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Seminar 1

Order Types: Points, from
Geometry to Combinatorics

By Oswin Aichholzer
Technische Universität Graz, oaich@ist.uni-graz.at

Notes taken by Birgit Vogtenhuber
Technische Universität Graz, bvogt@ist.tugraz.at

Prologue
The aim of this talk is to provide a framework that could be used to attack
problems like the following ones.
Example 1.0.1 (The Asymptotic Number of Triangulations). It is well known
that the number of triangulations of a convex n point set equals the Catalan
number Cn−2.

What are (upper and lower) bounds for the maximal and minimal numbers
of triangulations of any n point set [3]?
Example 1.0.2 ((Empty) Convex k-gons). We say that a point set S contains
a convex k-gon if there exist k points of S that are in convex position. A
k-gon (contained in S) is called empty if the convex hull of the k-gon does
not contain any points of S in its interior.

What is the least number of (empty) convex k-gons determined by any
set S of cardinality n [8]?
Example 1.0.3 (Reflexivity). Consider a point set S and a simple polygoniza-
tion P of S. We denote by ρ(S) the minimum number of reflex vertices in P
over all polygonizations P of S, and by ρ(n) the maximum of ρ(S) over all
sets S with n points.

How large is ρ(n), or what are upper and lower bounds [14]?



12 Oswin Aichholzer

Example 1.0.4 (Crossing Families). A crossing family (of size k) of a point set
S is a set of k line segments spanned by points in S which pairwise intersect.

What is the minimum number n(k) of points such that any point set of
size at least n(k) admits a crossing family of size at least k?

1.1 Introduction
Many problems in computational and combinatorial geometry are based on
finite sets of points in the Euclidean plane. Of course, there exist infinitely
many different sets of n points, for a given number n.

However, a quite large class of problems is determined already by the
combinatorial properties of the underlying n-point set, rather than by its
metric properties. To be more specific, look at all the

(
n
2

)
straight-line segments

spanned by a given n-point set, as in Figure 1.1. Which of these line segments
cross each other, and which do not, turns out to be important: point sets
with the same crossing properties give rise to equivalent geometric structures.
This is valid for many popular structures, like spanning trees, triangulations,
simple polygonizations (crossing-free Hamiltonian cycles), k-sets, and many
others.

n=5 n=5 n=5

n=3 n=4 n=4

Figure 1.1: Inequivalent sets of small size. There is only one (combinatorial) way
to place 3 points, two ways to place 4 points, and three to place 5. The situation
changes drastically for larger cardinality.

For several problems, like counting the number of triangulations for a
point set, no efficient algorithms are known. For others, like for k-sets, the
combinatorial complexity is still unsettled. Sometimes even the existence
of a solution has not yet been established, such as the question of whether
any two given n-point sets (with the same number of extreme points) can be
triangulated in an isomorphic manner.
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Remark 1.1.1. The above mentioned question is closely related to the research
problem about isomorphic pointed pseudo-triangulations.

To gain insight into the structure of hard problems, the study of instances
that are typical and/or extreme is often very helpful. For example, detecting
a counterexample prevents from constructing hopeless proofs. Conversely, the
non existence of counterexamples of small size gives some evidence for the
truth of a conjecture. This motivates the complete enumeration of all problem
instances of small size. For the problems mentioned above, this means to
investigate all inequivalent sets of points where equivalence is with respect to
the crossing properties of the complete geometric graph spanned by the set.
It is well known that crossing properties are exactly reflected by the order
type of a point set, introduced in Goodmann and Pollack [10]. Some years
ago, a complete data base of all realizable order types of size ≤ 11 and of
according inequivalent point sets in general position has been established [2].

The goal of this talk is to first explain what order types are and how they
can be efficiently represented (Section 1.2). Next, to give a short overview of
why it is complicated and how it is possible to create the order type data base
(Section 1.3). And finally, to provide some examples of successful application
of the data base (Section 1.4).

Remark 1.1.2. Parts of the framework presented here have been developed in
the PhD thesis of Hannes Krasser [11], which we refer to for further reading.
Most of the figures in this talk are taken from there.

1.2 Order types

The order type of a labeled set S = {p1, . . . , pn} of points in general position1

is a mapping that assigns to each (ordered) index triple i, j, k in {1, . . . , n}
the orientation —clockwise or counter-clockwise— of the point triple pi, pj, pk.

Two point sets S1 and S2 are said to be (combinatorially) equivalent if
they exhibit the same order type. That is, there is a bijection between S1 and
S2 such that each triple in S1 agrees in orientation with the corresponding
triple in S2; see Figure 1.2 for an example.

Now how can we decide whether or not two point sets are equivalent? To
answer this question, we need a unique representation of the order type of a
point set, meaning one that is independent of the labeling.

Given a labeled point set S = {p1, . . . , pn}, the λ-matrix is an n × n
matrix where λ(i, j) contains the number of points in S that lie to the left of

1 All point sets in this talk are assumed to be in general position, meaning that no
three points are collinear.



14 Oswin Aichholzer

3
4

2

5

1

3

4
1

2

5

Figure 1.2: Two equivalent sets of 5 points.

the oriented line through pi and pj . Goodman and Pollack [10] show that the
order type and the λ-matrix encode exactly the same information.

Given a point set S, we (re)label the points of S in a way that p1 lies
on the convex hull and that p2, . . . , pn are sorted clockwise around p1; see
Figure 1.3. From these natural λ-matrices (one for each possible choice of p1)
we choose the lexicographically minimal one as the unique representation of
the according order type, also called the fingerprint of the point set. In the
example in Figure 1.3, the leftmost natural λ-matrix is the fingerprint for
this set.

Figure 1.3: Labellings and according natural λ-matrices of a point set with 5 points.
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Remark 1.2.1. There is an error in one of the matrices in Figure 1.3. Find it!

Observation 1.2.2 (Properties of the natural λ-matrices).

• If λ(i, j) = 0, then pi and pj lie on the convex hull.

• λ(i, j) + λ(j, i) = n− 2.

• p1 lies on the convex hull of S.

• p2, . . . , pn are sorted clockwise around p1.

• The fingerprint is the lexicographic minimum of all λ-matrices.

1.3 Generating and realizing order types

If we want to make a data base of point sets for all order types (up to some
small constant cardinality), there are two major goals to meet: First we have
to guarantee that we do not miss any order type, and second we want to
ensure that we do not have any duplicates.

In principle, what we want to do for generating all order types (up to
some small constant cardinality) is to use an iterative approach which we
call complete order type extension: For every order type Tn of n points, we
generate all different order types Tn+1 of n + 1 points that contain Tn as a
sub order type.

1.3.1 Geometric order type extension

The intuitive approach for this would be to do this extension geometrically:
For every order type Tn, take a point set S that represents Tn. Consider the
arrangement of lines2 spanned by the points of S, and place the additional
point in (combinatorially) all possible ways, meaning in each of the cells of
the arrangement.

Unfortunately, this approach is the canonical erroneous approach: It does
not guarantee to result in the complete set of order types Tn+1. Two different
representations of the same order type can still span line arrangements with
different cells; see Figure 1.4.

Stated the other way round, not every extension can be derived from every
geometrical representation of the same order type, as you can easily see in
Figure 1.5.

2A line arrangement is the dissection of the plane induced by a set of straight lines. A
line arrangement is simple if no three lines pass through the same point and no two lines
are parallel.
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Figure 1.4: Arrangements of two point sets with the same order type. The cell
marked blue in the left arrangement does not exist in the right arrangement.

Figure 1.5: Although both shown 5 point sets have the same order type, there is
no way to add the sixth point from the right to the set on the left and obtain the
same order type.

1.3.2 A duality transformation between points and lines

Our (successful) approach [11] to generate all order types makes use of the
duality of point sets (in general position) and (simple) line arrangements in
the Euclidean plane. The duality transformation T used is the unit circle
duality . It matches a point p to the line T (p) = l which fulfills the equality
ptl = 1. This transformation has the property that it preserves point-line
incidences and order:

p ∈ l ⇐⇒ T−1(l) ∈ T (p)

p ∈ l+ ⇐⇒ T−1(l) ∈ T (p)+

Remark 1.3.1. This transformation translates order types into local intersec-
tion sequences, and order type extension into adding a line to an arrangement
(again in all possible ways).
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1.3.3 Abstract order type extension

Like in the primal setting, no direct way is known to enumerate all line
arrangements with n + 1 lines that contain a given line arrangement with
n points. Thus, for the extension we first produce all (non-isomorphic)
arrangements of pseudolines. A set of pseudolines is a set of simple curves
which pairwise cross at exactly one point. Figure 1.6 shows an example.

Figure 1.6: A pseudoline arrangement (?) that occurs for order type extension.

Remark 1.3.2. Figure 1.6 happens to contain an error (and thus is not really
a pseudoline arrangement). What is wrong?

Handling pseudolines is relatively easy in view of their equivalent descrip-
tion by wiring diagrams (see e.g. Goodman [9] and Figure 1.7). We can read
off a corresponding abstract order type (also called pseudo order type) from
each wiring diagram: the order in which the wires cross each other determines
the orientations for all index triples.

Back in the primal setting, where each wire potentially corresponds to
a point, this leads to a list of candidates guaranteed to contain all different
order types.

1.3.4 Realization of abstract order types

We are left with the problem of identifying all the realizable order types in the
obtained list, that is, those for which corresponding point coordinates do exist.
Here we enter the world of oriented matroids , an axiomatic (combinatorial)
abstraction of geometric objects, introduced in the late 1970s.

The question whether or not an abstract order type is realizable is equiva-
lent to the question of whether or not a wiring diagram is stretchable. As a
known phenomenon, a wiring diagram need not be stretchable to straight lines.
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In fact, there exist non-stretchable diagrams already for 8 pseudolines (see
e.g. [6]). Moreover, deciding stretchability for a wiring diagram is NP-hard [6].

1

2

3

4

5

1

2

3

4

5

Figure 1.7: A wiring diagram that can be stretched.

As a consequence, our candidate list will contain non-realizable abstract
order types for size n ≥ 9. Moreover, even if realizability has been recognized
for a particular candidate, we still have to find a corresponding point set.

We have two steps to attack this problem. First, and surprisingly, the
problem gets easier by transforming it into projective geometry. Unlike
before, order types now directly correspond to arrangements of great circles
by duality (and isomorphism classes of pseudo-circle arrangements coincide
with reorientation classes of rank 3 oriented matroids). Moreover, the desired
order types in the plane can be nicely grouped into projective classes, and in
every class either each or none of the order types is realizable.

And second, we apply heuristics for both proving realizability (geometrical
insertion and local optimization) and non-realizability (linear systems of
inequations derived from Grassmann–Plücker relations [7]) to these classes.

1.3.5 The data base

Happy ever after (and after quite some time of calculating), for every instance
of the problem (up to 11 points) one of the heuristics provided an answer. As
a result, we now have a complete data base of point sets for all (realizable)
order types for sets of up to 11 points.

Table 1.1 gives an overview of the resulting numbers of order types. The
tremendous growth of order types, especially in the Euclidean case, becomes
apparent. By the nature of our approach, we computed a combinatorial
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description for all the objects counted in Table 1.1, along with a geometric
representation if the object is realizable.

number of points 4 5 6 7 8 9 10 11
Euclidean abstract
order types

2 3 16 135 3 315 158 830 14 320 182 2 343 203 071

thereof
non-realizable

13 10 635 8 690 164

Euclidean
order types

2 3 16 135 3 315 158 817 14 309 547 2 334 512 907

projective abstract
order types

1 1 4 11 135 4 382 312 356 41 848 591

thereof
non-realizable

1 242 155 214

projective
order types

1 1 4 11 135 4 381 312 114 41 693 377

Table 1.1: Numbers of different order types of size n.

Up to and including point sets of cardinality 8, the data is stored with 8
bits per coordinate, while for 9 to 11 points 16 bit coordinates are necessary.
The whole data base up to and including sets of cardinality 10 needs just
550 MB (which fits on a CD which is available upon request), while for all
sets of 11 points the data needs close to 100 GB (sorry, no CDs are provided
for this ;-).

1.4 Applications

There are several different motivations one might have for using the data base.
It can be useful to find a counterexample to a conjecture (thus preventing from
constructing hopeless proofs). The non existence of counterexamples of small
size might give some evidence for the truth of a conjecture. Also, knowing
the exact answer to a question for small constant problem size can serve as
an induction base for proving asymptotic bounds. In any case, examples
are helpful to obtain structural insight into a problem, possibly also leading
to new observations or conjectures. The list of problems that have been
investigated includes the following:
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• rectilinear crossing number • isomorphic triangulations
• crossing families • sequential triangulations
• Happy End Problem • minimum pseudo-triangulations
• convex k-gons • Hamiltonian cycles
• empty convex k-gons • minimum reflex polygonizations
• convex covering • spanning trees
• convex partitioning • crossing-free matchings
• convex decomposition • k-sets
• number of triangulations • Hayward Conjecture
• flip distances • and many more...

1.4.1 Crossing families

Let us come back to Example 1.0.4 from the very beginning: Recall that a
crossing family (of size k) of a point set S is a set of k line segments spanned
by points in S which pairwise intersect. We want to know the minimum
number n(k) of points such that any point set of size at least n(k) admits a
crossing family of size at least k.

For k = 2 the answer is n(2) = 5, which can be easily seen from the fact
that the complete graph K5 cannot be drawn without a crossing, while K4

still admits a plane drawing.
For k = 3 it could be shown with the help of the data base that every

point set with n ≥ 10 points spans at least 3 pairwise crossing edges, which
is tight (meaning that there exist sets of 9 points without a 3-family). The
best previous known bound on this was n(3) ≤ 37 [13].

This result also plays a crucial role in deriving the first non-trivial (and up
to date still the best) asymptotic lower bound on the number of triangulations
every n point set must have, which partly solves the problem stated in
Example 1.0.1: In [5] the authors prove that for every n point set there always
exist Ω(2.33n) triangulations.

1.4.2 Ramsey type results

In Example 1.0.2 we look for (empty) convex k-gons in point sets. The
question of finding the number f(k) such that every set with ≥ f(k) points
contains a k-gon was stated by Erdős ans Szekeres in 1937. Erdős conjectured
that f(k) = 2k−2 + 1, and by now the best known bound is f(k) ≤

(
2k−5
k−2

)
+ 2.

Empty k-gons need not exist for k ≥ 7: There are arbitrary large sets
not containing any empty convex 7-gon. For k = 6 it is known that at least
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30 points are needed and that 1717 points are for sure sufficient.
If a point set is large enough to contain (empty) k-gons, one could as

well ask how many there are. It easy to see that every set with cardinality 5
contains an empty convex 4-gon, and not necessarily more than one (even if
it need not be empty).

5-gons are guaranteed to exist in any set with at least 9 points, and there
are empty 5-gons in every set of cardinality at least 10. It has been shown
with the help of the data base that every set with 10 points in fact contains
at least two empty 5-gons, while there are sets with 9 points that contain
only one (not necessarily empty) 5-gon.

Let us state two more Ramsey type results of this flavor that have been
observed from the data base. For both of them, a human readable proof has
been provided afterwards; see [4].

• Every set of 8 points contains either an empty convex pentagon or two
disjoint empty convex quadrilaterals.

• Every set of 11 points contains either an empty convex hexagon or an
empty convex pentagon and a disjoint empty convex quadrilateral.

Remark 1.4.1. Ramsey type results for small constant size objects might
lead to improved results for arbitrary size point sets (e.g. when used as a
basis for divide-and-conquer approaches). For example, the results from
above have been successfully used to improve asymptotic bounds for convex
decompositions.

1.4.3 Reflexivity

Recall Example 1.0.3 from the beginning: Considering simple polygonizations
of point sets, we denote by ρ(S) the minimum number of reflex vertices in P
over all polygonizations P of S, and by ρ(n) the worst case number for all
sets of size n (the maximum of ρ(S) over all sets S with n points).
Question 1.4.2. How large is ρ(n), or what are upper and lower bounds?

First of all, ρ(S) = 0 is equivalent to S being a convex set. It has been
known that

bn
4
c ≤ ρ(n) ≤ dn

2
e.

Using the data base we could show that ρ(8) = 2 and ρ(11) = 3 [1]. Again:
exact values for small constants are often useful for asymptotic proofs. In this
case the upper bound for the reflexivity of point sets could be improved to

ρ(n) ≤ 5n

12
+O(1).
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Remark 1.4.3. This question is Open Problem number 66 of The Open
Problems Project [14] (of discrete and computational geometry). If you do
not know this project by now, have a look!

Epilogue

We have seen that the order type data base is useful, and that it can be
applied

• to get (counter) examples for cardinality ≤ 11, and

• to obtain a basis for asymptotic results.

Now what can we do if we need special examples, say for 12 or 13 points,
because 11 is just a little too small?

Here complete order type extension is definitely intractable: For cardinality
n = 12 there are about 750 billion order types, and for calculating and storing
this data one would need at least 30 terabytes of disk space, and at least 200
years of computation time. But there is something that can be done: It is
possible to do partial extension on suitable sets.

Say that, for the problem we want to consider, only sets with special
properties. Say further that these properties are such that a set of n points
with a required property has at least one subset of n − 1 points with an
according property (we call this the subset property). Then we can take all
sets for n = 11 which fulfill the subset property and extend only these sets to
n = 12, 13, . . .

For example, to generate all sets of n points with at most t(n) triangula-
tions, start with (n− 1)-sets with at most t(n)/2 triangulations.

Also, there is no need to realize all the sets we generate. Instead, we only
realize special sets like counterexamples or extreme configurations.

Remark 1.4.4. The above approach can easily be modified to use distributed
computing and take advantage of the tremendous computing power of thou-
sands of computers all over the world. For example, for the rectilinear crossing
number it was possible to process all relevant sets up to 20 points.
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Roots of the Steiner Polynomial

By María Ángeles Hernández Cifre
Universidad de Murcia, mhcifre@um.es

Notes taken by Bernardo González Merino
Universidad de Murcia, bgmerino@gmail.com

1.1 Some basic concepts
We introduce the following notation and terminology:

1. Kn denotes the set of n-dimensional convex bodies.

2. K and E denote elements of Kn.
3. Bn denotes the unit ball.

4. V (K) denotes the usual volume of K.

5. + is the Minkowski addition.

6. For a convex body K ∈ Kn and λ ≥ 0, we define Kλ = K + λBn, the
outer parallel body of K at distance λ.

7. We have that V (Kλ) =
∑n

i=0

(
n
i

)
Wi(K)λi, and call it the Steiner poly-

nomial , with Wi(K) the quermassintegrals of the body K. Some of
these quermassintegrals have a special meaning:

(a) W0(K) = V (K).

(b) nW1(K) = S(K) = Surface area of K.

(c) nW2(K) = M(K) = Integral mean curvature of K.

(d) Wn(K) = V (Bn).
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Example 1.1.1. For n = 3, V (Kλ) = V (K) + S(K)λ + M(K)λ2 + 4
3
πλ3.

Because of this, we can see the coefficients as parts of the Minkowski sum.
It is useful to know that some constructions can be evaluated not only

in Bn, but in a general convex body E, hence obtaining

V (K + λE) =
n∑
i=0

(
n

i

)
Wi(K;E)λi,

where Wi(K;E) = V (K, . . . ,K,E, . . . , E) are the relative quermassintegrals
of K.

The relative inradius is

r(K;E) = max{r > 0 | rE ⊆ K} for some translation of K,

and the relative circumradius is

R(K;E) = min{R > 0 | K ⊆ RE} for some translation of K.

Then the following relation holds:

R(K;E) =
1

r(E;K)
.

With E = Bn, we have the classical inradius and circumradius.

1.2 Tessier’s problem
Problem 1.2.1. Look for relations between zeros of the Steiner polynomial
V (K + λE) =

∑n
i=0

(
n
i

)
Wi(K;E)λi and the inradius r(K;E) and the circum-

radius R(K;E).
First of all, remembering the isoperimetric inequality p2 − 4πA ≥ 0, and

because W1(K,B2) = 1
2
p(K) and A(B2) = π, we obtain

W1(K;E)2 − A(E)A(K) ≥ 0,

the generalized isoperimetric inequality.
The Bonnesen (Blaschke) inequality says that

W1(K;E)2 − A(E)A(K) ≥ A(E)2

4
(R(K;E)− r(K;E))2.

Then, if we study the Steiner polynomial for dimension 2, we ask if it is true
that

A(K) + 2W1(K;E)λ+ A(E)λ2 ≤ 0 when −R(K;E) ≤ λ ≤ −r(K;E).
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If we study its roots, we see that

λ =
−W1(K;E)±

√
W1(K;E)2 − A(K)A(E)

A(E)

and, observing that the roots are real (by the generalized isoperimetric
inequality), it is obvious that λ1, λ2 ≤ 0 and in dimension 2 it is true that
λ1 ≤ −R ≤ −r ≤ λ2 ≤ 0, because of the Bonnesen inequality.

Teissier raised the problem of determining when an extension of this fact
can be stated in arbitrary dimension:

Question 1.2.2. For which convex bodies do the real parts of the roots of the
Steiner polynomial

∑n
i=0

(
n
i

)
Wi(K;E)λi, say Re(γ1) ≤ · · · ≤ Re(γn), satisfy

• Re(γ1) ≤ · · · ≤ Re(γn) ≤ 0;

• Re(γ1) ≤ −R ≤ −r ≤ Re(γn) ≤ 0?

The Bonnesen inequality says that this conjecture is true for n = 2.

1.3 The Hurwitz criterion

Definition 1.3.1. A polynomial f(λ) is called Hurwitz or stable if all its
roots lie in the left half-plane Re(λ) < 0.

So the negativity part of the conjecture is equivalent to asking if the
Steiner polynomial is a Hurwitz polynomial.

In dimensions 3, 4 and 5, we can apply the Hurwitz criterion by hand. If
we have f(λ) = λn +A1λ

n−1 + · · ·+An, let us form the determinants δ1 = A1

and, for k = 2, 3, . . . , n,

δk =

∣∣∣∣∣∣∣∣∣∣∣∣

A1 A3 A5 . . . A2k−1
1 A2 A4 . . . A2k−2
0 A1 A3 . . . A2k−3
0 1 A2 . . . A2k−4
· · · . . . ·
0 0 0 . . . Ak

∣∣∣∣∣∣∣∣∣∣∣∣
with Aj = 0 for j > n. If δk > 0 for all k, then f(λ) is Hurwitz.

In arbitrary dimension, we can find counterexamples as follows.
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1.4 Counterexamples
Definition 1.4.1. We say that x is an r-singular point of K if

dimN(K, x) ≥ n− r.

Definition 1.4.2. K is a p-tangential body of E, where 0 ≤ p ≤ n − 1,
if each support plane of K that is not a support plane of E contains only
(p− 1)-singular points of K.

For example, the 1-tangential bodies of B3 are the cap-bodies.

Theorem 1.4.3 (Favard). Let K, E have non-empty interior. Then K is a
p-tangential body of E for all p = 1, . . . , n− 1 if and only if

V (K) = W0(K;E) = W1(K;E) = · · · = Wn−p(K;E).

From this fact we can obtain a counterexample for the negativity part, as
follows:

Theorem 1.4.4. There exist 2-tangential bodies of B15 whose Steiner poly-
nomial has complex roots with strictly positive real part.

For this, we have the following:

• V (K) = Wi(K) for 1 ≤ i ≤ n− 2.

• After doing some changes in the Steiner polynomial, we obtain that

n∑
i=0

(
n

i

)
Wi(K;E)λi = V (K)

[
n∑
i=2

(
n

i

)
µi + nβ(K)µ+ α(K)

]
1

µn

with α and β constants and µ = 1/α.
Then

∑n
i=2

(
n
i

)
µi has roots with positive real part when n = 15.

Because of this, we construct a counterexample in dimension 15 by a
2-tangential body, trying to verify that α, β → 0 and remembering that zeros
of polynomials are continuous functions of the coefficients. Hence, the claim
that Re(γn) ≤ 0 is false.

Problem 1.4.5. Related with the circumradius bound, now E = B3 in dimen-
sion 3, if K is a planar convex body with area A and perimeter p, then all
the roots of the Steiner polynomial have real part greater than −R(K) if and
only if p(K)2 < 128A(K)/(3π) and p(K) < 16R(K)/3.

