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Presentation

This volume contains the abstracts or extended abstracts of the 11 invited talks and
52 communications presented at the XIV Spanish Meeting on Computational Geometry,
held in Alcalá de Henares from June 27 to June 30, 2011.

The conference is part of the series Encuentros de Geometría Computacional. Since
their start in Santander in 1990, the Encuentros have served not only as a meeting point
for computational geometers working in Spain, but also as one of the crucial contributions
towards the development of a vigorous Spanish computational geometry community. The
Encuentros made it possible for all Spanish researchers in the area to get in touch with
the most relevant international figures: with the Spanish speaking ones in the first years,
and gradually with those of the entire international community.

This year, for the first time, the meeting has a fully international character, and the
official language is English. The main reason for this is that the XIV Spanish Meeting
has been dedicated to Prof. Ferran Hurtado on his 60th Birthday. Professor Hurtado has
played a central role in the Spanish Computational Geometry community since its very
beginning. The quantity and quality of international participants in this conference is an
indisputable proof of his relevance at international level.

The organizers thank all the authors, invited speakers, and attendants for their par-
ticipation in the meeting. We also wish to thank the members of the Scientific Committee
for their careful revision of the papers, and the following institutions for their financial
support: Ministerio de Ciencia e Innovación of the Spanish Government, Consolider In-
genio Mathematica (i-MATH), Universidad de Alcalá, Centre de Recerca Matemàtica,
Societat Catalana de Matemàtiques, Departament de Matemàtica Aplicada II (UPC),
Departamento de Matemáticas (UAH), Universitat Politècnica de Catalunya, and Real
Sociedad Matemática Española.
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Generic distributed actuation of lattice-based
modular robotic systems
Vera Sacristán1

1 Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain
vera.sacristan@upc.edu

Abstract. We solve a set of tasks for a general 3D-cube-lattice-based homogeneous robotic system,
including self organizing —counting the number of modules, finding a master, computing the bounding
box, forming a tree— as well as locomotion and reconfiguration. The algorithms proposed are generic
and can be applied to a wide variety of particular systems. The modules of the robot are only assumed
to move relative to each other, over the surface of the robot configuration. In addition, each module is
capable of some small constant size computation, memory, and message passing from and to its neighbors.
The algorithms proposed are inspired by cellular automata. Each module actuates in an autonomous
and asynchronous way, based on local information. Besides formal correctness proofs and cost analysis of
the proposed solutions —in terms of time, number of moves, and overall communication—, a simulator
is presented.

1 Modular robotic systems

Since their introduction in the late 80’s, modular robotic systems have been envisaged
as a very promising field of research, addressing the issues of designing, building and
controlling sets of multiple building units or modules that behave autonomously but
in a collaborative way in order to perform collective tasks. When compared to fixed-
morphology unique-purpose robots, modular robots have the advantages of being more
versatile, as they can reconfigure to adapt to new environments and new tasks, more
robust, as they can interchange parts and self-repair, and potentially less expensive,
as their units can be reused and, in principle, massively produced. As a consequence,
they are expected to be useful in building emergency structures, repairing unaccessible
machinery, outer space missions, and even in current daily life [16]. The counterpart of
this flexibility are the difficulties of actuation planning, which is the focus of this work.

Modular robots are frequently classified into homogeneous or heterogeneous, depend-
ing on whether their units are all equal or not as, although all structurally equal, some
units may incorporate or carry special features such as grippers, cameras, antennas, etc.
According to the locomotion autonomy of their units, two kinds of modular robotic sys-
tems can be considered, depending on whether each unit of the robot has full locomotion
capability or locomotion is achieved by cooperation of the units, based on the movement
of docking joints and links between them. Depending on the distribution of the modules
in space when connected, modular robotic systems may be organized into lattice, chain or
even hybrid architectures. Lattice-based modular robots include hexagonal, triangular,
and squared or cubic.

For all these robotic systems, actuation algorithms have been developed with different
goals: locomotion, reconfiguration, self-repairing, etc. Although many of them are cen-
tralized, the need has emerged for decentralized and local control of the actuation, as the

1Partially supported by projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011
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4 Generic distributed actuation of lattice-based modular robotic systems

number of modules of the robot increases. Distributed algorithms have been designed for
reconfiguring several systems, and more specifically for lattice-based modular robots such
as Proteo, Fracta, Crystalline and Telecube, and large scale modular robots as Catoms.

2 Related work

Within this context, our approach finds its roots in the work of Beni [2], who proposed
the conceptual model and discussed the parallelism and the differences between cellular
automata and cellular robotic systems.

A more direct antecedent is the work of Hosokawa et al. [9], who developed a dis-
tributed control algorithm (for a specific square lattice-based modular robot design) in-
spired on cellular automata. Using the so-called sliding cube model, the authors proposed
two simple sets of rules, to be locally executed by each robot unit, which allow to recon-
figure a strip into a staircase and vice-versa.

Some years later, Butler, Kotay et al. [4, 10] proposed a fully decentralized actu-
ation paradigm inspired on cellular automata. In their work, they address locomotion
of a rectangular set of modules, with and without obstacles, reconfiguring a strip into a
rectangle, and filling holes in 3D configurations.

Then Dumitrescu et al. [6, 8] studied fast locomotion cellular automata-like rules
for horizontal (vertical) chains and diagonal snake-like formations, and proved universal
reconfiguration between 2-dimensional horizontally convex and vertically convex config-
urations, in a linear number of synchronized time steps.

Later on, considering hand-coded local rules for reconfiguration a difficult task, Støy
[13, 14] proposed a gradient technique for reconfiguring dense objects.

More recently, Kurokawa et al. [11] proposed specific sets of rules to M-TRAN for a
particular set of robot reconfigurations. To the best of our knowledge, their work presents
the first experimental execution of these strategies on real robot units, hence proving its
realizability beyond experimental simulation.

A similar orientation inspired the work of Bojinov et al. [3], who proposed specific local
rules to produce particular shapes on a 3-dimensional rhombic dodecahedron (Proteo),
and Nguyen et al. [12] and Walter et al. [15] for the reconfiguration of hexagonal lattice-
based robotic systems. Deway et al. [5] also use local rules for a distributed planner in
the framework of their general metamodules’ theory.

Our work is also related to that of Dumitrescu, Abel et al. [1, 7], who proved uni-
versal reconfiguration using the same basic moves, although by means of sequential and
centralized algorithms.

3 Some challenges

The results obtained so far on cellular automata like strategies for lattice-based modular
robots suggest several interesting challenges.

As has been said, previous work addresses locomotion and reconfiguration for specific
shapes or has some restrictions on the configuration characteristics. One of the most
appealing challenges in this regard is hence to prove the existence of shape independent
completely distributed algorithms, i.e., sets of rules for locomotion and reconfiguration
of any modular robot shape.

Another relevant challenge is to produce sets of rules that can be executed in a
completely parallel set, as many of the current implementations are, in fact, sequential.
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In particular, this implies that the rules should take care of collision detection. Going
even further, complete asynchrony of module actuation would be desirable, for example
by making communication between neighbors to take care of coordination issues.

One of the advantages of modular robots is the indistinguishability of the robot units.
From that viewpoint, another interesting issue is to develop strategies that do not rely on
id’s, i.e., in a framework in which nothing allows to distinguish one module of the robot
from another.

Some of the current procedures require the configuration of modules to have a master
(one distinguished module), to know the number of modules of the cluster and the relative
position of the bounding box, or to organize the robotic system in a tree structure. This
arises the question of how these problems can be autonomously solved by the modules
from scratch, without using id’s or having an initial master.

4 Results

The work we present is an attempt to address these issues by means of a specific system of
rules in a general framework that does not exploit specific characteristics of any particular
robotic system and can be instantiated by many of the currently and potentially existent
prototypes.

In this framework, a robot is a connected configuration of modules which are located in
a 2- or 3-dimensional squared lattice. Modules are assumed to have a simple processor and
some small memory, to be able to send and receive short messages to and from neighboring
modules and to perform basic computations with a few counters and text strings. Both
computation and memory are assumed to be of (small) constant size. Modules have the
ability of attaching and detaching from lattice neighbors, and to perform three moves
which allow them to walk along the boundary of the robot, namely sliding along straight
portions of the boundary and turning convex and concave vertices or edges. Within
this framework, our algorithms are completely distributed, local, and —with only one
exception— asynchronous. They consist in sets of rules, each one having a priority, a
precondition, and an actuation or postcondition. Rules are identical for all modules, and
are executed by all them in parallel. In fact, modules are assumed to be homogeneous
and indistinguishable, and the rules are run without the help of id’s and without the need
of any central controller or unique clock.

The problems we solve are essentially of two sorts: self-organizing and self-reconfigu-
ring. In particular, we show a set of rules for each of the following problems: counting
the number of modules and making all the units know it, choosing a master, computing
the minimum bounding box and forming a tree. We also generalize previous locomotion
results to the asynchronous context, and show and prove universal reconfiguration, i.e.,
transformation between any pair of configurations having the same number of modules,
but in this case, at least one of the modules unavoidably needs to use linear memory to
store the information of the goal shape.

Besides the correctness and complexity proofs, we also provide a simulator and ex-
periments showing the behavior of the proposed sets of rules in practice, both in 2 and
in 3 dimensions.
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Abstract. We consider an extension of a question of Erdős on the number of k-gons in a set of n points
in the plane. Relaxing the convexity restriction we obtain results on 5-gons and 5-holes (empty 5-gons).

Introduction

Let S be a set of n points in general position in the plane. A k-gon is a simple polygon
spanned by k points of S. A k-hole is an empty k-gon, that is, a k-gon which does not
contain any points of S in its interior.

Erdős [9] raised the following questions for convex k-holes and k-gons. “What is the
smallest integer h(k) (g(k)) such that any set of h(k) (g(k)) points in the plane contains at
least one convex k-hole (k-gon)?”; and, more generally, “What is the least number hk(n)
(gk(n)) of convex k-holes (k-gons) determined by any set of n points in the plane?”.

As already observed by Esther Klein, every set of 5 points determines a convex 4-hole
(and thus 4-gon). Moreover, 9 points always contain a convex 5-gon and 10 points always
contain a convex 5-hole, a fact proved by Harborth [12]. Only in 2007/08 Nicolás [14]
and independently Gerken [11] proved that every sufficiently large point set contains a
convex 6-hole, and it is well known that there exist arbitrarily large sets of points not
containing any convex 7-hole [13]; see [2] for a brief survey.

In this paper we concentrate on 5-gons and 5-holes and generalize the above questions
by allowing a 5-gon/5-hole to be non-convex. Thus, when referring to a 5-gon/5-hole, it
might be convex or non-convex and we will explicitly state it when we restrict consid-
erations to one of these two classes. Similar results for 4-holes can be found in [3]. For
4-gons there is a one-to-one relation to the rectilinear crossing number of the complete
graph, and thus results can be found in the respective literature.

A set of five points in convex position obviously spans precisely one convex 5-gon.
In contrast, already a set of only five points (with three extremal points) can span eight
different 5-gons; see Figure 1 (left). This makes the considered questions more challenging
(and interesting) than they might appear on a first glance.

Due to space limitations, all proofs are omitted in this extended abstract.

1 Small sets

For small point sets, Table 1 shows the numbers of 5-gons and 5-holes, respectively. Given
are the minimum number of convex 5-gons/5-holes, the maximum number of non-convex
5-gons/5-holes, the minimum and maximum number of (general) 5-gons/5-holes, and, for
easy comparison, the number of 5-tuples.

For counting convex 5-gons/5-holes, it is easy to see that their number is maximized
by sets in convex position and gives

(
n
5

)
. Of course these sets do not contain any non-

convex 5-gons/5-holes. From Table 1 we also see that the minimum number of general
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8 On 5-gons and 5-holes

number of 5-gons number of 5-holes
convex non-convex general convex non-convex general

n
min max min max min max min max

(
n
5

)

5 0 8 1 8 0 8 1 8 1
6 0 48 6 48 0 31 6 31 6
7 0 156 21 157 0 76 21 77 21
8 0 408 56 410 0 157 56 160 56
9 1 900 126 909 0 288 126 292 126

10 2 1776 252 1790 1 492 252 501 252
11 7 3192 462 3228 2 779 462 802 462

Table 1. Number of 5-gons and 5-holes for n = 5...11 points.

5-gons and 5-holes is
(
n
5

)
for 5 ≤ n ≤ 11. While for 5-gons this is obviously true in general

(a convex 5-tuple has exactly one polygonization, while a non-convex 5-tuple has at least
four), this is not the case for 5-holes. In fact, we will show that, for sufficiently large n,
the convex set maximizes the number of 5-holes; see Theorem 3.6.

2 Five-gons

The rectilinear crossing number c̄r(S) of a set S of n points in the plane is the number
of proper intersections in the drawing of the complete straight line graph on S. It is easy
to see that the number of convex 4-gons is equal to c̄r(S) and is thus minimized by sets
minimizing the rectilinear crossing number, a well-known, difficult problem in discrete
geometry; see [7] and [10] for details. Tight values for the minimum number of convex
4-gons are known for n ≤ 27 points; see e.g. [1]. Asymptotically we have at least c4

(
n
4

)
=

Θ(n4) convex 4-gons, where c4 is a constant in the range 0.379972 ≤ c4 ≤ 0.380488. As
any 4 points in non-convex position span three non-convex 4-gons, we get 3

(
n
4

)
−3c̄r(S)

non-convex and 3
(
n
4

)
−2c̄r(S) general 4-gons for a set S. Thus, sets which minimize the

rectilinear crossing number also minimize the number of convex 4-gons, and maximize
both the number of non-convex 4-gons and the number of general 4-gons.

Surprisingly, a similar relation can be obtained for the number of non-convex 5-gons.
To see this, consider the three combinatorial different possibilities (order types) of ar-
ranging 5 points in the plane, as depicted in Figure 1 (right). The proof of the following
theorem is based on relations between the number of 5-gons and the numbers of crossings
of these configurations.

Theorem 2.1. Let S be a set of n ≥ 5 points in the plane in general position. Then S
contains 10

(
n
5

)
− 2(n− 4)c̄r(S) non-convex 5-gons.

Taking the constant c4 for the rectilinear crossing number into account, we see that
asymptotically we can have up to 10

(
n
5

)
−2(n−4)c4

(
n
4

)
= 10(1−c4)

(
n
5

)
non-convex 5-gons.

This number is obtained for point sets minimizing the rectilinear crossing number and
by a factor ≈ 6.2 larger than the maximum number of convex 5-gons.

For the number of convex 5-gons, no simple relation to the rectilinear crossing number
is possible: There exist two different sets (order types) S1 and S2, both of cardinality 6
with 4 extremal points, with c̄r(S1) = c̄r(S2) = 8, where S1 contains one convex 5-gon,
while S2 does not contain any convex 5-gon.
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8 / 1 4 / 3 1 / 5

Figure 1. Left: The eight different (non-convex) 5-gons spanned by a set of
five points with three extremal points. Right: The three order types for n = 5.
For each set its number of different 5-gons and the number of crossings for the
complete graph is shown.

3 Five-holes

3.1 A new lower bound for the number of convex 5-holes

Let h5(S) denote the number of convex 5-holes of a point set S, and let h5(n) =
min|S|=n h5(S) be the number of convex 5-holes any point set of cardinality n has to
have. The best upper bound h5(n) ≤ 1.0207n2 + o(n2) can be found in [6]. The previous
best lower bound h5(n) ≥ bn−4

6 c has been obtained by Bárány and Károlyi [5].
Here we give a slight improvement on this bound, which still remains linear in n. It

is based on an observation by Dehnhardt [8] that every set of 12 points contains at least
three convex 5-holes.

Theorem 3.1. Let S be a set of n ≥ 12 points in the plane in general position. Then
h5(n) ≥ 3bn−4

8 c.

3.2 A lower bound for the number of (general) 5-holes

We obtained the following observation for general 5-holes by checking all 14 309 547
according point sets from the order type data base [4].

Observation 3.2. Let S be a set of n = 10 points in the plane in general position, and
p1, p2 ∈ S two arbitrary points of S. Then S contains at least 34 five-holes having p1 and
p2 among their vertices.

This observation implies the following result, using a similar approach as in [3].

Theorem 3.3. Let S be a set of n ≥ 10 points in the plane in general position. Then S
contains at least 17n2 −O(n) five-holes.

3.3 Maximizing the number of (general) 5-holes

The results for small sets shown in Table 1 suggest that the number of (general) 5-holes is
minimized by sets in convex position. We not only show that this is in fact not the case,
but rather prove the contrary: For sufficiently large n, sets in convex position maximize
the number of 5-holes.

Lemma 3.4. A point set S with triangular convex hull and i interior points contains at
most 4i+ 5 five-holes which have the three extreme points among their vertices.

Lemma 3.5. Let Γ be a non-empty convex quadrilateral in S. There are at most four
5-holes spanned by the four vertices of Γ plus a point of S in the interior of Γ.
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Considering the size of the convex hull of each 5-tuple, these two lemmas lead to the
following theorem.

Theorem 3.6. For n ≥ 86, the number of 5-holes is maximized by a set of n points in
convex position.

4 Conclusion

In this abstract we presented several results for a variant of a classic Erdős–Szekeres-type
problem: counting general 5-gons and 5-holes. The following questions remain open:
What is the maximum number of general 5-gons? Is there a super-linear lower bound for
the number of convex 5-holes (cf. Theorem 3.1) or a super-quadratic lower bound for the
number of general 5-holes (cf. Theorem 3.3)?
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Abstract. One of the oldest, liveliest branches of mathematics, the study of polyhedra, can trace its
roots back to the work of the Greeks. Nevertheless, it abounds in unsolved problems that even a high
school student can understand and appreciate. In this talk, we aim to give recent results on polyhedra,
together with several artworks created by applying these results.

1 Reversible polygons and polyhedra

Our work on reversible solids (or polygons) was inspired by the famous Dudeney Puzzle.
A convex polygon (or polyhedron) P is said to be reversible to Q if P can be dissected and
turned inside out to form another convex polygon (or polyhedron) Q. We call these P
and Q a reversible pair.

Theorem 1.1 ([1]). If P is reversible, then P tiles the plane by translation and rotation.

Theorem 1.2 ([1]). Let P and Q be a reversible pair, and let α and β be tilings by P
and Q, respectively. Then an appropriate superimposition of two tilings α and β gives
the way how to dissect P to make Q.

Figure 1
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12 The art of polyhedra

A parallelohedron is a convex polyhedron which tiles 3-dimensional space (i.e., a
space-filler) by translations only.

Fedorov established in [2] that there are exactly five families F1 ∼ F5 of parallelohe-
dra, namely, parallelepiped F1, rhombic dodecahedron F2, hexagonal prism F3, elongated
rhombic dodecahedron F4, and truncated octahedron F5. Note that each family contains
infinitely many different shapes of polyhedra, since applying affine transformations to any
of them will not affect the space-filling property.

Figure 2

Theorem 1.3. For every pair Fi, Fj (1 ≤ i, j ≤ 5) of families of parallelohedra, there
exist P ∈ Fi and Q ∈ Fj such that P is reversible to Q.

2 Elements of parallelohedra

Let Σ be a set of polyhedra. A set Ω of polyhedra is said to be an element set for Σ,
denoted by ε(Σ), if each polyhedron in Σ is the union of a finite number of polyhedra
in Ω, i.e.,

for all P ∈ Σ, P = ∪niσi, where ni ∈ Z≥0 and σi ∈ Ω.

The element number of the set Σ of polyhedra, denoted by e(Σ), is the minimum
cardinality of the element sets for Σ, i.e., e(Σ) = min |Ω|, where the minimum is taken
over all possible element sets Ω ∈ε(Σ).

A pentadron is either one of the pentahedra shown in Figure 3(a), with nets shown
in Figure 3(b).

Theorem 2.1 ([4]). The element number of the set of all parallelohedra is 1. Each
parallelohedron can be constructed with a finite number of copies of the pentadron by face
to face gluing. See Table 1.
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(a) Two congruent pentadra (b) Nets of pentadra

Figure 3

Parallelohedron Number of pentadra
Cube 96
Rhombic dodecahedron 192
Skewed hexagonal prism 144
Elongated rhombic dodecahedron 384
Truncated octahedron 48

Table 1. Number of pentadra in the parallelohedra.

3 Element numbers for regular n-polytopes

Theorem 3.1 ([4]). Let Π be the set of the five Platonic solids, and denote by σ1, σ2,
σ3, σ4 a regular tetrahedron, an equihepta, a golden tetra, and a roof, respectively. Then
Φ = {σ1, σ2, σ3, σ4} is an element set for Π, and the decomposition of each Platonic solid
into these elements is summarized in Table 2.

Platonic solid Decomposition into elements
Regular tetrahedron σ1

Cube σ1 ∪ 4(σ2 ∪ 3σ3) = σ1 ∪ 4σ2 ∪ 12σ3

Regular octahedron 8(σ2 ∪ 3σ3) = 8σ2 ∪ 24σ3

Regular dodecahedron σ1 ∪ 4σ2 ∪ 12σ3 ∪ 6σ4

Regular icosahedron 8σ2

Table 2. Decomposition of the Platonic solids.

Let Πn be a set of all regular n-polytopes. Then we have the following result:

Theorem 3.2. The element number for regular 4-polytopes is 4, and the element number
for regular n-polytopes is 3 for all n ≥ 5. See Table 3.
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(σ1) Regular tetrahedron (σ2) Equihepta

(σ3) Golden tetra (σ4) Roof

Figure 4. The four elements for the Platonic solids.

Dimension n Number of Element number e(Πn)
regular polytopes

2 ∞ ∞
3 5 4
4 6 4

≥ 5 3 3

Table 3
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Abstract. Let P be a set of points in the plane in general position. Any three points x, y, x ∈ P
determine a triangle ∆(x, y, z) of the plane. We say that ∆(x, y, z) is empty if its interior contains no
element of P . In this paper we study the following problems: What is the size of the largest family of
edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empty
triangles of P? What is the largest number of edge-disjoint triangles of P containing a point q of the
plane in their interior?

Introduction

Let P be a set of n points on the plane in general position. A geometric graph on P is
a graph G whose vertices are the elements of P , two of which are adjacent if they are
joined by a straight line segment. We say that G is plane if it has no edges that cross
each other. A triangle of G consists of three points x, y, z ∈ P such that xy, yz, and
zx are edges of G; we will denote it as ∆(x, y, z). If in addition ∆(x, y, z) contains no
elements of P in its interior, we say that it is empty.

In a similar way, we say that, if x, y, z ∈ P , then ∆(x, y, z) is a triangle of P , and
that xy, yz, and zx are the edges of ∆(x, y, z). If ∆(x, y, z) is empty, it is called a 3-hole
of P . A 3-hole of P can be thought of as an empty triangle of the complete geometric
graph KP on P . We remark that ∆(x, y, z) will denote a triangle of a geometric graph,
and also a triangle of a point set.

A well-known result in graph theory says that, for n = 6k + 1 or n = 6k + 3, the
edges of the complete graph Kn on n vertices can be decomposed into a set of

(
n
2

)
/3

edge-disjoint triangles. These decompositions are known as Steiner triple systems [18];
see also Kirkman’s schoolgirl problem [12, 17]. In this paper, we address some variants
of that problem, but for geometric graphs.

Given a point set P , let δ(P ) be the size of the largest set of edge-disjoint empty
triangles of P . It is clear that, if P is in convex position and it has n = 6k + 1 or
n = 6k + 3 elements, then δ(P ) =

(
n
2

)
/3. On the other hand, we prove that, for some

point sets, namely Horton point sets, δ(P ) is O(n log n).
We then study the problem of covering the empty triangles of point sets with as few

triangulations of P as possible. For point sets in convex position, we prove that we need
essentially

(
n
3

)
/4 triangulations; our bound is tight. We also show that there are point

1Partially supported by project SEP-CONACYT of Mexico, Proyecto 80268.
3Partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT 80268 (Mexico).
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16 Empty edge-disjoint triangles

sets P for which O(n log n) triangulations are sufficient to cover all the empty triangles
of P for a given point set P .

Finally, we consider the problem of finding a point contained in the interior of many
edge-disjoint triangles of P . We prove that for any point set there is a point contained in
at least n2/12 edge-disjoint triangles. Furthermore, any point in the plane is contained
in at most n2/9 edge-disjoint triangles of P , and this bound is sharp. In particular, we
show that this bound is attained when P is the set of vertices of a regular polygon.

Preliminary work

The study of counting and finding k-holes in point sets has been an active area of research
since Erdős and Szekeres [6, 7] asked about the existence of k-holes in planar point sets.
It is known that any point set with at least ten points contains 5-holes; e.g. see [9].
Horton [10] proved that for k ≥ 7 there are point sets containing no k-holes. The question
of the existence of 6-holes remained open for many years, but recently Nicolás [14] proved
that any point set with sufficiently many points contains a 6-hole. A second proof of this
result was subsequently given by Gerken [8].

The study of properties of the set of triangles generated by point sets on the plane
has been of interest for many years. Let fk(n) be the minimum number of k-holes that
a point set has. Clearly a point set has a minimum of f3(n) empty triangles. Katchalski
and Meir [11] proved that

(
n
2

)
≤ f3(n) ≤ kn2 for some k < 200; see also Purdy [16].

Their lower bounds were improved by Dehnhardt [4] to n2 − 5n + 10 ≤ f3(n). He also
proved that

(
n−3

2

)
+ 6 ≤ f4(n). Point sets with few k-holes for 3 ≤ k ≤ 6 were obtained

by Bárány and Valtr [2]. The interested reader can read [13] for a more accurate picture
of the developments in this area of research.

Chromatic variants of the Erdős-Szekeres problem have recently been studied by
Devillers, Hurtado, Károly, and Seara [5]. They proved among other results that any bi-
chromatic point set contains at least n

4 − 2 compatible monochromatic empty triangles.
Aichholzer et al. [1] proved that every bi-chromatic point set contains Ω(n5/4) empty
monochromatic triangles; this bound was improved by Pach and Tóth [15] to Ω(n4/3).
Due to lack of space, we will omit the proofs of all of our results.

1 Sets of edge-disjoint empty triangles in point sets

Let P be a set of n points on the plane, and δ(P ) the size of the largest set of edge-disjoint
empty triangles of the complete graph K(P ) on P . For any integer k ≥ 1, let Hk denote
the Horton set with 2k points; see [10]. We will prove:

Theorem 1.1. Let n = 2k, and let Hk be the Horton set with n = 2k elements. Then
δ(Hk) is O(n log n).

Conjecture 1.2. Every point set P in general position with n elements contains a set
with at least O(n log n) edge-disjoint empty triangles.

2 Covering the triangles of point sets with triangulations

An empty triangle t of a point set P is covered by a triangulation T of P if one of the
faces of T is t. In this section we consider the following problem:
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Problem 2.1. How many triangulations of a point set are needed so that each empty
triangle of P is covered by at least one triangulation?

We start by studying Problem 2.1 for point sets in convex position, and then for point
sets in general position. We will prove first:

Theorem 2.2. The set of triangles of any convex polygon can be covered with

(1) 1
4

[(
n
3

)
+ n(n−2)

2

]
triangulations for n even, and

(2) 1
4

[(
n
3

)
+ n(n−1)

2

]
triangulations for n odd.

This bound is tight.

Thus the number of triangulations needed to cover all the triangles of P is asymptot-
ically

(
n
3

)
/4. The next result follows trivially:

Corollary 2.3. Let P be a set of n points in convex position, and p any point in the
interior of CH(P ). Then p belongs to the interior of at most 1

4

(
n
3

)
+O(n2) triangles of P .

Next we prove:

Theorem 2.4. Θ(n log n) triangulations of Hk are necessary and sufficient to cover the
set of empty triangles of Hk.

Conjecture 2.5. At least Ω(n log n) triangulations are needed to cover all the empty
triangles of any point set with n points.

3 A point in many edge-disjoint triangles

The problem of finding a point contained in many triangles of a point set was solved by
Boros and Füredi [3]. They proved:

Theorem 3.1. For any set P of n points in general position, there is a point in the
interior of the convex hull of P contained in 2

9

(
n
3

)
+ O(n2) triangles of P . The bound

is tight.

We consider the following problem:

Problem 3.2. Let P be a set of points on the plane in general position, and q 6∈ P a
point of the plane. What is the largest number of edge-disjoint triangles of P such that q
belongs to the interior of all of them?

We will prove:

Theorem 3.3. In any point set in general position there is a point q for which the
inequalities 1

12n
2 ≤ τ(q) ≤ 1

9n
2 hold. Moreover, τ(q) ≤ 1

9n
2 for every q.

3.1 Regular polygons

By Theorem 3.3, any point in the interior of the convex hull of a point set is contained
in at most n2/9 edge-disjoint triangles of P . We now show that the upper bound in
Theorem 3.3 is achieved when P is the set of vertices of a regular polygon. Proving this
result proved to be a nice challenging problem. In what follows, we will assume that
n = 9m with m ≥ 1. We will prove:
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Theorem 3.4. Let P be the set of vertices of a regular polygon with n = 9m vertices, and
let c be its center. If m is odd, then |τ(c)| ≥ 1

9n
2, and if m is even, then |τ(c)| ≥ 1

9n
2−n.

We conclude our paper by proving:

Theorem 3.5. There are point sets P such that every q /∈ P is contained in at most a
linear number of empty edge-disjoint triangles of P . This bound is tight.

We conclude with the following:

Conjecture 3.6. Let P be a set of n points in general position on the plane. Then there
is a point q on the plane which is contained in at least log n edge-disjoint triangles of P .
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Geometric puzzles: algorithms and complexity
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I love computational geometry because the problems and solutions are fun and often
tangible. Puzzles are one way to express these two aspects of geometry. Puzzles are also
a great source of computational geometry problems: which puzzles can be solved and/or
designed efficiently using algorithms? Proving puzzles to be computationally intractable
(NP-hard or worse) leads to a more mathematical sort of puzzle, designing gadgets and
reductions. I will describe a variety of algorithmic and complexity results on geometric
puzzles, focusing on more playful and recent results.
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The relative neighborhood graph:
an interdisciplinary paradigm
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Dedicated to Ferran Hurtado on his 60th birthday

The relative neighborhood graph of a collection of objects assigns an edge to a pair of
objects (A,B), provided that no other object is closer to both A and B than A and B
are to each other. This graph was originally proposed for the purpose of extracting the
visual perceptual structure of a two-dimensional dot pattern [1]. During the past thirty-
one years, the relative neighborhood graph has been applied to a multiplicity of different
disciplines, and sometimes to a variety of different problems within a discipline. Here
some of these applications are reviewed, including: wireless network communications,
archaeological network analysis, grid typification in cartography, data mining for geo-
graphic information systems, shape analysis, image morphology, polygon decomposition,
the extraction of primal sketches in computer vision, the reduction of the size of the train-
ing sets in instance-based machine learning, the design of non-parametric decision rules,
support-vector machines, cluster analysis, manifold learning, the design of nonparametric
tests of the independence of dissimilarity matrices, the design of data-depth measures,
testing class separability, estimating two-dimensional voids in the cold dark matter uni-
verse, multidimensional data-base indexing, image retrieval, adaptive grid generation for
solving partial differential equations, clinical case retrieval in health-care systems, mod-
eling road networks in transportation science, modeling leaf venation patterns in biology,
plasmodium machines, swarm intelligence, distributed motion coordination, visualizing
metabolic reactions in chemistry, tracking defects in crystal structures, and developing
visualization tools such as topological zooming as well as Tukey and Tukey scagnostics.
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Local transformations in geometrical structures
Alberto Márquez1

1 University of Seville, Spain
almar@us.es

Abstract. We try to summarize some results concerning local transformations in some geometrical
structures.

Probably the first time that a local transformation appeared in the context that we mean
here was in the paper by Lawson [1]. The abstract of that work (more than forty years
ago) says “This paper establishes the possibility of performing certain transformations of
triangulations of finite planar point sets”.

Since that paper, local transformations have been used extensively as a tool in order
to obtain results on enumeration and optimality mainly, but also as a way to describe
and so to know better some geometrical structures as matching, triangulations, trees, etc.
The main reason to use this tool is (as Ferran Hurtado says in one of his papers [2]):
“When the quality of a structure with respect to some criterion is considered, and no
direct method for obtaining the optimal triangulation is known, it is natural to perform
operations that allow local improvements”.

One of the main contributors to this field has been (and will be in the future almost for
sure) Ferran Hurtado (see, for example, [3]). He has several papers on this subject, and,
in fact, he has studied local transformations (of flips) in all the structures we mentioned
above.

Here we will try to summarize some of the results related with flips, and how this
tool has been used to prove some other results.
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Recent results on plane geometric spanners
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A geometric graph G is a graph whose vertices are points in the plane and whose edges
are line segments weighted by the Euclidean distance between their endpoints. In this
setting, a t-spanner of G is a spanning subgraph G′ with the property that, for every pair
of vertices x, y, the shortest path from x to y in G′ has weight at most t ≥ 1 times the
shortest path from x to y in G. The parameter t is commonly referred to as the spanning
ratio, the dilation or the stretch factor. In addition to having bounded spanning ratio,
it is desirable to build t-spanners that possess other properties, such as bounded degree,
low weight, or fault-tolerance, to name a few. In this talk, we are particularly interested
in planarity. There has been a flurry of activity in this area. We review various results
on how to build plane geometric spanners.

1Research supported by NSERC.
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Erdős and Szekeres [3, 4] proved that any set of more than
(

2n−4
n−2

)
points in general

position in the plane contains n points which are in convex position, i.e., they form the
vertex set of a convex n-gon. Bisztriczky and Fejes Tóth [1, 2] extended this result to
families of convex sets, as follows.

Let F = {B1, . . . , Bt} be a family of compact convex sets in the plane in general
position, i.e., no three of them have a common supporting line, and no two are tangent
to each other. We say that Bi ∈ F is a vertex of F if Bi is not contained in the convex
hull of the union of the others, i.e., if bd conv(∪F), the boundary of the convex hull of
the union of all members of F , contains a piece of the boundary of Bi. We say that F is
in convex position if every member Bi (i = 1, . . . , t) of F is a vertex of F . Evidently, any
two members of F are in convex position.

Bisztriczky and Fejes Tóth proved that there exists a function N(n) such that if F
is a family of pairwise disjoint convex sets, |F| > N(n), and any three members of F
are in convex position, then F has n members in convex position. We survey various
generalizations and strengthenings of this result, based on joint work with Géza Tóth
[6, 7] and with Jacob Fox, Benny Sudakov, and Andrew H. Suk [5].
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Approximation algorithms for optimal covering
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The geometric optimal covering tour problem asks one to compute a shortest cycle that
“covers” a geometric set S, such as a discrete set of points, a set of polygons, or a
polygonal domain, where “coverage” generally means that the tour is required to visit
each member of S or to come within a specified distance of each member of S. We survey
recent approximation algorithm results on computing optimal cover tours in geometric
environments.

A fundamental problem in geometric network optimization is the traveling salesman
problem (TSP), which is a geometric covering tour problem on a discrete point set S. An
extension of the TSP, the TSP with Neighborhoods (TSPN), requires that we find a tour
of minimum length that visits a set S of regions (e.g., polygons). The TSPN shows up in
many related geometric optimization problems, including the watchman route problem of
computing a tour for a mobile guard to be able to see all of a given geometric domain.
The TSPN also arises in the watchman route problem with limited visibility range, the
lawnmower and milling problems, range scanning for model and map acquisition, and in
various problems in sensor networks, including relay placement and mobile data mules
for sensor network data gathering.

We survey the state of the art in approximation algorithms for geometric optimal
covering tours, including recent results on watchman routes in polygonal domains, data
gathering in sensor networks, and related geometric network optimization problems.
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Abstract. Let S be a set of geometric objects. In many computational geometric problems we are asked
to link the elements of S, or part of them, by means of some geometric objects, usually satisfying a set
of constraints. In this talk we overview several such problems. I have been lucky by working together
with Ferran Hurtado in these and many other problems. I learn a lot from him and have a lot of fun
when working together. This talk is a tribute to Ferran on his 60th Birthday.

Figure 1. Ferran busy with arrangements of circles.

Figure 2. Friends and foes.

Problem 1 (Friends and foes [2]). We are given a set of red points and a set of blue
points on the plane. Does there exist a set of circles, centered all of them on a common
line, whose union contains the blue points and excludes the red ones? If the answer is no,
which is the minimum number of red points that have to be removed in order to have a
positive answer?

1Partially supported by Project MTM2008-05043.
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(a) Problem 2: Contact graph realization. (b) Problem 3: Elastic belt puzzle.

Figure 3

Problem 2 (Gear systems [3]). Let S be a set of points on the plane and G a graph
with vertex set S. Is it possible to connect the points of S by means of non-overlapping
disks centered on them that touch each other following the pattern given by G? In other
words, is it possible to realize G as a contact graph of disks centered at its vertices? How
to obtain a realization in the positive case?

Problem 3 (Conveyer belt: a ten-year-old open puzzle [1, 4]). Let D be a set of disjoint
disks on the plane. Suppose they are wheels and we want to link all of them by wrapping
an elastic band around that tends to shrink as much as possible, thus obtaining a conveyer
belt mechanical system (see Figure 3). Does there exist a configuration such that the
band describes a simple Jordan curve? This is a generalization of the polygonization
problem, in which the radii are all equal to zero.
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Abstract. Let P be a simple polygon on the plane. Two vertices of P are visible if the open line
segment joining them is contained in the interior of P . In this paper we study the following questions
posed in [6, 7]: (1) Is it true that every non-convex simple polygon has a vertex that can be continuously
moved such that during the process no vertex-vertex visibility is lost and some vertex-vertex visibility is
gained? (2) Can every simple polygon be convexified by continuously moving only one vertex at a time
without losing any internal vertex-vertex visibility during the process?

We provide a counterexample to (1). We note that our counterexample uses a monotone polygon.
We also show that question (2) has a positive answer for monotone polygons.

Introduction

Let P be a simple polygon with vertices {p1, . . . , pn}. We say that two vertices of P
are P -visible if the relative interior of the line segment joining them is contained in the
interior of P . The visibility graph V G(P ) of P is the graph with vertex set {p1, . . . , pn}
in which two vertices of P are adjacent if they are P -visible. A classical problem in
computational geometry is that of convexifying simple polygons; that is, using a given
fixed set of transformations that can be applied to the vertices and edges of P , try
to transform P into a convex polygon in such a way that some properties of P are
preserved. The first formulation of a problem of this kind was proposed by Erdős [4],
who proposed a strategy to convexify a non-convex polygon by using flipturns. Perhaps
the most celebrated result in this area concerns the solution of the Carpenter’s Rule
conjecture [3, 10]; see also [1, 2, 8, 9].

1Partially supported by the FWF under grant S9205-N12.
2Supported by CONACYT Grant 106432.
5Supported by CONACYT Grant 80268 and project MTM2006-03909 (Spain).
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Our starting point is the following question posed by Satyan L. Devadoss in the Open
Problem Session at CCCG 2008 [6, 7]:

Question. Given a simple polygon P and its visibility graph V G(P ), can the vertices
of P (one at a time or simultaneously) be moved continuously along paths so that:

• the simplicity of the polygon P is maintained all the time, and
• the visibility graph of P never loses edges, only gains them.

In discussions after the workshop, the following specific questions were raised [5]:

(1) Has every non-convex simple polygon a vertex p that can be continuously moved
so that V G(P ) gains at least one extra edge, and never loses any?

(2) Can every simple polygon be convexified by continuously moving several vertices
in sequence, but only one at a time, such that V G(P ) never loses any edge?

We will prove that Question (2) has a positive answer for monotone polygons. On the
other hand, we give an example that shows that the answer to Question (1) is negative,
even for monotone polygons. For recent results on this topic, see also [7].

1 Polygons and visibility

Let P be a simple polygon as defined above. The interior of P is the area bounded by P
and we consider this area as an open set, i.e., vertices and edges of P do not belong to
the interior of P . Let u and v be the leftmost and rightmost vertices of P . There are
two edge-disjoint paths contained in P joining u to v, which are called the upper chain
of P , and the lower chain of P , respectively. If any vertical line intersects the interior of
P in at most one connected component then P is x-monotone, where, for simplicity, we
will simply use the term monotone. Finally, we suppose without loss of generality that
no vertical line passes through two vertices of P .

A basic operation that we use in this paper is to move the vertices of P around the
plane. Strictly speaking, the polygon P defined by its vertices changes. Nevertheless,
abusing our terminology a bit, we will always refer to it as P . Moreover, we will restrict
our point moves to those that do not destroy the simplicity of P .

