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Presentation

These volumes contain the materials produced during the 2009 edition of the
DocCourse in Discrete and Computational Geometry, celebrated in Barcelona
at the Centre de Recerca Matemàtica from January to March 2009.

The first volume contains the lecture notes of the two intensive courses,
delivered by the main speakers and partly transcribed by the participants.
These notes provide a quick introduction to their respective subjects and
open numerous possibilities for future research.

The course Metric Embeddings, by Jiří Matoušek, deals with low distortion
embeddings of metric spaces into (preferably low-dimensional) normed spaces.
One of the prominent technical tools in this area is the well-known Johnson–
Lindenstrauss Lemma. The course discusses some important practical appli-
cations of this result, in particular to pseudorandom number generators, and
to the new and burgeoning field of compressed sensing. Moreover, the author
presents intrinsic lower bounds on the distortion of the embedding.

Günter M. Ziegler highlights some significant families of convex polytopes
in his course Convex Polytopes: Examples and Conjectures. He presents
numerous examples, constructions, and properties of these families, gathers
together in one place many of the most important conjectures and open
problems in the field, and asks several new questions. This makes these course
notes into an excellent source of inspiration for future research in the field.

The second volume comprises extended summaries of the twelve invited
lectures delivered by senior researchers in the field, and transcribed by the
students. They cover a wide variety of topics and techniques situated at the
forefront of current research. The topics range from convex polytopes and con-
vex bodies, and point and line configurations, to relationships with algebraic
geometry, number theory, graph theory and combinatorial optimization.

A distinguishing feature of the course consisted in the abundance of
research problems that were proposed to the participating students. Having
them team together and try to shed light on these open questions proved to be
a very effective way of stimulating an exciting and relevant research experience.
The consensus opinion among both the students and the researchers who
posed the problems speaks to the success of this idea.
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The third and last volume collects the research results obtained by the
students during the period of the course, and documents the state of affairs
at the end of the program. Many of the drafts collected here are now being
actively improved and polished, and some of them will no doubt soon find
their way as articles into the published literature.

The editors are most grateful to the participants Edward D. Kim and
Vincent Pilaud for the many hours they devoted to the production of these
volumes. The excellent quality of the text owes much to their tireless and
extremely conscientious work. This edition of DocCourse has been supported
by the Spanish project i-MATH and by the Centre de Recerca Matemàtica, to
which we express our gratitude. We particularly wish to thank the director,
Professor Joaquim Bruna, and the staff of the CRM for their support and
their excellent job in organizing this edition of DocCourse.

Marc Noy and Julian Pfeifle
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Examples and Conjectures

by Günter M. Ziegler
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Lecture 1

Stacked Polytopes

1.1 Construction and counting
Definition 1.1.1 (Stacking onto a facet). Let P be a d-polytope and F be
a facet of P . The operation of stacking onto F consists of constructing the
polytope P ′ = P ∪ (F ? p), where p is a point beyond the facet F but beneath
all other facets of P , and F ? p denotes the pyramid conv(F ∪ {p}).

P

F p

Figure 1.1: Stacking onto a facet of a polytope.

Observe that, during this operation, we destroy the facet F and create
one new i-face for each (i− 1)-face of F . In other words, the f -vector1 of the
resulting polytope P ′ is given by:

f0(P ′) = f0(P ) + 1,

fi(P
′) = fi(P ) + fi−1(F ) for all 0 ≤ i ≤ d− 2,

fd−1(P ′) = fd−1(P ) + fd−2(F )− 1.

Observe that the question of how to “find” p algorithmically highly depends
on the presentation of the polytope P (i.e., on whether we know its vertex
description or its facet description).

1The f-vector of a d-polytope P is the vector f(P ) = (f0(P ), . . . , fd−1(P )), where
fi(P ) is the number of i-dimensional faces of P .
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Definition 1.1.2 (Stacked polytopes). A stacked polytope on d+ n vertices
arises from a d-simplex by stacking n− 1 times onto a facet (n ≥ 1).

In other words, we obtain a (convex) tree of n d-simplices, and thus a
stacked polytope is simplicial2. The f -vector of a stacked polytope on d+ n
vertices is given by:

f0 = d+ n,

fi =

(
d

i+ 1

)
+ n

(
d

i

)
for all 0 ≤ i ≤ d− 2,

fd−1 = 2 + n(d− 1).

Example 1.1.3. In dimension 2, every polytope is stacked (any triangulation
of a convex polygon corresponds to a tree of triangles). In dimension 3, any
cyclic polytope3 is stacked, but the octahedron is not (since no vertex has
degree 3, which should be the case of the last added vertex).

Lemma 1.1.4. Let P be a d-polytope. The following assertions are equivalent:

(i) P is stacked;

(ii) P can be triangulated without new (d− 2)-faces;

(iii) P is a tree of simplices.

Furthermore, when d ≥ 3, this triangulation without (d− 2)-faces is unique.

Corollary 1.1.5. The combinatorial type of a stacked polytope and its “shal-
low triangulation” are already determined by its graph (when d ≥ 3).

Observe that there exist many different combinatorial types of stacked
polytopes (with same dimension and same number of vertices): The first
example is given by the two stacked 3-polytopes with 7 vertices of Fig. 1.2.

Question 1.1.6. How many different (combinatorial types) of stacked d-poly-
topes with d+ n vertices are there?

2A polytope is simplicial if all its facets are simplices. A polytope is simple if its polar
is simplicial, or equivalently, if all its vertex figures are simplices.

3The cyclic polytope with n+ 1 vertices in dimension d is the polytope

Cd(n+ 1) = conv{(i, i2, . . . , id)T | i = 0, . . . , n}.

It is
⌊
d
2

⌋
-neighborly , meaning that any subset of

⌊
d
2

⌋
of its vertices forms a face.

See Exercise 5.5.3 for a facet description and count.
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Figure 1.2: Two combinatorially different stacked 3-polytopes with 7 vertices.

As for many combinatorial objects, it is much easier to count rooted stacked
polytopes, that is, stacked polytopes for which we have fixed one facet and
labeled its vertices from 1 to d. Observe that when we fix a facet F of a
stacked d-polytope (with d ≥ 3), this automatically fixes a (d+ 1)-coloring of
the vertices of P , and a (d + 1)-coloring of the (d− 1)-faces in the shallow
tree of d-simplices.

Theorem 1.1.7. There is a bijection between rooted stacked d-polytopes on
d + n vertices and plane d-ary trees with n internal nodes. In particular,
the number of rooted stacked d-polytopes with d+ n vertices is given by the
Fuss–Catalan number:

Srooted(d, n) =
1

(d− 1)n+ 1

(
dn

n

)
.

Corollary 1.1.8. The number S(d, n) of stacked d-polytopes with n + d
vertices is bounded by

1

d!(2 + n(d− 1))((d− 1)n+ 1)

(
dn

n

)
≤ S(d, n) ≤ 1

(d− 1)n+ 1

(
dn

n

)
.

Question 1.1.9. How good is this bound?

1.2 The lower bound theorem
Stacked polytopes are important examples since they minimize the number
of faces over all simplicial polytopes:

Theorem 1.2.1 (Lower Bound Theorem, Barnette 1971). A simplicial d-poly-
tope P with m vertices has at least as many i-dimensional faces as any stacked
d-polytope Std(m− d) with m vertices (for all 0 ≤ i ≤ d− 1):

fi(P ) ≥ fi(Std(m− d)).
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Furthermore, equality holds for some 1 ≤ i ≤ d− 1 if and only if d = 3, or
d ≥ 4 and P is stacked.

Remarks 1.2.2 (On the proof(s) of the lower bound theorem).

(i) It suffices to prove it for i = 1 (McMullen–Perles–Walkup reduction),
i.e., to prove the following statement: The number of edges of any
simplicial d-polytope is a least that of a stacked d-polytope with the
same number of vertices:

f1 ≥ df0 −
(
d+ 1

2

)
.

(ii) It is related to Gromov rigidity: A simplicial complex X of dimension
d− 1 is q-rigid if and only if it is connected and if any set A ⊂ V (X)
that misses a facet of X hits at least q|A| edges of X.

Let us mention the “opposite” theorem:

Theorem 1.2.3 (Upper Bound Theorem, McMullen 1970). A (simplicial)
d-polytope P with m vertices has at most as many i-faces as the cyclic d-poly-
tope Cd(m) with m vertices (for all 0 ≤ i ≤ d− 1):

fi(P ) ≤ fi(Cd(m)).

Equality holds for some
⌊
d
2

⌋
< i ≤ d− 1 if and only if P is neighborly 4.

1.3 Open problems

1.3.1 The generalized lower bound conjecture

Remember that we mentioned in Remark 1.2.2(i) that the lower bound
theorem is equivalent to f1 ≥ df0 +

(
d+1

2

)
, that is, in terms of h-numbers5,

4A polytope is k-neighborly if any k of its vertices form a face (i.e., if its (k−1)-skeleton
is combinatorially equivalent to that of the simplex with the same number of vertices). A
d-polytope is said to be neighborly if it is

⌊
d
2

⌋
-neighborly.

5The h-vector of a polytope P is defined as (h0, . . . , hd), where

hk =

k∑

i=0

(−1)k−i
(
d− i
d− k

)
fi−1.

For example, h0 = 1, h1 = f0 − d, and h2 = f1 − (d − 1)f0 + d(d−1)
2 . A nice way to

express this relation is to collect the f - and h-numbers into the generating polynomials
F (x) =

∑d
i=0 fi−1x

d−i and H(x) =
∑d

i=0 hix
d−i (note the indexing!). Then the above

relation simply reads F (x) = H(x+ 1).
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h1 ≤ h2. McMullen and Walkup conjectured that not only this first inequality
holds, but that

h1 ≤ h2 ≤ . . . ≤ hb d2c.
In terms of f -numbers, this yields the following formulation:

Conjecture 1.3.1 (McMullen–Walkup 1971). Let P be a simplicial d-poly-
tope. Then, for any 0 ≤ k ≤

⌊
d
2

⌋
+ 1,

k∑

j=−1

(−1)k−j
(
d− j
d− k

)
fj(P ) ≥ 0.

When d ≥ 4, equality holds for some k ⇐⇒ P is k-stacked ⇐⇒ there is a
triangulation without any interior (d− k − 1)-face.

The first part of this conjecture is known, while the characterization
remains open.

1.3.2 The non-simplicial case

The following theorem generalizes the lower bound theorem to non-simplicial
d-polytopes:

Theorem 1.3.2 (Kalai 1988, Whiteley). The graph obtained by triangulating
the 2-faces of a d-polytope is infinitesimally rigid 6. In particular,

f1 + f02 − 3f2 ≥ df0 −
(
d+ 1

2

)
,

6Let G = (V,E) be a graph, and φ : V → Rd be an embedding of its vertices into Rd.
A motion of G is a map ψ : V × [0, 1]→ Rd such that

(i) for all v ∈ V , ψ(v, 0) = φ(v);
(ii) for all v ∈ V , the trajectory t 7→ ψ(v, t) of the vertex v is differentiable; and
(iii) for all (v, w) ∈ E, the distance between v and w is constant: for all t ∈ [0, 1],

‖ψ(v, t)− ψ(w, t)‖ = ‖φ(v)− φ(w)‖.

The graph G is rigid if any motion of G can be extended to an isometry of Rd.
Looking at derivatives of motions leads to the notion of infinitesimal rigidity. An

infinitesimal motion of G is a map τ : V 7→ Rd such that 〈φ(v)−φ(w) | τ(v)−τ(w)〉 = 0 for
all (v, w) ∈ E. The graph G is infinitesimally rigid if any infinitesimal motion corresponds
to an isometry of Rd. Observe that if G is rigid (or infinitesimally rigid), then

|E| ≥ d|V | −
(
d+1
2

)
.
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where f02 denotes the number of (0, 2)-flags7 of P .

Observe the following:

(i) If P is simplicial, then f02 = 3f2, and we get back that f1 ≥ df0 +
(
d+1

2

)

(that is, the MPW-reduction of the lower bound theorem).

(ii) This is an equality when d = 3 (a triangulation of m vertices in the
plane has exactly 3m− 6 edges).

Question 1.3.3. Give a combinatorial proof (in other words, a correct proof
for non-realizable spheres).

1.3.3 Universality

Even if some polytopes are not stacked, it is conjectured that stacked polytopes
are sufficiently generic in the following sense:

Conjecture 1.3.4 (Kalai). Every d-polytope is a subpolytope8 of a stacked
polytope.

Question 1.3.5. Is it true for d = 3? What about the octahedron? And the
icosahedron?

1.3.4 Small coordinates

We have seen that there are many different combinatorial types of stacked
polytopes in dimension 3. We would like to realize them by polytopes whose
vertices have small coordinates:

Question 1.3.6. Can every combinatorial type of a stacked 3-polytope be
realized with its vertices in {0, 1, . . . , p(n)}3 for some polynomial p?

1.3.5 Lower bound theorem for Delaunay polytopes

A Delaunay polytope is a polytope with all its vertices on a sphere.

Question 1.3.7. What is the minimal number of faces of a Delaunay polytope?

7Let 0 ≤ i1 < i2 < . . . < ip ≤ d. An (i1, . . . , ip)-flag of P is an increasing sequence
F1 ⊂ F2 ⊂ . . . ⊂ Fp of faces of P of dimensions i1, . . . , ip respectively. We denote by
fi1,...,ip the number of (i1, . . . , ip)-flags of P .

8A subpolytope of a polytope P is the convex hull of a subset of the vertices of P .
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Lecture 2

2-simple 2-simplicial 4-polytopes

2.1 Face lattices of d-polytopes
We consider the face lattice L of a d-polytope P , that is, the set of all its
faces, partially ordered by inclusion. This poset is in fact a graded lattice of
length d+ 1.

Definition 2.1.1. The polytope P is k-simplicial if all its k-faces are simplices.
Equivalently, for all x ∈ L of rank at most k + 1, the interval [0̂, x] is the
Boolean lattice of rank k.

The polytope P is h-simple if every (d−1−h)-face is contained in exactly
h+ 1 facets. Equivalently, for all x of corank at most h+ 1, the interval [x, 1̂]
is the Boolean lattice of rank k.

Remark 2.1.2. A d-simplicial d-polytope is a d-simplex. (d − 1)-simplicial
d-polytopes are exactly simplicial d-polytopes. Any polytope is 1-simplicial.

A d-simple d-polytope is a d-simplex. (d − 1)-simple d-polytopes are
exactly simple d-polytopes. Any polytope is 1-simple.

Proposition 2.1.3. If k+h > d, then every k-simplicial h-simple d-polytope
is a d-simplex. In particular, the first interesting example is that of 2-simple
2-simplicial 4-polytopes (2s2s 4-polytopes).

Proposition 2.1.4. Every 2s2s 4-polytope has a symmetric f -vector:

f0 = f3 and f1 = f2.

The “classical” list of 2s2s 4-polytopes is really restricted: the simplex,
the hypersimplex and its dual, and the 24-cell1 are 2s2s 4-polytopes. The
goal of the following section is to give a general method to construct 2s2s
4-polytopes, which provides an infinite family of such polytopes.

1The 24-cell is a regular 4-polytope each of whose 24 facets is an octahedron.
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2.2 Constructing 2s2s 4-polytopes
Definition 2.2.1. Let P be a d-polytope. We call deep vertex truncation of
P the polytope DV T (P ) obtained by cutting off all the vertices of P in such
a way that, from each edge, exactly one point remains.

Figure 2.1: Deep vertex truncation of the 3-cube.

It is not always possible to realize the deep vertex truncation of a polytope.
When it exists, DV T (P ) has one vertex for each edge of P , and two types of
facets:

(i) the vertex figures of P , and

(ii) the deep vertex truncations of the facets of P .

Lemma 2.2.2. If P is regular, then DV T (P ) can be constructed.

Examples 2.2.3. We obtain interesting polytopes with DV T (P ) when P is:

1. the 4-simplex: DV T (44) is the hypersimplex —its facets are 5 tetrahe-
dra (vertex figure of 44) and 5 octahedra (DV T (43));

2. the 4-dimensional cross-polytope: DV T (C∗4) is the 24-cell —it has 24
facets which are all octahedra (all the 8 vertex figures and the 16 DV T
of facets of C∗4 give octahedra);

3. the 600-cell: we obtain a 4-polytope with 600 octahedral and 120 do-
decahedral facets.

Theorem 2.2.4. If P is a simplicial 4-polytope, and if DV T (P ) exists, then
DV T (P ) is 2s2s.

Theorem 2.2.5. Every combinatorial type of stacked d-polytope can be real-
ized in such a way that the deep vertex truncation can be performed.

Observe that if St4(n) is a stacked 4-polytope with 4 + n vertices, then
the f -vector of the deep vertex truncation that we obtain is:

f(DV T (St4(n)) = (6 + 4n, 12 + 18n, 12 + 18n, 6 + 4n).
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2.3 Open problems

2.3.1 Approximation

We would like to know whether there are enough 2s2s polytopes to approximate
convex bodies:

Conjecture 2.3.1 (Shephard). Every convex body in R4 can be approximated
by 2s2s 4-polytopes.

2.3.2 Related polytopes

It remains open to find examples of the following generalizations of 2s2s
polytopes:
Question 2.3.2. What about 2-cubical 2-cocubical 4-polytopes?
Question 2.3.3. What about `-simple `-simplicial polytopes, for ` ≥ 3?

For ` = 3 and 4, only some sporadic examples are known:

1. half cubes are 3s3s (meaning the convex hull of every second vertex of
the cube);

2. one non-trivial 4s4s polytope is known.

We have as yet no example (except for the simplex!) of a 5s5s polytope.

2.4 Selected exercises
Exercise 2.4.1. Show that any simple or simplicial d-polytope with f0 = fd−1

must be a simplex, or 2-dimensional.
Assume that P is a simplicial polytope with f0 = fd−1. Then any facet

contains exactly d vertices, and thus f0,d−1 = df0 = dfd−1 ≤ f0,d−1, which
implies that P is also simple. And only simplices and 2-dimensional polytopes
are both simple and simplicial.
Exercise 2.4.2. What is the f -vector of a neighborly cubical 4-polytope2?

Let P be a neighborly cubical polytope. Since P has the graph of the
n-cube (which is n-regular), we already know that f0 = 2n and f1 = n2n−1.
Moreover, all facets of P are cubes, which implies that f2 = 3f3. Using the
Euler relation, we obtain that the f -vector of P is:

(2n, n2n−1, 3(n− 2)2n−2, (n− 2)2n−2).

2A neighborly cubical d-polytope is a d-polytope with the graph of the n-cube (n ≥ d)
and whose facets are (d− 1)-cubes.
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Exercise 2.4.3. Show that if a 4-polytope P is not simplicial, then its deep
vertex truncation DV T (P ) cannot be 2-simplicial.

Assume that P is a 4-polytope such that DV T (P ) is 2-simplicial. Then
the facets of DV T (P ) are simplicial. But DV T (P ) has two types of facets:

1. the vertex figures of P —this implies that the facets of P are simple;

2. the deep vertex truncations of the facets of P —this implies that the
facets of P are simplicial.

Thus, the facets of P are both simple and simplicial, which ensures that they
are simplices, and that P is simplicial.

Exercise 2.4.4. (a) Show that f13 = f03 + 2f2 − 2f3, and dually f02 = f03 +
2f1 − 2f0, hold for the flag vector of each 4-polytope.

(b) Derive from (a) that the inequality 2f03 ≥ (f1 +f2)+2(f0 +f3) is valid for
all 4-polytopes, and that it is tight exactly for the 2-simple 2-simplicial
4-polytopes.

(a) Let P be a 4-polytope. For each facet F of P , we apply the Euler
relation

f2(F )− f1(F ) + f0(F )− 2 = 0.

Summing these relations over all facets of P , we obtain

f23(P )− f13(P ) + f03(P )− 2f3(P ) = 0.

Since f23(P ) = 2f2(P ) (each ridge is contained in exactly two facets), we
obtain

f13(P ) = f03(P ) + 2f2(P )− 2f3(P ).

The second relation is the same by duality.

(b) For any 2-face F of P , f0(F ) ≥ 3 (with equality if and only if F is a
triangle). Summing these inequalities over all 2-faces of P , we obtain that
f02(P ) ≥ 3f2(P ), with equality if and only if P is 2-simplicial. Similarly,
f13(P ) ≥ 3f1(P ) with equality if and only if P is 2-simple. Combining both,
we have

f02(P ) + f13(P ) ≥ 3f2(P ) + 3f1(P ),

with equality if and only if P is 2-simple 2-simplicial. Using the equalities
of (a), this inequality can be transformed into:

2f03 ≥ (f1 + f2) + 2(f0 + f3).
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Lecture 3

Hypersimplices

3.1 0/1-polytopes
Definition 3.1.1. A 0/1-polytope in Rn is the convex hull of a subset of
vertices of the 0/1-cube.

Similarly, one defines a ±1-polytope to be the convex hull of a subset of
the vertices of the ±1-cube. These two families of polytopes are obviously
affinely equivalent via the transformation x 7→ 2x− 1.

Lemma 3.1.2. Any hyperplane in Rn contains at most 2n−1 vertices of the
0/1-cube, with equality only for the hyperplanes defined by one of the equations

xi = 0, xi = 1, xi = xj, or xi = 1− xj

with 1 ≤ i < j ≤ n.

Lemma 3.1.3. Let n be an even integer. The number of vertices of the
0/1-cube on the hyperplane defined by the equation x1 + · · ·+ xn = n

2
is the

Catalan number (
n
n
2

)
∼ 2n√

n
.

We concentrate on four different properties of 0/1-polytopes:

3.1.1 “Many”

There are obviously 22n − 1 possible non-empty choices of subsets of {0, 1}n,
but lots of them give equivalent polytopes. We are interested in the number
of equivalence classes of 0/1-polytopes, for the following four notions of
equivalence: we say that two 0/1-polytopes P,Q ⊂ Rn are
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(i) 0/1-equivalent if there is an isometry of the 0/1-cube that moves P
to Q;

(ii) congruent if there is an isometry of Rn that transforms P into Q;
(iii) affinely equivalent if there is an affine map that transforms P into Q;
(iv) combinatorially equivalent if P and Q have isomorphic face lattices.

Observe that

0/1-equivalent ⇒ congruent ⇒ affinely equivalent ⇒ combinatorially equivalent,

but that all opposite implications are false (even if counterexamples are not
completely obvious...).

The following table gives the number Nd of 0/1-equivalence classes of
d-dimensional 0/1-polytopes for small d’s:

d 0 1 2 3 4 5
Nd 1 1 2 12 349 1 226 525

Fig. 3.1 gives one representative for each of the 12 classes of 3-dimensional
0/1-polytopes.

Proposition 3.1.4 (Sarangarajan, Ziegler). There are more than 22d−2 dif-
ferent combinatorial types of d-dimensional 0/1-polytopes.

Proof. The idea of the proof is to consider the 0/1-polytopes that contain all
vertices of the bottom face of the cube, the vertices en and 1 =

∑
ei, plus

some other vertices, but that do not contain either e1 +en or 1−e1. There are
22n−1−4 possible choices, and no more than 2n−1(n− 1)! can be 0/1-equivalent
(since an isometry of the cube that transforms a polytope of our family into
another one preserves the bottom face). This provides the desired bound.

3.1.2 Volumes

The volume of a 0/1-polytope P is bounded by

1

n!
≤ vol(P ) ≤ 1.

The lower bound comes from the fact that any 0/1-polytope contains a
0/1-simplex S whose volume is

vol(S) =
1

n!
detVS ≥

1

n!
,

where VS is the 0/1-matrix whose columns are the coordinates of the vertices
of S.

Furthermore, these bounds are obviously tight:
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Figure 3.1: 0/1-equivalent classes of 0/1-polytopes of dimension 3.

(1) The 0/1-cube itself has volume 1.

