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Presentation

This booklet collects the problems that were proposed at the Grups d’Estudi

de Matemàtica i Tecnologia (Study Groups of Mathematics and Technology,
GEMT 2009), and the reports on the solutions to these problems. The
problems belong to different areas of Mathematics and were proposed by
companies and institutions in various ways. The event took place in the
premises of the Facultat de Matemàtiques i Estadística of the Universitat
Politècnica de Catalunya, Barcelona, from July 7 to 9, 2009.

The participation was free of any cost for companies and institutions
and also for participants. We are especially grateful to the two institutional
co-organizers, the Facultat de Matemàtiques i Estadística of the Universi-
tat Politècnica de Catalunya (FME) and the Centre de Recerca Matemàtica
(CRM). They both contributed by strongly supporting these Study Groups.
We also thank Ingenio Mathematica (i-MATH) for its financial support. Ad-
ditionally, we have worked in coordination with the Jornadas de Consulta

Matemática para Empresas e Instituciones, organized by CESGA in San-
tiago de Compostela, an event with the same aims as ours.

Finally, we thank very much all the participants: the companies and insti-
tutions that presented the problems and also the researchers who contributed
to the discussions and wrote the final reports.

Barcelona, December 2009

Aureli Alabert, Jordi Saludes, and Joan Solà-Morales
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Continuous symmetry and shape

measures, or how to measure the

distance between polyhedra

representing molecules

by Pere Alemany, Institut de Química Teòrica i Computacional

de la Universitat de Barcelona (IQTCUB), Barcelona, Spain

1.1 Introduction

One of the most deeply rooted ideas in chemistry is that molecules which are
similar should behave in a similar way, that is, they should exhibit similar
chemical and physical properties. This kind of reasoning is at the origin of
a large number of attempts to rationalize chemical observations, including
the type theory developed in the first half of the 19th century, the concept
of functional groups in organic chemistry, or modern Quantitative Structure
Activity Relations (QSAR) methods.

Although it is difficult to define precisely what is understood by similarity
in chemistry, it is easy to distinguish two main aspects: chemical similarity
arising from the periodic trends in the electronic structure of atoms (alcohols
and thiols are similar in this sense, since oxygen and sulphur have similar
chemical properties) and structural similarity, referring to molecules in which
atoms (which may be chemically similar or not) occupy similar positions in
space (methane and the phosphate ion would be similar in this sense, since
both have tetrahedral structures). Intuitively, it is easy to conclude that
symmetry must play a crucial role in structural similarity, although it is
not a trivial one, since symmetry and similarity are usually measured using
different approaches: similarity is treated as a continuous (grey) property,
allowing the definition of a degree of similarity, while symmetry is described
as a discrete (black or white) property which is either present in a molecular
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structure or not. This gap has, however, been closed in recent years by the
proposal of Avnir et al. to also define symmetry as a continuous property by
introducing the formalism of continuous symmetry measures (CSM) and the
closely related continuous shape measures (CShM)1.

Let us start with the conceptually simpler problem that leads to the
definition of continuous shape measures. As an example, we may consider
the phosphate ion (PO4

3-) present in a large number of inorganic and organic
compounds. In classical structural chemistry, the phosphate ion is said to
have a tetrahedral structure, in the sense that the four oxygen atoms are
located around the central phosphorus atom occupying the positions of the
vertices of a tetrahedron (Figure 1.1).

Figure 1.1: Left: Crystal structure of Berlinite (AlPO4) showing PO4 tetrahedra
in red and AlO4 tetrahedra in blue. Right: Ball and stick representation of one
PO4 tetrahedron with the central phosphorus atom in black and the four oxygen
atoms in red.

In spite of the widespread idea that the phosphate ion is tetrahedral, a
detailed analysis of 211 good quality crystal structures of compounds contain-
ing PO4

3- ions revealed that none of the phosphorus atoms in these crystals
was really located at a position compatible with full tetrahedral symmetry,
with all the phosphate ions presenting more or less pronounced distortions
from the shape of an ideal tetrahedron.

Careful analysis reveals that situations like this are not an exception in
structural chemistry, but that they are the rule. Several tools have been de-
veloped in order to quantify the distortions from ideal polyhedral structures,
relying on the analysis of geometrical parameters such as bond distances and

1H. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc. 1992, 114, 7843–7851. This
article actually introduces continuous symmetry measures, not continuous shape measures,
although in the particular case of the tetrahedron these two measures can be shown to be
equivalent.
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angles, or on group theoretical techniques applied to a normal mode analysis
for a given structure. All these approaches, although useful for the purposes
for which they were developed, share a common problem, since they are not
easily generalizable and their application is limited in many cases to small
distortions for a specific polyhedron.

A general solution to this problem was given by Avnir and his colleagues
in 1992 by introducing continuous shape measures. The basic idea behind
CShM is to define a distance between the real and the ideal polyhedra and
to use this distance to gauge the similarity/dissimilarity between the struc-
tures2.

The mathematical expression of this statement for an arbitrary structure
Q defined as a set of N vertices with coordinates {qk} with respect to a
reference structure P defined as another set of N vertices with coordinates
{pk} is

S(Q,P ) = 100 ·min

∑N

k=1 |qk − pk|2
∑N

k=1 |qk − q0|2
(1.1)

where q0 is the geometric centre of Q. Since the symmetry of an object
does not depend on its size, position or orientation, the measure must be
minimized for all possible relative positions and orientations between the
structures, as well as with respect to their relative size3. In other words,
if we consider our problem structure Q with vertices Q = qk and an ideal
structure P with vertices located initially at P 0 = p0k, the coordinates for the
ideal structure P = pk minimizing equation (1.1) can be expressed as:

P = ARP 0 + t (1.2)

where A is a scaling factor, R a matrix associated to a unitary transfor-
mation (the 3 × 3 rotation that determines the optimal spatial orientation
of P ), and t a translation vector. The problem of minimizing S(Q,P ) to find
A, R and t has been solved analytically and an efficient algorithm is thus
available. To ensure that S(Q,P ) is really a measure of the P -shape contents
of Q, one must perform an additional minimization over all possible pairings
between the vertices of Q and P . Finally, the values of S(Q,P ) are scaled
by multiplying them by an arbitrary factor of 100. Adopting this definition
for the CShM, an object having the desired P -shape will have S(Q,P ) = 0,
while distortions of this object from the ideal symmetry will lead to higher
values of the measure (Figure 1.2).

2M. Pinsky, D. Avnir, Inorg. Chem. 1998, 37, 5575–5582.
3For a detailed description of the mathematical background of continuous shape mea-

sures, see: David Casanova, Mesures de forma i simetria: algorismes i aplicacions, Doc-
toral Thesis, Universitat de Barcelona, 2006.
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Figure 1.2: Continuous shape measures for the coordination polyhedron around
the cobalt atom in [Co{PC6H5(EtS)2}2] showing that the best description for its
geometry is that of a triangular prism.

Since minimization with respect to position, orientation, and scaling can
be performed analytically, it is easy to see that the computational bottleneck
in practical applications is associated to the minimization over all N ! possible
pairings between the vertices of Q and those of P .

The definition of continuous shape measures is easily extended to the so-
called continuous symmetry measures. The question in this case is somewhat
different. While in CShM we compare the shape of a problem structure Q
defined by N vertices with that of a reference structure P with the same
number of vertices, in CSM we search for the closest structure T with N
vertices that belongs to a given point group G:

S(Q,G) = 100 ·min

∑N

k=1 |qk − tk|2
∑N

k=1 |qk − q0|2
. (1.3)

Although, for some special structures such as the tetrahedron, CShM and
CSM are coincident since the tetrahedron is the only 4-vertex polyhedron
with Td symmetry, in general CShMs are more restrictive than CSMs. If
we want to evaluate, for example, the S(Q,D4h) value for a given 8-vertex
structure Q, we need not only to compare Q with a given square prism P ,
but we need to find the square prism T that is closest (regardless of position,
orientation and size) to the problem structure Q. In this example, this implies
an additional minimization of the length/height ratio for the square prisms.
However, in the general case, looking for T is not a trivial task. To solve
this problem, an efficient numerical algorithm, called the folding-unfolding
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method, has been developed4 and, as in the case of CShMs, the computational
bottleneck in the calculation of CSMs is the minimization over all N ! possible
vertex pairings between the problem and reference structures Q and T .

Lately we have found an alternative way to search for the desired structure
T with a given symmetry that is based on the calculation of the so-called
symmetry operation measures5. Given a symmetry point group G = Ri with
h symmetry operations and a problem structure Q, we can define for each
operation Ri a symmetry operation measure Z(Q,Ri) as:

Z(Q,Ri) = 100 ·min

∑N

k=1 |qk −Riqk|2

4
∑N

k=1 |qk − q0|2
(1.4)

where we now compare the problem structure Q with the image obtained
from the symmetry operation acting on it. The minimization procedure is
somewhat simplified in this case, since we need not minimize Z(Q,Ri) with
respect to translations (if Ri is a symmetry operation belonging to a point
group, then it must leave a single point invariant and this point coincides with
the geometric centre of Q) and the relative size of both structures (since point
group symmetry operations do not change the size of the object). The only
geometrical minimization that is needed in this case is with respect to the
relative orientation of the problem structure and its image, or equivalently to
minimize the measure with respect to the spatial orientation of the symmetry
element that is associated with the symmetry operation Ri. As in the other
cases, an optimization of all possible pairings between vertices of the problem
and reference structures is also needed, although in this case there is an
additional restriction to the possible permutations, since only G-symmetry
preserving permutations should be considered.