However, many symmetric lenses verify the problem, so the circumradius
conjecture is false.
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Problem 1.4.6. Finally, the inradius bound is also false. Another counter-
example in dimension 3 can be found by taking

conv({planar square}, B3, external point to conv({planar square}, B3)).

But not everything is false, as we can find some families of sets that verify
the conjecture:

• In dimension 3: cylinders, orthogonal boxes...;

• regular n-cubes, n-simplices...;

• also the cap bodies, that satisfy Teissier’s conjecture.

Finally, another bound is known for the roots, as follows:

1. They lie in the ring 1
n
r(K;E) ≤ |γi| ≤ nR(K;E).

2. |Re(γ1)|+ · · ·+ |Re(γn)| ≥ nr(K;E).

3. |Re(γ1)|+ · · ·+ |Re(γn)| ≤ nR(K;E) if Re(γi) ≤ 0 for all i.
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Paths with no Small Angles

By Imre Bárány
Alfréd Rényi Institute of Mathematics, Budapest, barany@reyni.hu

Notes taken by Anna Gundert
Technische Universität Berlin, gundert@math.tu-berlin.de

and Daria Schymura
Freie Universität Berlin, schymura@inf.fu-berlin.de

1.1 Introduction

For a finite set X ⊂ R2, each linear ordering of X corresponds to a polygonal
path with vertex set X.

Figure 1.1: The ordering x1, x2, . . . , x8 yields this polygonal path.

In 1992, S. Fekete raised the following question in his thesis [4]: Given a
finite set of points in the plane, can you always find an ordering of the points
such that all angles of the corresponding path are at least 30◦? An angle
of 30◦ degrees is a natural bound because of the 4-point example shown in
Figure 1.2. Figure 1.3 shows that this problem can occur with any number
of points.
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Figure 1.2: One edge has to connect the inner point with an outer point. The
angle of this edge with any incident edge will be 30◦.

Figure 1.3: For every number of points, an angle of 30◦ can occur.

Figure 1.4 shows that you cannot restrict the question to non-self-inter-
secting paths. Any path connecting the points has to start and end on the
outermost points to avoid small angles. In order to reach the upper point,
the path is forced to cross itself.

Figure 1.4: Any good path connecting these points has to intersect itself.

The question reappeared in a paper by S. Fekete and G. J. Woeginger
in 1997 [3]. In 2005, A. Dumitrescu suggested to consider the question for
an arbitrary α > 0. The first answer is the following theorem by I. Bárány,
A. Pór and P. Valtr from 2008 [2, 3].

Theorem 1.1.1 (Bárány–Pór–Valtr [2, 3]). For every finite set X ⊂ R2, there
is a polygonal path with vertex set X such that all angles between consecutive
edges are at least 20◦.

Very recently, J. Kyncl proved the statement for α = 30◦ with similar
methods.

1.2 Proof of the theorem
For α > 0, we call a path α-good if all angles between consecutive edges are
at least α. Thus, Theorem 1.1.1 states the existence of a π/9-good path for
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each finite X ⊂ R2.
Here is an inductive idea for a proof that does not work: Choose a large

triangle, with all angles large, and take its vertices out of X. Then find a
path on the remaining vertices. The hope would be to find a vertex among
the remaining ones that you can connect to the triangle. This method fails if
all triangles are flat!

Definition 1.2.1. A set X ⊂ R2 is called α-flat if every triangle with vertices
in X has an angle < α.

Figure 1.5 shows an example of an α-flat set (for α = 20◦). One can see
that any path connecting the points without small angles has to start and
end at the outermost points.

Figure 1.5: A 20◦-flat set.

A question one might ask is whether every α-flat set looks like this. A
more precise statement of this question involves the following definition:

Definition 1.2.2. A set X ⊂ R2 is β-separable if and only if X = U ∪ V
and U ∩ V = ∅ with U, V 6= ∅ such that for all u1, u2 ∈ U and v1, v2 ∈ V the
angle between u1v1 and u2v2 is < β.

Figure 1.6: A β-separable set.

Now, one could ask whether for every α there exists a β such that every
α-flat set is β-separable. Both questions are open!

Instead of proving Theorem 1.1.1 directly, a stronger statement will be
proven. To formulate this, we need the following definitions:

Definition 1.2.3. Let α > 0.

1. Let P = x1 . . . xn be a path connecting n given vertices in R2. Then
x2x1, xn−1xn ∈ S1 are called the end directions of P .
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Figure 1.7: The end directions of a path.

2. A set R ⊂ S1 is called an α-restriction if it is the union of two arcs
R1, R2 ⊂ S1 such that |R1|, |R2| ≥ 4α and dist(R1, R2) ≥ 2α. (See
Figure 1.8.)

Figure 1.8: A restriction.

3. A path P is R-avoiding for an α-restriction R if it is α-good and not
both end directions are in the same Ri.

Theorem 1.2.4 (Bárány–Pór–Valtr [2, 3]). For every π/9-restriction R ⊂ S1

and every finite X ⊂ R2 there is an R-avoiding path on X.

The advantage of this approach is that induction works better.

Sketch of proof. Let α = π/9. The proof proceeds by induction on |X|.
If |X| = 2, the end directions of any path are antipodal on S1 and can

therefore not both be contained in any arc of length 4α = 4
9
π < π. Thus,

there is an R-avoiding path for any α-restriction R.
Now, let |X| > 2 and set K = conv(X). There are several cases to

consider:
Case 1: K has an angle < 2α. Let z be the vertex at which this small

angle occurs. The idea is to construct a path on X \ z and extend it at one
end.

We can assume that X \ z lies in a cone of angle 2α with apex z that
is symmetric to the x-axis. Set I = (π − α, π + α). We then choose a new
restriction Q as follows: Let Q1 be the interval [−2α, 2α]. If R ∩ I = ∅,
set Q2 = [π − 2α, π + 2α], otherwise assume without loss of generality that
R2 ∩ I 6= ∅ and set Q2 = R2.
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One can show that Q is an α-restriction. Thus, there is a Q-avoiding path
x1 . . . xn−1 on X \ z. We can assume that x2x1 /∈ Q1 and xn−1xn /∈ Q2. Then
the extended path zx1 . . . xn−1 is α-good. Why is it furthermore R-avoiding?
The end direction x1z has to be in I. If R ∩ I = ∅, this end direction is
therefore neither in R1 nor in R2 and the path is R-avoiding. If not, we
assumed that R2 ∩ I 6= ∅ and have Q2 = R2. Thus, x1z 6= R1 and, by
assumption, xn−1xn /∈ Q2 = R2.

Case 2: All angles of K are ≥ 2α. Let V be the set of vertices of K.
One considers three cases depending on the size of Y = x \ V .

Case 2a: Y = ∅. After one edge is deleted from it, the boundary of
K gives an α-good path. If there is an edge on the boundary that can be
oriented so that the corresponding direction does not lie in R, one can get an
R-avoiding path like this. If there is no such edge, it is possible to construct
an R-avoiding path that does not only use edges of K.

(Case 2b: Y = {z}) and (Case 2c: |Y | ≥ 2) are treated independently.
Case 2c is long and more complicated.

J. Kyncl’s proof for α = 30◦ uses the same idea but adds “individually
tailored R-avoidance”: Every single point has its own restriction. This solves
the question whether for any finite set of points in the plane one can always
find an ordering for which all angles in the corresponding path are at least
30◦. There are several ways to generalize this question:

1. If one defines restrictions in an appropriate way as caps on the sphere, the
same method works in any dimension for an angle of α = π/42 ≈ 4.4◦.
See [3].

2. Can one solve the problem with infinitely many points in the plane?

3. What happens with finitely many points on S2? (Paths of great arc
pieces.)

4. What on other surfaces with positive curvature? (The hyperbolic plane
would be a bad choice because it has a triangle with all angles of 0◦.)

Questions 3 and 4 are open. Question 2 will be tackled in the next part.

1.3 The infinite case
What about infinitely many points in the plane? Let X ⊂ R2 be a countably
infinite set. We would like to find an ordering of X such that all angles are
at least 30◦. But how should we define angles? For example, for Q, which is
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a countable set, there does not seem to be a reasonable definition of angles.
Therefore, we restrict our attention to infinite, but discrete sets. A set X
is discrete if for all x ∈ R2 there is ε > 0 such that the ε-ball with center x
contains at most one point from X.

An example like in Figure 1.4 with infinitely many points shows that we
should not restrict the question to non-self-intersecting paths and that
we should furthermore allow the ordering to be indexed by Z (and not
by N).

I. Bárány and A. Pór [1] recently answered the question for small angles
with the following theorem. The proof of this theorem relies on several
lemmata which will be presented before a sketch of the proof.

Theorem 1.3.1 (Bárány–Pór [1]). For all 0 < α < π/18 and all discrete sets
X ⊂ R2, there exists an α-good path on X.

In what follows we will assume that X does not contain the origin, 0 /∈ X,
and that no two points in X have the same norm: ‖x‖ 6= ‖y‖ for x, y ∈ X,
x 6= y.

We call a ∈ X α-sharp if, for all x ∈ X with ‖x‖ < ‖a‖, we have ^a0x < α.

Figure 1.9: An α-sharp point.

Lemma 1.3.2 (Sharp Lemma). If all but finitely many points of X are sharp,
then there exists a π/9-good path on X.

Sketch of proof. Let Dr be a disk of radius r that contains all non-sharp
points of X and set X0 = X ∩ Dr. Because X is discrete, Dr can only
contain finitely many points of X, otherwise X would contain a limit point.
Order the points of X \X0 by their norm: X \X0 = {x0, x1, . . .} such that
‖xj‖ < ‖xj+1‖. Furthermore, set Xn = X0 ∪ {x0, . . . , xn}.

For each n ∈ N we get a π/9-good path Pn on Xn, by Theorem 1.1.1. One
can observe that xn always has to be one of the endpoints of Pn (and of every
path on Xn).

Now we construct a π/9-good path on all of X using these finite paths.
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Let k ∈ N. For each n ∈ [k] we define a path Pk(n) on Xn in the following
way: The path Pk(k) is just Pk. If Pk(n) is defined, we let Pk(n− 1) be the
path Pk(n) with its endpoint xn deleted.

Now let L ⊂ N be infinite and n ∈ N. For k ∈ L with k ≥ n, the path
Pk(n) is a path on Xn. Because there are only finitely many distinct paths
on Xn, there exists an infinite L′ ⊂ L such that Pk(n) = Pj(n) for all k, j ∈ L′.

Thus, we can construct a series of infinite sets N = L0 ⊃ L1 ⊃ . . . such
that Pk(n) = Pj(n) for all k, j ∈ Ln.

For each n ∈ N, choose some kn ∈ Ln and let Qn = Pkn(n). For n < m, we
have Lm ⊂ Ln and kn, km ∈ Ln. Thus, Qn = Pkn(n) = Pkm(n) is a subpath
of Qm = Pkm(m).

Hence, by setting Q =
⋃
i≥1Qi we get a π/9-good path on X.

One might observe that the above proof does not involve a lot of geometry;
only the finite case, which is heavily used here, and the observation on the
endpoints of the finite paths involve geometrical reasoning.

In what follows, let 0 < α < π/18.

Lemma 1.3.3 (Cone Lemma). Let β ∈ (0, π/18) and K be the set of points
(x, y) in the plane for which the angle between (x, y) and (1, 0) is in (−β, β).
Set K∗ = K ∪ −K. If X \K∗ is finite, there is an α-good path on X.

For a point z in the plane, denote by z̄ the point on the unit sphere z/‖z‖.
A point z is a limit direction of X if there is a sequence of distinct points
xi ∈ X with lim x̄i = z. We denote the set of limit directions by ∆(X). Then
∆(X) is closed.

Lemma 1.3.4 (Cone Lemma, 2nd version). Let I ⊂ S1 be an open arc of
length π/9 and I∗ = I ∪ −I. If there exists such an I with ∆(X) ⊂ I∗, then
there exists an α-good path on X.

It can be easily seen that Lemma 1.3.3 implies Lemma 1.3.4: ∆(X) is
closed while I is open. Thus, if ∆(X) ⊂ I∗, there has to be a closed arc
J ⊂ I such that ∆(X) ⊂ J∗. This means that almost all points of X lie in
K∗ where K is the cone hull of J . Thus, Lemma 1.3.3 applies.

The proof of Lemma 1.3.3 is the longest of all proofs involved here and
makes use of the finite case of the theorem (Theorem 1.1.1).

Two points a, b ∈ R2 are a fat pair if all three angles in the triangle 0ab
are at least π/18.

Proposition 1.3.5. If there are infinitely many fat pairs among X, then
there is an α-good path on X.
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Figure 1.10: A fat pair a, b.

Sketch of proof. Among the infinitely many fat pairs of X we can find a
sequence of fat pairs (ak, bk) such that the sequences (āk), (b̄k) converge:

lim ak = a ∈ S1, lim bk = b ∈ S1.

Then it is possible to construct an α-good path

P = x1 a(1) b(1)x2 a(2) b(2)x3 . . .

on X, where (a(n), b(n)) are fat pairs from the sequence (ak, bk), such that
the following condition is fulfilled:

All x ∈ X with ‖x‖ < ‖xn‖ come before xn in P for all n ∈ N.

First, let x1 be the point with smallest norm in X. Now, assume that
Pn = x1 a(1) b(1)x2 . . . a(n− 1) b(n− 1)xn is already constructed, fulfilling
the condition above, and such that (b(n− 1)− xn) is close to b on S1.

Then xn+1 has to be the shortest unused element of X. Choosing a(n)
and b(n) such that (a(n)− xn) is close to a and (b(n)− xn+1) is close to b on
S1 yields a good path Pn+1 = Pn a(n) b(n)xn+1.

Two points a, b ∈ R2 are a balanced pair if the angle ^a0b is < π/18 and
the angles ^0ba, ^ba0 are ≥ π/18.

Proposition 1.3.6. If there are infinitely many balanced pairs among X,
then there is an α-good path on X.
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Figure 1.11: A balanced pair a, b.

The proof of Proposition 1.3.6 splits in two cases. One involves similar
ideas as the proof of Proposition 1.3.5, and the other uses the second version
of the Cone Lemma.

Sketch of proof for Theorem 1.3.1. Propositions 1.3.5 and 1.3.6 reduce the
problem to the case in which there are only finitely many fat and finitely
many balanced pairs. One can show that in this case all points of X that lie
outside a disk containing all these pairs have to be α-sharp. Since this disk
can contain only finitely many points of the discrete set X, the Sharp Lemma
1.3.2 yields the existence of an α-good path on X.
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Definition 1.0.1. Given G = (V,E) and α : V → N, an α-orientation of G
is an orientation with outdeg(v) = α(v) for all v.

For example, the following are two orientations for the same α:

In these notes, we will mostly consider α-orientations for planar graphs.

1.0.1 Example: Eulerian orientations

These are orientations with outdeg(v) = indeg(v) for all v, i.e., α(v) = 1
2
d(v).
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1.0.2 Example: Spanning trees of planar graphs

Let G be a planar graph. Then the spanning trees of G are in bijection with
the αT -orientations of a rooted primal-dual completion G̃.

A primal-dual completion G̃ is a bipartite graph with the first (resp. the
second) partition represented by edges of G (resp. by vertices and faces in a
given drawing of G). The edges of G̃ are represented by adjacencies of edges
and vertices (resp. faces). We define αT (v) = 1 for a non-root vertex v; and
αT (ve) = 3 for an edge-vertex ve; and αT (vr) = 0, αT (v∗r) = 0.

1.0.3 Example: 3-orientations

For a planar triangulation G, let α(v) = 3 for each inner vertex and α(v) = 0
for each outer vertex (left picture below).

1.0.4 Example: 2-orientations

For a planar quadrangulation G, let α(v) = 0 for an opposite pair of outer
vertices and α(v) = 2 for each other vertex (right picture above).
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1.1 Sample applications

1.1.1 Schnyder woods

Let G = (V,E) be a plane triangulation and F = {a1, a2, a3} the outer
triangle. A coloring and orientation of the interior edges of G with colors
1, 2, 3 is a Schnyder wood of G if the following conditions hold:

• Inner vertex condition:

• The edges {v, ai} are oriented v → ai in color i.

1.1.2 Schnyder woods and 3-orientations

Theorem 1.1.1. Schnyder woods and 3-orientations are equivalent.

Proof. From a 3-orientation to a Schnyder wood, define the path of an edge:

If the path were not simple, it would form a boundary of a region where,
by applying the Euler relation, we would get a contradiction. Hence, it ends
at some ai. We define this edge to have color i.

1.1.3 Schnyder woods: trees

The set Ti of edges colored i is a tree rooted at ai. To prove this claim,
similarly as before, if there were two different paths e→ ai, they would form a
boundary of a region where applying the Euler relations yields a contradiction.
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1.1.4 Schnyder woods: paths and regions

• Paths of different color have at most one vertex in common.

• Every vertex has three distinguished regions.

1.1.5 Schnyder woods: regions

If u ∈ Ri(v), then Ri(u) ⊂ Ri(v).
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1.1.6 Grid drawings

The count of faces in the green and red region yields two coordinates (vg, vr)
for a vertex v.

The picture shows a straight line drawing on a (2n− 5)× (2n− 5) grid.
(In fact, the drawing can be done on an (n− 1)× (n− 1) grid.)

1.1.7 Separating decompositions

Let G = (V,E) be a plane quadrangulation and F = {a0,x, a1, y} the outer
face. A coloring and orientation of the interior edges of G with colors 0, 1 is
a separating decomposition of G if the following conditions hold:

• Inner vertex condition:

• The edges incident to a0 and a1 are oriented v → ai in color i.

1.1.8 Separating decompositions and 2-orientations

Theorem 1.1.2. Separating decompositions and 2-orientations are equivalent.

Proof. Define the path of an edge:

The path is simple (Euler). Hence, it ends at some ai.
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1.1.9 Separating decompositions: trees

The set Ti of edges colored i is a tree rooted at ai.

Proof. The path e→ ai is unique.

1.1.10 Separating decompositions: paths and regions

• Paths of different color have at most one vertex in common.
• Every vertex has two distinguished regions.

1.1.11 Separating decompositions: regions

If u ∈ R0(v) then R0(u) ⊂ R0(v).
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1.1.12 2-book embedding

The count of faces in the red region yields a number vr for each vertex v 6= s, t.

1.1.13 Bipolar orientations

Definition 1.1.3. A bipolar orientation is an acyclic orientation with a
unique source s and a unique sink t.

Plane bipolar orientations with s and t on the outer face are characterized by:

1.1.14 Plane bipolar orientations and 2-orientations

A plane bipolar orientation and its angular map. (We add one vertex for
each face and two for the outer face.)
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1.1.15 Orienting the angular map

Angular edges oriented by vertices and faces.

1.1.16 Plane bipolar orientations and rectangular
layouts

A plane bipolar orientation and its dual orientation yield a rectangular layout
(visibility representation).

Primal vertices correspond to the horizontal direction and dual vertices
correspond to the vertical direction.

1.2 Counting I: Bounds

1.2.1 How many?

Suppose given a plane graph G and α : V → N. How many α-orientations
can G have?

1.2.2 Towards an upper bound

We aim at giving a better bound than 2m. Choose a spanning tree T of G
and orient the edges not in T randomly.
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If at all, the orientation on Gr T is uniquely extendible.

Therefore, there are at most 2m−(n−1) α-orientations.

1.2.3 Improve on one color

• An orientation can be extended only if outdeg(v) ∈ {α(v), α(v) − 1}
for all v.

• Let I be an independent set of size greater than or equal to 1
4
n (4CT).

• Choose a tree T such that I ⊂ leaves(T ).

• Each v ∈ I can independently obstruct extendability.

• There are
(
d(v)−1
α(v)

)
+
(
d(v)−1
α(v)−1

)
=
(
d(v)
α(v)

)
≤
(

d(v)
bd(v)/2c

)
good choices for the

orientations of edges at v.

1.2.4 The result

Since
Prob(d(v) = α(v)) ≤ 1

2d(v)−1

(
d(v)

bd(v)/2c

)
≤ 3

4
,

we conclude:

Theorem 1.2.1. The number of α-orientations of a plane graph on n vertices
is at most

2m−n
(

3

4

)n/4
≤ 22n

(
3

4

)n/4
≈ (3.73)n.

Since 2m ∼ 8n, 2m−n ∼ 4n, this result gives a nontrivial improvement.
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1.2.5 Towards a lower bound

Here we want to find a graph G and an α such that there are many α-orien-
tations.
Observation 1.2.2. Flipping cycles preserves α-orientations:

We show that there are many 3-orientations of the triangular lattice.

1.2.6 The initial orientation

Any subset of the green triangles can be flipped.

1.2.7 Green and white flips

If 0 or 3 of the green neighbors are flipped, a white triangle can be flipped.
In what follows, the second inequality follows from Jensen’s inequality:

# 3-orientations ≥ 2# f-green E
(

2# f-white-flippable
)
≥

2n 2E(# f-white-flippable) = 2n 2
2
8
# f-white = 2

5
4
n = (2.37)n,

where # f-green ∼ n is the number of green faces, # f-white ∼ n is the
nuber of white faces and # f-white-flippable ∼ n is the number of white faces
surrounded by all-flipped or all-unflipped green faces.
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1.3 Counting II: Exact

1.3.1 Alternating layouts of trees

Definition 1.3.1. A numbering of the vertices of a tree is alternating if it is
a 1-book embedding with no double-arc.

1.3.2 Alternating layouts of trees

Proposition 1.3.2. A rooted plane tree has a unique alternating layout with
the root as leftmost vertex.

Label black vertices at first visit and white vertices at last visit.

1.3.3 Separating decompositions and alternating trees

Proposition 1.3.3. The 2-book embedding induced by a separation decompo-
sition splits into two alternating trees.
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1.3.4 A bijection

Theorem 1.3.4. There is a bijection between pairs (S, T ) of alternating
trees on n vertices with reverse fingerprints and separating decompositions of
quadrangulations with n+ 2 vertices.

1.3.5 Alternating and full binary trees

Proposition 1.3.5. There is a bijection between alternating and binary trees
that preserves fingerprints.

1.3.6 Rectangular dissections

Theorem 1.3.6. There is a bijection between pairs (S, T ) of binary trees with
n leaves and reverse fingerprints and rectangular dissections1 of the square
based on n− 2 diagonal points.

1This is again the rectangular layout associated to the bipolar orientation.
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1.3.7 Summary

We have the following bijection relations:

(
bipolar

orientations

)
↔
(

2-orientations
of angular maps

)
↔
(
sep. decompositions

of ang. maps

)
↔

↔
(
pairs of binary

trees

)
↔
(
rectangular

layout

)
↔
(

bipolar
orientations

)

1.3.8 Permutations and trees

Proposition 1.3.7. For a permutation π of [n−1], the pair (Max(π),Min(π))
is a pair of binary trees with n leaves and reverse fingerprints. The relation
is not bijective:

(permutations) k :1←→(tree pairs) .

1.3.9 Baxter permutations

Definition 1.3.8. A permutation is Baxter if it avoids the patterns 3142
and 2413.

Example 1.3.9. A non-Baxter permutation with a 2413 pattern:
π = 6, 3, 8, 7, 2, 9, 1, 5, 4

Theorem 1.3.10. The mapping π 7→ (Max(π), Min(π)) is a bijection be-
tween Baxter permutations of [n−1] and binary trees with n leaves and reverse
fingerprints, i.e., rectangular dissections of the square based on n− 2 diagonal
points.
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1.3.10 Constructing the permutation

Rule: If the south-corner of R(k) is

i.e., a left child in tree T , then R(k− 1) is the next-left; otherwise, next-right.

1.3.11 Encoding a binary tree

α: Fingerprint extended by a leading 1 for left leaf.

β: Inner nodes in in-order represented by 0 (left) and 1 (right) with the root
being a 1.

α: Fingerprint including the left extreme leaf.

β: Inner nodes in in-order represented by 0 (left) and 1 (right) with the root
being a 1.
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Lemma 1.3.11.
∑n−1

i=1 αi =
∑n−1

i=1 βi and
∑k

i=1 αi ≥
∑k

i=1 βi.

Lemma 1.3.12. The tree can be reconstructed.