(2) There exists a triangulation of the n-dimensional 0/1-cube into n!
simplices of volume 1/n! each. This triangulation can be described as
follows:

(i) either by the vertex description of its simplices —for each permu-
tation σ of {1, . . . , n}, we define the simplex

4σ = conv

{
0, eσ1 , eσ1 + eσ2 , . . . ,

k∑

i=1

eσi , . . . ,

n∑

i=1

eσi = 1

}

and we construct the triangulation T whose simplices are the
simplices associated to all permutations,

(ii) or by the cutting hyperplanes of the triangulation: the hyperplanes
xi = xj (i 6= j) cut the 0/1-cube into the triangulation T .



24 Günter M. Ziegler

Remarks 3.1.5. (i) This implies in particular that the maximum number
of simplices of a triangulation of the 0/1-cube is n!. The minimum
number of simplices in a triangulation of the 0/1-cube is not known.

(ii) For any 0/1-matrix A,

det(A) =
1

2n
det




1 1 · · · 1
0
... 2A
0


 =

1

2n
det




1 1 · · · 1
−1

... 2A− J
−1


 ,

where J = 11
T denotes the matrix with only 1 entries.

This last determinant can be bounded by the Hadamard bound (that
says that the volume of a parallelepiped is at most the product of the
length of its edges, with equality if and only if the edges are orthogonal).
We obtain that

det(A) ≤ 1

2n

(√
n+ 1

)n+1

,

with equality for Hadamard matrices1.
Consequently, the volume of any 0/1-simplex S is bounded by

1

n!
≤ vol(S) ≤ (n+ 1)

n+1
2

n!2n
,

and equality is possible only for n = 0, n = 1 and n ≡ −1 mod 4.

3.1.3 Simplicial 0/1-polytopes

The maximum number of vertices of a d-dimensional 0/1-polytope is obviously
2d (cube). But what about simplicial 0/1-polytopes?

Conjecture 3.1.6. A d-dimensional simplicial 0/1-polytope has at most
2d vertices and 2d facets, with equality only if P is a centrally symmetric
cross-polytope.

3.1.4 Number of facets

Theorem 3.1.7 (Bárány–Por, Fleiner–Kaibel–Rote). The number of facets
f(d) of a d-dimensional 0/1-polytope is bounded by

(
cd

log d

) d
4

≤ f(d) ≤ 30(d− 2)!

1A Hadamard matrix is a square ±1-matrix with mutually orthogonal rows. The order
of a Hadamard matrix must be 1, 2, or a multiple of 4.
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for a certain constant c ∈ R.

Here we prove only the following upper bound, which is slightly weaker:

Proposition 3.1.8 (Bárány). f(d) ≤ 2(d− 1) + 2(d− 1)!

We need the following lemma:

Lemma 3.1.9. For any 0/1-polytope P , fn−1(P ) ≤ 2n+ n!(1− vol(P )).

Proof. The result is true for the 0/1-cube. Starting from our polytope P , we
can insert one by one vertices of {0, 1}n r P . At each step, we destroy some
facets but we add pyramids over these facets. We derive the bound from the
fact that every pyramid has volume at least 1/n!.

Proof of Proposition 3.1.8. Let P be a d-dimensional 0/1-polytope. Let
f lower
d−1 (P ), fupper

d−1 (P ), and fvert
d−1(P ) denote the number of lower, upper and

vertical facets respectively (according to the last coordinate), and let P̄ denote
the projection of P to the first d− 1 coordinates. Then

f lower
d−1 (P ) ≤ (d− 1)! vol(P̄ ), fupper

d−1 (P ) ≤ (d− 1)! vol(P̄ ),

and, according to Lemma 3.1.9,

fvert
d−1(P ) ≤ fd−2(P̄ ) ≤ 2(d− 1) + (d− 1)!(1− vol(P̄ )).

Summing up,

fd−1(P ) = f lower
d−1 (P ) + fupper

d−1 (P ) + fvert
d−1(P )

≤ 2(d− 1) + (d− 1)!(1 + vol(P̄ ))

≤ 2(d− 1) + 2(d− 1)!

3.2 Hypersimplices
Definition 3.2.1. For any integers 1 ≤ k ≤ n− 1, the hypersimplex 4n−1(k)
is given by

4n−1(k) = {x ∈ [0, 1]n | 〈1 | x〉 = k} = conv{x ∈ {0, 1}n | 〈1 | x〉 = k}.

Example 3.2.2. 4n−1(1) is the usual simplex 4n−1 = conv{ei | 1 ≤ i ≤ n}.
4n−1(n− 1) is another embedding of the (n− 1)-dimensional simplex.
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Remarks 3.2.3. 1. Observe that 4n−1(k) is an (n− 1)-dimensional poly-
tope. Furthermore,

(i) from the facet description 4n−1(k) = {x ∈ [0, 1]n | 〈1 | x〉 = k},
it is easy to see that its number of facets is

fn−2(4n−1(k)) =

{
n for k ∈ {1, n− 1},
2n otherwise.

Let us insist on the fact that, when 2 ≤ k ≤ n− 2, there are two
types of facets: we have n facets of type 4n−2(k) and n facets of
type 4n−2(k − 1);

(ii) from the vertex description

4n−1(k) = conv{x ∈ {0, 1}n | 〈1 | x〉 = k},

we get that it has f0 =
(
n
k

)
vertices. All vertices are symmetric.

2. 4n−1(k) and 4n−1(n − k) are affinely equivalent via x 7→ 1 − x. For
this reason, if n is even, then 4n−1

(
n
2

)
is centrally symmetric2.

3.2.1 f -vector

There is a correspondence between the faces of the n-dimensional 0/1-cube
and the partitions of [n] = {1, . . . , n} into three parts: the face associated to
the partition [n] = A ] B ] C is the |C|-face supported by the intersection
of the hyperplanes of equations xa = 0 (a ∈ A) and xb = 1 (b ∈ B). Such
a face will intersect the hyperplane of equation 〈1 | x〉 = k —and thus will
contribute to a (|C| − 1)-face of the hypersimplex 4n−1(k)— if and only if
|A| < k and |B| < n− k. This yields the following formula for the number of
(i− 1)-faces of the hypersimplex 4n−1(k):

fi−1(4n−1(k)) =
∣∣{[n] = A ]B ] C : |A| < k, |B| < n− k, |C| = i}

∣∣

=
∑

0≤s<k
k<s+i≤n

(
n

s

)(
n− s
i

)

=
∑

max(−1, k−i)<s<min(k, n−i+1)

n!

s!i!(n− s− i)! .

Since this formula is not completely explicit, it is interesting to consider
the intermediate hypersimplex 4n−1

(
n
2

)
(for n large and even). It is easy to

2A polytope P is centrally symmetric if P = −P .



Hypersimplices 27

see that almost all faces of the hypercube (i.e., about 3n) contribute to faces
of this hypersimplex. This number 3n is surprisingly low, according to the
following conjecture:

Conjecture 3.2.4 (Kalai). Every centrally symmetric d-dimensional polytope
has at least 3d faces.

In fact, an even stronger result was conjectured:

Conjecture 3.2.5 (Kalai). Every centrally symmetric polytope has an f -vector
that is componentwise larger than the f -vector of a Hanner polytope3 of the
same dimension.

This last conjecture was recently disproved using some tools that we will
develop in the last lecture (see Section 5.4).

3.2.2 Volume

We want to compute the volume of the full-dimensional version of the hyper-
simplex:

4̄n−1(k) = {x ∈ [0, 1]n−1 | k − 1 ≤ 〈1 | x〉 ≤ k}
= conv{x ∈ {0, 1}n−1 | 〈1 | x〉 ∈ {k − 1, k}}.

For this, we consider the alcoved polytope

C ′n−1 = {y ∈ Rn−1 | 0 ≤ yi − yi−1 ≤ 1, ∀i ∈ [n− 1]}
(where y0 = 0 by convention). This polytope is mapped to the standard cube
Cn = [0, 1]n−1 via the map γ : C ′n−1 → Cn−1 given by

y = (y1, . . . , yn−1) 7−→ (y1 − by1c , . . . , yn−1 − byn−1c).
We consider the triangulations of C ′n−1 and Cn−1 induced by the cutting

hyperplanes xi = c and xi = xj + c (where 1 ≤ i < j ≤ n − 1 and c ∈ N).
The mapping γ moves the simplices forming C ′n−1 into the simplices forming
Cn−1, and it turns out that the simplices that form the hypersimplex 4̄n−1(k)
in Cn−1 come from simplices in C ′n−1 corresponding to permutations with
exactly k descents. Omitting details, we obtain:

3The class of Hanner polytopes is defined recursively as follows:

(i) any line segment is a Hanner polytope;

(ii) any polytope that can be written as the Cartesian product, or as the direct sum of
two Hanner polytopes is a Hanner polytope.

For example, the Hanner 3-polytopes are the 3-cube and the octahedron. The Hanner
4-polytopes are the 4-cube, the 4-cross-polytope, the prism over an octahedron and the
bipyramid over the 3-cube.
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Theorem 3.2.6. Let A(n, k) denote the Eulerian numbers, that is, the number
of permutations of {1, . . . , n} with exactly k descents. Then the volume of the
full-dimensional hypersimplex is given by

vol(4̄n−1(k)) =
A(n, k)

(n− 1)!
.

3.3 Selected exercises
Exercise 3.3.1. Classify the 0/1-polytopes of diameter

√
2.

Apart from the two particular cases of the square and the tetrahedron of
Fig. 3.2, the only 0/1-polytopes of diameter

√
2 are the simplices of the form

conv{0, e1, . . . , en} (and their 0/1-equivalence class).

Figure 3.2: The only 0/1-polytope with diameter
√

2 and volume 1
3 .
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Lecture 4

Associahedra

4.1 Four combinatorial structures

Let a1, . . . , an denote n different letters.

4.1.1 Permutahedron

We consider the graph

• whose vertices are the permutations of these n letters,

• and whose edges are the pairs of adjacent permutations, that is, of
permutations that differ by a transposition of two adjacent letters.

1234

12432134 1324

2143

2413

4213

4123

1423

2431

2341

2314

4231

4321

3421

3241

3214
3124

3142

3412

4312

4132

1432
1342

Figure 4.1: Permutahedron Π3.
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This graph has obviously n! vertices and is regular1 of degree n−1. It turns
out that it is the graph of a simple (n−1)-polytope, called the permutahedron
Πn−1 (see Fig. 4.1).

4.1.2 Associahedron

We consider the graph

• whose vertices are the bracketings2 of our n letters,

• and whose edges are the pairs of bracketings of the form m(no) and
(mn)o (where m,n and o are words forming valid bracketings).

(((12)3)4)5

((1(23))4)5

(1((23)4))5

((12)(34))5 (1(2(34)))5

(1(23))(45)

1((23)(45))
1(((23)4)5)

1((2(34))5)

1(2((34)5))

1(2(3(45)))
(12)((34)5)

((12)3)(45)

(12)(3(45))

Figure 4.2: Associahedron A3.

This graph has Cn−1 = 1
n

(
2n−2
n−1

)
vertices and is regular of degree n − 2.

It turns out that it is the graph of a simple (n − 2)-polytope, called the
associahedron An−1 (see Fig. 4.2).

4.1.3 Cyclohedron

We consider the graph

• whose vertices are the bracketings of cyclic permutations of our n letters,

1A graph is regular of degree d if all its vertices have degree d.
2A bracketing of n letters is a sequence of 2n − 4 parentheses (n − 2 left and n − 2

right) such that any of its prefixes contains more left parentheses than right parentheses.
For example, 1(2(34)) and (1(23))4 are bracketings of 1234.
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• and whose edges are (1) the pairs of vertices of the form m(no) and
(mn)o (where m,n and o are words forming valid bracketings and where
the letters are in the same order), and (2) pairs of vertices of the form
mn and nm (where m and n are words forming valid bracketings).

(12)(34)(34)(12)

((12)3)4

1(2(34))
((34)1)2

3(4(12))

1((23)4)

(1(23))4

4((12)3)

4(1(23))

(4(12))3

(41)(23)

((41)2)3

3((41)2)

(3(41))2

2((34)1)

2(3(41))

(2(34))1

((23)4)1

(23)(41)

Figure 4.3: Cyclohedron Γ3.

This graph has nCn−1 =
(

2n−2
n−1

)
vertices and is regular of degree n − 1

(thus, n− 2 from rebracketing and 1 from cyclic permutation). It turns out
that it is the graph of a simple (n− 1)-polytope, called the cyclohedron Γn−1

(see Fig. 4.3).

4.1.4 Permuto-associahedron

Finally, we consider the graph

• whose vertices are the bracketings of permutations of our n letters,
• and where a vertex is related with all vertices obtained either (1) by
rebracketing without changing the order of the letters (for example,
1(2(34))→ 1((23)4)), or (2) by inverting two letters that are adjacent
and bracketed together (for example, 1(2(34))→ 1(2(43))).

This graph has n!Cn−1 = (n − 1)!
(

2n−2
n−1

)
vertices. Furthermore, all its

vertices have degree at least n− 1 and at most n− 2 +
⌊
n
2

⌋
. It turns out that

it is the graph of a simple (n− 1)-polytope, called the permuto-associahedron
KΠn−1 (see Fig. 4.4).

4.2 Polytopes from graphs
Lemma 4.2.1. If G is the graph of a d-polytope, then
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1(2(34))

1((23)4)

1(2(43))

(12)(34)

Figure 4.4: Permuto-associahedron KΠ3.

(i) G is d-connected 3 (Balinski’s Theorem);

(ii) for every vertex v ∈ G, there is a subdivision4 of Kd+1 contained in G
which has v and d of its neighbors as its principal vertices;

(iii) if d ≤ 3, then G is planar;

(iv) G is d-regular if and only if P is simple.

In dimension 2, the graphs of polytopes are just the cycles. In dimension 3,
Steinitz’ Theorem characterizes graphs of polytopes:

Theorem 4.2.2 (Steinitz). A graph is the graph of a 3-polytope if and only
if it is simple, planar and 3-connected.

In higher dimension, however, we do not have characterizations of polytopal
graphs. Small examples are enough to convince one that it is sometimes
complicated to decide whether a given graph is or not the graph of a polytope:
Examples 4.2.3. 1. We consider the complete graph K8 from which we

remove a perfect matching. It has 8 vertices and constant degree 6. Thus,
it is not planar, and if it is the graph of a d-polytope, then certainly
d ∈ {4, 5, 6}. It turns out that it is the graph of the 4-dimensional
cross-polytope and of the join of two squares (dimension 5). However,
according to Lemma 4.2.1(ii), it is not realizable in dimension 6.

3A graph is d-connected if it is not possible to disconnect the graph by removing d
vertices.

4A subdivision of a graph G is a graph obtained from G by replacing some of its edges
by chains of edges. The principal vertices of this subdivision are the initial vertices of the
graph G.
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2. We consider the complete graph K6 from which we remove the cycle C6.
It has 6 vertices and constant degree 3. Thus it can only be realized in
dimension 3, and it is the graph of a prism.

3. We consider the complete graph K7 from which we remove the cycle
C7. It is not planar (it contains a subdivision of K3,3), but it does not
contain any subdivision of K5. By Lemma 4.2.1(ii), it is not the graph
of a polytope.

Figure 4.5: The Schlegel diagram of the 4-dimensional cross-polytope and a prism
over a triangle (realizing the graphs of Examples 1 and 2 respectively).

In the following result, we only deal with regular graphs:

Lemma 4.2.4. The graph G of a simple polytope, together with the facial
cycles (that is, the cycles in G that correspond to 2-faces of P ) determine the
combinatorics of P .

Theorem 4.2.5 (Blind–Mani, Kalai, Friedman). From the graph G of a
simple polytope, the combinatorics of P can be reconstructed in polynomial
time.

4.3 Associahedra via fiber polytopes
Definition 4.3.1. Let π : Rd → Re denote a projection, P be a d-polytope
and Q be its image under the projection π. The fiber polytope Σ(P → Q) is
the polytope defined by

Σ(P → Q) =

{
1

vol(Q)

∫

Q

γ(x)dx : γ section of π
}

(where a section of π is a map γ : R→ Rd such that π ◦ γ = Id).
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Theorem 4.3.2. The fiber polytope Σ(P → Q) is a (d − e)-dimensional
polytope, included in the intersection of P with the preimage of the barycenter
of Q. Its vertices correspond to “tight regular polyhedral strings in P ”, which
project down to the finest regular subdivisions of Q by faces projected from P .

Examples 4.3.3. 1. Here we fix P = [0, 1]n, Q = [0, n], and π : x 7→ 〈1 | x〉
(see Fig. 4.6). We obtain one vertex for each path from the source to
the sink on the edges of P , that is, one vertex for each permutation.
And we get one edge if two paths can be transformed one to the other
by changing them along a facet of P , that is, if the two corresponding
permutations differ by a transposition of two adjacent entries. Thus,
this construction leads to the permutahedron (see Fig. 4.1).

2. The second interesting example is obtained with

P = 4n = conv{0, e1, e1 + e2, . . . , e1 + e2 + · · ·+ en},

Q = C2(n+ 1) = conv

{(
0
0

)
,

(
1
1

)
,

(
2
4

)
,

(
3
9

)
, . . . ,

(
n
n2

)}
,

and π : Rn −→ R2, ei 7−→
(
i
i2

)
−
(

i− 1
(i− 1)2

)
=

(
1

2i− 1

)
.

Then the fiber polytope Σ(4n, C2(n+ 1)) is a realization of the (n− 2)-
dimensional associahedron (see Fig. 4.2).

4.4 Selected exercises
Exercise 4.4.1. Are the following graphs polytopal?

1. The circulant graph on vertex set Zn with edges (i, i+ 1) and (i, i+ 2).

2. The Petersen graph (see Fig. 4.7).

3. The product of two Petersen graphs (see Fig. 4.7).

1. Let Gn denote the circulant graph on Zn with edges (i, i + 1) and
(i, i + 2). Observe first that, if n ≤ 5, then Gn is the complete graph on n
vertices, and thus it is realized by the (n− 1)-simplex. Furthermore, when
n = 2m is even, it is easy to see that the following 3-polytope realizes Gn

(see Fig. 4.8):

P2m = conv











cos
(

2(2i−1)π
m

)

sin
(

2(2i−1)π
m

)

0


 : 1 ≤ i ≤ m




∪








cos
(

4iπ
m

)

sin
(

4iπ
m

)

1


 : 1 ≤ i ≤ m






 .
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0 n/2 n

P

0 1

Figure 4.6: The permutahedron as the fiber polytope Σ([0, 1]n, [0, 1]).

1

2 5

3 4

A

B E

C D

Figure 4.7: The Petersen graph and the cartesian product of two Petersen graphs.

We prove that there is no other realization of Gn. In particular, when n is
odd and ≥ 7, the graph Gn is not polytopal. Observe first that Gn is regular
of degree 4, and thus it cannot be realized in dimension different from 3 or 4.

It is easy to see that, if n ≥ 6, the vertices 1, 2, 3, 4, 5 are not principal
vertices of a K5 subdivision of Gn. Indeed, since 14, 25 and 15 are not in Gn,
we need three paths of edges passing from {1, 2} to {4, 5}. It is easy to
see that either two of them pass through the vertex 6, or two of them pass
through the edge {5, 7 mod n}. Consequently, by Lemma 4.2.1(ii), Gn is not
realizable in dimension 4 (except G5).

Finally, when n is odd, Gn is not planar since it contains a subdivision of
K3,3 (see Fig. 4.8). Thus, it cannot be realized in dimension 3.
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1
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11

11

1

139

7
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14

2
4

6

8
10 12

Figure 4.8: The polytope P14 realizing the circulant graph G14 in dimension 3,
and a K3,3 subdivision in the circulant graph G11.

2. The Petersen graph is regular of degree 3 and non planar (there is a
subdivision of K3,3 with vertices U = {1, 2, 3} and V = {B,D,E}). Thus, it
is not the graph of a polytope.

Exercise 4.4.2. How many vertices, edges and facets has the (n−1)-dimensional
permutahedron? How many vertices, edges and facets has the (n− 2)-dimen-
sional associahedron?

The (n− 1)-dimensional permutahedron has one vertex for each of the n!
permutations of {1, . . . , n}. It is regular of degree n− 1, which implies that
it has n!(n− 1)/2 edges. Finally, its facets correspond to all the vertices of
the cube that are neither the source 0 nor the sink 1 (in Fig. 4.6): the vertex
set of a facet corresponds to all the paths on the edges of the cube that pass
through a given vertex of the cube. Thus, the permutahedron has 2n − 2
facets.

As far as the (n− 2)-dimensional associahedron is concerned, it has one
vertex for each of the 1

n

(
2n−2
n−1

)
triangulations of the n-gon. It is regular of

degree n− 2, which implies that it has n−2
2n

(
2n−2
n−1

)
edges. Finally, it has one

facet for each of the n(n− 1)/2 internal diagonals of the n-gon.
To sum up:

vertices edges facets

permutahedron n! n!(n−1)
2

2n − 2

associahedron 1
n

(
2n−2
n−1

)
n−2
n

(
2n−2
n−1

) n(n−1)
2
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Exercise 4.4.3. Compute the area, the barycenter, and the center of mass of
the (n+ 1)-gon

C2(n+ 1) = conv

{(
0
0

)
,

(
1
1

)
,

(
2
4

)
,

(
3
9

)
, . . . ,

(
n
n2

)}
.

Remember that, for any 1 ≤ i ≤ n, the area of the triangle
(

0
0

)(
i
i2

)(
j
j2

)

is given by the following determinant:

Area

((
0
0

)(
i
i2

)(
i+ 1

(i+ 1)2

))
=

1

2
det




1 1 1
0 i i+ 1
0 i2 (i+ 1)2


 =

i(i+ 1)

2
.

Consequently, we obtain

Area(C2(n+ 1)) =
n−1∑

i=1

i(i+ 1)

2
=

(n− 1)n(n+ 1)

6
,

Bary(C2(n+ 1)) =
1

n+ 1

n∑

i=0

(
i
i2

)
=

(
n/2

n(2n+ 1)/6

)
,

CM(C2(n+1)) =
1

Area(C2(n+ 1))

n−1∑

i=1

i(i+ 1)

6

(
2i+ 1

2i2 + 2i+ 1

)
=

(
n/2

(6n2 + 1)/15

)
.
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Lecture 5

f -vector Shapes

Let P be a d-polytope and f = f(P ) = (f0(P ), . . . , fd−1(P )) denote its
f -vector (remember that fi = fi(P ) denotes the number of i-faces of P ).

Definition 5.0.4. The shape of a d-polytope P is the function φP : “[0, 1]→ N”
defined by

φP (x) = fx(d−1)(P ).

We would like to answer the following question:
Question 5.0.5. What does φP typically look like?

Various conjectures have been made on the shapes of f -vectors of poly-
topes:

Conjecture 5.0.6 (Unimodality: Motzkin 1950, Welsh 1972). For any poly-
tope P , φP is unimodal. In other words, there exists no i such that fi−1 > fi
and fi < fi+1.

Conjecture 5.0.7 (Partial Unimodality: Björner). For any polytope P , φP
is increasing between 0 and 1

4
and decreasing between 3

4
and 1.

Conjecture 5.0.8 (Minimal Entry: Bárány). For any polytope P and any
0 ≤ i ≤ d− 1,

fi ≥ min{f0, fd−1}.

5.1 Examples

5.1.1 Simplex

The f -vector of the (d− 1)-simplex is given by

fi−1(4d−1) =

(
d

i

)
.
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Thus, φ4d−1
(x) =

(
d

x(d− 1)

)
∼

(
d
e

)d
(
xd
e

)xd ( (1−x)d
e

)(1−x)d
=

(
1

xx(1− x)1−x

)d
.

We obtain a peak around 1
2
which gets sharper when d grows (see Fig. 5.1(a)).

10 1/2

(a)

10 2/3

(b)

10 3/4

(c)

Figure 5.1: f -vector shape of (a) the simplex 4d, (b) the cross-polytope C∗d , and
(c) the cyclic polytope Cd(n).