It can be shown that the value of the CSM for a given group can be easily
evaluated using the symmetry operation measures for the h operations of the
group6:

S(Q,G) =
1

h

h
∑

i=1

Z(Q,Ri), (1.5)

where the symbol Z(Q,Ri) is used to indicate that the minimization proce-
dure to find the symmetry operation measures must be performed simultane-
ously for all operations in the group while imposing the necessary constraints

4See ref. 1 for a detailed description of this algorithm.
5M. Pinsky, D. Casanova, P. Alemany, S. Álvarez, D. Avnir, C. Dryzun, Z. Kizner,

A. Sterkin J. Comput. Chem. 2008, 29, 190–197.
6M. Pinsky, C. Dryzun, D. Casanova, P. Alemany, D. Avnir, J. Comput. Chem. 2008,

29, 2712–2721.
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to keep the relative orientation of the different operations fixed (for a C2h

group, for example, one must perform the minimizations necessary to obtain
the symmetry operation measures while keeping the C2 axis perpendicular to
the mirror plane). In this respect, Z(Q,Ri) are not real symmetry operation
measures, since the value of Z(Q,Ri) may be lower if these constraints are
released.

1.2 Problem

As discussed above, one of the main problems in the application of continuous
shape or symmetry measures to structural chemistry is the N ! dependence
of the algorithms devised for the numerical calculation of CShMs and CSMs.
A typical study in structural chemistry starts with a search for a given frag-
ment formed by N atoms in a database such as the Cambridge Structural

Database, containing information on the crystal structures for over 400,000
chemical compounds. In this type of search, the desired fragment is usually
described using the connectivity between atoms, although additional geomet-
rical restrictions on bond distances and/or angles may be imposed to limit
the search. As a result, satisfying the conditions specified in the search, the
user obtains for each fragment a set of N coordinates, one for each atom in
the fragment. CShMs and/or CSMs are calculated afterwards for each frag-
ment and used, for example, to classify the retrieved fragments according to
their coordination geometries. The plotting of S(Q,P ) vs. S(Q,P ′), where
P and P ′ are two different reference polyhedra, is called a shape map and
has been shown to be a very useful tool in detecting structural trends for
different families of compounds (Figure 1.3).

With our current programs, this process is feasible for sets of around
10,000 fragments with up to approximately 10 vertices. Although we have
been able to calculate CSMs for a small set of structures with up to 15 atoms,
the study of structures with more than 20 atoms is impossible nowadays if
no additional simplifying assumptions are introduced. It is therefore crucial
for the application of CShMs and CSMs in structural chemistry to develop
efficient algorithms to deal with the optimum vertex pairing problem.

Although there are some differences in the treatment of the minimization
of vertex pairings in the calculation of CShMs and CSMs, the basic problem
remains the same:

Is there an efficient way to avoid the sweeping across all N !
index permutations to find the optimal vertex pairing between the

problem and the reference structures?
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Figure 1.3: Shape map for over 13,000 tetracoordinated ML4 transition metal
complexes classified according to their tetrahedral (T4) and square-planar (SP4)
continuous shape measures.

In the following section we will outline the current algorithm implemented
in our program as well as some considerations related to the chemical prop-
erties of the analyzed structures that may, in some cases, provide additional
information useful to avoid a search of all possible permutations.

In order to simplify the procedure, in a first step the size of Q is normal-
ized so that

N =
N
∑

k=1

|qk − q0|2. (1.6)

Omitting the arbitrary factor of 100 that appears in the equations above,
the minimization in Eq. (1.1) is performed in two steps:

S(Q,P ) =
1

N
min
Pm

(

min
A,R, t

N
∑

k=1

|qk − pk|2
)

=
1

N
min
Pm

SN,m(Q,P ) (1.7)

where we first minimize the sum of the square of the distances between
vertices with respect to size, orientation, and translation (A,R, t) for a given
vertex pairing (Pm) to obtain SN,m(Q,P ), and afterwards we sweep through
all permutations of vertices of the reference shape to find the vertex pairing
with the smallest value of SN,m(Q,P ), where the subindex N is used to
highlight that all N vertices of P and Q are being compared.
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In the current algorithm for calculating CShMs, if the number of vertices
is large enough (polyhedra with more than 7–8 vertices) the set of N vertices
is divided into nL subsets of L < N vertices, and, if necessary, an additional
set with N − nLL vertices. Given a fixed vertex pairing, it is possible to
define nL functions SL,m(Q,P ) analogous to SN,m(Q,P ) in which only the
vertices of a given subset are compared and the optimal values for A, R, t
for each subset are calculated. Since all these functions are positive, for a
given vertex pairing (Pm) the following inequality must hold:

SN,m ≥ L

N

N
∑

i=1

SL,mi. (1.8)

This expression shows that, if any of the individual SL,m values is found
to be larger than a previously stored value of SN,m, then it is not necessary to
calculate values of SN,m for all (N −L)! permutations with the same vertices
in this partition. Tests using L = 4 have shown that, for structures with
more that N = 8 vertices, the algorithm based on partitioning the set of
vertices in different subsets is, in general, more efficient than sweeping all N !
permutations, since for most of the analyzed structures a large number of
vertex pairings can be discarded. This algorithm has allowed us to reach the
calculation of CShMs for structures with up to around 20 vertices without
imposing any additional approximation to discard vertex pairings.

Besides this algorithm, the program allows to introduce additional restric-
tions in order to reduce the number of permutations that must be analyzed.
The simplest one is to restrict the analyzed permutations just to a given set
that is provided in the input by the user. This is an extremely fast solu-
tion that is mostly applicable in cases in which the problem and reference
structures are closely related and a visual inspection is able to provide un-
ambiguously the optimum vertex pairing (or a small set of candidates for it).
Although extremely efficient, this solution is not applicable to the automatic
computation of CSMs for large sets of data, since it requires a previous visual
inspection to decide the permutations that will be analyzed, and it is also
susceptible to major errors, since it depends on the subjective choice of a
limited set of vertex pairings, a task that is not always easy.

Another approach that may be useful is to divide the vertices into a
number of subsets and to perform all permutations only within each of these
subsets. This approach can be applied if chemical information is available
(we can, for example, restrict the number of permutations in the structure of
a hydrocarbon CnHm molecule to those which interchange only carbon atoms
with other carbon atoms and hydrogen atoms with other hydrogen atoms).
Although useful, this approach is not very efficient, since the limit of feasible
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permutations within each subset is easily reached. Besides, it is often de-
sirable to compare the structures of molecules built from different atoms in
order to highlight structural similarities that go beyond the chemical nature
of the molecules, a situation where it is difficult to define the different sets
of atoms unambiguously. This technique has also been applied to molecu-
lar clusters that are built in concentric layers of atoms. In this case, it is
sometimes possible to restrict permutations to atoms within each layer (or
at least between atoms in a given layer or in the two closest ones).

Related to this approach, it is also often possible to use information re-
lated to the graph representing the chemical bonds in a molecule. For the
case of CSMs, we have devised an algorithm that classifies the different ver-
tices into subsets according to their connectivity in the molecular graph and
restricts the permutations only between atoms that have the same connec-
tivity (Figure 1.4). Although this algorithm saves a large amount of time in
some cases, we are aware that it does not exploit the full symmetry of the
molecular graph, a direction that is probably worth exploring.

Figure 1.4: Ball and stick representation of diphenyl-chlorarsine showing the par-
titioning of the 12 carbon atoms into 4 different sets A, B, C, and D according to
their connectivity in the molecular graph.

Although molecular graphs may be useful in limiting the number of vertex
pairings to be analyzed, their use is restricted for various reasons. Two differ-
ent questions arise, both related to the possibility of defining the molecular
graph unambiguously.

A molecular structure is a graphical representation of the average posi-
tion of the atomic nuclei in a given molecule. These nuclei are in fact in
constant movement around their so-called equilibrium positions. If a nucleus
is separated from its equilibrium position, the molecular energy is increased.
For a polyatomic molecule with N atoms, the potential energy surface (a
function that yields the energy of the molecule given the position of the nu-
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clei) shows, in general, more than one equilibrium nuclear configuration in
which the nuclei are arranged in different positions. Each of these nuclear
configurations gives a different molecular graph in which the connections be-
tween atoms correspond to chemical bonds. The criteria for deciding whether
there is a bond or not between two atoms is not, however, unambiguous. The
potential energy surface for a diatomic molecule is a simple function of the in-
ternuclear distance that can be conveniently described by the Morse function
(Figure 1.5, in blue).