Proof. The minimal k with
∑k

i=1 αi =
∑k

i=1 βi and
∑k+1

i=1 αi =
∑k+1

i=1 βi
determines the position of the root.

1.3.12 Counting binary trees

Proposition 1.3.13. The number of binary trees with i+ 1 left leaves and
j + 1 right leaves equals the number of nonintersecting lattice paths α′and β′
where α′ : (0, 1)→ (j, i+ 1) and β′ : (1, 0)→ (j + 1, i).

From the Lemma of Gessel Viennot we deduce that their number is

det

( (
j+i
j

) (
j+i
j−1

)(
j+i
j+1

) (
j+i
j

) ) =
1

i+ j + 1

(
i+ j + 1

j

)(
i+ j + 1

j + 1

)
.

This is the Narayana number N(i+ j + 1, j).

1.3.13 Three paths

Proposition 1.3.14. Baxter permutations of [n− 1] with a fixed number i
of increases can be encoded by triples of disjoint lattice paths.
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1.3.14 Counting Baxter

Theorem 1.3.15. The number of Baxter permutations of [n− 1], separating
decompositions and 2-orientations on n+ 2 vertices, rectangular dissections
on n− 2 diagonal points, etc., is given by

n−2∑
i=0

2n!(n− 1)!(n− 2)!

i!(i+ 1)!(i+ 2)!(n− i)!(n− i− 1)!(n− i− 2)!
=

2

n(n− 1)2

n−2∑
i=0

(
n

i

)(
n

i+ 1

)(
n

i+ 2

)
.

1.3.15 Schnyder woods and bipolar orientations

Proposition 1.3.16. There is a bijection between Schnyder woods with n+ 3
vertices and bipolar orientations with n+ 2 vertices and the following special
property:

(?) The right side of every bounded face is of length two.

Sketch of proof. Delete green edges and reverse blue edges.

1.3.16 Special property

Let T b and T r be the blue and red trees corresponding to a Schnyder wood.
From (?) we get some crucial properties of the fingerprint and the bodyprints
of the trees:

Fact 1. The extended fingerprint 1 + α is a Dyck word; in symbols,

(01)n ≤dom 1 + α.

Fact 2. The fingerprint uniquely determines the bodyprint of the blue tree,
precisely βb = 1 + α.
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1.3.17 Schnyder woods and Dyck paths

By tracing the special property (?) during the bijective correspondence, we
get a Dyck path:

Theorem 1.3.17 (Bonichon). The number of Schnyder woods on plane
triangulations on n+ 3 vertices equals the pairs of non-crossing Dyck paths
of length 2n, which is Cn+2Cn − C2

n+1.

1.4 Lattices

1.4.1 Distributive lattices

Theorem 1.4.1. The set of α-orientations of a planar graph G has the
structure of a distributive lattice.

1.4.2 A dual construction

Reorientations of directed cuts preserve flow-differences along cycles, i.e., for
each oriented cycle the sum of flows along its edges with negative sign, when
the edge is oriented backwards, is preserved.
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Theorem 1.4.2 (Propp, 1993). The set of all orientations of a graph G with
prescribed flow-differences for all cycles has the structure of a distributive
lattice.

1.4.3 Circulations in planar graphs

Theorem 1.4.3 (Khuller–Naor–Klein, 1993). The set of all integral flows
respecting capacity constraints (`(e) ≤ f(e) ≤ u(e)) of a planar graph has the
structure of a distributive lattice.

1.4.4 ∆-bonds

Let G = (V,E) be a connected graph with a prescribed orientation. With
x ∈ ZE and a cycle C, we define the circular flow difference

∆x(C) =
∑
e∈C+

x(e)−
∑
e∈C−

x(e).

With ∆ ∈ ZC and `, u ∈ ZE, let BG(∆, `, u) be the set of x ∈ ZE such
that ∆x = ∆ and ` ≤ x ≤ u.

Theorem 1.4.4 (Felsner–Knauer, 2007). BG(∆, `, u) is a distributive lattice.
The cover relation is vertex pushing.
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1.4.5 ∆-bonds as a generalization

BG(∆, `, u) is the set of x ∈ RE such that:

• ∆x = ∆ (circular flow difference), and

• ` ≤ x ≤ u (capacity constraints).

The following are special cases:

• c-orientations are BG(∆, 0, 1), where ∆(C) = |C+| − c(C).

• Circular flows on planar G are BG∗(0, `, u), where G∗ is the dual of G.

• α-orientations.

1.4.6 Diagrams of distributive lattices:
A characterization

A coloring of the edges of a digraph is a D-coloring if

• arcs leaving a vertex have different colors, and

• it has the completion property :

Theorem 1.4.5. A digraph D is connected, acyclic and admits a D-coloring
if and only if D is the diagram of a distributive lattice.
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Seminar 5

Geometry of Numbers and
Modern Developments

By Peter M. Gruber
Technische Universität Wien, pmgruber@mail.zserv.tuwien.ac.at

Notes taken by Maria Saumell
Universitat Politècnica de Catalunya, maria.saumell@upc.edu

and Lluís Vena
Universitat Politècnica de Catalunya, lluis.vena@gmail.com

1.1 Introduction

The Geometry of Numbers can be traced back to Kepler, who asked about
the densest way of packing balls. Two hundred years later, Gauss found the
answer to Kepler’s question.

Authors like Kepler, Lagrange, Gauss, Korkin and Zolotarev or Fedorov
contributed with sporadic results to the field. Let us point out that Fedorov
was a crystallographer; this exemplifies a common fact in the Geometry of
Numbers, namely, that many contributions come from foreigners to the field.

It was not until the end of the ninetieth century when Minkowski started
a systematic research. In the first decades of the twentieth century, Voronoi
continued Minkowski’s work, focused on the geometric theory of positive
quadratic forms.

During the twentieth century the field continued its expansion in various
ways. In the first decades, the research on particular problems, like diophantine
approximation and algebraic number theory, continued. Furthermore, Siegel
and Mahler, among others, continued the systematic approach.



62 Peter M. Gruber

In the 1940’s and 1950’s the systematic approach turned hard and the
main contributions were on particular problems.

Among the eminent contributors with sporadic results to the area we can
name: Weyl, Siegel (who only wrote two papers on the area, but fundamental),
Weil, Van der Waerden, Erdős, Kneser, Zassenhaus, Bombieri, McMullen.

We can also signal several groups of people who worked on the field:

• English school: Mahler, Davenport, Rankin, Cassels, Watson, Rogers,
Chalk, Macbeath. They gave careful estimates for difficult questions,
focusing on the arithmetic part.

• Vienna school: Furtwängler, Hofreiter, Hlawka, Schmidt, Gruber. They
made special emphasis in geometry.

• Russian school: Delone, Skubenko, Ryshkov, Dolbilin. They mainly
continued Voronoi’s work.

• Indian school: Bambah, Hans-Gill, Dumir.

• American number geometers: Groemer, Leech, Sloane (using error-
correcting codes and convexity), Schmidt, Conway, Blichfeldt.

• French school: Martinet, Coulangeon, Nebe, Bachoc, Bavard, Bergé.
They focused on the theory of quadratic forms.

• German number geometers: Kneser, Siegel, Wills, Henk.

Some of the modern areas in Mathematics are rooted in the Geometry of
Numbers. One remarkable example is Discrete Geometry, which, although
can be viewed as its sister, has become predominant over the Geometry of
Numbers.

We can signal out three/four big systematic areas, or large research
projects in the Geometry of Numbers:

• Lattice packing of balls and convex bodies: density, kissing number,
non-lattice packing.

• Lattice covering of balls and convex bodies: density, star number,
non-lattice covering.

• Lattice tiling with convex polytopes, non-lattice tiling.

• Quadratic forms.

There are also several particular, or small, and difficult problems which
have grabbed the attention of many mathematicians, for example the product
of non-homogeneous linear forms.
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1.2 The lattice packing problem

Consider C a 0-symmetric convex body. Let L be a lattice: the set of integer
linear combinations of a set of d independent vectors in the d-dimensional
Euclidean space, {b1, . . . , bd} ⊂ Ed. Thus, we can define d(L), the determinant
of the lattice L, as the determinant of the matrix formed by {b1, . . . , bd}.

Let C + l, l ∈ L, be the translates of C by L. We say that C + l : l ∈ L
form a packing of C with packing lattice L if any two distinct translates of C
have disjoint interiors.

We can define δ(C,L) = V (C)/d(L) as the density of the packing. One
may think of the density as the proportion of space covered by the bodies
C+ l, l ∈ L. Let δ(C) be the maximum density among all the possible lattices,
for a given C.

Given any C and L forming a packing, C can be dilated to a new body C ′,
forming a packing with L but with non-empty border intersection between
some translates. Let k(C,L) denote the kissing number or the number of
translates having a non-empty border intersection with a given one. As above,
k(C) stands for the maximal of the kissing numbers among all the lattices.

The main problems that arise in this context are the determination of δ(C)
and k(C) for a given C, and the description of the properties of δ(C, ·), k(C, ·).

Let us mention some of the pioneers who contributed to this problem:
Kepler, Gauss, Korkin and Zolotarev, Minkowski, Voronoi, Blichfeldt, Hlawka,
Leech, Sloane.

Here we expose the major results for a general convex body C related
to δ. Mahler proved that δ(C) is attained. The known bounds for δ(C) are
2−d+o(d) ≤ δ(C) ≤ 1; they are due to Minkowski–Hlawka and Minkowski,
respectively. Although the lower bound seems small, it is conjectured to be
close to the true value. An algorithm for δ(P ), where P is a convex polytope
in R3, has been given by Betke–Henk.

Minkowski gave the general upper bound for the kissing number, k(C) ≤
3d − 1, which can be shrunk to k(C) ≤ 2d+1 − 2 if C is strictly convex. The
lower bound k(C,L) ≥ d(d + 1), when the lattice packing C + l : l ∈ L
has maximum density, is due to Swinnerton-Dyer. Gruber showed that
k(C,L) ≤ 2d 2 for most C if the lattice packing C + l : l ∈ L has maximum
density. He also conjectured the equality for most C.

There are improved results for the particular case of the d-dimensional
ball Bd. Concerning δ(Bd), Blichfeldt proved the upper bound δ(Bd) ≤
2−0.5d+o(d), which was tightened to δ(Bd) ≤ 2−0.599d+o(d) when d → ∞ by
Kabatjanski–Levenstein. Rush built lattices such that δ(Bd, L) = 2−d+o(d) by
using error-correcting codes.

Let us observe that the gaps get much closer. The last result by Rush shows
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that one can, by an appropriate error-correcting code, construct a dense ball
packing. However, the proof of the existence of this code is non-constructive:
the construction of such codes is an issue in coding theory.

Regarding k(Bd), Coxeter proved that k(Bd) ≤ 20.5d+o(d), which was
improved to k(Bd) ≤ 20.4d+o(d) by Kabatjanski–Levenstein. On the other
hand, Wyner showed that k(Bd) ≥ 20.207d+o(d).

Some of the most prominent open problems and questions in this area are
the following:

• What is δ(C) for an “average” convex body? First, one has to specify a
measure on the locally compact space of convex bodies to talk about
average.

• Is the Minkowski–Hlawka bound for δ(C) optimal? Is it the right order
of magnitude?

• Specify an effective algorithm to determine δ(C).

• Is for “most” convex bodies the densest lattice packing unique? Is it
connected?

• Which is the right asymptotic function for δ(Bd), k(Bd) as d→∞?

• As the dimension grows, the size of the gaps in packing using balls
becomes larger. Are non-lattice packings better to fill Ed?

1.3 The lattice covering problem
As in the previous section, let C be a 0-symmetric convex body and L a
lattice. We say that C + l : l ∈ L is a lattice covering of C with covering
lattice L if each point in Ed belongs to, at least, one translate of C.

We define V(C,L) = V (C)/d(L) as the density of the lattice covering and
V(C) as the minimum density.

The star number , st(C,L), and the minimum star number, st(C), are the
lattice covering analogues to the kissing number: without losing the covering
property, shrink C to C ′ and determine the number of translates of C ′ that a
given copy intersects.

The main problems here are the determination of V(C), V(C), st(C,L)
and st(C). Some of the pioneers in studying these problems are Kershner,
Fejes Tóth, Ryshkov and Baranovskii, and Rogers.

The first major result for V(C) is due to Mahler, who found that V(C)
is attained. Rogers gave the bounds 1 ≤ V(C) ≤ dlog2(d+o(d)). In a joint



Geometry of numbers and modern developments 65

work with Erdős, Rogers proved that st(C) ≥ 2d+1 − 1. Let us mention that
Hadwiger–Wills provided some criteria to be fulfilled by a convex body and a
lattice to be a covering or a packing.

If we concretize C = Bd, Coxeter–Few–Rogers found that

V(Bd) &
d

e
√
e
.

Before proceeding further, let us list some problems and questions that
remain open:

• What are the bodies C with maximum V(C)? Are they ellipsoids?

• Is the thinnest covering with C unique for “most” convex bodies?

• What is V(C) for an “average” C?

• Can Rogers’ bound be improved?

• What is the right asymptotic function for V(Bd) as d→∞?

1.4 The lattice and non-lattice tiling problem

A lattice tiling is a family of proper convex or unbounded proper convex
bodies in Ed that is both a lattice packing and a lattice covering.

Two examples are the Dirichlet–Voronoi tiling and its dual, the Delone
tiling. In the Dirichlet–Voronoi lattice tiling, each tile is formed by the
elements in Ed nearer to a lattice point.

Some of the authors who first studied this kind of problems are Dirichlet,
Fedorov, Voronoi, Hajós, Delone, Venkov, Alexandrov, McMullen.

In this area there are mostly particular results with a few systematic and
basic results. Venkov–Alexandrof–McMullen proved that a convex polytope
that tiles by translations also tiles by a lattice, i.e., it is a parallelohedron.
Gruber–Ryshkov showed that a locally finite facet-to-facet tiling is face-to-face
and, thus, gives rise to a polyhedral cell complex.

The list of open problems related with lattice tilings includes:

• Describe the parallelohedra space fillers. This has been done for
d = 2, 3, 4.

• Solve the conjecture of Voronoi: all the space fillers are, in essence,
Voronoi cells. It has also been shown for d = 2, 3, 4.
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1.5 An idea of Voronoi
Let q be a quadratic form. Then

q =
∑

aik xi xk,

and we can identify q with the matrix A = (aik) with aik = aki. Thus, A can
be viewed as the point (a11, . . . , a1d, a22, . . . , add) ∈ E 1

2
d(d+1).

In this way the problems on quadratic forms can be seen as geometric
problems in E 1

2
d(d+1) and viceversa. An example of this translation is the

Voronoi criterion for extreme forms.
Let q be a positive definite quadratic form. We say that q is extreme if

min
{
q(u) : u ∈ Zd \ {0}

}
det2/d q

≥
min

{
p(u) : u ∈ Zd \ {0}

}
det2/d p

for all positive definite quadratic forms p close to q in E 1
2
d(d+1). The expression

det p denotes the determinant of the matrix B that is associated to the
quadratic form p.

Theorem 1.5.1 (Voronoi). Let q be a positive definite quadratic form. Then
q is extreme if and only if q is perfect and eutactic.

The proof presented here will use modern geometric tools. The first one
is the Ryshkov polyhedron:

Rd(m) =
⋂

u∈Zd\{0}

{
p = (b11, . . . , bdd) ∈ E

1
2
d(d+1) :

∑
bikuiuk ≥ m, p pos. def.

}
.

It is the family of all the positive definite quadratic forms with the arithmetic
minimum larger than m.

We can also define the discriminant body ,

Dd(δ) = {p = (b11, . . . , bdd) ∈ E
1
2
d(d+1) pos. def. : det p ≥ δ},

which is a smooth, strictly convex, unbounded body that consists of all the
elements with a determinant larger than δ.

A positive definite quadratic form q is perfect if it is uniquely determined
by its minimum vectors and the value of the minimum, which is equivalent to
being a vertex of the Ryshkov polyhedron. The form q is said to be eutactic
if the following holds: Let (bik) = (aik)

−1; then

(b11, 2b12, . . . , 2b1d, b22, 2b23, . . . , bdd),
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the normal vector of the discriminant surface Dd(δ) at its point q, is a linear
combination with positive coefficients of the vectors

(u21, 2u1u2, . . . , 2u1ud, u
2
2, 2u2u3, . . . , u

2
d),

where ±(u1, . . . , ud) ∈ Zd ranges over the minimum vectors of q. These
vectors are the normal vectors of the facets of the Ryshkov polyhedron R(m)
which contains the boundary point q of R(m) and thus generate the normal
cone of R(m) at q.

q

Dd(δ)

0

E1
2d(d+1)

Rd(m)

Figure 1.1: Relation between R and Dd at q.

Proof of Theorem 1.5.1. Let q be a d-dimensional extreme positive definite
quadratic form with minimum m and determinant δ. Then q belongs to the
intersection of the boundaries of Rd(m) and Dd(δ), q ∈ bdRd(m)∩ bdDd(δ)
(see Figure 1.1).

This happens if and only if all points p ∈ bdRd(m) close to q have a
larger determinant than q. This means that, close to q, Rd(m) is contained
in Dd(δ).

As Dd(δ) is smooth and strictly convex, q is a vertex of Rd(m) and the
tangent hyperplane of Dd(δ) at q is a support hyperplane of Rd(m) meeting
Rd(m) precisely at q. These are the notions perfect and eutactic for q.
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A list of some of the modern applications of this idea include: quadratic
forms (mostly studied by the French school), the Epstein zeta function (English
and Russian schools and others), Riemannian manifolds (mainly Swiss and
French mathematicians), minimum position problems, lattice packings of
convex bodies, and lattice zeta functions.

1.6 Lattice packing of balls
Let L be a lattice and d(L) its determinant. Let Bd denote the unit ball. The
packing radius can be defined as

ρ(Bd, L) = max
{
ρ > 0 :

{
ρBd + l : l ∈ L

}
is a lattice packing

}
.

Hence,
{
ρ(Bd, L) Bd + l : l ∈ L

}
is a lattice packing of balls corresponding

to L and δ(Bd, L) = ρ(Bd, L)d V (Bd)/d(L) denotes its density.
We say that L is an extreme lattice if δ(Bd, (I + A)L) ≤ δ(Bd, L) for all

A ∈ E 1
2
d(d+1) in a neighborhood of 0. This is equivalent to just looking for

the matrices A ∈ E 1
2
d(d+1) such that trA = 0 in a neighborhood of 0.

The minimum points of a lattice are the elements in the set

M = {±l1, . . . ,±lk} ⊂ L \ {0}

such that ‖li‖ = min{‖l‖ : l ∈ L \ {0}}.
Let l ⊗ l = l lt ∈ Md×d denote the tensor product. We say that L is

perfect if E 1
2
d(d+1) = lin {l1 ⊗ l1, . . . , lk ⊗ lk}, where “lin” stands for the linear

expansion of the matrices. A lattice L is eutactic if I = λ1l1⊗l1+· · ·+λklk⊗lk,
with λi > 0.

With these notions we can state Voronoi’s theorem in the ball packing
version:

Theorem 1.6.1. Let L be a lattice. Then L is extreme if and only if L is
perfect and eutactic.

We can define refined extremum properties by slightly modifying the
extreme notion. Let T = {A ⊆ E 1

2
d(d+1) : trA = 0}. A lattice L is:

• semi-stationary if

δ
(
Bd, (I + A)L

)
≤ δ(Bd, L) (1 + o (‖A‖)) as A→ 0, A ∈ T ;

• stationary if

δ
(
Bd, (I + A)L

)
= δ(Bd, L) (1 + o (‖A‖)) as A→ 0, A ∈ T ;
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• extreme if

δ
(
Bd, (I + A)L

)
≤ δ(Bd, L) as A→ 0, A ∈ T ;

• ultra extreme if, for some constant c,

δ
(
Bd, (I + A)L

)
≤ δ(Bd, L) (1− c‖A‖) as A→ 0, A ∈ T ,

where ‖A‖ = (
∑d

i,k a
2
ik)

1
2 , and an inequality or an equality holds as A→ 0 if

it holds for all A close to 0.
The semi-stationary lattices in dimension 2 are the square lattice (tp) and

the hexagonal lattice (hp). In dimension 3, the semi-stationary lattices are
the following: the cubic primitive (cP), the hexagonal primitive (hP), the
cubic face centered (cF), the cubic body centered (cI), and the tetragonal
body centered (tI). The short form in brackets corresponds to the Bravais
type.

For general d, there are finitely many similarity classes of semi-stationary
lattices. It can be shown that:

Theorem 1.6.2. Let L be a lattice. Then L is ultra extreme if and only if L
is perfect and eutactic.

Consequently, each extreme lattice is also ultra extreme.
In dimension 2, the only ultra extreme lattice is the hexagonal one (hp).

The only ultra extreme lattice in dimension 3 is the cubic face centered one
(cF). The graph of δ(B3, ·) is shown in Figure 1.2. Observe that it is not
smooth at the semi-stationary lattices.

cP hP cF cI tI

δ

space of lattices of E3 of similarity classes

Figure 1.2: Graph of δ(B3, ·).

Let us point out that some sufficient conditions for ultra extremality have
been given using spherical designs and symmetric groups. Other interesting
results in this setting include extensions of this theory to lattice packings of
smooth convex bodies.
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1.7 The Epstein zeta function
Let L be a lattice with d(L) = 1. We define

ζ(L, s) =
∑

l∈L\{0}

1

‖l‖s
, for s > d,

as the Epstein zeta function.
The Epstein zeta function has important applications in crystal physics,

hydrodynamics, numerical integration and many other areas. The main
problem is to determine, for fixed s > d, for all sufficiently large s or for all
s > d, those lattices of determinant 1 for which ζ(L, s) is minimum.

A layer L = {±l1, . . . ,±lk} of L is said to be equi eutactic if λI =
∑

i li⊗li,
which is equivalent to∑

i

(li · x)2 = λ‖x‖2 for x ∈ Ed.

Furthermore, we said it is Equi Eutactic if∑
i

(li · x)4 = µ‖x‖4 for x ∈ Ed.

The lattice L is said to be total equi eutactic for s if∑
l∈L\{0}

(l · x)2

‖l‖s+2
=
ζ(L, s)

d
‖x‖2 for x ∈ Ed,

or Total Equi Eutactic for s if∑
l∈L\{0}

(l · x)4

‖l‖s+4
=

3 ζ(L, s)

d(d+ 2)
‖x‖4 for x ∈ Ed.

Once again, we define refined extremum (minimum) properties. Letting
T = {A ⊆ E 1

2
d(d+1) : trA = 0}, we say that a lattice L is:

• stationary if

ζ

(
I + A

det(I + A)
1
d

L, s

)
= ζ(L, s) (1 + o (‖A‖)) as A→ 0, A ∈ T ;

• semi-stationary if

ζ

(
I + A

det(I + A)
1
d

L, s

)
≥ ζ(L, s) (1 + o (‖A‖)) as A→ 0, A ∈ T ;
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• minimum if

ζ

(
I + A

det(I + A)
1
d

L, s

)
≥ ζ(L, s) as A→ 0, A ∈ T ;

• quadratic minimum if, for some constant c,

ζ

(
I + A

det(I + A)
1
d

L, s

)
≥ ζ(L, s)

(
1 + cs2‖A‖2

)
as A→ 0, A ∈ T ,

where an inequality or an equality holds as A→ 0 if it holds for all A close
to 0.

At this point we can state the following result.

Theorem 1.7.1. Let L be a lattice with d(L) = 1. Then L is stationary for s
if and only if L is total equi eutactic for s.

Consequently, each semi-stationary lattice is also stationary. The station-
ary lattices for dimension 2 are the square lattice (tp) and the hexagonal
lattice (hp). In dimension 3 we can list the cubic primitive (cP), the cubic
face centered (cF), and the cubic body centered lattice (cI).

It can also be shown that:

Theorem 1.7.2. Let L be a lattice. Then L is a quadratic minimum for s if
and only if L is total eutactic for s and

∑ (A · l ⊗ l)2

‖l‖s+4
>

2ζ

d(s+ 2)
‖A‖2 for A ∈ T .

For dimension 2 and 3, the quadratic minimum lattices are the hexagonal
(hp) and the cubic face centered lattice (cF).