We say that the two vertices u and v of P are P -visible if the relative interior of the
line segment uv joining them is contained in the interior of P . We call {u, v} a visibility
pair. Note that, according to our definition, consecutive vertices of P are not visible. Let
N (P ) be the set of pairs of vertices of P that are not P -visible. As consecutive vertices
of P are not P -visible, |N (P )| ≥ n. Note that if the vertices of P move, the set of visible
pairs of P may change, and in turn the visibility graph V G(P ) may also change.

We say that a vertex move is visibility-preserving if the following holds: If pj and pk
were P -visible, they remain P -visible while pi moves. If in addition the number of edges
of V G(P ) increases, then we call it a visibility-increasing vertex move.

Our main results are the following:

Theorem 1.1. There are polygons that have no visibility-increasing vertex moves.

Theorem 1.2. Every monotone polygon can be convexified with a sequence of visibility-
preserving moves.
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2 A counterexample to Question (1)

Consider the monotone polygon P shown in Figure 1. The coordinates of the vertices of
P are a = (−100, 0), b = (−63, 40), c = (−61, 40), d = (−33, 2), and e = (0, 45). The
points {f, g, h, i} are obtained from the points {a, b, c, d} by reflecting them along the
y-axis. Points b′ to h′ are obtained from the points b to h by a reflection along the x-axis.

b c

d

d′

c′b′

a

e′

e

f

f ′

g′ h′

g h

i

Figure 1. A monotone polygon without visibility-increasing vertex moves.
Shaded areas indicate visibility-preserving regions. For point a, dashed lines
indicate the boundary of its visibility-preserving region.

To show that P does not admit any visibility-increasing vertex move, it is sufficient
to consider the vertices of P in the set {a, b, c′, d, e}. The remaining cases follow by
symmetry. For each of these vertices, we show in Figure 1 the open shaded region into
which any of these points can be translated without losing any visibility pairs in P . It is
now easy to see that there is no single vertex move that is visibility-increasing.

3 Visibility-preserving vertex moves

For a point q ∈ R2 and some δ > 0, we denote by Bδ(q) the closed disk with radius δ
with center at point q. Let P = {p0, . . . , pn−1} be a set of points in the plane in general
position. We say that δ > 0 is a safe threshold of P if there are no three elements pi,
pj , and pk of P such that Bδ(pi), Bδ(pj), and Bδ(pk) are all intersected by a line `.
Equivalently, we can say that δ is a safe threshold of P if there are no three points
pi, pj , pk ∈ P such that when we translate each of them to a point within δ distance of
them, they become aligned.

It is not hard to see that every point set in the plane in general position has a safe
threshold δ and that if a vertex move is not visibility-preserving, then at some point
while moving the vertex it becomes collinear with two other vertices of P . However, the
following lemma shows that collinearity is no problem for our approach. With V ◦(P ) we
denote the set of vertices interior to the convex hull of P .

Lemma 3.1. Let P be a monotone polygon. Then there is a sequence of visibility-
preserving vertex moves of some vertices of P such that at the end of the sequence, the
vertices of P are in general position, P remains monotone, and |V ◦(P )| + |N (P )| does
not increase during the vertex movements.

We are now ready to give a brief sketch of the proof of Theorem 1.2. By Lemma 3.1,
we can assume that V (P ) is in general position. We proceed by induction on the sum
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of the number of interior vertices plus the number of non-visible pairs. If the vertices
of P are in convex position, there is nothing to prove. Observe that P is convex if
|V ◦(P )| + |N (P )| = n. Suppose then that |V ◦(P )| + |N (P )| > n and assume that the
theorem holds for all polygons Q with |V ◦(Q)|+ |N (Q)| < |V ◦(P )|+ |N (P )|.

Since P is not convex, suppose without loss of generality that there are k ≥ 1 interior
vertices of P on its upper chain. Relabel them as v1, v2, . . . , vk, in increasing order with
respect to their x-coordinate. Let δ > 0 be a safe threshold for the initial position of
V (P ). Our algorithm starts by executing the following basic procedure BP:

BP: One at a time from left to right, move v1, v2, . . . , vk upwards, by a distance δ.

Once v1, v2, . . . , vk have all been moved, we execute BP repeatedly (using always the
same δ!) until one of the following occurs: (1) a vertex in {v1, v2, . . . , vk} reaches the con-
vex hull of P , (2) a new visible pair occurs, or (3) the visibility-preserving property is lost.
If we stop because (1) or (2) occurs, then we are done, by our induction hypothesis. Using
monotonicity of P we can show that (3) does not happen before a visibility-increasing
event, which proves the theorem. Details are omitted in this extended abstract.

4 Conclusion

Several open questions arise from our work: How many vertex moves do we need to
convexify a monotone polygon? Can this number be bounded by a polynomial? If we
allow only vertical moves we can construct a polygon where the number of vertex moves
is unbounded, but how about general moves? What happens if we allow more than one
vertex to move at a time? We conclude with the following conjecture.

Conjecture 4.1. Every simple polygon can be convexified by a sequence of visibility-
preserving 1-vertex moves.
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Abstract. A classic problem in computational geometry is the art gallery problem: given an enclosure,
how should guards be placed to ensure that every location in the enclosure is seen by some guard. In
this paper we consider guarding the interior of a simple polyhedron using face guards: guards who roam
over an entire interior face of the polyhedron. Bounds for the number of face guards g that are necessary
and sufficient to guard any polyhedron with f faces are given. We show that, for orthogonal polyhedra,
bf/7c ≤ g ≤ bf/6c, while for general polyhedra bf/5− 2/5c ≤ g ≤ bf/2c.

Introduction

In computational geometry, few problems are as recognizable as art gallery problems:
given a region and a choice of how to place guards in the region, determine the locations
of guards in order to see all locations in the region. In 2D, such problems have been
considered for many years (see the surveys in [2], [3] and [5]); however, work in 3D is
less extensive. Grünbaum and O’Rourke [2] and Szabó and Talata [4] consider guarding
the exterior of a polyhedron with vertex guards stationed at vertices of the polyhedron,
while Bose et al. [1] and Urrutia [5] consider guarding the interior of a polyhedron with
edge guards free to walk along an entire edge.

In this work we consider an entirely new type of guard, called a face guard, who is
free to move about a face (including its edges), and guards any location visible from
some point on the face. We bound the number of face guards g sufficient to guard
orthogonal and general simple polyhedra with f faces. In the orthogonal case we show
that bf/7c ≤ g ≤ bf/6c, while in the general case bf/5− 2/5c ≤ g ≤ bf/2c.

1 Definitions

In this paper we consider polyhedra with genus 0 (i.e., homeomorphic to a sphere) with
faces that are not necessarily simply-connected (homeomorphic to discs). In contrast to
some work on 3D art gallery problems, we consider guarding the interior of a polyhedron,
not its exterior. A polyhedron is guarded by selecting interior faces to be face guards.

We say a point p in the interior of the polyhedron is seen by a face guard if the
open line segment connecting p to some point on the closed face does not intersect the
boundary of the polyhedron. Thus the region guarded by a face guard is the set of all
points that are seen by a point on the face.

2 Orthogonal polyhedra

We start by considering the class of orthogonal polyhedra: polyhedra with every edge
parallel to one of the three axes. By definition, each face of an orthogonal polyhedron has

1Research supported in part by NSF grants CCF-0830734 and CBET-0941538.

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

39



40 Face guards for art galleries

a normal vector parallel to one of the three axes. Thus, the interior faces of orthogonal
polyhedra can be partitioned into six sets according to the directions of their normal
vectors.

Lemma 2.1. Let F be the set of all interior faces of an orthgonal polyhedron with normal
vectors in the same direction. Then F is sufficient to guard the polyhedron.

Proof. Without loss of generality, let F be the set of faces with normal vectors pointing
in the positive x-direction. Let p be a point in the interior of the polyhedron. Consider
extending a ray from p in the negative x-direction until it intersects a face f of the
polyhedron. This face f must have a normal vector in the positive x-direction and sees p.
So the set F guards the entire polyhedron. �

Lemma 2.2. Let P be a polyhedron with f faces. Then bf/6c face guards are sufficient
to guard any orthogonal polyhedron.

Proof. The normal vectors of the interior faces of P partition these faces into six sets. By
Lemma 2.1, each of these six sets are sufficient to guard P . By the pigeonhole principle,
at least one of these sets has size at most bf/6c. �

Lemma 2.3. For all f = 21k where k is a positive integer, there exist orthogonal poly-
hedra with f faces that require 3k face guards.

Figure 1. An orthogonal polyhedron with 21k faces requiring 3k guards for k = 4.

Proof. The proof is by explicit construction as seen in Figure 1. We use k large cubes,
each with 3 narrow ‘chimneys’ attached to the cube’s front, left, and top faces. The large
cubes are attached to each other at their corners to form a long chain. Each cube and
its 3 chimneys have a total of 21 faces, so the entire construction has 21k faces.

Consider using face guards to guard the interior of the polyhedron. We claim that a
distinct face guard is needed for each chimney. This can be seen by considering the set
of faces that see a point p deep in a chimney. Certainly each face of the chimney and the
face of the cube containing can see p. Additionally, the face of the cube opposite of the
face containing the chimney can also see p. Because the narrowness and length of the
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chimney, no other faces can see p, including those from adjacent cubes. Intuitively, one
can think of placing a light at p, and the light leaving the chimney as a focused beam
which strikes only the center of the opposite face of the cube. Applying this analysis to
all three chimneys in a cube, we see that a distinct face guard is needed for each chimney,
thus guarding the entire construction requires 3k face guards. �

Theorem 2.4. Let g be the minimum number of face guards sufficient to guard any
orthogonal polyhedron with f faces. Then bf/7c ≤ g ≤ bf/6c.
Proof. Combining the results from Lemmas 3.1 and 3.2 gives the inequalities. �

3 General polyhedra

In this section we consider guarding general simple polyhedra. In comparison to orthog-
onal polyhedra, we find that the necessary and sufficient numbers of guards are both
increased.

Lemma 3.1. Let P be a polyhedron with f faces. Then bf/2c face guards are sufficient
to guard P .

Proof. This proof is similar to the proof of Lemma 2.2. Consider the dot product of
the normal vectors of the interior faces of P with a vector in the positive x-direction.
Each dot product is either negative or non-negative. Partition the faces into two sets
according to the values of their dot products. One of these sets must have size at most
bf/2c. Without loss of generality, suppose that the set of faces with non-negative dot
products has size at most bf/2c, and call this set F .

Let p be a point in the interior of P . Consider extending a ray from p in negative
x-direction. The first face intersected must be in F , and so F guards p. So F is sufficient
to guard P . �

Figure 2. A polyhedron with 5k + 2 faces requiring k face guards for k = 12.
At left is the complete polyhedron, while at right is a larger version of the
polyhedron with the top face removed.

Lemma 3.2. For all f = 5k + 2 where k is a positive integer, there exist polyhedra with
f faces that require 1

5f − 2
5 face guards.

Proof. The proof is by explicit construction (see Figure 2). The construction is a large
disc-shaped polyhedron consisting of two large regular faces with 2k edges each, and 2k
small faces connecting them. Half (k) of the small faces have a narrow spike consisting
of three faces extending out of the polyhedron meeting at a single point. The tip of the
spike can only see a single small face on the opposite side of the polyhedron. The face it
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sees does not have a spike leaving it. The construction has a total of 2k+ 2 + 3k = 5k+ 2
faces.

We claim that the vertex at the pointy end of each spike can only been seen by one
of 5 faces: the three faces creating the spike, the face the spike leaves, and the face on
the far side of the polyhedron that the pointy end sees. Looking at the sets of faces that
see the pointy end of each spike, we notice they are disjoint. So a distinct face guard
is needed for the pointy end of each spike. There are k such spikes, so k face guards
are needed. �

Theorem 3.3. Let g be the number of face guards sufficient to guard any polyhedron with
f faces. Then

⌊
1
5f − 2

5

⌋
≤ g ≤ bf/2c.

Proof. Combining Lemmas 3.1 and 3.2 gives the inequalities. �

4 Conclusion and open problems

In this work we have introduced the notion of face guards for 3D art gallery problems.
This new type of guard is permitted to walk about freely on a closed interior face, and
guards any point in the polyhedron seen from some location on this face. We give bounds
on the number of face guards needed to guard the interior of both orthogonal and general
simple polyhedra.

This new type of guard for polyhedra suggests an interesting set of open problems.
Such problems include the complexity of minimizing the number of face guards, necessary
and sufficient numbers of guards for tetrahedralizable, surface triangulated, and non-zero
genus polyhedra. We also support the investigation of open face guards, in which the
boundary of the face is omitted.
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Abstract. Let P,Q be two polygons of n and m vertices, respectively. A circle containing P and
whose interior does not intersect Q is called a separating circle. We propose an algorithm for finding
the minimum separating circle between a fixed convex polygon P and query convex polygon Q. The
polygons P and Q are given as ordered lists of vertices (sorted according to their order of appearance
along the convex hulls of P and Q respectively). We perform a linear time preprocessing on the number
of vertices of P ; the query time complexity is O(logn logm).

Introduction

Kim and Anderson [1] presented a quadratic algorithm for solving the circular separability
problem between any two finite planar sets. Bhattacharya [2] improved the running time
to O(n log n). Finally O’Rourke, Kosaraju and Megiddo [3] found an optimal linear time
algorithm to solve this problem. In this paper we study a new version of the problem.
Let P be a fixed convex polygon with n vertices. We propose an algorithm for solving
the circular separability problem between P and any query convex polygon Q with m
vertices, both given as an ordered list of their elements. Our algorithm uses a linear time
preprocessing on P , and has O(log n logm) query time complexity.

1 Circular separability

Suppose for ease of description that the vertices of P and Q are in general position, and
that P has no four co-circular vertices. Let CP be the minimum enclosing circle of P and
let cP be its center. It is known that cP can be found in O(n) time [4]. Note that cP
is a point on an edge of the farthest-point Voronoi diagram of the vertices of P . Clearly
if the interiors of Q and P are not disjoint, our problem has no solution, hence we will
suppose that d(P,Q) ≥ 0. It is also clear that if Q and CP have disjoint interiors, then
CP is trivially the minimum separating circle.

1.1 Preprocessing

We first calculate the farthest-point Voronoi diagram of the vertices of P in linear time [5].
It can be seen as a tree rooted in cP and created by adding leaves on every unbounded
edge; we will denote this tree as V(P ). For each vertex p of P , let R(p) be the farthest-
point Voronoi region associated to p, and assume that p has a pointer to R(p). Let x be a
point on an edge of V(P ), and let Tx denote the path contained in V(P ) joining cP to x.
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44 Circle separability in convex polygons

We will use the data structure on V(P ) proposed by Roy, Karmakar, Das and Nandy
in [6], which can be constructed in linear time and uses linear space. Given a vertex v in
the tree V(P ), this data structure allows us to do a binary search on the vertices of V(P )
lying on Tv.

1.2 The minimum separating circle

We will call every circle containing P and whose interior does not intersect Q a separating
circle. Let c′ be the center of the minimum separating circle. In this section we will find
c′ starting from the center of an arbitrary separating circle.

Given x ∈ R2, let C(x) be the minimum enclosing circle of P with center on x, and
let ρ(x) be the radius of C(x). The following is a well-known result for the farthest-point
Voronoi diagram.

Proposition 1.1. Let x be a point on V(P ). Then ρ is a monotonically increasing
function along the path Tx starting at cP .

We now address some properties of separating circles, some of which are given without
proof.

Observation 1.2. The minimum separating circle has its center on V(P ).

Observation 1.3. Let x, y ∈ R2. For every z ∈ [x, y], we have C(z) ⊆ C(x) ∪ C(y).

The previous observation implies that the minimum separating circle is unique.

Proposition 1.4. Let x, y be two points on V(P ) such that C(x), C(y) are separating
circles and x, y belong to the boundary of the Voronoi region R(p). If z is the lowest
common ancestor of x and y in V(P ), then C(z) is a separating circle; moreover, we
have ρ(z) ≤ min{ρ(x), ρ(y)}.
Proof. Suppose that y /∈ Tx and x /∈ Ty; otherwise the result follows trivially. Assume
then that the paths connecting x and y to z have disjoint relative interiors. Let `z,p be the
straight line through z and p; this line leaves x and y in different semiplanes. Let z′ be the
intersection between `z,p and [x, y]. By Observation 1.3 we know that C(z′) ⊆ C(x)∪C(y).
Since z′, z, p are co-linear, we have C(z) ⊆ C(z′) and thus ρ(z) < ρ(z′); see Figure 1(a).
Finally, by transitivity we have that C(z) ⊂ C(x) ∪ C(y), which implies that C(z) is a
separating circle. Using Proposition 1.1, we conclude that ρ(z) ≤ min{ρ(x), ρ(y)}. �

Now we generalize the previous result.

Lemma 1.5. Let x, y be two points on V(P ) such that C(x), C(y) are separating circles.
If z is the lowest common ancestor of x and y in the rooted tree V(P ), then C(z) is a
separating circle; moreover, ρ(z) ≤ min{ρ(x), ρ(y)}.
Proof. Proceeding by contradiction, suppose that C(z) is not a separating circle. Let wx
be a point on Tx such that ρ(wx) = min{ρ(w) : w ∈ Tx and C(w) is a separating circle};
thus wx 6= z. Consider the intersections of the segment [wx, y] with V(P ) and suppose
that the intersection points are wx = x0, x1, . . . , xk = y in this order. Let z′ be the
lowest common ancestor of wx and x1 in V(P ). It is clear that wx and x1 belong to the
same Voronoi region. Thus, by Proposition 1.4, C(z′) is a separating circle. Note that z′
belongs to Tx, which is a contradiction with the definition of wx. Our result follows. �



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011 45

pL

P

Q

L

L⊥

s0

R(pL)

C(s0)

p

P z

x

y

!z,p

z′

C(z)

C(z′)

R(p)

a) b)

Figure 1. (a) Proof of Proposition 1.4. (b) The construction of s0.

Theorem 1.6. Let s be a point on an edge of V(P ) such that C(s) is a separating circle.
Then c′ belongs to Ts.

Proof. Let w be a point on an edge of Ts such that

ρ(w) = min{ρ(z) | z ∈ Ts and C(z) is a separating circle}.
Suppose that w 6= c′; thus c′ /∈ Ts. Therefore, by Lemma 1.5, if z is the lowest common
ancestor of c′ and w, then C(z) is a separating circle with ρ(z) ≤ ρ(c′). Also, since
c′ /∈ Tw ⊆ Ts, the inequality is strict, which is a contradiction; our result follows. �

2 The algorithm

In this section, we present an algorithm to find c′. Our algorithm first finds a separating
circle with center s0 on an edge of V(P ). Then we search for c′ using a binary search
on Ts0 .

We first construct a straight line L separating P and Q in logarithmic time [7]. Let us
assume that pL is the unique point in P closest to L. Otherwise, rotate L slightly, keeping
P and Q separated by L. Let L⊥ be the perpendicular to L that contains pL and let s0 be
the intersection of L⊥ with the boundary of R(pL). Note that d(s0, pL) defines the radius
of C(s0), therefore C(s0) is a separating circle; see Figure 1(b). Also, by construction s0

is on an edge of V(P ). It is clear that we can find s0 in O(log n+ logm) time. Suppose
that s0 is on the edge xy of V(P ), and let Tx = (cP = u0, u1, . . . , ur−1 = y, ur = x). It
follows from Theorem 1.6 that c′ is on an edge of Tx.

Using the data structure proposed by Roy, Karmakar, Das and Nandy [6], we perform
a binary search for c′ on the vertices of Tx as follows. Initially, let j = 0, and k = r.
Let ui be the mid-vertex on the path of Tx between uj and uk. First compute d(ui, Q)
in O(logm) time [7]. Now, in constant time, calculate ρ(ui). If d(ui, Q) = ρ(ui), then
ui = c′ and the algorithm ends. If d(ui, Q) < ρ(ui), then we search for c′ between ui
and uk; if d(ui, Q) > ρ(ui), then we search for c′ between uj and ui.

Two possibilities arise. If c′ is a vertex on V(P ), then we will find it in O(log n) steps.
Otherwise, if c′ is an interior point of an edge S = [u, v] of V(P ), our algorithm will
return S such that c′ ∈ S. Since each step of the binary search requires O(logm) time,
the complexity of the previous search is O(log n logm).

Suppose that S is contained in the bisector of two vertices p0, p1 of P , and let QS be
the set of points on the boundary of Q visible from every point in S. It can be computed
in O(logm) time. Let qc′ be the point of intersection of C(c′) and Q. Clearly qc′ belongs
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to QS ; see Figure 2(a). Given three points p, q, r ∈ R2, let C(pqr) be the circumcircle of
the triangle 4(pqr). For x ∈ QS , let F (x) be the radius of the circle C(p0xp1). It is easy
to see that F (x) is unimodal on QS and attains its maximal at qc′ ; see Figure 2(b).
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Figure 2. (a) The construction of QS . (b) qc′ is maximal under F .

Let Q∗S = {q0, q1, . . . , qr} be the set of vertices of Q lying on QS . We can perform a
binary search for qc′ on the sorted list Q∗S as follows. At each step we take the midpoint
q∗ of the current search list (initially Q∗S), and compute the value of F (q∗) in constant
time. Take two points on each side of q∗ at epsilon distance on the boundary of Q. If
q∗ is a local maximum of F , then the algorithm returns qc′ = q∗. Otherwise, determine
if qc′ lies to the left or to the right of q∗. Eliminate half of the list according to the
position of qc′ and repeat recursively. Our algorithm returns either the value of qc′ if it is
a vertex of Q, or a segment H = (qi, qi+1) of QS such that qc′ belongs to H. In the first
case, we are done, since c′ can be determined in constant time given the position of qc′ .
In the second case, the problem is reduced to that of finding a point c′ ∈ S such that
d(c′, p0) = d(c′, H). This case can be solved with a quadratic equation in constant time.

Since each step of the binary search requires constant time, the algorithm finds the
point qc′ in O(logm) time, giving an overall complexity of O(log n logm) for the algo-
rithm.
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Abstract. Let P be a set of n points in general and convex position in the plane. Let Dn be the graph
whose vertex set is the set of all line segments with endpoints in P , where disjoint segments are adjacent.
The chromatic number of this graph was first studied by Araujo et al. [CGTA, 2005]. The previous best
bounds are 3n

4
≤ χ(Dn) < n −

√
n
2
(ignoring lower order terms). In this paper we improve the lower

bound to χ(Dn) ≥ n−
√

2n, to conclude a near-tight bound on χ(Dn).

1 Introduction

Throughout this paper, P is a set of n > 3 points in general and convex position in the
plane. The convex segment disjointness graph, denoted by Dn, is the graph whose vertex
set is the set of all line segments with endpoints in P , where two vertices are adjacent if the
corresponding segments are disjoint. Obviously Dn does not depend on the choice of P .
This graph and other related graphs were introduced by Araujo, Dumitrescu, Hurtado,
Noy and Urrutia [1], who proved the following bounds on the chromatic number of Dn:

2
⌊

1
3(n+ 1)

⌋
− 1 ≤ χ(Dn) < n− 1

2 blog nc .
Both bounds were improved by Dujmović and Wood [5] to

3
4(n− 2) ≤ χ(Dn) < n−

√
1
2n− 1

2(lnn) + 4.

In this paper we improve the lower bound to conclude near-tight bounds on χ(Dn).

Theorem 1.1.

n−
√

2n+ 1
4 + 1

2 ≤ χ(Dn) < n−
√

1
2n− 1

2(lnn) + 4.

The proof of Theorem 1.1 is based on the observation that each colour class in a
colouring of Dn is a convex thrackle. We then prove that two maximal convex thrackles
must share an edge in common. From this we prove a tight upper bound on the number
of edges in the union of k maximal convex thrackles. Theorem 1.1 quickly follows.

2 Convex thrackles

A convex thrackle on P is a geometric graph with vertex set P such that every pair
of edges intersect; that is, they have a common endpoint or they cross. Observe that a
geometric graph H on P is a convex thrackle if and only if E(H) forms an independent set
in Dn. A convex thrackle is maximal if it is edge-maximal. As illustrated in Figure 1(a),
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it is well known and easily proved that every maximal convex thrackle T consists of an
odd cycle C(T ) together with some degree 1 vertices adjacent to vertices of C(T ); see
[2, 3, 4, 5, 6, 7, 8, 9]. In particular, T has n edges. For each vertex v in C(T ), let
WT (v) be the convex wedge with apex v, such that the boundary rays of WT (v) contain
the neighbours of v in C(T ). Every degree-1 vertex u of T lies in a unique wedge and the
apex of this wedge is the only neighbour of u in T .

Figure 1. (a) Maximal convex thrackle. (b) The interval pairs (Iu, Ju).

3 Convex thrackles and free Z2-actions of S1

A Z2-action on the unit circle S1 is a homeomorphism f : S1 → S1 such that f(f(x)) = x
for all x ∈ S1. We say that f is free if f(x) 6= x for all x ∈ S1.

Lemma 3.1. If f and g are free Z2-actions of S1, then f(x) = g(x) for some x ∈ S1.

Proof. For points x, y ∈ S1, let −→xy be the clockwise arc from x to y in S1. Let x0 ∈ S1.
If f(x0) = g(x0) then we are done. Now assume that f(x0) 6= g(x0). Without loss
of generality, x0, g(x0), f(x0) appear in this clockwise order around S1. Parametrise−−−−−→
x0g(x0) with a continuous injective function p : [0, 1]→ −−−−−→x0g(x0) such that p(0) = x0 and
p(1) = g(x0). Assume that g(p(t)) 6= f(p(t)) for all t ∈ [0, 1]; otherwise we are done. Since
g is free, p(t) 6= g(p(t)) for all t ∈ [0, 1]. Thus g(p([0, 1])) =

−−−−−−−−−−→
g(p(0))g(p(1)) =

−−−−−→
g(x0)x0.

Also f(p([0, 1])) =
−−−−−−−−−→
f(x0)f(p(1)), as otherwise g(p(t)) = f(p(t)) for some t ∈ [0, 1]. This

implies that p(t), g(p(t)), f(p(t)) appear in this clockwise order around S1. In particular,
with t = 1, we have f(p(1)) ∈ −−−−−→x0g(x0). Thus x0 ∈

−−−−−−−−−→
f(x0)f(p(1)). Hence x0 = f(p(t))

for some t ∈ [0, 1]. Since f is a Z2-action, f(x0) = p(t). This is a contradiction, since
p(t) ∈ −−−−−→x0g(x0) but f(x0) 6∈ −−−−−→x0g(x0). �

Assume that P lies on S1. Let T be a maximal convex thrackle on P . As illustrated
in Figure 1(b), for each vertex u in C(T ), let (Iu, Ju) be a pair of closed intervals of
S1 defined as follows. Interval Iu contains u and bounded by the points of S1 that are
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1/3 of the way towards the first points of P in the clockwise and anticlockwise direction
from u. Let v and w be the neighbours of u in C(T ), so that v is before w in the clockwise
direction from u. Let p be the endpoint of Iv in the clockwise direction from v. Let q be
the endpoint of Iw in the anticlockwise direction from w. Then Ju is the interval bounded
by p and q and not containing u. Define fT : S1 → S1 as follows. For each v ∈ C(T ), map
the anticlockwise endpoint of Iv to the anticlockwise endpoint of Jv, map the clockwise
endpoint of Iv to the clockwise endpoint of Jv, and extend fT linearly for the interior
points of Iv and Jv, such that fT (Iv) = Jv and fT (Jv) = Iv. Since the intervals Iv and
Jv are disjoint, fT is a free Z2-action of S1.

Lemma 3.2. Let T1 and T2 be maximal convex thrackles on P with C(T1) ∩ C(T2) = ∅.
Then there is an edge in T1 ∩ T2 with one endpoint in C(T1) and one endpoint in C(T2).

Topological proof. By Lemma 3.1, there exists x ∈ S1 such that fT1(x) = y = fT2(x). Let
u ∈ C(T1) and v ∈ C(T2) be so that x ∈ Iu ∪ Ju and x ∈ Iv ∪ Jv, where (Iu, Ju) and
(Iv, Jv) are defined with respect to T1 and T2, respectively. Since C(T1) ∩C(T2) = ∅, we
have u 6= v and Iu ∩ Iv = ∅. Thus x 6∈ Iu ∩ Iv. If x ∈ Ju ∩ Jv, then y ∈ Iu ∩ Iv, implying
u = v. Thus x 6∈ Ju ∩ Jv. Hence x ∈ (Iu ∩ Jv) ∪ (Ju ∩ Iv). Without loss of generality,
x ∈ Iu ∩ Jv. Thus y ∈ Ju ∩ Iv. If Iu ∩ Jv = {x}, then x is an endpoint of both Iu and
Jv, implying u ∈ C(T2), which is a contradiction. Thus Iu ∩ Jv contains points other
than x. It follows that Iu ⊂ Jv and Iv ⊂ Ju. Therefore the edge uv is in both T1 and T2.
Moreover, one endpoint of uv is in C(T1) and one endpoint is in C(T2). �

Combinatorial proof. Let H be the directed multigraph with vertex set C(T1) ∪ C(T2),
where there is a blue arc uv in H if u is in WT1(v) and there is a red arc uv in H if u
is in WT2(v). Since C(T1) ∩ C(T2) = ∅, every vertex of H has outdegree 1. Therefore
|E(H)| = |V (H)| and there is a cycle Γ in the undirected multigraph underlying H. In
fact, since every vertex has outdegree 1, Γ is a directed cycle. By construction, vertices
in H are not incident to an incoming and an outgoing edge of the same color. Thus Γ
alternates between blue and red arcs. The red edges of Γ form a matching as well as the
blue edges, both of which are thrackles. However, there is only one matching thrackle on
a set of points in convex position. Therefore Γ is a 2-cycle and the result follows. �

4 Main results

Theorem 4.1. For every set P of n points in convex and general position, the union of
k maximal convex thrackles on P has at most kn−

(
k
2

)
edges.

Proof. For a set T of k maximal convex thrackles on P , define

r(T ) = |{(v, Ti, Tj) : v ∈ C(Ti) ∩ C(Tj), Ti, Tj ∈ T and Ti 6= Tj}| .
The proof proceeds by induction on r(T ).

Suppose that r(T ) = 0. Thus C(Ti) ∩ C(Tj) = ∅ for all distinct Ti, Tj ∈ T . By
Lemma 3.2, Ti and Tj have an edge in common, with one endpoint in C(Ti) and one
endpoint in C(Tj). Hence distinct pairs of thrackles have distinct edges in common.
Since every maximal convex thrackle has n edges and we overcount at least one edge for
every pair, the total number of edges is at most kn−

(
k
2

)
.

Now assume that r(T ) > 0. Thus there is a vertex v and a pair of thrackles Ti and
Tj such that v ∈ C(Ti) ∩ C(Tj). As illustrated in Figure 2, replace v by two consecutive
vertices v′ and v′′ on P , where v′ replaces v in every thrackle except Tj , and v′′ replaces
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v in Tj . Add one edge to each thrackle so that it is maximal. Let T ′ be the resulting set
of thrackles. Observe that r(T ′) = r(T ) − 1 and the number of edges in T ′ equals the
number of edges in T plus k. By induction, T ′ has at most k(n+1)−

(
k
2

)
edges, implying

that T has at most kn−
(
k
2

)
edges. �

Figure 2. Construction in the proof of Theorem 4.1.

We now show that Theorem 4.1 is best possible for all n ≥ 2k. Let S be a set of k
vertices in P with no two consecutive vertices in S. If v ∈ S and x, v, y are consecutive
in this order in P , then Tv = {vw : w ∈ P \ {v}} ∪ {xy} is a maximal convex thrackle,
and {Tv : v ∈ S} has exactly kn−

(
k
2

)
edges in total.

Proof of Theorem 1.1. If χ(Dn) = k, then there are k convex thrackles whose union is the
complete geometric graph on P . Possibly add edges to obtain k maximal convex thrackles
with

(
n
2

)
edges in total. By Theorem 4.1,

(
n
2

)
≤ kn−

(
k
2

)
. The quadratic formula implies

the result. �
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Abstract. The twisted graph Tn is a complete topological graph with n vertices v1, v2, . . . , vn in which
two edges vivj (i < j) and vsvt (s < t) cross each other if and only if i < s < t < j or s < i < j < t. We
study several properties concerning plane topological subgraphs of Tn.

Introduction

Let P be a set of points in the plane. A topological graph with vertex set P is a simple
graph drawn in the plane with Jordan curves as edges in such a way that any two edges
have at most one point in common. A geometric graph is a topological graph in which
all edges are straight line segments.

Two topological graphs G and G′ with vertex sets P and P ′, respectively, are weakly
isomorphic if there is a bijection α : P → P ′ such that α (u)α (v) ∈ E (G′) if and only
if uv ∈ E (G) and two edges α (x)α (y) and α (u)α (v) of G′ intersect each other if and
only if xy and uv intersect each other in G.

The twisted graph Tn is a complete topological graph with n vertices v1, v2, . . . , vn in
which two edges vivj (i < j) and vsvt (s < t) cross each other if and only if i < s < t < j
or s < i < j < t; see Fig. 1.

Figure 1. A twisted graph T5.

The graphs Tn, n ≥ 5 were introduced by Harborth and Mengersen [4] as examples
of complete topological graphs containing no topological subgraphs weakly isomorphic
to the complete convex geometric graph C5 on 5 vertices. Later, Pach et al. [7] proved
that every complete topological graph with n vertices contains a complete topological
subgraph with m ≥ c log1/8 n vertices which is weakly isomorphic to either the complete
convex graph Cm or to the twisted graph Tm. In this paper we study several problems for
the twisted graph Tm for which solutions for the corresponding problems for the complete
geometric convex graph Cm are known. Due to the above result by Pach et al., in most
cases a result for general topological graphs follows.

1Partially supported by Conacyt 83856, México.
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A colouring of the vertices of a graph G is an assignment of colours to the vertices
of G where two adjacent vertices may have the same colour. A colouring of a graph G
with two colours is a balanced colouring of G if the colour classes have the same size.
In Section 1 we show that, for each balanced colouring of Tn, there is a plane spanning
path of Tn whose vertices alternate colours. For the corresponding problem for complete
geometric graphs Cn with vertices in convex position, the best known lower bound for
the largest plane alternating path is n

2 + c
√
n/ log n [6]. Akiyama and Urrutia [1] gave

an algorithm to decide whether there is a plane alternating spanning path for a given
balanced colouring of Cn.

The tree graph G(T ) of a topological graph T is the abstract graph whose vertices
are the plane spanning trees of T in which two trees Q and R are adjacent if there are
edges q and r of T such that R = (Q− q)+r. Avis and Fukuda [2] proved that the graph
G(T ) is connected whenever T is a geometric graph. In Section 2 we prove that G(Tn) is
always connected.

A plane topological subgraph G of Tn is a maximal plane subgraph of Tn if, for each
edge uv of Tn not in G, there is an edge xy of G that intersects uv. The max graph
MP (Tn) of Tn is the abstract graph whose vertices are the maximal plane topological
subgraphs of Tn in which two graphs F and H are adjacent if one can be obtained from
the other by a single edge exchange. The matching graph M(T2m) of T2m is the abstract
graph with vertex set given by the set of plane perfect matchings of T2m where two
matchings L and N are adjacent if the symmetric difference L4N is a plane cycle with
four edges. We prove that both graphs MP (Tn) andM(T2m) are always connected.

Let G be a geometric graph with n ≥ 3 vertices in convex position, Rivera-Campo
[8] proved that if G− v has a plane spanning tree for each vertex v of G, then G also has
a plane spanning tree. In Section 4 we study the corresponding problem for topological
subgraphs of Tn.

Throughout the paper we denote by v1, v2, . . . , vn the vertices of Tn from left to right
as in Fig. 1.

1 Alternating paths

Let c be a colouring of the vertex set of a topological graph G with two colours. An
alternating path of G is a path in G whose vertices alternate colours.

Theorem 1.1. For every balanced colouring of Tn with two colours, there is a plane
alternating spanning path of Tn.

Proof. Let c be a balanced colouring of Tn. Start a path at vertex vi1 = v1 and, for
k = 1, 2, . . . , n− 1, let the next vertex vik+1

be such that

ik+1 = min {j : vj 6= vi1 , vi2 , . . . , vik and c (vj) 6= c (vik)} .
Since c (vi1) 6= c (vi2), the path vi1 , vi2 is a plane alternating path R1 of Tn with length

one. Let k > 1 and assume that the path Rk−1 = vi1 , vi2 , . . . , vik is a plane alternating
path of Tn. If the edge vikvik+1

intersects an edge vijvij+1 of Sk−1, then either vik < vij ,
vij+1 < vik+1

, vik+1
< vij , vij+1 < vik , vij < vik , vik+1

< vij+1 , or vij+1 < vik , vik+1
< vij .

We claim that we reach a contradiction in all cases because of the choice of vij+1 and
of vik+1

. Therefore, Rk = vi1 , vi2 , . . . , vik , vik+1
is a plane alternating path of Tn with

length k. By induction, Tn contains a plane spanning alternating path Rn−1. �
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2 Tree graph

Let Sn be the plane spanning tree of Tn with edges v1v2, v1v3, . . . , v1vn. That is, Sn is
the spanning star of Tn with center vertex v1.

Theorem 2.1. For each plane spanning tree R of Tn there is a path R1, R2, . . . , Rt in
G(Tn) with R = Sn and Rt = R.

Proof. For each plane spanning tree R of Tn, let k (R) be the largest integer j such
that v1v2, v1v3, . . . , v1vj are edges of R. If n − k (R) = 0, then Sn = R. Assume that
n − k (R) = m + 1 and that the result holds for each plane spanning tree R′ of Tn for
which n− k (R′) = m.

Since R is a plane subgraph of Tn and v1vk(R) is an edge of R, for 2 ≤ i < j ≤ k (R)−1
the edge vivj of Tn cannot be an edge of R. This implies that v1vk(R)+1 does not intersect
any edge of R and therefore R+v1vk(R)+1 is a plane subgraph of Tn. Clearly R+v1vk(R)+1

contains an edge uvk(R)+1 with u 6= v1 such that R′ =
(
R+ v1vk(R)+1

)
− uvk(R)+1 is a

tree. Then R′ is a plane spanning tree of Tn with k (R′) = k (R) + 1 and n− k (R′) = m.
By induction there is a path R1, R2, . . . , Rt in G(Tn) with Sn = R1 and Rt = R′. Since
R′and R are adjacent in G(Tn), R1, R2, . . . , Rt, R is also a path in G(Tn). �

3 Max graph and matching graph

A vertex ordering of a graph G is a numbering of the vertices v1, v2, . . . , vn of G. Let G
be a graph with a vertex ordering v1, v2, . . . , vn. Two edges vivj (i < j) and vsvt (s < t)
of G are nested if i < s < t < j or s < i < j < t. A set X of edges of G is a queue if no
two edges in X are nested. Clearly the sets of edges of plane subgraphs of Tn are queues
of the complete graph Kn with the corresponding vertex ordering. Dujmović and Wood
[3] proved that every maximal queue of a graph with n vertices has at most 2n−3 edges.
The following lemmas will be used in the proof of Theorem 3.3.

Lemma 3.1. If n ≥ 3, then the following properties are satisfied by any maximal plane
topological subgraph F of Tn.

(1) F has 2n− 3 edges.
(2) If v1vk is an edge of F , then v1v2, v1v3, . . . , v1vk−1 are also edges of F .
(3) If vtvn is an edge of F , then vt+1vn, vt+2vn, . . . , vn−1vn are also edges of Tn.
(4) v1v2, v1v3, vn−2vn and vn−1vn are edges of F .

For any maximal plane topological subgraph F of Tn, let k (F ) be the largest integer
k such that v1vk is an edge of F . By Lemma 3.1 (3), k (F ) ≥ 2. Let MP2 (Tn) be the
subgraph of MP (Tn) induced by the set of maximal plane topological subgraphs F of
Tn for which k (F ) = 2.

Lemma 3.2. For n ≥ 2, MP2 (Tn+1) and MP (Tn) are isomorphic graphs.

Theorem 3.3. For each positive integer n, the graph MP (Tn) is connected.