5.1.2 Cross-polytope (and cube)

For the d-dimensional cross-polytope, the f -vector is given by

fi−1(C∗d) =

(
d

i

)
2i.

We obtain a peak around 2
3
which gets sharper when d grows (see Fig. 5.1(b)).

These two examples already provide lots of different shapes: indeed, it is
possible to “add” the two functions φ4d

and φC∗
d
by recursively stacking onto

facets of the cross-polytope. In particular, if the peaks are sharp enough, we
obtain a non-unimodal function. Thus:

Corollary 5.1.1. The “Unimodality Conjecture” is false, even for simplicial
polytopes.

5.1.3 Cyclic polytope

Let n, d denote two integers with n much larger than d. Then the f -vector of
the d-dimensional cyclic polytope with n vertices Cd(n) is approximately

fi−1(Cd(n)) =





(
n

i

)
if i ≤ d

2

∼
(
n
d
2

)( d
2

i− d
2

)
otherwise.

This gives a peak around 3
4
which gets sharper when d grows (see Fig. 5.1(c)).

Observe the relation with the “Partial Unimodality Conjecture”.
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Remark 5.1.2. Using techniques similar to stacking on facets, one can prove
that:

1. The “Unimodality Conjecture” is false for d ≥ 8.

2. For simplicial polytopes, the “Unimodality Conjecture” is true for d ≤ 19,
but false for d ≥ 20.

5.2 Simplicial polytopes
The following theorem, conjectured by McMullen and proved by Stanley using
heavy machinery from algebraic geometry, yields a complete characterization
of the f -vectors of simplicial d-polytopes:

Theorem 5.2.1 (The g-theorem: Stanley 1980, Billera–Lee 1980, Björner).
A vector f = (1, f0, . . . , fd−1) ∈ Nd+1 is the f-vector of a d-dimensional
simplicial polytope if and only if it can be written as f = gMd, where g =
(g0, . . . , gb d2c) is an M-sequence, and

Md =

((
d+ 1− j
d+ 1− k

)
−
(

j

d+ 1− k

))

0≤j≤b d2c
0≤k≤d

∈ N(b d2c+1)×(d+1).

Examples 5.2.2.

M1 =
(
1 2

)
and g = (1),

M2 =

(
1 3 3
0 1 1

)
and g = (1, g1),

M3 =

(
1 4 6 4
0 1 3 2

)
and g = (1, g1),

M4 =




1 5 10 10 5
0 1 4 6 3
0 0 1 2 1


 and g = (1, g1, g2),

where g1 ≥ 0, g2 ≥ 0, and g2 ≤
(
g1+1

2

)
.

5.3 Dimensions 3 and 4

5.3.1 Dimension 3

Let (f0, f1, f2) ∈ N3 be an f -vector of a 3-polytope. Then f0− f1 + f2− 2 = 0
(Euler relation) and 2f1 = f12 ≥ 3f2, which implies that f2 ≤ 2f0 − 4.
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Similarly, f0 ≤ 2f2 − 4. Thus, apart from the simplex (whose f -vector is
(4, 6, 4)), we obtain that the f -vector of a 3-polytope satisfies f0, f2 > 4 and

1

2
≤ f2 − 4

f0 − 4
≤ 2.

In fact, this inequality characterizes f -vectors of 3-polytopes:

Theorem 5.3.1 (Steinitz 1906). The f -vectors of 3-polytopes are exactly

{(4, 6, 4)} ∪
{

(f0, f0 + f2 − 2, f2) | f0, f2 > 4,
1

2
≤ f2 − 4

f0 − 4
≤ 2

}
.

We have represented in Fig. 5.2 the zone of possible f -vectors (where f0

is represented on the horizontal axis, while f2 is represented on the vertical
axis).

4

4

f0

f2

f2= 2f0- 4
(simplicial 3-polytopes)

f0= 2f2- 4
(simple 3-polytopes)

Figure 5.2: The cone of 3-dimensional f -vectors.

5.3.2 Dimension 4

Let (f0, f1, f2, f3) ∈ N4 be an f -vector of a 4-polytope. The following propo-
sition states all currently known inequalities:

Proposition 5.3.2. The f -numbers of a 4-polytope satisfy

f0 − f1 + f2 − f3 = 0, f0 ≥ 5, f3 ≥ 5, f1 ≥ 2f0, f2 ≥ 2f3,

and 2f1 + 2f2 ≥ 5f0 + 5f3 − 10.
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Proof. We only prove the last inequality, using arguments similar to those in
Exercise 2.4.4. Let P be a 4-polytope. For any facet F of P ,

3f0(F ) ≤ f01(F ) = 2f1(F ) and f2(F )− f1(F ) + f0(F )− 2 = 0.

Summing over all facets of P , we obtain

3f03(P ) ≤ 2f13(P ) and f23(P )− f13(P ) + f03(P )− 2f3(P ) = 0.

Hence, f13(P ) ≤ 6f2(P ) − 6f3(P ), and, dually, f02(P ) ≤ 6f1(P )− 6f0(P ).
Now we use the generalized Lower Bound Theorem (Theorem 1.3.2):

4f0(P )− 10 ≤ f1(P ) + f02(P )− 3f2(P ) ≤ 7f1(P )− 3f2(P )− 6f0(P ),

and, dually, 4f3(P )− 10 ≤ 7f2(P )− 3f1(P )− 6f3(P ).

Summing these two last inequalities, we obtain the desired bound.

Corollary 5.3.3. For any 4-polytope,

ψ1 ≥ 1, ψ2 ≥ 1, ψ1 − 1 ≤ ψ2 ≤ ψ1 + 1, and ψ1 + ψ2 ≥
5

2
,

where ψ1 =
f1 − 10

f0 + f3 − 10
and ψ2 =

f2 − 10

f0 + f3 − 10
.

We have represented in Fig. 5.3 the polyhedron given by these inequalities
(where ψ1 is represented on the horizontal axis, while ψ2 is represented on the
vertical axis). It is not known exactly what integer points in this polyhedron
correspond to 4-polytopes.

We finish by localizing certain 4-polytopes (and their duals!) in this
polyhedron (see Fig. 5.3):

Examples 5.3.4. 1. Stacked polytopes:

f(St4(n)) = (4 + n, 6 + 4n, 4 + 6n, 2 + 3n) ∼ n(1, 4, 6, 3).

Thus, in the (ψ1, ψ2)-coordinate system, we obtain the point
(

1
3
2

)
.

2. Cyclic polytopes:

f(C4(n)) =

(
n,

n(n+ 1)

2
, n(n− 3),

n(n− 3)

2

)
∼ n2

2
(0, 1, 2, 1).

We obtain the point
(

1
2

)
.
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1 2 3 4

1

2

3

4

5

5

cyclic polytopes

stacked polytopes

simplicial polytopes

NCP4(n)

cyclic polytopes

PDPP

Figure 5.3: The possible zone of 4-dimensional f -vectors.

3. Neighborly cubical polytopes (see Exercise 2.4.2):

f(NCP4(n)) = (2n, n2n−1, 3(n−2)2n−2, (n−2)2n−2) ∼ n2n−2(0, 2, 3, 1).

We obtain the point
(

2
3

)
.

4. Projected deformed products of polygons give the point
(

4
5

)
.

5.4 Hansen polytopes
Let G = (V,E) be a graph on |V | = n vertices. Recall that

• an independent set of G is a subset I of V such that the induced
subgraph has no edges;

• a clique of G is a subset C of V such that the induced subgraph is
complete.

For any subset U of V , let χU denote the characteristic function of V , that is,

χU : V −→ {0, 1}, v 7−→
{

1 if v ∈ U,
0 otherwise.

Definition 5.4.1. The stable set polytope of G is the polytope defined by

Stab(G) = conv{χI | I independent set of G} ⊂ Rn.
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The Hansen polytope of G is the twisted prism of the stable set polytope of G:

Hans(G) = conv{{1} × Stab(G), {−1} × −Stab(G)} ⊂ Rn+1.

Examples 5.4.2. The Hansen polytope of the complete graph K2 on 2 vertices
is an octahedron. The Hansen polytope of the independent graph K̄2 on 2
vertices is an affine cube.

For any stable set I of G and any clique C of G, it is clear that |I∩C| ≤ 1,
i.e., that 0 ≤ 〈χI | χC〉 ≤ 1. This implies that

Stab(G) ⊆
{
x ∈ Rn | 0 ≤ 〈x | χC〉 ≤ 1 for all cliques C of G

}
,

and

Hans(G) ⊆
{

(x0, x̄) ∈ Rn+1 | −1 ≤ −x0 + 2〈x̄ | χC〉 ≤ 1 for all cliques C of G
}
.

Furthermore, Hansen proved that these inclusions are equalities if and only
if the graph is perfect1. This yields a complete combinatorial description of
Hansen polytopes of perfect graphs:

Remark 5.4.3. Let G be a perfect graph on n vertices. Then the Hansen
polytope Hans(G) is a centrally-symmetric (n+ 1)-polytope with

(i) two vertices ±(1, χI) for each independent set I of G, and

(ii) two facets −1 ≤ −x0 + 2〈x̄ | χC〉 and −x0 + 2〈x̄ | χC〉 ≤ 1 for each
clique C of G.

Furthermore, the vertex (1, χI) lies in the facet −x0 + 2〈x̄ | χC〉 ≤ 1 ⇐⇒
〈χI | χC〉 = 1 ⇐⇒ |I ∩ C| = 1 ⇐⇒ I ∩ C 6= ∅.

Observe also that the Hansen polytope Hans(G) is self-dual if and only if
G is self-complementary.

Let us concentrate on the particular example of the Hansen polytope of
the 4-path. Since this graph is perfect and self-complementary, its Hansen
polytope is a centrally-symmetric and self-dual 5-polytope.

The following table compares its f -vector with the f -vectors of the Hanner
polytopes (see the footnote on page 27). We do not explicitly write the

1A perfect graph is a graph such that each of its induced subgraphs has equal chromatic
number and clique number. The Strong Perfect Graph Theorem affirms that a graph G
is perfect if and only if neither G nor its complement contains an odd cycle of length at
least 5.



46 Günter M. Ziegler

f -vectors of the duals, but they are obtained by reversal:

P f0(P ) f1(P ) f2(P ) f3(P ) f4(P ) f0(P ) + f4(P )

Hans(P4) 16 64 98 64 16 32

C∆
5 10 40 80 80 32 42

bip bipC3 12 48 86 72 24 36

bip prismC∆
3 14 54 88 66 20 34

prismC∆
4 16 56 88 64 18 34

This disproves one of Kalai’s conjectures already mentioned in Section 3:

Conjecture 5.4.4 (Kalai). Every centrally symmetric polytope has an f -vector
that is componentwise larger than the f-vector of a Hanner polytope of the
same dimension.

Observe also that the total number of faces of the Hansen polytope of the
4-path,

1 +
4∑

i=0

fi(Hans(P4)) = 259,

is surprisingly low compared to the 35 = 243 of the Hanner polytopes (and of
the 3d conjecture).

Similarly, the bull graph B = ({1, 2, 3, 4, 5}, {12, 23, 34, 45, 24}) gives an
interesting example in dimension 6 (which in particular disproves Kalai’s
conjecture in dimension 6).

5.5 Selected exercises

Exercise 5.5.1. For d = 3, 4, 5, . . ., construct a d-polytope with 12 vertices
and 13 facets. How far do you get?

The following construction gives such a d-polytope (for any 3 ≤ d ≤ 10):
we start from a (13− d)-gon in dimension 2 (f0 = 13− d and f1 = 13− d)
and take a pyramid over it (f0 = 14− d and f2 = 14− d). Then, we stack
one of the triangular faces (f0 = 15− d and f2 = 16− d). Finally, we take
recursively d− 3 pyramids over it and we obtain 12 vertices and 13 facets.

Exercise 5.5.2. Show that the f -vectors of d-polytopes are unimodal for d ≤ 5.

It is easy for d ≤ 4.
In dimension 5, we know that 2f1 = f01 ≥ 5f0, 2f3 = f34 ≥ 5f4 and

f0− f1 + f2− f3 + f4− 2 = 0. If f is not unimodal, then f1 > f2 and f2 < f3.
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This would imply that

10 = 5f0 − 5f1 + 5f2 − 5f3 + 5f4

≤ 2f1 − 5f1 + 5f2 − 5f3 + 2f3

= −3f1 + 5f2 − 3f3 ≤ −f2,

which is impossible.

Exercise 5.5.3. Derive an exact formula for the number of facets of the
d-dimensional cyclic polytope.

Let us recall first the following description of facets of the cyclic polytope:

Proposition 5.5.4 (Gale’s Evenness Criterion). A subset F of [n] is a facet
of the cyclic polytope Cd(n) if and only if |F | = d and all inner blocks 2 of F
have even size. Furthermore, such a facet F is supported by the hyperplane

HF = {z | 〈(γi(F ))i∈[d] | z〉 = −γ0(F )},

where γ0(F ), . . . , γd(F ) are defined as the coefficients

ΠF (t) =
∏

i∈F

(t− ti) =
d∑

i=0

γi(F )ti.

Proof. Observe first the following:

(i) The Vandermonde determinant

det

(
1 1 . . . 1

µ(x0) µ(x1) . . . µ(xd)

)
=

∏

0≤i<j≤d

(xj − xi)

ensures that any d+ 1 points on the d-dimensional moment curve are
affinely independent, and, thus, that the cyclic polytope is simplicial.

(ii) For any t ∈ R,

〈(γi(F ))i∈[d] | µd(t)〉+ γ0(F ) =
d∑

i=0

γi(F )ti = ΠF (t).

Let F be a subset of [n] of size d. Then,
2The blocks of a subset F of [n] are the maximal subsets of consecutive elements of F .

The initial (resp. final) block is the block containing 1 (resp. n) —when it exists. Other
blocks are called inner blocks. For example, {1, 2, 3, 6, 7, 9, 10, 11} ⊂ [11] has 3 blocks:
{1, 2, 3} (initial), {6, 7} (inner) and {9, 10, 11} (final).
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(i) for all j ∈ F , ΠF (tj) = 0; thus, HF is the affine hyperplane spanned
by F ;

(ii) for all j /∈ F , the sign of ΠF (tj) is (−1)|F∩{j+1,...,n}|.

In particular, if F has an odd inner block {a, a+ 1, . . . , b}, then ΠF (ta−1) and
ΠF (tb+1) have different signs, and F is not a facet. Reciprocally, if all inner
blocks have even size, then the sign of all ΠF (tj) is (−1)`, where ` is the size
of the final block.

From this criterion, it is easy to count the facets of the cyclic d-polytope,
separating the cases when d is odd or even:

f2e−1(C2e(n)) =

(
n− e
e

)
+

(
n− e− 1

e− 1

)
,

and
f2e(C2e+1(n)) = 2

(
n− e− 1

e

)
.

Exercise 5.5.5. Compute the f -vector of the cyclic polytope C8(25). How bad
is the approximation

fk−1(Cd(n)) ∼ h(d, k, n) =

(
n
d
2

)( d
2

k − d
2

)
for even d and k > d

2
?

The values of fk(C8(25)) and h(8, k, 25) are given in the following table:

k 0 1 2 3 4 5 6 7

fk(C8(25)) 25 300 2 300 12 650 33 750 44 500 28 500 7 125

h(8, k, 25) 12 650 50 600 75 900 50 600 12 650

Exercise 5.5.6. What is the f -vector of the product of ten 10-gons? Where is
the peak?

The non-empty faces of a product are exactly the products of non-empty
faces of the factors. Thus, a k-face of (C10)10 is obtained for any 0 ≤ i ≤

⌊
k
2

⌋

by choosing:

(a) i of the complete 10-gons;

(b) one of the 10 edges in k − 2i of the ten 10-gons; and

(c) one of the 10 vertices in 10− k of the ten 10-gons.
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Consequently, we obtain the f -vector

fk((C10)10) =

b k2c∑

i=0

(
10

i

)(
10− i
k − 2i

)
1010−i.

The peak is reached for k = 6:

128

3,5E12

4

1,5E12

2E12

5E11

0
16

3E12

2,5E12

1E12

20

Figure 5.4: The f -vector shape of a product of ten 10-gons.
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Lecture 1

On Metrics and Norms

1.1 Metrics, bacteria, pictures
The concept of distance is usually formalized by the mathematical notion of
a metric. First we recall the definition:

A metric space is a pair (X, ρ), where X is a set and ρ : X ×X → R is a
metric satisfying the following axioms (x, y, z are arbitrary points of X):

(M1) ρ(x, y) ≥ 0,

(M2) ρ(x, x) = 0,

(M3) ρ(x, y) > 0 for x 6= y,

(M4) ρ(y, x) = ρ(x, y), and

(M5) ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

If ρ satisfies all the axioms except for (M3), i.e., distinct points are allowed
to have zero distance, then it is called a pseudometric. The word distance or
distance function is usually used in a wider sense: Some practically important
distance functions fail to satisfy the triangle inequality (M5), or even the
symmetry (M4).

1.1.1 Graph metrics

Some mathematical structures are equipped with obvious definitions of dis-
tance. For us, one of the most important examples is the shortest-path metric
of a graph.

Given a graph G (simple, undirected) with vertex set V , the distance of
two vertices u, v is defined as the length of a shortest path connecting u and
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v in G, where the length of a path is the number of its edges. (We need to
assume G connected.)

As a very simple example, the complete graph Kn yields the n-point
equilateral space, where every two points have distance 1.

More generally, we can consider a weighted graph G, where each edge
e ∈ E(G) is assigned a positive real number w(e), and the length of a path is
measured as the sum of the weights of its edges. (The previous case, where
there are no edge weights, is sometimes referred to as an unweighted graph,
in order to distinguish it from the weighted case.)

We will first consider graph metrics as a convenient and concise way of
specifying a finite metric space. However, we should mention that several
natural classes of graphs give rise to interesting classes of metric spaces. For
example, the class of tree metrics consists of all metrics of weighted trees
and all of their (metric) subspaces; here by a tree we mean a finite connected
acyclic graph. Similarly, one can consider planar-graph metrics and so on.

The relations between graph-theoretic properties of G and properties of
the corresponding metric space are often nontrivial and, in some cases, not
yet understood.

1.1.2 The importance of being metric

As we have seen in the case of graphs, some mathematical structures are
equipped with obvious definitions of distance among their objects. In many
other cases, mathematicians have invented clever definitions of a metric in
order to prove results about the considered structures. A nice example is the
application of Banach’s contraction principle for establishing the existence
and uniqueness of solutions for differential equations.

Metric spaces also arise in abundance in many branches of science. When-
ever we have a collection of objects and each object has several numerical
or non-numerical attributes (age, sex, salary... think of the usual examples
in introduction to programming), we can come up with various methods for
computing the distance of two objects.

A teacher or literary historian may want to measure the distance of texts
in order to attribute authorship or to find plagiarisms. Border police of
certain countries need (?!?!) to measure the distance of fingerprints in order
to match your fingerprints to their database —even after your pet hamster
bites you in your finger.

My first encounter with metric embeddings occurred through bacteria
in the late 1980s. There are enormous numbers of bacterial species, forms,
and mutations, and only very few of them can be distinguished visually. Yet
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classifying a bacterial strain is often crucial for curing a disease or stopping
an epidemic.

Microbiologists measure the distance, or dissimilarity as it is more often
called, of bacterial strains using various sophisticated tests, such as the
reaction of the bacteria to various chemicals or sequencing portions of their
DNA. The raw result of such measurements may be a table, called a distance
matrix , specifying the distance for every two strains. For the following tiny
example, I have picked creatures perhaps more familiar than bacterial species;
the price to pay is that the numbers are completely artificial:

Dog Cat Cheetah Rat Capybara
Dog 0
Cat 0.50 0
Cheetah 0.42 0.27 0
Rat 0.69 0.69 0.65 0
Capybara 0.72 0.61 0.59 0.29 0

(the entries above the diagonal are omitted because of symmetry).
It is hard to see any structure in this kind of table. Of course, one should

better think of a very large table, with tens or perhaps hundreds of rows
and columns. (This is still tiny compared to some other data sets: For
example, the number of proteins with known structure ranges in the hundreds
of thousand, and there are billions of human fingerprints.)

1.1.3 Representing the distances in the plane?

It would be very nice to be able to represent such data visually: Assign a
point in the plane to each of the objects in such a way that the distance of
two objects is equal to the Euclidean distance of the corresponding dots. In
such a picture, we may be able to distinguish tight clusters, isolated points,
and other phenomena of interest at a glance:1

Cat

Cheetah

Dog

Capybara

Rat

Feliformia

Caniformia

Rodentia

Carnivora

1This particular drawing, in addition to being completely made up, bears some typical
features of pseudo-science, such as using Latin names just to impress the reader, but I
hope that it illustrates the point nevertheless.
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Storing a distance matrix for n objects in computer memory requires
storing n2 real numbers, or rather

(
n
2

)
real numbers if we omit the entries on

the diagonal and above it. On the other hand, if we succeeded in representing
the distances by Euclidean distances of suitable n points in the plane, it would
be enough to store 2n real numbers, namely the coordinates of the points. For
n = 1000, the saving is already more than 200-fold. This is another, perhaps
less obvious advantage of such a planar representation.

Moreover, a point set in the plane can be processed by various efficient
geometric algorithms, which cannot work directly with a distance matrix.
This advantage may be the hardest to appreciate at first, but at present it
can be regarded as the main point of metric embeddings.

All of this sounds very good, and indeed it is too good to be (completely)
true.

1.2 Distortion

1.2.1 Impossibility of isometric embeddings

An exact representation of one metric space in another is formalized by
the notion of isometric embedding. A mapping f : (X, ρ) → (Y, σ) of one
metric space into another is called an isometric embedding or isometry if
σ(f(x), f(y)) = ρ(x, y) for all x, y ∈ X.

Two metric spaces are isometric if there exists a bijective isometry between
them.

It is easy to find examples of small metric spaces that admit no isometric
embedding into the plane R2 with the Euclidean metric. One such example
is the 4-point equilateral space, with every two points at distance 1. Here an
isometric embedding fails to exist (which the reader is invited to check) for
“dimensional” reasons. Indeed, this example can be isometrically embedded
in Euclidean spaces of dimension 3 and higher.

Perhaps less obviously, there are 4-point metric spaces that cannot be
isometrically embedded in any Euclidean space, no matter how high the
dimension. Here are two examples, specified as the shortest-path metrics of
the following graphs:

It is quite instructive to prove the impossibility of isometric embedding for
these examples. Later on we will discuss a general method for doing that, but
it is worth trying it now.
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1.2.2 Approximate embeddings

For visualizing a metric space, we need not insist on representing distances
exactly —often we do not even know them exactly. We would be happy with
an approximate embedding, where the distances are not kept exactly but only
with some margin of error. But we want to quantify, and control, the error.

One way of measuring the error of an approximate embedding is by its
distortion.

Let (X, ρ) and (Y, σ) be metric spaces. An injective mapping f : (X, ρ)→
(Y, σ) is called a D-embedding , where D ≥ 1 is a real number, if there is
a number r > 0 such that, for all x, y ∈ X,

r · ρ(x, y) ≤ σ(f(x), f(y)) ≤ Dr · ρ(x, y).

The infimum of the numbers D such that f is a D-embedding is called
the distortion of f .

Note that this definition permits scaling of all distances in the same ratio r,
in addition to the distortion of the individual distances by factors between
1 and D (and so every isometric embedding is a 1-embedding, but not vice
versa). If Y is a Euclidean space (or a normed space), we can re-scale the
image at will, and so we can choose the scaling factor r at our convenience.

The distortion is not the only possible or reasonable way of quantifying the
error of an approximate embedding of metric spaces, and a number of other
notions appear in the literature. But the distortion is the most widespread
and most fruitful of these notions so far.