Figure 1.3 illustrates the graph of ζ(·, s) for dimension 3. We can see the
quadratic minimum point at the cubic face centered lattice.

These results help us to show that many of the lattices in the literature
are stationary or quadratic minimum for all s > d. Some notorious examples
are the lattices which, for d = 2, 3, . . . , 8 and 24, provide the densest lattice
packings of balls. For d = 24, this lattice is the Leech lattice, which is an
ultra extreme and quadratic minimum lattice and was constructed using
error-correcting codes.

Various sufficient conditions for stationary and quadratic minimality use
spherical designs and symmetry groups.
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cP

ζ

cF cI

space of rotation classes of lattices of determinant 1 in 3

Figure 1.3: Graph of ζ(·, s) for d = 3.
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Introduction

This talk is split into two parts. The first one covers recent developments
in the realm of Ehrhart Theory and the second one investigates the average
behavior of large Frobenius numbers. These topics are related via the concept
of Minkowski’s successive minima.

1.1 Ehrhart polynomials

1.1.1 Basic definitions and notations

To introduce the audience to the theory, we first have a look at the basic
definitions and notations.

For linearly independent b1, . . . , bk ∈ Rn, the set

Λ =

{
k∑
i=1

bizi : zi ∈ Z

}

is called a (k-dimensional) lattice, and B = (b1, . . . , bk) is said to be a basis
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of the lattice Λ = BZk. The k-dimensional volume of the parallelepiped{
k∑
i=1

µibi : 0 ≤ µi ≤ 1

}
is called the determinant of Λ and denoted by det Λ. This quantity is
independent of the chosen basis B of Λ, and det Λ =

√
detBtB.

We will mostly stick to the integral lattice Zn, which has determinant 1.
Another example is the hexagonal lattice Λhex in the plane, that can be
described by the basis vectors b1 =

(
2
0

)
and b2 =

(
1√
3

)
. Its determinant is

equal to 2
√

3.
We write Pn for the set of lattice polytopes P ⊂ Rn with non-empty

interior, i.e.,

P = conv{v1, . . . , vm} for some v1, . . . , vm ∈ Zn, and int(P ) 6= ∅.

The standard simplex Tn = conv{0, e1, . . . , en}, the unit cube Cn = [−1, 1]n

and its polar body, and the crosspolytope C?
n = conv{±e1, . . . ,±en} are

well-known lattice polytopes.
The main object under consideration in Ehrhart Theory is the so-called

lattice point enumerator G(S) = #(S ∩ Zn), that counts the integral points
in a given subset S of Rn. The notation has historical reasons, since it goes
back to the famous “Gaußsches Kreisproblem” (Gauss’ circle problem), which
asks for the number of lattice points in a circle of given radius.

1.1.2 Ehrhart’s Theorem

We are interested in the lattice point enumerator for integer dilates of a given
lattice polytope P ∈ Pn, i.e., in the function

k 7−→ G(kP ) = #(kP ∩ Zn), k ∈ N.

The French high school teacher Eugène Ehrhart proved that this function is
a polynomial. To his honour it is called the Ehrhart polynomial of P , and its
coefficients only depend on the polytope.

Theorem 1.1.1 (Ehrhart, 1967). Let P ∈ Pn and k ∈ N. Then

G(kP ) =
n∑
i=0

Gi(P )ki.

Proof. The proof splits into the following three principal steps and is not
given in detail here.
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1. Prove the claim for lattice simplices Γ = conv{0, v1, . . . , vn}, vi ∈ Zn.

2. Triangulate P into lattice simplices Ti, 1 ≤ i ≤ m. In fact, there is
always a triangulation on the vertex set of P only.

3. Apply the inclusion-exclusion principle to handle multiple counting of
lattice points that lie in faces of the simplices Ti to obtain

G(kP ) = G

(
m⋃
i=1

kTi

)
=

∑
I⊆{1,...,m}

(−1)#I−1G

(⋂
j∈I

kTj

)
.

Since in the last term only simplices occur as sets to count in, we can
derive the statement of the theorem by plugging in the corresponding
polynomials from the first step. 2

A polynomial is determined by its coefficients; therefore, the first natural
question is whether we can describe the Gi(P ).

• G0(P ) = 1, since plugging in k = 0 leads to the set containing only the
origin.

• Gn(P ) = vol(P ); thus, for large dilates of P the number of lattice points
approximates the volume of P . This identity can be seen as follows:

vol(P ) = lim
k→∞

(
1
k

)n
#(P ∩ 1

k
Zn) = lim

k→∞

(
1
k

)n
#(kP ∩ Zn) = Gn(P ).

• Also due to Ehrhart, the second last coefficient is given by the normalized
(lattice) surface area, i.e.,

Gn−1(P ) =
1

2

∑
F facet ofP

voln−1(F )

det(aff(F ) ∩ Zn)
,

where aff(F ) denotes the affine hull of F .

For n = 2 we therefore know all the coefficients and we can state a formula,
which was already known to Pick in 1899 (Pick’s Theorem):

G(kP ) = vol(P )k2 +
1

2
#(bd(P ) ∩ Z2)k + 1.

To illustrate this, consider the following example: By Pick’s theorem, the
lattice point enumerator of this polygon is given by

G(kP ) =
21

2
k2 +

9

2
k + 1, and therefore G(P ) = 16.
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P

There are formulas in the literature describing the remaining coefficients
via generating functions or via the Todd differential operator. But the question
if they also admit a geometric interpretation is open.

From the computational point of view, there is an interesting result
by Barvinok from 1994. For fixed dimension, he gives a polynomial time
algorithm to compute G(P ).

Next, we see what is known about the coefficients for particular classes
of lattice polytopes. The first result is due to Stanley (1980) and Betke
and Gritzmann (1986). They obtained a geometric description for all the
coefficients Gi(Z) for lattice zonotopes Z.

Theorem 1.1.2. Let Z ∈ Pn be a lattice zonotope, i.e., there exist integer
vectors ai ∈ Zn, 1 ≤ i ≤ m, such that

Z = conv{0, a1}+ conv{0, a2}+ · · ·+ conv{0, am}.

Then

Gi(Z) =
∑

1≤j1<···<ji≤m

√
det((aj1 . . . aji)

t(aj1 . . . aji))

det(lin{aj1 , . . . , aji} ∩ Zn)
.

In 2005, Liu showed that the coefficients of cyclic polytopes are given by
volumes of projections on the first i coordinates. This proved a conjecture by
Beck, De Loera, Develin, Pfeifle and Stanley from 2004. She also generalized
this statement in 2008 to a bigger class of polytopes, the so-called lattice face
polytopes .

Theorem 1.1.3. Let C(n,m) ∈ Pn be a cyclic polytope with m integral
vertices on the moment curve t 7→ (t, t2, . . . , tn). Then

Gi(C(n,m)) = voli(C(n,m)|Ri).

The results for lattice zonotopes and cyclic polytopes suggest that the
coefficients might be non-negative. However, the Reeve simplices show that
this is not the case in general. For n = 3 and l ∈ N, consider the simplex
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R(l) = conv{0, e1, e2, (1, 1, l)t}. For all values of l it contains exactly 4 lattice
points and its volume is given by vol(R(l)) = l/6. Since we know that G2, as
the lattice surface area, is non-negative, and G0 = 1, the second coefficient
G1(R(l)) has to be negative for large l, and indeed this happens for l ≥ 13,
since G1(R(l)) = (12− l)/6.

It would be interesting to find at least partial answers to the following
problems.

Open Problems 1.1.4.

1. Characterize all lattice polytopes with non-negative Ehrhart coefficients
(seems to be intractable!).

2. Find more classes of “non-negative” lattice polytopes.

Since G(kP ) is a polynomial in k, it is also defined on negative values.
And, in fact, when we plug in negative integers, we get another geometric
quantity, as again already Ehrhart discovered.

Theorem 1.1.5 (Ehrhart’s Reciprocity Law, 1967). Let P ∈ Pn and k ∈ N.
Then

G(int(kP )) = (−1)n
n∑
i=0

Gi(P )(−k)i.

For example, for n = 2 we get

G(int(kP )) = vol(P )k2 − 1

2
#(bd(P ) ∩ Z2)k + 1.

As Betke and Kneser showed, the Ehrhart coefficients serve as a basis for a
special class of functions on the set Pn.

Definition 1.1.6. A function φ : Pn → R is said to be

• a valuation if for all P,Q ∈ Pn with P ∪ Q ∈ Pn it is φ(P ∪ Q) =
φ(P ) + φ(Q)− φ(P ∩Q);

• unimodular invariant if φ(AP ) = φ(P ) for all A ∈ Zn×n, det(A) 6= 0.

Theorem 1.1.7 (Betke–Kneser, 1985). Let φ be a unimodular invariant
valuation on Pn. Then there are constants αi ∈ R such that

φ(P ) =
n∑
i=0

αiGi(P ) for all P ∈ Pn.
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As we have seen above, we lack of exact descriptions for the coefficients.
This is why people are interested in the task to at least bound them by some
other geometric quantities. The best known bounds in terms of the volume
are stated in the next theorem, where the symbols s(n, i) denote the Stirling
numbers of the second kind.

Theorem 1.1.8. For P ∈ Pn and 1 ≤ i ≤ n, we have:

1. [Betke–McMullen, 1985]

Gi(P ) ≤ (−1)n−is(n, i) vol(P ) + (−1)n−i−1
s(n, i+ 1)

(n− 1)!
;

2. [Henk–Tagami, 2008]

Gi(P ) ≥ 1

n!

(
(−1)n−is(n+ 1, i+ 1) + (n! vol(P )− 1)Mi,n

)
,

where the Mi,n are some constants only depending on i and n.

The a-vector of a lattice polytope

Examples like the standard crosspolytope (see below) suggest that sometimes
it is more convenient to consider coefficients of the Ehrhart polynomial subject
to another basis. We exchange the monomial basis {xi | i = 0, . . . , n} for a
binomial basis

{(
x+n−i
n

)
| i = 0, . . . , n

}
and write

G(kP ) =
n∑
i=0

Gi(P )ki =
n∑
i=0

ai(P )

(
k + n− i

n

)
.

The vector a = (a0, a1, . . . , an) is called the a-vector of P . The Gi(P ) are
homogeneous of degree i, i.e., Gi(mP ) = miGi(P ) for m ∈ N, which is
no longer the case for the ai(P ). But in exchange we get some other nice
properties.

Theorem 1.1.9. Let P ∈ Pn. Then

1. a0 = 1, a1 = G(P )− (n + 1), an = G(intP ) and a0 + a1 + · · · + an =
n! vol(P ).

2. ai(P ) is integral for all 0 ≤ i ≤ n.

3. [Stanley’s non-negativity theorem, 1987] ai(P ) ≥ 0, 0 ≤ i ≤ n.
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4. [Stanley’s monotonicity theorem, 1993] For all Q ∈ Pn such that P ⊆ Q,
we have ai(P ) ≤ ai(Q), 0 ≤ i ≤ n.

Let us have a look at some examples to contrast the two types of coefficients.
What we see is that it depends on the polytope which coefficients are the
more convenient to deal with.

• For the standard simplex Tn = conv{0, e1, . . . , en}, G(kTn) =
(
k+n
n

)
and

therefore
a0(Tn) = 1, ai(Tn) = 0, 1 ≤ i ≤ n,

and
Gi(Tn) = (−1)n−i

s(n+ 1, i+ 1)

n!
, 1 ≤ i ≤ n.

• For the cube Cn = [−1, 1]n, we have G(kCn) = (2k + 1)n and thus

Gi(Cn) = 2i
(
n

i

)
, 0 ≤ i ≤ n.

• The crosspolytope C?
n = conv{±e1, . . . ,±en}, as the polar body to the

cube, has Ehrhart polynomial G(kC?
n) =

∑n
i=0

(
n
i

)(
k+n−i
n

)
and so

ai(C
?
n) =

(
n

i

)
, 0 ≤ i ≤ n.

1.1.3 Roots of Ehrhart polynomials

To get more information about the Ehrhart coefficients of a lattice poly-
tope P ∈ Pn, people are interested in the roots of the Ehrhart polynomial
considered as a function on the whole complex plane

G(s, P ) =
n∑
i=0

Gi(P )si =
n∏
i=1

(
1 +

s

γi(P )

)
, s ∈ C.

With this representation, the roots of G(s, P ) are −γi(P ), 1 ≤ i ≤ n, and
the Ehrhart coefficients are given by the elementary symmetric functions of
1/γi(P ), 1 ≤ i ≤ n, i.e.,

Gn(P ) =

n∏
i=1

1

γi(P )
, Gn−1(P ) =

n∑
i=1

∏
j 6=i

1

γj(P )
, . . . , G1(P ) =

n∑
i=1

1

γi(P )
, G0(P ) = 1.

We have seen that the standard simplex Tn has Ehrhart polynomial
G(kTn) =

(
k+n
n

)
, so the roots are −γi(Tn) = −i, 1 ≤ i ≤ n. This can also be
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seen more geometrically by using the reciprocity law. Since int(kTn)∩Zn = ∅
for 1 ≤ k ≤ n, we have

0 = G(int(kTn)) = (−1)n
n∑
i=0

Gi(Tn)(−k)i = (−1)nG(−k, Tn)

and again we can extract the roots as −γi(Tn) = −i, 1 ≤ i ≤ n.
For the unit cube, we easily get from G(s, Cn) = (2s+ 1)n that the roots

are given by −γi(Cn) = −1
2
, 1 ≤ i ≤ n. For the crosspolytope, things get

already complicated, since it is non-obvious how the roots of G(s, C?
n) =∑n

i=0

(
n
i

)(
s+n−i
n

)
look like.

The first systematic study of the roots of Ehrhart polynomials was done
in 2001 by Beck, de Loera, Develin, Pfeifle and Stanley. The following two
pictures are taken from their paper and depict that there is a lot of structure
in the set of roots of G(s, P ). The first one shows roots of 2-dimensional
lattice polygons with real part ≥ −2

3
, and the second one roots of 100,000

random lattice simplices in R3.

In joint work with C. Bey and J. Wills, we found sharp bounds on the
roots in the three-dimensional case. Here one can use Ehrhart’s reciprocity
law to overcome the lack of knowledge about the coefficient G1(P ).

Theorem 1.1.10 (Bey–Henk–Wills, 2006). The roots of Ehrhart polynomials
of 3-dimensional lattice polytopes are contained in

[−3,−1] ∪ {a+ ib : −1 ≤ a < 1, a2 + b2 ≤ 3},

and the bounds on a and a2 + b2 are tight.

In a recent work from 2008, Pfeifle used Gale duality bounds for roots of
polynomials with nonnegative coefficients to explain the behavior and the
locations of the roots in the above pictures.

Beck et al. obtained the following general bounds on the roots of a given
polytope P ∈ Pn.
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Theorem 1.1.11 (Beck et al., 2001).

1. The real roots of Ehrhart polynomials of n-dimensional lattice polytopes
are contained in the interval [−n,−n/2] and also the upper bound is
(up to a constant) best possible.

2. Let s be a root of an Ehrhart polynomial of some P ∈ Pn. Then

|s| ≤ (n+ 1)! + 1.

Braun improved on the second statement and derived a quadratic upper
bound on the norm of the roots.

Theorem 1.1.12 (Braun, 2006). Let s be a root of an Ehrhart polynomial
of some P ∈ Pn. Then ∣∣∣∣s+

1

2

∣∣∣∣ ≤ n

(
n− 1

2

)
.

Special lattice simplices

In the following, consider the lattice simplices

Sn(l) = conv

{
e1, . . . , en, −l

n∑
i=0

ei

}
, l ∈ N0.

An instance in the planar case is shown in the picture below:

S2(2)

The simplex Sn(l) contains exactly l interior lattice points and, as the
subsequent theorem states, it minimizes the volume among all lattice polytopes
with this number of interior lattice points.

Theorem 1.1.13 (Bey–Henk–Wills, 2006). Let P ∈ Pn. Then

vol(P ) ≥ nG(intP ) + 1

n!
,

and the bound is best possible for any number of interior lattice points. For
G(intP ) = 1, equality holds if and only if P is unimodularly equivalent to the
simplex Sn(1).
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In 2008, Duong characterized the equality case completely for n ≥ 3 and
showed that volume minimal lattice polytopes with exactly l interior lattice
points are unimodularly equivalent to Sn(l).

Moreover, for l = 1 these simplices show that Braun’s quadratic bound
on the norm of roots of Ehrhart polynomials of n-polytopes is asymptotically
best possible.

Theorem 1.1.14. All roots of the polynomial G(s, Sn(1)) have real part −1
2
.

If −γn is a root of G(s, Sn(1)) with maximal norm, then∣∣∣∣−γn +
1

2

∣∣∣∣ =
n(n+ 2)

2π
+O(1) as n→∞.

Remarks 1.1.15.

• Rodríguez-Villegas showed in 2002 that, if for a polytope P ∈ Pn all
roots of the polynomial

∑n
i=0 ai(P )xi have norm 1, then all roots −γi

of its Ehrhart polynomial have real part −1
2
.

• For n = 2, 3, the polynomial G(s, Sn(1)) has roots of maximal norm
among all Ehrhart polynomials of polytopes with interior lattice points.

• The a-vector of Sn(l) is given by ai(Sn(l)) = l, 1 ≤ i ≤ n, and for any
lattice polytope P ∈ Pn with G(intP ) = l it holds ai(P ) ≥ l, 1 ≤ i ≤ n.

Braun and Develin studied in 2007 roots of Ehrhart polynomials in the
more general context of S(tanley)N(on)N(egative)-polynomials.

Zero symmetric lattice polytopes

A natural question that arises is to ask for the zero symmetric relatives of the
simplices Sn(l), i.e., lattice polytopes P ∈ Pn with P = −P that minimize
the volume among all such polytopes with given number of interior lattice
points. Maximizers are known in the zero symmetric case since Blichfeldt
and van der Corput.

Theorem 1.1.16 (Blichfeldt, 1921; van der Corput, 1935). Let P ∈ Pn be
zero symmetric. Then

vol(P ) ≤ 2n−1(G(intP ) + 1).

Equality is attained for lattice boxes of the form

Qn(2l − 1) = {x ∈ Rn : |x1| ≤ l, |xi| ≤ 1, 2 ≤ i ≤ n}, l ∈ N.
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Q2(5)

See the figure for a planar example.
In combinatorial type questions it is hard to exploit the additional property

of zero symmetry and though it is still an open problem to give a sharp lower
bound on the volume in terms of the number of interior lattice points. We
conjecture that the lattice crosspolytopes

C?
n(2l − 1) = conv{±le1,±e2, . . . ,±en}, l ∈ N

are minimizers.

C!
2(5)

Problem 1.1.17. Let P ∈ Pn be zero symmetric. Is it true that

vol(P ) ≥ 2n−1

n!
(G(intP ) + 1) ?

Formulated in terms of a-vectors, this conjecture can be stated in a
stronger version as

Conjecture 1.1.18. Let P ∈ Pn be zero symmetric. Then

ai(P ) ≥
(
n

i

)
+

(
n− 1

i− 1

)
(an − 1), 0 ≤ i ≤ n.

We have been able to prove this for the class of lattice crosspolytopes.

Proposition 1.1.19. Let P = conv{±v1, . . . ,±vn} ∈ Pn for some vectors
vi ∈ Zn. Then the preceding conjecture holds for P .

As a corollary, the only known a-vector inequality for the zero symmetric
case can be derived using Stanley’s monotonicity theorem. Note that this
inequality also follows from early works by Stanley (1987) and Betke and
McMullen (1985).
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Corollary 1.1.20. Let P ∈ Pn be zero symmetric. Then ai(P ) ≥
(
n
i

)
for all

0 ≤ i ≤ n.

We have already seen that the volume minimizers in the general case
are known. Hibi deduced a theorem that covers the a-vector variant of this
statement.

Theorem 1.1.21 (Hibi, 1992). Let P ∈ Pn with an(P ) = G(intP ) ≥ 1.
Then ai(P ) ≥ a1(P ) for all 1 ≤ i ≤ n− 1.

Note that, in general, it is not true that ai(P ) ≥ a1(P ) for all 1 ≤ i ≤ j,
if aj(P ) > 0.

Reflexive polytopes

The starting point for the subsequent discussion of reflexive polytopes will
be a partial answer to the former question how the roots of the Ehrhart
polynomial of the standard crosspolytope C?

n look like. In different recent
works (Kirschenhofer, Pethoe, Tichy, 1999; Bump, Choi, Kurlberg, Vaaler,
2000; Rodríguez-Villegas, 2002) it was shown that

Re(−γi(C?
n)) = −1

2
, 1 ≤ i ≤ n.

In order to see how this result relates here, we call a lattice polytope P ∈ Pn
reflexive if its polar P ? = {y ∈ Rn : xᵀy ≤ 1, ∀x ∈ P} is also a lattice
polytope. Now, we have the following:

Proposition 1.1.22. Let P ∈ Pn. If all roots of G(s, P ) have real part −1
2
,

then, up to unimodular translation, P is a reflexive polytope of volume ≤ 2n.

Does the converse also hold? In three dimensions the answer is affirmative,
but for n ≥ 4 we need more conditions.

Proposition 1.1.23. Let P ∈ Pn be a reflexive polytope. Then all roots of
G(s, P ) have real part −1

2

• if and only if vol(P ) ≤ 2n and n ≤ 3,

• if and only if (G(P )−1−4 vol(P ))2 ≥ 16 vol(P ), 2G(P ) ≤ 9 vol(P )+18
and n = 4.

So, it is an interesting problem to characterize all those lattice polytopes
having all the roots with real part −1

2
. Kreuzer and Skarke (1998 and 2000)

classified all reflexive polytopes in dimensions n = 3, 4, and a computer-aided
computation of their roots suggests that there are only a few among them
having a root with real part different from −1

2
.
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• For n = 2 there are 16 reflexive polytopes, and 15 of them have all their
roots on the line with real part −1

2
.

• For n = 3 there are 4,319 reflexive polytopes, and 4,255 of them have
all their roots on the line with real part −1

2
.

• For n = 4 there are 473,800,776 reflexive polytopes, and...

For further information and work on reflexive polytopes, we refer to
Benjamin Nill, who devoted many studies to this special class.

1.1.4 Successive minima and Ehrhart polynomials

This last section is devoted to quantities that Hermann Minkowski already
introduced and their relations to Ehrhart theory. For a zero symmetric convex
body K in Rn, we define

λi(K) = min{λ > 0 : dim(λK ∩ Zn) ≥ i}

as the i-th successive minimum of K, 1 ≤ i ≤ n.
A first easy example is given by the Euclidean unit ball Bn, whose

successive minima all equal λi = 1, since all unit vectors are contained in the
boundary of Bn. For another one, consider the planar box R = {x ∈ R2 :
|x1| ≤ 1

2
, |x2| ≤ 1

4
}. Here we have to multiply R by a factor of two to get

the first non-trivial lattice point contained, i.e., λ1(R) = 2, and similarly the
fourth dilate gives two linear independent lattice points for the first time and
therefore λ2(R) = 4 (compare the picture below).

R

λ1(R)R

λ2(R)R

Minkowski proved two fundamental theorems for these successive minima
that have many applications in various fields of mathematics. For example,
the first one implies that any integer is representable as the sum of four
squares.

Theorem 1.1.24 (Minkowski’s 1st Theorem, 1896). Let K ⊂ Rn be a zero
symmetric convex body. Then

vol(K) ≤
(

2

λ1(K)

)n
,
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or, equivalently,

if vol(K) ≥ 2n then K ∩ Zn \ {0} 6= ∅.

A reformulation for zero symmetric lattice polytopes P ∈ Pn can be given
in terms of the roots of their Ehrhart polynomial G(s, P ) as(

n∏
i=1

γi(P )

) 1
n

≥ λ1(P )

2
.

His second theorem generalizes the first one and also gives a lower bound
on the volume in terms of the successive minima. Note that equality cases are
given by the unit cube Cn and the standard crosspolytope C?

n for the upper
and the lower bound, respectively.

Theorem 1.1.25 (Minkowski’s 2nd Theorem, 1896). Let K ⊂ Rn be a zero
symmetric convex body. Then

1

n!

n∏
i=1

2

λi(K)
≤ vol(K) ≤

n∏
i=1

2

λi(K)
.