Figure 1.5: Potential energy curves for a diatomic molecule. The blue curve cor-
responds to the Morse function while the green curve corresponds to the harmonic
approximation, used to study small deviations of the nuclei from their equilibrium
positions.

The Morse function is characterized by two parameters, the equilibrium
distance re and the dissociation energy De. The first corresponds to the
internuclear distance for which the energy is minimal, while De indicates
the energy that is needed to separate the two atoms (to break the bond).
Although in a polyatomic molecule it is not possible to write a simple math-
ematical expression for the potential energy surface, it is often possible to
analyze how the energy changes when a pair of atoms is separated, and these
energy changes can also be described by a Morse function. By analyzing
different molecular structures, it is easy to find similar re and De values for a
given pair of atoms, and this allows chemists to visualize a molecule as a set
of atoms linked by a number of chemical bonds. In hydrocarbons, for exam-
ple, for C–C pairs typical re distances around 1.5 Å are found and programs
used to visualize molecular structures will plot a bond between carbon atoms
at a distance shorter than approximately 1.6 – 1.7 Å. If the minimum in the



Statement of the problems 17

Morse curve between two atoms is small, the energy rises very steeply with
distance and there is a small variation in the bond distances between these
two atoms in different molecules. This is not, however, always the case.
There are situations where there are “weak bonding” interactions between
atoms, giving a broad Morse curve for which variations around re represent
only small energy changes. This is translated in a large dispersion of values in
the internuclear distances in different molecules containing this pair of atoms
and the difficulty in establishing a clear criterion of what should be consid-
ered a bond and, hence, in defining the molecular graph. This situation is
found, for example, in metal clusters like Au28 (Figure 1.6), where there is a
total of 94 Au–Au distances between 2.7 and 3.4 Å with an average Au–Au
distance around 2.9 Å.

Figure 1.6: Ball and stick representation of an Au28 cluster plotting bonds for
distances below 2.9 Å (left) or 3.4 Å (right).

This example shows the first limitation of the application of the molecular
graph to the computation of CSMs and CShMs. Changing the distance to
define an Au–Au bond between 2.7 and 3.4 Å gives different molecular graphs
that lead to different values for the symmetry or shape measures when using
the graph to limit the number of vertex pairings to be searched, or even to
cases where these measures cannot be calculated because the possible number
of vertex pairings within each of the vertex subsets is too high.

The other problem is related to the application of molecular graphs to
continuous shape measures. While in continuous symmetry measures the
problem structure and the reference structure (the image of the problem
structure under the application of a symmetry operation) share the same
molecular graph, this is not necessarily true for CShMs. Although it is pos-
sible to establish a standard molecular graph for the reference structure, this
graph will, in general, only be preserved for small structural distortions. For
larger distortions, chemical bonds may be broken or formed and the graph



18 Continuous symmetry and shape measures

of the problem structure will change as shown in the example in Figure 1.6.
When analyzing large sets of fragments retrieved from a structural database,
it is very difficult to detect these changes, since the definition of the molecu-
lar graph depends, as explained above, on the chemical nature of the atoms
and it is quite difficult to develop an algorithm to establish unambiguously
the equivalence of a given graph with that of the reference structure.

Figure 1.7: Ball and stick representation of two deformations of a tetrahedral
fragment with different molecular graphs.

In conclusion, let us restate our problem:

Is there an efficient way to avoid sweeping across all N ! in-

dex permutations to find the optimal vertex pairing between the

problem and the reference structures?

As we have shown, the problem can be addressed in several ways, depending
on the additional information at hand for each case. However, the question
remains open for difficult cases like the Au28 cluster shown in Figure 1.6,
where the molecular graph is of little help and the number of permutations
is too high to be treated in currently available computers.



Statement of the problems 19

Delay problems in networks

by Jérôme Galtier, Orange/France-Telecom

2.1 Overview

The world of telecommunications is now facing a new challenge on end-to-end
delays that are raised by interactive applications. Video communications,
interactive games, after voice IP applications such as Skype, force us to
rethink the network.

Data networks are subject to congestion, thereby the delay in crossing
the network may be long enough to put consumers off continued use of the
network. We present the problem of determining routing within a given
network to minimise the delay or keep it within certain boundaries.

There are some positive and NP-completeness results for these prob-
lems, and also some open problems, limitations and questions worth studying
around them.

2.2 Some details

The quality of service, QoS for short, offered by a telecommunication net-
work can be expressed either in terms of delay or in terms of loss. The delay

is the amount of time spent by an element, typically a packet, of flow com-
munication in order to go across a component of the network. The loss is
calculated as the percentage of the number of packets committed to the net-
work which are lost during the transmission. It can be said that, if a packet
is lost, its transmission delay is infinite. We will study problems related to
routing flows in a network with delay constraints. The transmission delay
can be expressed through the transmission links of the network; in that case
it is the time needed to go through a link. Or we may consider end-to-end
delay, in which case it is the total amount of time needed to cross the net-
work. The end-to-end delay may be the sum of the delays of the transmission
links which form a route. In that case, the criterion is said to be additive.
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It should be noted that this is not always the case if, for instance, a packet
is split into smaller ones in certain links. However, here we are focusing on
additive criteria for QoS, and on the end-to-end delay.

There are two problems to be studied in this context. The first concerns
the minimisation of the mean delay over the set of transmission links. This
problem has already been studied using methods that assume differentiabil-
ity. Unfortunately the congestion functions have a vertical asymptote when
capacity is reached, and this can cause numerical instability.

The second problem is that of computing minimum cost routing subject to
a maximum admissible delay. There are alternative contexts for this problem.
The delay may be a fixed number associated to each edge, or the delay of an
edge may be a function of the value of the flow circulating on that edge and
the capacity of the edge, which is assumed to be fixed (thus, when the flow
is approaching capacity, we find a vertical asymptote). In any case, the aim
for this second problem is to determine a routing of the demand flow which
minimises the routing cost for a given linear function of the flow and such
that the total delay incurred in the network in order to go from the source
node to the demand node is bounded by a given value.
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Voltage drop in on-chip power

distribution networks

by Josep Rius Vázquez, Department of Electronic Engineering,

Universitat Politècnica de Catalunya, Barcelona, Spain

3.1 Introduction

The increase in complexity and in integration density in present-day digital
circuits makes the interaction between the power supply lines and the circuit
activity increasingly close. The Power Distribution Network (PDN) of an
integrated circuit is a distributed system that can be approximately modeled
as a large RLCG mesh. As a consequence, the current peaks produced dur-
ing the circuit activity perturb the PDN, thus changing the effective supply
voltage of logic gates. This perturbation, or Power Supply Noise (PSN),
increases the gate delay or can be the cause of reliability problems, thus re-
ducing the circuit performance. In this way, to guarantee a PSN level within
a specified value, the design of a PDN becomes an important concern [1].

There are simulation tools integrated in the design flow specifically ded-
icated to estimating the PSN level of a digital IC as a function of location
and time. Such tools usually require the full layout of the circuit and the
detailed specification of its activity to obtain the PDN response. Therefore,
they require a large amount of information and long computer times to get
accurate results. But worse than this is that, as a result of time to market
constraints, it is extremely expensive to re-design the whole or a part of the
PDN if the simulated results show an excessive PSN anywhere. So, these
tools are extremely useful for validating the final layout of a given PDN,
but they are not well suited to re-designing the PDN and recalculating its
response interactively.

As a consequence, there is a need for exploratory tools which trade off
accuracy for interactivity, thus allowing the exploration of the PDN design
space to take the best decisions during the early phases of its design, when
little information on the IC is available.
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Typical issues that appear during such early phases of PDN design are:

• Number and distribution of supply pads.

• Number, pitch and placement of grid segments and stripes.

• Number and distribution of decaps.

• Calculation of static IR-drop in both value and location.

• Dynamic features of PSN, peak value and width of its pulses.

3.2 Explorer for pre-layout power grid

construction

If the power grid is sufficiently dense, the PDN of a digital IC can be approx-
imately described as a rectangular continuum medium with given electrical
properties: sheet resistance and inductance, leakage and capacitance per unit
area. Voltage and current at any place and time can be described by a non-
homogeneous two-dimensional wave equation which, in theory, can be solved
if boundary and initial conditions and the non-homogeneous term (current
density, J(x, y, t)) are given. To date, this problem has been solved only by
numerical techniques. However, under the simplifying assumption that the
supply voltage and the current density function are not time dependent,
the wave equation collapses to the Poisson PDE and the problem of finding
the maximum drop voltage (the so-called maximum static IR-drop voltage)
can be analytically solved for a number of cases of engineering interest.

Furthermore, the boundary conditions depend on the type of chip pack-
age. For wire-bond packages, the IC boundaries can be approximated to have
constant voltage and the Poisson equation can be solved in closed form if the
current density function J is constant.

For flip-chip packages, the problem is much more difficult. Here, the chip
boundaries have the normal voltage derivative equal to zero (zero current
at the boundaries) and the constant voltage is defined only at the supply
pads distributed in the whole IC area. This problem has been criticised
for looking for a direct solution of the Poisson equation assuming constant
current density in the whole IC, thus obtaining an explicit formula for the
maximum static IR-drop voltage under these simplifying assumptions [2].