1.2.3 Lipschitz and bi-Lipschitz maps

Another view of distortion comes from analysis. Let us recall that a mapping
f : (X, ρ) → (Y, σ) is called C-Lipschitz if σ(f(x), f(y)) ≤ Cρ(x, y) for all
x, y ∈ X. Let

‖f‖Lip = sup

{
σ(f(x), f(y))

ρ(x, y)
: x, y ∈ X, x 6= y

}
,

the Lipschitz norm of f , be the smallest possible C such that f is C-Lipschitz.
Now, if f is a bijective map, it is not hard to check that its distortion equals
‖f‖Lip · ‖f−1‖Lip. For this reason, maps with a finite distortion are sometimes
called bi-Lipschitz .
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1.2.4 Go to higher dimension, young man

We have used the problem of visualizing a metric space in the plane for
motivating the notion of distortion. However, while research on low-distortion
embeddings can be declared highly successful, this specific goal, low-distor-
tion embeddings in R2, is too ambitious.

First, it is easy to construct an n-point metric space, for all sufficiently
large n, whose embedding in R2 requires distortion at least Ω(

√
n ),2 and a

slightly more sophisticated construction results in distortion at least Ω(n),
much too large for such embeddings to be useful.

Second, it is computationally intractable (in a rigorously defined sense) to
determine or approximate the smallest possible distortion of an embedding of
a given metric space in R2.

We thus need to revise the goals —what kind of low-distortion embeddings
we want to consider.

The first key to success is to replace R2 by a more suitable target space.
For example, we may use a Euclidean space of sufficiently large dimension or
some other suitable normed space. By embedding a given finite metric space
into such a target space, we have “geometrized” the problem and we can now
apply geometric methods and algorithms. (This can be seen as a part of a
current broader trend of “geometrizing” combinatorics and computer science.)

Moreover, we also revise what we mean by “low distortion”. While for visu-
alization distortion 1.2 can be considered reasonable and distortion 2 already
looks quite large, in other kinds of applications, mainly in approximation
algorithms for NP-hard problems, we will be grateful for embeddings with
distortion like O(log n), where n is the number of points of the considered
metric space.

We will see later how these things work in concrete examples, and so we
stop this abstract discussion for now and proceed with recalling some basics
on norms.

1.3 Normed spaces

A metric can be defined on a completely arbitrary set, and it specifies distances
for pairs of points. A norm is defined only on a vector space, and for each
point it specifies its distance from the origin.

2A reminder of asymptotic notation: f(n) = O(g(n)) means that there are n0 and C
such that f(n) ≤ Cg(n) for all n ≥ n0; f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0;
f(n) = Ω(g(n)) is the same as g(n) = O(f(n)), and f(n) = Θ(g(n)) means that both
f(n) = O(g(n)) and f(n) = Ω(g(n)).
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By definition, a norm on a real vector space Z is a mapping that assigns
a nonnegative real number ‖x‖ to each x ∈ Z so that ‖x‖ = 0 implies
x = 0, ‖αx‖ = |α| · ‖x‖ for all α ∈ R, and the triangle inequality holds:
‖x + y‖ ≤ ‖x‖+ ‖y‖.

Every norm ‖x‖ on Z defines a metric, in which the distance of points
x,y equals ‖x− y‖. However, by far not all metrics on a vector space come
from norms.

For studying a norm ‖.‖, it is usually good to look at its unit ball {x ∈ Z :
‖x‖ ≤ 1}. For a general norm in the plane, it may look like this, for instance:

It is easy to check that the unit ball of any norm is a closed convex body K
that is symmetric about 0 and contains 0 in the interior. Conversely, any
K ⊂ Z with the listed properties is the unit ball of a (uniquely determined)
norm, and so norms and symmetric convex bodies can be regarded as two
views of the same class of mathematical objects.

1.3.1 The `p norms

Two norms will play main roles in our considerations: the Euclidean norm
and the `1 norm. Both of them are (distinguished) members of the noble
family of `p norms.

For a point x = (x1, x2, . . . , xd) ∈ Rd and for p ∈ [1,∞), the `p norm is
defined as

‖x‖p =

( d∑

i=1

|xi|p
)1/p

.

We denote by `dp the normed space (Rd, ‖.‖p).
The Euclidean norm is ‖.‖2, the `2 norm. The `∞ norm, or maximum

norm, is given by ‖x‖∞ = maxi |xi|. It is the limit of the `p norms as p→∞.
To gain some feeling about `p norms, let us look at their unit balls in the

plane:
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p = 1

p = 2

p = 4
3

p = 5
3

p = 2

p = ∞

p = 2.5
p = 3

p = 4

The left picture illustrates the range p ∈ [1, 2]. For p = 2 we have, of course,
the ordinary disk, and as p decreases towards 1, the unit ball shrinks towards
the tilted square. Only this square, the `1 unit ball, has sharp corners —for
all p > 1 the ball’s boundary is differentiable everywhere. In the right picture,
for p ≥ 2, one can see the unit ball expanding towards the square as p→∞.
Sharp corners appear again for the `∞ norm.

1.3.2 The case p < 1

For p ∈ (0, 1), the formula ‖x‖p =
(
|x1|p + · · · + |xd|p)1/p still makes sense,

but it no longer defines a norm —the unit ball is not convex, as the next
picture illustrates for p = 2

3
.

However, dp(x,y) = |x1−y1|p+· · ·+|xd−yd|p does define a metric on Rd, which
may be of interest for some applications. The limit for p = 0 is the number
of coordinates in which x and y differ, a quite useful combinatorial quantity.
One can regard dp(x,y) for small p > 0 as an “analytic” approximation of
this quantity.

1.4 `p metrics
For finite metric spaces, the following notion is crucial.

A metric ρ on a finite set X is called an `p metric if there exists a natural
number d and an isometric embedding of (X, ρ) into the space `dp. For
p = 2 we also speak of a Euclidean metric.
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An `p pseudometric is defined similarly, but we consider isometric maps
into `dp that are not necessarily injective.

1.4.1 Dimension of isometric embeddings

This definition prompts a question: How high do we need to go with the
dimension d in order to represent all possible `p metrics on n points?

For p = 2, the answer is easy: d = n−1 always suffices and it is sometimes
necessary. Indeed, given any n points in Rd, we can assume, after translation,
that one of the points is 0, and then the remaining points span a linear
subspace of dimension at most n− 1. Now the restriction of the Euclidean
norm to any linear subspace is again the Euclidean norm on that subspace;
geometrically speaking, a central slice of the Euclidean ball is a Euclidean
ball. Thus, the given n points can always be assumed to live in `n−1

2 . On
the other hand, it can be shown that the n-point equilateral set (every two
points at distance 1) cannot be isometrically embedded in a Euclidean space
of dimension smaller than n− 1.

For p 6= 2 this kind of argument breaks down, since a central slice of the
`p ball is seldom an `p ball. The picture illustrates this for 2-dimensional
slices of 3-dimensional unit balls, for the `1 norm (the regular octahedron)
and for the `∞ norm (the cube):

In both of the depicted cases, the slice happens to be a regular hexagon.
A completely different, and quite important, method is needed to show

the following weaker bound on the dimension.

Proposition 1.4.1. Every n-point space with an `p metric is isometrically
embeddable in `Np , where N =

(
n
2

)
.

Proof. We first do the proof assuming p = 1, since this makes some things
simpler, and then we point out modifications needed for the general case.
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For notational convenience, let us assume that the point set of our space
is X = {1, 2, . . . , n}. The key trick is to think of a metric ρ on X as a point
in a suitable space. Namely, ρ is specified by the N -component real vector
ρ = (ρ(i, j) : 1 ≤ i < j ≤ n) ∈ RN . We can now define, for example, the
metric cone Mn ⊂ RN as

Mn = {ρ ∈ RN : ρ is a pseudometric on X},
an interesting mathematical object.

For the purposes of this proof, we do not need the metric cone but rather
the set

L1 = {ρ ∈ RN : ρ is an `1 pseudometric on X}.
We want to check that L1 is convex; more precisely, a convex cone, i.e.,

closed under linear combinations with nonnegative coefficients. Clearly, if
x ∈ L1, then λx ∈ L1 for all λ ≥ 0, and so it suffices to verify that if
x,y ∈ L1, then x + y ∈ L1. By definition, x ∈ L1 means that there is a
mapping f : X → Rk such that xi,j = ‖f(i)− f(j)‖1 (recall that the vectors
in RN are indexed by pairs (i, j), i < j). Similarly, for y we have a mapping
g : X → R` with yi,j = ‖g(i)−g(j)‖1. We define a new mapping h : X → Rk+`

by concatenating the coordinates of f and g; that is,

h(i) = (f(i)1, . . . , f(i)k, g(i)1, . . . , g(i)`) ∈ Rk+`.

The point of L1 corresponding to h is x + y. Thus, L1 is a convex cone.
Next, we define a line pseudometric on X as a pseudometric that can be

isometrically mapped into the real line (R1, |.|). Line pseudometrics belong to
L1. If we have an isometric embedding of a metric ρ in `k1, we can express ρ as
the sum of k line pseudometrics (each corresponding to one of the coordinates
of the mapping). Thus, each `1 metric is a nonnegative linear combination of
line pseudometrics.

Next, we want to use Carathéodory’s theorem. The basic version of this
theorem tells us that if x is in the convex hull of a set S ⊆ Rd, then x is
contained in the convex hull of some at most d+ 1 points of S.

We need a version for convex cones: If a point x ∈ Rd is a nonnegative
linear combination of points in a set S ⊆ Rd, then it can be expressed as a
nonnegative linear combination of at most d of these points. In our situation,
this shows that every `1 metric on X is a nonnegative linear combination of
at most N line pseudometrics, and thus it embeds isometrically in `N1 . This
concludes the proof for the case p = 1.

For p > 1, the proof is very similar but everything needs to be “raised to
power p”. Namely, we let Lp consist of pth powers of `p pseudometrics on X:

Lp =
{

(ρ(i, j)p)1≤i<j≤n : ρ is an `p pseudometric on X
}
.
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Then one verifies that Lp is a convex cone generated by pth powers of line
pseudometrics, and uses Carathéodory’s theorem —we omit the details.

Corollary 1.4.2. Let (X, ρ) be a finite metric space and suppose that for
every ε > 0 there is some k such that (X, ρ) admits a (1 + ε)-embedding in `kp.
Then (X, ρ) is an `p metric.

Proof. Let ∆ = diam(X) be the largest distance in (X, ρ). For every ε > 0
there is a (1 + ε)-embedding fε : (X, ρ)→ `Np , N =

(|X|
2

)
, by Proposition 1.4.1.

By translation we can make sure that the image always lies in the 2∆-ball
around 0 in `Np (assuming ε ≤ 1, say); here it is crucial that the dimension is
the same for all ε. By compactness there is a cluster point of these embeddings,
i.e., a mapping f : X → `Np such that for every η > 0 there is some fε with
‖f(x)− fε(x)‖p ≤ η. Then f is the desired isometry.

1.4.2 Infinite dimensions

The `p norms have been investigated mainly in the theory of Banach spaces,
and the main interest in this area is in infinite-dimensional spaces. With
some simplification one can say that there are two main infinite-dimensional
spaces with the `p norm:

• The “small” `p, consisting of all infinite sequences x = (x1, x2, . . .) of
real numbers with ‖x‖p <∞, where ‖x‖p =

(∑∞
i=1 |xi|p

)1/p.

• The “big” Lp = Lp(0, 1), consisting of all measurable functions f : [0, 1]→
R such that ‖f‖p =

(∫ 1

0
|f(x)|p dx

)1/p is finite. (Well, the elements of Lp
are really equivalence classes of functions, with two functions equivalent
if they differ on a set of measure zero... but never mind.)

As introductory harmonic analysis teaches us, the spaces `2 and L2 are
isomorphic, and both of them are realizations of the countable Hilbert space.
For all p 6= 2, though, `p and Lp are substantially different objects.

For us, it is good to know that these infinite-dimensional spaces bring
nothing new compared to finite dimensions as far as finite subspaces are
concerned. Namely, an `p metric can be equivalently defined also by isometric
embeddability into `p or by isometric embeddability into Lp. This follows
from an approximation argument and Corollary 1.4.2. It gives us additional
freedom in dealing with `p metrics: If desired, we can think of the points as
infinite sequences in `p or as functions in Lp.
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1.5 Inclusions among the classes of `p metrics

From the formula ‖x‖p =
(
|x1|p + · · ·+ |xd|p

)1/p it is probably not clear that
the value of p should matter much for the properties of `p metrics, but one of
the main facts about `p metrics is that it matters a lot.

We will first summarize the main facts about the relations among the
classes of `p metrics for various p. Let us temporarily denote the class of all
(finite!) `p metrics by Lp.

(i) The `∞ metrics are the richest: Every finite metric belongs to L∞.

(ii) The Euclidean metrics are the most restricted: We have L2 ⊂ Lp for
every p ∈ [1,∞).

(iii) For p ∈ [1, 2], the richness of `p metrics grows as p decreases. Namely,
Lp ⊂ Lq whenever 1 ≤ q < p ≤ 2. In particular, L1 is the richest in this
range.

(iv) The inclusions mentioned in (i)–(iii) exhaust all containment relations
among the classes Lp. In particular, for p > 2, the classes Lp are great
individualists: None of them contains any other Lq except for L2, and
none of them is contained in any other Lq except for L∞.
What is more, the inclusion relations of these classes do not change by
allowing a bounded distortion: Whenever p, q are such that Lp 6⊂ Lq
according to the above, then Lp contains metrics requiring arbitrarily
large distortions for embedding into `q.

Part (i) is the only one among these statements that has a simple proof,
and we will present it at the end of this section.

1.5.1 Dvoretzky’s theorem and almost spherical slices

Part (ii) looks like something that should have a very direct and simple proof,
but it does not.

It can be viewed as a special case of an amazing Ramsey-type result known
as Dvoretzky’s theorem. It can be stated as follows: For every k ≥ 1 and
every ε > 0, there exists n = n(k, ε) with the following property: Whenever
(Rn, ‖.‖) is an n-dimensional normed space with some arbitrary norm ‖.‖,
there is a linear embedding T : (Rk, ‖.‖2)→ (Rn, ‖.‖) with distortion at most
1 + ε. That is, we have ‖x‖2 ≤ ‖Tx‖ ≤ (1 + ε)‖x‖2 for all x ∈ Rk.

In particular, for every k and ε there is some n such that `k2 can be
(1+ε)-embedded in `np . It follows that for every ε > 0, every Euclidean metric
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(1 + ε)-embeds into `np for some n, and Corollary 1.4.2 tells us that every
Euclidean metric is an `p metric.

If we consider the unit ball of the norm ‖.‖ as in Dvoretzky’s theorem, we
arrive at the following geometric version of the theorem: For every k ≥ 1 and
every ε > 0, there exists n = n(k, ε) with the following property: Whenever
K is a closed n-dimensional convex body in Rn symmetric3 about 0, there
exists a k-dimensional linear subspace E of Rn such that the slice K ∩ E is
(1 + ε)-spherical; that is, for some r > 0 it contains the Euclidean ball of
radius r and is contained in the Euclidean ball of radius (1 + ε)r. Applying
this view to `∞ and `1, we get that the n-dimensional unit cube and the
n-dimensional unit `1 ball (the “generalized octahedron”) have k-dimensional
slices that are almost perfect Euclidean balls —certainly a statement out of
range of our 3-dimensional geometric intuition.

In addition, it turns out that the cube has much less round slices than the
`1 ball. Namely, given n and assuming ε fixed, say ε = 0.1, let us ask what
is the largest dimension k of a (1 + ε)-spherical slice. It turns out that, for
the cube, the largest k is of order log n, and this is also essentially the worst
case for Dvoretzky’s theorem —every n-dimensional symmetric convex body
has (1 + ε)-spherical slices about this big. On the other hand, for the `1 ball
(and, for that matter, for all `p balls with p ∈ [1, 2]), the slice dimension k
is actually Ω(n) (with the constant depending on ε, of course). An intuitive
reason why the `1 ball is much better than the cube is that it has many more
facets: 2n, as opposed to 2n for the cube.

Stated slightly differently, `k2 can be (1 + ε)-embedded, even linearly, in
`Ck1 for a suitable C = C(ε). We will prove this later on, using probabilistic
tools. The problem of constructing such an embedding explicitly is open,
fascinating, related to many other explicit or pseudorandom constructions
in combinatorics and computational complexity, and subject of intensive
research.

1.5.2 Euclidean metrics are `1 metrics

What we can do right now is a proof that every `2 metric is also an `1 metric.
We actually embed all of `d2 isometrically into the infinite-dimensional space
L1(Sd−1). What is that? Similarly to L1 = L1(0, 1), the elements of L1(Sd−1)
are (equivalence classes of) measurable real functions, but the domain is the
(d−1)-dimensional unit Euclidean sphere Sd−1. The distance of two functions
f, g is ‖f − g‖1 =

∫
Sd−1 |f(u)− g(u)| du, where we integrate according to the

uniform (rotation-invariant) measure on Sd−1, scaled so that the whole of

3The symmetry assumption can be dropped.
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Sd−1 has measure 1.
The embedding F : `d2 → L1(S

d−1) is defined as F (x) = fx, where
fx : Sd−1 → R is the function given by fx(u) = 〈x,u〉.

Let us fix some v0 ∈ `d2 with ‖v0‖2 = 1, and set

C = ‖F (v0)‖1 =

∫

Sd−1

|〈v0,u〉| du.

By rotational symmetry, and this is the beauty of this proof, we have
‖F (v)‖1 = C for every unit v ∈ `d2, and hence in general ‖F (x)‖1 = C‖x‖2

for all x ∈ `d2. Since F (x) − F (y) = F (x − y), we see that F scales all
distances by the same factor C, and so after re-scaling we obtain the desired
isometry.

This is all nice, but how do we know that all finite subspaces of L1(Sd−1)
are `1 metrics? With some handwaving we can argue like this: If we choose a
“sufficiently uniformly distributed” finite set A ⊆ Sd−1, then the integral of
every “reasonable” function f on Sd−1, such as our functions fx, over Sd−1

can be approximated by the average of the function over A. In symbols,
‖f‖1 ≈ 1

|A|
∑

u∈A |f(u)|. In this way, we can (1 + ε)-embed a given finite
subset of `d2 into the space of all real functions defined on A with the `1 norm,
and the latter is isomorphic to `|A|1 . As in one of the earlier arguments in this
section, Proposition 1.4.1 and compactness allow us to conclude that every `2

metric is also an `1 metric.

1.5.3 The Fréchet embedding

We will prove that every n-point metric space (X, ρ) embeds isometrically
in `n∞. The proof, due to Fréchet, is very simple but it brings us to a useful
mode of thinking about embeddings.

Let us list the points of X as x1, x2, . . . , xn. To specify a mapping f : X →
`d∞ means to define n functions f1, . . . , fn : X → R, the coordinates of the
embedded points. Here we set

fi(xj) = ρ(xi, xj).

One needs to check that this indeed defines an isometry. This is left to the
reader —as the best way of understanding how the embedding works, which
will be useful later on.

1.5.4 Which p?

That is, if we have a collection of objects with a large number d of attributes
(say 20 or more), such as a collection of bacterial strains in the motivating
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example, how should we measure their distance? We assume that the consid-
ered problem does not suggest itself a particular distance function and that
we can reasonably think of the attributes as coordinates of points in Rd.

An obvious suggestion is the Euclidean metric, which is so ubiquitous and
mathematically beautiful. However, some theoretical and empirical studies
indicate that this may sometimes be a poor choice.

For example, let us suppose that the dimension d is not very small
compared to n, the number of points, and let us consider a random n-point
set X ⊂ Rd, where the points are drawn independently from the uniform
distribution in the unit ball or unit cube, say. It turns out that, with the
Euclidean metric, X is typically going to look almost like an equilateral set,
and thus metrically uninteresting.

On the other hand, this “equalizing” effect is much weaker for `p norms
with p < 2, with p = 1 faring the best (the metrics dp with p ∈ (0, 1) are even
better, but harder to work with). Of course, real data sets are seldom purely
random, but still this can be regarded as an interesting heuristic reason for
favoring the `1 norm over the Euclidean one.
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Lecture 2

Dimension Reduction: Around the
Johnson–Lindenstrauss Lemma

2.1 The lemma
The Johnson–Lindenstrauss lemma is the following surprising fact:1

Theorem 2.1.1. Let ε ∈ (0, 1) be a real number, and let P =
{p1,p2, . . . ,pn} be a set of n points in Rn. Let k be an integer with
k ≥ Cε−2 log n, where C is a sufficiently large absolute constant. Then
there exists a mapping f : Rn → Rk such that

(1− ε)‖pi − pj‖2 ≤ ‖f(pi)− f(pj)‖2 ≤ (1 + ε)‖pi − pj‖2

for all i, j = 1, 2, . . . , n.

In the language acquired in the previous chapter, every n-point Euclidean
metric space can be mapped in `k2, k = O(Cε−2 log n), with distortion at most
(1 + ε)/(1− ε). In still other words, every n-point set in any Euclidean space
can be “flattened” to dimension only logarithmic in n, so that no distance is
distorted by more that a factor that, for small ε, is roughly 1 + 2ε.

In the formulation of the theorem we have not used the language of
distortion, but rather a slightly different notion, which we turn into a general
definition: Let us call a mapping f : (X, ρ) → (Y, σ) of metric spaces an
ε-almost isometry if (1 − ε)ρ(x, y) ≤ σ(f(x), f(y)) ≤ (1 + ε)ρ(x, y). For ε
small, this is not very different from saying that f is a (1 + 2ε)-embedding (at

1Traditionally this is called a lemma, since this is what it was in the original paper of
Johnson and Lindenstrauss. But it arguably does deserve the status of a theorem.
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least if the mapping goes into a normed space and we can re-scale the image
at will), but it will help us avoid some ugly fractions in the calculations.

It is known that the dependence of k on both ε and n in Theorem 2.1.1
is almost optimal —there is a lower bound of Ω((log n)/(ε2 log 1

ε
)). A lower-

bound example is the n-point equilateral set. A volume argument immediately
gives that a 2-embedding of the equilateral set needs dimension at least
Ω(log n), which shows that the dependence on n cannot be improved. On the
other hand, the argument for the dependence on ε is not that easy.

All known proofs of Theorem 2.1.1 are based on the following statement,
which we call, with some inaccuracy, the random projection lemma, and which
for the moment we formulate somewhat imprecisely:

Lemma 2.1.2 (Random Projection Lemma, informal). Let T : Rn → Rk

be a “normalized random linear map” and let ε ∈ (0, 1). Then for every
vector x ∈ Rn we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε

2k,

where c > 0 is a constant (independent of n, k, ε).

The term “normalized random linear map” calls for explanation, but we
postpone the discussion. For now, it is sufficient to know that there is some
probability distribution on the set of linear maps Rn → Rk such that, if T is
randomly drawn from this distribution, then it satisfies the conclusion. (It is
also important to note what the random projection lemma does not say: It
definitely does not claim that a random T is an ε-almost isometry —since,
obviously, for k < n, a linear map Rn → Rk cannot even be injective!)

Proof of Theorem 2.1.1 assuming Lemma 2.1.2. The value of k in the Johnson–
Lindenstrauss lemma is chosen so large that Lemma 2.1.2 yields

Prob[(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2] ≥ 1− n−2

for every fixed x. We apply this to the
(
n
2

)
vectors pi − pj, 1 ≤ i < j ≤ n,

and use the union bound. We obtain that T restricted to our set P behaves
as an ε-almost isometry with probability at least 1

2
. In particular, a suitable

T exists. 2

So, how do we choose a “normalized random linear map”? As we will see,
there are many possibilities. For example:
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(a) (The case of projection to a random subspace.) As in the original
Johnson–Lindenstrauss paper, we can pick a random k-dimensional
linear subspace2 of Rn and take T as the orthogonal projection on it,
scaled by the factor of

√
n/k. This applies only for k ≤ n, while later

we will also need to use the lemma for k > n.

(b) (The Gaussian case.) We can define T by T (x) = 1√
k
Ax, where A is a

random k × n matrix with each entry chosen independently from the
standard normal distribution N(0, 1).

(c) (The ±1 case.) We can choose T as in (b) except that the entries of A
independently attain values +1 and −1, each with probability 1

2
.