Again, this can be stated via roots of Ehrhart polynomials:(
n!

n∏
i=1

λi(P )

2

) 1
n

≥

(
n∏
i=1

γi(P )

) 1
n

≥

(
n∏
i=1

λi(P )

2

) 1
n

.

Therefore, the geometric mean of the negatives of the roots of G(s, P ) is
bounded in terms of the geometric mean of the successive minima of P .

This leads us to the question if there is a corresponding bound on the
arithmetic mean of the roots in terms of the arithmetic mean of the successive
minima.

Theorem 1.1.26 (Henk–Schürmann–Wills, 2005). Let P ∈ Pn be a zero
symmetric lattice polytope. Then

1

n

(
n∑
i=1

γi(P )

)
≤ 1

n

(
n∑
i=1

λi(P )

2

)
,

and the bound is best possible, e.g., for the cube Cn and for the crosspoly-
tope C?

n.
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An equivalent version of this inequality is

Gn−1(P )

vol(P )
≤

n∑
i=1

λi(P )

2
,

and, in contrast to Minkowski’s 2nd theorem, there exists no lower bound on
the arithmetic mean of the roots.

A main ingredient for the proof of this result is the following lemma, which
is interesting on its own.

Lemma 1.1.27. Let P be a zero symmetric polytope with facets

Fi = P ∩ {x ∈ Rn : atix = bi}

for |ai| = 1. Furthermore, let L be a k-dimensional linear subspace and let
IL = {i : ai ∈ L}. Then

vol(P ) ≥ 1

k

∑
i∈IL

voln−1(Fi)bi.

Towards a generalization of Minkowski’s 2nd theorem

The fundamental theorems of Minkowski relate the successive minima to the
volume of the zero symmetric convex body K. We ask if there is a similar
relation to the “discrete volume”, i.e., the lattice point enumerator G(K).

Problem 1.1.28 (Betke–Henk–Wills, 1993). Let K ⊂ Rn be a zero symmetric
convex body. Is it true that

G(K) ≤
n∏
i=1

(
2

λi(K)
+ 1

)
?

The additive constant 1 that appears in the factors on the right-hand
side could be exchanged for any other constant. An important observation
is that this inequality would imply Minkowski’s 2nd theorem. This can be
seen again by using vol(K) = limk→∞

(
1
k

)n
G(kK) and the additional fact

that the successive minima are homogeneous of degree −1, i.e., λi(kK) =
1
k
λi(K), 1 ≤ i ≤ n.
The state of the art concerning this problem is the following.

• It holds in the planar case n = 2.

• It is true up to a factor of ∼
√

3
n−1

[Malikiosis, 2008/09].
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• The weaker and analogue inequality to Minkowski’s 1st theorem holds:

G(K) ≤
(

2

λ1(K)
+ 1

)n
.

• It suffices to prove the inequality for lattice polytopes.

Next, let us introduce another polynomial in s ∈ C given by

L(s,K) =
n∏
i=1

(
2

λi(K)
s+ 1

)
=

n∑
i=0

Li(K)si.

Thus, our problem is to show that, for zero symmetric lattice polytopes
P ∈ Pn, we have

G(1, P ) =
n∑
i=0

Gi(P ) ≤
n∑
i=0

Li(P ) = L(1, P ).

Since Minkowski’s 2nd theorem can be stated as

Gn(P ) ≤ Ln(P )

and our inequality for the arithmetic means as

Gn−1(P ) ≤ Ln−1(P ),

we suggest that maybe a componentwise approach to the problem could work.
Joint work is in progress with Matthias Henze and Eva Linke on the class of
lattice zonotopes, and partial results so far are the following:

• The componentwise inequalities hold for arbitrary parallelepipeds.

• Let Z be a lattice zonotope generated by a1, . . . , am. Then

Gi(Z) ≤ n!

i!
Li(Z).

• If the generators ai are furthermore primitive and in general position,
then G1(Z) ≤ L1(Z).
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1.2 Average behavior of Frobenius numbers

1.2.1 Introduction and definition

This second part of the talk is about joint work with Iskander Aliev from
Cardiff University and deals with an old Diophantine problem posed by
Frobenius. It is about the following setting.

Let a = (a1, . . . , an) ∈ Nn
>0 with gcd(a) = 1. Then the problem is to

determine the largest integer F (a), from now on referred to as the Frobenius
number of a, which cannot be written as a non-negative integer combination
of the given numbers ai, i.e.,

F (a) = max
{
b ∈ Z : b 6= atz for all z ∈ Nn

}
.

As an introductory example, consider a = (3, 10). Here we have

{atz : z ∈ Nn} = {0, 3, 6, 9, 10, 12, 13, 15, 16, 18, 19, 20, . . . },

and therefore F (a) = 17.
One should note that such a maximal non-expressible number always

exists when the ai have greatest common divisor 1. Indeed, then there are
integers x1, . . . , xn ∈ Z such that 1 = x1a1 + · · · + xnan and therefore all
natural numbers ≥ |x1|a1 + · · ·+ |xn|an are expressible as non-negative integer
combinations of the ai.

The Frobenius problem is also sometimes known as the Coin/Money
changing problem, because the values ai can be seen as denominations of n
different coins and the Frobenius number is then the largest non-representable
amount of money using these coins only.

A related Google search furthermore leads to McNugget numbers , which
are positive integers that can be obtained by adding orders of McDonald’s©
Chicken McNuggets™ that used to come in boxes of 4, 6, 9 and 20 each. And
it turns out that all integers except 1, 2, 3, 5, 7 and 11 are such McNugget
numbers, i.e., F (4, 6, 9, 20) = 11.

A geometric approach to the Frobenius problem can be done by considering
the so-called Knapsack polytope

P (a, b) = {x ∈ Rn
≥0 : atx = b}

for given b ∈ R>0. Now, the equivalent question is whether P (a, b) contains
an integer point. In this setting, the existence of the Frobenius number is
shown by proving the containment of a sufficiently huge cube or ball in the
simplex P (a, b) for big values of b. A planar example is shown in the figure
below:
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x

y

{3x + 5y = 4}

{3x + 5y = 6}

{3x + 5y = 7}

Diophantine equations are usually hard to solve in whole generality, and
in fact this also holds for the Frobenius problem. But still, some exact results
are known.

• Solving a question by Sylvester from 1884, Curran Sharp proved in the
same year an exact formula for the planar case n = 2. For a = (a1, a2)
with gcd(a) = 1, the following holds:

F (a) = a1a2 − (a1 + a2).

The proof is nice and simple and uses the fact that, for two relatively
prime numbers, every integer b has a unique integral representation

b = a1x+ a2y with 0 ≤ x < a2 and y ∈ Z.

Therefore, assuming a1 ≤ a2, the largest non-representable integer is
obtained by taking x = a2 − 1 and y = −1, which directly leads to the
above formula.

• Already in dimension n = 3 no exact formula is known and in fact there
are “only” algorithms to compute the Frobenius numbers.

• In 1992, Kannan found a polynomial time algorithm to compute F (a)
in fixed dimension n.

• Ramírez Alfonsín showed in 1996 that the Frobenius problem belongs
to the class of NP-hard problems. He also wrote a book, published in
2005, surveying the current knowledge on the problem.

• By restricting the integer vector a to special cases, exact formulas are
possible and an example is given by geometric sequences (Ong and



Ehrhart polynomials and Frobenius numbers 91

Ponomarenko, 2008). If gcd(p, q) = 1, then

F (qn−1, pqn−2, . . . , pn−1) = pn−2(qp− q − p) +
(p− 1)q2(qn−2 − pn−2)

q − p
.

1.2.2 Lower and upper bounds

We have seen that for n ≥ 3 we cannot give exact formulae to compute the
Frobenius number of a given integer vector. Thus, a natural question is to
ask if we can at least bound it. In fact, many people were interested in this
task and there are many results in the literature.

For the upper bounds, we assume n ≥ 3 and a1 ≤ a2 ≤ · · · ≤ an.

• [Erdős–Graham, 1972]

F (a) ≤ 2an

[a1
n

]
− a1.

• [Vitek, 1975]

F (a) ≤
[

(a2 − 1)(an − 2)

2

]
− 1.

• [Selmer, 1977]
F (a) ≤ 2an−1

[an
n

]
− an.

• [Beck–Díaz–Robins, 2002]

F (a) ≤ 1

2

(√
a1a2a3(a1 + a2 + a3)− (a1 + a2 + a3)

)
.

Note that this bound only depends on the three smallest integers a1, a2
and a3, but still holds in general.

• [Fukshansky–Robins, 2007]

F (a) ≤ (n− 1)2

Γ
(
n
2

+ 1
)
π

n
2

n∑
i=1

ai

√
‖a‖2 − a2i .

For our considerations, the important observation is the following. If the
ai’s are all of the “same size”, then all these upper bounds have the same order
of magnitude |a|2∞. Evidence that this is also best possible can be found in
Erdős–Graham (1972), Schlage–Puchta (2005), and Arnold (2006).
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Lower bounds are not that frequent and the first one was given in a work
by Rödseth (1990), who proved that

F (a) ≥ (n− 1)!
1

n−1 (a1a2 · · · · · an)
1

n−1 − (a1 + a2 + · · ·+ an).

For n = 3, the factor (n − 1)!
1

n−1 was improved by Davison (1994) to
√

3.
With geometric reasoning, Aliev and Gruber found a best possible factor in
2007. Let µ̄k be the absolute inhomogeneous minimum of the k-dimensional
standard simplex. We have k > µ̄k > (k!)

1
k > k

e
, which shows that their

bound
F (a) ≥ µ̄n−1(a1a2 · · · · · an)

1
n−1 − (a1 + a2 + · · ·+ an)

extends the one by Rödseth.
The order of magnitude for this lower bound is |a|1+

1
n−1

∞ if the ai’s are
of the “same size”. Our main concern now is the typical behavior of F (a),
i.e., given a random integer vector a, is the expected order of magnitude of
its Frobenius number |a|1+

1
n−1

∞ or |a|2∞? The first systematic study of this
problem was done by Arnold (1999/2006) and he conjectured that F (a) grows
like T 1+ 1

n−1 for a generic vector a with |a|1 = T . A first result concerning this
assumption is the following:

Theorem 1.2.1 (Bourgain–Sinai, 2007). Let 0 < α < 1 and

Gα(n, T ) = {a ∈ Nn
>0 : gcd(a) = 1, |a|∞ ≤ T, ai ≥ αT, 1 ≤ i ≤ n}.

Then, with respect to the uniform distribution of all points in the set Gα(n, T ),

Probα

(
F (a)

T 1+ 1
n−1

≥ D

)
≤ ε(D).

The constant ε(D) does not depend on T and tends to 0 as D goes to infinity.

Note that we actually would like to have a result considering all integer
points with bounded maximum norm, i.e., all points in

G(n, T ) = {a ∈ Nn
>0 : gcd(a) = 1, |a|∞ ≤ T} = G0(n, T ).

Theorem 1.2.2 (Aliev–Henk, 2008). Let T > 0. Then, with respect to the
uniform distribution among all points in G(n, T ), we have

Prob

(
F (a)

|a|1+
1

n−1
∞

≥ D

)
�n D

−2.

Here, �n denotes the Vinogradov symbol with the constant only depending
on n.
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This result is not straightforward, since the next statement shows that
the ratio F (a)/|a|1+

1
n−1

∞ is unbounded along a given vector α ∈ Rn.

Theorem 1.2.3 (Aliev–Henk, 2008). For any ε > 0, M > 0, and any given
vector α = (α1, . . . , αn−1, 1) ∈ Rn with 0 ≤ α1 ≤ · · · ≤ αn−1 ≤ 1, there exists
an integer vector a = (a1, . . . , an) ∈ Nn

>0 with gcd(a) = 1 and |α− 1
an
a|∞ < ε

such that
F (a) > M · |a|1+

1
n−1

∞ .

As a corollary to Theorem 1.2.2, we get the following:

Theorem 1.2.4 (Aliev–Henk, 2008).

1

#G(n, T )

∑
a∈G(n,T )

F (a)

|a|1+
1

n−1
∞

�n 1.

In words, this means that the “average” Frobenius number does not
essentially exceed |a|∞ as n tends to infinity. Looking back to the terms
appearing in the best lower bounds on the Frobenius number of a given integer
vector, we pose the following question.

Problem 1.2.5. Can we replace the term |a|1+
1

n−1
∞ in the subsequent theorem

by the geometric mean (a1a2 · · · an)
1
n ?

Beierhofer et al. made extensive computer experiments in 2005 that allow
to suspect an affirmative answer to this question.

Reversed arithmetic-geometric-mean inequality

A possible way to a positive answer for Problem 1.2.5 is via a probabilistic
reversed arithmetic-geometric-mean inequality. Note that a reversed AGM
inequality is not possible in general. Precisely, we ask to determine the order
of decay σ(n) such that, for large T , with respect to uniform distribution of
points in G(n, T ), it is

Prob

(
1
n
|a|1

(
∏n

i=1 ai)
1
n

> α

)
�n α

−σ(n).

Hinrichs showed in 2008/09 that it is possible to choose σ(n) = 1, which
implies that

Prob

(
F (a)

(
∏n

i=1 ai)
1
n

≥ D

)
�n D

−Rn−1
2n ,
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for some constant R > 0.
In the continuous case, meaning that we do not restrict the set G(n, T )

only to primitive integer vectors, a linear order of decay is known and the
aim is to find a similar result in the integer case.

Theorem 1.2.6 (Gluskin–Milman, 2003).

Prob

(
1
n
|x|1

(
∏n

i=1 xi)
1
n

> α : x ∈ Rn
>0

)
�n α

−n
2 .

Ideas and ingredients of the proof

In this final part, we would like to give the main ideas and ingredients of
our proof of Theorem 1.2.2. To a large extent, it is a combination of various
results in the field of geometry of numbers.

Let Bn−1 ⊂ Rn−1 be the (n− 1)-dimensional unit ball. For given a ∈ Zn
we consider the lattice

Λa =
1

‖a‖
1

n−1

{
x ∈ Zn : atx = 0

}
,

which has determinant det(Λa) = 1. The so-called inhomogeneous minimum
of Λa is defined as

µ(Λa) = min{µ > 0 : Λa + µBn−1 = Rn−1}.

Kannan connected in 1982 this geometric quantity with the Frobenius numbers
and using further results of Fukshansky and Robins from 2007 (see also Arnold,
2006), one can show that

F (a) ≤ n3|a|1+
1

n−1
∞ µ(Λa).

Jarnik found in 1941 an inequality that relates the inhomogeneous minimum
to Minkowski’s successive minima. For our purposes, we need them to be
defined with respect to the lattice Λa and the unit ball, i.e.,

λi(Λa) = min{λ > 0 : dim(λBn−1 ∩ Λa) ≥ i}, 1 ≤ i ≤ n− 1.

From the previous inequality we obtain

F (a)

|a|1+
1

n−1
∞

≤ n4λn−1(Λa).
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In the next step we apply Minkowski’s fundamental theorems on the successive
minima to prove the existence of an i ∈ {1, . . . , n− 2} such that

λi+1(Λa)

λi(Λa)
> cn

(
F (a)

|a|1+
1

n−1
∞

) 2
n−2

,

for some constant cn > 0 only depending on n.
Finally, we use a series of fundamental results by Schmidt (1998). His work

deals with the distribution of primitive sublattices and enables us to show
that the left-hand side of the former inequality is small with high probability,
which leads to the result stated in Theorem 1.2.2.

As a conclusion of this second part, we would like to advertise the study
of a (probabilistic) reversed arithmetic-geometric-mean inequality in order to
answer Problem 1.2.5.
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Notes taken by Frederik von Heymann
Freie Universität Berlin, heymann@math.fu-berlin.de

1.1 The tropical semiring
Definition 1.1.1. The triple (R,⊕,�) is called the tropical semiring , where

x⊕ y = min(x, y) and x� y = x+ y.

Remark 1.1.2. Taking the maximum instead of the minimum gives an isomor-
phic object. Also, sometimes one uses (R+,min, ·) or the above operations
over the set R ∪ {∞}.
Example 1.1.3.

(3⊕ 5)� 2 = 3� 2 = 5 = min(5, 7) = (3� 2)⊕ (5� 2).

This hints that we have distribution. And, in fact, this is the case. On the
downside, every x ∈ R is idempotent (i.e., x⊕ x = x), so there is no inverse
for the addition.

Consider the polynomial 6x3 + 2x+ 3 ∈ R[x]. Tropical evaluation means
to map x ∈ R to

(6� x�3)⊕ (2� x)⊕ 3 = min(3x+ 6, 2x, 3).

In Figure 1.1 we see the three linear functions given by the monomials of the
polynomial. The tropical polynomial is therefore a piecewise linear function.
We are especially interested in the points where the function is not linear.
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Figure 1.1: The tropical polynomial (6� x�3)⊕ (2� x)⊕ 3 and the three linear
functions.

Remark 1.1.4. The arithmetic extends to higher dimensions, i.e., to (Rd,⊕,�),
where ⊕ is defined componentwise and we have the tropical scalar multiplica-
tion

λ�

x1...
xd

 =

λ� x1...
λ� xd

 =

x1 + λ
...

xd + λ

 .

This means that we can look at multivariate polynomials.

Figure 1.2: The shaded part indicates P(6x3 + 2x+ 3).

Proposition 1.1.5. For f ∈ R[t1, . . . , td] a polynomial with tropical evalua-
tion function f ∗ : Rd → R, the set

P(f) =
{

(t, f ∗(t))
∣∣ t ∈ Rd

}
⊆ Rd+1

is the boundary of an unbounded convex polyhedron.
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This shows that it is enough to look at convex polyhedra to know tropical
polynomials.

As said before, we will be especially interested in the “non-linearity” points
of tropical polynomials.

Definition 1.1.6. A polynomial p =
∑

i cit
i ∈ R[t1, . . . , td], where we define

ti = (ti11 , . . . , t
id
d ), vanishes tropically at t if the minimum⊕

i

ci � t�i

is attained at least for two different values of i.

1.2 Tropical hyperplanes

Consider the homogeneous linear polynomial

f = 2t1 − 2t2 + t3 ∈ R[t1, t2, t3].

The tropical vanishing locus is a 2-dimensional piecewise linear subset of R3.
But if f tropically vanishes at x, then it also vanishes (in the tropical sense)
at λ1 + x = λ� x for all λ ∈ R:

f ∗(λ1 + x) = (2� λ� x1)⊕ (−2� λ� x2)⊕ (1� λ� x3)
= λ� f ∗(x).

Hence it is useful to factor out tropical scalar multiplication and define the
tropical torus

Td−1 = Rd/R1.

Remark 1.2.1. The tropical torus Td−1 is topologically equivalent to Rd−1:

(x1, . . . , xd) + R1 = (0, x2 − x1, . . . , xd − x1) + R1 7→ (x2 − x1, . . . , xd − x1),

and this is a bijection.

Now we can draw the image of the vanishing locus in Rd/R1. For the
above example f , the result is depicted in Figure 1.3. Note that the zero-value
(−2, 2,−1) of f equals (0, 4, 1) in Td−1.

Definition 1.2.2. A tropical hyperplane is the vanishing locus of a homoge-
neous linear polynomial in Td−1.
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Figure 1.3: The downward arrow looks skew due to the projection.

1.3 Tropical determinants
Consider the permanent

p =
∑

σ∈Sym(d)

t1,σ(1) · . . . · td,σ(d) ∈ R[t11, . . . , tdd].

It is convenient to think of the tij as entries of a d×d-matrix of indeterminates.

Definition 1.3.1. The tropical determinant is defined as

tdet = p∗ = min
σ∈Sym(d)

t1,σ(1) + · · ·+ td,σ(d).

Remark 1.3.2. The computation of tdet equals the assignment problem in
combinatorial optimization. This can be solved via the Hungarian method,
which has complexity O(d 3).

It is a curious fact that this is the complexity of the Gaussian elimination
for the normal determinant. Whether or not this is a coincidence is not known
so far.

Theorem 1.3.3. The d points x1, . . . , xd ∈ Td−1 lie in a common tropical
hyperplane if and only if

tdet

x11 · · · x1d
...

...
xd1 · · · xdd

 vanishes,

where xi =

( xi1
...
xid

)
.
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1.4 Tropical polytopes
Definition 1.4.1.

• For X ⊆ Td−1, let

tconvX = {(λ1 � x1)⊕ · · · ⊕ (λk � xk) | x1, . . . , xk ∈ X, λi ∈ R}

be the tropical convex hull of X. This is well defined because it is the
tropical evaluation of a homogeneous polynomial.

• A tropical polytope is the tropical convex hull of finitely many points.

• X is tropically convex if and only if X = tconvX.

Examples of tropically convex sets:

• Tropical hyperplanes.

• Open sectors, i.e., the connected components of the complement of a
tropical hyperplane (see Figure 1.4).

• See Figure 1.5 for more examples.

Figure 1.4: The shaded area indicates an open sector in T2.

Figure 1.5: The first three types of sets are called segments. The fourth is an
example of a tropically convex set that is not a tropical polytope.
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Figure 1.6: An amoeba and its limit for k →∞.

So what is the connection between the locus of a polynomial and the locus
of its tropical evaluation?

Let f ∈ C[t1, . . . , td] and define

V (f) =
{
x ∈ Cd

∣∣ f(x) = 0
}

as the vanishing locus of f . Then the map from V (f) to Rd with

x = (x1, . . . , xd) 7−→ (logk |x1|, . . . , logk |xd|) ∈ Rd

defines an amoeba of f , where k > 1 (see Figure 1.6).

Proposition 1.4.2. Tropical line segments in Td−1 ≈ Rd−1 are the concate-
nation of at most d− 1 ordinary line segments.

The proof is easy and left to the reader.
Consider a finite sequence V = (v1, . . . , vn) of points in Td−1. Then for

x ∈ Td−1 we define

typeV (x) = (T1, . . . , Td), with

Tk = {i ∈ [n] | vik − xk ≤ vij − xj for all j} (and, as before, vi =

( vi1
...
vid

)
).

Example 1.4.3. Let V = (v1, . . . , v4) with

v1 =

0
3
6

 , v2 =

0
5
2

 , v3 =

0
0
1

 , v4 =

1
5
0

 .
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(0,5,2)

(1,5,0)

(0,0,1)

(0,3,6)(0,3,6)

(0,5,2)

(1,5,0)

(0,0,1)

Figure 1.7: Example of a tropical polytope with a minimal generating set indicated,
and the decomposition of T2 for this pointset, as described in Lemma 1.4.4.

Then

typeV

0
3
4

 = ({1}, {1, 3}, {2, 3, 4}).

To see this, we compute v1 − x =
(

0
0
2

)
, where the two 0s tell us that 1 ∈ T1

and 1 ∈ T2. Furthermore, we have v2 − x =
(

0
2
−2

)
, so 2 ∈ T3; proceed in this

manner for the remaining vis.

Lemma 1.4.4.

XS =
{
x ∈ Td−1

∣∣ S = (S1, . . . , Sd) ⊆ type(x) (componentwise)
}

=
{
x ∈ Td−1

∣∣ xj − xk ≤ vij − vik for all j, k and all i ∈ Sk
}

is an ordinary convex polyhedron (or empty).

Note that the constraints in the second description of XS are linear, as V
is fixed. This gives us a decomposition of Td−1; see Figure 1.7.

Theorem 1.4.5. The tropical convex hull tconv{v1, . . . , vn} equals⋃
S∈(2[n])d

{XS | XS is bounded} ,

so it is an ordinary polytopal complex.
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III
I

II

Figure 1.8: Basic idea of the proof: If vi is in the closure of the kth sector, then
i ∈ Tk.

Remark 1.4.6. tconv(V ) is dual to the regular subdivision of ∆n−1 ×∆d−1
(shown by Develin and Sturmfels).

Note that we know from ordinary polytope theory that ∆n−1 ×∆d−1 ∼=
∆d−1 ×∆n−1. So we can also consider d points in (n− 1)-space instead of n
points in (d− 1)-space and therefore have an isomorphism between tropical
polytopes in different dimensions.

1.5 Signs of tropical determinants
Consider

tdet

 0 −1 2
0 −2 −2
0 2 0

 = (−1) + (−2) + 0 = −3.

This matrix is tropically non-singular, and the unique optimal permutation is
σ = (123) with sign = +1 (as a permutation).