Proof. The graphsMP (T1),MP (T2) andMP (T3) contain exactly one vertex and there-
fore are connected. We proceed by induction assuming n ≥ 3 and that MP (Tn) is a
connected graph. We claim that, for each maximal plane topological subgraph F of
Tn+1 with k (F ) = k, there is a path Fk, Fk−1, . . . , F2 in MP (Tn+1) such that F = Fk
and F2 lies in MP2 (Tn+1). By the induction hypothesis and by Lemma 3.2, the graph
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MP2 (Tn+1) is connected. ThereforeMP (Tn+1) is also connected and the theorem follows
by induction. �

Hernando et al. [5] proved that, given any two plane perfect matchingsN andM of the
complete convex geometric graph C2m, there is a sequence N = N0, N1, . . . , Nt = M of
plane perfect matchings of C2m such that, for i = 0, 1, . . . , t−1, the symmetric difference
Ni 4 Ni+1 is a plane cycle with four edges. Here we prove the corresponding result for
the twisted graph T2m.

For any plane matching N of T2m, let k (N) be such that v1vk ∈ N and letM2(T2m)
be the subgraph ofM(T2m) induced by the matchings N for which k (N) = 2.

Lemma 3.4. For m ≥ 1,M2 (T2m+2) andM (T2m) are isomorphic graphs.

Theorem 3.5. For each positive integer n, the graph MP (Tn) is connected.

Proof. The graph M (T2) is a graph with exactly one vertex. Assume m ≥ 1 and that
M (T2m) is a connected graph. We claim that, for each plane matching N of T2n+2 with
k (N) = k, there is a path Nt, Nt−1, . . . , N2 inM (T2m) such that N = Nt and N2 lies in
M2 (T2m+2). By the induction hypothesis and by Lemma 3.4, the graphM2 (T2m+2) is
connected. ThereforeM (T2m) is also connected, which completes the induction. �

4 Plane spanning trees

Theorem 4.1. Let n ≥ 3 and let G be a topological spanning subgraph of Tn. If G − v
contains a plane spanning tree for each v ∈ V (G), then G also contains a plane spanning
tree.

Proof. Let t = min {j : v1vj ∈ E (G)} and let Ft be a plane spanning tree of G − vt.
Since Ft is connected, there is at least one edge v1vs of Ft incident with v1. As no edge
of Ft intersects the edge v1vs, we have vivj /∈ E (Ft) for 1 < i < j < s. By the choice of t,
s > t and therefore v1vt does not intersect any edge of Ft. This implies that Ft together
with the edge v1vt is a plane spanning tree of G. �
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Abstract. We provide a new decomposition scheme for non-crossing graphs on the vertices of a convex
polygon. This allows us to analyze the limiting degree distribution, the maximum degree, and the size
of the largest connected component.

Introduction

Flajolet and Noy [6] studied non-crossing configurations from an enumerative and prob-
abilistic perspective, obtaining precise asymptotic estimates for the number of configura-
tions of several kinds, as well as limit probability laws for several basic parameters, such
as the number of edges or the number of components.

Motivated by an open question of Clemens Huemer [10], we revisit the problem and
study more advanced parameters, such as the limiting degree distribution, the maximum
degree, and the size of the largest component. Our approach is based on a new decompo-
sition of non-crossing configurations into 2-connected components inspired in recent work
[4, 9], together with analytic and probabilistic methods.

1 The decomposition scheme

Consider the vertices p1, . . . , pn of a convex polygon in the plane, labelled counterclock-
wise. A non-crossing graph (or configuration) is any graph on this set of vertices such
that when the edges are drawn as straight lines the only intersections occur at vertices.
The root of a graph is vertex p1. We will sometimes call the edge {p1, p2} (if present) the
root edge. From now on, all graphs are assumed to be non-crossing graphs.

We follow the approach introduced in [9], which consists in decomposing an arbitrary
graph into connected components and then expressing these in terms of the 2-connected
components. We denote by G(z) and C(z) the generating functions for arbitrary and
connected graphs, respectively, counted by the number of vertices. Let B(z) be the gen-
erating function for 2-connected graphs (blocks) where the variable z marks the number
of non-root vertices minus one. The 2-connected graphs in our case are the same as
polygon dissections; we will use both names.

The following equation (which is Equation (19) in [6]) links G(z) and C(z):

G(z) = 1 + C(zG(z)).

This expresses the fact that a graph can be constructed from a connected graph C by
placing an arbitrary graph between every pair of consecutive vertices of C.

The relation between C(z) and B(z) is

C(z) =
z

1−B(C(z)2/z)
.
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To see this, consider the ordered sequence β1, . . . , βk of blocks that contain the root
vertex p1. Now, to each vertex other than the root in each βi there are two connected
graphs attached, one to the left and one to the right of the vertex. Since these two graphs
share a vertex, we have the term C(z)2/z. Since B(z) does not count the root vertex in
a block, the substitution is correct and the result follows.

Finally, we have the following equation for B(z):

B(z) = z +
B(z)2

1−B(z)
,

which appears also in [6] in an equivalent form. To obtain this equation, consider the
face of the dissection that contains the root edge {p1, p2}. Following the other edges of
this face cyclically, we see that each of them can be viewed as the root edge of another
dissection. Hence, a dissection with at least three vertices is a sequence of dissections
joined into a cycle by their root edges and an extra edge.

2 Degree distribution and maximum degree

Here we study the parameter ‘degree of the root vertex’ in graphs. We let G(z, w) be the
generating function of graphs, where w marks the degree of the root. The equations in
the previous section can be enriched, yielding the following:

G(z, w) = 1 + C(zG(z), w),(1)

C(z, w) =
z

1−B(C(z)2/z, w)
,(2)

B(z, w) = wz +
wB(z, w)B(z)

1−B(z)
.(3)

Let dBk be the limiting probability that the root in a 2-connected graph has degree k,
that is,

dBk = lim
n→∞

[zn][wk]B(z, w)

[zn]B(z)
.

Define analogously dCk and dGk for connected and arbitrary graphs.
The following was proved in [4], and independently in [1].

Theorem 2.1. The limiting distribution of the root degree in dissections is given by
∑

k≥1

dBk w
k =

2(3− 2
√

2)w2

(1− (
√

2− 1)w)2
= 0.34w2 + 0.28w3 + 0.18w4 + 0.01w5 + 0.05w6 + · · · .

Using similar tools as in [4], applied to Equations (1) and (2), we prove:

Theorem 2.2. (a) The limiting distribution of the root degree in connected graphs is
given by
∑

k≥1

dCk w
k =

(1− 1√
3
)2

2

w(w + 1 +
√

3)

(1− (1− 1√
3
)w)2

= 0.24w+0.29w2+0.21w3+0.12w4+0.07w5+· · · .

(b) The limiting distribution of root degree in graphs is given by
∑

k≥1

dGk w
k =

(1−
√

2)2

2

(1 + w)2

(1− (
√

2− 1)w)2
= 0.09+0.24w+0.27w2+0.18w3+0.11w4+· · · .
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The maximum degree for polygon triangulations was first studied in [2], showing that
it is of order log n. A refined analysis [8] showed convergence to an extreme value dis-
tribution. For non-crossing graphs, we show convergence in probability of the maximum
degree after logarithmic scaling.

Let us define ∆B
n as the maximum vertex degree in dissections of size n, and similarly

for ∆C
n and ∆G

n . Using the first and second moment method, together with precise
estimates for the number b(n, k, `) of dissections of size n in which the root has degree
k and a second vertex different from the root has degree `, it is proved in [5] that the
maximum degree is of order log n. More precisely:

Theorem 2.3. The maximum degree in dissections satisfies

∆B
n

log n
−→ 1

log(1 +
√

2)
in probability.

The fact that an arbitrary graph is obtained from a dissection by removing a subset
of the boundary edges, implies that the same result holds.

Theorem 2.4. The maximum degree in graphs satisfies

∆G
n

log n
−→ 1

log(1 +
√

2)
in probability.

An analogous result should hold for connected graphs. However, a full proof needs
to adapt the arguments from [5], involving quite subtle multivariate estimates obtained
through double Cauchy integrals, to this situation. We believe this is only a technical
matter, and one should expect the following, that we choose to formulate as a conjecture
in the absence of a detailed proof.

Conjecture 2.5. The maximum degree in connected graphs satisfies

∆C
n

log n
−→ 1

log((3 +
√

3)/2)
in probability.

3 Largest component

Let G(z, u) be the generating function of non-crossing graphs, where now u marks the
size of the connected component containing the root. Elementary considerations imply

G(z, u) = 1 + C(uzG(z)).

It is easily checked that this is a subcritical composition scheme, in the terminology
of [7], meaning that the evaluation of zG(z) at its dominant singularity is smaller than
the singularity of C(z). Then Proposition IX.1 from [7] applies and we have:

Theorem 3.1. The size Xn of the connected component containing the root has a discrete
limit distribution, given by

P(Xn = k)→ pk ∼ c · k−1/2qk, as k →∞,
for some q with 0 < q < 1.

Consider the random variable Yn,k, defined on graphs of size n, equal to the number
of vertices contained in a component of size k. From the previous theorem it follows
that E(Yn,k) ∼ pkn. The exponential tail of the distribution pk suggests that the largest
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component is of order log n with high probability. In fact, we believe the following is
true, and can be proved using tools similar to those for analyzing the maximum degree.

Conjecture 3.2. Let Ln be the size of the largest component in graphs of size n. Then
there exists c > 0 such that

Ln
log n

−→ c in probability.

An analogous conjecture can be made for the size of the largest 2-connected component.

4 Concluding remarks

The open question from [10] mentioned in the introduction was to count bipartite non-
crossing graphs. This amounts to count graphs in which all faces have even size. For dis-
sections this is easy (recursively allow even sizes for the face containing the root edge), and
it can be extended to connected and arbitrary graphs using our decomposition scheme.
It can be shown then that the number an of bipartite graphs satisfies

an ∼ cn−3/2γn,

where γ ≈ 7.5289 is the largest positive root of 2z4 + 52y3− 417y2− 658y− 27 = 0. The
first values are

∑
anz

n = z + 2z + 7z3 + 34z4 + 196z5 + · · · . Clearly, the same scheme
can be used to count graphs with girth at least g, and several other restrictions on the
size of the faces.

On the other hand, it is shown in [3] that the number of vertices of degree k in
dissections is asymptotically normally distributed for fixed k, with linear expectation
and variance. Using the same technique, based on the analysis of systems of functional
equations, we should be able to prove the same result for non-crossing graphs.

Finally, we mention as an open problem to investigate the diameter of random non-
crossing graphs. We suspect that, as it is the case for trees, it should be of order

√
n

w.h.p. The first step would be to prove such a statement for random dissections.

References
[1] N. Bernasconi, K. Panagiotou, A. Steger, The degree sequence of random graphs from subcritical

classes, Combin. Probab. Comput. 18 (2009), 647–681.
[2] L. Devroye, P. Flajolet, F. Hurtado, M. Noy, W. Steiger, Properties of random triangulations and

trees, Discrete Comput. Geom. 22 (1999), 105–117.
[3] M. Drmota, O. Giménez, M. Noy, Vertices of given degree in series-parallel graphs, Random Struc-

tures Algorithms 36 (2010), 273–314.
[4] M. Drmota, O. Giménez, M. Noy, Degree distribution in random planar graphs, J. Combin. Theory

Ser. A (to appear). arXiv:0911.4331 (32 pages).
[5] M. Drmota, O. Giménez, M. Noy, The maximum degree of planar graphs I. Series-parallel graphs.

arXiv:1008.5361 (38 pages).
[6] P. Flajolet, M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math. 204

(1999), 203–229.
[7] P. Flajolet, R. Sedgewick, Analytic combinatorics, Cambridge U. Press, Cambridge, 2009.
[8] Z. Gao, N. C. Wormald, The distribution of the maximum vertex degree in random planar maps,

J. Combin. Theory Ser. A 89 (2000), 201–230.
[9] O. Giménez, M. Noy, Asymptotic enumeration and limit laws for planar graphs, J. Amer. Math.

Soc. 22 (2009), 309–329.
[10] C. Huemer, Structural and Enumerative Problems for Plane Geometric Graphs, Ph.D. Thesis, Uni-

versitat Politècnica de Catalunya, 2007.



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011

Sweeping an oval to a vanishing point
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Abstract. Given a convex region in the plane, and a sweep-line as a tool, what is the best way to reduce
the region to a single point by a sequence of sweeps? The problem of sweeping points by orthogonal
sweeps was first studied in [2]. Here we consider the following slanted variant of sweeping recently
introduced in [1]: In a single sweep, the sweep-line is placed at a start position somewhere in the plane,
then moved continuously according to a sweep vector ~v (not necessarily orthogonal to the sweep-line) to
another parallel end position, and then lifted from the plane. The cost of a sequence of sweeps is the sum
of the lengths of the sweep vectors. The optimal sweeping cost of a region is the infimum of the costs
over all finite sweeping sequences for that region. An optimal sweeping sequence for a region is one with
a minimum total cost, if it exists. Another parameter of interest is the number of sweeps.

We show that there exist convex regions for which the optimal sweeping cost cannot be attained
by two sweeps. This disproves a conjecture of Bousany, Karker, O’Rourke, and Sparaco stating that
two sweeps (with vectors along the two adjacent sides of a minimum-perimeter enclosing parallelogram)
always suffice [1]. Moreover, we conjecture that, for some convex regions, no finite sweeping sequence
is optimal. On the other hand, we show that both the 2-sweep algorithm based on minimum-perimeter
enclosing rectangle and the 2-sweep algorithm based on minimum-perimeter enclosing parallelogram
achieve a 4/π ≈ 1.27 approximation of the optimal sweeping cost in this model.

Introduction

The following question was raised by Paweł Żyliński [4]; see also [2]: Given a set of points
in the plane, and a sweep-line as a tool, what is the best way to move the points to a
target point using a sequence of sweeps? The target point may be specified in advance or
freely selected by the algorithm. In a single sweep, the sweep-line is placed in the plane
at some start position, then moved orthogonally and continuously to another parallel end
position, and then lifted from the plane. All points touched by the line are moved with
the line in the direction of the sweep. When a point is swept over another point, and
both are in the current set, the two points merge into one, and they are subsequently
treated as one point. The cost of a sequence of sweeps is the total length of the sweeps,
with no cost assessed for positioning or repositioning the line. Dumitrescu and Jiang have
obtained several results on this question, among which we mention a ratio 4/π ≈ 1.27
approximation that uses at most 2 sweeps (or 4 sweeps if the target point is specified)
and can be computed in O(n log n) time. We refer to this (original) model of sweeping
as the orthogonal sweeping model.

Bousany et al. [1] have recently explored another variant, with points being re-
placed by a planar connected region, and orthogonal sweeps replaced by (possibly non-
orthogonal) slanted sweeps. We refer to their model of sweeping as the slanted sweeping

1Supported in part by NSF CAREER grant CCF-0444188 and NSF grant DMS-1001667.
2Supported in part by NSF grant DBI-0743670.
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model or the generalized sweeping model : in a sweep operation the infinite sweep line may
translate by any vector ~v, not only by a vector orthogonal to the line; the corresponding
cost is the (Euclidean) vector length |~v|. The goal is to sweep the given region by a
sequence of sweeps to a single unspecified target point.

Given a planar region, the optimal sweeping cost (or just sweeping cost) of the region
is the infimum of the costs over all finite sweeping sequences of that region to a single
point. An optimal sweeping sequence is one with a minimum total cost, if it exists. It
is conceivable that the optimal sweeping cost of a region could be only approached in
the limit, and not be attained through a finite sequence of sweeps. Another parameter
of interest is the number of sweeps. We refer to a sequence of k sweeps as a k-sweep
sequence.

It is easy to exhibit non-convex planar regions whose optimal 2-sweep sequences are
not optimal over all sequences [1]. Given a convex n-gon, Bousany et al. derived a
linear-time algorithm for computing a minimum-perimeter parallelogram enclosing P ,
and thereby the optimal corresponding 2-sweep sequence [1]. They went further and
conjectured that, for planar convex regions, an optimal 2-sweep sequence makes in fact
an optimal sweep sequence. Here we disprove this conjecture and thereby answer the
main problem left open in [1].

Theorem 1. There exist convex regions (such as the Reuleaux triangle, or a disk, or a
suitable isosceles trapezoid) for which an optimal 2-sweep sequence is not optimal.

We present two proofs of Theorem 1, based on different counterexamples. While the
first proof is shorter, the second gives a better lower bound on the approximation ratio of
the 2-sweep algorithm (minimum-perimeter enclosing parallelogram) from [1]. Moreover,
the second proof also implies the existence of convex polygons with n sides, for any n ≥ 4,
for which an optimal 2-sweep sequence is not optimal.

Corollary 2. For every n ≥ 4 there exist convex polygons with n vertices for which an
optimal 2-sweep sequence is not optimal.

In light of Theorem 1, one may naturally ask whether the 2-sweep algorithm of Bou-
sany et al. has a good approximation ratio. In our previous paper based on the orthog-
onal sweeping model [2], we showed that a simple algorithm A2, which first computes a
minimum-perimeter rectangle enclosing the given point set, then moves the point set to
a single point by two orthogonal sweeps (four orthogonal sweeps if the target point is not
freely chosen but is specified in the input), achieves an approximate ratio of 4/π in that
model. Here we further show that the same algorithm A2 also achieves an approximation
ratio of 4/π in the slanted sweeping model introduced in [1].

Theorem 3. The 2-sweep Algorithm A2 based on minimum-perimeter enclosing rectan-
gle (from [2]) gives a 4/π-approximation of the optimal sweeping cost of a (discrete or
continuous) point set in the slanted sweeping model.

Now for any point set S, the minimum-perimeter of a parallelogram enclosing S is at
most the minimum-perimeter of a rectangle enclosing S. Thus Theorem 3 implies that
the approximation ratio of the 2-sweep algorithm of Bousany et al. is also at most 4/π.

Corollary 4. The 2-sweep algorithm based on minimum-perimeter enclosing parallelo-
gram (from [1]) gives a 4/π-approximation of the optimal sweeping cost of a (discrete or
continuous) point set in the slanted sweeping model.

A full version of this paper is available at http://arxiv.org/abs/1101.4667.
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1 Proof of Theorem 1

We start with an upper bound on the cost of sweeping a convex polygon.

Lemma 5. Let P = A1 . . . An be a convex polygon of perimeter per(P ), and let s be an
arbitrary side of P . Then the sweeping cost of P is at most per(P )− |s|.
Proof. We can assume that s = A1An. Consider the triangulation of P from the single
point An; see Fig. 1. Make the first sweep with the line initially incident to A1 and parallel

A4

A3

A5A1

A2

Figure 1. Sweeping a convex polygon; here n = 5.

to A2An until the line is incident to A2An; the sweep vector is
−−−→
A1A2. Observe that

after the sweep, we reduced the problem of sweeping P = A1 . . . An to that of sweeping
P ′ = A2 . . . An. We continue in a similar way: in the ith sweep (i = 1, . . . , n − 2),
start with the line incident to Ai and parallel to Ai+1An until the line is incident to
Ai+1An; the sweep vector is

−−−−→
AiAi+1. In the last sweep, n − 1, we position the line

incident to An−1 and (say) orthogonally to An−1An and sweep until the line is incident
to An. The polygon P has been swept to the point An in n − 1 sweeps of total cost
|A1A2|+ · · ·+ |An−1An| = per(P )− |A1An| = per(P )− |s|, as required. �

First proof of Theorem 1. We first observe that the minimum-perimeter enclosing paral-
lelogram of a convex figure Θ of constant width w is a square whose side-length equals w.
Indeed, assume that the parallelogram Γ encloses Θ, a figure of constant unit width. Let
`1, `

′
1 be a pair of parallel supporting lines of Γ, and let `2, `′2 be the other pair of parallel

supporting lines of Γ. The distance between `1 and `′1 is 1, so the total length of the
two parallel sides of Γ along `2 and `′2 is at least 2, with equality if and only if `1 ⊥ `2.
Similarly, the distance between `2 and `′2 is 1, so the total length of the two parallel sides
of Γ along `1 and `′1 is at least 2, with equality if and only if `1 ⊥ `2. Hence the unit
square is the minimum-perimeter enclosing parallelogram of Θ, and its semi-perimeter 2
is the conjectured sweep cost of Θ [1].

In the role of Θ, consider a Reuleaux triangle ∆ obtained from an equilateral unit
triangle ABC: a Reuleaux triangle can be obtained from an equilateral triangle ABC by
joining each pair of its vertices by a circular arc whose center is at the third vertex [3].
We can assume that BC is horizontal and first sweep from A orthogonally to BC (the
sweep-line is parallel to BC) until the sweep-line reaches BC. Observe that since the two
upper tangents to ∆ at B and C are vertical, the sweep reduces ∆ to the circular cap
Ψ ⊂ ∆ based on BC. Let B′C ′ be a slightly longer segment containing BC: BC ⊂ B′C ′.



62 Sweeping an oval to a vanishing point

Consider a slightly larger concentric circular cap based on B′C ′ enclosing the cap Ψ
based on BC. Now make a fine equidistant subdivision of the circular arc connecting B′
and C ′ to obtain a convex polygon Λ enclosing the circular cap Ψ. By Lemma 5, the cost
of sweeping Ψ is at most the length of the arc BC plus ε, for any given ε > 0. So the total
cost of sweeping the Reuleaux triangle ∆ is at most

√
3

2 + π
3 + ε ≤ 1.9133, for a suitably

small ε. Since this cost is smaller than 2, the 2-sweep conjecture is disproved. �

2 Proof of Theorem 3

We refer to [2] for a description of our Algorithm A2 and its analysis in the orthogonal
sweeping model. The analysis bounds the effect of each sweep on the current point
set, in terms of the reduction in semi-perimeter of the minimum enclosing rectangle
in every orientation β. We then integrate the total effect of all sweeps in an optimal
(or nearly optimal solution) over all orientations. That is, we consider an arbitrary
k-sweep sequence σ given by the vectors ~vi, i = 1, . . . , k, where xi = |~vi| and αi are the
length and the direction (angle) of ~vi, respectively. Let γi, i = 1, . . . , k, be the direction
(angle) of the sweep-line in the ith sweep. The cost of σ is x =

∑k
i=1 xi. In the end

we let x ≤ OPT + ε, where OPT is the optimal sweeping cost (in the analysis in [2] we
overlooked the possibility that no finite sweeping sequence is optimal; this only introduces
the correction by ε in the calculation —see below).

Fix an orientation β, and consider the minimum enclosing rectangle Qi(β) of the
current point-set in this orientation just before the ith sweep. To adapt the analysis from
the orthogonal sweeping model to the slanted sweeping model, we only need to show,
as in [2], that the reduction in the semi-perimeter of Qi(β) (to that of Qi+1(β) in the
next step) due to the ith slanted sweep is still bounded from above by xi(| cos(αi− β)|+
| sin(αi − β)|), the expression on the left-hand side of equation (1) in [2].

Observe that, in the ith sweep, any point swept moves in the direction αi by at most
xi, regardless of the sweep-line orientation γi. Thus the projections of this move onto the
two orthogonal directions β and β + π/2 are at most xi| cos(αi− β)| and xi| sin(αi− β)|,
respectively. Hence their sum is at most xi(| cos(αi−β)|+| sin(αi−β)|), and consequently
the reduction in the semi-perimeter of Qi(β) is bounded by the same quantity, as claimed.
Analogously as in [2], by integration we find that the approximation ratio of the 2-sweep
algorithm is bounded from above by 4/π + ε, for any ε > 0. By letting ε tend to zero,
we conclude that this ratio is at most 4/π, as required. �
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Abstract. Let the centers of a finite number of disjoint, closed disks be pinned to the plane, but with
each free to rotate about its center. Given an arrangement of such disks with each labeled + or −, we
investigate the question of whether they can be all wrapped by a single loop of string so that, when the
string is taut and circulates, it rotates by friction all the (+)-disks counterclockwise and all the (−)-disks
clockwise, without any string-rubbing conflicts. We show that, although this is not always possible,
natural disk-separation conditions guarantee a solution. This work suggests many open problems.

Introduction

Let A be a collection of n disjoint closed disks in the plane, each labeled + or −. We seek
to wrap them all in one continuous loop of string so that, were one of the disks rotated by
a motor, all the others would spin by friction with the string/belt in a direction consistent
with the labeling: counterclockwise (ccw) for + and clockwise (cw) for −. See Figure 1.

+

−

+

−

+

−

+
+

−

Figure 1. A proper wrapping of disks with a loop of string: each + disk rotates
counterclockwise, each − clockwise.

We call a wrapping proper if it satisfies these conditions:
(1) The string is taut : it follows arcs of disk boundaries and disk-disk tangents only.
(2) Each disk boundary circle has a positive-length arc in contact with the string.

(It is fine if the string wraps around a disk more than once.)
(3) One of the two possible circulation directions (i.e., orientations) for the string

loop rotates each disk in the direction consistent with its labeling.
(4) If the string contacts a point of a disk boundary circle, its circulation there must

be in the direction consistent with that disk’s label, i.e., there is no rubbing
conflict.
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64 String-wrapped rotating disks

We permit the string to cross itself at points not on a disk boundary. Indeed, such
crossings are necessary: for any pair of disks, one + and one −, the string must form a
figure-8 shape. Although the conditions for a proper wrapping are suggested by physical
analogy, the pursuit here is not driven by any application.

Proper string wrappings bear some resemblance to sona sand drawings [DDTT07,
LT09], but are more closely related to the conveyor-belt wrappings studied in [DDP10].
Those belts differ from string wrappings in that the rotation directions were not pre-
specified, and the belt could not self-cross. Although the models are different, the ques-
tions raised are analogous.

We show that not all arrangements of disks have a proper wrapping, but that various
separation conditions guarantee proper wrappings. For example, every collection of unit
disks has a proper wrapping when each pair is separated by a distance of 0.31 or more.
Characterizing the disk arrangements that admit proper wrappings is posed as an open
problem in Section 3.

1 Unwrappable arrangements

An example of an unwrappable arrangement is shown in Figure 2.

+

++

+

+ +

+
D
0

D
1

D
2

Figure 2. An unwrappable ar-
rangement of seven unit disks.

−

++

+

+ +

+
D0

+

++

+

+
+

+
D0

D1

D2

(a) (b)

Figure 3. (a) Proper wrap-
ping with D0 labeled −.
(b) Proper wrapping with D1

and D2 displaced slightly.

It consists of one unit disk surrounded by six others, arranged in a hexagonal penny-
packing pattern, except the disks are just barely disjoint. We now prove that this con-
figuration is unwrappable.

The central disk D0 must have a positive-length arc of ccw string touching it. Because
a taut string can only leave the boundary of a disk along a tangent, the string follows
at least the arc between two adjacent tangents. In order for the string to reach another
disk, say D2, and contribute a ccw arc, it must first touch another disk, D1 in the figure,
but now rubbing it in a cw arc. Thus a rubbing conflict is unavoidable.

Without moving the disks, this arrangement can be properly wrapped with a different
pattern of ± labels. For example, reversing the central diskD0 enables a proper wrapping:
Figure 3(a). Indeed, all other ± patterns of labels (except all −) in this example are
wrappable. Retaining the original + labels but moving two disks slightly also permits
the configuration to be wrapped: Figure 3(b).
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2 Separation conditions

The primary impediment to a proper wrapping is the 4th no-rubbing-conflicts condition.
Figure 3(b) indicates that disk-separation conditions may suffice to ensure the existence
of a proper wrapping, as separation of the disks separates their tangents and avoids
unwanted rubbings. In this section we offer three conditions that ensure a proper string
wrapping exits.

2.1 Connected hull-visibility graph

Define two disks to be hull-visible to one another (a symmetric relation) iff the (closed)
convex hull of the disks does not intersect any other disk; see Figure 4. If two disks can

Figure 4. Two disks are visible to one another if their hull does not intersect
any other disk.

see one another in this sense, then none of their four bi-tangents are blocked (or even
touched) by any other disk.

For an arrangement A of disks, define their hull-visibility graph H(A) = H to have
a node for each disk, and an arc connecting two disk nodes iff the disks are visible to
one another. Call the hull of a pair of disks connected in H to the edge corridor for that
edge.

Lemma 2.1 (Vis. Gr.). If H(A) is connected, then there is a proper wrapping of A.
The conditions of this lemma are by no means necessary for the existence of a proper
wrapping: H for the configuration in Figure 3(a) is completely disconnected —seven
isolated nodes— and yet it can be properly wrapped.

2.2 Unit disks halo

The sufficiency condition of Lemma 2.1 is a global property of the arrangement A of disks,
not immediately evident upon inspection. Next we explore local separation conditions
that allow us to conclude that H is connected.

Define an α-halo, α > 0, for a disk D of radius r to be a concentric disk D′ of radius
(1 + α) such that no other disk of A intersects D′.

Lemma 2.2 (Unit Halo). Let Da, Db, and Dc be three unit disks with centers at a, b,
and c respectively, each with α-halos for α = 4/

√
3− 2 ≈ 0.31. Then, if Dc intersects the

(Da, Db) corridor, c is closer to a and to b than is a to b: |ac| < |ab| and |bc| < |ab|.

Theorem 2.3 (Unit Disks). An arrangement A of unit disks with α-halos, α = 4/
√

3−2,
has a connected visibility graph H(A), and so can be properly wrapped.
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2.3 Arbitrary radii halo

For disks of different radii, we define the distance between them to be the distance between
their bounding circles (rather than their centers). The assumption in Theorem 2.3 that
all disks are congruent can be removed at the cost of a significant increase in the value
of α.

Note that, for disks of arbitrary radii, we must allow for a disk radius to be arbitrarily
small, effectively a point regardless of α. Thus the strategy to avoid blockage of a (Da, Db)
corridor is to cover it entirely with the α-halos of Da and Db, for no Dc can penetrate
these halos by definition.

Lemma 2.4 (α = 1 Halo). The conclusion of Lemma 2.2 holds for three disks Da, Db,
and Dc of arbitrary radius if α = 1.

Now the analog of Theorem 2.3 follows immediately by an identical proof, only in-
voking Lemma 2.4 rather than Lemma 2.2:

Theorem 2.5 (α = 1 Halo). Any arrangement A of disks with α-halos, α = 1, has a
connected visibility graph H(A), and so can be properly wrapped.

3 Conclusion

There is no question that Theorems 2.3 and 2.5 do not approach a full characterization
of the conditions that ensure proper wrapping, as Figure 3 so dramatically indicates.
Finding a tighter characterization is one central open question. Surely the α = 1 halo is
more generous than needed.

An approachable specific version of this question is an arrangement A of unit disks in
a hexagonal-packing pattern (as in Figure 2, but with n disks at hexagon lattice points).
Which ± labelings are wrappable? I can prove that, if the adjacency graph of like-
labeled disks is a forest (a union of disjoint trees), then A is properly wrappable. But
this sufficient condition is not necessary.

A second central open question is to find a shortest wrapping when proper wrappings
exist. For widely spaced disks, this reduces to a version of TSP,1 but the situation is less
clear for congested arrangements.
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Abstract. Let S be a set of n red and n blue points in general position in the plane. Let p /∈ S be
a point such that S ∪ {p} is in general position. A radial ordering of S with respect to p is a circular
ordering of the elements of S by angle around p. A colored radial ordering of S with respect to p is the
circular list of colors of the points in S in their radial ordering with respect to p. In this paper we show
that: the number of distinct radial orderings of S is at most O(n4) and at least Ω(n2); the number of
colored radial orderings of S is at most O(n4) and at least Ω(n); there exist sets of points with Θ(n4)
radial and colored radial orderings; and there exist sets of points with O(n2) colored radial orderings.

Introduction

Throughout this paper S is a set of n red and n blue points in general position in the
plane. Let p be a point not in S, such that S∪{p} is also in general position; we call p an
observation point. A radial ordering of S with respect to p is a circular clockwise ordering
of the elements of S by their angle around p. A colored radial ordering with respect to
p is the circular list of the colors of the points in S in their radial ordering with respect
to p. Thus permutations between points of the same color yield the same colored radial
ordering. Unless otherwise noted, all point sets in this paper are in general position.

Let ρ(S) be the number of distinct radial orderings of S with respect to every ob-
servation point in the plane. Likewise, let ρ̃(S) be the number of distinct colored radial
orderings of S with respect to every observation point in the plane. We define the fol-
lowing functions:

f(n) = max{ρ(S) : |S| = 2n}; f̃(n) = max{ρ̃(S) : |S| = 2n};
g(n) = min{ρ(S) : |S| = 2n}; g̃(n) = min{ρ̃(S) : |S| = 2n}.

In this paper we prove the following bounds:

f(n) = Θ(n4);

f̃(n) = Θ(n4);

Ω(n2) ≤ g(n) ≤ O(n4);

Ω(n) ≤ g̃(n) ≤ O(n2).

4Partially supported by MEC project MTM2009-08652.
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For the first equality, the fact that f(n) isO(n4) has been noted before in the literature
[1, 2]. As far as we know, all the other bounds are new.

1 Preliminaries

We discretize the problem by partitioning the set of observation points into a finite
number of sets so that two points in a same element of the partition induce the same
radial ordering. This partition is made by half-lines which, if crossed by an observation
point, generate a transposition of two consecutive elements in the radial ordering. For
every pair of points x1, x2 ∈ S, consider the line passing through them. Contained in this
line we have two swap lines; one begins in x1 and does not contain x2, while the other
begins in x2 and does not contain x1. Two observation points are in the same element of
the partition if they can be connected by a curve which does not intersect any swap lines.
We call this partition the order partition, and since it induces a decomposition of the
plane, we refer to its elements as cells. Note that if a point moves in a curve not crossing
any swap line, the radial ordering with respect to this point is the same throughout out
the motion. Thus, as mentioned above, points in the same cell induce the same radial
ordering.

2 Bounds

Theorem 2.1. f(n) ≤ O(n4) and f̃(n) ≤ O(n4).

Proof. The first inequality follows from the fact that the number of cells in the order
partition is O(n4). The second inequality follows from the first and from the observation
that ρ̃(S) ≤ ρ(S). �

Theorem 2.2. g(n) ≥ Ω(n2).

Proof. Let ` be a straight line having points of S both above and below. Let p and q
be two points in `, such that when walking from p to q in a straight line a swap line
is crossed. Let x1, x2 ∈ S be the points defining this swap line. We show that p and q
induce different radial orderings. Note that x1 and x2 are both above or below `. Let
x3 ∈ S be on the side opposite to x1 and x2. Assume without loss of generality that
the radial ordering of {x1, x2, x3} with respect to p is [x1, x2, x3]. Since the swap line
is crossed only once, the radial ordering of {x1, x2, x3} with respect to q is [x1, x3, x2].
Therefore, the radial ordering of S with respect to p is different from the radial ordering
with respect to q. This implies that the number of different radial orderings with respect
to points in ` is equal to the number of swap lines intersecting ` plus one. It remains to
show that there is a choice for ` crossing a quadratic number of swap lines. Choose `
to be a line having only one point of S above and all the others below, and not parallel
to any swap line. Note that ` intersects every swap line defined by pairs of points of S
below `. Since there are 2n− 1 such points, they define Θ(n2) swap lines and the result
follows. �

Theorem 2.3. f(n) ≥ Ω(n4) and f̃(n) ≥ Ω(n4).

Proof (sketch). Given that ρ(S) ≥ ρ̃(S), it suffices to construct a set P of n red and n
blue points such that ρ̃(P ) ≥ Ω(n4). We sketch such a construction but for lack of space
we omit counting the number different colored radial orderings.
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Figure 1. A bi-colored set with Ω(n4) different colored radial orderings.

We start by constructing a four-colored set of points P ′ with Θ(n4) distinct colored
radial orderings; afterwards we replace each point of a given color with a suitable “pattern”
of red and blue points. These four patterns are chosen so that, if they appear consecutively
in a radial ordering, then any other equivalent radial ordering must match patterns of
the same type. Since the patterns behave like the original four colors, the new set also
has Θ(n4) colored radial orderings.

Let B1, B2 and B3 be three balls of radius 1/4, whose centers p1, p2 and p3, are the
vertices of an equilateral triangle of side length equal to one. Choose ε, α > 0. Let C1 and
C2 be circles of radius ε > 0 centered at p1 and p2, respectively. Let γ1 and γ2 be infinite
wedges of angle α, with apices p1 and p2 respectively. Assume that γ1 is bisected by the
line segment joining p1 and p3, while γ2 is bisected by the line segment joining p2 and
p3. Refer to Figure 1. Let m and r be the only natural numbers such that n = 10m+ r
and 0 ≤ r ≤ 9. Divide γ1 with m − 1 infinite rays emanating from p1 and intersecting
B3, such that the angle between two consecutive rays is α/m. Do likewise for γ2, with
m− 1 infinite rays emanating from p2. At every point of intersection of these rays with
the boundary of B1, place a blue point; at every point of intersection with C1 a red point;
at every point of intersection with the boundary of B2 a yellow point; finally at every
point of intersection with C2 a green point. Note that neither the rays emanating from p1

intersect B2 nor the rays emanating from p2 intersect B1. Thus 4(m− 1) colored points
are placed in total. We omit the proof that if α and ε are small enough, the number of
colored radial orderings of P ′ as seen from observation points inside B3 is at least Ω(n4).

To construct P , we replace the points in P ′ by patterns of red and blue points, in such
a way that if the colored radial orderings with respect to two points in B3 are different,
they remain different afterwards. The points in the patterns replacing a point q ∈ S′

are placed consecutively in the same circle containing q. If these points are placed close
enough to q, then they will appear consecutive in the colored radial orderings with respect
to every observation point in B3. The points of S′ are replaced in the following way: every
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blue point with a pattern of one red and one blue point; every red point with a pattern
of two red and two blue points; every yellow point with a pattern of three red and three
blue points; and every green point with a pattern of four red and four blue points. Refer
to Figure 1. Note that our choice of patterns implies that two equivalent radial orderings
must match patterns of the same type. Also, if necessary, we may assume that α is small
enough so that this augmented set is in general position. The remaining points can be
placed in such a way that the colored radial orderings does not decrease. �

Theorem 2.4. g̃(n) ≤ O(n2).

Proof (sketch). For simplicity assume that n is even. We employ a technique similar to
the one used in the proof of Theorem 2.3. We start with a set S′ of n/2 points, placed
evenly in the unit circle. All the points of S′ have the same color and thus the colored
radial orderings of S′ are all equivalent. Afterwards, we replace each point of S′ with
a symmetric pattern of red and blue points. This is done in such a way that the new
number of distinct colored radial orderings increases at most to O(n2). We replace each
point of S′ with a pattern of “red, blue, blue, red” points, placed clockwise consecutively
on the circle. If necessary, the points are perturbed to avoid degeneracies. It can be then
shown that, if each pattern is placed close enough to the original point, the new set has
at most O(n2) colored radial orderings. �

Theorem 2.5. g̃(n) ≥ Ω(n).

Proof (sketch). Due to lack of space, we only give a very broad sketch of the main ideas of
the proof. Let p ∈ S be a red point. Let C be a circle centered at p. If the radius of C is
chosen small enough, then the colored radial orderings as seen from every point in C are
obtained by considering the colored radial ordering of S \ {p} with respect to p and then
inserting p between every pair of consecutive elements. Careful analysis using the fact
that S \ {p} has one more blue point than red points enable us to show that the number
of distinct radial orderings as seen from observation points in C is at least n/2. �

3 Conclusions

Based on our experience, we make the following conjectures:

Conjecture 3.1. g(n) = Ω(n4).

Conjecture 3.2. g̃(n) = Ω(n2).
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Abstract. We aim to evaluate to which extent the shape of a given convex polygon is close to be regular,
focusing on diverse characteristics of regularity: optimal ratio area-perimeter, equality of angles and edge
lengths, regular fitting, angular and areal symmetry. We have designed and implemented algorithms to
compute the resulting measures and we provide and discuss experimental results on a large set of polygons
to illustrate their behavior as detection and as quality control tools.

Introduction

Regular polygons are interesting for pure mathematical purposes, but also because they
appear in nature, as well as in a wide spectrum of human made objects such as traffic
signals, furniture, coins, tools and architecture. As a consequence, some methods to
detect regular polygons in given images have been developed in recent years [2, 7]. Some
other works have focused on detecting regular polygons within sets of points [1].

Our approach is related to the aforementioned works, although in our case the goal
is to evaluate to which extent a given convex polygon resembles a regular polygon. Our
work, hence, is particularly related to applications in metrology, automatic shape recog-
nition, and discretization of planar domains into suitable meshes. In the three cases, the
measurements we present can be seen as quality control tests to check regularity.

In [6, 8] we proved the correctness of our algorithms and analyzed their asymptotic
behavior, and in [3, 6] we associated to each algorithm a measure guaranteed to be
correctly normalized. We now show and evaluate our experimental results [3, 4, 5],
which is the goal of this paper.