The plan is to first prove (b), where one can take some shortcuts in the proof,
and then a general result involving both (b) and (c). We omit the proof of (a)
here.

A random ±1 matrix is much easier to generate and more suitable for
computations than the matrix in the Gaussian case, and so the extra effort
invested in proving (c) has some payoff.

2.2 On the normal distribution and
subgaussian tails

We will now spend some time by building probabilistic tools.
The standard normal (or Gaussian) distribution N(0, 1) is well known, yet

I first want to remind a beautiful computation related to it. The density of
N(0, 1) is proportional to e−x2/2, but what is the right normalizing constant?
In other words, what is the value of the integral I =

∫∞
−∞ e

−x2/2 dx? It is
known that the indefinite integral

∫
e−x

2/2 dx is not expressible by elementary
functions.

The trick is to compute I2 as

I2 =

(∫ ∞

−∞
e−x

2/2 dx

)(∫ ∞

−∞
e−y

2/2 dy

)

=

∫

R2

e−x
2/2e−y

2/2 dx dy

=

∫

R2

e−(x2+y2)/2 dx dy =

∫ ∞

0

e−r
2/2 2πr dr.

2We will not define a random linear subspace formally; let it suffice to say that there is
a unique rotation-invariant probability distribution on k-dimensional subspaces.
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To see the last equality, we consider the contribution of the infinitesimal
annulus with inner radius r and outer radius r + dr to

∫
R2 e

−(x2+y2)/2 dx dy;
the area of the annulus is 2πr dr and the value of the integrand there is
e−r

2/2 (plus infinitesimal terms which can be neglected). The last integral,∫∞
0
e−r

2/2 2πr dr, can already be evaluated in a standard way, by the substi-
tution t = r2, and we arrive at I2 = 2π. Thus, the density of the normal
distribution is 1√

2π
e−x

2/2.

-4 -2 2 4

0.1

0.2

0.3

0.4

This computation also reminds us that if Z1, Z2, . . . , Zn are indepen-
dent standard normal variables, then the distribution of the vector Z =
(Z1, Z2, . . . , Zn) is spherically symmetric.3

We also recall that if Z is a standard normal random variable, then
E[Z] = 0 (this is the 0 in N(0, 1)) and Var [Z] = E[(Z − E[Z])2] = E[Z2] = 1
(this is the 1). The random variable aZ, a ∈ R, has the normal distribution
N(0, a2) with variance a2.

3Which provides a good way of generating a random point on the high-dimensional
Euclidean sphere Sn−1: Take Z/‖Z‖2.
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2.2.1 2-stability

We will need a fundamental property of the normal distribution called
2-stability . It asserts that linear combinations of independent normal random
variables are again normally distributed. More precisely, if X, Y are stan-
dard normal and independent, and a, b ∈ R, then aX + bY ∼ N(0, a2 + b2),
where ∼ means “has the same distribution as”. More generally, of course, if
Z1, . . . , Zn are independent standard normal and a = (a1, . . . , an) ∈ Rn, then
a1Z1 + a2Z2 + · · ·+ anZn ∼ ‖a‖2Z1, and this gives a hint why independent
normal random variables might be useful for embeddings that almost preserve
the Euclidean norm.

There are several ways of proving the 2-stability. The “right” one is perhaps
through characteristic functions. One can also say that 2-stability has to
be true because of the Central Limit Theorem. It is also possible to do the
brute-force computation of the appropriate convolution. We offer a geometric
way.

Let us first think of choosing the random vector Z = (Z1, . . . , Zn) ∈ Rn,
and let U = n−1/2(Z1 + Z2 + · · ·+ Zn) be the orthogonal projection of Z on
the diagonal line x1 = x2 = · · · = xn. By spherical symmetry, U has the same
distribution as the orthogonal projection of Z on the x1-axis, i.e., Z1, and
thus Z1 + · · ·+ Zn ∼

√
nZ1.

Now we want to prove that, with X, Y standard normal, aX + bY is
normally distributed. We may assume that a and b are positive integers (the
general case follows by a continuity handwaving), and let k = a2, ` = b2, and
n = k+ `. By the above aX ∼ Z1 + · · ·+Zk and bY ∼ Zk+1 + · · ·+Zn. Thus
aX + bY ∼ Z1 + · · ·+ Zn ∼

√
nZ1.

2.2.2 Subgaussian tails

There is an extensive literature concerning concentration of random variables
around their expectation, and because of phenomena related to the Cen-
tral Limit Theorem, tail bounds similar to the tail of the standard normal
distribution play a prominent role. We introduce the following convenient
terminology.

Let X be a real random variable with E[X] = 0. We say that X has a
subgaussian upper tail if there exists a constant a > 0 such that, for all λ > 0,

Prob[X > λ] ≤ e−aλ
2

.

We say that X has a subgaussian upper tail up to λ0 if the previous bound
holds for all λ ≤ λ0. We say that X has a subgaussian tail if both X and
−X have subgaussian upper tails.
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If X1, X2, . . . , Xn is a sequence of random variables, by saying that they
have a uniform subgaussian tail we mean that all of them have subgaussian
tails with the same constant a.

A standard normal random variable has a subgaussian tail (ironically, a
little proof is needed!), and the uniform ±1 random variable clearly has a
subgaussian tail.

The simplest version of the Chernoff (or, rather, Bernstein) inequality
provides another example of a random variable with a subgaussian tail.
Namely, it tells us that if X1, . . . , Xn are independent uniform ±1 random
variables, then Y = n−1/2(X1 + X2 + · · ·+ Xn) has a subgaussian tail (the
normalization by n−1/2 is chosen so that Var [Y ] = 1).

This inequality can be proved using the moment generating function of Y ,
which is the function that assigns to every nonnegative u the value E

[
euY
]
.

Lemma 2.2.1 (Moment generating function and subgaussian tail). Let X
be a random variable with E[X] = 0. If E

[
euX
]
≤ eCu

2 for some constant C
and for all u > 0, then X has a subgaussian upper tail. If E

[
euX
]
≤ eCu

2

holds for all u ∈ (0, u0], then X has a subgaussian upper tail up to 2Cu0.

Proof. For all u ∈ (0, u0] and all t ≥ 0, we have

Prob[X ≥ t] = Prob
[
euX ≥ eut

]

≤ e−utE
[
euX
]

(by the Markov inequality)

≤ e−ut+Cu
2

.

For t ≤ 2Cu0 we can set u = t/2C, and we obtain Prob[X ≥ t] ≤ e−t
2/4C .

2.3 The Gaussian case of the random
projection lemma

Lemma 2.3.1 (Random projection lemma with independent Gaussian coeffi-
cients). Let n, k be natural numbers, let ε ∈ (0, 1), and let us define a random
linear map T : Rn → Rk by

T (x)i =
1√
k

n∑

j=1

Zijxj, i = 1, 2, . . . , k,

where the Zij are independent standard normal random variables. Then for
every vector x ∈ Rn we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε

2k,

where c > 0 is a constant.
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Proof. Writing Yi =
∑n

j=1 Zijxj, we have ‖T (x)‖2
2 = 1

k

∑k
i=1 Y

2
i . By the

2-stability of the normal distribution, Yi ∼ N(0, ‖x‖2
2) for all i. We may

assume, for convenience, that ‖x‖2 = 1, and then the Yi are independent
standard normal random variables.

We have E[Y 2
i ] = Var [Yi] = 1, and thus E[‖T (x)‖2

2] = 1. The expectation
is exactly right, and it remains to prove that ‖T (x)‖2

2 is concentrated around 1.
We have Var[‖T (x)‖2

2] = 1
k2

∑k
i=1 Var[Y 2

i ] = 1
k
Var[Y 2], Y standard normal.

Since Var[Y 2] is obviously some constant, Var[‖T (x)‖2
2] is of order

1
k
. So it

is natural to set W = k−1/2
∑k

i=1(Y 2
i − 1), so that E[W ] = 0 and Var [W ] is

a constant, and try to prove a subgaussian tail for W . It turns out that W
does not have a subgaussian tail for arbitrarily large deviations, but only up
to
√
k, but this will be sufficient for our purposes.

The core of the proof is the next claim.

Claim 2.3.2. There exist constants C and u0 > 0 such that

E[eu(Y 2−1)] ≤ eCu
2

and E[eu(1−Y 2)] ≤ eCu
2

for all u ∈ (0, u0), where Y is standard normal.

Proof of the claim. We can directly calculate

E
[
eu(Y 2−1)

]
=

1√
2π

∫ ∞

−∞
eu(x2−1)e−x

2/2 dx (e.g., Maple...)

=
1

eu
√

1− 2u
= e−u−

1
2

ln(1−2u)

= eu
2+O(u3) (Taylor expansion in the exponent)

(the integral can actually be computed by hand, reducing it by
substitution to the known integral

∫∞
−∞ e

−x2/2 dx). It is then clear
that the last expression is at most e2u2 for all sufficiently small u
(and it can be shown that u0 = 1

4
works).

This proves the first inequality, and for the second we proceed
in the same way: E

[
eu(1−Y 2)

]
= eu(1 + 2u)−1/2 = eu

2+O(u3). 2

We can now finish the proof of the lemma. Using the claim for each Yi,
with ũ = u/

√
k instead of u, and by the independence of the Yi, we have

E
[
euW

]
=

k∏

i=1

E
[
eũ(Y 2

i −1)
]
≤
(
eCũ

2
)k

= eCu
2

,
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where 0 ≤ u ≤ u0

√
k, and similarly for E

[
e−uW

]
. Then Lemma 2.2.1 shows

that W has a subgaussian tail up to
√
k (assuming 2Cu0 ≥ 1, which we may

at the price of possibly increasing C and getting a worse constant in the
subgaussian tail). That is,

Prob[ |W | ≥ t] ≤ 2e−ct
2

, 0 ≤ t ≤
√
k. (2.1)

Now ‖T (x)‖2
2 − 1 for unit x is distributed as k−1/2W , and so using (2.1)

with t = ε
√
k gives

Prob[1− ε ≤ ‖T (x)‖2 ≤ 1 + ε] = Prob
[
(1− ε)2 ≤ ‖T (x)‖2

2 ≤ (1 + ε)2
]
≥

Prob
[
1− ε ≤ ‖T (x)‖2

2 ≤ 1 + ε
]

= Prob
[
|W | ≤ ε

√
k
]
≥ 1− 2e−cε

2k.

The proof of the Gaussian version of the random projection lemma, and
thus our first proof of the Johnson–Lindenstrauss lemma, are finished.

Let us remark that tail estimates for the random variable W = k−1/2(Y 2
1 +

· · · + Y 2
k − k), with the Yi standard normal, are well known in statistics,

since W has the important chi-square distribution. If we look up the density
function of that distribution and make suitable estimates, we get another
proof of the Gaussian case of the random projection lemma.

2.4 A more general random projection lemma
Replacing some of the concrete integrals in the previous lemma by general
estimates, we can prove the following more general version of the random
projection lemma, where the independent N(0, 1) variables Zij are replaced
by independent random variables Rij with subgaussian tails.

Lemma 2.4.1 (Random Projection Lemma). Let n, k be natural numbers,
let ε ∈ (0, 1

2
], and let us define a random linear map T : Rn → Rk by

T (x)i =
1√
k

n∑

j=1

Rijxj, i = 1, 2, . . . , k,

where the Rij are independent random variables with E[Rij ] = 0, Var[Rij ] = 1,
and a uniform subgaussian tail. Then for every vector x ∈ Rn we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε

2k,

where c > 0 is a constant (depending on the constant a in the uniform
subgaussian tail of the Rij but independent of n, k, ε).
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We want to imitate the proof for the Gaussian case. The difference is that
now we do not explicitly know the distribution of Yi =

∑n
j=1Rijxj . The plan

is to first prove that Yi has a subgaussian tail, and then use this to prove an
analog of Claim 2.3.2 bounding the moment generating function of Y 2

i − 1
and of 1− Y 2

i .
Our approach does not lead to the shortest available proof, but the

advantage (?) is that most of the proof is rather mechanical: It is clear what
should be calculated, and it is calculated in a pedestrian manner.

In order to start bounding the moment generating functions, we need the
following partial converse of Lemma 2.2.1:

Lemma 2.4.2. If X is a random variable with E[X] = 0 and Var [X] =
E[X2] = 1, and X has a subgaussian upper tail, then E

[
euX
]
≤ eCu

2 for all
u > 0, where the constant C depends only on the constant a in the subgaussian
tail.

We should stress that a bound of, say, 10eCu
2 for E

[
euX
]
would not be

enough for our applications of the lemma. We need to use the lemma with
u arbitrarily small, and there we want E

[
euX
]
to be bounded by 1 +O(u2)

(which is equivalent to eO(u2) for u small). In contrast, for subgaussian tails,
a tail bound like 10e−at

2 would be as good as e−at2 .

Proof of Lemma 2.4.2. Let F be the distribution function of X; that is, F (t) =
Prob[X < t]. We have E

[
euX
]

=
∫∞
−∞ e

ut dF (t). We split the integration
interval into two subintervals, corresponding to ut ≤ 1 and ut ≥ 1.

In the first subinterval, we use the estimate

ex ≤ 1 + x+ x2,

which is valid for all x ≤ 1 (and, in particular, for all negative x). So

∫ 1/u

−∞
eut dF (t) ≤

∫ 1/u

−∞
1 + ut+ u2t2 dF (t) ≤

∫ ∞

−∞
1 + ut+ u2t2 dF (t)

= 1 + uE[X] + u2E[X2] = 1 + u2.

The second subinterval, ut ≥ 1, is where we use the subgaussian tail. (We
proceed by estimating the integral by a sum, but if the reader feels secure in
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integrals, she may do integration by parts instead.)
∫ ∞

1/u

eut dF (t) ≤
∞∑

k=1

∫ (k+1)/u

k/u

ek+1 dF (t) ≤
∞∑

k=1

ek+1

∫ ∞

k/u

dF (t)

=
∞∑

k=1

ek+1Prob

[
X ≥ k

u

]

≤
∞∑

k=1

ek+1e−ak
2/u2 (by the subgaussian tail)

≤
∞∑

k=1

e2k−ak2/u2

(2k is easier to work with than k + 1). As a function of a real variable k,
the exponent 2k − ak2/u2 is maximized for k = k0 = u2/a, and there are
two cases to distinguish, depending on whether this maximum is within the
summation range.

For u2 > a, we have k0 ≥ 1, and the terms near k0 dominate the sum,
while going away from k0 the terms decrease (at least) geometrically. Thus,
the whole sum is O(e2k0−ak20/u2) = O(eu

2/a) = eO(u2) (we recall that u2/a ≥ 1),
and altogether E

[
euX
]

= 1 + u2 + eO(u2) = eO(u2).
For u2 ≤ a the k = 1 term is the largest and the subsequent terms

decrease (at least) geometrically, so the sum is of order e−a/u2 , and, grossly
overestimating, we have e−a/u2 = 1/ea/u

2 ≤ 1/(a/u2) = u2/a. So E
[
euX
]
≤

1 +O(u2) ≤ eO(u2) as well. 2

Now, by passing from subgaussian tails to bounds for the moment gener-
ating functions and back, we can easily see that the Yi =

∑n
j=1Rijxj have

uniform subgaussian tails:
Lemma 2.4.3. Let R1, . . . , Rn be independent random variables such that
E[Rj] = 0, Var[Rj] = 1, and with a uniform subgaussian tail, and let x ∈ Rn

satisfy ‖x‖2 = 1. Then
Y = R1x1 + · · ·+Rnxn

has E[Y ] = 0, Var [Y ] = 1, and a subgaussian tail.
This lemma can be viewed as a generalization of the usual Chernoff–

Hoeffding bounds.

Proof. E[Y ] = 0 and Var [Y ] = 1 are immediate. As for the subgaussian tail,
we have E

[
euRj

]
≤ eCu

2 by Lemma 2.4.2, and so

E
[
euY
]

=
n∏

j=1

E
[
euRjxj

]
≤ eCu

2(x21+···+x2n) = eCu
2

.
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Thus, Y has a subgaussian tail by Lemma 2.2.1 (and by symmetry).

Here is the result that replaces Claim 2.3.2 in the present more general
setting.

Claim 2.4.4. Let Y have E[Y ] = 0, Var [Y ] = 1, and a subgaussian tail.
Then there exist constants C and u0 > 0 such that

E[eu(Y 2−1)] ≤ eCu
2

and E[eu(1−Y 2)] ≤ eCu
2

for all u ∈ (0, u0).

Proof. We begin with the first inequality. First we note that E[Y 4] is finite
(a constant); this follows from the subgaussian tail of Y by direct calculation,
or, in a simpler way, from Lemma 2.4.2 and from t4 = O(et + e−t) for all t.

Let F be the distribution function of Y 2; that is, F (t) = Prob[Y 2 < t].
We again split the integral defining E[euY

2
] into two intervals, corresponding

to uY 2 ≤ 1 and uY 2 ≥ 1. That is,

E
[
euY

2
]

=

∫ 1/u

0

eut dF (t) +

∫ ∞

1/u

eut dF (t).

The first integral is estimated, again using ex ≤ 1 + x+ x2 for x ≤ 1, by
∫ 1/u

0

1 + ut+ u2t2 dF (t) ≤
∫ ∞

0

1 + ut+ u2t2 dF (t)

= 1 + uE[Y 2] + u2E[Y 4] = 1 + u+O(u2).

The second integral can be estimated by a sum:
∞∑

k=1

ek+1Prob
[
Y 2 ≥ k/u

]
≤ 2

∞∑

k=1

e2ke−ak/u.

We may assume that u ≤ u0 = a/4; then k(2− a/u) ≤ −ka/2u, and the sum
is of order e−Ω(1/u). Similar to the proof of Lemma 2.4.2 we can bound this
by O(u2), and for E[euY

2
] we thus get the estimate 1 + u+O(u2) ≤ eu+O(u2).

Then we calculate E[eu(Y 2−1)] = E[euY
2
]e−u ≤ eO(u2) as required.

The calculation for estimating E[e−uY
2
] is simpler, since our favorite

inequality ex ≤ 1 + x+ x2, x ≤ 1, now gives e−ut ≤ 1− ut+ u2t2 for all t > 0
and u > 0. Then

E
[
e−uY

2
]

=

∫ ∞

0

e−utdF (t) ≤
∫ ∞

0

1− ut+ u2t2dF (t)

= 1− uE[Y 2] + u2E[Y 4] ≤ 1− u+O(u2) ≤ e−u+O(u2).

This yields E
[
eu(1−Y 2)

]
≤ eO(u2).
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Proof of Lemma 2.4.1. Claim 2.4.4 is all that is needed to upgrade the proof
of the Gaussian case (Lemma 2.3.1). 2

2.5 Embedding `n2 in `O(n)
1

We prove a theorem promised earlier.

Theorem 2.5.1. Given n and ε ∈ (0, 1), let k ≥ Cε−2(log 1
ε
)n for a suit-

able constant C. Then there is a (linear) ε-almost isometry T : `n2 → `k1.

The first and main tool is yet another version of the random projection
lemma: this time the random projection goes from `n2 to `k1.

Lemma 2.5.2 (Random projection from `2 to `1). Let n, k be natural num-
bers, let ε ∈ (0, 1), and let us define a random linear map T : Rn → Rk

by

T (x)i =
1

βk

n∑

j=1

Zijxj, i = 1, 2, . . . , k,

where the Zij are independent standard normal random variables, and β > 0

is a certain constant (
√

2/π if you must know). Then for every vector x ∈ Rn

we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖1 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε

2k,

where c > 0 is a constant.

This looks almost exactly like the Gaussian version of the random projec-
tion lemma we had earlier; only the normalizing factor of T is different and
the `1 norm is used in the target space. The proof is also very similar to the
previous ones.

Proof. This time ‖T (x)‖1 = 1
βk

∑k
i=1 |Yi|, where Yi =

∑n
j=1 Zijxj is standard

normal (assuming x unit). For a standard normal Y , it can easily be calculated
that E[|Y |] =

√
2/π, and this is the mysterious β (but we do not really

need its value, at least in some of the versions of the proof offered below).
Then E[‖T (x)‖1] = 1 and it remains to prove concentration, namely, that
W = 1

β
√
k

∑k
i=1(|Yi| − β) has a subgaussian tail up to

√
k. This follows in the

usual way from the next claim.



Dimension reduction 81

Claim 2.5.3. For Y standard normal we have

E[eu(|Y |−β)] ≤ eCu
2

and E[eu(1−|Y |)] ≤ eCu
2

with a suitable C and all u ≥ 0 (note that we do not even need a restriction
u ≤ u0).

First proof. We can go through the explicit calculations, as we did for
Claim 2.3.2:

E
[
eu|Y |

]
=

1√
2π

∫ ∞

−∞
eu|x|−x

2/2 dx =
2√
2π

∫ ∞

0

eux−x
2/2 dx

=
2√
2π
eu

2/2

∫ ∞

0

e−(x−u)2/2 dx = 2eu
2/2 · 1√

2π

∫ ∞

−u
e−t

2/2 dt

= 2eu
2/2

(
1

2
+

1√
2π

∫ u

0

e−t
2/2 dt

)

≤ 2eu
2/2

(
1

2
+

u√
2π

)
= eu

2/2 (1 + βu) ≤ eβu+u2/2.

Thus E
[
eu(|Y |−β)

]
≤ eu

2/2. The second inequality follows analogously. 2

Second proof. We can apply the technology developed in Section 2.4. The
random variable X = |Y | − β is easily seen to have a subgaussian tail, we
have E[X] = 0, and Var [X] is some constant. So we can use Lemma 2.4.2
for X ′ = X/

√
Var [X] and the claim follows. 2

2.5.1 Variations and extensions

One can also prove a version of the random projection lemma where the
mapping T goes from `n2 in `kp with 1 ≤ p ≤ 2. The same method can be used;
only the calculations in the proof of the appropriate claim are different. This
leads to an analog of Theorem 2.5.1, i.e., a (1 + ε)-embedding of `n2 into `kp,
k = O(ε−2(log 1

ε
)n). On the other hand, for p > 2, the method can still be

used to (1 + ε)-embed `n2 into `kp, but the calculation comes out differently and
the dimension k will no longer be linear, but a larger power of n depending
on p.

An interesting feature of Lemma 2.5.2 is what does not work —namely,
replacing the N(0, 1) variables by uniform ±1 variables, say, a generalization
analogous to Lemma 2.4.1. The concentration goes through just fine, but
the expectation does not. Namely, if Yi =

∑n
j=1Rijxj for a unit x and

the Rij are no longer Gaussian, then E[|Yi|], unlike E[Y 2
i ], may depend

on x! For example, let the Rij be uniform random ±1 and let us consider
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x = (1, 0) and y = ( 1√
2
, 1√

2
). Then E[| ± x1 ± x2|] = E[| ± 1|] = 1, while

E[| ± y1 ± y2|] = 1√
2
.

However, it turns out that, in the case of ±1 random variables, the
expectation can vary at most between two absolute constants, independent of
the dimension n, as we will later prove (Lemma 2.7.1).

This is a special case of Khintchine’s inequality , claiming that for every
p ∈ (0,∞) there are constants Cp ≥ cp > 0 (the best values are known) with

cp‖x‖2 ≤ E
[ ∣∣∣∣

n∑

j=1

εjxj

∣∣∣∣
p]1/p

≤ Cp‖x‖2,

where the εj are independent uniform random ±1 variables. Using this fact, a
random linear mapping T with ±1 coefficients can be used to embed `n2 in `1

(or `p) with distortion bounded by a constant, but not arbitrarily close to 1.

2.5.2 Dense sets in the sphere

Now we know that if T : Rn → Rk is a random linear map as in Lemma 2.5.2,
then it almost preserves the norm of any fixed x with probability exponentially
close to 1. The proof of Theorem 2.5.1 goes as follows:

1. We choose a large finite set N ⊂ Sn−1, where Sn−1 = {x ∈ Rn : ‖x‖2 =
1} is the Euclidean unit sphere, and we obtain T that is an ε-almost
isometry on all of N simultaneously.