An outline of another possible approach to solve this simplified problem is
the following: in a two-dimensional domain it is possible to find the potential
at any observation point V (x, y) when two line current sources inject and
draw current at known points. One of such line currents is fixed at one
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supply pad and the other may be at any place inside the chip. To fit the
boundary conditions (zero current at the chip boundaries), it is necessary to
calculate V (x, y) for an infinite two-dimensional array of such line current
sources, thus obtaining the solution for V (x, y) as a doubly infinite series.
In addition, instead of having the second line current source at a prescribed
point, the real IC has a distributed current spread over its whole area, which is
defined by a current density function J . So, an additional double integration
is necessary to find the potential at any point due to such a distributed
current. The final result can be further simplified by using the concept
of geometrical mean distance (GMD) to eliminate the necessity for double
integrals. Another possibility is to partially or totally eliminate the double
infinite series by using trigonometric or elliptic functions, thereby reducing
the problem to an integration of such functions. In both cases, the fact that
the influence of the line current sources on the potential at the observation
point exponentially decreases with distance can be used to further simplify
the final expressions.

It is expected that this or another similar approach can be adapted to
find the maximum static IR-drop voltage of an IC with flip-chip package
under realistic conditions (current density function J not constant along the
chip). The final goal is to obtain a pre-layout tool implementing the solution
which would require as inputs the key PDN parameters, as IC dimensions,
the distribution of the current density function J , and basic technological
data such as metal sheet resistances, pitches, metal widths, etc.
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Figure 3.1: Image of a wire-bond chip.

Figure 3.2: Image of a flip-chip.
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Continuous symmetry and

shape measures

by Guillem Perarnau-Llobet,1 Julian Pfeifle2 and Jordi Saludes2

1.1 Introduction

A problem in computational chemistry posed during GEMT 2009 at UPC was
to find the optimal affine transformation between two point sets X, Y ⊂ R

3 of
n points each that minimizes a certain similarity measure. Given a bijection
π : X → Y , the optimal affine transform sending π(Y ) to X can be computed
efficiently by analytic means [3]. The crucial bottleneck encountered in pre-
vious work lies with the combinatorial complexity of having to enumerate all
n! permutations of these point sets to find the best affine transform.

In this paper, we present an algorithm that approximately matches X and
Y using affine transformations, and returns the best correspondence between
the transformed sets. From this, the best global affine transform can then
be computed analytically.

Our strategy is to first translate X and Y so that their respective barycen-
ters lie at the origin, and then scale each set so that the variation of the set
of distances to the origin is the same. The only remaining ingredient is to
find a rotation R ∈ SO(3) that makes R(X) and Y agree “as far as possible”.

1.1.1 Error measures

We will take the sum of squared distances of matching points. Another viable
option would be Hausdorff distance [1].

1Departament de Matemàtica Aplicada 4, UPC
2Departament de Matemàtica Aplicada 2, UPC
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1.2 The Cayley chart of SO(3)

The Lie group SO(3) of orthogonal 3 × 3 matrices with determinant 1 has
many different charts. The most important for us is that given by the Cayley

transform

C : so(3) −→ SO(3)rM

A 7−→ (I − A)(I + A)−1.

It establishes a bijection between skew-symmetric matrices

A = sk(x, y, z) =





0 x −y
−x 0 z
y −z 0



 ∈ so(3)

with x, y, z ∈ R and the set SO(3)rM , where M denotes the set of rotation
matrices that have −1 as an eigenvalue. Specifically, it takes A to

C
(

sk(x, y, z)
)

=
1

∆





1 + x2 − y2 − z2 2x y − 2 z 2 (y + x z)
2 (x y + z) 1− x2 + y2 − z2 −2x+ 2 y z
−2 y + 2x z 2 (x+ y z) 1− x2 − y2 + z2



 ,

where ∆ = 1 + x2 + y2 + z2.
The inverse map is given by the same expression,

C−1(Q) = (I −Q)(I +Q)−1 for Q ∈ SO(3)rM .

We need to find the set of rotation matrices that map a point with spher-
ical coordinates (θ1, ϕ1) in the 2-dimensional sphere S2 to the point with
spherical coordinates (θ2, ϕ2). Elementary calculations yield the following
result:

Proposition 1.2.1. The inverse image under the composite map C ◦ sk of

the set of rotations that send u = (θ1, ϕ1) to v = (θ2, ϕ2) is the affine line ℓ
in (R3, (x, y, z)) given by

x =
cos(ϕ2)− cos(ϕ1) + y (cos(θ2) sin(ϕ2) + cos(θ1) sin(ϕ1))

sin(ϕ2) sin(θ2) + sin(ϕ1) sin(θ1)
,

z =
y (cos(ϕ2) + cos(ϕ1))− cos(θ2) sin(ϕ2) + cos(θ1) sin(ϕ1)

sin(ϕ2) sin(θ2) + sin(ϕ1) sin(θ1)
.

If u = (u1, u2, u3) and v = (v1, v2, v3) are the Cartesian coordinates of u,
respectively v, then a point p on ℓ and a direction vector a for ℓ are given by

p =

(−u3 + v3
u2 + v2

, 0,
u1 − v1
u2 + v2

)

, a = (u1 + v1, u2 + v2, u3 + v3).
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1.2.1 Computing rotations

We will try to match a given triangle in the reference point set to every
suitable triangle in the problem set using a rotation. From the above, it
is clear that finding the optimal rotation that achieves this corresponds to
intersecting the three lines qi + tivi for i = 1, 2, 3 in the Cayley parametriza-
tion space. If the triangles in question are congruent, these three lines will
meet at a single point, so the problem is overdetermined; if the triangles are
not congruent, however, the three lines will not intersect at all. We therefore
choose to solve the problem of minimizing the sum of squared distances

D =
3
∑

i,j

‖qi − qj + tivi − tjvj‖2.

By computing the gradient of D with respect to the unknowns ti, we obtain
the equivalent system of linear equations

∑

j 6=i

(qj − qi) · vi = 2ti‖vi‖2 −
∑

j 6=i

tjvi · vj for i = 1, 2, 3,

which expressed in matrix form reads as follows:





2‖v1‖2 −v1 · v2 −v1 · v3
−v2 · v1 2‖v2‖2 −v2 · v3
−v3 · v1 −v3 · v2 2‖v3‖2









t1
t2
t3



 =





∑

j 6=1(qj − q1) · v1
∑

j 6=2(qj − q2) · v2
∑

j 6=3(qj − q3) · v3



 .

As a candidate for the optimal rotation, we take the one corresponding to the
barycenter of the solution points: 1

3

∑3
i=1 qi + tivi. Alternatively, we could

consider the minimization problem

D′ =
3
∑

i=1

‖qi + tivi − p‖2

with unknowns ti ∈ R and p ∈ R
3.

1.3 Approximate affine point matching

1.3.1 Overview of the algorithm

The input data are two ordered sets X = (x1, . . . , xn), Y = (y1, . . . , yn) ⊂ R
3

of n points each. We want to compute a permutation π ∈ Sn such that
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the ordered set Yπ = (yπ(1), . . . , yπ(n)) approximately minimizes the shape

measure S(X, Y ) = minπ∈Sn
Sπ(X, Y ), where

Sπ(X, Y ) = min
f affine

n
∑

i=1

‖xi − f(yπ(i))‖2

n
∑

i=1

‖xi − β‖2
.

Here β = 1
n

∑n

i=1 xi is the barycenter of X, and we take the minimum over
all affine transformations of Rn. We find a permutation that approximates
Sπ(X, Y ) using only a finite number of such transformations.

The first steps are to translate the barycenters of X and Y to the origin,
and to scale both sets so that the variances of their distances to the origin
equal some fixed value. We retain the names X and Y for these translated
and scaled sets. After this, we need to optimize over all rotations.

To any rotation R ∈ SO(3) we associate the map π = π(R) : {1, . . . , n} →
{1, . . . , n} that assigns to each point xi ∈ X the point y′π(i) ∈ Y ′ = R(Y )
closest to it in the Euclidean norm. In favorable cases, for example when
Y is an affine image of a slight perturbation of X, this map π is actually a
permutation of {1, . . . , n}. The optimal affine transform that maps X to Yπ

can then be found by analytical means.
Denote the set of triangles formed by points in X and Y by TX and TY ,

respectively. To find a good set of candidate rotations, we first choose a
certain (relatively small) subset T ′

X ⊂ TX of the triangles in X. For each
such triangle TX ∈ T ′

X , we iterate over all triangles TY ∈ TY , and for each
pair (TX , TY ) we find the rotation R ∈ SO(3) that most closely maps TX

onto TY using the methods in the preceding section. We then apply R to the
entire set X, find the corresponding optimal permutation π(R), and calculate
the associated shape measure Sπ(R)(X, Y ). Finally, we return the permuta-
tion corresponding to the best rotation among all those seen throughout the
process.