1 Preliminaries

Our measures are based on a range of different aspects of regularity, such as optimal
ratio area-perimeter, equality of angles and edge lengths, regular fitting, angular and
areal symmetry. For the sake of readability, in this section we summarize the definitions
and theoretical results that can be found in detail in [5].

Following the rational from [9], we require several conditions on the measures, to
ensure that they are well defined: i) the regularity measure is a number in (0, 1]; ii) the
regularity measure of a given polygon P equals 1 if and only if P is regular; iii) there exist
polygons whose regularity measure is arbitrarily close to 0; iv) the regularity measure of
a polygon is invariant under similarity transformations.

2Partially supported by projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.
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Let P be any convex n-gon.
Definition 1.1. Let R be the regular n-gon with the same perimeter as P . We define
µ1(P ) = area(P )

area(R) .

Definition 1.2. Consider the polygon P ′ having the same ordered sequence of edge
lengths as P , and all its vertices on a circle, and let R be the regular n-gon whose
vertices lie on the same circle, and such that each vertex of P ′ is matched to one of R
as to minimize either the maximum angular distance or the sum of angular distances
between matched vertices. We define µ2(P ) = µ1

2(P )µ2
2(P ), and µ3(P ) = µ1

3(P )µ2
3(P ),

where µ1
2(P ) = µ1

3(P ) = 1− α(P,P ′)
π , and α(P, P ′) is the absolute value of the maximum

difference between each interior angle of P and its corresponding interior angle in P ′;

µ2
2(P ) = 1− maxi di

π−π/n ; and µ2
3(P ) = 1− 2

∑n
i=1 di
nπ , if n is even, and µ2

3(P ) = 1− 2n
∑n
i=1 di

(n2−1)π
if

n is odd, where di are the above mentioned optimal angular distances.
Definition 1.3. Let li and ϕi respectively denote the lengths of the edges of P and its
interior angles. We associate to P the point XP =

(
l1∑n
i=1 li

, . . . , ln∑n
i=1 li

, ϕ1, . . . , ϕn

)
in

R2n. Then, µ4(P ) = 1 − d(XP ,`)

1+(4− 8
n)π

, if n ≥ 4, and µ4(P ) = 1 − d(XP ,`)
1
2

+ 4π
3

, if n = 3, where d

is the L1 distance, and ` is the half-line of all regular n-gons in R2n.

Definition 1.4. We define µ5(P ) = area (P )
area (RE) , µ6(P ) = area (RI)

area (P ) , and µ7(P ) = area (RI)
area (RE) ,

where RE and RI are respectively the minimum enclosing and the maximum enclosed
regular m-gon for P .
Definition 1.5. Let ai(ϕ) be the area of P intercepted by the i-th wedge of an angularly
equally distributed pencil of n half-lines which can rotate around the barycenter of P .
We define µ8(P ) = n mini ai

area (P ) , µ9(P ) = 5 area (P )−9 maxi ai
(5n−9) maxi ai

, and µ10(P ) = mini ai
maxi ai

, where the
angle values respectively minimize mini ai, maximize maxi ai, and maximize the difference
maxi ai −mini ai.
Definition 1.6. Consider the point q ∈ P minimizing the maximal triangular area
qpipi+1; maximizing the minimal one, or minimizing the maximal difference. Let dmin =
mini d(q, pi), and αmin = mini∠piqpi+1 (analogously for dmax and αmax). Then µ11, µ12,
and µ13 are defined as

√
dmin
dmax

αmin
αmax

for the three cases.

Theorem 1.1. The measures µ5, µ6, and µ7 satisfy conditions i), iii), and iv). If n = m,
they also satisfy ii). All remaining measures satisfy conditions i)– iv).
Theorem 1.2. The value of µ1(P ) can be computed in O(n) time. The values of µ2(P )
and µ3(P ) can be computed in O(n log n) time. The value of µ4(P ) can be computed
in O(n) time. The values of µ5(P ), µ6(P ), and µ7(P ) can be respectively computed in
O
(
min

{
nm2 logm, (n+m)2

})
, O(n2+m) and O

(
min

{
nm2 logm, (n+m)2

}
+ n2 +m

)

time. The values of µ8(P ), µ9(P ), and µ10(P ) can be computed in O(λ6(n) log n) time,
where λs(k) denotes the maximal complexity of the upper or lower envelope of a set of
k curves which pairwise intersect at most s times. The values of µ11(P ), µ12(P ), and
µ13(P ) can be computed in O(n) time.

It is worth mentioning that the complexity results hold in an extended Real RAM
model of computation, since in some cases the optimization algorithm or the computation
of the measure requires numerically solving a transcendent equation or computing an
angle or a square root.



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011 73

2 Experimental results

We have generated 553 different polygons to apply the measures to, of which 73 triangles,
70 quadrilaterals, 67 pentagons, 73 hexagons, 73 heptagons, 73 octagons, and 31 of each
12-, 25-, 50- and 100-gons. As for their shapes, the experiments included 222 pseudo-
random polygons; 117 regular polygons with small errors, as well as with aligned vertices
and/or with chopped vertices; 136 deformed regular polygons of all sorts (by scaling the
y-coordinates of their vertices, by translating one vertex, by slanting all the vertices...),
as well as 36 almost degenerate polygons; the remaining being special cases for polygons
with a small number of vertices.

The experiments, described in detail in [3, 5], confirm that all proposed measures
reflect human intuition on regularity of polygons. The top row in Figure 1 illustrates
this behavior on pseudo-randomly generated triangles (left) and on deformed equilateral
octagons (right).

Measures based on the same regularity characteristic tend to give very similar results,
as could be expected. This is the case for µ2 and µ3, for µ5, µ6 and µ7, and so on.
Measures based on different regularity characteristics give somehow different absolute
values, although their relative behavior is consistent and they only substantially differ for
highly degenerate polygons.

Specific characteristics of the different measures can be exploited in choosing the
most appropriate measure for each goal and the characteristics of the polygons it will
be applied to. In this sense, we find particularly interesting to mention their behav-
ior as quality control tools. In order to offer experimental results on this respect, we
have adapted the ISO norms for manufacturing cylinders to the case of regular polygons
and we have run our measures on different levels of perturbed regular polygons. For high
precision experiments, we have randomly perturbed one or all the vertices of regular poly-
gons with an error within [0.00083%, 0.0050%]. Precision examples had errors bounded
within [0.00500%, 0.0188%]; fine manufacturing within [0.01833%, 0.0438%]; general man-
ufacturing within [0.04500%, 0.1088%]; and, finally, forgery errors were bounded within
[0.11667%, 2.7500%]. The results indicate that all but one of our measures detect even
high precision errors (the definition of µ1 is too loose for such a task), and that measures
µ11, µ12, and µ13 are particularly good at detecting them, as the second row of Figure 1
illustrates.

Another relevant application of our proposed measures is related to shape recognition.
Our experiments show that measures µ5, µ6 and µ7 are very efficient at detecting the
cases where a convex n-gon resembles a regular m-gon, no matter the values of n and m.
The third row of Figure 1 illustrates the result for a danger and a stop traffic signs. In
the examples shown, the vertices of the input polygon are imprecise, in the sense that
they do not form an exact regular polygon (triangle), or the polygon has more than the
apparent number of vertices (octagon).

From the experiments we conclude that measure µ1 is too loose for some purposes,
although it reflects human perception of regularity as closely related to roundness. Mea-
sure µ4 is probably at its best for n-gons with large n. Measures µ5, µ6 and µ7 have a
good general performance and, in addition, they are particularly interesting for automatic
regularity recognition when the number of vertices of the polygon is unknown. Quality
control, especially when high precision is required, is particularly well served by measures
µ11, µ12 and µ13. The remaining measures, µ1 and µ2, as well as µ8, µ9 and µ10, are,
from our viewpoint, good multipurpose measures.
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Figure 1. Row 1: Measuring regularity of pseudo-random triangles (left) and
deformed equilateral octagons (right). Row 2: Quality control, from high preci-
sion (leftmost) to forgery (rightmost). Row 3: Detecting the shape of an equi-
lateral triangle (left) and a regular octagon (right) from imprecise coordinates
and number of vertices.
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Abstract. Multiple disk/ball range searching queries in 2d/3d Euclidean space are solved in parallel us-
ing a uniform grid under CUDA architecture. Experimental results of our implementation are presented.

Introduction
Let S be a set of n points andR be a family of subsets in 2d/3d Euclidean space. The sets
of R are called ranges. In a range searching query problem, we want to preprocess S into
a data structure so that, for a query range R ∈ R, the points in S can be counted or re-
ported efficiently. Typical examples of ranges include axis-parallel rectangles/rectangular
parallelepipeds and disks/balls; see the survey by Agarwal and Erickson [1]. In a multiple
range searching query problem, instead of a unique range R ∈ R we have a subfamily R′
of ranges of R and we want to solve a range searching query for each range R ∈ R′.
Applications of multiple range searching queries could be found in point cloud matching,
traveler information systems and biological sequence similarity analysis.

A uniform grid subdivides a bounding box of the 2d/3d point set S into a set of regular
axis parallel rectangles/rectangular parallelepipeds, called cells. Each cell in the grid is
referenced by (row, column)/(row, column, floor) of the cell in the grid and stores the list of
points of S that contains. The uniform grid is one of the simplest data structures used to
solve proximity queries and other geometric problems. It has been experimentally shown
that, for many applications, uniform grids are efficient for both evenly and unevenly
spaced data and they are appropriate for parallel processing [2].

The advances in GPU (Graphics Processing Unit) hardware design, together with
CUDA (Compute Unified Device Architecture) and some programming languages such
as OpenCL (Open Computing Language), make GPUs attractive to solve problems in
a parallel way. The parallelizable parts of an algorithm are executed by a collection of
threads running in parallel —these threads are grouped into 1D, 2D or 3D blocks of user
defined size which are also processed in parallel. The instructions to be executed by
each thread are written in a kernel, where different types of memory can be used. Global
memory is the biggest but slowest access time memory; it is accessible by every thread and
is visible from the CPU. Shared memory is a fast memory shared between all the threads
in a block to co-operate. Registers are the fastest memory and store local variables of
each single thread. Some functions which are read-modify-write atomic operations can be
used; they read and return the value stored in a memory position, operate on it and store
the result without allowing, during the whole process, any other access to that memory
position. For further details, see [4].

In this paper we present fast and scalable GPU algorithms designed under CUDA
architecture for: a) constructing uniform grids; b) solving multiple range counting and
reporting queries with the support of a uniform grid structure. Experimental results of
our implementation in OpenCL are provided.

1Partially supported by Spanish MCI research grant TIN2010-20590-C02-02.
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1 Uniform grid
To represent a uniform grid of size G = H ×W/H ×W × Z over an axis-parallel rec-
tangle/rectangular parallelepiped containing the points of S, we use a grid vector vS and
two integer matrices, the counting grid C and the positioning grid P . The grid vector vS
stores the points of S and the counting grid C provides the number of points contained
in each cell. The points of a cell are stored sequentially in the grid vector vS starting at
the position indicated by the positioning grid P . See Figure 1 for a 2d example. Our
approach is similar to one proposed in [3]; however, in our case we also store the counting
grid C, even though it is not strictly necessary since it can be computed from the posi-
tioning grid P . The uniform grid is built in three steps that compute: 1) the counting
grid; 2) the positioning grid; 3) the grid vector.
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Figure 1. a) A set S of 2d points on a uniform grid; b) the counting grid;
c) the positioning grid; and d) the grid vector.

All the 1D-arrays we use in the presented algorithms are stored in GPU global mem-
ory. The points of S and the grid vector vS are stored in the GPU in 1D-arrays of size n,
denoted s and v. According to the CUDA memory model, the counting matrix C and the
positioning matrix P are linearized by rows/(rows, columns) and are stored in 1D-arrays
of size G, that we denote c and p.

Counting grid. Points of S are transferred to the GPU and stored in s and the 1D-array
c used to store the counting grid is initialized to 0s. Then a thread per point in S is
run. The thread with global identifier i reads from the 1D-array s the point s(i) of S,
determines the grid position j it belongs to and increments the counting value c(j) by
one using an atomic incremental function.

Positioning grid. The positioning value p(i) is obtained as
∑i−1

j=0 c(j) by using the exclu-
sive scan (prefix sum) algorithm of [5].

Grid vector. We use an auxiliary 1D-array a of size G initialized to 0s. The value
a(j) represents the number of points that have already been located at the grid cell of
linearized index j. We run n threads one per point of S. The thread with global identifier
i reads from the 1D-array s the point s(i) of S and computes the linearized position j
of the cell it corresponds to in the grid. Then, by using an atomic incremental function,
stores point si in the position p(j) + a(j) of the 1D-array v and increments a(j) by one.
An atomic function reads the value that will return, operates on it and stores the result,
meanwhile, no other access to that memory position is allowed.
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Complexity analysis. The total number of operations done to obtain the counting grid
is O(n), the positioning grid O(G), and the grid vector O(n). Thus, building the grid
structure has a total work of O(n+G).

2 Range searching queries

Given a set R = {R1, . . . , Rm} of m disk/ball ranges where range Ri is defined by the
center qi and a radius ri, we answer multiple range searching queries in parallel. We
distinguish between range counting and reporting queries. The presented solutions are
integrally obtained in the GPU by transferring the range centers and radii to the GPU
1D-arrays q and r, respectively, and considering the grid containing S stored and built
in the GPU.

Range counting. The range counting solution is stored in a 1D-array
rc of sizem; rc(i) stores the number of points of S contained in range
Ri. We run m threads, one per range. Thread of global identifier i
reads from global memory q(i) and r(i) and explores a square/cube
centered at q(i) and of side size defined by 2r(i) + 1 cells. Notice
that the number of grid cells intersected by the square/cube depends
on the grid and bounding box dimensions. Each thread traverses its
squared/cubic corresponding region in a row/(row, column) order.
By using a local counter, the number of points contained in Ri is
obtained. Once all the cells have been traversed, the number of
obtained points is stored in global memory in rc(i). When all the
threads have finished, rc contains the range counting answer.

Figure 2. Points
on a grid, a red
query point and
its radius.

Range reporting. The range reporting problem cannot be solved in one single step because
its answer size is not known in advance and it is not possible to dynamically allocate
memory in the GPU. The answer is given by two 1D-arrays rp and rr. Points contained
in range Ri are stored in consecutive positions of rr starting at position rp(i).

We start by solving the range counting problem. Next, an exclusive scan prefix sum
is run on the range counting answer to obtain rp. The exclusive scan is used also to store
the total number M of obtained points. This value is read from the CPU and memory in
the GPU to store the array rr containing theM points is allocated. Finally, the reporting
problem is solved by using the arrays of centers q, radii r, positions rp and the grid v,
c and p. Again a thread per query point is run. Thread of global identifier i reads q(i)
from global memory and computes the linearized position j of the grid cell where q(i)
is contained. The squared/cubic region is revisited and the indices on vs of the points
contained in Rj are stored in consecutive positions of rr, starting at rp(j).

Observe that, if we are interested in obtaining the range searching solutions in the
CPU, the grid vector v and the arrays rp and rr have to be read back from GPU to CPU.

Complexity analysis. Let I be the number of points contained in the cells intersected by
the ranges in R, andM the maximal size of the range searching output. The global work
of the range counting is O(I). To answer the range reporting problem, the total number
of operations is O(I) for the range counting, O(m) for the scan algorithm, and O(I+M)
to store the points in the range. Thus, the total work complexity of the range reporting
is O(m+ I +M).
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3 Experimental results

The results of Table 1 are obtained under our implementation using a Intel Core 2 CPU
2.13 GHz, 2 GB RAM and a GPU NVidia GeForce GTX 480 which has a cached global
memory, reducing the access to global memory problems and time. Points are randomly
generated; grids are chosen with H = W (= Z), and their discretization size is chosen
after testing different values. We choose the same radius value for all the ranges. The con-
sidered radii are related to dm, which is the median of the smallest distance between the
randomly generated points of S. This value is commonly used in different experimental
problems related to point clouds.

Range searching times (ms)
Grid m 100 10,000 1,000,000

n H comp. (ms) dm 4dm dm 4dm dm 4dm

102 16 0.39 0.24 0.32 1.57 1.92 122.3 147.62
2d 104 96 0.77 0.29 0.31 1.91 2.01 147.52 148.61

106 160 13.10 1.24 1.26 8.18 8.23 701.46 104.57
102 8 0.34 0.36 0.64 2.42 7.85 171.83 579.25

3d 104 16 0.74 0.46 0.96 2.50 8.13 205.58 692.61
106 64 20.91 0.52 1.61 3.52 12.39 293.76 1077.31

Table 1. Computational times in miliseconds obtained as the median of 10 executions.

The time needed to transfer the points of S from the CPU to the GPU for our 2d
examples are 0.004 ms, 0.05 ms and 10.1 ms, and for the 3d examples become 0.01 ms,
0.14 ms and 23.2 ms. Concerning the transferring times of the solution from the GPU
to the CPU, for the 2d case, considering n = m = 102 and r = 4dm, the about 1.2 · 103

obtained points are transferred in 0.22 ms. For m = n = 106 and r = 4dm, the about
13 ·106 obtained points are transferred in 103.06 ms. Considering 3d points, in the former
case more than 4.2 · 102 points are transferred in 0.28 ms and in the latter more than
45 · 106 points are transferred in 328.42 ms.

For bigger radius or values of n and m, when the answer size is too big, the reporting
problem has to be subdivided into different subproblems in order to be solved. However,
the presented results are obtained without subdivision needs.
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Abstract. It is known that the Minimum Weight Triangulation problem is NP-hard. Also the com-
plexity of the Minimum Weight Pseudo-Triangulation problem is unknown, yet it is suspected to be also
NP-hard. Therefore we focused on the development of approximate algorithms to find high quality trian-
gulations and pseudo-triangulations of minimum weight. In this work we propose two metaheuristics to
solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experi-
mental study we have created a set of instances for MWT and MWPT problems, since no reference to
benchmarks for these problems were found in the literature. Through experimental evaluation, we assess
the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are
compared with those obtained from the application of deterministic algorithms for the same problems
(Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).

Introduction

In Computational Geometry there are many optimization problems that are either NP-
hard or such that no polynomial algorithms are known to solve them. Examples of
these optimization problems are those related to special geometric configurations, such
as triangulations and pseudo-triangulations, which are interesting to investigate due to
their use in many fields of application.

Minimizing the total length has been one of the main optimality criteria for triangula-
tions and pseudo-triangulations. Indeed, the MinimumWeight Triangulation (MWT) and
the Minimum Weight Pseudo-Triangulation (MWPT) minimize the sum of edge lengths,
providing a quality measure for determining how good is a structure. The complexity
of computing a minimum weight triangulation has been one of the most longstanding
open problems in Computational Geometry, introduced by Garey and Johnson in their
open problems list, and various approximation algorithms were proposed over time. It
has been the subject of numerous investigations for identifying criteria to include certain
edges of the MWT. The paper [2] presents the implementations of the LMT heuristic for
computing MWT problems, that can compute the “exact” MWT for well-behaved point
sets very fast. It is also worth noticing that, to our best knowledge, there are no reports
about demonstration of such results. Aichholzer et al. [1] disprove the conjecture that
the LMT-skeleton coincides with the intersection of all locally minimal triangulations,
LMT(P ), being P a polygon in the plane, even for a convex polygon. Later, Mulzer and
Rote proved in 2006 that MWT construction is an NP-hard problem [12].
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The complexity of the MWPT problem is unknown. However, Levcopoulos and Gud-
mundsson [8] show that a 12-approximation of an MWPT can be computed in O(n3)
time. They give an O(log n ·w(MST )) approximation of an MWPT, in O(n log n) time,
where w(MST ) is the weight of the minimum Euclidean spanning tree, which is a subset
of the obtained structure.

Given the inherent difficulty of the above mentioned problems, the approximate algo-
rithms arise as alternative candidates for MWT and MWPT problems. These algorithms
can obtain approximate solutions to the optimal solutions, and they can be specific for
a particular problem or they can be part of a general applicable strategy in the resolu-
tion of different problems. The metaheuristic methods satisfy these properties. These
algorithms have a simple implementation and they can efficiently find good solutions for
NP-hard optimization problems [11]. In this work we use the Ant Colony Optimization
(ACO) [4] and Simulated Annealing (SA) [3, 9, 10] metaheuristics, and we compare
them with Delaunay Triangulation and Greedy algorithms for triangulations and pseudo-
triangulations. Previous works about approximations on MWT and MWPT problems
using the ACO and SA metaheuristics, were presented in [5, 7]. It is also worth notic-
ing that, to the best knowledge of the authors, there are no reports in the literature of
extensive experimental evaluations using exact algorithms or metaheuristic techniques.

This paper is organized as follows. In the next section, we review some theoretical
aspects of ACO and SA metaheuristics applied to MWT and MWPT problems. Section 2
resumes the experimental evaluation. The last section is devoted to conclusions and future
works.

1 ACO and SA metaheuristics applied to MWT and
MWPT problems

The ACO metaheuristic involves a family of algorithms in which a colony of artificial
ants cooperate in finding good solutions to difficult discrete optimization problems [4].
An artificial ant in an ACO algorithm is a stochastic constructive procedure that in-
crementally builds a solution by adding opportunely defined solution components to a
partial solution under construction. Therefore, the ACO metaheuristic can be applied to
any combinatorial optimization problem for which a constructive graph can be defined.
For details of designs, implementations, and parameter settings of the ACO-MWT and
ACO-MWPT algorithms, see [5, 7].

The SA metaheuristic tries to minimize the limitation of the local search algorithms,
which stops as soon as they find a local extreme. For that, it is allowed to accept
solutions of worse quality than the current solution with a certain probability. This
probability depends on a parameter T , called temperature, which decreases over the
algorithm iterations according to a decrement rule [3]. In regards of the design of the
algorithms, the parameter settings and the details of implementations for SA-MWT and
SA-MWPT algorithms; see [6]. SA2P-MWPT is an improved version of SA-MWPT,
which involves a double pass under certain criteria, considering the best results obtained
in some temperatures.
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2 Experimental evaluation

To the best knowledge of the authors, there do not exist collections of instances in the
literature for MWT and MWPT problems. Consequently, no benchmarking data are
publicly available that allow us to compare our proposal with some other algorithm
previously studied. According to that, we design an instance generator. Therefore, we
have generated respectively a collection of 10 instances of size 40/80/120/160/200; i.e.,
a total of 50 problem instances. Each instance is called LDn-i where n denotes the size
of the i-instance, with 1 ≤ i ≤ 10. The instance generator uses different functions of
the CGAL Library. The points are randomly generated, uniformly distributed, and, for
each point (x, y), the coordinates x, y are in [0, 1000]. For the purpose of this work, we
assume that there are non-collinear points. The proposed algorithms were implemented
in C language and run on a BACO parallel cluster.

In Table 1 we show the results for ACO-MWT, SA-MWT, Greedy Triangulation
(GT), and Delaunay Triangulation (DT). The best results were obtained with the SA-
MWT algorithm using local retriangulation neighborhood and with different temperature
decrement rules (FSA, VFSA, and geometric decrement with α = 0.8).

Especially for pseudo-triangulations, the Greedy Pseudo-Triangulation (GPT) algo-
rithm builds a pseudo-triangulation starting with one face. This face has the edges ob-
tained by the convex hull of the point set P , i.e., CH(P ). For the solution construction,
the P set is partitioned in faces. This process finishes when all faces are pseudo-triangles
without interior points. A face is divided in two faces when there are interior points,
or is not a pseudo-triangle. Thus, the partition can be done if i) there are at least one
interior point and two points in the border; or ii) there is no interior point, so two points
located on the border are chosen. Such selection is performed by selecting those points
that generate the edges lead to local minimum weight.

ACO-MWT SA-MWT GT DT
LD40-1 5493047 5463745 5477181 5666348
LD40-2 4661242 4659552 4659552 4722381
LD40-3 5502567 5478923 5489487 5663032
LD40-4 5745772 5745772 5751867 6289829
LD80-1 6242505 6220029 6231682 6462038
LD80-2 7605383 7581868 7581868 8081573
LD80-3 5836037 5828344 5845506 6143637
LD80-4 6217040 6147234 6147234 6460311

Table 1. MWT: The best (smallest) weights obtained with the mentioned
algorithms for sets of 40 and 80 points.

Table 2 shows the results according to the smallest weights obtained using the ACO-
MWPT, SA-MWPT, SA2P-MWPT and GPT algorithms. The best results for the
SA-MWPT and SA2P-MWPT algorithms were obtained with edge-flip neighborhood
and with the FSA temperature decrement rule.

ACO algorithms were first used to show that the results from Greedy algorithms and
Delaunay Triangulation can be improved. Other preliminary results seem to indicate that
the SA and SA2P algorithms are more effective techniques for MWT and MWPT. For
more details or an extended version of this work, please refer to the authors.
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ACO-MWPT SA-MWPT SA2P-MWPT GPT
LD40-1 6115636 5817042 4181914 5312131
LD40-2 4442710 4778701 3384958 4292347
LD40-3 5684342 6391410 4169242 5794018
LD40-4 5627098 5575409 5047483 6245196

Table 2. MWPT: The best (smallest) weights obtained with the mentioned
algorithms for sets of 40 points.

3 Conclusions

In this work we present the design of approximate algorithms for solving the Minimum
Weight Triangulation and Minimum Weight Pseudo-Triangulation problems. Another
contribution of this research was the creation of a set of instances for the experimental
evaluation, as there are no available instances with special properties for building trian-
gulations and pseudo-triangulations. From this initial experimental phase we obtained
preliminary results that will guide future experimentation. Actually, we are in the phase
of applying a more methodological approach for the experimental design and running the
set of instances for all sets of points mentioned. Since the metaheuristics have proven to
behave very well in solving this class of NP-hard problems, there are several directions
for further research. We intend to use different parameterizations of the ACO and SA
algorithms to adapt and implement other metaheuristics, and to develop hybrid meta-
heuristics to solve the proposed problems.
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Abstract. In this paper we propose four approximation algorithms (metaheuristic based), for the Min-
imum Vertex Floodlight Set problem. Urrutia et al. [9] solved the combinatorial problem, although it is
strongly believed that the algorithmic problem is NP-hard. We conclude that, on average, the minimum
number of vertex floodlights needed to illuminate a orthogonal polygon with n vertices is d n

4.29
e.

Introduction
In this paper we address the Minimum Vertex π

2 -Floodlight Set problem (MVF(P ) prob-
lem). This problem asks for the minimum number of vertex π

2 -floodlights necessary to
illuminate a given orthogonal simple polygon P with n vertices (n-ogon, for short [8]).
A vertex π

2 -floodlight is a source light with an angle of illumination of π2 placed on a ver-
tex of an n-ogon. Since this paper only deals with π

2 -floodlights, and for simplicity, the
term floodlight is used instead of “ π2 -floodlight”. It is assumed that the vertex floodlights
are edge-aligned and that each reflex vertex has at most two vertex floodlights. Urrutia
[9] proved that b3n−4

8 c vertex floodlights are occasionally necessary and always sufficient
to illuminate a n-ogon. But for many n-ogons this number is clearly too large. This
fact justifies the algorithmic MVF(P ) problem. It is strongly believed that this problem
is NP-hard. A way to deal with this computational complexity is to develop approxi-
mation algorithms to tackle the problem. In general, these approximation methods can
be designed specifically to solve the problem (e.g., greedy strategies) or can be based on
general metaheuristics (e.g., Simulated Annealing (SA) and Genetic Algorithms (GAs)).
There are several works where non-metaheuristc based approximation algorithms were
developed to tackle art gallery problems (e.g., [2, 5, 6, 8]). Recently, some work has
been made on the application of metaheuristic techniques for these problems (see [1, 3]).
Our contribution: We present four approximation algorithms, based on general meta-
heuristics, to tackle the MVF(P) problem. Since the optimal solution to the MVF(P)
problem is unknown, we developed a method that allows us to determine a lower bound
for our algorithms, as in [2]. In this way, we are able to find the approximation ratio
of our strategies. Our experiments were performed on a large set of randomly generated
orthogonal simple polygons.
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1 Approximation methods

A set of vertex floodlights for an n-ogon P is a vertex floodlighting set for P if they
illuminate P . We denote a vertex floodlighting set for P by F and its cardinality by |F |.
Since the existence of an efficient algorithm to determine a minimum-cardinality vertex
floodlighting set is unknown, we developed four approximation algorithms to tackle this
problem. The first is based on the SA metaheuristic, called M1; the second is based on
the GAs metaheuristic, named M2, and the last two are hybrid algorithms, designated
by M3 and M4.

Simulated Annealing Strategy (M1). A configuration is a chain with length n+ r
(the reflex vertices are duplicated to determine the two possible positions of the flood-
light), where the value of each element is 0 (floodlight-“on”) or 1 (floodlight-“off”); see
Figure 1.
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Figure 1. A configuration for
a 16-ogon.
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Figure 2. Initial configuration.

The objective function assigns to each configuration its number of 1’s. A neighbour of
a configuration is generated by switching from 0 to 1, or vice versa, a randomly chosen el-
ement. To generate the initial configuration, we used the top-left rule [9], that guarantees
the illumination of P (see Figure 2). We performed a comparative study taking into ac-
count three different initial temperatures T0: (1) T0 = n; (2) T0 = n/4 and (3) T0 = 500.
Concerning the temperature decrement rule, we made an analysis on three different types
of rules: (1) Tk+1 = T0/(1 + k); (2) Tk+1 = T0/e

k and Tk+1 = 0.9× Tk. The number of
iterations in each temperature Tk is equal to dTke. Finally, the termination condition
consists in finishing the search when Tk ≤ 0.005 or when during 3000 consecutive series
of temperatures no new best solution is obtained and the percentage of accepted solutions
is less than 2%.

Genetic Algorithms Strategy (M2). An individual is represented by a chain with
length n+ r, where the value of each gene is 0 or 1. We choose the population size to
be b3n−4

8 c. To create the initial population, we generate each of the b3n−4
8 c individuals

in the following way: all of its genes are set to 1; then a gene is randomly selected and
its value is set to 0 if the resultant individual is valid; otherwise its value remains 1.
The fitness function is defined as the number of 1’s in each individual. We used the
tournament selection method to the genetic operator selection and a variant of the single
point crossover to the crossover. The mutation step is relatively simple: for each binary
digit it merely flips it from 0 to 1 or vice versa (if the obtained individual is not valid, it
is rejected). To generate a new population, the worst individual is replaced by the child
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obtained at mutation. In order to evaluate a population, we consider its fitness as the
minimum value of the fitness function when applied to its individuals. Finally, we stop
the search when the fitness of the population remains unchanged for 500 generations.

Hybrid Strategies (M3 and M4). GAs and SA are population-based and single-
solution search methods, respectively. Different combinations of these two types of meta-
heuristics have provided powerful search algorithms. These combinations are known
as hybrid metaheuristics [7]. To solve the MVF(P ) problem, we developed two differ-
ent hybrid metaheuristics, that fundamentally use a genetic algorithm. However, in the
first method, M3, for the initial population of the genetic algorithm we generate b3n−4

8 c
individuals, running b3n−4

8 c times the SA metaheuristic. In the second method, M4, in
addition to the classical crossover and mutation operators, we add a new genetic operator
based on the SA metaheuristic. Basically the process consists of applying the SA after
the crossover operator, in order to refine the solution produced by that operator. After
this operation, the mutation operator is applied. Since SA is a genetic operator, it occurs
with probability psa.

Since the optimal solution for the MVFL(P ) problem is unknown, we developed a
method to compute a lower bound on the optimal number of vertex floodlights for each
instance in the performed experiments. For that, we used the notion of floodlight visibility-
independent set, which is a finite set of points on an n-ogon P , FIS ⊂ P , such that, for all
p, q ∈ FIS, p and q are not illuminated by the same floodlight. It can be concluded that
the number of points on a maximum-cardinality floodlight visibility-independent set is a
lower bound for the optimal number of vertex floodlights on P . However, as far as it is
known, the existence of an efficient algorithm to determine this lower bound is unknown.
Therefore, we developed a greedy algorithm to find large floodlight visibility-independent
sets, which we designated by A1.

2 Experiments and results

The implementation of our algorithms was done in C/C++ (for MS Visual Studio 2005)
on top of CGAL 3.2.1 [4]. The above described methods were tested on a PC featur-
ing an Intel(R) Core (TM)2 CPU 6400 at 2.66 GHz and 1 GB of RAM. We performed
extensive experiments with the strategies described in the previous section on a large
set of randomly generated orthogonal polygons. To generate these polygons, we used
the polygon generator developed by O’Rourke (personal communication, 2002). In this
section we present our results and conclusions from the experiments. According to Sec-
tion 1, there are several choices for two of the SA parameters: T0 and the temperature
decrement rule. The different combinations of their values give rise to nine cases. We
analyzed these nine cases by comparing the number of vertex floodlights |F |, the runtime
(in seconds) and the number of iterations performed by each of them. We carried out a
statistical study to compare the results obtained by them, but due to lack of space we
omit its details. In this study, we concluded that: (i) concerning |F |, the case where
T0 = 500 and Tk+1 = T0/(1 + k) is the best one. Therefore, this was the case considered
as the SA strategy, i.e., method M1; (ii) regarding runtime, the case where T0 = n/4 and
Tk+1 = T0/e

k is the fastest algorithm and, although the returned number of vertex flood-
lights is worse, it can be used in the hybrid methods. So we used it to generate the initial
population in M3 and as genetic operator in M4. Then we analyzed and evaluated the
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results obtained with our four methods. Table 1 presents the obtained results (averages
of 40 n-ogons each one).

M1 M2 M3 M4n |F | Time Iterations |F | Time Iterations |F | Time Iterations |F | Time Iterations

30 7.75 13.85 4916.80 8.47 5.70 297.875 7.80 7.15 520.15 6.97 11.52 699.50
50 12.52 39.85 6436.30 14.20 37.37 1071.10 12.27 28.05 580.60 11.62 44.17 683.85
70 17.90 89.22 8295.60 19.97 105.75 1160.30 17.52 78.70 661.90 16.25 127.80 893.60

100 25.12 185.10 10202.00 29.05 290.35 2278.30 25.57 243.20 754.55 23.30 373.55 1061.50
110 27.50 230.62 11049.00 31.40 357.87 1954.80 27.97 324.65 677.77 25.00 485.30 1052.70
130 33.00 340.52 12683.00 37.30 531.40 2360.10 33.30 547.20 783.57 30.12 747.92 1158.50
150 37.65 441.57 13661.00 42.02 763.60 3284.60 38.47 842.50 843.05 34.70 1078.10 1241.40
200 50.25 871.90 17972.00 56.82 1584.50 4568.10 52.22 2163.30 919.05 46.70 2660.20 1520.60

Table 1. Results obtained with M1, M2, M3 and M4.

We performed a statistical analysis to check the differences between the solutions
obtained with them (again, we omit its details), and we concluded that: concerning the
obtained solutions, the hybrid method M4 is the best one and the method M2 the worst
one. The methods M1 and M3 can be considered equal. Consequently, we continued our
study considering M4 as the best strategy. To infer about the average of the minimum
number of vertex floodlights needed to illuminate an orthogonal polygon, we used the
least squares method and the following linear adjustment was obtained, with a correlation
factor of 0.99: f(x) = 0.2328x−0.1091 ≈ x

4.29 . Thus, it can be concluded that, on average
and approximately, the minimum number of vertex floodlights needed to illuminate an
n-ogon was observed to be d n

4.29e. In order to get a quantitative measure on the quality
of the calculated |F |, the floodlights visibility-independent sets were computed on our
instances (the eight sets of polygons described above). The ratio between the smallest
F (obtained with M4) and the largest FIS (obtained with A1) never exceeded 2, which
implies that algorithm M4 has an approximation ratio less than or equal to 2.
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Abstract. Creating a 3D model of large cities from 2D GIS data and its associated DEM is a complex
task. After generating the geometry, a texturization process is needed in order to obtain a realistic scene.
There are some requirements to create a believable texturization, like, for example, the building texture
should not be crossed by the road surface geometry. In this paper we propose an automatic method to
place correctly any building image considering the street slope. We describe all the process to compute
the right texture coordinates. Our method allows to reuse the pictures for different buildings.

Introduction

Nowadays there is a growing demand for virtual urban environments in areas such as
films, tourism, and games, among others. There are some different solutions for modelling
virtual cities like, for example, procedural modelling or L-Systems. In order to obtain
realistic scenes, integrating terrain morphology is needed. We have used a method which
generates a 2.5D model using 2D GIS data for each urban entity: buildings, streets and
crossroads, and also integrates DEM information [1].

The next step in this process is the texturization of all elements in the scene and,
more specifically, the buildings. Some authors have used real photographs to obtain more
realism in façades [2, 3]. Nevertheless, in these works it is assumed that the city lies on
flat land, so the slope of the streets has not been considered. Both these techniques create
the 3D model from images, while we propose using texture mapping.

Texture mapping is a shading technique for image synthesis in which a texture picture
is mapped onto a surface in a three dimensional scene, much as wallpaper is applied to a
wall [4]. Therefore, we work with two related coordinate systems [5]: (1) Texture space,
the 2D space of surface textures, and (2) Object space, the 3D coordinate system in
which the 3D geometry (the urban environment) is defined. Our method determines a
realistic parametrization of the surface, that is, a correct correspondence between the 2D
texture space and the 3D object space.

To make the texturing process easier, the buildings have been divided into two parts:
top and ground floors. The mapping process in the first category is trivial and does not
have any restrictions. However, for ground floors special requirements should be taken
into account in order to avoid non-realistic situations. As shown in Figure 1, results
are non-realistic if a gate is located above ground level and does not allow the natural
entrance to the building, or if a front door or a frieze are crossed by the asphalt street.

1This work has been partially granted by the European Union by means of the ERDF funds, under
the research project TIN2007-67474-C03-03 and by the Consejería de Innovación, Ciencia y Empresa of
the Junta de Andalucía, under the research project P07-TIC-02773.
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Figure 1. Non-realistic situations.

1 Preparing the textures

The set of textures with their main features has been stored in a database. To obtain a
correct texture placement, only four control points to determine the maximum gradient
are needed. Next we explain the process to obtain them. Figures 2(a) and 2(b) show an
original texture and its control points, respectively. As can be seen, the points A and B
are the corner gates, and C and D are two points situated in the right and left image
ends. C and D heights are computed considering the façade elements like the frieze or the
windows, and their location in the real world. For instance, if C or D were situated over
or just below the frieze, the situation would not be realistic because in any real building
façade there is a space between the frieze and the street surface. Evidently, if there were
a window in the façade, it should not be crossed by the street surface.

The maximum allowed gradient for each texture is determined by angles ∠DB = α
and ∠CA = β, as depicted in Figure 2(b). Nevertheless, the texture would be incomplete
if it were located on a street with this maximum gradient. To avoid this situation, an extra
slide of texture with width h should be added in the bottom of the image (Figure 2(c)).
Since real photographs can be out of proportion, textures in most cases should be adjusted
to maintain the appropriate size. Because the gradient can be affected by the change of
size, the maximum and minimum value for α and β are stored in the database.

(a) Original texture (b) Control points (c) Final texture

Figure 2. Pre-processing of the texture.

2 How to place the texture correctly

Once textures have been pre-processed, the next step is to determine the correct texture
coordinates to map the image onto the building. As input data, we have a wall-building
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(1) Compute the plane π associated to the edge
of the building

(2) Compute the straight line s through the two
crossroad points (C1 and C2)

(3) Project s line onto plane π, obtaining r
(4) Mapping the texture onto the wall building

(Figure 4)

Figure 3. Computing the line through crossroad points C1 and C2 projection.

polygon (a set of polylines determining its footprint and its height), and a 3D segment line
representing the portion of street between two crossroads points with a specific gradient.

For the classic texture mapping, texture coordinates (u, v), u ∈ [0, 1], v ∈ [0, 1]
are assigned to each vertex. We use affine transformations because placing the texture
correctly on the building is possible using only scales and translations. Considering points
in texture space like pt = (u, v, q) and points in the object space like po = (x, y, w), the
2D affine mapping matrix can be written algebraically as:

po = ptMot;(
x y 1

)
=
(
u v 1

)
MRMSMT .