2. Then we check that any linear T with this property is a 4ε-almost
isometry on the whole of `n2 .

Let us call a set N ⊆ Sn−1 δ-dense if every x ∈ Sn−1 has some point
y ∈ N at distance no larger than δ (the definition applies to an arbitrary
metric space). For step 2 we will need that N is ε-dense. Then, in order that
step 1 works, N must not be too large. We have the following (standard and
generally useful) lemma:

Lemma 2.5.4 (Small δ-dense sets in the sphere). For each δ ∈ (0, 1], there
exists a δ-dense set N ⊆ Sn−1 with

|N | ≤
(

4

δ

)n
.

The proof below is existential. It is hard to find explicit constructions of
reasonably small dense sets in the sphere.
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Proof. In order to construct a small δ-dense set, we start with the empty
set and keep adding points one by one. The trick is that we do not worry
about δ-density along the way, but we always keep the current set δ-separated ,
which means that every two points have distance at least δ. Clearly, if no
more points can be added, the resulting set N must be δ-dense.

For each x ∈ N , consider the ball of radius δ
2
centered at x. Since N is

δ-separated, these balls have disjoint interiors, and they are contained in the
ball B(0, 1 + δ/2) ⊆ B(0, 2).

1

1 + δ/2

Therefore, vol(B(0, 2)) ≥ |N | vol(B(0, δ
2
)), and since vol(B(0, r)) in Rn is

proportional to rn, the lemma follows.

For later use, let us record that exactly the same proof works for δ-dense
sets in the unit sphere, or even unit ball, of an arbitrary n-dimensional normed
space (where the density is measured using the metric of that space).

For large n the bound in the lemma is essentially the best possible (up to
the value of the constant 4). For n small it may be important to know that
the “right” exponent is n− 1 and not n, but the argument providing n− 1
would be technically more complicated.

For step 2 in the above outline of the proof of Theorem 2.5.1, we need the
next lemma, which is slightly less trivial than it may seem.

Lemma 2.5.5. Let N ⊂ Sn−1 be a δ-dense set for some δ ∈ (0, 1
2
] and

let T : Rn → Rk be a linear map satisfying the ε-almost isometry condition
1− ε ≤ ‖F (y)‖1 ≤ 1 + ε for all q ∈ N . Then T is a 2(ε+ δ)-almost isometry
`n2 → `k1.

Proof. Since T is linear, it suffices to prove the almost-isometry property for
all x ∈ Sn−1. So let us try to bound ‖T (x)‖1 from above. As expected, we
find y ∈ N with ‖x− y‖ ≤ δ, and the triangle inequality gives

‖T (x)‖1 ≤ ‖T (y)‖1 + ‖T (x− y)‖1 ≤ 1 + ε+ ‖T (x− y)‖1.

But now we need to bound ‖T (x− y)‖1 having a bound on ‖x− y‖2, and
this is the same problem as bounding ‖T (x)‖1, only with a different vector.
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The trick is to continue recursively, in a manner formally resembling the
expansion of a real number into the continued fraction. We set q1 = ‖x−y‖2,
we define x1 = 1

q1
(x−y) ∈ Sn−1, and we find an y1 ∈ N with ‖x1−y1‖2 ≤ δ.

Then

‖T (x)‖1 ≤ 1 + ε+ q1‖T (x1)‖1 ≤ 1 + ε+ δ‖T (x1)‖1

≤ 1 + ε+ δ(‖T (y1)‖1 + ‖T (x1 − y1)‖1)

≤ 1 + εδ(1 + ε) + δq2‖T (x2)‖1,

with q2 = ‖x1 − y1‖2 and x2 = 1
q2

(x1 − y1). Continuing in this manner we
arrive at

‖T (x)‖1 ≤ (1 + ε)(1 + δ + δ2 + · · · ) =
1 + ε

1− δ .

(For perfectionists we remark that if it so happens and xi = yi for some i, we
can just stop the expansion at that i.)

A lower bound for ‖T (x)‖1 is now simple using the upper bound we
already have for all x: ‖T (x)‖1 ≥ ‖T (y)‖1 − ‖T (x − y)‖1 ≥ 1 − ε − δ 1+ε

1−δ .
Estimates of some ugly fractions brings both the upper and lower bounds to
the desired form 1± 2(ε+ δ).

Proof of Theorem 2.5.1. Let N be ε-dense in Sn−1 of size at most (4/ε)n. For
k = Cε−2(ln 1

ε
)n the probability that a random T is not an ε-almost isometry

on N is at most |N | · 2e−cε2k ≤ 2e−cCn ln(1/ε)+n ln(4/ε) < 1 for C sufficiently
large.

If T is an ε-almost isometry on N , then it is a 4ε-almost isometry on all
of `n2 . 2

The proof actually shows that a random T fails to be an ε-almost isometry
only with exponentially small probability (at most e−Ω(ε2k)).

2.5.3 Viewing the embedding as a numerical integration
formula

In Section 1.5 we defined the 1-embedding F : `n2 → L1(Sn−1) by F (x) = fx,
where fx(u) = 〈x,u〉. Similarly, we can define an embedding G of `n2 in
the space of measurable functions on Rn with the L1 norm correspond-
ing to the Gaussian measure; i.e., ‖f‖1 =

∫
Rn |f(z)|γ(z) dz, where γ(z) =

(2π)−n/2e−‖z‖
2
2/2 is the density of the standard normal distribution. We set

G(x) = fx, where fx is now regarded as a function on Rn (while for F , we
used it as a function on Sn−1). By the spherical symmetry of γ we see that
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for all x, ‖fx‖1 = c‖x‖2 for some normalizing constant c > 0, similarly to the
case of F , and so G is a 1-embedding as well.

The embedding `n2 → `
O(n)
1 discussed in the present section can now be

viewed as a “discretization” of G. Namely, if a1, a2, . . . , ak ∈ Rn are the rows
of the matrix defining the embedding T in Lemma 2.5.2, or in other words,
independent random points of Rn drawn according to the density function
γ, the results of this section show that, with high probability, the following
holds for every x ∈ Rn:

1

βk

k∑

i=1

|fx(ai)| ≈ε ‖x‖2 =
1

c

∫

Rn

|fx(z)|γ(z) dz

(≈ε means approximation up to a factor of at most 1± ε).
With this formulation, the proof of Theorem 2.5.1 thus shows that the

average over a random O(n)-point set approximates the integral over Rn for
each of the functions |fx| up to 1± ε.

By projecting Rn radially onto Sn−1, we get an analogous statement
for approximating

∫
Sn−1 |fx(u)| du by an average over a random set A in

Sn−1. We have thus obtained a strong quantitative version of the handwaving
argument from Section 1.5.

2.6 Streaming and pseudorandom generators
Stream computation is a quickly developing area of computer science motivated
mainly by the gigantic amounts of data passing through the current networks.
A data stream is a sequence of elements (numbers, letters, points in the plane,
etc.), which is much larger than the available memory. The goal is to compute,
at least approximately, some function of the data using only one sequential
pass over the data stream.

For example, let us think of a network router, which receives packets of
data and sends them further towards their destinations. Say that packets are
classified into n = 264 types according to some of their header bits. At the
end of the day we would like to know, for instance, whether some concrete
type of packets has appeared in suspiciously large numbers.

This looks difficult, or perhaps impossible, since there are way too many
packets and packet types to store information about each of them. (The
human brain seems to be able to solve such tasks somehow, at least some
people’s brains —a cashier in a supermarket cannot remember all customers
in a day, but still she may notice if she serves someone several times.)

Let xi denote the number of packets of the ith type that passed through
the router since the morning, i = 1, 2, . . . , n. The computation starts with
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x = (x1, . . . , xn) = 0, and the stream can be regarded as a sequence of
instructions like

increment x645212 by 1
increment x302256 by 1
increment x12457 by 1
...

For the method shown here, we will be able to accept even more general
instructions, specified by an index i ∈ {1, 2, . . . , n} and an integer ∆ ∈
{±1,±2, . . . ,±n} and meaning “add ∆ to xi”.4 We assume that the total
number of such instructions, i.e., the length of the stream, is bounded by n2

(or another fixed polynomial in n).
The specific problem we will consider here is to estimate the `2 norm ‖x‖2,

since the solution uses the tools we built in preceding sections. This may
remind one of the man looking for his keys not in the dark alley where he has
lost them but under a street lamp where there is enough light. But the square
‖x‖2

2 is an important parameter of the stream: One can compute the standard
deviation of the xi from it, and use it for assessing how homogeneous or
“random-like” the stream is (the appropriate keywords in statistics are Gini’s
index of homogeneity and surprise index ). Moreover, as we will mention
at the end of this section, an extension of the method can also solve the
“heavy hitters” problem, i.e., given i, testing whether the component xi is
exceptionally large compared to most others.

Thus, we consider the following problem, the `2 norm estimation: We are
given an ε > 0, which we think of as a fixed small number, and we go through
the stream once, using memory space much smaller than n. At the end of
the stream we should report a number, the norm estimate, that lies between
(1− ε)‖x‖2 and (1 + ε)‖x‖2.

It can be shown that this problem is impossible to solve by a deterministic
algorithm using o(n) space.5 We describe a randomized solution, where the

4Choosing n both as the number of entries of x and as the allowed range of ∆ has no
deep meaning —it is just in order to reduce the number of parameters.

5Sketch of proof: Let us say that the algorithm uses at most n/100 bits of space. For
every x ∈ {−1, 0, 1}n let us fix a stream Sx of length n that produces x as the current
vector at the end. For each x ∈ {0, 1}n, run the algorithm on Sx ◦ S0, where ◦ means
putting one stream after another, and record the contents of its memory after the first n
steps, i.e., at the end of Sx; let these contents be M(x). Since there are at most 2n/100

possible values of M(x), some calculation shows that there exist x,x′ ∈ {0, 1}n differing in
at least n/100 components with M(x) = M(x′). Finally, run the algorithm on Sx ◦ S−x
and also on Sx′ ◦ S−x. Being deterministic, the algorithm gives the same answer, but in
the first case the norm is 0 and in the second case it is at least

√
n/10.
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algorithm makes some internal random decisions. For every possible input
stream, the output of the algorithm will be correct with probability at least
1− δ, where the probability is with respect to the internal random choices of
the algorithm. (So we do not assume any kind of randomness in the input
stream.) Here δ > 0 is a parameter of the algorithm, which will enter bounds
for the memory requirements.

2.6.1 A random projection algorithm?

Let us start by observing that some functions of x are easy to compute by
a single pass through the stream, such as

∑n
i=1 xi —we can just maintain

the current sum. More generally, any fixed linear function x 7→ 〈a,x〉 can be
maintained exactly, using only a single word, or O(log n) bits, of memory.

As we have seen, if A is a suitably normalized random k × n matrix, then
‖Ax‖2 is very likely to be a good approximation to ‖x‖2 even if k is very small
compared to n. Namely, we know that the probability that ‖Ax‖2 fails to be
within (1± ε)‖x‖2 is at most 2e−cε

2k, and so with k = Cε−2 log 1
δ
we obtain

the correct estimate with probability at least 1− δ. Moreover, maintaining
Ax means maintaining k linear functions of x, and we can do that using k
words of memory, which is even a number independent of n.

This looks like a very elegant solution to the norm estimation problem
but there is a serious gap. Namely, to obey an instruction “increment xi by
∆” in the stream, we need to add ∆ai to the current Ax, where ai is the ith
column of A. The same i may come many times in the stream, and we always
need to use the same vector ai, otherwise the method breaks down. But A
has kn entries and we surely cannot afford to store it.

2.6.2 Pseudorandom numbers

To explain an ingenious way of overcoming this obstacle, we start by recalling
how random numbers are generated by computers in practice.

The “random” numbers used in actual computations are not random but
pseudorandom. One starts with an integer r0 in range from 0 to m− 1, where
m is a large number, say 264. This r0 is called the seed and we usually may
think of it as truly random (for instance, it may be derived from the number
of microseconds in the current time when the computer is switched on). Then
a sequence (r0, r1, r2, . . .) of pseudorandom numbers is computed as

rt+1 = f(rt),

where f is some deterministic function. Often f is of the form f(x) =
(ax+ b) modm, where a, b,m are large integers, carefully chosen but fixed.
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One then uses the rt as if they were independent random integers from
{0, 1, . . . ,m− 1}. Thus, each rt brings us, say, 64 new random bits. They are
not really independent at all, but empirically, and also with some theoretical
foundation, for most computations they work as if they were.

Let us now consider our matrix A, and suppose, as we may, that it is a
random ±1 matrix. If we want to generate it, say column by column, we can
set the first 64 entries in the first column according to r0, the next 64 entries
according to r1, and so on. Given i and j, we can easily find which bit of
which rt is used to generate the entry aij.

Thus, if we store the seed r0, we can re-compute the ith column of A
whenever we need it, simply by starting the pseudorandom generator all over
from r0 and computing the appropriate rt’s for the desired column. This, as
described, may be very slow, since we need to make about nk steps of the
pseudorandom generator for a typical column. But the main purpose has
been achieved —we need practically no extra memory.6

Although this method may very well work fine in practice, we cannot
provide a theoretical guarantee for all possible vectors x.

2.6.3 A pseudorandom generator with guarantees

Researchers in computational complexity have developed “theoretical” versions
of pseudorandom generators that provably work: For certain well-defined
classes of randomized computations, and for all possible inputs, they can be
used instead of truly random bits without changing the distribution of the
output in a noticeable manner.

Pseudorandom generators constitute an important area of computational
complexity, with many ingenious results and surprising connections to other
subjects.

Here we describe only a single specific pseudorandom generator G, for
space-bounded computations. Similar to the practically used pseudorandom
generators mentioned above, G accepts a seed σ, which is a short sequence of
truly random independent bits, and computes a much longer sequence G(σ)
of pseudorandom bits.

The particular G we will discuss, Nisan’s generator , needs a seed of 2`2 + `
truly random bits and outputs `2` pseudorandom bits, exponentially many
in the square root of the seed length. Formally we regard G as a mapping
{0, 1}2`2+` → {0, 1}`2` .

6With a generator of the form rt+1 = (art + b) modm the computation can actually be
done much faster.
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To define G, we interpret the seed σ as a (2`+ 1)-tuple

(σ0, a1, b1, . . . , an, bn),

where σ0 and the ai and bi have ` bits each and they are interpreted as
elements of the 2`-element finite field GF(2`).

Each pair ai, bi defines a hash function hi : GF(2`)→ GF(2`) by hi(x) =
aix + bi (a small technical point is that we do not want ai to be 0, but if
the seed σ is random, we have ai = 0 with probability 2−`, which will be
negligible). Intuitively, the purpose of a hash function is to “mix” a given bit
string thoroughly, in a random-looking fashion. Technically, the properties of
the hi needed for the construction of G are the following:

• Succinctness: hi “mixes” 2` numbers but it is specified by only 2` bits.

• Efficiency: hi can be evaluated quickly and in small working space, O(`)
bits.7

• Pairwise independence: If a ∈ GF(2`) \ {0} and b ∈ GF(2`) are chosen
uniformly at random, then the corresponding hash function h satisfies,
for any two pairs x 6= y and u 6= v of elements of GF(2`),

Prob[h(x) = u and h(y) = v] = Prob[h(x) = u] · Prob[h(y) = v] = 2−2`.

Any other ensemble of hash functions with these properties would do as well.8
Here is the definition of G(σ) by a picture.

level 0ℓ-bit σ0

σ0 h1(σ0) level 1

level 2

level ℓ

σ0 h2(σ0) h2(h1(σ0))h1(σ0)

. . . . . .σ0 hℓ(σ0)

...
...

...
...

hℓ(hℓ−1(. . . σ0 . . .)))

︸ ︷︷ ︸
G(σ)

7This assumes that we can perform addition and multiplication in GF(2`) efficiently.
For this we need a concrete representation of GF(2`), i.e., an irreducible polynomial of
degree ` over GF(2). Such a polynomial can be stored in ` bits, and it is known that it
can be found deterministically in time polynomial in `.

8Here is another suitable family: A hash function h is defined by h(x) = a∗x+b, where
a ∈ {0, 1}2`−1, b ∈ {0, 1}`, and “∗” stands for convolution, i.e., (a ∗ x)i =

∑n
j=1 ai+j−1xj ,

with addition modulo 2. Thus, h is described by 3`− 1 bits in this case. Here we need not
worry about the arithmetic in GF(2`) as in the previous case.
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We construct a complete binary tree starting with a single node at level 0
with value σ0. For a node at level i with value x, we construct two nodes
at level i + 1 with values x and hi(x). The string G(σ) of length `2` is the
concatenation of the values of the leaves of the tree, on level `, from left to
right.

As we have seen, for our application in `2 norm estimation, we want a
“random access” to the pseudorandom bits, and the above construction indeed
provides it: Given σ and an index t of a position in G(σ), we can compute
the tth bit of G(σ) in space O(`2) using O(`) arithmetic operations, by taking
the appropriate root-to-leaf path in the binary tree.

2.6.4 Fooling a space-bounded machine

We now describe in a semi-formal manner the theoretical guarantees offered
by G. The main result says that G fools all randomized machines using space
at most s, provided that ` ≥ Cs for a sufficiently large constant C.

A machine M of the kind we are considering can be thought of as follows.

s bits of memory PRESS
FOR NEXT
RANDOM BIT

⇐M

It has s bits of working memory, i.e., 2s possible states. The computation
begins at the state where all memory bits of M are 0.

The state may change in each step of M . The machine can also use a
source of random bits: We can imagine that the source is a box with a button,
and whenever M presses the button, the box displays a new random bit. In
each step, M passes to a new state depending on its current state and on the
random bit currently displayed on the random source. The mapping assigning
the new state to the old state and to the current random bit is called the
transition function of M .

Computers normally accept some inputs, and so the reader can ask: where
is the input of M? Usually such computational models are presented as being
able to read some input tape. But for our very specific purposes, we can
assume that the input is hard-wired in the machine. Indeed, we put no limits
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at all on the transition function of M , and so it can implicitly contain some
kind of input.

We assume that for every sequence ω = ω1ω2ω3 . . . of random bits produced
by the source M runs for at most 2s steps and then stops with three ear-
piercing beeps. After the beeps we read the current state of M , and this
defines a mapping, which we also denote by M , assigning the final state to
every string ω of random bits. We can assume that ω has length 2s, since M
cannot use more random bits anyway.

For every probability distribution on the set of all possible values of ω, the
machine M defines a probability distribution on its states. We will consider
two such distributions. First, for ω truly random, i.e., each string of length 2s

having probability 2−2s , the probability of a state q is

ptruly(q) =
|{ω ∈ {0, 1}2s : M(ω) = q}|

22s
.

Now let us suppose that truly random bits are very expensive. We thus set
` = Cs and buy only 2`2 + ` truly random bits as the seed σ for the generator
G. Then we run the machine M on the much cheaper bits from G(σ). When
σ is picked uniformly at random, this defines another probability distribution
on the states of M :

ppseudo(q) =
|{σ ∈ {0, 1}2`2+` : M(G(σ)) = q}|

22`2+`
.

The next theorem tells us that there is almost no difference; the cheap
bits work just fine.

Theorem 2.6.1 (Nisan’s generator). If C in the above construction is a
sufficiently large constant, then for all s and all machines M the probability
distributions ptruly(.) and ppseudo(.) are 2−`/10-close, which means that

∑

q

|ptruly(q)− ppseudo(q)| ≤ 2−`/10,

where the sum extends over all states of M .

The proof is nice and not too hard; it is not so much about machines as
about random and pseudorandom walks in an acyclic graph. Here we omit it.

Now we are ready to fix the random projection algorithm.

Theorem 2.6.2. There is a randomized algorithm for the `2 norm estimation
problem that, given n, ε and δ and having read any given input stream,
computes a number that with probability at least 1− δ lies within (1± ε)‖x‖2.
It uses O(ε−2 log n

εδ
+ (log n

εδ
)2) bits of memory, which for ε and δ constant is

O(log2 n).
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Proof. We set s = C0 log n
εδ

for a suitable constant C0, and we generate
and store a random seed σ for Nisan’s generator of the appropriate length
(about s2).

Then, as was suggested earlier, with k = Cε−2 log 1
δ
, we read the stream

and maintain Ax, where A is a k × n pseudorandom ±1 matrix. This needs
O(k log(nk)) bits of memory, since the largest integers encountered in the
computation are bounded by a polynomial in n and k.

Each entry of A is determined by the appropriate bit of G(σ), and so
when we need the ith column, we just generate the appropriate portion of
G(σ). At the end of the stream we output 1√

k
‖Ax‖2 as the norm estimate.

As we have said, if A is truly random, then 1√
k
‖Ax‖2 is a satisfactory

estimate for the norm. To see that it also works when A is the pseudorandom
matrix, we construct a hypothetical machine M and apply Theorem 2.6.1
to it.

Let x be fixed. The machine M has the value of x hard-wired in it, as
well as the value of ε. It reads random bits from its random source, makes
them into entries of A, and computes ‖Ax‖2

2. If A is generated row-by-row,
then the entries of Ax are computed one by one, and M needs to remember
only two intermediate results, which needs O(log(nk)) bits. (The machine
also has to maintain a counter in range from 1 to nk in order to remember
how far the computation has progressed, but this is also only log(nk) bits.)

The machine then checks whether k−1/2‖Ax‖2 lies within (1±ε)‖x‖2. (No
square roots are needed since the squares can be compared.) If it does, M
finishes in a state called GOOD, and otherwise, in a state called BAD.

We know that if M is fed with truly random bits, then GOOD has
probability at least 1−δ. So by Theorem 2.6.1, ifM runs on the pseudorandom
bits from Nisan’s generator, it finishes at GOOD with probability at least
1 − δ − 2−`/10 ≥ 1 − 2δ. But this means that k−1/2‖Ax‖2 is in the desired
interval with probability at least 1− 2δ, where the probability is with respect
to the random choice of the seed σ. This proves that the algorithm has the
claimed properties.

Let us stress that the machineM has no role in the algorithm. It was used
solely for the proof, to show that the distribution of ‖Ax‖2 is not changed
much by replacing random A by a pseudorandom one.

We have ignored another important issue, the running time of the algo-
rithm. But a routine extension of the above analysis shows that the algorithm
runs quite fast. For δ and ε fixed it uses only O(log n) arithmetic operations
on O(log n)-bit numbers per instruction of the stream.
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2.6.5 Heavy hitters

The above method allows us to estimate xi for a given i with (absolute) error
at most ε‖x‖2, for a prescribed ε. The space used by the algorithm again
depends on ε. Then we can detect whether xi is exceptionally large, i.e.,
contributes at least 1% of the `2 norm, say.

The idea is that xi = 〈x, ei〉, where ei is the ith unit vector in the standard
basis, and this scalar product can be computed, by the cosine theorem, from
‖x‖2, ‖ei‖2 = 1, and ‖x − ei‖2. We can approximate ‖x‖2 and ‖x − ei‖2

by the above method, and this yields an approximation of xi. We omit the
calculations.

2.7 Explicit embedding of `n2 in `1

In Section 1.5 we showed that every `2 metric embeds in `1. We used an
isometric embedding `n2 → L1(S

n−1) defined by a simple formula but going
into an infinite-dimensional space. Later, in Section 2.5, we saw that a
random Cn× n matrix A with independent Gaussian entries defines, with
high probability, an almost-isometry T : `n2 → `

O(n)
1 .

Can’t one just write down a specific matrix A for such an embedding?
This question has been puzzling mathematicians for at least 30 years and it
has proved surprisingly difficult.

The notion of explicit construction is seldom used in a precisely defined
sense in classical mathematics; mathematicians usually believe they can
recognize an explicit construction when they see one.