1.3.2 Implementation details

Choosing T ′

In general, the centered and scaled sets X and Y will not lie on a sphere.
Thus, two points xi ∈ X and yj ∈ Y will generally have different norms. If
this is true, it makes little sense to try to rotate xi into yj. Reciprocally, if
X and Y are almost affine images of each other, it stands to reason that the
distribution of the norms of their elements will be similar.
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Algorithm 1 Pseudocode of the matching algorithm

1: procedure Matching(X, Y )
2: X: the reference points
3: Y : the problem points
4: Set X := scale(center(X))
5: Set Y := scale(center(Y ))
6: global_error := 0
7: x1 := closest_to_origin(X)
8: x2 := furthest_to_origin(X)
9: for all triangles TX = {x1, x2, x} ∈ TX do

10: for all examinable triangles TY = {y1, y2, y3}, where yi ∈ Y do
11: R := optimal_rotation(TX ,TY )
12: XR := rotate(X,R)
13: if matching_error(XR,Y ) < global_error then
14: actualize the matching and its error
15: end if
16: end for
17: end for
18: Set X̂ := scale(center(specular(X)))
19: x̂1 := closest_to_origin(X̂)
20: x̂2 := furthest_to_origin(X̂)
21: for all triangles TX̂ = {x̂1, x̂2, x̂} ∈ TX̂ do
22: for all examinable triangles TY = {y1, y2, y3}, where yi ∈ Y do
23: R := optimal_rotation(TX̂ ,TY )
24: XR := rotate(X,R)
25: if matching_error(X̂R,Y ) < global_error then
26: actualize the matching and its error
27: end if
28: end for
29: end for
30: end procedure
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In the hope of rapidly and accurately capturing the shape of Y , we there-
fore choose the points xmin and xmax of minimal and maximal norm to always
form part of the initial triangle TX . This leaves us with a linear number of
initial triangles:

TX =
{

conv{xmin, xmax, x} : x 6= xmin, xmax

}

.

Sometimes rotation does not suffice because the X and Y have different
orientations. Hence we may define X̂ = σ(X), where σ is some reflection,
for example that with respect to the plane {x = 0}. Analogously, we define
TX̂ = σ(TX). Note that x̂min = σ(xmin) and x̂max = σ(xmax).

Finding the error given R

To calculate the error induced by a rotation R, we must compute the map
π : {1, . . . , n} → {1, . . . , n}. We use a k-d-tree built from X to rapidly query
the closest corresponding rotated point. This gives us an injective map that
is not necessarily exhaustive; however, this has always been the case in the
experiments we have conducted. Note that we build the k-d-tree on the fixed
reference set, so that we only have to execute this preprocessing once.

Sorting pairs of points by difference in norm

Another crucial optimization to find the optimal rotation is the following. We
calculate the norms of all points in TX and Y , and sort the list

(∣

∣‖x‖−‖y‖
∣

∣ :
x ∈ TX , y ∈ Y

)

of absolute values of their differences by size. We then use
the two triangles formed by the first three pairs of points from this sorted
list to calculate the first candidate rotation R. Intuitively, this makes sense
because we expect these triangles to be quite similar. We then proceed with
other candidate triangles from the beginning of the list. One must take a
little care to check that each triple of the selected pairs really consists of six
distinct points.

Due to this optimization, for each triangle in TX we only examine certain
triangles in TY (the first according to this sorted list), and this improves the
execution time.
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1.4 Results

We experimentally evaluate the efficiency of our algorithm in terms of time
complexity and quality of the solution found. We test it in the following
examples:

• A 7-vertex polyhedron with a central vertex.

• A cluster Au28 consisting of 28 gold atoms.

• Instances of a scalable artificial dataset. In order to be able to experi-
ment with large datasets, we have implemented a program that outputs
an arbitrarily large point cloud and a perturbation of it, and allows the
amount of perturbation to be tuned.

Each instance is accompanied by a perturbed version, which we then try
to match.

1.4.1 7-vertex polyhedron with a central vertex

This dataset consists of a polyhedron with 7 vertices on its convex hull, along
with another point at the barycenter. Exhaustive enumeration confirms the
permutation output by our algorithm to be the optimal one.

We do not apply an optimal analytical minimization of the distances
between matched points; hence, we obtain S(Q,P ) ≤ 0.93518 instead of the
optimal S(Q,P ) = 0.47764. This shows that, despite computing the optimal
permutation, we overestimate S(Q,P ).

The algorithm spends approximately two seconds on this example.

1.4.2 Au28

For this 28-point instance, it is computationally out of the question to enu-
merate all 28! ≈ 3×1029 permutations. Other heuristic methods [2] have ob-
tained a permutation of the nodes in Au28 that lead to the bound S(Q,P ) ≤
1.69182. This heuristic consists of finding an optimal plane to apply a spec-
ular symmetry, assuming that no rotation is needed.

Here the specular symmetry approach is very important, since the two
datasets do not have the same orientation. Our algorithm finds a substan-
tially different permutation, leading to an upper bound for the symmetry
measure of S(Q,P ) ≤ 0.23426, which improves the former. This solution is
found in 20 seconds.
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(a)Au28 and ideal polyhedra before rotation. (b)Au28 and ideal polyhedra after rotation.

Figure 1.1: The Au28 dataset and its perturbed version before and after rotation,
but after applying the mirror symmetry. In both images, we have marked the
triangles that select the optimal rotation.

1.4.3 Scalable artificial dataset

Finally, to test the real time complexity and the quality of the solution when
both the size increases and the quantity of perturbation varies, we use our
artificial dataset generator. The time spent by the algorithm depending on
the size of the point cloud is shown in Figure 1.2. We also show our upper
bound on the symmetry measure compared with the real one given a fixed
size and varying the perturbation of the points.

Figure 1.2: Execution time of the matching algorithm in an artificial set of points.
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1.5 Other ideas

1.5.1 Local minimization techniques

Another possibility is to define a smooth function such as the one given by an
attractive potential between the reference points P = {pi} and the problem
points Q = {qi},

V (P,Q) =
∑

i,j

φ(‖pi − qj‖),

where φ(r) = −r−α for α > 0. Then, given a rotation R and a local chart
containing R with coordinates x, y, z, we will try a steepest descent method
on (x, y, z) 7→ V (R(x, y, z)P,Q). In this way R is changed slightly to get a
better match.

To avoid falling into local minima, we should grid the group of rotations
and take the elements of the grid as initial values for the steepest descent
method.
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Delay problems in networks

by Aureli Alabert1 and Xavier Muñoz2

2.1 Introduction

The general framework of the problems discussed here is the following: A cer-
tain amount of data d is to be moved across a communications network, that
we may think is made of a set of nodes connected by edges, from an ini-
tial node to a final destination node. The data can be subdivided in small
packets that can circulate the network following different paths. Each node
admits a waiting line of waiting packets, that are to be processed and resent
sequentially.

Figure 2.1: An example network.

1Departament de Matemàtiques, UAB
2Departament de Matemàtica Aplicada 4, UPC
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We may thus represent the network as a graph. A simple example is
depicted in Figure 2.1. Data has to be transported from node 1 to node 8,
and the bold lines are two possible paths for the data packets.

This report is based on discussions held at the Grups d’Estudi by the

authors, with the occasional collaboration of several participants in the event.

2.2 An easy problem

One natural problem to pose in this situation is to minimize the mean delay in
the transportation of the whole of the total data, without violating a capacity
constraint of each edge (which takes into account the queue capacity of each
node).

Denote by E the set of edges of the graph, and by Π the set of all paths
from the initial to the final node. The capacity of an edge e ∈ E will be
written as Ce. Denote by te the delay through the edge e and by φp the
portion of flow that is transported by the path p ∈ Π. The delay can be
modelled, if Poisson arrivals can be assumed at a node, by a function

x 7−→ x

C − x
(2.1)

where C is the capacity.
The minimization of the mean (or total) delay can thus be formulated as

min
∑

e∈E

te

such that
∑

p∈Π

φp ≥ d,

φe =
∑

p∋e

φp ≤ Ce ∀e ∈ E,

te =
φe

Ce − φe

∀e ∈ E,

φp ≥ 0 ∀p ∈ Π,

where the restrictions are, respectively, the satisfaction of the demand (the
total of the data that has to be transported by the set of paths), the edge
capacity constraint, the relation between te and Ce given by (2.1), and the
positivity of all variables, respectively.
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The problem can also be equivalently formulated as

min
∑

e∈E

te

such that
∑

p∈Π

φp ≥ d,

te ≥
φe

Ce − φe

∀e ∈ E,

φp ≥ 0 ∀p ∈ Π,

since obviously the equalities in the third line of constraints will certainly
hold for sure at any optimal point, and the capacity constraints are implied
by the denominator Ce − φe.

This is an “easy” problem, since it can be tackled by convex programming
methods. The problem is even easier if we assume that the values te are all
constants, and we simply want to find a feasible point that produces a delay
below some tolerable threshold τ . We could also introduce some unitary cost
ke of crossing each edge, and thus write the optimisation problem as follows:

min
∑

e∈E

ke
∑

p∋e

φp

such that
∑

p∈Π

φp ≥ d,

φe =
∑

p∋e

φp ≤ Ce ∀e ∈ E,

(

∑

e∈p te ≤ τ ∀p ∈ Π,
)

φp ≥ 0 ∀p ∈ Π.