Notice that we have chosen w = q = 1 without loss of generality. As the perspective of
all textures has been previously corrected, an additional rotation transformation is not
needed. Therefore,MR corresponds to the identity matrix. The scale matrixMS contains
the scale factors for both vertical and horizontal dimension to adjust texture width and
height with the building wall. Finally, MT represents the translation. It is assumed that
the texture is on the same plane as the wall, so only a vertical transformation is needed.
This factor is obtained by computing the intersection between the street line and the
building wall, as Figure 3 summarizes. Next, we explain the process. First, the plane
associated to the edge of the building π and the line s through the two crossroad points
C1 and C2 are computed (steps 1, 2). Then, s is projected onto the plane, obtaining
the straight line r (step 3). The final step is mapping the texture image onto the wall
surface (see Figure 4). In the beginning the texture is scaled to have the same width
and height as the building wall (step a). If the texture was directly mapped onto the
surface, the position of the gate would be (xB, yB). However, as the object space image
shows, the gate position is not realistic to allow the access to the buildings. To obtain
the right position, the texture should be vertically translated towards point F (step b).
The y-coordinate of F can be easily computed using similarity of triangles. Finally,
the value of the required vertical translation V should be obtained using the formula
V = yB − yF − yE (step c). The position of point E should be included because the
straight line r intersects with π at a specific height (yE).

3 Results

Figure 5 shows some screenshots of the images we have obtained. As can be seen, the
scene is realistic because all doors and windows are placed correctly. We also have created
a database to store all the data related to the textures.
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Object space Texture space

(a) Set wText = d and hText = h

(b) Compute yF = yG
d xF

(c) Compute the vertical translation
V = yB − yF − yE

Figure 4. Mapping the texture onto the wall building.

Figure 5. Some pictures of the textured buildings.

4 Conclusions and future work

In this paper we have presented an automatic method which allows to create realistic
mappings of façade textures in buildings situated in non horizontal streets. We have
described how to determine a set of control points for each texture which determines the
maximum gradient that an image allows. We also explain the process of computing the
correct texture coordinates to avoid crossings between doors, windows or friezes and the
road surface. Our algorithm can be used to create automatic approaches to texturize
whole hilly cities using only a reduced number of textures. As future work we want to
include new images in our database.
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Abstract. We present a new method for unfolding a convex polyhedron into one piece without overlap,
based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source
unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method
of Itoh, O’Rourke, and Vîlcu.

Introduction

The easiest way to show that any convex polyhedron can be unfolded is via the source
unfolding from a point s, where the polyhedron surface is cut at the ridge tree of points
that have more than one shortest path to s; see [2]. The unfolding does not overlap
because the shortest paths from s to every other point on the surface develop to straight
lines radiating from s, forming a star-shaped unfolding.

A B
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D
A

D
C

D

A

B

C

A

C

B

B

A

(a) (b)

(c)

S

C

R

CD

S

Figure 1. Source unfolding from an open geodesic: (a) a pyramid with an open
geodesic curve S crossing two faces; (b) the ridge tree R lies in two faces, the
base and face D (the dashed lines, together with segments of S delimit a “dual”
unfolding where the paths are attached to R); (c) the source unfolding showing
paths emanating radially from the open geodesic, and showing the convex curve
C relevant to sun unfolding.

Our main result is a generalized unfolding, called a sun unfolding, that preserves the
property that shortest paths emanate in a radially monotone way, although they no longer
radiate from a point. We begin with an easy generalization where the point is replaced
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by a curve S that unfolds to a straight line segment (an open geodesic curve). Cutting at
the ridge tree of points that have more than one shortest path to S produces an unfolding
in which the shortest paths from S radiate from the unfolded S; see Figure 1. (All proofs
can be found in the long version of the paper.)

For our general sun unfolding, the paths emanate radially, not from a point or a
segment, but from a tree S, and the paths are not necessarily shortest paths from S. We
define both S and the paths based on a convex curve C on the surface of the polyhedron.
Let S be the ridge tree of C on the convex side and let R be the ridge tree of C on the
other side. Let G be the set of all shortest paths to C, where we glue together any paths
that reach the same point of C from opposite sides. We prove that the paths emanate
in a radially monotone way from the unfolded S, and hence that the polyhedron unfolds
into a non-overlapping planar surface if we make the following cuts: cut R and, for every
vertex v on the convex side of C, cut a shortest path from v to C and continue the cut
across C, following a geodesic path, until reaching R. See Figure 2.

Our result generalizes source unfolding from a point or an open geodesic, by taking
C to be the locus of points at distance ε from the source. See the curve C in Figure 1(c).
Our result is related to recent work of Itoh, O’Rourke, and Vîlcu on “star unfolding via
a quasigeodesic loop” [4]. A quasigeodesic loop is a special case of a convex polygonal
curve. Itoh et al. cut the polyhedron at the loop, unfold both halves (keeping R and
S intact) and attach the resulting two pieces. Their unfolding of the convex side is the
same one that we use. See Figure 3. Itoh, O’Rourke, and Vîlcu also have an interesting
alternative unfolding where the convex curve C remains connected (developing as a path)
while S and R are cut [3, 5]. This is possible only for special convex polygonal curves.

1 Sun unfolding

We define sun unfolding of a convex polyhedron P relative to a closed convex curve C
on P . For the purpose of this note, we consider only curves composed of a finite number
of line segments and circular arcs. In the long version of the paper we discuss more
general convex curves. The curve C splits P into two “halves”, the convex or interior
side CI , and the exterior side CE . For a point c on C (denoted c ∈ C), let αI(c) be the
surface angle of CI between the left and right tangents at c, and let αE(c) be the surface
angle of CE between those tangents. Then αI(c) + αE(c) ≤ 2π, with equality unless c is
a vertex of P . Also, αI(c) ≤ π. A point c with αI(c) < π is called an internal corner
of C. A point c ∈ C with αE(c) < π is called an external convex corner of C.

The ridge tree (a.k.a. “cut locus”) in CI (or CE) is the closure of the set of points that
have more than one shortest path to C. Let S be the ridge tree of C in CI , and let R
be the ridge tree in CE . Among all shortest paths from points of CI to C, let GI be the
maximal ones. Among all shortest paths from points of CE to C, let GE be the maximal
ones. If c ∈ C has αI(c) = αE(c) = π, then we concatenate together the unique paths of
GI and GE that are incident to c. Let G be the resulting set of paths, together with any
leftover paths of GI and any leftover paths of GE .

Lemma 1.1. Both R and S are trees. Every vertex of P lies in R or S (or both). Every
internal corner of C is a leaf of S. Every external convex corner of C is a leaf of R.
Every path of G goes from S to R and includes a point of C. The surface of P is covered
by S, R, and G. Furthermore, any point not on S or R is in a unique path of G.
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Figure 2. Sun unfolding with respect to a convex curve: (a) a cube with a
convex curve C and the ridge tree S on the convex side; (b) the ridge tree R
on the non-convex side of C (the dashed lines delimit a “dual” unfolding where
the paths are attached to R); (c) the sun unfolding showing paths emanating
radially from S. Note that the two vertices on S require cuts γ(·) to R, shown
with dashed lines.

Let v be a vertex of P . If v is not in R, then it is in S, and we let γ(v) be a path of G
incident to v. The choice of γ(v) is not unique in general, but we fix one γ(v). Observe
that each γ(v) is a path from v to R, consisting of a shortest path from v to C possibly
continued geodesically to R. We define sun cuts with respect to C to consist of R and
the paths γ(v), for v a vertex of P in CI ∪ C. Note that a vertex on C may be a leaf
of R, in which case γ(v) has length 0.

Theorem 1.2. Let C be a closed convex curve on the surface of a convex polyhedron P ,
such that C is composed of a finite number of line segments and circular arcs. Then sun
cuts with respect to C unfold the surface of P into the plane without overlap.

To prove the theorem, we first show that the sun cuts form a tree that reaches all
vertices of P —hence the surface unfolds to the plane. To show that the unfolded surface
does not overlap, we prove by shrinking C and applying induction that S unfolds without
overlap and that the paths of G emanate from the unfolded S in a radially monotone way,
defined as follows. Make a tour clockwise around the unfolded S, travelling in the plane
an infinitesimal distance away from the unfolded S. See Figure 3(b).

2 Conclusion

Our sun unfolding generalizes one of the basic unfolding methods for convex polyhedra,
namely the source unfolding from a point. The other basic unfolding method is the star
unfolding from a point s, where the polyhedron surface is cut along a shortest path from
every vertex to s [1]. This is dual to the source unfolding in that the shortest paths are
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(a) (b)

RS
S

Figure 3. The sun unfolding with respect to a geodesic loop Q on a cube, based
on an example from Fig. 1 of Itoh et al. [4]: (a) the ridge trees S and R on the
two sides of the curve Q (superimposed on the unfolding from [4]); (b) the sun
unfolding with respect to Q, showing a tour around S and the paths emanating
in a radially monotone way from S. The faint horizontal and vertical lines in (a)
are the edges of the cube.

attached in one case to s (for source unfolding) and in the other case to the ridge tree (for
star unfolding). The dual of our sun unfolding would be to attach the paths of G to the
ridge tree R and cut the ridge tree S and paths of G from vertices to S. See for example
Figure 1(b) and Figure 2(b). We conjecture that this unfolds without overlap. A first
step would be to prove that the star unfolding from an open geodesic unfolds without
overlap.

Acknowledgments. We thank Joseph O’Rourke for helpful discussions.
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Abstract. A flat folding of a polyhedron is a folding by creases into a multilayered planar shape. It
is an open problem by E. Demaine et al. that every flat folded state of a polyhedron can be reached
by a continuous folding process. The first and the second named authors showed that each Platonic
polyhedron can be continuously flat folded onto an original face. Here we prove that every convex poly-
hedron possesses infinitely many continuous flat folding processes. Moreover, we give a sufficient condition
under which every flat folded state of a convex polyhedron can be reached by a continuous folding process.

Introduction

We use the terminology polyhedron for a polyhedral surface which is permitted to touch
itself but not self-intersect (where a doubly covered polygon is considered a polyhedron).
A flat folding of a polyhedron is a folding by creases into a multilayered planar shape.

The results presented here are related to the following problem by E. Demaine et al.
(see Open Problem 18.1 in [4]): Can every flat folded state of a polyhedron be reached by
a continuous folding process?

Cauchy’s theorem says that any convex polyhedron is rigid (i.e., if two convex poly-
hedra P, P ′ are combinatorially equivalent and their corresponding faces are congruent,
then P and P ′ are congruent). R. Connelly provided an example of a flexible (non convex)
polyhedon, and I. Sabitov [7, 8] proved that the volume of any polyhedron is invariant
under flexing. (That is, if there is a continuous family of polyhedra {Pt : 0 ≤ t ≤ 1} such
that, for every t, the corresponding faces of P0 and Pt are congruent, then the volumes
P0 and Pt are equal for all 0 ≤ t ≤ 1.) Sabitov’s theorem implies that, if a polyhe-
dron P is flattened by a continuous folding process (see Definition 1.1) with polyhedra
{Pt : 0 ≤ t ≤ 1}, then the crease pattern in P for {Pt : 0 ≤ t ≤ 1} is an infinite set of
line segments.

The existence of flat folded states was proved by the method of disk packing for
polyhedra homeomorphic to the 2-sphere (see §18.3 in [4]), and by the method of straight
skeleton for some very special classes of convex polyhedra (see §18.4 in [4]).

Our Section 1 is devoted to preliminaries. We also briefly present there (Theorem 1.2)
the method to continuously flat folding the Platonic polyhedra onto an original face,
proposed by the first and the second named authors in [5]. Section 2 contains our main
results. We propose a method to continuously flat folding general convex polyhedra
(Theorem 2.1), and we give a sufficient condition under which every flat folded state of
convex polyhedron can be reached by a continuous folding process (Theorem 2.5). We
employ Alexandrov’s gluing theorem and the structure of cut loci for the proofs.
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1 Preliminaries

Definition 1.1. Let P be a polyhedron in the Euclidean space R3. We say that P
is flattened by a continuous folding process if there is a continuous family of polyhedra
{Pt : 0 ≤ t ≤ 1} satisfying the following conditions:

(1) for each 0 ≤ t ≤ 1, there is a polyhedron P ′t obtained from P by subdividing
some faces of P (i.e., some faces of P ′t may be included in the same face of P ,
but P ′t is congruent to P ) such that Pt is combinatorially equivalent to P ′t and
the corresponding faces of P ′t and Pt are congruent,

(2) P0 = P , and
(3) P1 is a flat folded polyhedron.

We call P1 a flat folded polyhedron (or state) of P .

In the case of Platonic polyhedra, the first and second named authors proved [5]:

Theorem 1.2. For each Platonic polyhedron (the regular tetrahedron, the cube, the regu-
lar octahedron, the regular dodecahedron, or the regular icosahedron) there is a continuous
flat folding process onto an original face.
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Figure 1. A continuous flat folding for the cube and for the regular dodecahedron.

Figure 1 illustrates continuous flat folding processes for the cube and for the regular
dodecahedron, each of which is folded onto an original face. Theorem 1.2 was proved by
using a key lemma: any rhombus is folded into a shape as showed in Figure 2(2), with
distances |f(b)f(d)| = l and |f(a)f(c)| = m for any given 0 ≤ l ≤ |bd| and 0 ≤ m ≤ |bd|,
where we denote by |xy| the Euclidean metric distance between x, y ∈ R3.

Our main tools here are the cut locus, described below, and Alexandrov’s gluing
theorem (see [2], p. 100), saying that gluing polygons to form a topological sphere in
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Figure 2. An example of a folded rhombus by an intrinsic isometry f .

such a way that at most 2π angle is glued at any point, results in a unique convex
polyhedron.

Definition 1.3. Let P be a convex polyhedron. The cut locus C(x) = C(x, P ) of the
point x in P is defined as the set of endpoints (different to x) of all nonextendable shortest
paths (on the surface P ) starting at x.

It is known that C(x) is a tree whose leaves are precisely the vertices of P , excepting
(if the case) x and those vertices of P which are interior to C(x); the junction points
in C(x) are joined to x by as many shortest paths as their degree in the tree; the edges
of C(x) are shortest paths on P (see Lemma 2.4 in [1]).

Assume P has n vertices; then C(x) is a tree with O(n) vertices, and it can be
determined in time O(n2) by the use of the algorithm of J. Chen and Y. Han [3] (see [6]
for a public implementation).

Figure 3(1) shows the cut locus C(a) of the vertex a of the cube.
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Figure 3. (1) The cut locus of x = a. (2) Two shortest paths joining x to g (of
the existing six), separating c. (3) The resulting polyhedron after cutting along
these two shortest paths and gluing. (4) The resulting flat folded polyhedron.

2 Main results

Theorem 2.1. For every convex polyhedron there exist infinitely many continuous flat
folding processes.

Sketch of proof. Let P be a convex polyhedron and x an arbitrary point in P .
Step 1. Determine the cut locus C(x), which is a tree (see §1).
Step 2. Flatten the regions of P corresponding to external edges of C(x) (i.e., edges

incident to leaves).
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Lemma 2.2. Each external edge E of C(x) corresponds to a unique loop on P , composed
by two shortest paths from x and bounding a region T of P enclosing precisely one vertex
of P , the vertex incident to E. Moreover, T can be flattened to a doubly covered triangle.

Figure 3(2) shows the region of the cube corresponding to the external edge cg in
C(a), bounded by two shortest paths from a to g, and Figure 3(3) shows the result after
flattening this region.

The remaining part of P , after flattening all T s as above, is realized as a convex
polyhedron Q by Alexandrov’s gluing theorem. The result after one iteration of Step 2
consists of Q and doubly covered triangles, as many as the external edges of C(x).

Lemma 2.3. The cut locus C(x,Q) of x on Q is (isometric to) the truncation of the cut
locus C(x, P ) of x on P with respect to the cut and glue process.

Iterating Step 2 we flatten regions corresponding to O(n) external edges (see §1), so
the flattening process ends. Figure 3(4) shows the flat folded polyhedron finally obtained
from P after flattening all such regions.

Step 3. The continuity of our flat folding process is covered by the next result.

Definition 2.4. A cut doubly covered convex polygon consists of two copies of a convex
polygon glued along some of their corresponding edges.

A flat folded state Pf of a convex polyhedron is called simple if it can be decomposed
into cut doubly covered convex polygons whose vertices are vertices of Pf .

Notice that all flat folded states obtained by the use of Theorem 2.1 are simple, while
Theorem 1.2 provides examples of non simple flat folded states.

Theorem 2.5. Every simple flat folded state of a convex polyhedron can be reached by a
continuous folding process.

Sketch of proof. Let Pf be a simple folded state of a convex polyhedron P , decomposed
into cut convex doubly covered convex polygons. Write each cut doubly covered polygon,
and consequently Pf , as a continuous family of loops. By Alexandrov’s gluing theorem
and Blaschke’s convergence theorem, we can cut and glue along each of these loops, to
obtain a continuous family of convex polyhedra Pt (0 ≤ t ≤ 1) in R3. Each Pt has one or
several “wings”: doubly covered convex polygons attached to it (to its exterior).
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Empty disks supported by a point set
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Abstract. For a given point set P in the plane, we consider the minimum number of empty disks D
such that each point of P lies on the boundary of some disk of D.

Introduction

Assume given any point set P in the plane. For a disk D in the plane, let P ′ be a
nonempty subset of P on the boundary of D. Then a disk D is said to be supported
by P ′. We call a disk D supported by P ′ the bubble by P ′ if D is empty, that is, no point
of P lies inside D. The bubble set D of P is a set of bubbles such that every point of P
supports at least one disk of D.

Let b(P ) denote the minimum number of bubbles over all bubble sets of P , and define
the bubble number B(n) as the maximum value of b(P ) over all sets P with n points. We
estimate the bubble number in this talk.

1 Result

We present the following result.

Theorem 1.1. For any n point set in the plane with n ≥ 14,
⌈n

2

⌉
≤ B(n) ≤

⌊
2n− 2

3

⌋
.

We give a sketch of proof. Any collinear n points realize the lower bound of B(n).
To prove the upper bound, we use the following lemma [1].

Lemma 1.2. Let G be a 3-connected planar simple graph with δ(G) ≥ 3 and |G| ≥ 14.
Then the size of a maximum matching M(G) in G is

|M(G)| ≥
⌈ |G|+ 4

3

⌉
.

Let G be a graph of the Delaunay triangulation of P . We remark that the closure
of the circumcircle of any triangle in G is a bubble. By adding an additional vertex to
G outside the hull and making it adjacent to every vertex on the hull, we construct a
3-connected maximal planar graph G′. Note that δ(G′) = 3. By Lemma 1.2, we have⌈

(n+1)+4
3

⌉
matchings in G′. Now, the disk corresponding to a triangle with a matching is

a bubble, and an unsaturated vertex corresponds to a very small disk. Hence we obtain
the desired result.
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100 Empty disks supported by a point set

2 Discussion

(i) The lower bound of B(n) is also given by the points on the vertices of a (2k − 1)-
regular polygon and the point on the center for n = 2k.

(ii) The problem of B(n) can be generalized, in an obvious way, to higher dimensions.
Let Bd(n) denote the maximum of minimum number of empty spheres in Rd, d ≥ 2.
Another interesting problem is to study the similar question for disjoint bubbles or
spheres. Given a point set P in Rd, let sd(P ) be the minimum number of sets in
a partition into disjoint spheres of P for d ≥ 2. Define Sd(n) = max{sd(n)} over
all sets P of n points. In general, the inequality Sd(n) ≥ Bd(n) holds for every
positive integer n. It would be nice to generalize values of n, d.

We conjecture that B2(n) = S2(n) = n/2 for any set of n points.
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Abstract. Let P be a set of n points on the plane, in general position, H of them placed on the boundary
of the convex hull of P . In this note we prove that there is a well defined family of empty triangles —the
family of empty triangles not generated by an empty pentagon— containing exactly n2 − 5n + H + 4
empty triangles. Notice that this result immediately implies a slight improvement on the lower bound
on the number of empty triangles that every set of n points in the plane must determine.

Introduction

In a classic paper, Bárány and Füredi [3] proved that given a set P of n points in the
plane, in general position, the number of empty triangles determined by P is at least
n2 − O(n lg n). To our knowledge (see [1]) this lower bound has not been improved. In
the same paper, they proved that the expected number of empty triangles for a set of
random points is 2n2 + O(n lg n), this last result implying that there are sets of points
having ≤ 2n2 +O(n lg n) empty triangles. In fact, Bárány and Valtr [2] constructed sets
of n points in general position containing ≤ 1.6196n2 + o(n2) empty triangles.

In this note, we slightly improve the lower bound given in [3], by proving that any
set of points P contains at least

n2 − 5n+H + 4 + b(n− 4)/6c
empty triangles, where H is the number of points on the boundary of the convex hull
of P .

Probably more interesting that this new lower bound is the result that there is a well
defined family of empty triangles —let us call them “triangles not generated from an empty
pentagon”— containing an invariant number of empty triangles —exactly n2−5n+4+H
triangles.

This family of empty triangles that we are going to count appears in a paper of
Pinchasi et al. [5], and we use for this family the name “empty triangles not generated by
an empty pentagon”, used by them. In that paper, given an empty pentagon Q spanned
by P , they call triangle generated by Q the empty triangle whose vertices are the top
vertex p of Q and the two vertices of Q not adjacent to p. They study the number of
empty triangles not generated from an empty pentagon, proving that this number is at
most (n − 2)(n − 3) + H ′, where H ′ < n is a new geometric parameter (different from
H and depending on the set P of points and also on the chosen direction to explore the
points). However, they did not realize that, in fact, the number of empty triangles of
that family is an invariant, and they did not provide any lower bound for that number.
As in that paper, we are going to denote by Xk(P ) the number of empty convex k-gons
determined by P .

2Partially supported by research grants MTM2009-07242 and E58-DGA.
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1 Counting empty triangles

Let us first define exactly what type of empty triangles we are counting. Suppose that
the n points of P = {p1, p2, . . . , pn} are sorted in increasing order of the ordinate y,
that is, p1 is at the bottom, and pn is at the top. Given an empty triangle ∆ = pipjpk,
(i < j < k), we call region A of that triangle the (bounded) region of the plane placed
below the horizontal line passing through pk, line lk, and placed between ∆ and the ray
pipj . See Figure 1. In the same way, we will call region C the (unbounded) region of the
plane placed below lk, and limited by ∆ and the ray pjpi. We will say that region A (C)
of a triangle is empty if it does not contain points of P .

Let us denote by Fe the family of empty triangles such that both zone A and zone C
contain points of P . Notice that given an empty pentagon Q, the triangle generated by
Q contains points in both zones A and C, so, it belongs to the family Fe. Reciprocally,
a triangle ∆ = pipjpk of Fe is generated by the empty convex pentagon Q formed by
these three vertices of ∆, plus the closest point to ∆ in region A and the closest point to
∆ in region C, that is to say, Fe coincides with the family of empty triangles generated
by an empty pentagon. The complementary family, the family of empty triangles such
that region A or region C (or both) is empty, let us denote it by Fo, is the one with an
invariant number of triangles.

pi

pj

pk

A

C

lk

pn

p1

Figure 1. Regions A and C of an empty triangle.

Now, the main result.

Theorem 1.1. Let P be a set of n points in general position, H of them placed on the
boundary of the convex hull of P . Then, the number of empty triangles of P such that
region A or region C (or both) is empty equals

n2 − 5n+H + 4.

Proof. First of all let us denote by T the triangulation obtained by the greedy method,
(exploring the points in its natural order p1, p2, . . . , pn). Initially T contains only the
triangle p1, p2, p3; then we add to T the triangles (placed outside of the convex hull of
the previous points) with top point p4, next the triangles with top point p5 and so on.
In this process, when we are adding triangles with top vertex pk, a triangle ∆ = pipjpk
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is added to T if and only if pk lies in one half-plane of the line pipj and all the other
points ph (h < k) lie in the other half-plane. Therefore, that triangle ∆ is added to T if
and only if both regions A and C (of ∆) are empty, or, in other words, the 2n −H + 2
triangles of the greedy triangulation T are precisely the empty triangles of P such that
region A and region C are both empty.

Now we are going to form three families of empty triangles. First, for each point pi
(1 ≤ i ≤ n− 2) consider the rays emanating from pi and passing through the n− i points
placed above pi. Let us order clockwise these rays, and let pi1 , pi2 , . . . , pin−i be the points
of P placed in that order on the rays. Clearly, since the space between consecutive rays
does not contain points of P , region A of each triangle pipijpij+1 (j = 1, n−i−1) is empty.
Let us call F1 this first family of empty triangles. Notice that |F1| = (n− 1)(n− 2)/2.

Suppose now that, from the above configuration of rays emanating from pi, we remove
pn, the top point of P . If the ray pipn is not the first one nor the last one of the above
configuration of rays, that is pn = pij , j 6= 1, j 6= n− i, then we can form a new empty
triangle pipij−1pij+1 . We can repeat this process removing the following top point pn−1,
then point pn−2, and so on, until removing point pi+2. After removing each point, if
the corresponding ray is not the first nor the last ray, we obtain a new triangle. Let us
call F2 the family of triangles obtained by this method (this family can be empty). By
construction region A of each triangle of F2 is empty, and a triangle of F2 cannot belong
to F1. As the process of removing top points is made n − i − 1 times for each point pi,
we have

|F2|+ |Extreme rays| = (n− 1)(n− 2)/2,

where |Extreme rays| is the number of times that an extreme ray (first or last ray) is
found.

Now consider the case when we have to remove vertex pk, k > i+1, and ray rk = pipk
is the last ray or the first one. Without loss of generality, suppose that ray rk is the last
one. Notice that, at this moment of the process, we are only considering points in the
range pi, pi+1, . . . , pk, and we are supposing that ray rk is the last one in this subset of
rays. Let pipj be the ray placed just before ray rk, and consider the triangle ∆ = pipjpk.
If region C of this triangle is nonempty, then rotating clockwise the ray pipk we first
reach a point ph (h < i) on that region (now the ray piph is going downward). In this
case, consider the empty triangle phpipk. By construction, zone C of this new triangle
is empty; however, zone A is nonempty because point pj is in that zone. Therefore, this
new triangle phpipk does not belong to F1 ∪ F2. Doing this construction, when possible,
we obtain a new family of triangles F3 (perhaps empty). Again, by construction, notice
that

|Extreme rays| = |F3|+ |Cases with C = ∅|.
Finally, observe that region A of triangle ∆ = pipjpk is empty, so, if region C of this
triangle is also empty, this situation happens, if and only if, the triangle ∆ = pipjpk
belongs to T, the greedy triangulation, that is 2n−H − 2 times. Summarizing, we have

|F1|+ |F2|+ |F3|+ 2n−H − 2 = (n− 1)(n− 2),

as claimed. �
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2 Some implications

• Notice that, given a set of points P , the families Fo = F1 ∪ F2 ∪ F3 and Fe depend on
the direction ~d that we take to order the points (upward in our case), yet the numbers
|Fo| and |Fe| do not depend on the chosen direction ~d.
• As we said, given a triangle ∆ = pipjpk of Fe we can associate to it the empty convex
pentagon Q formed by these three vertices of ∆, plus the closest point to ∆ in region
A and the closest point to ∆ in region C. We can check that different triangles of Fe
have associated different pentagons, so the number of empty pentagons of P is at least
|Fe|, or, in other words,

X5(P ) ≥ X3(P )− (n2 − 5n+H + 4).

• In the same way, given an empty pentagonQ, there is a unique empty triangle generated
by Q. However, different pentagons can generate a same triangle of Fe. In any case,
since, for n ≥ 10, P must contain empty pentagons (see [4]), we can immediately
deduce the following bound for the number of empty triangles that every set of n
points in the plane must determine:

X3(P ) ≥ n2 − 5n+H + 4 + b(n− 4)/6c.
Proof. The first 10 points, p1, . . . , p10, contain an empty pentagon Q1; the last four points
of this group plus the following six points p11, . . . , p16 contain a different empty pentagon
Q2, and adding six new points we obtain another new pentagon Q3, and so on. Notice
that the top points of each one of these pentagons Q1, Q2 . . . are all of them different,
therefore the triangles generated by Q1, Q2 . . . are also different. Thus Fe contains at
least b(n− 4)/6c triangles. �
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Abstract. We propose a new algorithm to preprocess a set of n disjoint unit disks in O(n logn) expected
time, allowing to compute the Delaunay triangulation of a set of n points, one from each disk, in O(n)
expected time. This work reaches the same asymptotical theoretical complexities as previous results on
this problem, but our algorithm is much simpler and efficient in practice.

1 Introduction

Löffler and Snoeyink [8] proposed an algorithm that preprocesses a set of disjoint unit
disks in the plane in O(n log n) time and computes the Delaunay triangulation of an
instance in O(n) time. This algorithm has a reasonably simple description but uses as a
building block the linear time construction of the constrained Delaunay triangulation of a
simple polygon [4], which makes the result mainly theoretical. Buchin et al. [2] proposed
a simpler solution, which uses the split of a Delaunay triangulation in linear time [3].
This solution remains a bit heavy in practice; indeed, in the preprocessing phase, they
compute a Delaunay triangulation of 8n points (at the center and on the boundary of
the disks), then the points of the instance are added in linear time to get a triangulation
of 9n points, and finally this triangulation is split in the triangulation of the instance
and the 8n-point triangulation again. In the same paper, a different algorithm based on
quadtrees is proposed allowing overlapping disks of different radii.

Contribution. In this paper we preprocess in O(n log n) randomized expected time a
set of n disjoint unit disks, allowing the computation of the Delaunay triangulation of an
instance taken in these disks in randomized expected O(n) time. Compared to previous
algorithms [2, 8], theoretical asymptotic complexity is not improved, but the proposed
algorithm is much simpler —so simple that its description fits in a dozen of lines.

Moreover, the algorithm is quite efficient in practice and uses only the classical pred-
icates for Delaunay triangulation. Our benchmarks conclude that we can process an
instance much faster than with the Delaunay hierarchy [6, 10] and faster than the incre-
mental algorithm inserting the points in spatial sorting order [1, 5].

The algorithm works for any set of circles (overlapping, different radii) and generalize
to balls in higher dimensions, but to yield a good complexity the analysis requires that
the imprecise points are unit disks in the plane, possibly overlapping a constant number
of times (at most k disks have a common intersection). This analysis can be extended
to unit balls in higher dimensions under suitable hypotheses. For disks of different radii
overlapping at most twice, we provide a pathological example where our algorithm reaches
a quadratic behavior. For disjoint disks of different radii, the analysis remains open.

1Supported by ANR grant Triangles (ANR-07-BLAN-0319).
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Figure 1. Definitions of D(p) (big disk on
the left) andW (q) (darker disks on the right)

p

D(p)

NNṠ(ṗ)

q̂

W (q)

q

2 Algorithm

Notations
• Given a point set P in the plane, let DTP denote its Delaunay triangulation, NNP its
nearest neighbor graph, and NNP (v) the nearest neighbor of v ∈ P in P \ {v}.
• For a graph G and a vertex v of G, d◦G(v) is the degree of v in G.
• If p denotes an imprecise point, ṗ denotes the center of p and p̂ an instance of p. Let
Sk = {p1, p2, . . . , pk}, Ṡk = {ṗ1, . . . , ṗk}, Ŝk = {p̂1, . . . , p̂k}, S = Sn, Ṡ = Ṡn, Ŝ = Ŝn.
• In the case where S is a set of disjoint unit disks, given p ∈ S, we define D(p) to be
the disk with center ṗ and radius |ṗNNṠ(ṗ)| + 1, that is, D(p) is the interior of the
circle centered at ṗ tangent to the nearest disk in S and containing it (see Fig. 1 left).
• Given an instance Ŝ, we also defineW (q) = {p ∈ S \{q} : q̂ ∈ D(p)} (see Fig. 1 right).
• |W | denotes the size of a set W .

Preprocessing. First we assume that the indices in S = {p1, p2, . . . , pn} enumerate the
disks in a random order (otherwise reorder the disks according to a random permutation).

We compute DTṠ incrementally, inserting the points in the order of their indices.
Furthermore, after inserting ṗk, we compute the index h(k) such that NNṠk

(ṗk) = ṗh(k).
The index h(k) is called the hint for pk. Using incremental randomized construction, it
can be done in O(n log n) expected time [6] (including the computation of h(k) for all k).

Instance processing. Now, given an instance Ŝ, we compute DTŜ incrementally,
inserting the points in the order of their indices. The location of p̂k in DTŜk−1

is done by
a straight walk starting at p̂h(k).

Complexity. The expected cost of constructing DTŜ is linear.

Sketch of proof (complete proof in [7]). By usual backward analysis, it is enough to prove
that the insertion of the last point p̂ is done in expected constant time.

Let x̂ be the starting point of the straight walk in DTŜ\{p̂} to insert p̂. As seen in the
algorithm description, we have ẋ = NNṠ(ṗ). The cost of locating and inserting p̂ is split
in three parts:
• The cost c1 of visiting the triangles incident to x̂ in DTŜ\{p̂} (to find the first one
crossed by line segment x̂p̂),
• the cost c2 of visiting the triangles crossed by line segment x̂p̂, and
• the cost c3 of modifying the triangulation to update DTŜ\{p̂} into DTŜ .

The cost c3 is d◦DTŜ (p̂), since P̂ is a random point in Ŝ the expected value of c3 is less
than 6. The cost c1 is is d◦DTŜ\{p̂}(x̂) ≤ d◦DTŜ

(x̂) + d◦DTŜ
(p̂). Although x̂ is not a random

point, it can be shown to be random enough to have an expected degree less than 36,
thus the expected value of c3 is less than 42. The cost c2 is related to the average size of
|W (q)| for q ∈ S and one can prove that the expected value of c2 is less than 132. �
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3 Experiments

Algorithms proposed in previous works [2, 8] are not implemented and are rather com-
plicated, thus we have no doubt that our solution is better in practice. The aim of this
section is to compare our algorithm and a direct computation of the Delaunay triangula-
tion of the instance by a state-of-the-art algorithm without preprocessing.

For comparison, we use Sewchuk’s code: Triangle [9] and the best implementations
available in CGAL [10] where the points are ordered along a space-filling curve and then
inserted in the spatial sort order [5]. The point location is done by a straight walk from
the previous point (point location should be fast since it starts at a point nearby).

Point sets. We experiment on random disjoint unit disks. Each set contains n disjoint
imprecise points in a 4

√
n× 4

√
n square. Each center of an imprecise point is generated

at random in the square, then the point is kept if its distance to previously kept points is
greater than 1. Points are generated until a set of n points is obtained. A point instance
is generated at random in each imprecise point. Point sets with size ranging between 103

and 108 points have been generated.

Platform. Experiments have been done on the following platform:
— CGAL 3.8 (gcc 4.3.2 release mode), — Linux-FC10,
— timings obtained with the CGAL::Timer, — 3.00 GHz processor 32 GByte RAM.

Results. In the following table, we report the average time for a point insertion and
the average number of triangles visited during the straight walks used in point locations.

2D random running time (µs) per point
imprecise points ] visited triangles per point ] cache miss ? per point
n 103 104 105 106 107 108

Shewchuk 0.98 1.12 1.05 1.67 2.34
(divide & conquer) 5.3 2.3 2.8 20 39
spatial sort 1.2 0.92 0.90 0.98 1.12 1.36
+ insert in order 3.74 14 3.63 3.6 3.71 3.1 3.67 5.3 3.55 7.7 3.71
locate from hint 0.9 0.81 1.25 3.1 4.1 6.1
in random order 2.83 14 2.80 3.5 2.77 9.7 2.75 27 2.75 32 2.74
locate from hint 0.9 0.78 0.64 0.66 0.67 0.79
in spatial sort order 2.82 14 2.80 3.5 2.77 3.3 2.76 3.8 2.75 3.8 2.75
? number of cache miss obtained by valgrind --tool=cachegrind emulator

We first observe that the average numbers of triangles visited during the walk to locate
a point from its hint (our method) or its predecessor in spatial sort (CGAL method) are
both a small constant independent of the size of the point set. The number of visited
triangles is around 2.8 for the hint and about 3.7 for spatial sort. Thus our theoretical
linear complexity is confirmed by the experiments.

Unfortunately, a similar behavior is not observed for the running time. Our inter-
pretation is that the random insertion order is demanding more and more to the cache
memory management when the input size increases. Since the spatial sort order inserts
the new point near the previous one, relevant triangles are already loaded in the cache
memory and it reaches a better running time, even if the length of the walk is longer than
for our method. We combine the advantages of both methods by using the spatial sort
order to preprocess the imprecise points and to process the instance with our method.
The results are satisfactory and our method is clearly faster than direct computation.
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Figure 2. At most two disks overlapping
with complexity Ω(n2)
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4 Beyond disjoint unit disks in the plane
The algorithm does not need the disks to be disjoint nor have unit radius —these hypothe-
ses are only useful for the proof of complexity. In fact, if we allow unit disks overlapping
at most k times, the Delaunay triangulation of an instance is computed in O(kn) time.

If the unit radius hypothesis is removed, the proof of complexity fails. Indeed, it is
possible to design an example of n disks overlapping at most twice such that the algorithm
takes quadratic time (see Fig. 2). In that example, the hint for xi is yi with probability 1

2

(and vice versa), while Ŝ can be arranged close to the y axis so that there are i points
between xi and yi.

The analysis extends to higher dimensions under additional hypotheses on the data,
that are usual for random incremental construction. We get that, if S is such that, for a
random sample R of size r, the expected sizes of DTṘ and DTR̂ are both O(r), then S
can be preprocessed in O(n log n) time so that the Delaunay triangulation of an instance
is computed in O(n) time. Our experiments in 3D show a running time a bit smaller
than spatial sort. The smallness of the gain is mainly due to the fact that, in 3D, the
relative weight of point location compared to the modification of the data structure is
smaller than in 2D.

Acknowledgments. The author thanks Sylvain Lazard for fruitful discussions.

References
[1] Kevin Buchin. Constructing Delaunay triangulations along space-filling curves. In Proc. 17th Eu-

ropean Symposium on Algorithms, volume 5757 of Lecture Notes Comput. Sci., pages 119–130.
Springer-Verlag, 2009. http://www.springerlink.com/index/m17216w072m54438.pdf.

[2] Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Preprocessing imprecise points
for delaunay triangulation: Simplified and extended. Algorithmica, 2011.
http://www.cs.princeton.edu/~wmulzer/pubs/idt_algorithmica.pdf.

[3] Bernard Chazelle, Olivier Devillers, Ferran Hurtado, Mercè Mora, Vera Sacristán, and Monique
Teillaud. Splitting a Delaunay triangulation in linear time. Algorithmica, 34:39–46, 2002.
http://hal.inria.fr/inria-00090664.

[4] F. Chin and C. A. Wang. Finding the constrained Delaunay triangulation and constrained Voronoi
diagram of a simple polygon in linear time. SIAM J. Comput., 28:471–486, 1998.
http://portal.acm.org/citation.cfm?id=299868.299877.

[5] Christophe Delage. Spatial sorting. In CGAL User and Reference Manual. CGAL Editorial Board,
3.8 edition, 2011. http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:SpatialSorting.

[6] Olivier Devillers. The Delaunay hierarchy. Internat. J. Found. Comput. Sci., 13:163–180, 2002.
http://hal.inria.fr/inria-00166711.

[7] Olivier Devillers. Delaunay triangulation of imprecise points, preprocess and actually get a fast query
time. Research Report 7299, INRIA, 2010. http://hal.inria.fr/inria-00485915.

[8] Maarten Löffler and Jack Snoeyink. Delaunay triangulation of imprecise points in linear time after
preprocessing. Comput. Geom. Theory Appl., 43:234–242, 2009.
http://linkinghub.elsevier.com/retrieve/pii/S0925772109000583.

[9] J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and Delaunay triangulator.
http://www.cs.cmu.edu/~quake/triangle.html.

[10] Mariette Yvinec. 2D triangulations. In CGAL User and Reference Manual. CGAL Editorial Board,
3.8 edition, 2011. http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:Triangulation2.

http://www.springerlink.com/index/m17216w072m54438.pdf
http://www.cs.princeton.edu/~wmulzer/pubs/idt_algorithmica.pdf
http://hal.inria.fr/inria-00090664
http://portal.acm.org/citation.cfm?id=299868.299877
http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:SpatialSorting
http://hal.inria.fr/inria-00166711
http://hal.inria.fr/inria-00485915
http://linkinghub.elsevier.com/retrieve/pii/S0925772109000583
http://www.cs.cmu.edu/~quake/triangle.html
http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:Triangulation2


XIV Spanish Meeting on Computational Geometry, 27–30 June 2011

Geometric study of the weak equilibrium
in a weighted case for a two-dimensional
competition game
Javier Rodrigo1, M. Dolores López2

1 Departamento de Matemática Aplicada, E.T.S. de Ingeniería, Universidad Pontificia Comillas
de Madrid
jrodrigo@upcomillas.es

2 Departamento de Matemática e Informática Aplicadas a la Ingeniería Civil de la E.T.S.I. Caminos,
Canales y Puertos, Universidad Politécnica de Madrid
marilo.lopez@upm.es

Abstract. This paper investigates an abstract game of competition between two players who want
to earn the maximum number of points from a finite set of points in the plane. It is assumed that
the distribution of these points is not uniform, so an appropriate weight to each position is assigned.
The existence of Nash equilibrium and an approximate equilibrium in the game is studied by means of
Computational Geometry techniques.