Theoretical computer science does offer a formal definition of “explicit”:
In our case, for example, a k×n matrix A can be regarded as given explicitly
if there is an algorithm that, given n and k, outputs A in time polynomial
in n + k. (For some purposes, computer scientists prefer even “more ex-
plicit” constructions, which have a very fast local algorithm; in our case, an
algorithm that, given n, k, i, j, computes the entry aij in time polynomial
in log(n+ k).) Taken seriously, this definition of “explicit” has led to very
interesting and valuable methods and results. But, quite often, the resulting
explicit constructions are very far from the intuitive idea of “something given
by a formula” and when classical mathematicians see them, the most likely
reaction may be “this is not what we meant!”.

In any case, so far nobody has managed to construct a polynomially
computable matrix A defining an ε-almost isometric embedding `n2 → `

C(ε)n
1 .

There are several weaker results, in which either the distortion is not arbitrarily
close to 1, or the target dimension is not even polynomially bounded.
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The current strongest results use too many tools to be presented here, but
we explain some weaker results, which can serve as an introduction to the
more advanced ones in the literature.

2.7.1 An explicit embedding in an exponential
dimension

First we would like to see an explicit O(1)-embedding of `n2 in `k1 for some k,
possibly huge but finite. We have indicated one possible route in Section 1.5,
through a “discretization” of the function space L1(S

n−1). Now we take a
different path.

Let k = 2n, let A be the k × n matrix whose rows are all the 2n possible
vectors of +1’s and −1’s, and let T : Rn → Rk be given by x 7→ 2−nAx. We
claim that T is an O(1)-embedding of `n2 in `k1.

For x fixed, ‖T (x)‖1 is the average of |±x1±x2±· · ·±xn| over all choices
of signs. In probabilistic terms, if we set X =

∑n
j=1 εjxj , where ε1, . . . , εn are

independent uniform ±1 random variables, then ‖T (x)‖1 = E[ |X| ]. Thus,
the fact that T is an O(1)-embedding follows from the next lemma.

Lemma 2.7.1 (A special case of Khintchine’s inequality). Let ε1, ε2, . . . , εn
be independent random variables, each attaining values +1 and −1 with
probability 1

2
each, let x ∈ Rn, and let X =

∑n
j=1 εjxj. Then

1√
3
‖x‖2 ≤ E[ |X| ] ≤ ‖x‖2.

Proof. The following proof is quick but yields a suboptimal constant (the
optimal constant is 2−1/2). On the other hand, it contains a useful trick, and
later we will use some of its features.

We will need Hölder’s inequality, which is usually formulated for vectors
a,b ∈ Rn in basic courses: 〈a,b〉 ≤ ‖a‖p‖b‖q, where 1 ≤ p ≤ ∞ and
1
q

= 1 − 1
p
(p = q = 2 is the Cauchy–Schwarz inequality). We will use a

formulation for random variables A,B: E[AB] ≤ E[|A|p]1/pE[|B|q]1/q. For
the case we need, where A and B attain finitely many values, this version
immediately follows from the one for vectors.

We may assume ‖x‖2 = 1. We know (or calculate easily) that E[X2] = 1.
The upper bound E[ |X| ] ≤ E[X2] = 1 follows immediately from the

Cauchy–Schwarz inequality with A = |X| and B = 1 (a constant random
variable).

For the lower bound we first need to bound E[X4] from above by some
constant. Such a bound could be derived from the subgaussian tail of X
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(Lemma 2.4.3), but we calculate directly, using linearity of expectation,

E
[
X4
]

=
n∑

i,j,k,`=1

E[εiεjεkε`]xixjxkx`.

Now if, say, i 6∈ {j, k, `}, εi is independent of εj, εk, ε`, and so E[εiεjεkε`] =
E[εi]E[εjεkε`] = 0. Hence all such terms in the sum vanish.

The remaining terms are of the form E[ε4s]x
4
s = x4

s for some s, or
E[ε2sε

2
t ]x

2
sx

2
t = x2

sx
2
t for some s 6= t. Given some values s < t, we have(

4
2

)
= 6 ways of choosing two of the summation indices i, j, k, ` to have

value s, and the other two indices get t. Hence

E
[
X4
]

=
n∑

s=1

x4
s +

∑

1≤s<t≤n

6x2
sx

2
t

< 3

( n∑

s=1

x4
s +

∑

1≤s<t≤n

2x2
sx

2
t

)
= 3‖x‖4

2 = 3.

Now we want to use Hölder’s inequality so that E[ |X| ] shows up on the right-
hand (larger) side together with E[X4], while E[X2] stands on the left. A
simple calculation reveals that the right choices are p = 3

2
, q = 3, A = |X|2/3,

and B = |X|4/3, leading to

1 = E[X2] = E[AB] ≤ E[Ap]1/pE[Bq]1/q

= E[ |X| ]2/3 E
[
X4
]1/3 ≤ E[ |X| ]2/3 31/3,

and E[ |X| ] ≥ 3−1/2 follows.

In the above we used a relation between E[X] and the embedding in `k1.
Before we proceed with reducing the embedding dimension, let us formulate
this relation in a more general setting. The proof of the next observation is
just a comparison of definitions:

Observation 2.7.2. Let R1, R2, . . . , Rn be real random variables on a proba-
bility space that has k elements (elementary events) ω1, ω2, . . . , ωk, and let
A be the k × n matrix with aij = Prob[ωi]Xj(ωi). For x ∈ Rn let us set
X =

∑n
j=1 Rjxj. Then E[ |X| ] = ‖Ax‖1. 2

2.7.2 Reducing the dimension

This observation suggests that, in order to reduce the dimension 2n in the
previous embedding, we should look for suitable random variables on a smaller
probability space. By inspecting the proof of Lemma 2.7.1, we can see that
the following properties of the εj are sufficient:
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(i) Every εj attains values +1 and −1, each with probability 1
2
.

(ii) Every 4 of the εj are independent.

Property (ii) is called 4-wise independence. In theoretical computer science,
t-wise independent random variables have been recognized as an important
tool, and in particular, there is an explicit construction, for every n, of random
variables ε1, . . . , εn with properties (i) and (ii) but on a probability space of
size only O(n2).9

In view of the above discussion, this implies the following explicit embed-
ding:

Proposition 2.7.3. There is an explicit
√

3-embedding `n2 → `
O(n2)
1 . 2

9For someone not familiar with t-wise independence, the first thing to realize is probably
that 2-wise independence (every two of the variables independent) is not the same as n-wise
independence (all the variables independent). This can be seen on the example of 2-wise
independent random variables below.

Several constructions of t-wise independent random variables are based on the following
simple linear-algebraic lemma: Let A be an m×n matrix over the 2-element field GF(2) such
that every t columns of A are linearly independent. Let x ∈ GF(2)m be a random vector
(each of the 2m possible vectors having probability 2−m), and set ε = (ε1, . . . , εn) = Ax.
Then ε1, . . . , εn are t-wise independent random variables (on a probability space of size 2m).

For t = 2, we can set n = 2m − 1 and let the columns of A be all the nonzero vectors in
GF(2)m. Every two columns are distinct, and thus linearly independent, and we obtain n
pairwise independent random variables on a probability space of size n+ 1.

Here is a more sophisticated construction of (2r + 1)-wise independent random variables
on a probability space of size 2(n + 1)r (with r = 2 it can be used for the proof of
Proposition 2.7.3). Let n = 2q − 1 and let α1, . . . , αn be an enumeration of all nonzero
elements of the field GF(2q). In a representation of GF(2q) using a degree-q irreducible
polynomial over GF(2), each αi can be regarded as a q-element column vector in GF(2)q.
The matrix A, known as the parity check matrix of a BCH code, is set up as follows:




1 1 . . . 1
α1 α2 . . . αn

α3
1 α3

2 . . . α3
n

...
...

...
...

α2r−1
1 α2r−1

2 . . . α2r−1
n




;

here, e.g., α1, α2, . . . , αn represent m rows of A, since each αi is interpreted as a column
vector of q entries. Thus A has m = qr + 1 rows and n = 2q − 1 columns. If we used the
larger matrix with 2qr + 1 rows containing all the powers α1

i , α2
i ,. . . , α2r

i in the columns,
the linear independence of every 2r + 1 columns follows easily by the nonsingularity of a
Vandermonde matrix. An additional trick is needed to show that the even powers can be
omitted.
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2.7.3 Getting distortions close to 1

We know that for X =
∑n

j=1 Zjxj, with Z1, . . . , Zn independent standard
normal, E[ |X| ] is exactly proportional to ‖x‖2. We will now approximate
the Zj by suitable discrete random variables on a finite probability space,
which will provide an embedding `n2 → `k1 with distortion very close to 1 but
with k very large. But then we will be able to reduce k considerably using
Nisan’s pseudorandom generator from Theorem 2.6.1.

There are many possible ways of “discretizing” the standard normal random
variables. Here we use one for which Nisan’s generator is very easy to apply
and which relies on a generally useful theorem.

Namely, for an integer parameter b, we set Z ′j = b−1/2
∑b

`=1 εj`, where
the εj` are independent uniform ±1 random variables. So Z ′j has a binomial
distribution which, by the Central Limit Theorem, approaches the standard
normal distribution as b→∞. But we will not use this directly. What we
really need is that for X ′ =

∑n
j=1 Z

′
jxj with x unit, E[ |X ′| ] is close to E[ |Z| ]

for Z standard normal.
The Berry–Esséen theorem from probability theory quantifies how the dis-

tribution of a sum of n independent random variables approaches the standard
normal distribution; one can find numerous variants in the literature. We will
use the following Berry–Esséen-type result (see, e.g., Ryan O’Donell’s lecture
notes at www.cs.cmu.edu/~odonnell/boolean-analysis/lecture21.pdf).

Theorem 2.7.4. Let ε1, . . . , εn be independent uniform ±1 random variables
and let α ∈ Rn satisfy ‖α‖2 = 1. Then, for Y =

∑n
j=1 εjαj,

∣∣∣E[ |Y | ]− β
∣∣∣ ≤ C‖α‖∞ = C max |αj|,

where C is an absolute constant and β = E[ |Z| ] with Z standard normal.

This can be viewed as a strengthening of Khintchine’s inequality (e.g., of
Lemma 2.7.1) —it tells us that if none of the coefficients αj is too large, then
E[|∑n

j=1 εjαj|] is almost determined by ‖α‖2.

Corollary 2.7.5. Let the Z ′j = b−1/2
∑b

`=1 εj` and X ′ =
∑n

j=1 Z
′
jxj be as

above, and ‖x‖2 = 1. Then E[ |X ′| ] = β +O(b−1/2).

Proof. We use the theorem with

α = b−1/2(x1, x1, . . . , x1︸ ︷︷ ︸
b times

, x2, . . . , x2︸ ︷︷ ︸
b times

, . . . , xn, . . . , xn︸ ︷︷ ︸
b times

).

www.cs.cmu.edu/~odonnell/boolean-analysis/lecture21.pdf
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The corollary as is provides an explicit embedding `n2 → `k1 with k = 2bn

and with distortion 1 +O(b−1/2). The dimension can be reduced considerably
using Nisan’s generator:

Proposition 2.7.6. There is an explicit embedding `n2 → `k1 with k = nO(logn)

and with distortion 1 +O(n−c), where the constant c can be made as large as
desired.

Proof. We can think of each Z ′j in Corollary 2.7.5 as determined by a block
of b of truly random bits. Instead, let us set s = dC1 log2(nb)e for a suitable
constant C1, let ` = Cs as in Theorem 2.6.1, and let σ be a string of 2`2 + `
truly random bits. Let us define Z̃j using the appropriate block of b bits from
G(σ), and let X̃ =

∑n
j=1 Z̃jxj. It suffices to set b = n2c and to show that∣∣E[ |X̃| ]− E[ |X ′| ]

∣∣ = O(b−1/2).
LetM be a hypothetical machine with working space s, of the kind consid-

ered in Theorem 2.6.1, that with a source of truly random bits approximates
X ′ with accuracy at most b−1/2. That is, the final state of M encodes a
number (random variable) Y ′ such that |X ′ − Y ′| ≤ b−1/2. For such task,
working space s is sufficient.

If M is fed with the pseudorandom bits of G(σ) instead, its final state
specifies a random variable Ỹ with |X̃− Ỹ | ≤ b−1/2. Theorem 2.6.1 guarantees
that ∑

y

∣∣∣Prob[Y ′ = y]− Prob[Ỹ = y]
∣∣∣ ≤ 2−`/10.

Since Y ′ and Ỹ obviously cannot exceed 2n (a tighter bound is
√
n+O(b−1/2)

but we do not care), we have
∣∣∣E[ |Y ′| ]− E[ |Ỹ | ]

∣∣∣ ≤
∑

y

|y| ·
∣∣∣Prob[Y ′ = y]− Prob

[
Ỹ = y

]∣∣∣

≤ 2n · 2−`/10 ≤ b−1/2.

So E[ |X ′| ] and E[ |X̃| ] indeed differ by at most O(b−1/2).
The random variable X̃ is defined from 2`2+` = O(log2 n) random bits, and

thus we obtain an embedding in `k1 with k = exp(O(log2 n)) = nO(logn).

Currently there are two mutually incomparable best results on explicit
embeddings `n2 → `k1. One of them provides distortions close to 1, namely
1+O( 1

logn
), and a slightly superlinear dimension k = n2O((log logn)2). The other

has a sublinear distortion no(1) but the dimension is only k = (1 + o(1))n.
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2.8 Error correction and compressed sensing

2.8.1 Error correction over the reals

A cosmic probe wants to send the results of its measurements, represented by
a vector w ∈ Rm, back to Earth. Some of the numbers may get corrupted
during the transmission. We assume the possibility of gross errors; that is, if
the number 3.1415 is sent and it gets corrupted, it can be received as 3.1425,
or 2152.66, or any other real number.

We would like to convert (encode) w into another vector z, so that if no
more than 8%, say, of the components of z get corrupted, we can still recover
the original w exactly.

This problem belongs to the theory of error-correcting codes. In this
area one usually deals with encoding messages composed of letters of a finite
alphabet, while our “letters” are arbitrary real numbers.

In order to allow for error recovery, the encoding z has to be longer than
the original w. Let its length be n, while k = n−m is the “excess” added by
the coding.

We will use a linear encoding, setting z = Gw for a suitable n×m matrix
G (analogous to the generator matrix for linear error-correcting codes).

Let z̃ be the received vector. Let r be the maximum number of errors
that the code should still be able to correct. That is, we assume that the
error vector x = z− z̃ has at most r nonzero components. We call such an x
r-sparse, or just sparse when r is understood.

How can we hope to recover the original message w from z̃? We concentrate
on finding the error vector x first, since then w can be computed by solving
a system of linear equations. Let us assume that the matrix G has the full
rank m, i.e., its columns span an m-dimensional linear subspace L of Rn.

Then the kernel Ker(GT ) = {x ∈ Rn : xTG = 0}, i.e., the orthogonal
complement of L, has dimension k = n−m. Let A be a k×n matrix whose
rows span Ker(GT ) (this is an analog of the parity check matrix for linear
codes). Then AG is the zero matrix, and we have Az̃ = A(Gw+x) = 0w+Ax.
Hence the unknown error vector x is a solution to Ax = b, where A and
b = Az̃ are known.

There are more unknowns than equations in this system, so it has infinitely
many solutions. But we are not interested in all solutions —we are looking
for one with at most r nonzero components.

Later in this section, we will show that if A is a random matrix as in
the random projection lemma, then a sparse solution of Ax = b can be
efficiently computed, provided that one exists, and this provides a solution to
the decoding problem.
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Naturally, the encoding length n has to be sufficiently large in terms of
the message length m and the number r of allowed errors. It turns out that
we will need k, the “excess”, at least of order r log n

r
. As a concrete numerical

example, it is known that when we require r = 0.08n, i.e., about 8% of the
transmitted data may be corrupted, we can take n = 1.33m, i.e., the encoding
expands the message by 33%.

2.8.2 Compressed sensing

Compressed sensing (or compressive sensing according to some authors) is an
ingenious idea, with great potential of practical applications, which also leads
to the problem of finding sparse solutions of systems of linear equations. To
explain the idea, we begin with a slightly different topic —encoding of digital
images.

A digital camera captures the image by means of a large number n of
sensors; these days one may have n around ten millions in more expensive
cameras. The outputs of these sensors can be regarded as a vector s ∈ Rn

(the components are known only approximately, of course, but let us ignore
that).

The picture is usually stored in a compressed format using a considerably
smaller amount of data, say a million of numbers (and this much is needed
only for large-format prints —hundreds of thousand numbers amply suffice
for a computer display or small prints).

The compression is done by complicated and mathematically beautiful
methods, but for now, it suffices to say that the image is first expressed
as a linear combination of suitable basis vectors. If we think of the image
s as a real function defined on a fine grid of n points in the unit square,
then the basis vectors are usually obtained as restrictions of cleverly chosen
continuous functions to that grid. The usual JPEG standard uses products
of cosine functions, and the newer JPEG2000 standard uses the fancier
Cohen–Daubechies–Feauveau (or LeGall) wavelets.

But abstractly speaking, one writes s =
∑n

i=1 xibi, where b1, . . . ,bn is
the chosen basis. For an everyday picture s, most of the coefficients xi are
zero or very small. (Why? Because the basis functions have been chosen so
that they can express well typical features of digital images.) The very small
coefficients can be discarded, and only the larger xi, which contain almost all
of the information, are stored.

We thus gather information by 107 sensors and then we reduce it to, say,
106 numbers. Couldn’t we somehow acquire the 106 numbers right away,
without going through the much larger raw image?

Digital cameras apparently work quite well as they are, so there is no
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urgency in improving them. But there are applications where the number of
sensors matters a lot. For example, in medical imaging, with fewer sensors
the patient is less exposed to harmful radiation and can spend less time
inside various unpleasant machines. Compressed sensing provides a way of
using much fewer sensors. Similarly, in astronomy, light and observation time
of large telescopes are scarce resources, and compressed sensing might help
observers gain the desired information faster. More generally, the idea may
be applicable whenever one wants to measure some signal and then extract
information from it by means of linear transforms.

We thus consider the expression s =
∑

i xibi. Each coefficient xi is a
linear combination of the entries of s (we are passing from one basis of Rn

to another). It is indeed technically feasible to make sensors that acquire a
given xi directly, i.e., they measure a prescribed linear combination of light
intensities from various points of the image.

However, a problem with this approach is that we do not know in advance
which of the xi are going to be important for a given image, and thus which
linear combinations should be measured.

The research in compressed sensing has come up with a surprising solution:
Do not measure any particular xi, but measure an appropriate number of
random linear combinations of the xi (each linear combination of the xi
corresponds to a uniquely determined combination of the si and so we assume
that it can be directly “sensed”).

Then, with very high probability, whenever we measure these random
linear combinations for an image whose corresponding x is r-sparse, we can
exactly reconstruct x from our measurements. More generally, this works
even if x is approximately sparse, i.e., all but at most r components are very
small —then we can reconstruct all the not-so-small components.

Mathematically speaking, the suggestion is to measure the vector b = Ax,
where A is a random k × n matrix, with k considerably smaller than n. The
problem of reconstructing a sparse x is precisely the problem of computing a
sparse solution of Ax = b. (Or an approximately sparse solution —but we
will leave the approximately sparse case aside, mentioning only that it can be
treated by extending the ideas discussed below.)

2.8.3 Sparse solutions of linear equations

We are thus interested in matrices A with n columns such that, for every
right-hand side b, we can compute an r-sparse solution x of Ax = b, provided
that one exists. Moreover, we want k, the number of rows, small.

If every at most 2r columns of A are linearly independent, then the sparse
solution is guaranteed to be unique —showing this is an exercise in linear
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algebra. Unfortunately, even if A satisfies this condition, computing the
sparse solution is computationally intractable (NP-hard) in general.

Fortunately, methods have been invented that find the sparse solution
efficiently for a wide class of matrices. Roughly speaking, while the condition
above for uniqueness of a sparse solution requires every 2r columns of A to
be linearly independent, a sufficient condition for efficient computability of
the sparse solution is that every 3r columns of A are nearly orthogonal. In
other words, the linear mapping R3r → Rk defined by these columns should
be a (Euclidean) ε0-almost isometry for a suitable small constant ε0.

2.8.4 Basis pursuit

As we will prove, for a matrix A satisfying the condition just stated, a sparse
solution x can be found as a solution to the following minimization problem:

Minimize ‖x‖1 subject to x ∈ Rn and Ax = b. (BP)

That is, instead of looking for a solution x with the smallest number of
nonzero components, we look for a solution with the smallest `1 norm. This
method of searching for sparse solutions is called the basis pursuit in the
literature, for reasons which we leave unexplained here.

Let us call the matrix A BP-exact (for sparsity r) if for all b ∈ Rm such
that Ax = b has an r-sparse solution x̃, the problem (BP) has x̃ as the
unique minimum.

The problem (BP) can be re-formulated as a linear program, i.e., as
minimizing a linear function over a region defined by a system of linear
equations and inequalities. Indeed, we can introduce n auxiliary variables
u1, u2, . . . , un and equivalently formulate (BP) as finding

min{u1 + u2 + · · ·+ un : u,x ∈ Rn, Ax = b,

−uj ≤ xj ≤ uj for j = 1, 2, . . . , n}.

Such linear programs can be solved quite efficiently.10

2.8.5 Geometric meaning of BP-exactness

The set of all r-sparse vectors in Rn is a union of r-dimensional coordinate
subspaces. We will consider only r-sparse x̃ with ‖x̃‖1 = 1 (without loss of

10Recently, alternative and even faster methods have been developed for computing a
sparse solution of Ax = b, under similar conditions on A, although they find the sparse
solution only approximately.
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generality, since we can re-scale the right-hand side b of the considered linear
system). These vectors constitute exactly the union of all (r− 1)-dimensional
faces of the unit `1 ball Bn

1 (generalized octahedron), as the next picture
illustrates for n = 3 and r = 1, 2.

x1

x2

x3

1-sparse vectors

x1

x2

x3

2-sparse vectors

Let A be a k×n matrix of rank k and let L = KerA; then dimL = n−k =
m. A given r-sparse vector x̃ ∈ Rn satisfies the linear system Ax = bx̃, where
bx̃ = Ax̃, and the set of all solutions of this system is a translate of L, namely
L+ x̃.

When is x̃ the unique point minimizing the `1 norm among all points of
L+ x̃? Exactly when the affine subspace L+ x̃ just touches the ball Bn

1 at x̃;
here is an illustration for n = 3, dimL = 1, and r = 1:

x̃
L+ x̃

x̃

L+ x̃

Good x̃ Bad x̃

Let π be the orthogonal projection of Rn on the orthogonal complement of L.
Then L+ x̃ touches Bn

1 only at x̃ exactly if π(x̃) has x̃ as the only preimage.
In particular, π(x̃) has to lie on the boundary of the projected `1 ball.

good x̃ bad x̃

Thus, BP-exactness of A can be re-phrased as follows: Every point x̃ in
each (r − 1) face of the unit `1 ball should project to the boundary of π(Bn

1 ),
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and should have a unique preimage in the projection. (We note that this
condition depends only on the kernel of A.)

In the case n = 3, r = 1, dimL = 1, it is clear from the above pictures
that if the direction of L is chosen randomly, there is at least some pos-
itive probability of all vertices projecting to the boundary, in which case
BP-exactness holds. The next theorem asserts that if the parameters are
chosen appropriately and sufficiently large, then BP-exactness occurs with
overwhelming probability. We will not need the just explained geometric
interpretation in the proof.11

Theorem 2.8.1 (BP-exactness of random matrices). There are constants
C and c > 0 such that, if n, k, r are integers with 1 ≤ r ≤ n/C and
k ≥ Cr log n

r
, and if A is a random k×n matrix with independent uniform

±1 entries (or, more generally, with independent entries as in the general
version of the random projection lemma —Lemma 2.4.1), then A is
BP-exact for sparsity r with probability at least 1− e−ck.

It is known that the theorem is asymptotically optimal in the following
sense: For k = o(r log n

r
), no k×n matrix at all can be BP-exact for sparsity r.