IF M ∈ Rd×d, then

tsignM =

{
ε if all optimal σ share the sign ε,
0 otherwise.

Remark 1.5.1. The computation of tsign corresponds to the even-dicycle-
problem for some (directed) graphs. Although this was open for about 30
years, we now know that there is a polynomial-time algorithm for this.

In normal geometry, we can use the determinant to determine whether
a point lies on a given hyperplane, and, if not, then on which side of the
hyperplane the point is. Now we would like to have a tropical version of this.

Let H be a fixed tropical hyperplane in Td−1. A closed sector is the closure
of an open sector, and a closed tropical half-space is the non-trivial union of
closed sectors of a fixed hyperplane (where a trivial union is the empty union
or the union over all the sectors).
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(0,2,0)

(0,0,0)

(0,!2,!2)

p = (0,!1,2)

Figure 1.9: The points (without the zero) correspond via Theorem 1.5.2 to the
matrix at the beginning of the section and define the shaded half-space.

Theorem 1.5.2. Pick points x2, x3, . . . , xd ∈ Td−1 in sufficiently generic
position. Thenp ∈ Td−1 : tsign


p1 p2 · · · pd
x21 x22 · · · x2d
...

...
xd1 xd2 · · · xdd

 = +1


is a tropical half-space. Conversely, each tropical half-space arises in this way.

1.6 Further results and concluding remarks
We give tropical versions of classical results:

• Let P be a tropical polytope and x 6∈ P . Then there exists a tropical
half-space H+ with P ∈ H+ and x 6∈ H+. In other words, we have a
tropical separation theorem.

• Each tropical polytope is the bounded intersection of finitely many
tropical half-spaces. Conversely, each such intersection is a tropical
polytope.

Furthermore, we have:

• Tropical polytopes that are also classical polytopes are called polytropes .

• The type decomposition of a tropical polytope is a decomposition into
polytropes.
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• Each polytrope is generated by d vertices and can therefore be regarded
as a tropical simplex.

• Based on these facts, one can derive a tropical version of Carathéodory’s
theorem, which says that each point in a d-polytope is in the convex
hull of at most d+ 1 vertices.

• Tropical polytopes can be seen as tropical linear spaces. In ordinary ge-
ometry, the Grassmannian parametrizes linear spaces, and, as one would
hope, the tropicalization of the Grassmannian does indeed parametrize
tropical linear spaces.
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Seminar 8

Helly-type Theorems

By Gil Kalai
Hebrew University of Jerusalem, kalai@math.huji.ac.il

Notes taken by Víctor Álvarez
Universität des Saarlandes, alvarez@cs.uni-sb.de

and Jeong Hyeon Park
Korea Advanced Institute of Science and Technology,
parkjh@jupiter.kaist.ac.kr

1.1 Introduction

Helly’s theorem is one of the most important and classic theorems in discrete
geometry. This theorem tells that, given a collection of convex sets in Rd, if
every choice of d+ 1 convex sets have a common intersection, then the whole
collection also have a common intersection. In this talk, we discuss the proof
of Helly’s theorem and its relative theorems.

1.2 Helly’s theorem and its relatives

1.2.1 Helly’s theorem and its proof

Let us start with the main theorem:

Theorem 1.2.1 (Helly’s Theorem). Let K1, . . . , Kn be a family of convex
sets in Rd, where n ≥ d + 1. If every d + 1 of these sets have a point in
common, then all sets have a point in common.
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We will introduce two proofs. The first one is Radon’s proof. In his proof,
he used a lemma which is now known as Radon’s theorem.

Theorem 1.2.2 (Radon’s Theorem). If x1, . . . , xn ∈ Rd with n ≥ d+ 2, then
it is possible to find a partition S, T ⊂ {1, . . . , n} such that

conv(xi, i ∈ S) ∩ conv(xj, j ∈ T ) 6= ∅.

Proof. Since n > d+ 1, the points x1, . . . , xn are affinely dependent. That is,
n∑
i=1

αixi = 0,
n∑
i=1

αi = 0, ∃αi 6= 0.

Divide the sum into the positive coefficient part and the negative coefficient
part: ∑

i :αi>0

αixi =
∑

j :αj<0

(−αj)xj,
∑
i :αi>0

αi =
∑

j :αj<0

(−αj) = t.

Divide both sides by t:∑
i :αi>0

αixi
t

=
∑

j :αj<0

(−αj)xj
t

,
∑
i :αi>0

αi
t

=
∑

j :αj<0

(−αj)
t

= 1.

This proves the statement.

Radon’s proof of Helly’s theorem. We will prove the theorem by induction on
the number of convex sets. Assume that the statement is true for k < n convex
sets. Then, for every n − 1 convex sets, they have a common intersection.
Let {a1, . . . , an} be the intersection points.

By 1.2.2, {a1, . . . , an} have a Radon partition S, T . Let p be a point in
conv(S) ∩ conv(T ). Then p is contained in every convex set.

Helly’s proof is interesting as well.

Helly’s proof of Helly’s theorem. We will prove the theorem by induction on
the dimension and the number of convex sets. Assume that the statement is
true for l < d dimensions and k < n convex sets. Suppose that K1 ∩K2 ∩
. . . ∩Kn = ∅. That is, there is a separating hyperplane H between C = Kn

and M = K1 ∩ . . . ∩Kn−1. Let K ′i = Ki ∩H. By the assumption, each K ′i
is nonempty because Kn ∩Ki is nonempty. Then we have a family of n− 1
convex sets K ′i in H. By the hypothesis, K ′1 ∩ . . . ∩K ′n−1 6= ∅, which implies
that K1∩ . . .∩Kn−1∩H 6= ∅. This contradicts the fact that H is a separating
hyperplane.
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1.2.2 Topological generalization

What if the given sets are not convex? The following figure tells that the
answer is “no”.

Figure 1.1: Every three sets have a common intersection but four sets do not.

However, Helly’s theorem can be generalized to the following topological
version.

Theorem 1.2.3 (Topological Helly Theorem). If K1, . . . , Kn have the prop-
erty that every nonempty intersection is homeomorphic to a ball, then Helly’s
theorem holds.

1.2.3 Dimension Helly theorem

One may ask the following question: What happens if we assume that the
dimension of the intersection of every d+ 1 sets is larger than or equal to r?
Can we deduce that dim(K1 ∩ . . . ∩Kn) ≥ r? Again, the answer is negative.
The following figure is a counterexample: A1, A2 and A3, A4 partition the
same rectangle, respectively. And every three sets have a common intersection
of dimension 1, but four sets have common intersection of dimension 0.

A1 A2

A3

A4

Figure 1.2: Two partitions of the rectangle.

However, Katchalski proved that the statement is true when “many” sets
have an r-dimensional intersection.

Theorem 1.2.4 (Katchalski’s Dimension Helly Theorem). If every h(d, r)
sets have intersection of dimension ≥ r, then all sets have intersection of
dimension ≥ r, where h(d, r) = max(2(d+ 1− r), d+ 1).
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Katchalski also proved the following theorem.

Theorem 1.2.5 (Katchalski’s Big Theorem). The dimension of the inter-
sections of all subfamilies of size ≤ d + 1 determines the dimension of the
intersections of all subfamilies.

1.2.4 Fractional Helly theorem

What happens if the assumption “every d + 1 convex sets have a common
intersection”, is relaxed to “most d+1 convex sets have a common intersection”?
Consider a family of convex sets such that

K1 = H1, . . . , Km = Hm, Km+1 = . . . = Kn = Rd.

Among the (d + 1)-subfamilies,
(
n
d+1

)
−
(
m
d+1

)
have nonempty intersection.

And there is no family of size n−m+ d+ 1 with nonempty intersection. The
following theorem tells that this is the best possible.

Theorem 1.2.6 (Kalai–Echoff). If the number of (d + 1)-subfamilies with
nonempty intersection is >

(
n
d+1

)
−
(
m
d+1

)
, then there are n−m+ d+ 1 sets

with nonempty intersection.

We get the following useful corollary.

Corollary 1.2.7. If α
(
n
d+1

)
of the (d+ 1)-subfamilies have nonempty inter-

section, then there are βn sets with nonempty intersection.

One may ask “how many points are required to pin all the convex sets?”.
Hadwiger and de Brunner proved the following theorem.

Theorem 1.2.8 (Hadwiger–de Brunner). If K1, . . . , Kn are planar convex
sets and among every 5 of them there are 4 with nonempty intersection, then
there are two points x, y such that every Ki contains x or y.

The following two lemmas imply the theorem. Their proof is by plane
sweeping. Imagine that a hyperplane H is sweeping the plane. Let K1, K2

be the convex sets whose intersection meets H at last. Let x the meet point.
Then:

Lemma 1.2.9. All Ki such that Ki ∩K1 ∩K2 6= ∅ contain x.

Proof. Suppose not; that is, there is a set Ki that does not contain x. Then
Ki∩K1∩K2 meets H after H meets x, which implies that Ki∩K1 or Ki∩K2

meet H after H meets x. This contradicts the assumption.
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H

K1

K2

x y Ki

Figure 1.3: Illustration of Lemma 1.2.10.

Lemma 1.2.10. All the sets Kj which do not intersect K1 ∩K2 have a point
y in common.

Proof. Pick up Kj1 , Kj2 , Kj3 which do not intersect K1 ∩K2. Then, by the
assumption, Kj1 ∩ Kj2 ∩ Kj3 6= ∅. By Helly’s theorem, these sets have a
common intersection point y.

What if we strengthen the condition? That is, how many points are
required to pin every convex set if among every 4 convex sets we can find 3
with nonempty intersection? So far, the smallest number of points to pin the
convex sets is not known, but Alon and Kleitman proved that the number of
points to pin is finite.

1.2.5 Tverberg’s theorem

Let us recall Radon’s theorem:

Theorem 1.2.11 (Radon’s Theorem). If x1, . . . , xn ∈ Rd, where n ≥ d+ 2,
then it is possible to find a partition S, T ⊂ {1, . . . , n} such that

conv(xi, i ∈ S) ∩ conv(xj, j ∈ T ) 6= ∅.

One may ask a natural question: Can we divide the point set into “more”
than two disjoint sets whose convex hulls intersect?

Tverberg answered the question via the following theorem.
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Theorem 1.2.12 (Tverberg’s Theorem). Let x1, . . . , xn ∈ Rd, where n ≥
(d+ 1)(r − 1) + 1. Then we can divide {1, . . . , n} into r parts S1, S2, . . . , Sr
such that ∩ri=1 conv(xj, j ∈ Si) 6= ∅.

This theorem has several proofs. The original proof is very complicated.
Tverberg simplified the proof several times by himself. Sarkaria gave a beauti-
ful linear algebraic proof using tensor product and the colorful Carathéodory
theorem.

This theorem has a topological generalization.

Theorem 1.2.13 (Topological Tverberg Theorem). Let f be a continuous
function from the n-dimensional simplex σn to Rd. If n ≥ (d+ 1)(r − 1) and
r is a power of a prime, then there are r pairwise disjoint faces of σn whose
images have a point in common.

For a composite number r, its proof is not known.
There are several problems around Tverberg’s theorem. One is about a

relaxed Tverberg condition. Let t(d, r, k) be the smallest integer such that,
given n points x1, . . . , xn in Rd, there exists a partition S1, . . . , Sr of {1, . . . ,m}
such that every k among the convex hulls conv(xi, i ∈ Sj), j = 1, . . . , r, have
a point in common. Reay conjectured that t(d, r, k) = (d+ 1)(r − 1) + 1, but
we do not believe it.

Another problem is about the dimension of Tverberg point sets. Kalai
conjectured that, for every finite A ⊂ Rd,

∑|A|
r=1 dimTr(A) ≥ 0, where Tr(A)

denotes the set of points in Rd which belong to the convex hull of r pairwise
disjoint subsets of A, and dim ∅ = −1 by convention; thus, the nonexistence
of Tverberg r-partitions for large r must be compensated by sufficiently large
dimensions of Tr(A) for small r. This conjecture includes Tverberg’s theorem
as a special case: if |A| = (r − 1)(d+ 1) + 1, dimA = d, and Tr(A) = ∅, then
the sum in question is at most (r − 1)d+ (|A| − r + 1)(−1) = −1.
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From now on, we will deal with point sets P in general position in the
Euclidean plane such that |P| <∞.

Observation 1.0.1. Given 5 points in the plane, there are 4 forming a convex
quadrilateral. Note that there are three different possibilities: the convex hull
of the 5 points can be a pentagon, a quadrilateral or a triangle.

Figure 1.1: Any five points in general position determine a convex quadrilateral.

Theorem 1.0.2 (Erdős–Szekeres Theorem). For n ≥ 3 there exists a smallest
number f(n) such that, given at least f(n) points in the plane, there are n
points in convex position (a convex n-gon).

For example, f(4) = 5.

Theorem 1.0.3 (Ramsey Theorem). For all n,m ∈ N there exists a function
R2(m,n) such that, if the edges of the complete graph with R2(m,n) vertices
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is coloured by white and blue, then there is either a complete white subgraph
of m vertices or a complete blue subgraph of n vertices.

For example, R2(3, 3) = 6.
In general, instead of pairs of vertices we can colour k-tuples, and then

we have Rk(m,n).

Application 1. f(n) ≤ R4(n, 5): Suppose given a set of at least R4(n, 5)
elements. For every subset of 4 vertices, we colour it white if the 4 points are
in convex position and blue if the vertices are not in convex position. Then,
by Ramsey’s theorem, we have two possibilities:

1. There is a complete 4-uniform subhypergraph on n vertices (white).

2. There is a complete 4-uniform subhypergraph on 5 vertices (blue).

But possibility 2 is impossible due to Observation 1.0.1. Then it must be true
that our set contains an n-element subset for which all subsets of 4 elements
are in convex position, so it is a convex n-gon.

Application 2. f(n) ≤ R3(n, n): Let us colour the triangles white if the
number of points inside them is even and blue if it is odd. Then the vertices
of a monochromatic complete subhypergraph must be in convex position,
because otherwise we would have a contradiction.

Let us now find some upper bounds for f(n).

Proposition 1.0.4. f(n) ≤
(

2n− 4
n− 2

)
+ 1.

Proof. Assume that there are no two points with the same x-coordinate. We
define a k-cup as k points in convex position and an l-cap as l points in
concave position, as in Figure 1.2.

Figure 1.2: Example of a 6-cup and a 6-cap.

Let f(k, l) be the smallest number of points such that there is either a
k-cup or an l-cap. It is obvious that f(n) ≤ f(n, n).

By construction, we can see that f(k, l) satisfies the following recursion:

f(k, l) ≤ f(k − 1, l) + f(k, l − 1)− 1,
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and, using the base cases f(k, 2) = f(2, l) = 2 and f(k, 3) = f(3, k) = k, we
can see by induction that

f(k, l) ≤
(
k + l − 4
k − 2

)
+ 1,

so

f(n) ≤ f(n, n) ≤
(

2n− 4
n− 2

)
+ 1.

It is interesting to note that
(

2n− 4
n− 2

)
+ 1 < 4n, which means that

f(n) < 4n.

Proposition 1.0.5 (Tóth–Valtr). f(n) =

(
2n− 5
n− 2

)
+ 2.

An exponential lower bound is given by Horton’s construction. It goes as
follows: the empty set ∅ and the 1-point sets are Horton. Furthermore, H
can be partitioned into two sets H+ and H− such that

1. both H+, H− are Horton;

2. H+ lies high above H−;

3. the x-coordinates of the points of H+ and H− alternate.

Figure 1.3: Example of Horton’s construction.

Let us see an example of a Horton set. If k = 2n, we define H(k) = H2n as

H(k) = {(x, inv(x)) | x ∈ {0, . . . , 2n−1}}
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Figure 1.4: H(8).

where inv(x) is the number whose representation in binary in inverse order is
the binary representation of x.

If H(k) = H2n contains a convex N -gon, then N ≤ 4k − 2 for k ≥ 3. In
order to see it, it is enough to prove that if H(k) contains an M -cup then
M ≤ 2k − 1 for k ≥ 2, and we can see it by induction on k.

Finally, Erdős and Szekeres showed that f(n) ≥ 2n−2 + 1 and conjectured
that f(n) = 2n−2 + 1.

Now, if we define a k-hole as an empty k-gon, then it is easy to see that
Horton’s construction does not contain 7-holes. If we have a 7-hole, then,
without loss of generality, we can assume that we have a 4-cup in H−, and,
using that H− is also Horton —as we can see in Figure 1.5— the 7-gon is not
empty. So it is not a 7-hole.

Figure 1.5: A 4-cup in H− is not empty.

About the 6-holes, it is seen that every sufficiently large set contains
6-holes. A simple proof is given by Valtr in On empty hexagons.
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The next step is to find k-holes in point sets for k < 6. There are many
monochromatic empty triangles in two-coloured point sets. It is proved that
there are at least cn

4
3 . The question is if there are cn2. This can be answered

by this other question: Are there cn2 empty 5-gons in a non-coloured point
set? It is obvious that for every 5-hole we have at least one monochromatic
empty triangle.

Furthermore, it is seen that Horton sets can be coloured so that there is
no monochromatic empty 5-gon: First, we colour {p1, . . . , pn} repeating the
sequence red-blue-green, and observe that there can be no monochromatic
triangles because of the construction of Horton sets. Now we recolour the red
points and the blue points using white. If we want to find a monochromatic
empty 5-gon, it must be a white one. But if we bicolour a monochromatic
empty 5-gon with red and blue, again there must be at least one monochro-
matic empty triangle with the original colouration, which is impossible.

Problem 1.0.6. If |P| is large enough and bicoloured, is there always an empty
monochromatic convex quadrilateral?

Conjecture 1.0.7 (Erdős–Hajnal Conjecture). Let RH(n) be the smallest
number such that any graph of this many vertices without an induced H
contains a homogeneous subgraph on n vertices. Then, for every H, RH(n)
is subexponential.

Now let us consider the analogue of the Erdős–Szekeres conjecture but
with forbidden order types. We need a previous definition. We say that
P = {p1, . . . , pn} and Q = {q1, . . . , qn} are of the same order type if for every
i, j, k the triangles pipjpk and qiqjqk have the same orientation. And we
say that P is in convex position if P = {p1, . . . , pn} is such that for every
i < j < k the triangles pipjpk have the same orientation.

For simplicity, from now on T will be a forbidden order type whose
convex hull is a triangle. We define fT (n) as the smallest number such that
if |P| ≥ fT (n) and P does not contain T , then P contains Cn (convex order
type of n points).

We define T = Ek as the order type in which there are k − 2 points inside
the triangle forming a k-cap with two vertices of the triangle.

Theorem 1.0.8. If T = Ek with k ≥ 1, then fT (n) < Ckn.

For example, for k = 1, fT (n) = n. Ck is supposed to be about 43k.

Theorem 1.0.9. If T 6= Ek with k ≥ 0, then fT (n) > cn2.

Proof. We choose m such that m < n
2
, and construct a point set in a 2m-gon

as in Figure 1.6.
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Figure 1.6: Construction of P.

As we can see, all the possible triangles are either empty (E0) or of the
order type Ek. So, we have a point set P such that |P| = 2m2 does not contain
any point set of the order type T , and does not contain any Cn because the
biggest Ck in our point set is C2m, and 2m < n. So fT (n) > 2m2. But we
chose m satisfying m < n

2
, so fT (n) > cn2.

Now we define T = Fk as the order type in which there are k points inside
the triangle forming a k-cup.

Theorem 1.0.10. If T = Fk, then fT (n) is bounded by a polynomial in n.
The degree of the polynomial depends on k.

Theorem 1.0.11. If T 6= Ck,Fl, then fT (n) is exponentially large in n.
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1.1 Introduction

Pseudoline arrangements (or, in higher dimension, pseudohyperplane arrange-
ments) have been extensively studied in the last decades as a useful combina-
torial abstraction of projective configurations of points [11, 12, 7, 4, 6, 2, 9, 5].
Recently, Habert and Pocchiola [8] introduced double pseudoline arrangements
as a combinatorial abstraction of projective configurations of disjoint convex
bodies (motivated by visibility questions [10, 1, 8]). The main structural
properties of pseudoline arrangements (embeddability in a geometric projec-
tive plane, connectivity of the mutation graph, axiomatic characterization)
extend to double pseudoline arrangements.

The goal of the talk is first to give a short overview of the main results on
pseudoline arrangements (see Section 1.2), and then to extend these results
to double pseudoline arrangements (see Section 1.3).

1.2 Pseudoline arrangements

1.2.1 Definition

Let P denote the projective plane, i.e., the space of lines of R3. For all
pictures, it is represented as the unit disk where antipodal points in the
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border are identified. A pseudoline of P is a non-separating simple closed
curve of P (Fig. 1.1). A pseudoline arrangement is a finite set of pseudolines
such that any two of them have a unique intersection point (Fig. 1.1).

1.2.2 Isomorphism and mutations

Two arrangements A and B are isomorphic if there is a homeomorphism
of the projective plane that sends A on B (or, equivalently, if there is an
isotopy joining A to B). We are naturally interested in isomorphism classes
of arrangements.

A particulary simple transformation of the isomorphism class is given
by the so-called mutations. A mutation is a local transformation of an
arrangement L that only inverts a triangular face of L. More precisely, it is
a homotopy of arrangements in which only one curve ` moves, sweeping a
single vertex of the remaining arrangement Lr {`} (Fig. 1.1).

Let us consider the graph Gn whose vertices are the isomorphism classes
of arrangements of n pseudolines and whose edges correspond to mutations.
This graph is known to be connected:

Theorem 1.2.1. [11] Any two pseudoline arrangements (with the same num-
ber of pseudolines) are homotopic via a finite sequence of mutations.

According to this result, one can enumerate isomorphism classes of ar-
rangements of n pseudolines by exploring the graph Gn. The following table
gives the number pn of isomorphism classes of simple pseudoline arrangements
in the projective plane, for small values of n:

n 1 2 3 4 5 6 7 8 9 10 11
pn 1 1 1 1 1 4 11 135 4 382 312 356 41 848 591

Figure 1.1: A pseudoline; a pseudoline arrangement; and a mutation.
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1.2.3 Geometric projective planes and representation

A geometric projective plane [14, 13] is given by a set P of points (homeo-
morphic to the projective plane) together with a set L of lines (each of them
being a non-separating simple closed curve of P) such that any two lines meet
exactly in one point (which depends continuously on the two lines) and any
two points are contained in exactly one common line (which depends contin-
uously on the two points). For example, we obtain a geometric projective
plane with P being the quotient set of the sphere S2 by the antipodal map
x 7→ −x, and L being the set of projections of great circles of the sphere (Fig.
1.2).

The first representation theorem affirms that any pseudoline arrangement
can be extended into a complete geometric projective plane (i.e., can be seen
as a subfamily of the line set L):

Theorem 1.2.2. [6, 9] Any pseudoline arrangement is isomorphic to a finite
family of lines of a geometric projective plane.

Pseudoline arrangements are also related with geometric projective planes
via duality. Let (P,L) be a geometric projective plane, P be a finite set of
points of P, and p ∈ P . It turns out that the set p∗ of all lines of L passing
through p forms a pseudoline of L, called the dual pseudoline of p. Moreover,
the set P ∗ of all dual pseudolines of the points of P forms a pseudoline
arrangement of L, called the dual pseudoline arrangement of P . The second
representation theorem affirms that any pseudoline arrangement can be seen
as the dual pseudoline arrangement of a certain point set in a well-chosen
geometric projective plane:

Theorem 1.2.3. [6, 9] Any pseudoline arrangement is isomorphic to the dual
of a finite family of points in a geometric projective plane.

Figure 1.2: A geometric projective plane: points are pairs of antipodal points on
the sphere and lines are (projections of) great circles; two lines cross exactly once;
two points are contained in a unique common line.
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1.2.4 Chirotope

Consider a pseudoline arrangement L that is indexed and oriented: each
pseudoline receives a number and an orientation. The chirotope of L is the
application that assigns to each triple J of indices the isomorphism class of
the subarrangement indexed by J . Observe that, since there exist only two
non-degenerate isomorphism classes of indexed oriented arrangements of three
pseudolines, we can associate a sign + or − to each of them and recover the
“usual” definition of chirotope.