Introduction

This work generalizes the study of Nash equilibrium in a weighted competitive game with
two players. This generalization is performed by means of a new definition of equilibrium
that is weaker than the classical one ([1]).

The two players choose their positions t1, t2 in the plane to attract the largest possible
weight of a given set of n weighted points in the plane H = {p1, . . . , pn}. The perpendic-
ular bisector of the players’ locations partitions the plane into two regions. Each player
is considered to capture those points which lie closer to his position than to that of the
other player. The payoff of each player is then the total weight of the captured points
([2, 5, 6, 7]).

In formal terms, consider a strategic game G = (N,X,Π), where N = {1, 2} is the set
of two players, X = R2 ×R2 is the strategy space, and Πi, i = 1, 2 is the payoff function
of each player.

The description of the payoff function in the game presented here is given by:
• Π1(t1, t2) = weight of the points pi such that d(pi, t1) ≤ d(pi, t2);
• Π2(t1, t2) = weight of the points pi such that d(pi, t1) > d(pi, t2) = n − Π1(t1, t2)
if t1 6= t2,

where d(pi, t) represents the Euclidean distance between the points pi, t. In the case
where t1 = t2, Π1(t1, t2) = Π2(t1, t2) = n

2 is defined.
Therefore, if we define the weight of a point pi as w(pi) = ki, with ki > 0 and

k1 + · · ·+ kn = n, then the payoff of the first player will be the sum of the weights of all
positions located in the same half-plane as t1, including the points on the bisector. The
second player follows the same pattern, except for positions on the bisector.
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Along the paper, the following definitions apply:

(1) The weight of a subset {pi1 , . . . , pik} of H is w({pi1 , . . . , pik}) =
∑k

j=1w(pij ).
(2) mi stands for the i-th weight bigger than n

2 that can be attained by a subset of H.
For example, m1 is the minimum weight bigger than n

2 .
(3) Cα is the intersection of the convex hulls of the subsets of H with weight bigger

than α.
The structure of the paper is as follows: In Section 1, necessary and sufficient con-

ditions are presented for the Nash equilibrium positions to exist. Section 2 proposes an
analogous study as previous section for a definition of equilibrium which is weaker than
the classical one.

1 Nash equilibrium

Definition 1. A strategy profile (t01, t
0
2) is a Nash equilibrium if Π1(t1, t

0
2) ≤ Π1(t01, t

0
2)

and Π2(t01, t2) ≤ Π2(t01, t
0
2) for all (t1, t2) ∈ R2 × R2.

Necessary and sufficient conditions are presented for the Nash equilibrium positions to
exist. These conditions are stated in terms of geometric features such as convex hulls ([3]).
For the proofs of these conditions, see [4].

1.1 Necessary conditions

Let us see the following necessary condition on the payoff functions of the players:

Proposition 1. In the presented game, the Nash equilibrium positions (t1, t2) must satisfy
Π1(t1, t2) = Π2(t1, t2) = n

2 .

1.2 Necessary and sufficient conditions

Proposition 2. There exist Nash equilibrium positions in the game if and only if Cn
2
is

not the empty set. Furthermore, the equilibrium positions are the positions (t1, t2) such
that t1, t2 are in the intersection.

1.3 Uniqueness

We will now show that Cn
2
contains at most a single point, unless the n points of H lie

on a single line.

Proposition 3. If the n points of H are not collinear, then Cn
2
is either a point or the

empty set.

Remark. In the degenerate case where all the points are in a single line and there exists
a combination of points with weight n

2 , the intersection of the convex hulls may be an
infinite set.

This analysis leads to the following conclusion:

Proposition 4. The equilibrium in the present game, if it exists, is the unique point (t, t)
for some t ∈ R2. In other words, both players will choose the same position, except in
cases where the points of H are aligned.
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2 Weak equilibrium

To avoid the situation presented in previous section, a definition of equilibrium which is
weaker than the classical one is proposed:

Definition 2. A strategy profile (t01, t
0
2) is a weak equilibrium if Π1(t1, t

0
2) ≤ K1 and

Π2(t01, t2) ≤ K2 for all (t1, t2) ∈ R2 × R2, where K1 is the least weight greater than
Π1(t01, t

0
2) of a subset of H, and K2 is the least weight greater than Π2(t01, t

0
2).

A geometric analysis is developed here that extends the concepts presented in the
previous section and underlies the search for the equilibrium positions, if they exist,
according to the new definition.

Proposition 5. In a weak equilibrium position (t01, t
0
2), the following is necessarily satis-

fied: Πi(t01, t
0
2) ≥ n−m1, i = 1, 2.

Remark. This proposition implies that the payoffs in a position of weak equilibrium
must be of n−m1 for a player and m1 for the other one, or n

2 for both players. It can be
noted that n−m1 is the greatest payoff smaller than n

2 that a player can obtain.

The following proposition gives a necessary and sufficient condition for the existence
of weak equilibrium positions:

Proposition 6. If m1 < n, then there exist weak equilibrium positions in the presented
game if and only if Cm1 6= ∅.

Now Propositions 5 and 6 are applied to classify the weak equilibrium positions, as
follows. The possible weak equilibrium positions in the proposed game are:

(1) (t1, t2) with t1, t2 belonging to Cm1 , Πi(t1, t2) = n
2 for i = 1, 2.

(2) (t1, t2) with one of the points, say t1, belonging to Cm1 , the other point, t2,
belonging to Cm2 , Π1(t1, t2) = m1, and Π2(t1, t2) = n − m1 (if there does not
exist any combination of points of H with weight n

2 ).
(3) (t1, t2) with one of the points, say t1, belonging to Cm2 , the other point, t2,

belonging to Cn
2
, Π1(t1, t2) = n − m1, and Π2(t1, t2) = m1 (if there exists a

combination of points of H with weight n
2 ).

Now the problem of determining the maximum number of points of H that can belong
to Cm1 is considered. This maximum number gives a greater number of weak equilibrium
positions in which at least one of the players chooses a position in H. This can be
interesting for practical purposes. Concretely, the following statement is developed.

Find the maximum number of points of H that can belong to Cm1 for all the possible
configurations of n points in the plane and all the possible assignations of weights to
these points satisfying m2 < n. This maximum number is denoted by max (the condition
m2 < n implies that n > 2).

Now an upper bound for max that is bounded in n is given:

Proposition 7. The inequality max ≤ 3 holds.

In the following example of equally weighted n points with n an even number greater
than four, this upper bound is attained, so max = 3 for even n, n > 4.

Example. Let n be an even number greater than four, and consider a collection of n− 3
points p1, . . . , pn−3 in convex position. If three new points pn−2, pn−1, pn are located in
the intersection of the convex hulls of the subsets of {p1, . . . , pn−3} with

[
n−3

2

]
+2 points,
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and a weight 1 is attached to each point, then the set of n points H = {p1, . . . , pn} has
three points in Cm1 : If n

2 + 2 points of H not containing every point of pn−2, pn−1, pn
are considered, then there will be at least n

2 =
[
n−3

2

]
+ 2 points of p1, . . . , pn−3, so pn−2,

pn−1, pn are in the convex hull. Consequently, these three points are in the intersection
of the convex hulls of the subsets of H with n

2 + 2 points. This last set is Cm1 .

Remark. An analogous example with 3 points in Cm1 can be seen for odd n, n > 5: n−3
points p1, . . . , pn−3 in the vertices of a regular polygon with weight n

n+1 each, a point pn−2

with weight 2n
n+1 in the intersection of the convex hulls of the subsets of {p1, . . . , pn−3}

with n−3
2 +2 points, and two points pn−1, pn with weight n

n+1 each and in the intersection
of the convex hulls of the subsets of {p1, . . . , pn−2} with

[
n−2

2

]
+2 points. Then for odd n,

n > 5, we also have max = 3, so max = 3 for n ≥ 6.

3 Conclusions

A discrete two-dimensional weighted competition model has been proposed and analyzed
using geometric strategies that find the Nash equilibrium positions if they exist and ensure
their uniqueness. In spite of this, Nash equilibrium in the majority of the situations
studied has been found not to exist. To resolve this situation, a weakened definition
of equilibrium has been presented, which ensures for each player that the other cannot
improve his payoff by more than one quantity if he changes his position. This new
definition of equilibrium can be useful in cases which have no Nash equilibrium. Also, to
give the game a general scope, a weight to each point of the finite set the players fight
for has been assigned.

The study of the existence and locations of Nash equilibrium and weak equilibrium
positions has here been expanded in scope by applying techniques from computational
geometry such as the intersection of convex hulls, which can be used because of the
discrete nature of the game.
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Abstract. We show how to compute Delaunay triangulations and Voronoi diagrams of a set of points
in hyperbolic space in a very simple way. While the algorithm follows from [7], we elaborate on arith-
metic issues, observing that only rational computations are needed. This allows an exact and efficient
implementation.

1 Introduction

As D. Eppstein states: “Hyperbolic viewpoint may help even for Euclidean problems” [8].1
He gives two examples: the computation of 3D Delaunay triangulations of sets lying in
two planes [4], and optimal Möbius transformation and conformal mesh generation [3].
Hyperbolic geometry is also used in applications like graph drawing [9, 11].

Several years ago, we showed that the hyperbolic Delaunay triangulation and Voronoi
diagram can easily be deduced from their Euclidean counterparts [4, 7]. As far as we
know, this was the first time when the computation of hyperbolic Delaunay triangulations
and Voronoi diagrams was addressed. Since then, the topic appeared again in many
publications. Onishi and Takayama write that they “rediscover the algorithm of [7]”, in
a way that they consider as more natural (i.e., their proofs rely only on computations)
[13]. Nielsen and Nock transform the computation of the Voronoi diagram in the Klein
model to the computation of an Euclidean power diagram [12]; however, even when the
input sites have rational coordinates, the weighted points on which the power diagram is
computed have algebraic coordinates. Other references can be found in [15] (which does
not mention [7], though).

None of the above papers shows interest in practical aspects, especially arithmetic as-
pects, which are well known to be crucial for exactness and efficiency of implementations.
In this paper, we show that our earlier approach allows to use only very simple arithmetic
computations. Moreover, the proofs are purely geometric and avoid any computation.
We first recall some background on hyperbolic geometry (Subsection 2.1) and on the
space of circles (Subsection 2.2). Section 3 details algorithmic and arithmetic aspects of
the computation of hyperbolic Delaunay triangulations and Voronoi diagrams. Section 4
gives a quick overview of the implementation.

Due to lack of space, the current presentation is restricted to the 2D case, but the
results hold in any dimension.

This work was partially supported by the ANR (Agence Nationale de la Recherche) under the
“Triangles” project of the Programme blanc (No. BLAN07-2_194137), http://www.inria.fr/sophia/
geometrica/collaborations/triangles/.

1See also http://www.ics.uci.edu/~eppstein/pubs/geom-hyperbolic.html.
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2 Background

2.1 The Poincaré disk

We refer the reader to basic geometry books for an introduction to hyperbolic geometry
(e.g., [2, Chapter 19], [16, 17]). The transformations between the various models of the
hyperbolic space are recalled in [12].

In the Poincaré disk model, the hyperbolic plane H2 is represented as the unit disk
of R2. The set H∞ of points of H2 at infinity is represented as the unit circle of R2. The
set of finite points of H2 is the interior of the unit disk.

Hyperbolic lines are represented either as portions of lines of R2 that are orthogonal
to H∞ or as portions of circles of R2 that are orthogonal to H∞. Hyperbolic circles are
circles of R2 contained in the unit disk and that do not intersect H∞. The hyperbolic
center of a circle C is the unique point (or circle with null radius) in H2 of the linear
pencil of circles of R2 defined by C and H∞.

2.2 The space of circles

The space of circles sets up a correspondence between circles of R2 and points of R3 [2,
Chapter 20], [7]: the circle C of R2 with center c = (xc, yc) and radius r is associated
to the point σC = (xc, yc, zc = x2

c + y2
c − r2) in R3. A point p = (xp, yp) of R2, seen as

a circle of null radius, is thus associated to the point σp = (xp, yp, x
2
p + y2

p) on the unit
paraboloid Π : (z = x2 + y2) of R3.

In the space of circles, we are considering polarity relatively to Π, i.e., orthogonality
with respect to the symmetric bilinear form φΠ ((x1, y1, z1), (x2, y2, z2)) = x1x2 + y1y2 −
1
2(z1 + z2) associated to the quadratic form QΠ(x, y, z) = x2 + y2 − z. In this setting,
for a circle C of R2, πC denotes the polar hyperplane of σC in R3; each point σC′ of πC
represents a circle C ′ that is orthogonal to C. For a point p ∈ R2, πp is the hyperplane
tangent to Π at point σp ∈ Π; each point σC′ of πp represents a circle C ′ that passes
through p. The unit circle H∞ of R2 (i.e., the infinite line of H2) is represented as the
point σ∞ of coordinates (0, 0,−1) in R3. Its polar hyperplane is the plane π∞ of equation
(z = 1) in R3.

3 Algorithmic and arithmetic aspects

Let P be a set of points in H2, i.e., in the unit disk of R2. We assume coordinates of
points in P to be rational.

To compute the hyperbolic Delaunay triangulation DTH(P) of P, it is enough to
compute the Euclidean Delaunay triangulation DTR(P), and to filter out the triangles of
DTR(P) whose circumscribing circle intersectsH∞. It directly follows that the complexity
of computing DTH(P) is of the same order as DTR(P), namely Θ(n log n).

Many standard algorithms allow to compute DTR(P) using only rational computa-
tions, since the two elementary predicates orientation(p, q, r) and in_circle(p, q, r, s) boil
down to computing signs of determinants on the coordinates of the points p, q, r, s.
Testing whether a circle defined by two rational points intersects the unit circle H∞ is
also done by rational computations only. So, the combinatorial part of DTH(P) is easily
computed using only rational computations.

Let us now focus on the geometric embedding of DTH(P) and of the dual Voronoi
diagram V DH(P). We first remark that, straightforwardly from the above definition, a
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circle C ⊂ R2 has rational equation if and only if its associated point σC in the space of
circles has rational coordinates.

For a triangle pqr of DTH(P), the hyperbolic edge eH(pq) is the arc between p and q
of the hyperbolic line through p and q, i.e., the circle through p and q that is orthogonal
to H∞. The set of circles passing through p and q is the line δpq = πp ∩ πq in the space
of circles, and δpq is also the polar line of line (σpσq). The circle through p and q that
is orthogonal to H∞ is thus associated to the intersection δpq ∩ π∞. So, DTH(P) can be
geometrically embedded using only rational computations.

Proposition 3.1. The bisector of two points of P is a hyperbolic line, whose equation in
R2 is rational.

Proof. Let p and q be two points of P, i.e., rational points of R2 inside the unit disk.
We are going to construct their hyperbolic bisector as the locus of hyperbolic centers of
circles passing through p and q.

H∞

σ∞

p
q

σp σq

H2

R2

π∞

Π

bisector
of p and q

σpq∞

O

The hyperbolic center of a given circle
σC ∈ δpq is the intersection of the line
σCσ∞ with Π, so the locus of such cen-
ters is the intersection Epq∞ with Π of the
plane Ppq∞ containing δpq and σ∞. The
polar point σpq∞ of Ppq∞ represents a cir-
cle, so Epq∞ is in fact associated to the set
of points of R2 on this circle. And σpq∞
is the intersection of the polars of σ∞ and
δpq, i.e., the intersection π∞ ∩ (σpσq).

To complete the proof, it is enough
to notice that all geometric constructions
above manipulate only rational objects:
rational points, and intersection of a ra-
tional plane with a rational line. �

A vertex of V DH(P) is the intersection of two hyperbolic bisectors, i.e., the intersec-
tion of two circles whose equation is rational, so its coordinates are algebraic numbers of
degree 2. A Voronoi vertex can alternatively be computed in the following way: it is the
hyperbolic center of a circle Cpqr circumscribing a Delaunay triangle pqr, associated with
point σpqr in the space of circles; the hyperbolic center of Cpqr is thus the intersection
(σpqrσ∞) ∩ Π (from the last sentence of Subsection 2.1). Infinite edges of the Voronoi
diagram intersect H∞ in points whose coordinates are also algebraic numbers of degree 2.
So, all edges of V DH(P) are arcs of rational circles whose endpoints are algebraic numbers
of degree 2.

4 Implementation

The algorithm was implemented using Cgal [1]. The class Delaunay_hyperbolic_triang-
ulation_2 derives from the class CGAL::Delaunay_triangulation_2<GT>, which computes
DTR(P) [18]. It just has to mark all triangles of DTR(P) that are not in DTH(P).
The template parameter GT is the geometric traits, which provides the algorithm with
elementary predicates and constructions.
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Only predicates are used for the computation of DTR(P).
They do not need to be modified to computeDTH(P), which
is thus computed exactly and efficiently using filtered ratio-
nal arithmetics. Our preliminary experiments show an extra
cost of 9% to extract DTH(P) from DTR(P) (i.e., DTH(P)
is constructed in less than 1 sec for 1 million points, on a
MacBookPro 2.6 GHz). Only geometric embeddings need
constructions, which must be replaced in GT by construc-
tions presented in Section 3; if they are only used for draw-
ing, they do not need to be exact, but some Cgal, Core
or Leda exact algebraic numbers can be used if necessary.

One of our goals is to compute hyperbolic periodic Delaunay triangulations, which
appears much more difficult than in the Euclidean setting [6], even for the simplest case
of a group of four hyperbolic translations in H2 [5, Section 4.4], which would already be
useful for various applications [14, 10].
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Abstract. We study a problem about shortest paths in Delaunay triangulations. Given two nodes s, t
in the Delaunay triangulation of a point set P , we look for a new point p that can be added, such that
the shortest path from s to t in the Delaunay triangulation of P ∪{p} improves as much as possible. We
study properties of the problem and give efficient algorithms to find such a point when the graph-distance
used is Euclidean and for the link-distance. Several other variations of the problem are also discussed.

1 Introduction

There are many applications involving communication networks where the underlying
physical network topology is not known, too expensive to compute, or there are reasons
to prefer to use a logical network instead. An example of an area where this occurs is
ad-hoc networks, where nodes can communicate with each other when their distance is
below some threshold. Even though the routing is done locally, to avoid broadcasting to
all neighbors every time a packet needs to be sent, some logical network topology and
routing algorithm must be used.

The Delaunay triangulation is often used to model the overlay topology [4, 6] due
to several advantages: it provides locality, scales well, and in general avoids high-degree
vertices, which can create serious bottlenecks. In addition, several widely-used localized
routing protocols guarantee to deliver the packets when the underlying network topology
is the Delaunay triangulation [3]. Furthermore, there are localized routing protocols
based on the Delaunay triangulation where the total distance traveled by any packet is
never more than a small constant factor times the network distance between source and
destination (e.g., [3]). Since the Delaunay triangulation is known to be a spanner [5], in
the case of geometric networks this guarantees that all packets travel at most a constant
times the minimum travel time.

In this paper we consider the problem of improving a geometric network, with a
Delaunay triangulation topology, by augmenting it with additional nodes. In particular,
we aim at improving the shortest path on the Delaunay network between two given nodes
s and t. Adding new nodes to a Delaunay network produces changes in the network
topology that can result in equal, shorter, or longer shortest paths between s and t (an
example where adding a point shortens the path is shown in Figure 1, left).

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

117



118 Improving shortest paths in the Delaunay triangulation
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Figure 1. Left: shortest path between s and t before and after adding p; the
latter is shorter. Right: any point inserted in the shaded region, like p, improves
SP (s, t), shown in green.

We restrict ourselves to the scenario where at most one node can be added to the
network, which can be placed anywhere on the plane. The goal is to find a location for
the new node that improves the shortest path between s and t as much as possible. We
are not aware of any previous work on this problem.

Notation. The input to the problem is a set of n points P = {p1, . . . , pn}, and two
distinguished points s, t ∈ P . The points represent the locations of the network nodes.

We will use G to denote the Delaunay graph of P . Thus, G has the points in P as
vertices, and an edge (pi, pj) between two vertices if and only if there is a circle through
pi, pj that does not contain any point from P in its interior. We assume that the points in
P are in general position: no three points are collinear and no four points are cocircular.
Hence G represents the Delaunay triangulation of P . Moreover, we also assume that the
edge (s, t) /∈ G, otherwise the distance between s and t in G would be optimal. Note that
we use G to refer to both the graph and the triangulation.

The shortest path on G between s and t will be denoted by SPG(s, t). The length of
such path, defined as the sum of the Euclidean lengths of its edges, will be denoted by
|SPG(s, t)|, although we will omit G if possible. The straight line segment between two
points x and y will be denoted by xy, and its Euclidean length by |xy|.

Finally, we will use G′p to denote the Delaunay graph of P ∪ {p}, for some p /∈ P (we
will omit p when clear from the context).

2 Properties and observations

We begin the paper by analyzing some geometric properties of the problem.
When a new point p is inserted in P , some edges of the Delaunay triangulation might

disappear and new edges, all incident to p, appear. The edges of G that are affected by the
insertion of p belong to Delaunay triangles whose circumcircles contain p. In particular,
all triangles in G whose circumcircle contains p get new edges in G′, connecting their
vertices to p. If p is outside the convex hull of P, some additional edges might appear.

A first question that one may ask is whether it is always possible to improve a shortest
path by adding one point to G. There are situations in which it is easy to obtain some
improvement:

Lemma 2.1. Let e1 and e2 be two consecutive edges of SPG(s, t). Let C1 and C2 be two
Delaunay circles through the extremes of e1 and e2, respectively. If C1 and C2 are not
tangent and C1 ∩ C2 is on the side in which the edges form the smallest angle, then the
length of SPG(s, t) can always be reduced by inserting one point.
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Figure 2. Left: example where SP (s, t) cannot be improved by adding one
point. Right: one of the situations described in Lemma 3.1.

Even though we omit the proof of the previous lemma, the idea can be seen in Figure 1
(right). If we insert p in the shaded region, then (x, p) and (p, y) will be Delaunay edges
in G′, shortening the portion of SP (s, t) between x and y. However, some shortest paths
cannot be improved by adding one point, as shown in Figure 2 (left).

Lemma 2.2. It is sometimes impossible to improve SPG(s, t) by inserting only one point.

On the other hand, it is easy to see that two points always suffice to improve SP (s, t)
(details are given in [1]).

3 Finding a point that gives the maximum improvement

Next we present an algorithm that computes a point p such that |SPG′p(s, t)| is minimum.
The correctness of the algorithm is based on the following lemmas, proved in [1]. We
use the facts that we only need to look at O(k) possible candidate points, where k is the
number of pairs of Delaunay circles that intersect (k ∈ Θ(n2) in the worst case) and that
the shortest paths from s and t need to be computed only once.

Lemma 3.1. Let p be a point that gives the maximum improvement, and let x, y be the
points in G such that SPG′p(s, t) includes (x, p) and (p, y) as consecutive edges. Then p
lies on the segment xy, or on the intersection of a Delaunay circumcircle through x, and
another through y.

Lemma 3.2. Let p be a point, and let x ∈ P such that (x, p) ∈ G′p. If SPG′p(s, p) includes
(x, p), then |SPG′p(s, p)| = |SPG(s, x)|+|xp|. Otherwise, |SPG′p(s, p)| ≤ |SPG(s, x)|+|xp|.
Algorithm. The previous lemmas imply that in order to find an optimal point p it
suffices to analyze each pair of intersecting Delaunay circles of G. We first precompute
the shortest path trees from s and from t. Then we use an output-sensitive algorithm to
compute all pairs of intersecting circles.

For each pair of intersecting circles (C1, C2), we proceed as follows. Each circle
corresponds to a Delaunay triangle from G. Let the two triangles be t1, t2. For each pair
of vertices x ∈ t1 and y ∈ t2, we first check if xy intersects C1 ∩ C2. If it does, we take
p as any point on (xy ∩ C1 ∩ C2). Otherwise, we check the two points where C1 and C2

intersect, and use the one that gives the shortest path from x to y. See Figure 2 (right).
If the length of SP (s, t) improves by using p, we update this information. In the end

we output the point that gave the shortest path, if it improves over SPG(s, t), or report
that no point can improve it.

The running time of the algorithm is dominated by the time needed to find all pairs
of intersecting circles. Using an algorithm like Balaban’s [2], we obtain an O(n log n+ k)
running time, with O(n) space.
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Theorem 3.3. Given the Delaunay triangulation of n points, and two vertices s and
t, a point whose insertion gives the maximum improvement in SP (s, t) can be found in
O(n log n+ k) time, where k is the number of pairs of intersecting Delaunay circles.

Related problems. We show in [1] that, based on the previous lemmas, some other
related problems can also be solved efficiently. In addition, a different proximity graph
can be used (e.g., Gabriel or nearest neighbor graph) by applying the general approach of
partitioning the plane into regions such that inserting a point anywhere inside one region
produces the same topological change to the structure.

4 Using the link-distance

An interesting variant of the problem arises when the metric used to measure distances
on G is the link-distance: the length of a path is defined by its number of edges. This
metric is also interesting in networking applications, since it measures the number of
hops. As before, we are interested in adding one new point to G such that the link-
distance between s and t is minimized as much as possible. Using a data structure based
on additively-weighted Voronoi diagrams of the circle centers, this problem can be solved
more efficiently than the previous one. In [1] we prove:

Theorem 4.1. Given the Delaunay triangulation of n points, and two vertices s and t,
a point whose insertion gives the maximum improvement in SP (s, t), under the link-
distance, can be found in O(n log2 n) time.

5 Discussion

We have studied the problem of adding a point to a Delaunay triangulation, such that it
improves a shortest path as much as possible. In [1] we also show how to solve several
other related problems. Perhaps the most intriguing question left open is whether the
decision problem (Is there a point that improves SP (s, t)?) can be solved faster than the
optimization problem.

Acknowledgments. Research initiated during the 6th Iberian Workshop on Compu-
tational Geometry, held in Aveiro. M.A. and G.H. were partially supported by project
MTM2008-05043. M.C., F.H., V.S. and M.S. were partially supported by projects MTM-
2009-07242 and Gen. Cat. DGR 2009SGR1040. M.A., G.H., M.C. and F.H. were also
supported by project HP2008-0060. R.I.S. was supported by the Netherlands Organisa-
tion for Scientific Research (NWO).

References
[1] M. Abellanas, M. Claverol, G. Hernández, F. Hurtado, V. Sacristán, M. Saumell, and R. I. Silveira,

Improving shortest paths in the Delaunay triangulation, manuscript in preparation.
[2] I. J. Balaban, An optimal algorithm for finding segments intersections, in Proc. SoCG’95, 1995,

211–219.
[3] P. Bose and P. Morin, Online routing in triangulations, SIAM J. Comput., 33 (2004), 937–951.
[4] E. Buyukkaya and M. Abdallah, Efficient triangulation for P2P networked virtual environments, in

Proc. NetGames’08, 2008, 34–39.
[5] D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as good as complete

graphs, Discrete Comput. Geom., 5 (1990), 399–407.
[6] J. Liebeherr, M. Nahas, and W. Si, Application-layer multicasting with Delaunay triangulation over-

lays, IEEE J. Sel. Areas Comm., 20 (2002), 1472–1488.



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011

Compact grid representation of graphs
J. Cáceres1, C. Cortés2, C. I. Grima2, M. Hachimori3, A. Márquez2,
R. Mukae4, A. Nakamoto4, S. Negami4, R. Robles2, J. Valenzuela2

1 University of Almeria (Spain)
jcaceres@ual.es

2 University of Seville (Spain)
{ccortes,grima,almar,rafarob,jesusv}@us.es

3 Tsukuba University (Japan)
hachi@sk.tsukuba.ac.jp

4 Yokohama National University (Japan)
{mkerij,nakamoto,negami}@edhs.ynu.ac.jp

Abstract. A grid representation of a graph maps vertices to grid points and edges to line segments that
avoid grid points but the extremes. We study how many lines of the plane are needed to give a grid
representation of a given graph.

Introduction

Graph drawing applies topology and geometry to derive suitable representations of graphs.
Particularly, grid representations of graphs have attracted the attention of many re-
searchers (see, for example [3, 5, 7]).

A grid point is a point of the plane having integer coordinates. A line segment S
joining two grid points is said to be primitive if the only grid points in s are its extremes.

A graph G is said to be grid locatable (or locatable for short) if each vertex is repre-
sented by a grid point and each edge by a primitive segment joining its extremes; in other
words, G is a subgrah of the visibility graph of the integer lattice (in the sense defined,
for example, in [9]). The graph G is said to be properly embeddable in grid (p-embeddable
for short) if the segments representing edges do not cross each other.

Independently in [6, 8] the following characterization is shown

Theorem 0.1. [6, 8] A graph G is locatable if and only if G is 4-colorable.

In their proofs [6, 8], they show that only 4 lines are needed in order to represent any
4-colorable graph. However, of course, not always the four lines are needed. In this work,
we deal with this problem, namely, how many lines are needed to locate or p-embed a
given graph? In fact, as we just have mentioned, in both papers, an upper bound to the
number of lines needed to locate a graph is given.

Corollary 0.2. [6, 8] A graph G with chromatic number χ(G) ≤ 4 can be located in, at
most, χ(G) lines.

We shall see here that the upper bound provided by Corollary 0.2 is not optimal in
some cases.

A trivial but useful observation is that an edge joining (x1, y1) and (x2, y2) is primitive
if and only if |x1 − x2| and |y1 − y2| are relatively prime to each other.
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1 p-embedding a graph in the grid

Although it is not known whether any planar graph can be p-embedded in the plane
(see [6]), some partial results are known. Thus, in [8] it is proven that any outerplanar
graph can be p-embedded in the grid. Even more, we can prove the following result

Proposition 1.1. Any plane bipartite graph can be p-embedded in the grid.

Proof. In [1] it is given a method to embed a quadrangulation in the grid. That method
is based on two 2-book representations of any quadrangulation, and they assign to each
vertex the coordinates as its relative positions in the spines of both 2-books. But we can
choose the x-coordinate of each point verifying that all the differences of x-coordinates
being relatively prime with the other ones. In this way, we guarantee the condition of
primitiveness. �

Additionally, a complete characterization can be given on the graphs that can be
p-embedded into two lines.

Proposition 1.2. [4] A graph G is p-embeddable into two lines if and only if G can be
extended to a maximal outerplanar graph such that its dual is a path.

It is known that, if a graph is locatable in the plane, then it is locatable in at most four
lines. However, it is hopeless to try to obtain a similar result regarding p-embeddability.
This can be obtained since it is well known that some graphs need linear grids in both
dimensions to be embedded in the plane. But if we deal with primitive segments, we can
obtain a similar result even for trees.

Lemma 1.3. Given an integer number n, it is possible to find a tree that cannot be
p-embedded in n lines.

Proof (sketch). It is not difficult to see that the number of lines needed to p-embed any
balanced n-ary tree tends to infinity as n goes to infinity. �

Thus the main question remaining open in this section is whether it is possible to
p-embed any planar graph in the plane.

2 Locating a graph in the grid

Given that it is known that a graph is locatable if and only if it is 4-colourable (see [6, 8]),
in this section we consider minimizing the number of lines in such a representation. In
other words, given a concrete 4-colorable graph, how many lines are needed to represent it?

Although Theorem 0.1 gives an upper bound for the number of lines needed to rep-
resent a graph, that bound is of course not always optimal. For instance,

Proposition 2.1. Any outerplanar graph can be located in two lines.

Proof (sketch). The proof can be obtained by induction, taking into account that any
maximal outerplanar graph has always an ear. Figure 1 shows how to add an ear to an
edge that is in the outerface (the tiny triangles in the central image mean that one of
those points is in the outerface; then we move —if needed— all the drawing in order to
leave room for the new vertex). �

In fact, we can describe the structure of any graph locatable in two or three lines.
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Figure 1. How to add a vertex of degree 2.

Theorem 2.2. Let G = (V,E) be a graph such that χ(G) ≤ 4. Then,
(1) G is locatable in two lines if and only if V can be partitioned into two subsets

V1, V2, such that the subgraph of G induced by Vi is a disjoint union of paths.
(2) G is locatable in three lines if and only if V can be partitioned into three subsets

V1, V2, V3, such that the subgraph of G induced by V1 is a disjoint union of paths,
and V2 and V3 are independent sets.

We can use Theorem 2.2 to obtain examples of planar graphs that need the four lines
of Theorem 0.1 to be located in the plane. For instance, the graph depicted in Figure 2.
Basically there is only one 4-coloring and there is no possible assignment of the colors
avoiding vertices of degree 3 in the subgraph induced by two colors.

Figure 2. A planar graph that needs four lines to be located.

Additionally, Theorem 2.2 is one of the main tools used to prove the following results.

Theorem 2.3. If ∆(G) ≤ 3 (the maximum degree of G), then G is locatable in two lines.

Proof (sketch). We have to obtain a partition of the vertices in G verifying the hypothesis
of Theorem 2.2 (1). In a first step, if G is not K4, that can be located trivially in two
lines, we color G with 3 colors. Then, if there are vertices of degree 3 in the subgraph of
G induced by colors 1 and 2, this means that there is a vertex v with the color 1 with
three neighbors with the color 2 (or the other way around). In that case, we can change
the color of v to 3.

So, if we assume that there is not vertex of degree 3 in the subgraph of G induced by
colors 1 and 2, we have to check that there is no cycle in such a subgraph. If such a cycle
exists, we can change the color of one of the vertices to a new color 4. The only problem
could be now to find a vertex of degree 3 in the subgraph of G induced by colors 3 and 4,
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but that case can be avoided again by changing the color of that vertex to 1. After all
this process, V1 will have all the vertices with color 1 or 2 and V2 the vertices with color
2 or 4. �

Observe that, in the previous theorem, G could be non-planar. It is possible to relax
the condition on the maximum degree of G, but adding the additional hypothesis of
planarity.

Theorem 2.4. Let G be a planar graph with ∆(G) ≤ 4. Then G is locatable in three
lines.

Proof (sketch). The proof is in some way similar to the proof of Theorem 2.3. Starting
with an actual embedding of G = (V,E), we complete it by adding extra dummy edges
to the faces of even length. In this way, we are sure that in a 4-coloring of G we have no
face with only two colors. We are going to change this initial coloring in order to obtain a
partition of V fulfilling the conditions of Theorem 2.2 (2). We assign vertices with colors
1 or 2 to V1, vertices with color 3 to V2 and vertices with color 4 to V3. As in Theorem 2.3,
with a simple change, we can avoid vertices of degree 3 or 4 in the subgraph 〈V1〉 induced
by V1. In the case of a cycle, we can change the colors using Kempe’s chains starting in
the cycles containing the most points in their interior. Now, some other cycles can be
obtained, but those cycles are going to have less points in their interior, so we can apply
again the same method, if needed. �
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Abstract. This paper describes algorithms for computing non-planar drawings of planar graphs in
subquadratic area such that: (i) edge crossings are allowed only if they create big enough angles; (ii) the
maximum number of bends per edge is bounded by a (small) constant.

Introduction
Recent cognitive experiments in graph visualization show that the human understanding
of a graph layout is negatively affected by edge crossings that form acute angles, while edge
crossings that form angles from about π/3 to π/2 guarantee good readability properties
[7, 8]. As a consequence, in the last two years a large body of papers has been devoted
to the study of non-planar drawings where such “sharp angle crossings” are forbidden.

A Right Angle Crossing drawing (RAC drawing) is a drawing where edges cross only
at right angles. RAC drawings have been introduced in [4], where it is shown that:
(i) every graph admits a RAC drawing with curve complexity 3, that is, with at most
3 bends per edge; (ii) straight-line RAC drawings have at most 4n − 10 edges (and this
bound is tight). Arikushi et al. [2] proved that even RAC drawings with curve complexity
1 or 2 have a linear number of edges. A Large Angle Crossing drawing (LACα drawing) is
a relaxation of a RAC drawing, in which crossing edges form angles of at least α, where
α is a given number in the interval (0, π/2). LACα drawings have been independently
introduced in [3] and [6].

In this paper we investigate RAC and LACα drawings of planar graphs in sub-
quadratic area and constant curve complexity, where the area of a drawing is the area of
the smallest rectangle containing it. In [1] it is proved that straight-line RAC drawings of
planar graphs may require Ω(n2) area, and that every graph with vertex degree at most 6
(at most 3) admits a RAC drawing with curve complexity 2 (curve complexity 1, resp.) in

2This work started during the Bertinoro Workshop on Graph Drawing 2010. The work was partially supported
by the ESF project 10-EuroGIGA-OP-003 GraDR “Graph Drawings and Representations”, by the MIUR of Italy,
under projects AlgoDEEP, prot. 2008TFBWL4, and FIRB, “Advanced tracking system in intermodal freight
transportation”, grant no. RBIP06BZW8, by the Swiss National Science Foundation, grant no. 200021-125287/1,
and by the Centre Interfacultaire Bernoulli (CIB) of EPFL.
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126 RAC/LAC drawings in subquadratic area

O(n2) area. In [4] a simple algorithm is given for computing a RAC drawing with curve
complexity 3 in O(n4) area for every graph. In [3] it is proved that every graph admits
a RAC drawing with curve complexity 4 in O(n3) area. Concerning LACα drawings, in
[3] it is also proved that every graph admits such a drawing with curve complexity 1 in
O(n2) area, for any given α ∈ (0, π/2).

We present new advances in the study of the trade-off between curve complexity and
area requirement of RAC and LACα drawings. Our main contributions are the following:
• We describe two different algorithms for constructing RAC drawings of d-degree planar
graphs with curve complexity 4 in area O(dn log2 n) and O(n

√
dn), respectively. Note

that, if d is bounded by a sublinear function, both the area bounds are subquadratic.
• We describe an algorithm for constructing LACα drawings of every planar graph with
curve complexity 2 in O(n5/3) area, hence providing the first subquadratic area bound
for planar graphs in a model that is reasonable from the user perspective.

1 Preliminaries
An exact edge-separator in a graph G(V,E) is a set of edges E′ ⊆ E whose removal
partitions G into two subgraphs G1(V1, E1), G2(V2, E2) with |V1| ≤ bn/2c, |V2| ≤ dn/2e.
Lemma 1.1 (Diks et al. [5]). Every n-vertex d-degree planar graph has an exact edge
separator of size 2

√
2dn.

The cut-width of G is the smallest integer k such that the vertices of G can be arranged
in a linear layout v1, . . . , vn so that, for every i, at most k edges have one endpoint in
v1, . . . , vi and the other in vi+1, . . . , vn. The following is a consequence of Lemma 1.1.

Lemma 1.2 ([5]). The cut-width of an n-vertex d-degree planar graph is O(
√
dn).

2 RAC Drawings

In this section we provide two different techniques for constructing RAC drawings of
bounded-degree planar graphs with curve complexity 4. The first technique is adapted
from the classical method of Leiserson [9] for orthogonal drawings of 4-degree graphs,
enhanced by a careful choice of bend points close to each vertex.

Theorem 2.1. Every n-vertex d-degree planar graph admits a RAC drawing with curve
complexity 4 in O(dn log2 n) area.

Proof sketch. The drawing is constructed recursively by computing an exact separator of
the graph, by drawing the two subgraphs obtained when removing the separating edges,
and by placing such drawings either horizontally or vertically next to each other.

For each vertex v, reserve two vertical lines r(v) and l(v), and two horizontal lines t(v)
and b(v), to the right, to the left, above and below v, respectively. See Fig. 1(a). Suppose
that the two drawings are placed horizontally, the other case being analogous. Reserve a
vertical channel of size 2

√
2dn between the two drawings for the separating edges. Each

edge (v, w), with v in the left subgraph and w in the right subgraph, is routed by placing
two bends on r(v) and l(w), connected through a sequence of a horizontal, a vertical, and
a horizontal segment. See Fig. 1(b).

The curve complexity of the drawing is 4 and all the segments that are not axis-parallel
are drawn between r(v), l(v), t(v), and b(v) without crossings. Hence, the drawing is
RAC. As the edge separator has size 2

√
2dn, the area bound follows. �
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v

l(v) r(v)
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√
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O(n)

O(
√
dn)

(a) (b) (c)

Figure 1. (a) The routing of the edges around a vertex v. (b) The layout of
Theorem 2.1. (c) The layout of Theorem 2.2.