Let us say that a matrix A has the property of r-restricted Euclidean
ε-almost isometry12 if the corresponding linear mapping satisfies the condition
of ε-almost isometry with respect to the `2 norm for every sparse x; that is, if

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2

for all r-sparse x ∈ Rn.
The next lemma is the main technical part of the proof of Theorem 2.8.1.

Lemma 2.8.2. There is a constant ε0 > 0 such that if a matrix A has the
property of 3r-restricted Euclidean ε0-almost isometry, then it is BP-exact
for sparsity r.

Let us remark that practically the same proof also works for restricted
`2/`1 almost isometry (instead of Euclidean), i.e., assuming (1 − ε)‖x‖2 ≤
‖Ax‖1 ≤ (1 + ε)‖x‖2 for all 3r-sparse x.

Proof of Theorem 2.8.1 assuming Lemma 2.8.2. Let B be a matrix consisting
of some 3r distinct columns of A. Proceeding as in the proof of Theorem 2.5.1

11The geometric interpretation also explains why, when searching for a sparse solution, it
is not a good idea to minimize the Euclidean norm (although this task is also computationally
feasible). If L is a “generic” subspace of Rn and a translate of L touches the Euclidean ball
at a single point, then this point of contact typically has all coordinates nonzero.

12Sometimes abbreviated as 2-RIP.
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with minor modifications, we get that the linear mapping `3r
2 → `k2 given by B

(and appropriately scaled) fails to be an ε0-almost isometry with probability
at most e−c1ε20k for some positive constant c1.

The number of possible choices of B is
(
n
3r

)
≤
(
en
3r

)3r ≤
(
n
r

)3r
= e3r ln(n/r),

using a well-known estimate of the binomial coefficient. Thus, A fails
to have the 3r-restricted ε0-isometry property with probability at most
e3r ln(n/r)e−c1ε

2
0k ≤ e−ck for r, k, n as in the theorem. 2

Proof of Lemma 2.8.2. Let us suppose that A has the property of 3r-restricted
Euclidean ε0-almost isometry, and that x̃ is an r-sparse solution of Ax = b
for some b.

For contradiction, we assume that x̃ is not the unique minimum of (BP),
and so there is another solution of Ax = b with smaller or equal `1 norm.
We write this solution in the form x̃ + ∆; so

A∆ = 0, ‖x̃ + ∆‖1 ≤ ‖x̃‖1.

We want to reach a contradiction assuming ∆ 6= 0.
Let us note that if A were an almost-isometry, then ∆ 6= 0 would imply

A∆ 6= 0 and we would have a contradiction immediately. Of course, we
cannot expect the whole of A to be an almost-isometry —we have control
only over small blocks of A.

First we set S = {i : ∆i 6= 0} and we observe that at least half of the `1

norm of ∆ has to live on S; in symbols,

‖∆S‖1 ≥ ‖∆S‖1,

where ∆S denotes the vector consisting of the components of ∆ indexed by
S, and S = {1, 2, . . . , n} \ S. Indeed, when ∆ is added to x̃, its components
outside S only increase the `1 norm, and since ‖x̃ + ∆‖1 ≤ ‖x̃‖1, the
components in S must at least compensate for this increase.

Since the restricted isometry property of A concerns the Euclidean norm,
we will need to argue about the Euclidean norm of various pieces of ∆. For
simpler notation, let us assume ‖∆‖1 = 1 (as we will see, the argument
is scale-invariant). Then, as we have just shown, ‖∆S‖1 ≥ 1

2
and thus

‖∆S‖2 ≥ 1
2
√
r
by the Cauchy–Schwarz inequality.

The first idea would be to use the restricted almost-isometry property
to obtain ‖AS∆S‖2 ≥ 0.9 1

2
√
r
(we use ε0 = 0.1 for concreteness), and argue

that the rest of the product, AS∆S, is going to have smaller norm and thus
A∆ = AS∆S +AS∆S cannot be 0. This does not quite work, because of the
following “worst-case” scenario:
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r︷ ︸︸ ︷
1
2r

1
2r

1
2r

. . .

S

∆ = 1
2 0 0 0. . .

Here ‖∆S‖2 is even much larger than ‖∆S‖2.
But this is not a problem: Since A has the 3r-restricted almost-isometry

property, as long as the bulk of the Euclidean norm is concentrated on at
most 3r components, the argument will work.

So let B0 ⊂ S consist of the indices of the 2r largest components of ∆S,
B1 are the indices of the next 2r largest components, and so on (the last
block may be smaller).

S

∆ =

B0 B1

. . .

. . .
≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

We have ‖AS∪B0∆S∪B0‖2 ≥ 0.9‖∆S∪B0‖2 ≥ 0.9‖∆S‖2 ≥ 0.9/2
√
r =

0.45/
√
r. We want to show that

∑

j≥1

‖∆Bj
‖2 ≤

0.4√
r
, (2.2)

since then we can calculate, using restricted almost-isometry on S ∪B0 and
on each of B1, B2, . . .,

‖A∆‖2 ≥ ‖AS∪B0∆S∪B0‖2 −
∑

j≥1

‖ABj
∆Bj
‖2 ≥

0.45√
r
− 1.1

0.4√
r
> 0,

reaching the desired contradiction.
Proving (2.2) is an exercise in inequalities. We know that

∑
j≥0 ‖∆Bj

‖1 =

‖∆S‖1 ≤ 1
2
. Moreover, by the choice of the blocks, the components belonging

to Bj are no larger than the average of those in Bj−1, and thus

‖∆Bj
‖2 ≤

(
2r ·

(‖∆Bj−1
‖1

2r

)2
) 1

2

=
‖∆Bj

‖1√
2r

.

Summing over j ≥ 1, we have

∑

j≥1

‖∆Bj
‖2 ≤

1√
2r

∑

j≥0

‖∆Bj
‖1 ≤

1

2
√

2r
<

0.4√
r
,

which gives (2.2) and finishes the proof. 2
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Lecture 3

Lower Bounds

Some parts, not included here, were taught more or less according to Chap-
ter 15 in the book Lectures on Discrete Geometry by J. Matoušek (lower
bounds by a counting argument, lower bounds for the `1 cube and for expander
graphs using inequalities, and Bourgain’s embedding).

3.1 Impossibility of flattening in `1

Every n-point Euclidean metric space can be embedded in `
O(logn)
2 with

distortion close to 1 according to the Johnson–Lindenstrauss lemma, and this
fact is extremely useful for dealing with Euclidean metrics.

We already know, by a counting argument, that no analogous statement
holds for embedding metrics in `∞. For instance, there are n-point metrics
that cannot be embedded in `cn∞, for a suitable constant c > 0, with distortion
smaller than 2.9.

The following theorem excludes an analog of the Johnson–Lindenstrauss
lemma for `1 metrics as well. Or rather, it shows that if there is any analog
at all, it can be only quite weak.

Theorem 3.1.1. For all sufficiently large n there exists an n-point `1 metric
space M such that whenever M can be D-embedded in `d1 for some D > 1, we
have d ≥ n0.02/D2.

Two particular cases are worth mentioning. First, for every fixed dis-
tortion D, the required dimension is at least a small but fixed power of n.
Second, if we want dimension O(log n), the required distortion is at least
Ω(
√

log n/ log log n ). Interestingly, the latter bound is almost tight: It is
known that one can embed every n-point `1 metric in `2 with distortion
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O(
√

log n log log n) (this is a difficult result), then we can apply the Johnson–
Lindenstrauss lemma to the image of this embedding, and finally embed
`
O(logn)
2 back in `O(logn)

1 with a negligible distortion.
The lower bound for the dimension for embeddings in `∞ was proved by

counting —showing that there are more essentially different n-point spaces
that essentially different n-point subsets of `d∞. This kind of approach cannot
work for the `1 case, since it is known that if ρ is an `1 metric, then √ρ is an
`2 metric. Thus, if we had many `1 metrics on a given n-point set, every two
differing by a factor of at least D on some pair of points, then there are the
same number of Euclidean metrics on these points, every two differing by at
least

√
D on some pair —but we know that `2 metrics can be flattened.

Here is an outline of the forthcoming proof. We want to construct a space
that embeds in `1 but needs a large distortion to embed in `d1.

• We choose p a little larger than 1, namely, p = 1 + 1
ln d

, and we observe
that the “low-dimensional spaces” `d1 and `dp are almost the same —the
identity map is an O(1)-embedding (Lemma 3.1.2 below).

• Then we show that the “high-dimensional” spaces `1 and `p differ sub-
stantially. Namely, we exhibit a space X that embeds well in `1 (for
technical reasons, we will not insist on an isometric embedding, but we
will be satisfied with distortion 2; see Lemma 3.1.3), but requires large
distortion for embedding in `p (Lemma 3.1.4).

It follows that such an X does not embed well in `d1, for if it did, it would
also embed well in `dp.

Lemma 3.1.2. For d > 1 and p = 1 + 1
ln d

, the identity map `d1 → `dp has
distortion at most 3.

Proof. This is a very standard calculation with a slightly nonstandard choice
of parameters. First, for p1 ≤ p2, we have ‖x‖p1 ≥ ‖x‖p2 , and thus the
identity map as in the lemma is nonexpanding. For the contraction Hölder’s
inequality and the standard estimate 1 + x ≤ ex yield

‖x‖1 =
d∑

i=1

1 · |xi| ≤ d1−1/p‖x‖p

≤ e(ln d)(p−1)/p‖x‖p = e(ln d)/(1+ln d)‖x‖p ≤ 3‖x‖p.
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3.1.1 The recursive diamond graph

The space X in the above outline is a generally interesting example, which
was invented for different purposes. It is given by the shortest-path metric
on a graph Gk, where G0, G1, G2, . . . is the following recursively constructed
sequence:

G0 G1 G2 G3

Starting with G0 a single edge, Gi+1 is obtained from Gi by replacing each
edge {u, v} by a 4-cycle u, a, v, b, where a and b are new vertices. The pair
{a, b} is called the anti-edge corresponding to the edge {u, v}. Let us set
Ei = E(Gi), and let Ai+1 be the set of the anti-edges corresponding to the
edges of Ei, i = 0, 1, . . .

Since the vertex sets of the Gi form an increasing sequence, V (G0) ⊂
V (G1) ⊂ · · · , we can regard E0, E1, . . . , Ek and A1, . . . , Ak as sets of pairs of
vertices of Gk. For example, the next picture shows E1 and A1 in G2:

In Gk, the pairs in Ei and in Ai+1 have distance 2k−i.

Lemma 3.1.3. Every Gk embeds in `1 with distortion at most 2.

Sketch of proof. The embedding is very simple to describe. Each vertex of
Gk is assigned a point x ∈ {0, 1}2k . We start with assigning 0 and 1 to the
two vertices of G0, and when Gi+1 is constructed from Gi, the embedding for
Gi+1 is obtained as follows:

x y  xx yy
xy

yx

(xy denotes the concatenation of x and y).
It is easily checked by induction that this embedding preserves the distance

for all pairs in E0 ∪E1 ∪ · · · and in A1 ∪A2 ∪ · · · exactly. Consequently, the
embedding is nonexpanding. However, some distances do get contracted; e.g.,
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the two circled vertices in G2 have distance 4 but their points distance only 2:

0000 1111

0101

1010

0001

0100

0010

1000

0111

1101

1110

1011

We thus need to argue that this contraction is never larger than 2. Given
vertices u and v, we find a pair {u′, v′} in some Ei or Ai with u′ close to u
and v′ close to v and we use the triangle inequality. This is the part which
we leave to the reader. 2

Let us mention that the embedding in the above lemma is not optimal,
since another embedding is known with distortion only 4

3
.

Finally, here is the promised nonembeddability in `p.

Lemma 3.1.4. Any embedding of Gk in `p, 1 < p ≤ 2, has distortion at least√
1 + (p− 1)k.

Proof. First we present the proof for the case p = 2, where it becomes an
exercise for the method with inequalities we have seen for the Hamming cube
and for expander graphs.

Let E = Ek = E(Gk) and F = E0 ∪ A1 ∪ A2 ∪ · · · ∪ Ak. With ρ
denoting the shortest-path metric of Gk, we have

∑
E ρ(u, v)2 = |Ek| = 4k

and
∑

F ρ(u, v)2 = 4k +
∑k

i=1 |Ai|4k−i+1 = 4k +
∑k

i=1 4i−14k−i+1 = (k + 1)4k.
So the ratio of the sums over F and over E is k + 1.

Next, let us consider an arbitrary map f : V (Gk) → `2, and let SE =∑
E ‖f(u)− f(v)‖2

2. Applying the short-diagonals lemma to each of the small
quadrilaterals in Gk, we get that SE ≥

∑
Ak∪Ek−1

‖f(u)− f(v)‖2
2. Next, we

keep the sum over Ak and we bound the sum over Ek−1 from below using the
short-diagonals lemma, and so on, as in the picture:

Σ ≥ ≥ +Σ Σ Σ

In this way, we arrive at
∑

F ‖f(u)− f(v)‖2
2 ≤

∑
E ‖f(u)− f(v)‖2

2, and so f
has distortion at least

√
k + 1.

For the case of an arbitrary p ∈ (1, 2] the calculation remains very similar,
but we need the following result as a replacement for the Euclidean short-
diagonals lemma.
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Lemma 3.1.5 (Short-diagonals Lemma for `p). For every four points x1, x2,
x3, x4 ∈ `p we have

‖x1 − x3‖2
p + (p− 1)‖x2 − x4‖2

p

≤ ‖x1 − x2‖2
p + ‖x2 − x3‖2

p + ‖x3 − x4‖2
p + ‖x4 − x1‖2

p.

This lemma is a subtle statement, optimal in quite a strong sense, and we
prove it in the next section. Here we just note that, unlike the inequalities
used earlier, the norm does not appear with pth powers but rather with
squares. Hence it is not enough to prove the lemma for the 1-dimensional
case.

Given this short-diagonals lemma, we consider an arbitrary mapping
f : V (Gk)→ `p and derive the inequality

‖f(s)− f(t)‖2
p + (p− 1)

∑

A1∪A2∪···∪Ak

‖f(u)− f(v)‖2
p ≤

∑

E

‖f(u)− f(v)‖2
p,

where s and t are the vertices of the single pair in E0. We note that the
left-hand side is a sum of squared distances over F but a weighted sum,
where the pair in E0 has weight 1 and the rest weight p − 1. Comparing
with the corresponding weighted sums for the distances in Gk, Lemma 3.1.4
follows.

Proof of Theorem 3.1.1. We follow the outline. Let f : V (Gk) → `1 be
a 2-embedding and let X = f(V (Gk)). Assuming that (X, ‖.‖1) can be
D-embedded in `d1, we have the following chain of embeddings:

Gk
2−→ X

D−→ `d1
3−→ `dp.

The composition of these embedding is a 6D-embedding of Gk in `p, and so
6D ≥

√
1 + (p− 1)k with p = 1+ 1

ln d
. It remains to note that n = |V (Gk)| ≤

4k for all k ≥ 1. The theorem then follows by a direct calculation. 2

3.2 Proof of the short-diagonals lemma for `p
Lemma 3.1.5 is an easy consequence of the following inequality:

‖x + y‖2
p + ‖x− y‖2

p

2
≥ ‖x‖2

p + (p− 1)‖y‖2
p, 1 < p < 2, (3.1)

where x,y ∈ Rd are arbitrary vectors. (The proof can also be extended for
infinite-dimensional vectors in `p or functions in Lp, but some things come
out slightly simpler in finite dimension.)



112 Jiří Matoušek

Proof of Lemma 3.1.5 assuming (3.1). For understanding this step, it is useful
to note that (3.1) is equivalent to a special case of the short-diagonals lemma,
namely, when x1,x2,x3,x4 are the vertices of a parallelogram:

x1 x2

x4

xy
x3 = x2 + x4 − x1

In that case we have x3 = x2+x4−x1, and writing (3.1) with x = x2+x4−2x1

and y = x4 − x2 being the diagonals, we arrive at

‖x2 + x4 − 2x1‖2
p + (p− 1)‖x4 − x2‖2

p ≤ 2‖x4 − x1‖2
p + 2‖x2 − x1‖2

p. (3.2)

Now if x1,x2,x3,x4 are arbitrary, we use (3.1) for two parallelograms: The
first one has vertices x1,x2,x2 + x4 − x1,x4 as above, leading to (3.2), and
the second parallelogram has vertices x2 + x4 − x3,x2,x3,x4, leading to

‖x2 + x4 − 2x3‖2
p + (p− 1)‖x4 − x2‖2

p ≤ 2‖x4 − x3‖2
p + 2‖x2 − x3‖2

p. (3.3)

Taking the arithmetic average of (3.2) and (3.3) we almost get the inequality
we want, except that we have 1

2
(‖x2 + x4− 2x1‖2

p + ‖x2 + x4− 2x3‖2
p) instead

of ‖x1 − x3‖2
p as we would like to have. It remains to see that the former

expression is at least as large as the latter, and this follows by the convexity
of the function x 7→ ‖x‖2

p. Namely, we use 1
2
(‖a‖2

p + ‖b‖2
p) ≥ ‖(a + b)/2‖2

p

with a = x2 + x4 − 2x1 and b = 2x3 − x2 − x4. 2

Proof of inequality (3.1). This exposition is based on a sketch given as the
first proof of Proposition 3 in

K. Ball, E. A. Carlen, and E. H. Lieb, Sharp uniform convexity
and smoothness inequalities for trace norms, Invent. Math. 115,
1 (1994), 463–482.

The second proof from that paper has been worked out by Assaf Naor; see
www.cims.nyu.edu/~naor/homepage/files/inequality.pdf.

I consider the first proof somewhat more conceptual and accessible for a
non-expert.

First we pass to an inequality formally stronger than (3.1), with the same
right-hand side:

(‖x + y‖pp + ‖x− y‖pp
2

)2/p

≥ ‖x‖2
p + (p− 1)‖y‖2

p. (3.4)

www.cims.nyu.edu/~naor/homepage/files/inequality.pdf
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To see that the left-hand side of (3.4) is never smaller than the left-hand
side of (3.1), we use the following well-known fact: The qth degree average(
aq+bq

2

)1/q is a nondecreasing function of q for a, b fixed. We apply this with
a = ‖x + y‖2

p, b = ‖x − y‖2
p, q = 1 and q = p/2 < 1, and we see that the

new inequality indeed implies the old one. The computation with the new
inequality is more manageable.

It is instructive to see what (3.4) asserts if the vectors x,y are replaced by
real numbers x, y. For simplicity, let us re-scale so that x = 1, and suppose

that y is very small. Then the left-hand side becomes
(

(1+y)p+(1−y)p

2

)2/p

, and
a Taylor expansion of this gives

(1 + p(p− 1)y2/2 +O(y3))2/p = 1 + (p− 1)y2 +O(y3),

while the right-hand side equals 1 + (p− 1)y2. So both sides agree up to the
quadratic term, and, in particular, we see that the coefficient p− 1 in (3.4)
cannot be improved.

The basic idea of the proof of (3.4) is this: With x and y fixed, we
introduce an auxiliary real parameter t ∈ [0, 1], and we consider the functions
L(t) and R(t) obtained by substituting ty for y in the left-hand and right-hand
sides of (3.4), respectively. That is,

L(t) =

(‖x + ty‖pp + ‖x− ty‖pp
2

)2/p

R(t) = ‖x‖2
p + (p− 1)t2‖y‖2

p.

Evidently L(0) = R(0) = ‖x‖2
p. We would like to verify that the first

derivatives L′(t) and R′(t) both vanish at t = 0 (this is easy), and that for the
second derivatives we have L′′(t) ≥ R′′(t) for all t ∈ [0, 1], which will imply
L(1) ≥ R(1) by double integration.

We have R′(t) = 2(p− 1)t‖y‖2
p (so L(0) = 0) and R′′(t) = 2(p− 1)‖y‖2

p.
For dealing with L(t), write f(t) = (‖x + ty‖pp + ‖x− ty‖pp)/2. Then

L′(t) =
2

p
f(t)

2
p
−1f ′(t)

=
2

p
f(t)

2
p
−1p

2

∑

i

(
|xi + tyi|p−1 sgn(xi + tyi)yi

−|xi − tyi|p−1 sgn(xi − tyi)yi
)

(we note that the function z 7→ |z|p has a continuous first derivative, namely
p|z|p−1 sgn(z), provided that p > 1). The above formula for L′(t) shows that
L′(0) = 0.
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For the second derivative we have to be careful, since the graph of the
function z 7→ |z|p−1 has a sharp corner at z = 0, and thus the function is not
differentiable at 0 for our range of p. We thus proceed with the calculation
of L′′(t) only for t with xi ± tyi 6= 0 for all i, which excludes finitely many
values. Then

L′′(t) =
2

p

(
2

p
− 1

)
f(t)

2
p
−2f ′(t)2 +

2

p
f(t)

2
p
−1f ′′(t)

≥ 2

p
f(t)

2
p
−1f ′′(t)

= f(t)
2
p
−1(p− 1)

(∑

i

|xi + tyi|p−2y2
i +

∑

i

|xi − tyi|p−2y2
i

)
.

Next, we would like to bound the sums in the last formula using ‖x‖p
and ‖y‖p. We use the so-called reverse Hölder inequality , which asserts, for
nonnegative ai’s and strictly positive bi’s,

∑
i aibi ≥

(∑
i a

r
i

)1/r(∑
i b
s
i

)1/s,
where 0 < r < 1 and 1

s
= 1− 1

r
< 0. This inequality is not hard to derive from

the “usual” Hölder inequality
∑

i aibi ≤ ‖a‖p‖b‖q, 1 < p <∞, 1
p

+ 1
q

= 1. In
our case we use the reverse Hölder inequality with r = p/2, s = p/(p − 2),
ai = y2

i , and bi = |xi + tyi|p−2 or bi = |xi − tyi|p−2, and we arrive at

L′′(t) ≥ (p− 1)f(t)
2
p
−1‖y‖2

p

(
‖x + ty‖pp + ‖x− ty‖pp

)
= 2(p− 1)‖y‖2

p.

We have thus proved that L′′(t) ≥ R′′(t) for all but finitely many t. The
function L′(t)−R′(t) is continuous in (0, 1) and nondecreasing on each of the
open intervals between the excluded values of t (by the Mean Value Theorem),
and so L′(t) ≥ R′(t) for all t. The desired conclusion L(1) ≥ R(1) follows,
again by the Mean Value Theorem.
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fiber polytope, 33
final, 47
flag, 16
Fuss–Catalan number, 13

Gini’s index of homogeneity, 86

Hadamard matrix, 24
Hanner polytopes, 27
Hansen polytope, 45
hash function, 89
Hilbert space, 63
hypersimplex, 25

independent set, 44
infinitesimal motion, 15
infinitesimally rigid, 15
initial, 47
inner, 47
isometric, 56
isometric embedding, 56
isometry, 56

Khintchine’s inequality, 82

line pseudometric, 62
Lipschitz norm, 57

maximum norm, see `∞-norm, 59
metric, 53
metric cone, 62
metric space, 53
moment generating function, 74
motion, 15

neighborly, 12, 14
neighborly cubical d-polytope, 19
Nisan’s generator, 88
norm, 59

`∞, 59
maximum, see `∞-norm, 59

parity check matrix, 96, 99
perfect graph, 45
permutahedron, 30
permuto-associahedron, 31
Petersen graph, 34
planar-graph metrics, 54
pseudometric, 53
pseudorandom, 87

random linear combinations, 101
regular, 30
reverse Hölder inequality, 114
rigid, 15
rooted stacked polytopes, 13

seed, 87, 88
shape, 39
shortest-path metric, 53
simple, 12
simplicial, 12
stable set polytope, 44
stacked polytope, 12
stacking onto, 11
subdivision, 32
subgaussian tail, 73
subgaussian upper tail, 73
subgaussian upper tail up to λ0, 73
subpolytope, 16
surprise index, 86

transition function, 90
tree metrics, 54
twisted prism, 45

uniform subgaussian tail, 74
unimodal, 39
unit ball, 59
unweighted graph, 54

weighted graph, 54
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