The interest of chirotopes is that they encode completely the pseudoline
arrangement:

Theorem 1.2.4. [11, 12, 4] An isomorphism class of indexed oriented ar-
rangements only depends on its chirotope.

Furthermore, one can characterize what applications correspond to chiro-
topes of pseudoline arrangements of the projective plane:

Theorem 1.2.5. [11, 12, 4] Given an application χ that assigns to each triple
J of indices an isomorphism class of an oriented pseudoline arrangement
indexed by J , the following properties are equivalent:

1. χ is the chirotope of an indexed oriented pseudoline arrangement.

2. The restriction of χ to the set of triples of any subset of at most five
indices is the chirotope of an indexed oriented pseudoline arrangement.

1.3 Double pseudoline arrangements

1.3.1 Definition

Again, we consider the projective plane P. A separating simple closed
curve in P is called a double pseudoline. Its complement has two connected
components: a Möbius strip and a topological disk. Observe that any simple
closed curve of P is either a pseudoline (if it is non-separating, or equivalently,
non-contractible), or a double pseudoline (if it is separating, or equivalently,
contractible).

A double pseudoline arrangement is a finite set of double pseudolines such
that any two of them have exactly four intersection points, cross transversally
at these points, and induce a cell decomposition of P (Fig. 1.3). Observe
that, as for pseudoline arrangements, double pseudoline arrangements are
defined only with conditions on subarrangements of size two.



Double pseudoline arrangements 123

Figure 1.3: Three sets of two double pseudolines: the first one is a double pseudoline
arrangement; the second is not since the two double pseudolines intersect 6 times
instead of 4; the last is not either since the double pseudolines do not induce a cell
decomposition (the hatched face is a Möbius strip).

Again, we are interested in isomorphism classes of simple arrangements.
For example, there is only one simple arrangement of two double pseudo-
lines (Fig. 1.3), while already 13 simple arrangements with three double
pseudolines (Fig. 1.4).

The end of the talk presents extensions to double pseudoline arrangements
of the results on pseudoline arrangements presented before.

1.3.2 Mutations and enumeration

As for pseudoline arrangements, mutations are defined as local transformations
inverting a triangular face of the arrangement. The mutation graph is again
connected:

Theorem 1.3.1. Any two double pseudoline arrangements (with the same
number of double pseudolines) are homotopic via a finite sequence of muta-
tions.

Based on this result, an enumeration algorithm has been implemented [3]
to count the number qn of isomorphism classes of simple arrangements of n
double pseudolines in the projective plane, for small values of n:

n 1 2 3 4 5
qn 1 1 13 6570 181 403 533

For example, the 13 simple arrangements of three double pseudolines are
represented in Fig. 1.4.
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Figure 1.4: The 13 isomorphism classes of arrangements of three double pseudolines.

1.3.3 Duality and representation theorem

A convex body of a geometric projective plane is a compact subset C of P
with non-empty interior and whose intersection with any line is an interval of
that line. A line is tangent to C if this interval is a single point. The set C∗ of
all tangents to C forms a double pseudoline of P . Furthermore, if Γ is a set of
disjoint convex bodies of P , then the set of all their dual double pseudolines
forms a double pseudoline arrangement. As for pseudoline arrangements, any
double pseudoline arrangement can be seen as the dual of a certain family of
disjoint convex bodies in a well-chosen geometric projective plane:

Theorem 1.3.2. Any double pseudoline arrangement is isomorphic to the
dual of a finite family of disjoint convex bodies in a geometric projective plane.

Two different proofs of this result are possible:

1. By mutations: If L is an arrangement of double pseudolines for which
we know a primal representation, and if L′ is another double pseudoline
arrangement obtained from L by a single mutation, then one can up-
date the primal representation of L to obtain a primal representation
of L′. The connectivity of the mutation graph ensures then that any
arrangement is representable.

2. By reduction: We prove that any double pseudoline arrangement can be
polygonalized, since each double pseudoline can be seen as the convex
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hull of finitely many pseudolines. Then we use the Representation
Theorem for pseudoline arrangements to derive the similar theorem for
double pseudolines.

1.3.4 Chirotope

The chirotope of an indexed and oriented double pseudoline arrangement is the
application that assigns to each triple J of indices the isomorphism class of the
subarrangement indexed by J . As for pseudoline arrangements, the chirotope
of a double pseudoline arrangement completely determines the arrangement,
and chirotopes of double pseudoline arrangements are characterized by their
restrictions to five double pseudolines:

Theorem 1.3.3. An isomorphism class of indexed oriented double pseudoline
arrangements only depends on its chirotope.

Theorem 1.3.4. Given an application χ that assigns to each triple J of
indices an isomorphism class of an oriented double pseudoline arrangement
indexed by J , the following properties are equivalent:

1. χ is the chirotope of an indexed oriented double pseudoline arrangement.

2. The restriction of χ to the set of triples of any subset of at most
five indices is the chirotope of an indexed oriented double pseudoline
arrangement.

In other words, in order to check that a given application is a chirotope
of a double pseudoline arrangement, it is again enough to check it only on
subconfigurations of size at most five. Observe that this result provides
a motivation for the enumeration of arrangements of at most five double
pseudolines presented in Subsection 1.3.2.
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This is going to be a survey talk. Most of the theorems mentioned here are at
least thirty years old. A convex polytope is the convex hull of a finite point set
in Rd. A convex polyhedron is a finite intersection of closed half-spaces. These
two notions are almost the same: Every polytope is a polyhedron, but the
converse is not true (there may not be sufficiently many half-spaces). Thus, a
polytope is a bounded polyhedron.

Polytopes and polyhedra have faces of various dimensions. A face of a
polytope or polyhedron is the intersection of a hyperplane with the polytope
that does not go through the interior. This is one possible definition: The
faces of P are the intersections P ∩H, where H is a hyperplane not going
through int(P ). Given a polytope of dimension d, there are faces of dimension
0 through d, and some of them have special names.

If P is a d-polytope, then 0-faces are vertices, 1-faces are edges, and
(d− 1)-faces are called facets . Also (d− 2)-faces are called ridges . The Hirsch
conjecture was originally posed for the graphs of all polyhedra in [5].

Conjecture 1.0.1 (Hirsch, 1957). For every polyhedron of dimension d with
n facets, the diameter of the graph is ≤ n− d.

There are non-bounded counterexamples. Therefore, we nowadays speak
of it for polytopes:
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Conjecture 1.0.2 (Hirsch, 1957). For every polytope of dimension d with n
facets, the diameter of the graph is ≤ n− d.

The case of polyhedra was disproved by Klee and Walkup in 1967. The
first question is “Why is this number n− d reasonable?”. The second question
is “Why is this number unreasonable?”. Now the conjecture is that the
conjecture is actually false.

1.1 Examples and easy observations
Let us see some examples of polytopes and diameters of polytopes. The first
easy observation is that there is no loss of generality in assuming that the
polytope P is simple. Simple means that, at every vertex, exactly d facets
meet. This is the same as saying that the hyperplanes that define facets are
sufficiently generic (or are in general position).

The reason why we can assume this is that, if we have a polytope that
does not have this property, we may consider the polytope as an intersection
of half-spaces. By perturbing the half-spaces, we create new vertices which
can only increase the diameter of the polytope. Then the resulting graph is
d-regular. For example, in an octahedron, we can perturb the facets. Every
path in the perturbed graph contracts to a path in the original graph.

One thing I like a lot (since I like triangulations) is that the same question
can be asked for the dual. In the dual formulation, if we have a simplicial
polytope P , we can ask about the diameter of the ridge-graph Ĝ: The vertices
of Ĝ are the facets of P , and the edges of Ĝ are the ridges of P . For simplicial
polytopes, this is a nice combinatorial object: We are asking what is the
minimal number of steps necessary to go from one simplex to the next. So,
this way of asking the question makes it more combinatorial, at least for me.
This is nicer for constructions.

Now, why is n− d “natural”?

1. One way of saying it is that, for any n > d, it is easy to construct a
simplicial complex that is topologically a ball and with ridge-graph
diameter equal to n− d. The number d is one more than the dimension,
and n is the number of vertices in this case, not the number of facets.

The polar of a simple polytope is a simplicial sphere. But the polar of
an unbounded polyhedron is a simplicial ball. Not every combinato-
rial/topological ball can be realized as the polar of a polyhedron, but
the ones constructed here can. What this means is that, for any n ≥ d,
it is very easy to construct unbounded polyhedra that are “Hirsch tight”,
that is, their diameter is exactly the conjectured upper bound.
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If we want to construct polytopes that are Hirsch tight, then this is a
little more difficult. This is one of the reasons why this number n− d
is so natural.

2. For another reason, cubes of any dimension are Hirsch tight, and,
actually, products of them too. (Here we are in the simple world; in
order to stay simplicial, state this for cross-polytopes, and not cubes.)
Why is this true for products of them?

If P has n1 facets and dimension d1 and diameter δ1, and Q has n2, d2
and δ2, then P ×Q has n1 + n2 facets, dimension d1 + d2, and diameter
δ1 +δ2. Hence, if P and Q are tight, then P ×Q is tight. This is another
reason why this number is natural: it behaves well under products.

In particular, for every 2d ≥ n ≥ d + 1, it is very easy to construct
Hirsch-tight polytopes.

The main motivation for the Hirsch conjecture was the simplex method in
linear programming. In linear programming, the input is a polyhedron given
via the facets for which we want to maximize a certain linear functional. The
simplex method starts with any feasible solution (specifically a vertex) and it
follows the functional from vertex to vertex. It is the simplest method, and,
at the time of the conjecture, it was the only method. The diameter tells us
the theoretical lower bound on the number of steps needed. Nowadays, no
one knows whether the simplex method is polynomial. To put it better, the
simplex method is really not a method, but rather there are several ways to
choose the step on each iteration (given by a pivot rule).

There are several pivot rules proposed, and for most of them (if not all of
them) there is a polytope that takes an exponential number of steps. One of
the reasons why there is no polynomial method known is that the conjecture
is still open. Thus, the conjecture is that the bound is linear, although no
polynomial upper bound is known. Of course, nowadays, the ellipsoid method
and the interior point method give polynomial time bounds.
Question. By polynomial, is it meant polynomial in d and n?
Answer. Yes, or we could just say polynomial in n, since n > d. But we want
this fixed degree as d grows. This is the interesting fact: If we fix d, then the
bound is polynomial because there is a polynomial number of vertices:⌊

nn/2
⌋
.

Note, however, that an upper bound on the diameter does not give an
upper bound on the number of iterations needed for the simplex algorithm.
Instead, it gives the minimum number of iterations needed for the simplex
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algorithm under any pivot rule, providing that the initial vertex is “far away”
from the optimal vertex.

Let me list several positive things that we know on the Hirsch conjecture.
Then I will state and show negative things: This means examples that there
are almost counterexamples to the Hirsch conjecture.

Also, let me point out that most people believe that the Hirsch conjecture
is false. The concern is whether there is a polynomial bound or not. Here, I
would say that opinions are split. Actually, the person who was closest to
proving a polynomial bound (Gil Kalai [8]) believes that there is no polynomial
bound.

1.2 Positive results
Let H(n, d) be the maximum diameter of d-polytopes with n facets.

1. H(n, 2) = bn
2
c. This is very easy to prove. Also, H(n, 3) = b2n

3
c − 1.

2. H(n, d) ≤ n− d if n− d ≤ 6. For n− d ≤ 5, this was proved by Klee
and Walkup in [9]. For n − d = 6, this was proved by Bremner and
Schewe in [3]. The first is a traditional proof, and the second is more a
computer proof with an enumeration of possible polytopes.

3. The Hirsch conjecture holds for 0-1 polytopes, that is, polytopes whose
coordinates of all vertices are either 0 or 1. This was proved by Naddef
in [11]. There is no polynomial simplex algorithm in this case.

4. H(n, d) ≤ O(nlog d+2). This was shown by Kalai and Kleitman in [8].
The proof is very simple. I am going to sketch it. Actually, all the
proofs are simple except the one based on computer enumeration. There
are subexponential simplex algorithms, but it is still not as good as this
diameter bound. The subexponential bound of eO(

√
n log d) is in [10].

If we are interested in combinatorial polytopes, then we can say more.

• For transportation polytopes, there is a linear bound (see [4]).

• For network-flow polytopes, there is an O(nm2) bound (see [12]).
Network-flow polytopes are polytopes that are defined from a net-
work. In this network, we are going to put flows. Our constraints are
that the flows are non-negative and we have fixed flows that come in to
or out of vertices (some nodes act as supplies and others as demands).
Why is this a polytope? We have an inequality for each edge and for
each edge-capacity bound. We have one equation for each node for node
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balancing. For this polytope, there is a polynomial simplex algorithm
given in [12]. Note that transportation polytopes are where our graph
is bipartite.

• For the duals of transportation polytopes, the Hirsch bound holds
(see [2]).

Let me give the proofs of at least some of these facts.

Lemma 1.2.1. H(n, 3) ≤ b2n
3
c − 1.

Proof. A simplicial 3-polytope with n facets has 2n−4 vertices, which follows
by Euler’s formula. Also, its graph is 3-connected. So, given two vertices u
and v, we have three disjoint paths that go from u to v. They use in total
2n− 6 intermediate vertices1.

This means that the shortest of them uses at most 2n
3
− 2, and if we have

that many intermediate vertices, the number of edges is this plus one.

What fails in dimension 4? What fails is that we now have a quadratic
number of vertices.

Actually, this is only half of the proof. Now, we have to construct our
polytope.

Figure 1.1: A family of 3-dimensional polytopes with 6 + 3k vertices for each
positive k.

Lemma 1.2.2. H(n, 3) ≥ b2n
3
c − 1.

Proof. See the picture in Figure 1.1. To move from one layer to another, we
need 3 steps. In each layer, we see an octahedron.

1Because this is the number of vertices in the polytope.
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This construction works for n a multiple of three, but variations of this
are possible.

For the second point, we need a lemma (or theorem) that I should have
stated already. Let me add this as part 5:

• If we fix n − d = k, then max{H(n, d) | n − k = k} = H(2k, k). Put
differently, we only need to prove the Hirsch conjecture for the case
n = 2d. This is called the d-step conjecture.

If we want to prove part 2, we only need a finite number of cases. This is
why we have a computer proof for [3]. Thus, part 2 is equivalent to stating
the following:

Lemma 1.2.3. H(8, 4) = 4, H(10, 5) = 5, and H(12, 6) = 6.

I will only prove the first claim.

Proof. If we have a polytope with 8 vertices in dimension 4, let u and v be
two vertices. The d-step conjecture allows us to only look at this many facets.
Now, if those two vertices share a facet F , then it is a 3-polytope of at most
7 facets, since the facets of F come from the intersection of the other facets
of P . But we already have that H(7, 3) = 3 from Lemma 1.2.1.

If u and v do not share a facet, do a pivot from u to a neighboring vertex u′.
By the previous case, the distance from u′ to v is at most 3, so the distance
from u to v is at most 4.

For H(10, 5) = 5, we need some more things. For H(12, 6) = 6, we need a
computer.

1.2.1 The d-step conjecture, the Hirsch conjecture,
and the “non-revisiting” conjecture

Let me speak a bit about the d-step conjecture. The d-step conjecture is that
H(2d, d) ≤ d. The non-revisiting conjecture is the following: For every two
vertices u and v of a polytope P , there is an edge path that never revisits a
facet that it has previously abandoned.

It is very easy to see that the non-revisiting conjecture implies the Hirsch
conjecture. There are at most n− d facets that we can abandon. At every
pivot step, we abandon one facet. This, by the way, is another reason why
the number n− d is reasonable.

Theorem 1.2.4. These three conjectures are equivalent.
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Proof. Clearly, the Hirsch conjecture implies the d-step conjecture. The
non-revisiting path conjecture implies the Hirsch conjecture: A non-revisiting
path can never have length > n− d because, at each step, we abandon a facet
and there are d facets at our final vertex.

The difficult part is to prove that the d-step conjecture implies the non-
revisiting conjecture. Let me prove first that the d-step conjecture implies
the Hirsch conjecture. I will prove that

· · · ≤ H(2d−1, d−1) ≤ H(2d, d) ≥ H(2d+1, d+1) ≥ H(2d+2, d+2) ≥ · · · (1.1)

In the first half of the above, n > 2d, while in the second half n < 2d.
Let P be our polytope and let u and v be vertices.

• If n < 2d, then u and v have some facet F in common, since each has n
facets. Then we do the same trick as before. The facet F has dimension
one less (namely d− 1) and number of facets one less (namely n− 1).

• If n > 2d, we need to find a construction that goes to the right in (1.1).
That construction is called the wedge. There is a facet F not containing
u nor v. Let P ′ be a “wedge of P on that facet”; see Figure 1.2. We
draw two copies in parallel and join an edge together (in dimension
three). So P ′ has one more facet2, one more dimension, and at least the
same diameter.

Observe that, for polytopes with 2d facets, the non-revisiting conjecture
and the Hirsch conjecture really say the same. To prove that the
d-step conjecture proves the non-revisiting conjecture, use the wedge
construction again and prove that the wedge respects the non-revisiting
property.

This proves the equivalence of these conjectures.

Question. But, do we really have our result for H(n, 4) from earlier?

Answer. My claim is that H(9, 4) ≤ H(10, 5). We do want to know if
H(10, 5) ≤ 5, but this is not the claim.

1.3 Some negative results
Let us speak about a 4-dimensional polytope P with 9 facets that is Hirsch
tight, and is basically the only Hirsch-tight polytope known with n > 2d.

2Is it clear that we have one more facet? We have two copies of P but not the facet F .
Every other facet of P gives a facet of P ′.
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Figure 1.2: A 9-gon and a wedge on its leftmost facet.

1. There is a polytope with n > 2d and diameter n− d (n = 9, d = 4).

2. There is an unbounded polyhedron with diameter strictly greater than
n− d.

3. The monotone Hirsch conjecture is false: There is a polytope, a vertex
v and a linear functional f such that every f -monotone path from v to
the optimum has length strictly greater than n− d.

4. Many polytopes meet the Hirsch bound: For every n ≥ d ≥ 8 there is a
Hirsch-tight polytope.

The fourth item is a result by Fritzsche and Holt in [6] (which improved
the work of [7]). Note: All of this comes from a single polytope! What
is special about this polytope? It is the Klee–Walkup polytope of [9]. It
has dimension 4, with 9 facets and diameter equal to 5. But, also, it is
the only combinatorial polytope with those properties. There is more than
1,000 simple 4-polytopes with 9 facets. The 4-polytopes with 9 facets have
been enumerated by Altshuler, Bokowski, and Steinberg in [1] in 1980. The
polytope was found in [9] in 1967, but the uniqueness of this polytope was
proved later.

Figure 1.3 is a picture of a 4-polytope, even if it does not look like it. First,
note that we do not draw the simple polytope, but the simplicial polytope.
So, what is this picture?

• It “depicts” the polar (simplicial polytope). The polar is a 3-sphere.
Drawing a 3-sphere is difficult, but drawing a 3-ball is not that difficult:
It is not hard to visualize, because we live in three dimensions.
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Figure 1.3: A “cross section” of the Mani–Walkup polytope Q4.

• Removing a vertex from it gives a simplicial ball of dimension 3 with
8 vertices (as 9− 1 = 8). If I give the ball, then you know the sphere:
The sphere is obtained by coning the boundary with a point at ∞.

• Actually, I am going to construct this simplicial ball as a Delaunay
triangulation, which is something that you are more-or-less familiar
with. This simplicial ball3 is the Delaunay triangulation of: 1 −1 0 0 −4 −4 −1 1

4 −4 −1 1 −1 1 0 0

1+ 1+ 1 1 −1−−1−−1 −1

 ,

where 1+ = 1 + ε and 1− = 1− ε. I will label these points a, b, c, d, e, f, g, h.
There are four points in z = 1 and four in z = −1, before perturbation.

I want to describe the triangulation. It is enough the describe the trian-
gulation with an intermediate plane. Each tetrahedron has 4 vertices.

If we have two vertices on top and two on bottom, then we see the
Minkowski sum of line segments. The triangles represent tetrahedra of 3 and
1 vertices. So, in the picture, we have 13 tetrahedra.

Question. And the mixed subdivision comes from the fact that it is Delaunay?

Answer. No, any subdivision will be. We will need Delaunay just to prove
that it is polytopal.

Now, we have little pluses and minuses. We move a and b slightly up and
e and f slightly down. The Delaunay triangulation will slightly change. A
simplicial 3-ball with 8 vertices, 15 tetrahedra, and which diameter?

3I will give 9 points in dimension 3.
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Since we have the picture, we can compute the diameter. How do we go
from the lower right simplex to the upper right simplex? We need 3. Hence,
we get a diameter of 5.

Now the Hirsch conjecture for simplicial balls is essentially the same.
The Delaunay triangulation is regular (it can be lifted to a paraboloid x4 =
x21 + x22 + x23 in dimension four), hence the lower envelope of what we see
is precisely our simplicial ball. And, for example, it should now be easy to
derive the polytope: Simply take the lower envelope and a vertical facet at∞,
which is the ninth vertex of our polytope. This is the Klee–Walkup polytope
with 9 facets.

The diameter is still at least 5. Why is this true? In this polytope, take
the same two tetrahedra as before. There are two ways to go through: One
is to not use ∞ (which we had seen before). If we go through infinity, then
we need to reintroduce four vertices, so we will need at least four steps after
going through infinity, which is still at least five steps.

It is the only 4-polytope of 9 vertices with facet-dimension 5. Hence, we
have proved the first two claims (since we actually constructed this unbounded
polyhedron).

Before going on to parts 3 and 4, let me point out that we can glue several
copies of this thing together. By the way, all I have said is in [9]. Part 3 is
due to [13], and part 4 is the work of [7] and the extension in [6]. Before
moving on, let me picture this 3-ball as follows: The tetrahedron at z = 1
has two triangles on the boundary and two on the interior. The same is true
for z = −1. So, we can iterate it.

Question. And our adjacent triangulations are okay?

Answer. We might not be able to make them Delaunay, but we can make
them regular and convex via projective transformations.

There are 4-polyhedra with 4 + 4k facets and diameter 5k. So it is not
only non-Hirsch, but we can beat Hirsch by a linear constant.

Question. We are not introducing the point at ∞, right?

Answer. Right, so we still have a polyhedron. If we introduce the vertex at∞,
then our diameter is essentially 2

3
n.

I am not going to speak about part 3, actually. Basically, it is the
same polyhedron. Let me just explain the crucial point. If we look at the
polyhedron (without ∞), the polyhedron does not have the non-revisiting
property. Monotone paths do not use the facet that corresponds to the vertex
at ∞.

Let me now speak about part 4. Again, all these polytopes are derived
from our favorite polytope. Parts 2 and 4 follow from the existence of this
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polytope. Let me show this table from [6]. Since we are interested in n ≥ 2d,
in the table the polytopes are parametrized by d and n− 2d. I am going to
show what these different arrows mean.

The w’s mean wedge, which is something that we have seen already: It
transforms an (n, d)-polytope into an (n + 1, d + 1)-polytope, and we have
already seen that the wedging preserves being Hirsch tight, since wedging
can only increase the diameter. And τ is truncation. To truncate means that
we cut a vertex. It transforms an (n, d)-polytope into an (n+ 1, d)-polytope.
This second process does not preserve Hirsch tightness! If it did, I could fill
in the rest of the missing triangle in the table.

The reason why it does not in some cases is the following:

Lemma 1.3.1. If P is Hirsch tight, then wP , τwP and τ 2wP are all Hirsch
tight.

This is not very good notation, because wedging and truncation depend
on where we do the operations. The proof is very simple:

Proof. We have two neighboring vertices and another pair so that any path
from one of u1 or u2 to any one of v1 or v2 is Hirsch. So, this polytope is
more than Hirsch tight (which is what makes truncation work). Now, if we
truncate on u1 and v2, and if the distance from u to v is k, then the distance
from u3 to v3 is at least k + 2.

Now we need to prove that we can do all the values of n in dimension 8.
Then, by wedging, we will have this in all bigger dimensions4. What is this
polytope? It is the four-fold wedge of Q4. We will keep wedging on a new
facet. It will all depend on which facet we choose. Let P ⊆ Rd. Then the
second wedge is in Rd+2. By wedging k times on F ,

• F becomes a codimension k + 1 face, and

• every vertex of P \ F appears k + 1 times.

