. Open and closed branches of the isoline can
be identified by curve tracking. Two subcases are possible, which are
characterized by the number of changes of the sign of (¥ — W(P,))
along the boundary 0y :

4.1 One closed isoline inside the chamber. This is identified by two
changes of sign. DIVERTED PLASMA.

4.2 No closed isolines inside the chamber. This is identified by four
changes of sign. NON-EXISTENCE OF CLOSED MAGNETIC SUR-
FACES.

The remaining cases to be identified must be defined by the end-user
according to his/her needs.

Case Nsing Indagv Indagi
1 0 0 —
2 1 1 1
3 1 -1 -1
1 2 0 1, -1

Table 6.1: Classification of cases according to the number of singular points
and the value of the indices.

6.4 Further considerations

6.4.1 Level set characterization of the critical isoline

In the previous sections, a methodology has been presented to compute the
critical isoline from the Finite Element solution Wy, characterized by its
nodal values. The isoline is determined by finding the corresponding critical
value of W, say W.. Then, tracing the curve is a simple exercise of com-
putational geometry. For instance, in a mesh of linear triangular elements
(3-noded triangles), the iso-curve is a polygonal such that the part of it con-
tained in every element is a straight segment. The elements crossed by the
iso-curve are those such that the range of the nodal values comprises V..

This characterization of the curve as the isoline of a contour function
reminds us the well known Level Set (LS) concept [5]. An LS is an auxiliary
function such that the curve to be characterized is precisely the zero iso-value.
In this case, the function ¥ — W, is an LS.
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An LS function ¢ is defined such that its sign describes the geometrical
domains using the following convention

> (0 for x in domain 1
o(x,t) ¢ =0 for x on the interface (6.19)
< 0 for x in domain 2

where x stands for a point in the simulation domain and ¢ is the time. The
interface position is the set of points where the level set field vanishes (Fig-
ure 6.7).

In common LS practice, ¢ is taken as a signed distance to the interface.
Far enough from the interface, ¢ is truncated by maximum and minimum
cutoff values. The resulting level set function describes the position of the
interface independently of the computational mesh. Note that, in this case,
¢ does not coincide with W: ¢ is only a numerical artifact describing the
isoline without any precise physical meaning. The only coincidence lies in
the fact that both ¢ and ¥ — W, vanish at the same points.

In practical implementations, ¢ is described (interpolated) with the finite
element mesh, and therefore the resolution of the approximated interface
depends on the quality of this mesh. Thus, the level set represents interfaces
which do not necessarily coincide with the element edges. The same mesh
can be used throughout the entire simulation to describe the interface.

levg,
b ) ! set funCUOn

max level

interface set value

a
9
3
o,
E
N)

Figure 6.7: a) The two domains (materials) are associated with the sign of the
level set function. The dotted line is the interface. b) Surface representation
of the level set function.

Describing the curve using the LS ¢ rather than U is not only a matter of
taste. It may bring additional advantages related to the possibility of moving
the estimated boundary of 2p along the iterative process in a more efficient
manner.
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6.4.2 X-FEM enrichment

The LS method is often used in combination with the so-called X-FEM
(eXtended Finite Element Method); see [4, 6].

The LS approach allows the description of interphases that may cross the
elements of the Finite Element mesh. Note that the phase changes are asso-
ciated with discontinuities of the derivatives of the solution. Consequently,
in the LS context, these discontinuities are expected to take place inside the
elements. And this is something the standard finite elements cannot repro-
duce.

The X-FEM enriches the Finite Element discretization introducing addi-
tional interpolation functions with discontinuous derivatives across the inter-
phase (the so-called ridge functions; see Figure 6.8 for illustration) via the
Partition of the Unity Method.

Not Enriched Enriched

a) c)

discontinuous
gradient

N

1D

material 1 material 2 material 1 material 2
| O O - O

node 1 interface node2 | node1 interface node 2

b) d)

discontinuous
gradient

2D

-~ ;
node 1 node 2

Figure 6.8: Illustration of the X-FEM enrichment both in 1D and 2D for
linear elements.

Using the X-FEM would definitively increase the accuracy of the numeri-
cal approximation ¥y and would allow using much coarser meshes to obtain
the same numerical resolution.
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6.4.3 Analysis and possible alternative for the iterative
scheme

The iterative method currently used consists in starting with an initial guess
for Qp, say Q% (or, equivalently, an initial guess for ¥, say ¥%), then com-
puting ¥}, solving Equation (6.18) numerically. The determination of the
critical isoline corresponding to Wk, yields also the new guess for Qp, say 0L,
which in general does not coincide with Q%. The same idea is used to iterate
from Wk to Wh*! for k =1,2...

This iterative scheme is astonishingly simple but, according to the end-
users, the observed convergence behavior is fair enough. From a mathe-
matical viewpoint this scheme may typically show an oscillatory behavior,
jumping between two solutions (V¥ leads to W%™ and W% leads back to
Uk, Tt should be analyzed in detail in the context of the present physical
problem, to understand why it is so efficient for this problem.

If a more sophisticated iterative scheme is used, based on finding the
stationary/null point of some functional, it may be very useful describing the
boundary of Q2p by an LS ¢. This would allow updating Qp via ¢ (from ¢* to
") using a standard technique as the Hamilton—Jacobi transport equation.
The input for this transport equation is the advancing front velocity that has
to be given by the selected iterative scheme. For instance, this velocity can
be defined as a function of the difference between the critical isovalue in the
consecutive iterations, ¥~ and Wk
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