Note that, when d is o(n/ log2 n), the area bound obtained in Theorem 2.1 is sub-
quadratic, while it is superquadratic when d is O(n). In view of this, we present a second
drawing technique achieving an area bound of O(n

√
dn), which is quadratic when d is

O(n) and subquadratic when d is o(n), that works better for high-degree graphs. In par-
ticular, it outperforms the one in Theorem 2.1 whenever d is greater than O(n/ log4 n).

Theorem 2.2. Every n-vertex d-degree planar graph G admits a RAC drawing with curve
complexity 4 in O(n)×O(

√
dn) area.

Proof sketch. The drawing is constructed inside an axis-parallel rectangle R(G), with the
vertices lying on the left side of R(G), the first and the last bend of each edge lying on
the vertical line immediately to the right of the left side of R(G), and the edges between
such two bends being composed of one vertical and two horizontal segments. Refer to
Fig. 1(c). As only axis-parallel segments might cross, the drawing is RAC. As each edge
uses two horizontal lines, the height of R(G) is O(n), while the width is determined by
the cut-width, which is O(

√
dn). �

3 LAC Drawings
In this section we provide an algorithm for constructing LACα drawings of planar graphs
with curve complexity 2 in subquadratic area for any angle α < π/2.

First, we provide an algorithm to construct LACα drawings of bounded-degree graphs
with curve complexity 2 in subquadratic area. The construction, depicted in Fig. 2(a), is
analogous to the one of Theorem 2.2. Namely, the vertices are placed on the left side of a
rectangle according to the optimal cut-width order, so that any two consecutive of them
are separated by a horizontal line. Each edge (u, v) is routed by placing one bend on the
line below u and one on the line below v joined by a vertical segment, so that at least
k vertical lines lie between the left side of R(G) and the two bends, where k = 1

π/2−α
is a constant. The bounded cut-width implies the subquadratic area bound, while the
distance of at least k implies large angle crossings.

Lemma 3.1. Every n-vertex d-degree planar graph G admits a LACα drawing with curve
complexity 2 in O(n)×O(

√
dn) area, for any 0 ≤ α < π/2.

We now prove the subquadratic bound for LACα drawings of planar graphs.

Theorem 3.2. Every n-vertex planar graph G admits a LACα drawing with curve com-
plexity 2 in O(n1.667) area for any 0 ≤ α < π/2.

Proof sketch. We say that a vertex is heavy if its degree is greater than or equal to n1/3 and
it is light otherwise. Let H and L denote the sets of heavy and light vertices, respectively.
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R(G) O(n)
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3)k
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lu

lv

lu,v
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Figure 2. (a) Layout of Lemma 3.1. (b) Layout of Theorem 3.2.

Note that |H| = O(n2/3) and |L| = O(n). Let GH and GL be the subgraphs induced by
H and L, respectively. By Lemma 3.1, they admit LACα drawings with curve complexity
2 inside rectangles R(GH) and R(GL), where R(GH) has height O(|H|) = O(n2/3) and
width O(

√
n2/3n2/3) = O(n2/3), as the maximum degree of GH is less than n2/3 due to

|H| = O(n2/3), while R(GL) has height O(|L|) = O(n) and width O(
√
n1/3n) = O(n2/3).

Refer to Fig. 2(b). Consider a horizontal line h and a vertical line v. Rotate R(GH)
in such a way that the vertices are on the upper side and place it with its upper side
one unit below h and its right side one unit to the left of v. Place R(GL) with its lower
side k units above h, where k = 1

π/2−α , and its left side one unit to the right of v. Edges
connecting a vertex u in L to a vertex w in H are routed inside the smallest rectangle
R(G) containing both R(GL) and R(GH) by placing first reaching from u the topmost
free point of line v, then by moving horizontally till intersecting the vertical line to the
right of w, and by finally reaching w.

As crossing may only happen between a horizontal segment and a segment connecting
two points with horizontal distance 1 and vertical distance at least k, the constructed
drawing is a LACα drawing with curve complexity 2. The height of R(G) is O(n), as it is
equal to the height of R(GL), which is O(n), plus the height of R(GH), which is O(n2/3),
plus a constant number of k + 1 lines, while the width of R(G) is O(n2/3), as it is equal
to the width of R(GL), which is O(n2/3), plus the width of R(GH), which is O(n2/3), and
the statement follows. �
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Abstract. In [4] it was proved that, if a simple Euclidean arrangement of pseudolines has no (≥ 5)-gons,
then it is stretchable. In the opposite direction, it is known that not every simple Euclidean arrangement
with three (≥ 5)-gons is stretchable; see [8]. Thus the following question arises naturally: Are the simple
Euclidean arrangements with one or two (≥ 5)-gons stretchable? In this paper we give a large class of
stretchable simple Euclidean arrangements with one (≥ 5)-gon. More precisely, we prove that, if L is a
Euclidean arrangement of n pseudolines with one n-gon, then L is stretchable. We also prove that the
number of such arrangements is Ω(2n/2).

Introduction

A simple noncontractible closed curve in the projective plane P is a pseudoline, and
an arrangement of pseudolines is a collection B = {p0, p1, . . . , pn} of pseudolines that
intersect (necessarily cross) pairwise exactly once. Since P \ p0 is homeomorphic to the
Euclidean plane E, we may regard {p1, . . . , pn} as an arrangement of pseudolines in E
(and regard p1, . . . , pn as pseudolines in E). An arrangement is simple if no point belongs
to more than two pseudolines. The cell complex of an Euclidean arrangement in P has
both bounded and unbounded cells. As in [4], we are only interested in bounded cells
(whose interiors are the polygons or faces). Thus it is clear what is meant by a triangle,
a quadrilateral, or, in general, an n-gon of the arrangement. Any m-gon with m ≥ n is
called a (≥ n)-gon.

An arrangement of lines in E is a collection of straight lines, no two of them parallel.
Thus, every arrangement of lines is an arrangement of pseudolines. On the other hand,
not every arrangement of pseudolines is stretchable, that is, equivalent to an arrangement
of lines, where two arrangements are equivalent if they generate isomorphic cell decom-
positions of E. Every arrangement of eight pseudolines is stretchable [3], but there is a
simple non-stretchable arrangement (Figure 1) of nine pseudolines [8], which is unique
up to isomorphism [3]. Since the arrangement in Figure 1 is non-stretchable and has
only three (≥ 5)-gons, it follows that not every simple Euclidean arrangement with three
(≥ 5)-gons is stretchable. In the opposite direction, in [4] was proved that every simple
Euclidean arrangement with no (≥ 5)-gons is strechable. With these facts in mind, it is
natural to ask what is the role of the (≥ 5)-gons in the stretchability of simple Euclidean

3Partially supported by an ERC Grant.
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arrangements. This work is a first effort in this direction. In particular, here we study
the stretchability of certain class of Euclidean arrangements with one (≥ 5)-gon.

Stretchability questions are typically difficult: deciding stretchability is NP-hard [9]
even for simple arrangements [10]. The concept of stretchability is particularly relevant
because of the close connection between arrangements of pseudolines and rank 3 oriented
matroids: on this ground, the problem of stretchability of arrangements is equivalent to
the problem of realizability for oriented matroids (see [1, 7]).

Let = denote the set of Euclidean arrangements of n pseudolines with one n-gon. It
follows from the definition of = that every arrangement of = must be simple. Our aim is
to prove that every element of = is stretchable and that the number of non-isomorphic
arrangements of = with m pseudolines grows exponentially with m.

Figure 1. A simple non-stretchable arrangement with three (≥ 5)-gons.

1 Results

Our main results are the following:

Theorem 1.1. If L is an arrangement of =, then L is stretchable.

Theorem 1.2. The number of non-isomorphic Euclidean arrangements of n pseudolines
with one n-gon is Ω(2n/2).

To prove Theorem 1.1, we need two lemmas. Lemma 1.4 is a consequence of the
proof of Proposition 1.2 in [2] and the definition of =. Lemma 1.5 establishes structural
properties of the elements of =. Lemmas 1.3 and 1.5 are both easy to see.

Since Theorem 1.1 is trivial for L ∈ = with |L| ≤ 4, we may assume that |L| ≥ 5.

Lemma 1.3. If L ∈ =, then the |L|-gon of L is the unique (≥ 5)-gon of L.
Lemma 1.4. If L ∈ =, then the |L|-gon of L has at most two edges that are adjacent to
an unbounded cell of L.
Lemma 1.5. Let L ∈ =. If an edge e of the |L|-gon of L is not adjacent to an unbounded
cell of L, then e is also an edge of a triangle of L.

We now give a sketch of the proof of Theorem 1.1. See [5] for further details.

1.1 Proof of Theorem 1.1

The proof is by induction on |L|. In [3] it was shown that any Euclidean arrangement
with 8 pseudolines is stretchable. So we may assume that |L| = n ≥ 9 and that every
arrangement of = with j < n pseudolines is stretchable. Let P be the n-gon of L. By
Lemma 1.4, P has at most two edges that are adjacent to an unbounded cell of L. Hence,



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011 131

P has three consecutive edges, say a′, b′ and c′, which are not adjacent to an unbounded
cell of L. By Lemma 1.5, each of a′, b′ and c′ is an edge of a triangle of L. Let A, B and
C be, respectively, the triangles of L that are adjacent to a′, b′ and c′. Let a, b and c be
the supporting pseudolines of a′, b′ and c′, respectively. Assume without loss of generality
that a, b and c are directed in such a way that P lies to the left of each of them. See
Figure 2.

For x ∈ {a, b, c} and ` = 1, . . . , n− 1, let x` be the `-th pseudoline of L \ {x} that is
crossed by x. Since L is simple, the labels a1, . . . , an−1; b1, . . . , bn−1; and c1, . . . , cn−1 are
well-defined. We assume from now on that ak = c, bt = a and cr = a.

Let X, Y , W and Z be the four unbounded regions defined by a and c (see the small
drawing in Figure 2). Note that P ⊂ X. Since P has an edge in every pseudoline of
L, then Z (respectively, Y ) contains no crossings between pseudolines of {a1, . . . , ak−2},
(respectively, {cr+2, . . . , cn−1}). Using these facts, we can obtain Equations (1) and (2)
by a straightforward argument.

bt−j =

{
ak−1−j = cr−j if j = 1, 2, . . . , r − 1,

ak−1−j if j = r, r + 1, . . . , t− 1.
(1)

bt+1+i =

{
cr+1+i = ak+i if i = 1, 2, . . . , n− k − 1,

cr+1+i if i = n− k, n− k + 1, . . . , n− t− 2.
(2)

From Equations (1) and (2) it follows that L looks like in Figure 2.

a

b

c

a’ b’ c’

X

W

Z Yc

a

A B C

P

Figure 2. The structure of an arrangement of =.

Clearly, L \ {b} belongs to = and, by induction, it is stretchable. Let L∗b be an
arrangement of straight lines, which is equivalent to L \ {b}. If θ denotes an element
of L \ {b}, we denote by θ∗ the corresponding element in L∗b . For s = 1, . . . , k − r − 1,
let ms be the slope of a∗s. Let H = {a1, . . . , ak−r−1} (the thin pseudolines in Figure 2
are the elements of H). Since any two lines of L∗b intersect exactly once, L∗b has no
lines with equal slopes. Moreover, since the crossing of any two lines of H∗ is in X∗,
m0 < m1 < · · · < mk−r−1 < mk−r, where m0 and mk−r are, respectively, the slopes of a∗
and c∗. Let d∗ be the line with slope (mk−t−1 +mk−t)/2 through v = a∗ ∩ c∗. Since L∗b
and L\{b} are equivalent and m0 < m1 < · · · < mk−r, d∗ crosses the lines of L∗b \{a∗, c∗}
in the exact same order in which b crosses the pseudolines of L\{a, b, c}. Also, note that
d∗ can be perturbed in such a way that: (i) the order in which d∗ crosses the lines of
L∗b \ {a∗, c∗} is preserved, and (ii) d∗ intersects X∗. Finally, note that the arrangement
of lines obtained by such a perturbation of d∗ is equivalent to L, as desired.
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1.2 Proof of Theorem 1.2

A 2-colored necklace with 2m beads in which opposite beads have different colors is a self-
dual necklace. An example of a self-dual necklace is shown in Figure 3 i). Two self-dual
necklaces are isomorphic if one can be obtained from the other by rotation or reflection
or both. In [6] it was proved that the number of non-isomorphic self-dual necklaces is
Ω(2m/2). So, it is enough to exhibit a one-to-one correspondence between the set of
self-dual necklaces and a subset of =. Let C be a self-dual necklace with 2m ≥ 6 beads
colored 0 and 1, and let P be the regular polygon of 2m sides. Now we extend every
edge of P to both sides in such a way that each pair of non-parallel segments intersect.
See Figure 3 ii). Finally, we intersect every pair of parallel segments according to color
1 of C as shown in Figure 3 iii). By construction, the resultant arrangement PC belongs
to =. It is easy to see that distinct necklaces generate distinct arrangements.

P

C

0

1

1

0
1

0

0
1

iii)ii)i)

C P

Figure 3. How to associate an arrangement of = to each self-dual necklace with
2m beads.

Remark 1.6. An anonymous referee has observed that the elements of = are nothing but
the extensions of the cyclic arrangement by one new line that does not cross the n-gon
and consequently the number of non-isomorphic Euclidean arrangements of n pseudolines
with one n-gon is Ω(2n−1/n).
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Abstract. Let P be a point set on the plane, and consider whether P is quadrangulatable, that is,
whether there exists a 2-connected bipartite plane graph G with each edge a straight segment such that
V (G) = P , and the boundary of the unbounded face of G coincides with Conv(P ), and that each bounded
face of G is quadrilateral. It is easy to see that it can be done if an even number of vertices of P appear
on Conv(P ). Hence we give a k-coloring of P and consider the same problem so that no edge joins two
vertices of P with the same color. In this case, we always assume that the number of the points of P
lying on Conv(P ) is even and that any two consecutive points on Conv(P ) have distinct colors. However,
there is a 2-colored non-quadrangulatable point set P . So we introduce Steiner points, each of which can
be put in any position of the interior of Conv(P ) and may be colored by any of the k colors. When k = 2,
Alvarez et al. proved that if a point set P on the plane consists of n

2
red and n

2
blue points in general

position, then adding Steiner points Q with |Q| ≤ bn−2
6
c+ bn

4
c+ 1, P ∪Q is quadrangulatable, but there

exists a non-quadrangulatable 3-colored point set no matter how many Steiner points are added. In this
paper, we define the winding number for a 3-colored point set P , and prove that a 3-colored point set P
in general position with a finite number of Steiner points Q added is quadrangulatable if and only if the
winding number of P is zero. When P ∪Q is quadrangulatable, we prove that |Q| ≤ 7n+34m−48

18
, where

|P | = n and the number of points of P in Conv(P ) is 2m.

1 Introduction

Let P be a point set arranged on the plane in general position, that is, no three points of
P lie on a straight line. Let Conv(P ) denote the convex hull of P . A quadrangulation on
P is a 2-connected bipartite plane graph G with each edge a straight segment such that
V (G) = P , and that the boundary of the unbounded face of G coincides with Conv(P ),
and that each bounded face of G is quadrilateral. We say that P is quadrangulatable if
there exists a quadrangulation on P . Figure 1 shows a point set P and a quadrangulation
on P .

1

Figure 1. A quadrangulatable point set P .

In this paper, we discuss whether a given point set P is quadrangulatable or not.
It is easy to see that not all point sets P are quadrangulatable, and that a necessary
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134 Quadrangulations on 3-colored point sets with Steiner points

condition for P to be quadrangulatable is that |P | ≥ 4 and Conv(P ) contains an even
number of points. It was proved in [3, 9] that these conditions are also sufficient for P
to be quadrangulatable. (Some papers focus on quadrangulations on point sets with all
bounded faces convex [4, 6].) For those problems, we refer the reader to the survey [10].

A k-colored point set P is one in which a k-coloring c : P → {1, 2, . . . , k} is fixed.
Let us study whether P is quadrangulatable so that no edge joins two points of P with
the same color. For this problem, we have to assume that Conv(P ) contains an even
number of points and that any two consecutive points on Conv(P ) have distinct colors.
It is easy to see that, for any k ≥ 2, there exists a k-colored point set which is not
quadrangulatable [5]. See the point set on the left side of Figure 2, in which each of the
black inner vertices b3 and b4 must be joined to the white vertices w1 and w2, but they
cannot be done simultaneously. Therefore, we introduce Steiner points for P , which are
auxiliary points put in the interior of Conv(P ) and each of which may be colored by any
of {1, 2, . . . , k}. See the right side of Figure 2.

w1 w1

w2w2

b1 b1

b2b2

b3

b4

b3
b4

1

Figure 2. A non-quadrangulatable 2-colored point set P and a quadrangulation
on P ∪Q with Steiner points Q added.

For 2-colored point sets, Alvarez et al. proved the following theorem.

Theorem 1 (Alvarez, Sakai and Urrutia [1]). Let P be a 2-colored point set on the plane
in general position with |P | = n ≥ 4 in which n

2 points are red and n
2 points are blue.

Then, adding a set Q of at most bn−2
6 c+bn4 c+1 Steiner points in the interior of Conv(P ),

P ∪Q is quadrangulatable.

In the same paper, Alvarez et al. constructed a 2-colored point set P with n points
requiring at least n

3 Steiner points for its quadrangulation.
On the other hand, they claimed that such a theorem does not hold for 3-colored

point set as in the following theorem.

Theorem 2 (Alvarez, Sakai and Urrutia [1]). Let P be a 3-colored point set with Conv(P )
hexagon such that the six points on Conv(P ) are colored by 1, 2, 3, 1, 2, 3 in this cyclic
order (shown at left in Figure 3). Then, even if we add any set Q of Steiner points in
the interior of Conv(P ), P ∪Q is not quadrangulatable.
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1

1

2

2 3

3

2

2

1

1

1

1

1

2

3

3

3

3

1

Figure 3. Non-quadrangulatable 3-colored point sets P , no matter how many
Steiner points are added.

2 Winding number of 3-colored point sets

In this section, we define the notion of “winding number” of a k-colored point set P on the
plane, which will describe a necessary condition for a 3-colored point set P to be quad-
rangulatable. The winding number is well known as an important tool for investigating
3-colorability of quadrangulations on surfaces from a topological point of view [2, 8].

Let P be a point set and a 3-coloring c of P be given by c : P → {1, 2, 3}. Suppose
that two consecutive vertices x and y on Conv(P ) are such that c(x) < c(y). Then we give
a direction to xy from x to y. In this way, we can give a direction to all edges on Conv(P ).
The winding number of P , denoted w(P ), is defined as the subtraction of the number of
directed edges along clockwise orientation of Conv(P ) and that along counterclockwise
orientation. It is easy to see that the example on the left side of Figure 3 has four directed
edges along clockwise orientation and two along counterclockwise orientation, and hence
this example has winding number 2.

Proposition 3. If a 3-colored point set P with a set of Steiner points added is quadran-
gulatable, then w(R) = 0.

Applying Proposition 3, we can see that the 3-colored point set shown at right in
Figure 3 is not quadrangulatable no matter how many number of Steiner points are added.
By Proposition 3, we can construct an arbitrarily large example, although Alvarez et al.
gave only one example.

3 Main theorem

In this section, we describe our main theorem for the quadrangulatability of 3-colored
point set possibly with Steiner points. Our main theorem is as follows.

Theorem 4. Let P be a 3-colored point set in general position. Adding a finite set Q
of Steiner points to the interior of Conv(P ), we can quadrangulate P ∪ Q if and only if
w(P ) = 0. If w(P ) = 0, then there is a set Q of Steiner points with |Q| ≤ 7n+34m−48

18
for which P ∪ Q is quadrangulatable, where |P | = n and the number of points of P in
Conv(P ) is 2m.
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Similarly to the construction of a 2-colored point set requiring many Steiner points
in [1], we can construct a 3-colored point set P requiring at least n

3 Steiner points for its
quadrangulation. Hence, if n is sufficiently larger than m in a 3-colored point set P , then
the estimation for |Q| in Theorem 4 is reasonably good, since we have |Q| ≈ 7n

18 in this
case. However, if n is close to m, it is very bad.

Our proof of Theorem 4 proceeds by showing the following two facts:
(1) Let P be a point set with the points lying on Conv(P ) = v1 · · · v2m in this order.

Suppose that one of the three colors appears only on some of v1, v3, . . . , v2m−1.
Then P is quadrangulatable by adding a finite number of Steiner points.

(2) Let P be a point set with winding number 0. Then the convex set bounded
by Conv(P ) can be partitioned into several convex sets by cutting along some
diagonals joining two points on Conv(P ) so that each convex set partitioned
satisfies the assumption in (1).

Note that the assumption for P in (1) guarantees w(P ) = 0, and that (1) can be
proved by a similar argument to the 2-colored case in [1]. So, the argument in (2) proves
that, if P satisfies w(P ) = 0, then P is partitioned into several point sets each of which has
winding number 0 and is quadrangulatable with a finite number of Steiner points added.
Thus, since the diagonals of Conv(P ) are doubled in our argument, our estimation for
the number of Steiner points added for P depends on the number of those convex sets
partitioned. Therefore, our estimation contains a term for the number m of edges on
Conv(P ). If we have a new method for proving Theorem 4, we might have an estimation
for the number of Steiner points which does not depend on m.
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Abstract. We show that every straight-line triangulation on n vertices contains at least (n−4)/5 simul-
taneously flippable edges. This bound is the best possible, and resolves an open problem by Galtier et al.

Introduction
A (geometric) triangulation of a point set P is a planar straight line graph with vertex
set P such that every bounded face is a triangle and the outer face is the exterior of
the convex hull of P . An edge e of a triangulation is flippable if it is adjacent to two
triangles whose union is a convex quadrilateral Q(e). A set E of edges in a triangulation
are simultaneously flippable if each edge in E is flippable and the quadrilaterals Q(e),
e ∈ E, are pairwise interior disjoint.

For a triangulation TP of a point set P , let fsim(T ) denote the maximum number
of simultaneously flippable edges in TP , and let fsim(n) = min(TP : |P |=n) fsim(TP ) be the
minimum of fsim(T ) over all n-element point sets in general position in the plane. The
value of fsim(n) played a key role in recent results on the number of various classes of
planar straight line graph embedded on given point sets [2, 4]. Hurtado et al. [5] proved
that every triangulation on n vertices admits at least (n− 4)/2 flippable edges, and this
bound cannot be improved in general. Galtier et al. [3] proved that fsim(n) ≥ (n− 4)/6,
and that there are triangulations TP with |P | = n such that fsim(TP ) ≤ (n− 4)/5, which
is the best possible. In this note we improve the lower bound to fsim(n) ≥ (n − 4)/5.
This resolves an open problem posed in [3] and restated in [1].

1 Lower bound
Fix a set P of n points in general position in the plane, h of which lie on the boundary
of the convex hull, and fix a triangulation T = TP . Then T has exactly 3n− h− 3 edges
and 2n− h− 2 bounded faces.

Separable edges. Following the terminology in [4], we say that an edge e = uv of the
triangulation is separable at vertex u if and only if there is a line `u through u such that
uv is the only edge incident to u on one side of `u. We use the following observations
from [5]: An edge uv of T is flippable if and only if it is separable at neither endpoint.
If u is a hull vertex, then only the two incident hull edges are separable at u. Suppose
now that u is a vertex in the interior of the convex hull. If u has degree 3, then all three
incident edges are separable at u. If u has degree 4 or higher, then at most two edges are
separable at u and these edges must be consecutive in the rotation of u.

3Research supported in part by NSF grants CCF-0830734 and CBET-0941538.
4Research supported in part by NSERC grant RGPIN 35586.
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138 Simultaneously flippable edges

Similarly to [5], we assign every non-flippable edge e to an incident vertex at which it
is separable. If e lies on the boundary of the convex hull, assign e to its counterclockwise
first hull vertex. If e is incident to an interior vertex of degree 3, then assign e to this
vertex. Otherwise assign e to one of its endpoints at which it is separable (breaking ties
arbitrarily).

Based on the above observations, we can now distinguish five types of vertices. Let h
be the number of hull vertices (with h ≥ 3) and let n3 be the number of interior vertices
of degree 3. Denote by n4,0, n4,1, and n4,2 the number of interior vertices of degree 4 or
higher to which 0, 1, and 2 non-flippable edges, respectively are assigned. We have

(1) n = h+ n4,2 + n4,1 + n4,0 + n3.

Using this notation, the number of non-flippable edges is exactly h+ 3n3 + 2n4,2 + n4,1.
Denoting by f the total number of flippable edges in T , we use the expression (1) to infer
that f = (3n− h− 3)− (h+ 3n3 + 2n4,2 + n4,1), or

(2) f = h+ n4,2 + 2n4,1 + 3n4,0 − 3.

Coloring argument. Galtier et al. [3] proved that every set of flippable edges in a
triangulation is 3-colorable in such a way that each color class is simultaneously flippable.
This implies, in particular, that every set of k flippable edges in a triangulation contains
a subset of at least k/3 simultaneously flippable edges. This result, combined with a
lower bound of (n − 4)/2 on the total number of flippable edges, immediately gives
fsim ≥ (n− 4)/6. We improve this lower bound to fsim(n) ≥ (n− 4)/5.

If f ≥ 3d(n− 4)/5e − 2, then the above 3-coloring argument implies that the largest
color class contains at least d(n − 4)/5e simultaneously flippable edges, as required. In
the remainder of the proof, we assume that

(3) f ≤ 3

⌈
n− 4

5

⌉
− 3 ≤ 3n

5
− 3.

Recall that we have f ≥ 1
2(n− 4) by the result of Hurtado et al. [5]. So the number

of flippable edges must be in the range 0.5n− 2 ≤ f < 0.6n− 3. Combining (2) and (3),
we have

(4)
3

5
n ≥ h+ n4,2 + 2n4,1 + 3n4,0.

We apply the 3-coloring result by Galtier et al. [3] only for a subset of the flippable
edges. We call a flippable edge e isolated if the convex quadrilateral Q(e) is bounded by 4
non-flippable edges. It is clear that an isolated flippable edge is simultaneously flippable
with any other flippable edge. Let f0 and f1 denote the number of isolated and non-
isolated flippable edges, respectively, with f = f0 +f1. Applying the 3-coloring argument
for the non-isolated flippable edges only, the number of simultaneously flippable edges is
bounded by

(5) fsim ≥ f0 +
f1

3
= (f − f1) +

f1

3
= f − 2

3
f1.

An auxiliary triangulation. Similarly to Hurtado et al. [5] and Hoffmann et al. [4],
we use an auxiliary triangulation T̂ . We construct T̂ from T as follows:

(1) Add an auxiliary vertex w in the exterior of the convex hull, and connect it to
all hull vertices.

(2) Remove all interior vertices of degree 3 (and all incident edges).
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Notice that only nonflippable edges have been deleted from T . In the triangulation T̂ ,
the number of vertices is n− n3 + 1 = h+ n4,0 + n4,1 + n4,2 + 1 and all faces (including
the unbounded face) are triangles. By Euler’s formula, the number of faces in T̂ is

(6) m = 2(n− n3 + 1)− 4 = 2h+ 2n4,2 + 2n4,1 + 2n4,0 − 2.

We 2-color the faces of T̂ as follows: Let all triangles incident to vertex w be white;
let all triangles obtained by deleting a vertex of degree 3 be white; for each of the n4,2

vertices (which have degree 4 or higher in T and two assigned consecutive separable
edges), let the triangle adjacent to both nonflippable edges be white; finally, color all
remaining triangles of T̂ gray. See Figure 1 for an example.

w

⇒ ⇒

w
T T̂ 2-colored T̂

Figure 1. The 2-colored auxiliary triangulation T̂ of a triangulation T .

Under this coloring, the number of white faces is mwhite = h+ n4,2 + n3. Using (6),
the number of gray faces is

mgray = m−mwhite

= (2h+ 2n4,2 + 2n4,1 + 2n4,0 − 2)− (h+ n4,2 + n3)

= h+ n4,2 + 2n4,1 + 2n4,0 − n3 − 2.(7)

Putting it all together. Observe that, if a flippable edge e of T lies on the common
boundary of two white triangles in the auxiliary graph T̂ , then e is isolated. That is, if
e is a nonisolated flippable edge in T , then it is on the boundary of a gray triangle in T̂ .
Since every gray triangle has three edges, the number of nonisolated flippable edges in T
is at most 3mgray. Substituting this into our bound (7) on the number of simultaneously
flippable edges, we have

fsim ≥ f −
2

3
f1 ≥ f − 2mgray

= (h+ n4,2 + 2n4,1 + 3n4,0 − 3)− 2(h+ n4,2 + 2n4,1 + 2n4,0 − 2− n3)

= 2n3 − h− n4,2 − 2n4,1 − n4,0 + 1.(8)

Finally, combining twice (1) minus three times (4), we obtain

2n− 3 · 3n

5
≤ 2(h+ n4,2 + n4,1 + n4,0 + n3)− 3(h+ n4,2 + 2n4,1 + 3n4,0);

n

5
≤ 2n3 − h− n4,2 − 4n4,1 − 7n4,0

< 2n3 − h− n4,2 − 2n4,1 − n4,0 + 1

≤ fsim.(9)

Under the condition (3), we have proved a lower bound of fsim > n/5; otherwise we have
fsim ≥ (n− 4)/5, as required.
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2 Upper bound constructions

In this section we construct an infinite family of geometric triangulations with at most
(n− 4)/5 simultaneously flippable edges. This family includes all triangulations con-
structed by Galtier et al. [3]. First observe that a straight line drawing of K4 has no
flippable edge. We introduce two operations that each increase the number of vertices
by 5, and the maximum number of simultaneously flippable edges by one.

⇒ ⇒

Figure 2. The two operations applied successively to K4.

One operation replaces an interior vertex of degree 3 by a configuration of 6 vertices
as shown at left in Fig. 2. The other operation adds 5 vertices in a close neighborhood
of a hull edge as shown at right in Fig. 2. Note that both operations maintain the
property that the triangles adjacent to the convex hull have no flippable edges. Each
operation creates three new flippable edges, which form a triangle, so no two of them are
simultaneously flippable. Each operation increases h+n4,2 by 3 and n3 by 2, as expected
based on the previous section.

Let Fsim denote the family of all geometric triangulations obtained from K4 via
applying an arbitrary sequence of the two operations. Then every triangulation T ∈ Fsim

on n vertices has at most (n − 4)/5 simultaneously flippable edges, attaining our lower
bound for fsim(n). We note that all upper bound constructions by Galtier et al. [3] can
be obtained by applying our 2nd operation successively to all sides, starting from K4.
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Abstract. Let P be a set of n points in the plane in general position. A subset hk of k points of P is
called a k-hole if there is no element of P contained in the interior of the convex hull of hk. A set B of
points blocks the k-holes of P if any k-hole of P contains an element of B in its interior. In this paper
we establish upper and lower bounds on the sizes of k-hole blocking sets.

Introduction

Let P be a set of n points on the plane in general position. We say that P is in convex
position if the elements of P are the vertices of a convex polygon. A convex polygon Q
with k vertices is called a k-gon of P if all of its vertices belong to P , and Q is a k-hole
of P if it contains no element of P in its interior. A point b blocks a k-hole Q of P if it
belongs to the interior of Q. A set of points B is a k-hole blocking set of P (“k-blocking
set of P ” for short) if every k-hole of P is blocked by at least one element of B.

The problem of finding point sets that block all the 3-holes of a point set has been
studied for some time now. It is known that, if a point set P with n elements has c
points on its convex hull, then the 3-holes of P can be blocked with exactly 2n − c + 3
points; see Katchalski and Meir [4], and Czyzowicz, Kranakis and Urrutia [1]. Recently,
Sakai and Urrutia proved in [6] that there are point sets such that 2n− o(n) points are
necessary to block all their 4-holes. Surprisingly, the problem changes substantially for
k-blocking sets, k ≥ 5. We will show that there are point sets, both in general and in
convex position, for which the number of points needed to block their 5-holes is as low as
a fifth of the number of triangles in a triangulation of the respective point set. In fact,
the number of points needed to block the 5-holes of a point set depends on the geometry
of the specific point set, unlike the case of blocking its triangles. For example, not all
sets P of n points in convex position require the same number of 5-blockers. It is worth
mentioning that the case k = 2, i.e., blocking the visibility between pairs of points, has
also received attention recently; see [5] and the references there.

1Partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT 80268 (Mexico).
2Partially suported by projects MTM2009-07242 and E58-DGA.
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Figure 1. (a) Illustration of Theorem 1.1. (b) Point set X4.

1 Blocking the 5-holes of point sets

In this section we study the problem of blocking the 5-holes of point sets on the plane.
We consider first point sets in convex position, and then point sets in general position.

1.1 Point sets in convex position

Theorem 1.1. Let P a set of n points in convex position. Then any 5-blocking set for
P has at least 2dn4 e − 3 elements.

Proof. Let B be a 5-blocking set of P with r elements. Let M be a planar geometric
matching of maximum cardinality of the elements of B; that is, a set of disjoint pairs of
the elements of B such that the line segments {`1, . . . , `b r

2
c} joining them do not intersect.

One at a time, extend them until they hit a line segment or a previously extended segment;
some of them might be extended to semi-lines or lines. When r is odd, take a line segment
that passes through the unmatched element of B and proceed as before; see Figure 1(a).

This will give us a decomposition of the plane into exactly d r2e + 1 convex regions.
Each of these regions can contain at most 4 elements of P ; otherwise we would have an
unblocked 5-hole. Then |B| = r ≥ 2

⌈
n
4

⌉
− 3. �

Károlyi, Pach and Tóth [3] constructed families of point sets which they called almost
convex sets as follows: Let R1 be a set of two points in the plane. Assume that we already
defined R1, . . . ,Rj such that

(1) Xj :=R1 ∪ · · · ∪ Rj is in general position,
(2) the vertex set of the convex hull Γj of Xj is Rj , and
(3) any triangle determined by Rj contains precisely one point of Xj in its interior.

Let z1, . . . , zr denote the vertices of Γj in clockwise order around Γj , and let εj , δj > 0.
For any 1 ≤ i ≤ r, let `i denote the line through zi orthogonal to the bisector of the angle
of Γj at zi. Let z′i and z

′′
i be the two points in `i at distance εj from zi. Now move z′i

and z′′i away from Γj by a distance δj in the direction orthogonal to `i, and denote the
resulting points by u′i and u

′′
i , respectively.

We can choose εj and δj to be sufficiently small such that Rj+1 := {u′i, u′′i |i = 1, . . . , r}
also satisfies the above conditions. Conditions 1 and 2 are straightforward, so we will
verify only the third.

If a ∈ {u′i, u′′i }, b ∈ {u′m, u′′m} and c ∈ {u′s, u′s} are three points of Rj+1, for three
distinct indices i,m, s, then any point of Xj+1 :=Rj+1 ∪Xj which belongs to the interior
of ∆abc must coincide with the point of Xj in the interior of ∆zizmzs. If we have a = u′i,
b = u′′i and c ∈ {u′m, u′′m}, with i 6= m, then the only point inside ∆abc is zi. Clearly
|Xm| = 2m+1 − 2 and |Rm| = 2m, for m ≥ 1. See Figure 1(b). Now we prove:
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Theorem 1.2. There is a point set P in convex position with n = 2m that has a 5-blocking
set with only n

2 − 2 elements.

Proof. Let P = Rm and B = Xm−2. Then |P | = n and |B| = n
2 − 2. We will show that

B is a 5-hole blocking set for P . Suppose that B is not a 5-hole blocking set for P ; then
we have a 5-hole of P with no point of B in its interior. Take a triangulation of such a
5-hole —it will have 3 triangles of P . By construction, each of them contains exactly one
element of Xm−1, since B = Xm−1\Rm−1. Then these three points have to be elements of
Rm−1 and they form a triangle contained in the 5-hole. By construction, such a triangle
contains precisely one element of Xm−2. Now, since B = Xm−2, the 5-hole contains an
element of B, which is a contradiction. Thus our result follows. �

1.2 Points in general position

Observe that there are point sets in general position for which roughly 2n
3 points are

necessary to block all their 5-holes. Take a set of points P that admits a convex pen-
tagonization of its convex hull, and whose convex hull has five vertices. The number of
pentagons in any pentagonization of the convex hull of P is b2n−7

3 c; clearly any 5-blocking
set of P has at least b2n−7

3 c points. We show next that there exist, surprisingly, families
of point sets for which all of their 5-holes can be blocked with fewer than b2n−7

3 c points.

(a) A point set in general position in which n
3
− 2

points are sufficient and necessary to block all of
its convex 5-holes.

(b) The general construction when k = 11.

Figure 2

Theorem 1.3. For any m there is a point set P in general position with n = 3m points
such that m− 2 points are sufficient and necessary to block all the 5-holes of P .

Proof. Suppose that m is odd. Take a circle C and m sufficiently small disjoint chords
{D1, . . . ,Dm} of C of equal length and evenly placed along C. Each chord Di determines a
small arc Ai of C, joining its endpoints. For each chord Di select three points of the plane
as follows: The first one is the midpoint of Ai, and two points on Di are equidistant and
close enough to its mid-point so that the shaded region shown in Figure 2(a) is empty.
We can think that these 3 points become one fat point of an m point set Sm in convex
position.

Note that any convex 5-hole of P has at most two vertices in each fat point of Sm.
Thus any 5-hole of P contains a point in at least three fat points of Sm. Let P ′ be the
subset of P containing the points in the middle of Ai, i = 1, . . . ,m. It is known [1, 4]
that the set of triangles of P ′ can be blocked with a set Qm of m−2 points. It is now easy
to see that these points can be chosen in such a way that they also block any triangle
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containing a point in three different fat vertices of Sm. It is not hard to see that we
need at least m − 2 points to block all the 5-holes of P . For n even, we use a similar
construction. Our result follows. �

To finish this section, we prove:

Theorem 1.4. Let P be a set of points in general position. Then any 5-blocking set of
P has at least 2dn9 e − 3 points.

As in the proof of Theorem 1.1, we match the points of a 5-blocking set and subdivide
the plane into convex regions. The main difference is that we now use a well known result
of Harborth [2] which states that a point set with ten points always has a 5-hole.

2 Blocking k-holes for larger k

Now we consider the problem of blocking convex k-holes, k ≥ 6. Let P be a set of n
points in convex position. By a similar argument as in the proof of Theorem 1.1, it can
be verified that any k-blocking set for P has at least 2d n

k−1e− 3 elements. This bound is
essentially tight.

To see the tightness for odd k, construct a point set P in the following way: First
define integers m and r by n = k−1

2 m + r, 0 < r < k−1
2 (here we assume further that

r 6= 0). We have m = b 2n
k−1c. Let Q = {q1, . . . , qm+1} be the set of vertices of a regular

(m + 1)-gon, and let C be the circumcircle of this polygon. We replace each qi by k−1
2

points lying on a sufficiently short arc of C (Figure 2(b)), except qm+1, which we replace
by r points. Denote by Pi the set of these k−1

2 or r points, and let P = P1 ∪ · · · ∪ Pm+1.
Then any k-hole with vertices in P has vertices in at least three Pi’s. Thus the

elements of a triangle blocking set for Q (or the points obtained by shifting them slightly
if necessary) can block all convex k-holes of P . As in the proof of Theorem 1.3, take a
triangle blocking set for Q with (m+ 1)− 2 = b 2n

k−1c − 1 elements, which will also block
all k-holes of P .
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Abstract. Two non-crossing geometric graphs on the same set of points are compatible if their union
is also non-crossing. In this paper, we prove that every graph G that has an outerplanar embedding
admits a non-crossing perfect matching compatible with G. Moreover, for non-crossing geometric trees
and simple polygons, we study bounds on the minimum number of edges that a compatible non-crossing
perfect matching must share with the tree or the polygon. We also give bounds on the maximal size of
a compatible matching (not necessarily perfect) that is disjoint from the tree or the polygon.

Introduction

A geometric graph is a simple graph G where the vertex set V (G) is a finite set of points
S in the plane and each edge in E(G) is a closed straight-line segment connecting two
points in S. A geometric graph is non-crossing if no two edges cross except at a common
vertex.

Throughout the paper, all the graphs considered will be geometric and non-crossing.
For this reason, we will use the term “graph” (“tree”, “matching”...) meaning that the
graph (tree, matching...) is geometric and non-crossing. Moreover, we will assume that
no three points are collinear.