Moreover, if v0, v1, . . . , vk are the “copies” of v in wkP , then they form a clique
in the graph. Put differently, they form a simplicial face. Setting k to four,
we obtain a polytope W = w4Q4.

Since in Q4 we had two vertices u and v at distance 5, in W we have
two sets S1 = {v0, v1, . . . , v4} and T = {u0, u1, . . . , u4} of 5 vertices each such
that:

• d(ui, vj) ≥ 5 for all i, j;

• the ui’s are neighbors of each other (and the same for the v’s).
4Here Q4 is the name of the polytope. For Q4 we need n > 2d.



138 Francisco Santos

Let me move to the simplicial picture now. We have W and put another
copy of W as in Figure 1.4. We want to understand how to go from the
(depicted) left-most facet of the big polytope to the (depicted) right-most
facet of the big polytope. Keep in mind that this is the simplicial version:
each ui is a vertex.

Figure 1.4: Construction of Hirsch-tight polytopes.

How many facets does W have? Every time we wedge, we add one facet.
So, W has 13 facets and is 8-dimensional. Here, the diameter is 5, the Hirsch
number.

So, in our simplicial picture, each W has 13 vertices and is of dimension 8.
What is important is that n increases by 5, because at each meeting of the
W ’s we have 8 vertices. We increase the diameter by at least 4, which is not
what we want. We want 5. However, we have not used any of the properties.
How can we use the properties that all the ui’s are neighbors of each other?
The simplex of dimension 7 has 8 neighbors to the left W and 8 on the
right W . If one of these facets is a vi, we need to increase the bound by one.
Using this, we can add 5 and 5 and 5 and then 5. To fill in the intermediate
steps, we do some particular things that are simpler than what we just did.
This proves property 4.

What is my guess? If we look at this table, in dimension 3, our polytopes
have very small diameter. In dimension 4, we do not know, but we have a
clue. The 4, 2 case has been explored. On the contrary, the other guess is
that, when we go to the bottom, we will have extremely non-Hirsch polytopes,
including maybe even non-polynomial. One could guess that we can do
something for dimension 6. Let me also state that you could try to prove the
Hirsch conjecture for dimension 4, if you are in need of open problems.

1.4 Questions
Question. Didn’t you say that the Hirsch conjecture d is the same as this
d-step?

Answer. No, for codimension d.

Question. Thus, in dimension 4, there is a lot of work to be done.
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Answer. In this table, fixed codimension are the SW-to-NE diagonals.

Question. You said that Q4 is the only polytope with these parameters. Do
all the others have a smaller diameter?

Answer. Yes, with dimension 4 and 9 facets. Indeed, the others all have smaller
diameter. Some other numbers are known: H(4, 9) = H(4, 10) = H(5, 10) = 5.
The middle shows non-Hirsch-tight cases. Note that H(5, 11) is not known:
it is either 6 or 7.
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1.1 Introduction
We want to consider two optimization problems in geometry:

1. The minimization of the measurable chromatic number.

2. The maximization of the kissing number.

Our strategy will be to study and generalize stable sets of finite graphs and
the Lovász theta function based on semidefinite programming (SDP). This
will, in a first generalization, lead to new lower bounds for the measurable
chromatic number and, in a second generalization, to new upper bounds for
the kissing number.

1.2 Two problems in geometry
Definition 1.2.1. The measurable chromatic number of Rn, denoted by
χ(Rn), is defined as the minimal number of colors needed to paint all points
in Rn such that every two points at distance 1 receive different colors.

One easily sees that χ(R1) = 2.
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Definition 1.2.2. We define χm(Rn) as the minimal number of colors needed
to paint all points in Rn such that every two points at distance 1 receive
different colors and such that points receiving the same color form a Lebesgue
measurable set.

By definition, we have χ(Rn) ≤ χm(Rn). Furthermore, we know that
4 ≤ χ(R2) ≤ 7: The existence of a graph that is not colorable with less than
4 colors yields our lower bound. The tessellation of the plane with hexagons
leads to 7 as an upper bound. In 1981 Falconer [2] showed that χm(R2) ≥ 5.
But the exact determination of χ(R2) is still an open problem.

Definition 1.2.3. The kissing number τn in dimension n is defined as the
maximum number of unit spheres which can touch a central unit sphere
without pairwise overlapping.

By use of elementary geometry, one can show that the kissing number
τ2 in dimension 2 equals 6. But the exact value of τ3 was for a long time
unknown. Already in 1694, Newton and Gregory were sure about τ3 ≥ 12 but
had a disput about the exact value being 12 or 13; see [10]. In 1953 Schütte
and van der Waerden [10] showed in a difficult proof that τ3 = 12. The 8 and
24 dimensional cases were solved in 1979 by Odlyzko, Sloane and Levenshtein
[7], who proved by using linear programming that τ8 = 240 (realized by
the E8 lattice) and τ24 = 196,560 (Leech lattice Λ24). The value of τ4 = 24
(D4 lattice) was determined in 2003 by Musin [6].

We now aim to give a unified proof for all these results using semidefinite
programming.

1.3 Strategy
Our strategy for the proof will be to generalize the theta function of finite
graphs.

The theta function, which was introduced by Lovász in 1979 [5], gives an
upper bound for the stability number of a graph. A big advantage of the
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theta function is that it can be efficiently computed, based on the solution of
a semidefinite optimization problem. Furthermore, it can be strengthened by
a hierarchy of increasingly larger semidefinite optimization problems which
converge to the right value (Lovász–Schrijver, 1991).

Definition 1.3.1. Let G = (V,E) be a graph with vertex set V and set of
edges E. We call a set C ⊂ V stable (or independent) if all pairs in C are
not adjacent, i.e., if {x, y} 6∈ E for all x, y ∈ C. If G is finite, we define the
stability number of G by α(G) = max{|C| : C stable set}.

Unfortunately, finding (even approximating) the stability number is com-
putationally difficult; see [4].

Definition 1.3.2. Semidefinite programming (SDP) means the optimization
of a linear functional over the intersection of the cone of positive semidefinite
matrices with an affine subspace. Thereby, the primal SDP is

max{trace(CK) : trace(AiK) = bi, i = 1, . . . ,m, K � 0},

over all semidefinite matricesK for given symmetric matrices C,Ai and bi ∈ R.
The dual SDP is formulated as

min

{
m∑
i=1

biyi : y1, . . . , ym ∈ R,
m∑
i=1

yiAi − C � 0

}
.

One can think of SDP as a matrix version of linear programming. An ad-
vantage of SDP is its expressive power, e.g. for the computation of eigenvalues
or the optimization of polynomials. One can use interior point algorithms to
approximate optimal solutions, which work in polynomial time. And because
of the duality theory, one can use rigorous computer proofs for finding better
error bounds. It should be noticed that a solution of the dual problem always
gives an upper bound for the primal problem.
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Definition 1.3.3. (First formulation.) Let G = (V,E) be a finite graph.
Then we define a theta function of G by

θ1(G) = max
{∑

x∈V
∑

y∈V K(x, y) | K ∈ RV×V positive semidefinite,∑
x∈V K(x, x) = 1, K(x, y) = 0 if {x, y} ∈ E

}
.

Theorem 1.3.4. Let G = (V,E) be a finite graph. Then α(G) ≤ θ1(G).

Proof. Let C ⊂ V be a stable set and 1C : V → {0, 1} its characteristic
function. We set K(x, y) = 1

|C|1C(x)1C(y). Then K(x, y) satisfies the required
conditions and we have

∑
x∈V

∑
y∈V K(x, y) = |C|. Hence, |C| ≤ θ1(G).

Dualizing the SDP for θ1 leads to a second formulation for this theta
function:

Definition 1.3.5. (Second formulation.) Let G = (V,E) be a finite graph.
Then we define

θ2(G) = min
{
λ | K ∈ RV×V positive semidefinite,
K(x, x) = λ for all x ∈ V , K(x, y) = −1 if {x, y} 6∈ E} .

Then we have θ1(G) = θ2(G).

1.4 First generalization
Definition 1.4.1. Let Sn−1 = {x ∈ Rn | x · x = 1} be the unit sphere. We
define the coloring graph G(n, t) = (V,E) with V = Sn−1 and {x, y} ∈ E if
and only if x · y = t.

One can show that stable sets in G(n, t) can have positive measure.
Therefore, we get the stability number of G(n, t) as follows:

α(G(n, t)) = sup{ω(C) | C stable and measurable},

where ω denotes the surface measure of the unit sphere. With this, we have

χm(Rn)α(G(n, t)) ≥ ω(Sn−1) for −1 ≤ t ≤ 1.

So, an upper bound for α(G(n, t)) will provide a lower bound for χm(Rn).
To generalize the theta function for infinite graphs, we will need a notion of
positive semidefinite infinite matrices , which leads to (positive, continuous)
Hilbert–Schmidt kernels :
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Definition 1.4.2. A continuous kernel K ∈ C(Sn−1 × Sn−1) is called sym-
metric if for all x, y ∈ Sn−1 we have K(x, y) = K(y, x), and positive if for all
N and all x1, . . . , xN ∈ Sn−1 we have

(
K(xi, xj)

)
1≤i,j≤N � 0.

Thereby, C(Sn−1 × Sn−1) = {f : Sn−1 × Sn−1 → Rn | f continuous}.
We now want to generalize the first formulation of our theta function. For

this, the idea is to replace matrices by kernels and sums by integrals:

θ1(G(n, t)) = sup

{∫
Sn−1

∫
Sn−1

K(x, y) dω(x) dω(y) | K ∈ C(Sn−1 × Sn−1),

K positive,
∫
Sn−1

K(x, x) dω(x) = 1, K(x, y) = 0 if x · y = t

}
.

Theorem 1.4.3. With the above definitions, α(G(n, t)) ≤ θ1(G(n, t)).

Now the question is how to compute θ1(G(n, t)). One key observation
is that we can restrict our attention to O(Rn)-invariant kernels. Thereby
O(Rn) = {A ∈ Rn×n | AtA = In} denotes the orthogonal group (isometry
group of Sn−1).

Definition 1.4.4. A kernel K ∈ C(Sn−1 × Sn−1) is called O(Rn)-invariant
if for all A ∈ O(Rn) and for all x, y ∈ Sn−1 we have K(Ax,Ay) = K(x, y).

The restriction to O(Rn)-invariant kernels is possible, because of the
following reason: If K is a feasible solution, then the O(Rn)-invariant group
average K, defined by

K(x, y) =

∫
A∈O(Rn)

K(Ax,Ay),
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is also feasible and has the same objective value.
To get a “good” characterization of positive, invariant kernels, we are going

to use harmonic analysis on compact topological groups. Schoenberg (1942)
[8] showed that the O(Rn)-invariant, positive kernels are of the form

K(x, y) =
∞∑
k=0

fkP
((n−3)/2, (n−2)/2)
k (x · y)

where fk ≥ 0 and P (α,β)
k (u) are Jacobi polynomials of degree k.

Using this theory, we can now compute θ1(G(n, t)) by solving an infinite
linear program with optimization variables fk:

θ1(G(n, t)) = sup{ω2
nf0 | fk ≥ 0 for all k = 0, 1, . . . ,∑∞

k=0 fkP
(α,α)
k (1) = 1/ωn,

∑∞
k=0 fkP

(α,α)
k (t) ≥ 0}.

The dual problem is

inf
{
z1/ωn | z1 + zt ≥ ω2

n, z1 + ztP
(α,α)
k (t) ≥ 0 for all k = 1, 2, . . .

}
.

Theorem 1.4.5. With the above notations, we have

lim
t→1

θ1(G(n, t)) = ωn

(
1−

jαα+1

2α Γ(α + 1) Jα(jα+1)

)−1
where α = (n− 3)/2 and Jα denotes the Bessel function of the first kind with
parameter α. The first positive zero of Jα+1 is denoted by jα+1.

Corollary 1.4.6. χm(Rn) v (1.165)n.

In 1981 Frankl and Wilson [3] showed that χ(Rn) v (1.2)n, which is
slightly better. In a recent development it was shown that the above is also a
lower bound for χm(Rn−1), which can be improved further with additional
tricks.

1.5 Second generalization
Definition 1.5.1. The packing graph is defined as G(n) = (V,E) with
V = Sn−1 and {x, y} ∈ E if and only if x · y ∈ (1

2
, 1).

One can show that stable sets in G(n) give touching points for kissing
configurations. Hence, the stability number of G(n) coincides with the kissing
number τn:

α(G(n)) = max{|C| | C ⊂ Sn−1, ∀x, y ∈ C, x 6= y : x · y 6∈ (1
2
, 1)} = τn.



Optimization in geometry: kissing and coloring 147

With this, we can generalize the second formulation of our theta function.
Again, we replace matrices by kernels and sums by integrals:

θ2(G(n)) = inf{λ | K ∈ C(Sn−1 × Sn−1) positive,
K(x, x) = λ− 1 for all x ∈ Sn−1, K(x, y) = −1 if x · y ∈ [−1, 1

2
]}.

Theorem 1.5.2. With the above notation, we have α(G(n)) ≤ θ2(G(n)).

By applying Schoenberg’s characterization, we can compute θ2(G(n)):

θ2(G(n)) = inf{λ | f0 ≥ 0, f1 ≥ 0, . . . ,∑∞
k=0 fkP

(α,α)
k (1) = λ− 1,

∑∞
k=0 fkP

(α,α)
k (u) = −1 for all u ∈ [−1, 1

2
]}.

Relaxing it by requiring
∑∞

k=0 fkP
α,α
k (u) ≤ −1 gives the linear programming

bound θ′2, established by Delsarte, Goethals and Seidel in 1979 [1]. Some
results are: θ′2(G(8)) = 240 = τ8, θ′2(G(24)) = 196,560 = τ24, although
θ′2(G(3)) > 13, θ′2(G(4)) > 25.

To get new SDP bounds for kissing numbers, we have to use some more
techniques. Here, we present only a rough idea: The LP bound exploits
obstructions coming from pairs of points and the orthogonal group. To get
more obstructions, we want to use triples of points and the stabilizer subgroup
of a point instead. This approach was motivated by Schrijver’s work on binary
codes in 2005 [9]. The main technical step is to prove a generalization of
Schoenberg’s characterization for positive O(Rn−1)-invariant kernels. Instead
of the univariate Jacobi polynomials P (α,α)

k and non-negative real coefficients,
one has to use multivariate orthogonal polynomials and positive semidefinite
matrix coefficients. A mathematical rigorous computer proof uses Putinar’s
representation of positive polynomials as sums of squares and Borcher’s csdp
and a check of error bounds using SDP duality.
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best lower best upper bound SDP
n bound known previously known bound
3 12 12 (Schütte, v. d. Waerden, 1953) 12
4 24 24 (Musin, 2003) 24
5 40 46 (Odlyzko, Sloane, 1979) 45
6 72 82 (O., S.) 78
7 126 140 (O., S.) 134
8 240 240 (O., S., Levenshtein, 1979) 240
9 306 379 (Rzhevskii, Vsemirnov, 2002) 364
10 500 594 (Pfender, 2007) 556
11 582 915 (O., S.) 873
12 840 1 416 (O., S.) 1 362
13 1 130 2 233 (O., S.) 2 080
14 1 582 3 492 (O., S.) 3 202
15 2 564 5 431 (O., S.) 4 893
16 4 320 8 312 (P.) 7 432
17 5 346 12 210 (P.) 11 333
18 7 398 17 877 (O., S.) 17 034
19 10 668 25 900 (Boyvalenkov, 1994) 25 636
20 17 400 37 974 (O., S.) 37 844
21 27 720 56 851 (B.) 56 079
22 49 896 86 537 (O., S.) 84 922
23 93 150 128 095 (B.) 127 323

1.6 Conclusion
1. One succeeded with a symbiosis of human and computer reasoning.

2. Similarly to NP-proofs, the presented proof was easy to understand but
in this case difficult to find.

3. A combination of SDP and harmonic analysis is widely applicable, e.g. in
continuous combinatorial optimization, correlation theory of stochastic
processes, energy minimization or shape optimization.
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Ina Voigt
Voronoi cells of discrete point sets

Abstract. Reviewing the literature on Voronoi cells, one notices that the
considered point sets are in most cases either finite or Delaunay sets. In case
of a Delaunay set, all Voronoi cells are polytopes. And for a finite point set
we still get polyhedral cells. Thereby the question emerges if all Voronoi cells
of an arbitrary discrete point set are polyhedral. We will show by an example
that this is not the case and characterize those discrete sets for which all
Voronoi cells are polytopal/polyhedral.

Edward Kim
On the graphs of transportation polytopes

Abstract. Transportation polytopes are classical objects in optimization.
In this talk, we will consider the status of theorems and conjectures on the
graphs (or 1-skeleton) of two-way (that is, classical) and three-way (both axial
and planar) transportation polytopes. Our primary concern is the diameter,
and the core results are on an upper and a lower bound for the diameters of
classical transportation polytopes.

The talk is completely self-contained and based on joint work with Jesús
A. De Loera (University of California at Davis), Shmuel Onn (Technion, Israel
Institute of Technology), and Francisco Santos (Universidad de Cantabria).

Marek Krčál
Embedding of simplicial complexes into Euclidean spaces and the deleted
product obstruction

Abstract. We will review the known complexity of the problem of
embeddability of a given simplicial complex of a dimension k into Rd (denoted
as EMBEDk→d, for some numbers k and d) which can be seen as a higher-
dimensional generalization of the well known graph planarity problem.

There is a class of remaining cases (where k is not “too big”) left open
that could be possibly tractable. For these cases, the so-called deleted
product obstruction gives an equivalent condition, namely the existence of
a “Z2-equivariant” map of a simplicial complex into a (d − 1)-dimensional
sphere. Tools of algebraic topology seem to be able to deal with this question.

Is there a polynomial algorithm to test this? Besides embedding, the
algorithm would have applications for graph coloring and homomorphisms.
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Anna Gundert
Embedding large complexes

Abstract. It is easy to prove that any k-dimensional simplicial complex
embeds into R2k+1, so the maximal number of k-simplices one can get when
embedding into R2k+1 is

(
n
k+1

)
= Θ(nk+1), where n is the number of vertices.

For the case k = 2, this yields Θ(n3) for embeddability into R5. One
can also show that a 2-complex which embeds into R3 can have at most
n(n− 3) = Θ(n2) triangles. What happens in R4 is an open question.

We will address the general question of the maximal number of k-simplices
for a complex which is embeddable into Rd for some k ≤ d ≤ 2k. Lower
bounds are given for the cyclic polytope. To find upper bounds for the case
d = 2k, we look for forbidden subcomplexes. A generalisation of the theorem
of van Kampen and Flores yields those. Then the problem can be tackled with
the methods of extremal hypergraph theory. This gives O(ns), k < s < k + 1.

Aaron Dall
Enumeration of integral tensions

Abstract. Let G = (V,E) be an oriented graph with n edges. An integral
tension on G is a function τ : E → Z with the property that the sum of the
edge labels (with respect to the orientation) around any cycle is zero. A
nowhere-zero tension is an integral tension such that τ(e) 6= 0 for all edges e.
First we use Ehrhart theory to show that the number of integral tensions on G
taking values in [−k, k] is a polynomial in k. Then we show that the number
of nowhere-zero tensions taking values between [−k, k] is also a polynomial.
To do this, we introduce the notion of an inside-out polytope which leads to
a generalization of Ehrhart’s theorem.

Juanjo Rué
Enumerating simplicial decompositions of surfaces with boundaries

Abstract. It is well-known that the triangulations of the disc with
n + 2 vertices on its boundary are counted by the nth Catalan number
C(n) = 1

n+1

(
2n
n

)
. This paper deals with the generalisation of this problem to

any arbitrary compact surface S with boundaries. We obtain the asymptotic
number of simplicial decompositions of the surface S with n vertices on its



Student Seminar Abstracts 155

boundary. More generally, we determine the asymptotic number of dissections
of S when the faces are δ-gons with δ belonging to a set of admissible degrees
∆ ⊆ {3, 4, 5, . . . }. We also give the limit laws of certain parameters of such
dissections.

This is a joint work with Olivier Bernardi, from Paris. An online version
is available at arXiv: http://lanl.arxiv.org/abs/0901.1608

Canek Peláez Valdés
Allowable sequences

Abstract. Given a family of points in R2, we can define the crossing
number, the number of k-sets, and the number of halving lines of the set using
its geometric graph. However, we can also be interested in the case when we
connect the points not with straight lines, but with simple curves. In this case,
we can use arrangements of pseudolines (which are a concrete geometric model
for oriented matroids of rank 3) and generalized configurations of points to
model our problems, and then attack them using allowable sequences. We will
show how can we construct allowable sequences, and an algorithm that we can
use to find the number of halving pseudolines of a generalized configuration
of points, which in turn helps us to find the pseudolinear crossing number.

Vincent Pilaud
Multi-pseudotriangulations

Abstract. We introduce multi-pseudotriangulations: the definition, given
in terms of pseudoline arrangements, naturally generalizes both pseudotriangu-
lations and multitriangulations. We first present various structural properties
of multi-pseudotriangulations: number of edges, decomposition into stars,
existence of flips. Then, we propose an enumeration algorithm for multi-
pseudotriangulations based on certain greedy multi-pseudotriangulations that
are closely related with sorting networks. This algorithm requires a polyno-
mial running time per multi-pseudotriangulation and its working space is
polynomial.

This is joint work with Michel Pocchiola (École Normale Supérieure,
Paris).
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Benjamin Matschke
The Square Peg Problem and beyond

Abstract. The famous still open Square Peg Problem (Toeplitz, 1911) asks:
“Does every simple closed curve in the plane contain four points spanning a
square?”. We will give some background, a proof for the case when the curves
are smooth, and related things: New results and two again-open easy-looking
conjectures.

Frederik von Heymann
Counting points with Euclid

Abstract. We will give an easy answer to the question how to describe
the lattice points in a triangle. Surprisingly (or not), this will deliver us new
insights on the problem of enumerating lattice points in polytopes, and (if
there is time) a partly new proof of a theorem that classifies all tetrahedra in
which the vertices are the only integral points.

Noa Nitzan
A planar 3-convex set is indeed a union of six convex sets

Abstract. Suppose S is a planar set. Two points a, b in S “see each other”
via S if [a, b] is included in S. F. Valentine proved in 1957 that if S is closed,
and if for every three points of S at least two see each other via S, then S is a
union of three convex sets. The pentagonal star shows that the number three
is best possible. We discard the condition that S is closed and show that S is
a union of (at most) six convex sets. The number six is best possible.

Daria Schymura
Measuring the similarity of geometric graphs

Abstract. What does it mean for geometric graphs to be similar? We
propose a distance for geometric graphs that is a metric, and that can be
computed by solving an integer linear program.
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Mareike Massow
Linear extension diameter of Boolean lattices

Abstract. Given a finite poset P , we consider pairs of linear extensions
of P with maximum distance. The distance of two linear extensions L1, L2

is the number of pairs of elements of P appearing in different orders in L1

and L2. The maximum possible distance is the linear extension diameter
of P . We prove a formula for the linear extension diameter of Boolean lattices
which was conjectured by Felsner and Reuter in 1999.

Birgit Vogtenhuber
Large bichromatic point sets admit empty monochromatic 4-gons

Abstract. We consider a variation of a problem stated by Erdős and
Szekeres in 1935 about the existence of a number f(k) such that any set
S of at least f(k) points in general position in the plane has a subset of k
points that are the vertices of a convex k-gon. In our setting, the points of S
are colored, and we say that a (not necessarily convex) spanned polygon is
monochromatic if all its vertices have the same color. Moreover, a polygon
is called empty if it does not contain any points of S in its interior. We
show that any sufficiently large bichromatic set of points in R2 in general
position determines at least one empty, monochromatic quadrilateral (and
thus linearly many).

Matthias Henze
Small steps towards a reverse Blichfeldt–van der Corput inequality

Abstract. In the early 20th century, Blichfeldt and van der Corput gave
a sharp upper bound on the volume of zero symmetric lattice polytopes in
terms of the number of interior lattice points. A corresponding lower bound
is conjectured by Bey, Henk and Wills, but still remains to be proven. A
short introduction to the theory and some results for lattice zonotopes are
presented.
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infinite matrices, 144
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