The constraints in parentheses are, of course, either always satisfied or make
the problem infeasible.

2.3 Duality

A Linear Programming problem can always be represented in the form

min c · x
such that Ax ≥ d,

x ≥ 0,

where c, x ∈ R
n, A ∈ R

n×m, and d ∈ R
m.
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The dual problem is defined as

max d · y
such that ATy ≤ c,

y ≥ 0.

It is always true, and easily verified, that

c · x ≥ y · A · x ≥ y · d (2.2)

for all feasible points x and y of the primal and the dual problem, respectively.
This implies that every feasible solution of the primal problem bounds from
above every solution of the dual. This is useful for solving a linear problem
in some variants of the simplex method.

The inequality (2.2) is called weak duality. The Strong Duality Theorem
in Linear Programming states that there is no gap between the sets of values
c ·x and y · d when x and y run over the respective feasible sets. This means,
in other words, that the optimal values of the primal and the dual problems
coincide. Moreover, from the knowledge of one of the optimal points, it is
easy to find an optimal point of the other problem. One of the two problems
can be faster to solve than the other; hence, this theoretical result has real
practical implications. The dual variables have also an interpretation in
terms of the original problem (they are the Lagrange multipliers).

The concept of duality can be extended also to Nonlinear Programming
problems, but it is not universal. In convex programming, for instance,
there is a Strong Duality Theorem, under some condition known as Slater

condition.
The easy problem of the previous section can be formulated in Positive

Semidefinite (PSD) form as:

min
∑

e∈E

te

such that
∑

p∈Π

φp ≥ d,

(

te + 1
√
Ce√

Ce Ce − φe

)

< 0 ∀e ∈ E,

φp ≥ 0 ∀p ∈ Π.

The Slater condition translates in our formulation as the existence of a
path joining the initial and the destination node with a nonzero capacity
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slack. In that case, the problem is approximable. Roughly speaking, this
means that, while we do not know how to obtain the optimum in polynomial
time, it is possible to get solutions as close as desired to the optimum in an
amount of time that is a polynomial function of the input size. Specifically,
one can obtain a solution whose value is within a distance of ε from the
optimal solution in a number of steps which is polynomial in the number of
vertices |V |, the number of edges |E|, and ε−1.

2.4 A problem of medium difficulty

If in the last problem of Section 2.2 we do not assume that te are constants,
then the problem is more difficult. The essential difference is not the objective
function, but the effective presence of the maximum delay constraints, which
apply to all possible paths. Hence, the problem is formally the same as
before, but te are now considered as variables:

min
∑

e∈E

ke
∑

p∋e

φp

such that
∑

p∈Π

φp ≥ d,

∑

e∈p

te ≤ τ ∀p ∈ Π,

(

te + 1
√
Ce√

Ce Ce − φe

)

< 0 ∀e ∈ E,

φp ≥ 0 ∀p ∈ Π.

This problem is know to be NP-hard. This means that, if a polynomial
algorithm is found for it, then all other NP-hard problems will be soluble in
polynomial time, and in fact all decision problems in the complexity class
NP (the problems whose solution can be verified in polynomial time) would
belong to the class P (the problems whose solution can be effectively found

in polynomial time). Therefore, this problem is at least as hard as any NP
decision problem.

2.5 A hard problem

Notice that the last problem above is in fact overconstrained: We are impos-
ing constraints which do not correspond to any real restriction. Indeed, if for
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some path p, at one particular feasible solution, one has φp = 0, we should
not impose the restriction

∑

e∈p

te ≤ τ.

For example, take τ = 15 and d = 13, with the network of Figure 2.2.

~ ~ ~

10 3

3 10

origin destination

Figure 2.2: An infeasible solution due to an overconstrained model.

In the way the optimisation problem is now formulated, the delays an-
notated in the edges of the figure are forbidden, since there is a path (solid
lines in Figure 2.3) whose total delay of 20 units exceeds τ . However, it is
clear that it must represent a feasible solution, since sending 13 units through
the upper path and 13 units through the lower path, with a total delay of
precisely 13 units, the bound τ is not violated.

~ ~ ~

10 3

3 10

origin destination

Figure 2.3: In solid lines, the path violating the spurious restriction.

We have several formal options to get rid of the spurious restrictions: If
we put

∑

e∈p

te ≤ τ ∀p such that φp > 0,
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then, apparently, the set of restrictions depends on the specific feasible point
under consideration. But we can rewrite it as

(

∑

e∈p

te

)

· u(φp) ≤ τ ∀p ∈ Π,

where u is the indicator function of {x : x > 0}. We can finally establish a
more comfortable formulation if we make use of binary variables:

∑

e∈p

te ≤ τ ∀p such that φp > 0

is equivalent to
φp = 0 ∨

∑

e∈p

te ≤ τ ∀p ∈ Π.

We can now enlarge the dimension of the space of variables: For every p, we
take (φp, yp,1, yp2) with

yp,1, yp,2 ∈ {0, 1},
yp,1 + yp,2 ≥ 1.

The variable yp,1 takes value 1 if φp = 0, and the variable yp,2 takes value 1
when

∑

e∈p te ≤ τ . The requirement yp,1 + yp,2 ≥ 1 ensures that one of the
alternatives in the disjunction is fulfilled.

This problem is “hard” in the sense that it is not known to which compu-
tational complexity class belongs.
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Voltage drop in on-chip power

distribution networks

by Maria Aguareles,1 Jordi Blasco,2 Marta Pellicer1 and

Joan Solà-Morales2

3.1 Introduction

The complexity of the different digital circuits with different functions that
are becoming integrated in current chips is growing every day. These different
components can be found in the market as closed objects, which would be too
expensive to re-design in each individual case. These consume electric power
at significant rates, which are also quite variable in time. These time varia-
tions in some parts of the chip induce undesirable fluctuations in the power
supply to the other parts, producing delays and malfunctions in the logic
gates. For these reasons, control of maximum voltage drops in the different
parts of the chip is one of the most important issues in its design.

Mathematically speaking, we identify the chip with a rectangle Q =
[0, a]× [0, b], and to calculate the voltage drop u(x, y) on it one has to solve
the Poisson-like partial differential equation

∇ ·
(

1

R(x, y)
∇u

)

= J(x, y), (3.1)

where the sheet resistance function R(x, y) and the current density J(x, y) are
known functions. These two functions are usually approximated by functions
that are constant across the components of the chip, which are usually of a
rectangular form and are usually known as blocks. The equation (3.1) has to
be solved together with some boundary conditions, which will depend on the
type of chip.

1Departament d’Informàtica i Matemàtica Aplicada, UdG
2Departament de Matemàtica Aplicada 1, UPC
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Figure 3.1: Sketch of a wire-bond chip.

In wire-bond chips, the connection to a zero potential conductor is done
at the boundaries of Q (see Figure 3.1), so the equation (3.1) has to be solved
in Q together with the boundary condition

u(x, y) = 0 on the boundary of Q. (3.2)

Figure 3.2: Sketch of a flip-chip.

In the flip-chip case, the connection to ground is done through a net of
pads that are represented by the white small squares in Figure 3.2. In that
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case, the boundaries of Q appear as insulating walls, in the sense that there
is no external voltage gradient at these points and hence no current flowing
through the boundary. If we call P the set of all these pads, we have to solve



























∇ ·
(

1

R(x, y)
∇u

)

= J(x, y) in Q \ P ,

∂u

∂n
= 0 on ∂Q,

u = 0 on ∂P .

(3.3)

The problems (3.1), (3.2) or (3.3) can be quite easily solved with nu-
merical or semi-numerical methods, and we will review these methods later
on. However, the designer of chip circuits needs to have online clues about
the location of the dangerous zones of large voltage drops before completing
the full design. And when these dangerous situations appear, the designer
needs to have procedures to decrease these undesirable effects along the way.
Completing the full design, realizing that the specifications are not fulfilled
and restarting the design again would be a waste of time.

The problem that we have discussed, then, is to find all possible tools
that could contribute to the design of a software for online support of the
design process of these kinds of chips in future work.

This report is based on contributions from the discussions held at the

Grups d’Estudi, which included the following members: Maria Aguareles,

Jordi Blasco, Fernando Martínez, Marta Pellicer, Antonio Rodríguez-Ferran

and Joan Solà-Morales.

3.2 Fourier series in the wire-bond chip

Double sine Fourier series are very well adapted to the solution of Poisson
equations in rectangles with zero boundary conditions (see [1], for example).
Let us suppose for the moment that the function R(x, y) in (3.1) is constant,
say R(x, y) ≡ R0 > 0. Then one has to solve

{

∇2u = R0J(x, y) in Q = [0, a]× [0, b],

u = 0 on ∂Q.
(3.4)

This problem has a straightforward solution:

u(x, y) =
∑

m,n≥1

Em,n sin
(mπ

a
x
)

sin
(nπ

b
y
)

, (3.5)
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where

Em,n =
4R0

(

m2

a2
+ n2

b2

)

π2ab

∫ a

0

∫ b

0

J(x, y) sin
(mπ

a
x
)

sin
(nπ

b
y
)

dxdy.

Now let us suppose that the function J(x, y) is piecewise constant, with
values J1, J2, . . . , Jp on subrectangles Q1, Q2, . . . , Qp that cover Q (and we
still keep R(x, y) ≡ R0 everywhere on Q). Then an observation that could
be useful is to note that we can write the solution of (3.4) as

u(x, y) =

p
∑

k=1

uk(x, y),

where each uk solves (3.4) with a right-hand side that is Jkϕ
k(x, y), where

ϕk(x, y) is constantly equal to 1 in Qk and equal to zero on QrQk.
One first property of this decomposition process is that one can calcu-

late the functions uk(x, y) successively, and this means that, along a design
process, every time a new component is added the designer can get an idea
of the effect of the new component into the previously designed parts. We
believe that this property is quite relevant and it also holds, with the natural
variations, in the case of variable R(x, y) and also for the flip-chip configura-
tions.

But a second property of this decomposition in the present case is that
the Fourier series expression of the partial solutions uk(x, y) can be explicitly
given (see Figure 3.3). If Qk is the rectangle of dimensions ak × bk centered
at the point (xk, yk), then the solution uk(x, y) is given by (3.5), where the
values of the Em,n are explicitly

Ek
m,n =

16R0Jk
(

m2

a2
+ n2

b2

)

π4mn
sin
(mπ

a
xk

)

sin
(akmπ

2a

)

sin
(nπ

b
yk

)

sin

(

bknπ

2b

)

.

The double Fourier series method can only be applied to (3.1) and (3.2)
when the coefficient function R(x, y) is constant. Nevertheless, we present
an idea, that should perhaps be further developed in a future work, for the
use of the Fourier series when the function R(x, y) is no longer constant
throughout the whole chip, but takes different constant values Rk in each
Qk block, which is indeed a much more realistic situation. In that case we
could start by making an estimate of a reasonable possible average value R0

and proceeding as before, but now calculating a correction term v(x, y) that
will be small if the sheet resistances at each block are similar, that is, where
εk = Rk −R0 are small.
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Figure 3.3: Solution to equation (3.4) with two blocks: the left one with J1 = 0
and the second one with J1 = 1.

We first look for an approximation to this correction term of the form
v(x, y) =

∑n

k=1 εkv
k(x, y). If we plug u + v into (3.1) and (3.2), use that u

satisfies (3.4), and drop the quadratic terms in the εk, we obtain the following
equation for vk:







∇2vk =
1

R0

∇ · (ϕk∇u) in Q = [0, a]× [0, b],

vk = 0 on ∂Q,
(3.6)

and this problem can also be solved with double Fourier sine series, as in
(3.4) and (3.5).

As we have already pointed out, the double Fourier sine series can only
be used if the Laplacian has constant coefficients. However, there is a second
way to solve the problem with variable coefficients that also converts the non-
constant coefficients problem into infinitely further problems with constant
coefficients. The method consists in writing the equation (3.1) in terms of a
fixed point equation to be solved by iteration:

∇ ·
(

1

R0

∇u(ℓ+1)

)

+∇ ·
((

1

R(x, y)
− 1

R0

)

∇u(ℓ)

)

= J(x, y),

and if R(x, y) is sufficiently close to R0 it will converge to the actual solution.
Each step of this iteration can be done with the method of the Fourier series.
Observe that if one starts with u(0) ≡ 0, then u(1) will be an approximate
solution of the same form as the one in (3.4).
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3.3 Asymptotic analysis in the flip-chip

We now tackle the problem of determining the voltage drop in a flip-chip
package. This problem was successfully studied by Shakery and Meindl in
[5] for the case where both R and J are constant. They considered the two
cases represented in Figure 3.4, where the pads are at a distance a from each
other and they are either circles of radius ε or squares of sides 2ε. Using
the periodicity and symmetry properties of the geometry, one may focus on
solving the problems that are represented in Figure 3.5, where one has taken
the center of the pad as the origin of coordinates, and then the maximum
voltage drop is given by the value u(a/2, a/2).
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Figure 3.4: Flip-chip with squared or circle pads.

The formula obtained in [5, formula (31)] for the approximate value of
u(a/2, a/2) is

RJa2

2π
ln ε− RJa2

2π
ln(0.387a) (3.7)

when the pads are circular, and

RJa2

2π
ln

(

0.5903

0.5
ε

)

− RJa2

2π
ln(0.387a) (3.8)

if the pads are squares. In fact, these formulae appear in [5] with changed
sign, because they compute the voltage drop, and not just the voltage at that
point.

Although this formula is only an approximation, it gives good results
when compared with other calculations. We have also checked this in our
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Figure 3.5: Boundary value problems.

finite element simulations, which we present in Section 3.5 below. The for-
mulas are obtained in [5] with ad hoc arguments and reasonable estimates,
but we want to point out that these formulas can be obtained systematically
with the use of asymptotic analysis methods. We present this approach in
the rest of this section.

If we write formula (3.7) when a = 1 and RJ = 1, we simply obtain

u(0.5, 0.5) ≃ 1

2π
ln ε+ 0.151. (3.9)

One can imagine that this is just the beginning of an asymptotic formula in
powers of ε like

u(0.5, 0.5) ≃ c−1 ln ε+ c0 + c1ε+ c2ε
2 + · · · . (3.10)

We show how the coefficients c−1 and c0 of this formula can be obtained
systematically, and will postpone the possibility of calculating the higher
order values for future work. These coefficients will also be calculated using
finite elements in Section 3.5 below.

In asymptotic analysis ([3] for example), one starts by distinguishing the
inner and outer regions. The outer region will simply be the whole square
[0, 0.5] × [0, 0.5] where we should solve the equation ∇2uout = 1 with the
boundary condition ∂uout/∂n = 0. This problem is clearly incompatible, and
this is because by taking ε = 0 we have forgotten that the wall

√

x2 + y2 = ε
acts like a sink that compensates the source term. So the correct outer
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equation is ∇2uout = 1−δ with the boundary condition ∂uout/∂n = 0, where
δ is the delta-function centered at (0, 0) and its coefficient has been chosen
to make the system compatible.

It is perhaps easier to solve this problem by extending it to the full square
[0, 1]× [0, 1] with one delta-function on each corner. Then the right-hand side
of the equation will be the function 1− δ1− δ2− δ3− δ4, that one can develop
in double cosine series, and obtain

∞
∑

ℓ=1

2 (cos(2ℓπx) + cos(2ℓπy)) +
∞
∑

n,m=1

4 cos(2nπx) cos(2mπy).

So the solution is
uout = C(ε) + uaux(x, y),

where

uaux(x, y) =
∞
∑

ℓ=1

−1

2π2ℓ2
(cos(2ℓπx) + cos(2ℓπy))+

+
∞
∑

n,m=1

−1

π2(n2 +m2)
cos(2nπx) cos(2mπy)

and C(ε) is a constant (depending on ε) that has to be determined.
Upon writing r =

√

x2 + y2, we have evaluated these series numerically
and calculated numerically the limit as (x, y) → 0 of uaux(x, y) + (ln r)/(2π)
(remember that ∇2− ln r = −2πδ) and have obtained the approximate value
of −0.208. This means that

uout(x, y) = − 1

2π
ln r − 0.208 +O(r) + C(ε).

We have also calculated numerically uaux(0.5, 0.5) ≃ −0.0552. These numer-
ical calculations have also been used to draw Figure 3.6.

On the other hand, the inner problem is now stated in the scaled variables
x′ = x/ε, y′ = y/ε, and, letting ε → 0, the region becomes

Ω = {(x′)2 + (y′)2 > 1, x > 0, y > 0}.

Performing this change of variables in the equation and allowing ε → 0, one
finally has to solve



























(∇′)2uinn = 0 in Ω,

uinn = 0 on (x′)2 + (y′)2 = 1,

∂uinn

∂n
= 0 on x′ = 0 and y′ = 0.

(3.11)
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Figure 3.6: From top to bottom: y = − ln(
√
2x2)/(2π), y = uaux(x, x), and

y = uaux(x, x) + ln
√
2x2/(2π).

The solution is
uinn = C1 ln r

′.

Observe that C1 does not depend on ε.
If we now write uout also in the scaled variables, we see that one has to

match uout = − 1
2π

ln(εr′)−0.208+C(ε)+O(ε) with C1 ln r
′, and we obviously

obtain that C1 = −1/(2π) and C(ε) = 1
2π

ln ε+ 0.208 +O(ε). Finally,

u(0.5, 0.5) ≃ −0.0552 + C(ε) =
1

2π
ln ε+ 0.153, (3.12)

which agrees with the formula (3.9) obtained in [5] up to the second significant
digit.

It remains to be explained how we would proceed in the case of squared
pads, represented in the left-hand picture of Figure 3.5. The outer solution
is obtained as before and it is exactly the same solution. The difference lies
in the outer solution, that has to be found in the domain

Ω = {x > 0, y > 0, max(x, y) > 1}.

This problem is more difficult than the previous one, but still solvable. With
a Schwarz–Christoffel conformal map, one can transform the domain Ω into
the half plane y > 0, and then, with (the inverse of) the Joukowsky map, the
domain becomes the exterior of the unit disc, where the solution of (3.11) is
simply uinn = C1 ln r

′ again (see Figure 3.7 below).
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Figure 3.7: Two conformal transformations.

3.4 An averaged model

This section describes only projects that could be undertaken in the direction
of building an averaged model. These projects are not very highly elaborated
yet, and need further development.

From the mathematical point of view, the role of the pads in the equa-
tion of a flip-chip is to act as sinks to compensate the source terms of the
main equation (3.1). Instead of solving boundary-value problems where the
boundaries of all the individual pads would have to be taken into account, we
could also look for an averaged homogenized or continuous model, where the
role of the pads would be played by a new term in the equation (3.1), that
would have to be solved in the whole chip, and not only outside the pads.

Moreover, we have so far considered only regular distributions of pads,
but we could also consider less regular or even very disordered distributions,
and there the use of the averaged equation would be even more useful. The
same averaging principle could be applied to the sub-rectangles where the
functions R and J are constant. If there are a large number of them, one can
think that a kind of average would be relevant enough.

We are always thinking in approximating equations to help the designer
reach an idea of how far his or her design is from a dangerous situation in
which the specifications may not be fulfilled. Of course, once the chip is fully
designed, it is reasonable and necessary to perform a full simulation involving
all the pads and all the sub-rectangles, with all the details. But this type
of simulation is perhaps not very reasonable for carrying it out online in the
design process.

In order to simplify the problem when there are many pads and many
rectangular regions where the function J(x, y) is constant, it is a good idea
to forget the existence of the ground pads and the zero boundary condition
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on them, and try to represent their effects through a new dissipation term
−Ku in the equation, that could become

∇ ·
(

1

R(x, y)
∇u

)

−Ku = J(x, y), (3.13)

where K can either be a constant or a space-dependent coefficient.
This kind of process of averaging has quite a large tradition in the mathe-

matical literature, under the name of homogenization in PDE’s. For a recent
publication with some aspects of this approach one can see the monograph [4].

In that approach, a bulk material represented by a set Ω and some ab-

sorbing inclusions Fε ⊂ Ω is considered. This is the same as our case, which
is different from a situation where there are Neumann boundary conditions
at the interior inclusions, the so-called reflecting inclusions. Nevertheless, it
has to be remarked that when ε → 0 it is supposed that not only the diame-
ters of the inclusion components tend to zero, but also the distances among
these components tend to zero in the correct proportion. In the notation
suggested by Figure 3.4, one would have something along the lines of a = hε,
for a fixed h, and then ε → 0.

Another possibility would be to change the right-hand side of (3.1) instead
of the left-hand side. This has more or less been the way to deal with the outer
solution in the preceding section. In the calculation of the outer solution we
have substituted the effect of the (small) pads by the effect of delta functions.
That could be another option to explore. It should also be noted that with
these outer solution we have not calculated more than the first two terms
in the series expression (3.10). The way in which the subsequent terms are
calculated would also give more insight in the development of a more refined
averaged model.

3.5 Simulations with finite elements

The type of problems that we have dealt with so far are easy to tackle using
some standard numerical methods such as Finite Element Methods (FEM).
Indeed, one would start by computing some solutions to both the flip-chip
package problem or the wire-bond one to get some insight on the type of
solutions to be expected and even to compute an excellent numerical approx-
imation of the maximum IR-drop in the chip. However, as it was already
exposed in the Introduction, the idea is to provide the designer with formu-
lae such that with a simple scientific calculator he or she could obtain an
approximation to the maximum IR-drop with no need of solving any differ-
ential equation by any means. In this sense, the sort of expressions given
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in (3.9)–(3.10) are the type of formulae that we are looking for. There are
analytic asymptotic method techniques that give the right values of the a-
priori unknown coefficients c−1, c0, c1, . . . Nonetheless, and given that these
equations are easy to solve numerically, another possibility is to numerically
obtain the maximum IR-drop and afterwards match the obtained value with
the formula given in (3.10) to obtain the coefficients.

In this section, we are going to use the FEM method to solve the equations
and we are going to show how to obtain the coefficients in (3.10) afterwards.
Let us focus on the elementary problems stated in Figure 3.5. In particular,
let us consider the following problem:



















∆u = 1 in Ω,

∂u

∂n
= 0 on ∂Ω1,

u = 0 on ∂Ω2.

(3.14)

Here we are taking R(x, y) J(x, y) ≡ 1 in the whole domain. We are con-
sidering Ω = ΩQ r Ωε, where ΩQ = (0, 0.5) × (0, 0.5) and Ωε stands for
the pad domain. We distinguish two cases here: Ωε = {max(x, y) ≤ ε} in
the case of a square pad of length ε, and Ωε = {x2 + y2 ≤ ε2} in the case
of a circular pad of radius ε. The values of ε that we have considered are
ε = 0.05, 0.1, 0.15, 0.20. Concerning the boundaries, ∂Ω2 stands for ∂Ωε and
∂Ω1 = ∂Ωr ∂Ω2.

This type of problems can be solved numerically using, for instance, the
pdetool toolbox from Matlab. This is a FEM software which has some
standard PDE’s implemented that can be numerically solved for different
geometries in R

2. We need to follow these steps:

1. Define the geometry of the problem.

2. Define the boundary conditions, that can be different depending on the
part of the boundary.

3. Choose the PDE between the ones that are already implemented and
give the values of the parameters involved.

4. Initialize the mesh and refine it if necessary.

5. Solve the PDE problem.

In Figure 3.8 we present some screenshots of these previous steps in Matlab.
Once we have done this, we obtain the numerical solution for the PDE on
each node of the mesh. The software also allows us to plot this solution and
its contour levels (see Figure 3.9).
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Figure 3.8: Two screenshots showing the aspect of the simulation with Matlab.
From top to bottom, PDE and mesh definition for a problem with a square pad.
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Figure 3.9: Numerical solutions, including contour plot, for a square and a circular
pad when ε = 0.05.
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It is also interesting to note that, once achieved these numerical values
at the nodes of the mesh, one can manipulate them in order, for instance,
to calculate the maximum of the absolute value of the solution, which in
this case is attained at u(0.5, 0.5) (see Section 3.3). This, together with the
asymptotic expansion obtained in (3.10), may be used to compute approx-
imate values for the coefficients c0, c1 and c2 (according to Section 3.3, we
will take c−1 = 1/2π, as R, J, a = 1 in this problem). To do so, one has to
use the numerically obtained values of u(0.5, 0.5) for the different values of ε
and find the set of coefficients in (3.10) that best fit them. For instance, in
this case, the following system must be solved:







































−0.323992 = 1
2π

ln 0.05 + c0 + c1(0.05) + c2(0.05)
2

−0.215547 = 1
2π

ln 0.1 + c0 + c1(0.1) + c2(0.1)
2

−0.154141 = 1
2π

ln 0.15 + c0 + c1(0.15) + c2(0.15)
2

−0.112725 = 1
2π

ln 0.2 + c0 + c1(0.2) + c2(0.2)
2

(3.15)

for a circular pad, and






































−0.297656 = 1
2π

ln 0.05 + c0 + c1(0.05) + c2(0.05)
2

−0.190042 = 1
2π

ln 0.1 + c0 + c1(0.1) + c2(0.1)
2

−0.129616 = 1
2π

ln 0.15 + c0 + c1(0.15) + c2(0.15)
2

−0.089079 = 1
2π

ln 0.2 + c0 + c1(0.2) + c2(0.2)
2

(3.16)

for a square pad. As these systems are overdetermined, the idea is to find
the coefficients c0, c1 and c2 that are closer to the exact solution upon using
a linear least squares method (see for instance [2]). Hence, one has to solve
the corresponding normal equations, which in this case yield

c0 = 0.153420, c1 = −0.00005163, c2 = −0.249654, (3.17)

for a circular pad, and

c0 = 0.180623, c1 = −0.0168976, c2 = −0.254666, (3.18)

for a square pad.
These results are in strong agreement with those of [5] included in Sec-

tion 3.3. For circular pads, formula (3.7) is written for a = 1 and RJ = 1
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in (3.9). For square pads with a = 1 and RJ = 1, formula (3.8) becomes

u(0.5, 0.5) ≃ 1

2π
ln ε+ 0.178.

However, the good point in our calculations in comparison to the method
used in [5] is that the method we have used would hold to obtain higher
order terms in the expansion, and thus obtain a more precise solution. This
is especially interesting since, in real chips, the pads are not that small in
comparison with the size of the chip, and hence the value of ε is actually not
so small. Thus, the only chance to obtain greater accuracy is to take higher
order terms in the asymptotic expansion presented in Section 3.3.
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