Two graphs are said to be compatible if they have the same vertex set and their
union is non-crossing. A graph that is compatible with a given graph G will be called
G-compatible. In addition, if they have no edge in common, we call them disjoint.

Given a set S of n points in the plane and a graph G on S, in this paper we study the
two following problems of compatibility. On one hand, to find a perfect matching M such
that it is G-compatible and the number of common edges betweenM and G is minimum.
On the other hand, to find a matching M such that it is G-compatible, disjoint from G,
and the number of edges of M is maximum. Similar problems on compatible graphs have
been studied in [2, 3, 4] and some related augmentation problems for geometric graphs
appear in [1, 5].

Since these numbers depend on the set of points S and on the graph G, we have
focused on bounding the values defined below. Given a set S with an even number n
of points, a tree T (S) on S, and a T (S)-compatible perfect matching M , let us define
m(T (S),M) to be the number of edges of M not contained in T (S). Let us also define
mTree(n) = min|S|=n {minT (S){maxM m(T (S),M)}} for n even, i.e., the worst case of the

2Partially supported by projects MTM2009-07242 and E58-DGA.
3Partially supported by projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.
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146 Compatible matchings in geometric graphs

maximal number of non-shared edges. In the case of non necessarily perfect matchings, let
d(T (S),M) be the number of edges of a T (S)-compatible matching M that is disjoint from
T (S) and let dTree(n) = min|S|=n {minT (S){maxM d(T (S),M)}}. Note that the definitions
of mTree(n) and dTree(n) are identical, except that the maximum is taken over different
families of matchings.

By defining in a similar way the values mPolygon(n) and dPolygon(n) for simple poly-
gons, the main results that we have obtained are:

Theorem 0.1. For n arbitrarily large,

0 ≤ mTree(n) ≤ 13;

n/10 ≤ dTree(n) ≤ n/4;

n/20 ≤ mPolygon(n) ≤ n/4;

(n− 3)/4 ≤ dPolygon(n) ≤ n/3.

1 Compatible perfect matchings

As a first result, we give the following theorem characterizing a set of graphs for which a
compatible perfect matching always exists.

Theorem 1.1. Given a set S of n (even) points and a graph G on S drawn as an
outerplanar geometric graph on top of S, there is always a G-compatible perfect matching.

Figure 1. Obtaining a perfect matching for an outerplanar geometric graph.

Figure 1 shows an example of how to find this perfect matching. The method is similar
to the one described in [1]. First, we add a big convex polygon passing through the top
most point on S and containing all the points. Then, we join the non-trivial connected
components of the graph by adding new edges (and consequently new vertices), until a
(weakly) simple polygon is obtained. Given a component, the added edge (thick line in
the figure) is part of the ray that emanates from the top most point of the component
until it hits an edge. This ray bisects the reflex angle at the top most point. Note that the
added vertices are convex in the polygon. Now, the (weakly) simple polygon is divided
into convex regions by throwing rays (dashed lines in the figure) from the reflex vertices
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of the polygon. Using the dual graph associated to this subdivision, we can guarantee
an assignment of an even number of vertices to each region. Then, the perfect matching
(gray edges in the figure) is obtained by matching the vertices of each convex region.

If we drop the condition of outerplanarity (all the vertices in the unbounded face), then
a G-compatible perfect matching does not always exist. Figure 2(a) shows an example
of a graph G formed by a tree (which is outerplanar) plus an edge. The seven points
{a, b, c, d, e, f, g} can only be linked with one of the six points {1, 2, 3, 4, 5, 6}, and hence
there are no perfect matchings compatible with this graph G.

(a) (b)
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Figure 2. On the left, a graph G without any G-compatible perfect matching.
On the right, a tree T for which any T -compatible perfect matching must share
almost all its edges with the tree.

2 Compatible matchings for trees and simple polygons

In this section, we briefly explain how to obtain the bounds given in Theorem 0.1. The up-
per bounds are obtained by analyzing special cases of trees and simple polygons. Maybe,
the most surprising bound is the upper bound for mTree(n). This upper bound, which is
a constant instead of a function of n, is based on the tree shown in Figure 2(b). For this
tree, any compatible perfect matching must share almost all its edges with the tree (at
least n/2− 13 edges). The five points {1, 2, 3, 4, 5} can only be matched with the points
{a, b, c, d, e} and the same for the points {1, 2, 3, 4, 5} and {a, b, c, d, e}. Then, necessarily
point 1′ has to be matched to point 2′, point 3′ to point 4′ and so on. Only the 24 points
not in the convex chain 1′, 2′, 3′... and the two last points of the chain, m′ − 1 and m′,
can be matched with edges not in the tree.

Figure 3 shows the graphs used to obtain the upper bounds on dTree(n) (Figure 3a),
mPolygon(n) (Figure 3b) and dPolygon(n) (Figure 3c). In Figure 3a, to obtain a matching
without sharing edges, we can link the points on the zig-zag path among them or link a
point (or more) of an arrow with some point on the zig-zag path. Since the number of
points on the zig-zag path is n/4, the size of a matching compatible and disjoint from
the tree is at most n/4 edges. In Figure 3b, we have a simple polygon P formed by two
convex chains, C1 and C2, with 3k − 1 and k + 1 points, respectively. Observe that, to
obtain a perfect matching M , we cannot join two non-consecutive points of C1. Hence,
we need to use internal diagonals of P joining a point of C1 to a point of C2 (except the
first point), and then the number of this type of diagonals is at most k in M . Figure 3c
is analyzed in a similar way.
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(a) (b) (c)

1

2

k

k + 1

C2

C1

Figure 3. Graphs used to obtain the upper bounds on dTree(n), mPolygon(n)
and dPolygon(n).

Regarding the lower bounds, we can obtain them by constructing specific (perfect)
matchings for any tree or polygon. For instance, given a tree T , we construct three T -
compatible matchings, disjoint from T , of sizes at least bl/4c, b(n−2l)/4c and b(n−l)/6c,
respectively, where l is the number of leaves of T . So, if the number of leaves is for
example 2, then we have a matching of size b(n − 4)/4c (the maximum of the three
previous sizes) and, if the number of leaves is n − 1, then we have a matching of size
b(n − 1)/4c. With this method, the worst case appears when the number of leaves is
2n/5. In this case, we can only guarantee a matching of size n/10.

The methods for obtaining the (perfect) matchings in the proof of Theorem 0.1 are
based on several technical results on simple polygons. For example, let P be a simple
polygon on S having r reflex vertices and c convex vertices, and let S0 ⊆ S be a subset of
vertices containing all the reflex vertices and c0 convex vertices. Then, we can show that
there is a P -compatible matching among the vertices of S0 of size at least b(c0 − 1)/2c
edges with all its edges being internal diagonals of P . We can also prove that if S0 has
h chains (a sequence {pk, pk+1, . . . , pk+(l−1)} of consecutive vertices of P is a chain if
all these vertices belong to S0 and neither pk−1 nor pk+l belong to S0), then there is a
P -compatible matching among the vertices of S0 that is disjoint from P , its size is at
least bh/2c edges and each edge of the matching is an internal diagonal of P .

Finally, let us remark that, for n points in convex position, we can prove tight bounds
for trees and paths. In the case of trees, mTree(n) = d(n − 2)/6e and dTree(n) = dn/4e.
For paths, mPath(n) = dn/4e and dPath(n) = d(2n)/5e, where mPath(n) and dPath(n) are
defined in a similar way to mTree(n) and dTree(n).

References
[1] M. Abellanas, A. García, F. Hurtado, J. Tejel and J. Urrutia, Augmenting the connectivity of geo-

metric graphs, Computational Geometry 40 (2008), 220–230.
[2] O. Aichholzer, S. Bereg, A. Dumitrescu, A. García, C. Huemer, F. Hurtado, M. Kano, A. Márquez,

D. Rappaport, S. Smorodinsky, D. Souvaine, J. Urrutia and D. Wood, Compatible geometric match-
ings, Computational Geometry 42 (2009), 617–626.

[3] A. García, C. Huemer, F. Hurtado and J. Tejel, Árboles geométricos compatibles, In Proc. XII
Encuentros de Geometría Computacional, Valladolid, 2007, 161–167.

[4] M. Ishaque, D. L. Souvaine and C. D. Tóth, Disjoint compatible geometric matchings, In Proc. 27th
Annual Symposium on Computational Geometry (Paris, 2011), ACM Press, to appear.

[5] C. D. Tóth, Connectivity augmentation in planar straight line graphs, Europ. J. of Combinatorics,
to appear. (Preliminary version in: Proc. Intl. Conf. on Topological and Geometric Graph Theory,
Paris, 2008, pp. 51–54.)



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011

Contact numbers for congruent sphere packings
Károly Bezdek1

1 Department of Mathematics and Statistics, University of Calgary, Canada
bezdek@math.ucalgary.ca

Abstract. We give estimates on the maximum number of touching pairs in a packing of n congruent
spheres in Euclidean 3-space for all n > 1.

Introduction

Let Ed denote the d-dimensional Euclidean space. The contact graph of an arbitrary
finite packing of unit balls (i.e., of an arbitrary finite family of non-overlapping unit
balls) in Ed is the (simple) graph whose vertices correspond to the packing elements and
whose two vertices are connected by an edge if and only if the corresponding two packing
elements touch each other. One of the most basic questions on contact graphs is to find
the maximum number of edges that a contact graph of a packing of n unit balls can have
in Ed. In 1974 Harborth [4] proved the following optimal result in E2: the maximum
number c(n) of touching pairs in a packing of n congruent circular disks in E2 is precisely
b3n−

√
12n− 3c, implying that

lim
n→+∞

3n− c(n)√
n

=
√

12 = 3.464 . . . .

Some years later, the author [1] proved that the number of touching pairs in an arbitrary
packing of n > 1 unit balls in E3 is less than

6n− 1

8

(
π√
18

)− 2
3

n
2
3 = 6n− 0.152 . . . n

2
3 .

The main purpose of this extended abstract is to announce further improvements on the
latter result. In order to state our theorem in a proper form, we need to introduce a bit
of additional terminology. If P is a packing of n unit balls in E3, then let C(P) stand
for the number of touching pairs in P, that is, let C(P) denote the number of edges
of the contact graph of P and call it the contact number of P. Moreover, let C(n) be
the largest C(P) for packings P of n unit balls in E3. Finally, let us imagine that we
generate packings of n unit balls in E3 in such a special way that each and every center
of the n unit balls chosen is a lattice point of the face-centered cubic lattice with minimal
non-zero lattice vectors of length 2. Then let Cfcc(n) denote the largest possible contact
number obtained in this way for packings of n unit balls. (Recall that, according to [3],
this lattice gives the largest possible density for unit ball packings in E3, namely π√

18

with each ball touched by 12 others.) Clearly,

Cfcc(2) = C(2) = 1, Cfcc(3) = C(3) = 3, Cfcc(4) = C(4) = 6.

The following is our main theorem.
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Theorem 0.1. (i) C(n) < 6n− 0.695n
2
3 for all n ≥ 2.

(ii) Cfcc(n) < 6n− 3 3√18π
π n

2
3 = 6n− 3.665 . . . n

2
3 for all n ≥ 2.

(iii) 6n− 3
√

486n
2
3 < Cfcc(n) ≤ C(n) for all n = k(2k2+1)

3 with k ≥ 2.

(iv) Cfcc(5) = C(5) = 9, Cfcc(6) = C(6) = 12, Cfcc(7) = C(7) = 15, Cfcc(8) =
C(8) = 18, Cfcc(9) = C(9) = 21, C(10) ≥ 25, C(11) ≥ 29, C(12) ≥ 33, and
C(13) ≥ 36.

As an immediate result, we get

Corollary 0.2.

0.695 <
6n− C(n)

n
2
3

<
3
√

486 = 7.862 . . .

for all n = k(2k2+1)
3 with k ≥ 2.

The following was noted in [1]. Due to the Minkowski difference body method, the
family PK = {t1 + K, t2 + K, . . . , tn + K} of n translates of the convex body K in
Ed is a packing if and only if the family PKo = {t1 + Ko, t2 + Ko, . . . , tn + Ko} of n
translates of the symmetric difference body Ko = 1

2(K + (−K)) of K is a packing in
Ed. Moreover, the number of touching pairs in the packing PK is equal to the number of
touching pairs in the packing PKo . Thus, for this reason and for the reason that if K is a
convex body of constant width in Ed, then Ko is a ball of Ed, and Theorem 0.1 extends
in a straightforward way to translative packings of convex bodies of constant width in E3.

Also, we mention that the nature of contact numbers changes dramatically for non-
congruent sphere packings. For more details on that, we refer the interested reader to
the elegant paper [6] of Kuperberg and Schramm.

In the rest of this extended abstract we prove (ii) also because it motivates the more
involved proof of (i), and then we give a short proof of (iii). Our proof of (iv) is based
on a combinatorial and metric case analysis.

1 Proof of (ii)

First, recall that if Λfcc denotes the face-centered cubic lattice with minimal non-zero
lattice vectors of length 2 in E3 and we place unit balls centered at each lattice point of
Λfcc, then we get the fcc lattice packing of unit balls, labelled by Pfcc, in which each unit
ball is touched by 12 others such that their centers form the vertices of a cuboctahedron.
(Recall that a cuboctahedron is a convex polyhedron with 8 triangular faces and 6 square
faces having 12 identical vertices, with 2 triangles and 2 squares meeting at each vertex,
and 24 identical edges, each separating a triangle from a square. As such, it is a quasireg-
ular polyhedron, i.e., an Archimedean solid, being vertex-transitive and edge-transitive.)
Second, it is well-known (see [2] for more details) that the Voronoi cell of each unit ball in
Pfcc is a rhombic dodecahedron (the dual of a cuboctahedron) of volume

√
32 and thus,

the density of Pfcc is π√
18
.

Now, let B denote the unit ball centered at the origin o ∈ Λfcc of E3 and denote by
P = {c1+B, c2+B, . . . , cn+B} the packing of n unit balls with centers {c1, c2, . . . , cn} ⊂
Λfcc in E3 having the largest number Cfcc(n) of touching pairs among all packings of n unit
balls being a sub-packing of Pfcc. (P might not be uniquely determined up to congruence,
in which case P stands for any of those extremal packings.)



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011 151

The following two facts follow from the above description of Pfcc in a straightforward
way. Let B1,B2, . . . ,B13 be 13 different members of Pfcc such that each ball of the
family B2,B3, . . . ,B13 touches B1. Moreover, let B̄i be the closed ball concentric with
Bi having radius r̄ =

√
2, 1 ≤ i ≤ 13. Then the boundary bd(B̄1) of B̄1 is covered by

the balls B̄2, B̄3, . . . , B̄13, that is,

(1) bd(B̄1) ⊂ ∪13
j=2B̄j .

In fact, r̄ is the smallest radius with the above property. Moreover,

(2)
nvol3(B)

vol3(
⋃n
i=1 (ci + r̄B))

<
π√
18

= 0.7404 . . . .

As a next step, we apply the isoperimetric inequality to
⋃n
i=1 (ci + r̄B):

(3) 36πvol23

(
n⋃

i=1

(ci + r̄B)

)
≤ svol32

(
bd

(
n⋃

i=1

(ci + r̄B)

))
.

Thus, (2) and (3) yield in a straightforward way that

(4) 15.3532 . . . n
2
3 = 4

3
√

18πn
2
3 < svol2

(
bd

(
n⋃

i=1

(ci + r̄B)

))
.

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti, where
Ti ⊂ {1, 2, . . . , n} stands for the family of indices 1 ≤ j ≤ n for which dist(ci, cj) = 2.
Then let S̄i = bd(ci + r̄B) and let c̄ij be the intersection of the line segment cicj with
S̄i for all j ∈ Ti. Moreover, let CS̄i(c̄ij ,

π
6 ) (resp. CS̄i(c̄ij ,

π
4 )) denote the open spherical

cap of S̄i centered at c̄ij ∈ S̄i having angular radius π
6 (resp. π

4 ). Clearly, the family
{CS̄i(c̄ij , π6 ), j ∈ Ti} consists of pairwise disjoint open spherical caps of S̄i; moreover,

(5)

∑
j∈Ti svol2

(
CS̄i(c̄ij ,

π
6 )
)

svol2
(
∪j∈TiCS̄i(c̄ij , π4 )

) =

∑
j∈Ti Sarea

(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
4 )
) ,

where uij = 1
2(cj − ci) ∈ S2 = bd(B) and C(uij ,

π
6 ) ⊂ S2 (resp. C(uij ,

π
4 ) ⊂ S2) denotes

the open spherical cap of S2 centered at uij having angular radius π
6 (resp. π4 ). Now, the

geometry of the cuboctahedron representing the 12 touching neighbours of an arbitrary
unit ball in Pfcc (see also (1)) implies in a straightforward way that

(6)

∑
j∈Ti Sarea

(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
4 )
) ≤ 6(1−

√
3

2
) = 0.8038 . . . ,

with equality when 12 spherical caps of angular radius π
6 are packed on S2.

Finally, as Sarea
(
C(uij ,

π
6 )
)

= 2π(1− cos π6 ) and svol2
(
CS̄i(c̄ij ,

π
6 )
)

= 2π(1−
√

3
2 )r̄2,

it follows that (5) and (6) yield that

svol2

(
bd

(
n⋃

i=1

ci + r̄B

))
≤ 4πr̄2n− 1

6(1−
√

3
2 )

2

(
2π

(
1−
√

3

2

)
r̄2

)
Cfcc(n)

(7) = 8πn− 4π

3
Cfcc(n).
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Thus, (4) and (7) imply that

(8) 4
3
√

18πn
2
3 < 8πn− 4π

3
Cfcc(n).

From (8), the inequality Cfcc(n) < 6n − 3 3√18π
π n

2
3 = 6n − 3.665 . . . n

2
3 follows in a

straightforward way for all n ≥ 2. This completes the proof of (ii) in Theorem 0.1.

2 Proof of (iii)

It is rather easy to show that for any positive integer k ≥ 2 there are n(k) = 2k3+k
3 =

k(2k2+1)
3 lattice points of the face-centered cubic lattice Λfcc such that their convex hull

is a regular octahedron K ⊂ E3 of edge length 2(k − 1) having exactly k lattice points
along each of its edges. Now, draw a unit ball around each lattice point of Λfcc ∩K and
label the packing of the n(k) unit balls obtained in this way by Pfcc(k). It is easy to
check that if the center of a unit ball of Pfcc(k) is a relative interior point of an edge
(resp. of a face) of K, then the unit ball in question has 7 (resp. 9) touching neighbours
in Pfcc(k). Last but not least, any unit ball of Pfcc(k) whose center is an interior pont
of K has 12 touching neighbours in Pfcc(k). Thus, the contact number C (Pfcc(k)) of the
packing Pfcc(k) is equal to

6
2(k − 2)3 + (k − 2)

3
+ 36

(k − 3)2 + (k − 3)

2
+ 42(k − 2) + 12 = 4k3 − 6k2 + 2k.

As a result, we get that

(9) C (Pfcc(k)) = 6n(k)− 6k2.

Finally, 2k3

3 < n(k) implies that 6k2 < 3
√

486n
2
3 (k), and so (9) implies (iii) in a

straightforward way.
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Abstract. An L-line segment in the plane consists of a vertical line segment and a horizontal line
segment having a common endpoint. In this talk, we consider some problems on geometric graphs in the
plane lattice, whose vertices are points of the plane lattice and whose edges are L-line segments.

Introduction

A geometric graph in the plane is a graph drawn in the plane whose edges are straight
line segments. For a point x in the plane, an L-shaped line consisting of a vertical ray
and a horizontal ray emanating from x is called an L-line. Similarly, an L-shaped line
segment consisting of a vertical line segment and a horizontal line segment with common
corner is called an L-line segment (see Fig. 1). We consider some problems on geometric
graphs in the plane lattice whose edges are L-line segments. A set X of points in the
plane is in general position if no three points of X lie on the same line. On the other
hand, a set S of points in the plane lattice is said to be in general position if every vertical
line and horizontal line passes through at most one point of S. Some results related to
this paper can be found in [1].

1 Geometric spanning trees on two sets of points

For a set X of points in the plane, we can draw a non-crossing geometric spanning tree
on X, each of whose edges is a line segment joining two points of X. This spanning tree
is denoted by tree(X). When a set R of red points and a set B of blue points are given in
the plane in general position, the minimum number of crossings of tree(R) and tree(B)
is given in the next theorem, in which conv(X) denotes the convex hull of X.

Theorem 1.1 (Tokunaga [3]). Let R and B be two disjoint sets of red points and blue
points in the plane, respectively, such that R ∪ B is in general position. Let τ(R,B)
denote the number of unordered pairs {x, y} of vertices of conv(R ∪ B) such that one of
{x, y} is red and the other is blue, and xy is an edge of conv(R ∪ B). Then τ(B,R) is
an even number, and the minimum number of crossings in tree(R) ∪ tree(B) among all

2Partially supported by research grant by Japan Society for the Promotion of Science, Grant-in-Aid
for Scientific Research (C).
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154 Geometric graphs in the plane lattice

pairs (tree(R), tree(B)) is equal to

max

{
τ(R,B)− 2

2
, 0

}
.

In particular, tree(R) and tree(B) can be drawn without crossings if and only if the
inequality τ(B,R) ≤ 2 holds.

We first consider a similar problem in the plane lattice, and obtain a similar result,
as shown in the following Theorem 1.2. For a set S of points in the plane lattice, the
rectangular hull of S, denoted by rect(S), is the smallest closed rectilinear rectangular
enclosing S, each of whose edges is a vertical or horizontal line segment ((2) in Fig. 1).
In particular, every edge of rect(S) contains at least one point of S.

(1) (2)

Figure 1. (1) Two L-line segments joining two points; and (2) A rectangular
hull of a set of points in the plane lattice in general position.

For a set X of points in the plane lattice in general position, a spanning tree on X
each of whose edges is an L-line segment connecting two points of X is called a spanning
tree on X with L-line segments. A non-crossing spanning tree on X with L-line segments
and with maximum degree at most 3 is denoted by L-tree3(X).

(1) (2)τ∗(R,B)=4 τ∗(R,B)=2

Figure 2. Two spanning trees L-tree3(R) and L-tree3(B) with minimum num-
ber of crossings, where R and B are disjoint sets of red and blue points in the
plane lattice in general position.
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Theorem 1.2. Let R and B be two disjoint sets of red points and blue points in the
plane lattice, respectively, such that R ∪ B is in general position. Let τ∗(R,B) denote
the number of unordered pairs {x, y} of points of R ∪ B such that one of {x, y} is red
and the other is blue, and x and y are on the consecutive edges of rect(R ∪ B). Then
τ∗(R,B) is even and 0 ≤ τ∗(R,B) ≤ 4, and there exist two non-crossing spanning trees
L-tree3(R) and L-tree3(B) on R and B respectively such that the crossing number in
L-tree3(R) ∪ L-tree3(B) is equal to 0 if τ(R,B) ≤ 2, and 1 otherwise (see Fig. 2).

Theorem 1.2 can be proved by using Lemma 1.3 below and by considering the situation
given in Fig. 4. However we omit their proofs.

A
p

(1)

q p q

p

(2)

q

p
q

q

p

q
p

D

C

B

A

p

(3)

q

p
CB

X
Y

D

Figure 3. A spanning tee T on P with L-line segments and maximum degree
at most three given in Lemma 1.3.

Lemma 1.3. Let Xi, 1 ≤ i ≤ 4, be disjoint rectangles in the plane such that Xi and Xi+1

have a boundary edge in common for every 1 ≤ i ≤ 3, as shown in Fig. 3, where A = X1,
B = X2, C = X3 and D = X4. Let P be a set of points in the plane lattice in general
position contained in X1 ∪X2 ∪X3 ∪X4. Then there exists a non-crossing spanning tree
T on P with L-line segments and maximum degree at most three such that the leftmost
point of D has degree at most two in T .

2 Embedding trees in the plane lattice

We next consider the following conjecture and present some partial results on it. Let T
be a tree and P a set of |T | points in the plane lattice in general position, where |T |
denotes the order of T . If T can be drawn on P without crossing such that each edge of
T is an L-line segment connecting two points of P , then we say that T can be drawn on
P with L-line segments (see Fig. 5).
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R1

red point blue point

l3

l5

l2

l4

l7l8

l6

l9
R2

R3

R4

R5

B1

B2

B3

B4

Figure 4. Horizontal line segments and vertical line segments.

Conjecture 2.1. Let T be a tree with maximum degree 3, and let P a set of |T | points
in the plane lattice in general position. Then T can be drawn on P with L-line segments
without crossing (see Fig. 5).

(2) (3)(1)

a

b
a

b

Figure 5. (1) A tree T with maximum degree 3; (2) A set P of |T | points in
the plane lattice in general position; (3) T is drawn on P with L-line segments
without crossing.
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Abstract. Let G and F be maximal planar graphs that contain perfect matchings. If G and F have
the same number of vertices, then there is a sequence H0, H1, . . . , Ht of maximal planar graphs, also
containing perfect matchings, with the property that G is isomorphic to H0, F is isomorphic to Ht and,
for i = 0, 1, . . . , t− 1, Hi+1 is obtained from Hi by a diagonal transformation.

Introduction

Let xuv and yuv be two adjacent faces of a maximal planar graph G such that xy is not
an edge of G. A diagonal transformation or diagonal edge flip of G consists of deleting the
edge uv and adding the edge xy. Wagner [4] proved that any two maximal planar graphs
G and F with the same number of vertices are equivalent under diagonal transformations:
There is a sequence H0, H1, . . . ,Ht of maximal planar graphs such that G is isomorphic
to H0, F is isomorphic to Ht and, for i = 0, 1, . . . , t − 1, Hi+1 is obtained from Hi by a
diagonal transformation.

Let G be a maximal planar graph having a perfect matching. As shown in Fig. 1, a
maximal planar graph (G−uv)+xy, obtained from G by a diagonal transformation, may
contain no perfect matchings. Here we show that if both graphs G and F admit perfect
matchings, then the graphsH0, H1, . . . ,Ht can be chosen within the set of maximal planar
graphs having perfect matchings.

In the proof of our main result, we use a geometric version of diagonal transformations.
Let P be a set of points in general position in the plane. A geometric triangulation of P
is a set of triangles with vertices in P and pairwise disjoint interiors such that their union
is the convex hull CH(P ) of P and no triangle in T contains a point of P in its interior.

If xuv and yuv are adjacent triangles of a triangulation T of P such that xuyv is a
convex quadrilateral, then a new triangulation (T −uv) +xy of P is obtained by deleting
the edge uv and adding the edge xy. This operation is often referred to as a geometric
edge flip.

The graph of triangulations T (P ) of P is an abstract graph whose vertices are the
triangulations of P in which T1 and T2 are adjacent if one is obtained from the other
by performing a geometric edge flip. Lawson [3] proved that T (P ) is always connected,
and Houle et al. [2] proved that the subgraph TM (P ) of T (P ), induced by the set of
triangulations of P that contain perfect matchings, is also connected.

1Partially supported by projects MICINN MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.
2Partially supported by Conacyt, México 83856.

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

157



158 On diagonal transformations

Figure 1. The graph G on the left contains a perfect matching, while the graph
(G− uv) + xy on the right does not

1 Preliminary results

In his proof, Wagner showed that any maximal planar graph G is equivalent under diag-
onal transformations to the graph 4n shown in Fig. 2. The following technical variation
will be used in the proof of our main result.

Figure 2. Graph 4n

Lemma 1.1. Let G be a maximal plane graph with n vertices. Denote by u, v and w the
vertices in the outerface of G and by x1, x2, . . . , xn−3 the remaining vertices of G. If G
contains the edges ux1, vx1, x1x2, x2x3, . . . , xn−4xn−3 and xn−3w, then there is a sequence
G = G0, G1, . . . , Gt of maximal plane graphs, each with outerface uvw and containing all
the edges ux1, vx1, x1x2, x2x3, . . . , xn−4xn−3 and xn−3w, such that Gt is isomorphic to
4n and, for i = 0, 1, . . . , t− 1, Gi+1 is obtained from Gi by a diagonal transformation.

Proof. Let Eu = {uxi : i = 1, 2, . . . , n − 3}, Ev = {vxi : i = 1, 2, . . . , n − 3} and
k(G) = |(Eu ∪ Ev)\E(G)|. If k(G) = 0, then Eu ∪ Ev ⊂ E(G) and G is isomorphic
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to 4n. We proceed by induction assuming k(G) ≥ 1 and that the result holds for any
maximal plane graph G′ with V (G′) = V (G), with outerface uvw, containing all the
edges ux1, vx1, x1x2, x2x3, . . . , xn−4xn−3, xn−3w and such that k(G′) < k(G).

Without loss of generality, we also assume that Eu\E(G) 6= ∅. Let xn−2 = w. Since
ux1 and uxn−2 are edges of G, there are integers k and m with k+ 1 < m such that uxk
and uxm are edges of G but uxk+1, uxk+2, . . . , uxm−1 are not edges of G. Because G is a
maximal planar graph and xkxk+1, xk+1xk+2, . . . , xm−1xm are edges of G, xk, u, xm must
be a face of G. Let xl ∈ V (G) be such that xk, xl, xm is the other face of G incident with
the edge xkxm (see Fig. 3). Notice that k < l < m since G is planar and contains all the
edges xkxk+1, xk+1xk+2, . . . , xm−1xm. Therefore uxl /∈ E(G).

Figure 3. xk, u, xm and xk, xl, xm are the faces of G incident with the edge xkxm

The graph G′ = (G− xkxm) + uxl is obtained from G by a diagonal flip and is such
that k(G′) = k(G)− 1. The result follows by induction. �

For any geometric triangulation T of P , we denote by G(T ) the skeleton graph of T .
That is, the abstract graph whose vertices and edges are the points in P and the edges
in T , respectively.

Remark 1.2. Let T1 and T2 be geometric triangulations of P . If T2 is obtained from T1

by a geometric edge flip, then G(T2) is obtained from G(T1) by a diagonal transformation.

2 Main result

For any positive even integer n, let Sn denote the set of all maximal planar graphs with
n vertices that admit a perfect matching.
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Theorem 2.1. Let n ≥ 4 be an even integer. For every graph G ∈ Sn, there is a sequence
H0, H1, . . . ,Ht of graphs in Sn such that G is isomorphic to H0, 4n is isomorphic to Ht

and, for i = 0, 1, . . . , t− 1, Hi+1 is obtained from Hi by a diagonal transformation.

Proof. Let G be a maximal planar graph with a perfect matching. By a well known result
of Fary [1], there is an embedding H of G in the plane where all edges are straight line
segments. Clearly G is the skeleton graph of a geometric triangulation T of the point set
P = V (H); without loss of generality we assume that P is in general position.

Let u, v and w be the vertices in the outerface of H and denote by luv the line
containing u and v. Let x1, x2, . . . , xn−3 be the remaining vertices ofH, labelled according
to their distance to the line luv.

Let T ′ be any geometric triangulation of P containing all the edges ux1, vx1, x1x2,
x2x3, . . . , xn−4xn−3 and xn−3w. Notice that T ′ also contains a perfect matching. Since
the graph TM (P ) is connected, there is a sequence T = T0, T1, . . . , Ts = T ′ of geometric
triangulations of P having perfect matchings such that for i = 0, 1, . . . , s − 1, Ti+1 is
obtained from Ti by performing a geometric edge flip. It follows from Remark 1.2 that,
for i = 0, 1, . . . , s− 1, G(Ti+1) is obtained from G(Ti) by a diagonal transformation.

By Lemma 1.1, there is a sequenceG(Ts) = Gs, Gs+1, . . . , Gt of maximal plane graphs,
each containing the edges ux1, vx1, x1x2, x2x3, . . . , xn−4xn−3, xn−3w (and therefore a per-
fect matching), such that Gt is isomorphic to 4n and, for i = 0, 1, . . . , t − 1, Gs+i+1 is
obtained from Gs+i by a diagonal transformation. The theorem holds since G is isomor-
phic to H = G(T ). �
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Abstract. When is the Cartesian product of two graphs the graph of a polytope, of a cellular sphere,
or even of a combinatorial manifold? In this note, we determine all 3-polytopal complexes whose graph
is the Cartesian product of a 3-cycle by a Petersen graph. Through this specific example, we showcase
certain techniques which seem relevant to enumerate all polytopal complexes realizing a given product.

In this note, we investigate the question of finding polytopes (or more generally polytopal
complexes) with a prescribed graph. This harks back to Steinitz’s Theorem [1], which
characterizes the graphs of 3-polytopes as the 3-connected planar graphs, and thus ensures
that 3-polytopality is polynomially decidable. In contrast, Richter-Gebert proved that
deciding 4-polytopality is NP-hard, as a consequence of his work on realization spaces
of 4-polytopes [2]. Motivated by this computational threshold, we focus on deciding
4-polytopality for the subclass of Cartesian products of graphs.

Polytopality of Cartesian products of graphs was initially studied in [3]. By definition,
polytopality is preserved by taking products: the graph of a product of polytopes is the
product of their graphs. We are interested in the reciprocal question: can a product of
non-polytopal graphs be polytopal? The answer differs significantly according to whether
we require the realizing polytope to be simple or not [3, Theo. 2.2 and Prop. 2.7]:

(1) A Cartesian product of regular graphs is the graph of a simple polytope if and
only if its factors are.

(2) There exist (non-simple) polytopal products of non-polytopal regular graphs.
This note studies the 4-polytopality of the product of a cycle by a (small) non-

polytopal 3-regular graph, for which the above-mentioned results do not apply. Focusing
on the product K3 × Pet of a 3-cycle by a Petersen graph, we illustrate several useful
techniques to understand 4-polytopality of Cartesian products in general. Our approach
consists in enumerating all 3-polytopal complexes whose graph is K3 × Pet, and requires
two steps: we first compute all possible facets (3-dimensional faces) of all possible 3-poly-
topal complexes realizing K3 × Pet, and we then study all possible ways to glue these
facets along ridges (2-dimensional faces) to form a complex with the desired graph.

2Supported by Netherlands Organization for Scientific Research (NWO) Vidi grant 639.032.917.
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CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

161



162 Polytopal complexes realizing products of graphs

Definitions

Cartesian products of graphs. The (Cartesian) product of two graphs G and H
is the graph G × H whose vertex set is V (G×H) :=V (G)× V (H) and with edge set
E(G×H) := (V (G)× E(H)) ∪ (E(G)× V (H)). We call G-edges (or blue edges) the
edges of G×H that are products of an edge of G by a vertex of H, and H-edges (or red
edges) the ones obtained as the product of a vertex of G by an edge of H. See Fig. 1(b).

Polytopal complexes. We consider a d-polytopal complex to be a closed regular combi-
natorial d-dimensional manifold, each of whose faces is (combinatorially) a convex poly-
tope. In other words, a d-polytopal complex can be seen as a set of d-polytopes together
with a combinatorial (i.e., not geometric) gluing rule of their facets such that:

(1) the link of any k-face is a combinatorial (d− k − 1)-sphere, and
(2) any pair of faces meets in exactly one lower-dimensional (possibly empty) face.

We say that a d-polytopal complex realizes a graph G if its 1-skeleton is isomorphic to G.

Example 1 (A 4-polytopal complex realizing K3×Pet). Let 4 denote a 3-cycle, seen as
a cellular decomposition of the circle S1. Let C denote the cellular decomposition induced
by the embedding of the Petersen graph Pet in the projective plane P (see Figure 1(c)).
Then the Cartesian product 4×C induces a cellular decomposition of S1×P consisting of
six cycles of three pentagonal prisms, whose graph isK3×Pet. In this note, we enumerate
all other 3-polytopal complexes realizing K3 × Pet.

(a) (b) (c) (d)

Figure 1. The Petersen graph (a), its product with a 3-cycle (b), and its em-
bedding into the projective plane (c). The refinement of a missing triangle (d).

Refinement. When looking for a 3-polytopal complex K realizing a graph, we can
always assume that no facet of K contains a missing triangle, that is, a 3-cycle that does
not bound a triangular 2-face. Otherwise, we can always refine any facet with a missing
triangle T into two polytopal cells that share the triangle T . See Figure 1(d). Note that
the complex K could still miss a triangle whose edges belong to three distinct facets of K.

Finding all possible facets

Our first step to enumerate all possible 3-polytopal complexes K realizing K3 × Pet is
to understand the possible candidates for the facets of K. As mentioned earlier, we can
assume that the complex K is refinement minimal: no facet contains a missing triangle.
Thus, the facet candidates are given by the induced 3-connected planar subgraphs of
K3 × Pet with no separating 3-cycle. Assisted by a computer enumeration program, we
obtain the graphs of the triangular, pentagonal and hexagonal prisms (as expected), plus
the graphs of the four polytopes presented in Figure 2.
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Figure 2. The four non-simple facet candidates for a realization of K3 × Pet.

It turns out that these seven polytopes all have red degree at most 2. We use this
property to discard the four candidates of Figure 2, by considering the vertex figures
of K. Remember that the vertex figure of a vertex v in a d-polytopal complex C is the
(d−1)-sphere bounding the faces of C incident to v: it has a k-cell for each (k+1)-face of C
incident to v. In our situation, each vertex figure bounds a 3-polytope with 5 vertices,
which can only be an Egyptian pyramid or a bipyramid over a triangle. Furthermore, the
blue and red colors on the edges of the product K3×Pet induce a coloring of the vertices
of our vertex figures. Figure 3 depicts all possible configurations.

Figure 3. All 3-polytopes with 2 blue vertices (stars) and 3 red vertices (circles).

In fact, not all these configurations can appear as vertex figures of K:
• The first one has two opposite blue vertices on its square base. This would imply
that the facet of K corresponding to this square has a missing 2-face delimited
by two blue edges, which is forbidden by refinement minimality of K.
• The next three have 2-faces with three red vertices, which is impossible since all
facet candidates for K have red degree at most 2.

Thus, only the last two configurations of Figure 3 can appear as vertex figures of K,
and all the facets of K are simple. This discards the candidates of Figure 2:

Proposition 2. The only facet candidates for a refinement minimal 3-polytopal complex
realizing K3 × Pet are the triangular, pentagonal and hexagonal prisms.

Gluing facets together

In this second step, we study the possible ways of gluing the facet candidates for K.
Since only triangular (resp. pentagonal, resp. hexagonal) prisms contain triangles (resp.
pentagons, resp. hexagons), we get the following structural result:

Lemma 3. The triangular prisms in K form disjoint cycles of triangular prisms, obtained
as products of the 3-cycle K3 by disjoint cycles of Pet. Any pentagonal (resp. hexagonal)
prism of K belongs to a cycle of three pentagonal (resp. hexagonal) prisms, obtained as
the product of the 3-cycle K3 by a 5-cycle (resp. 6-cycle) of Pet.
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Figure 4. The projection representation of three possible 3-dimensional refine-
ment minimal polytopal complexes whose graph is K3 × Pet.

Projecting the facets of K on the Petersen graph, we obtain a family of 5-cycles
(pentagonal prisms of K), a family of 6-cycles (hexagonal prisms of K), and a family of
isolated edges (triangular prisms of K) such that:

(1) each edge of Pet is covered precisely twice by the elements of these families;
(2) any two elements of these families intersect in at most one edge;
(3) the family of edges form disjoint cycles in Pet.

We have represented three possibilities in Figure 4. The leftmost one has six 5-cycles and
represents the 3-polytopal complex constructed in Example 1. The middle one has five
5-cycles and five isolated edges (omitted in the picture). The rightmost one has three
5-cycles, one 6-cycle (blue in the picture) and nine isolated edges (omitted again).

Proposition 4. These three complexes are the only refinement minimal 3-polytopal com-
plexes realizing K3×Pet. None of them is a combinatorial sphere (even less the boundary
complex of a 4-polytope).

Remark 5. From our description of refinement minimal complexes realizing K3×Pet, we
can now obtain all complexes realizing K3 × Pet by coarsening along triangular 2-faces.
The realizations of Figure 4 give rise to one, four, and seven non-isomorphic realizations,
respectively. Thus, we obtain in total twelve non-isomorphic realizations.

Conclusion

The approach discussed in this note enables us to enumerate all 3-polytopal complexes
realizing certain Cartesian products of graphs. As another example, we can prove in a
similar way that there is a unique 3-polytopal complex realizing K3 × K3,3. Neverthe-
less, our method only applies to small products (less than 50 vertices, say) for obvious
complexity reasons. It leaves open Ziegler’s question [4] regarding the polytopality of the
Cartesian product of two Petersen graphs, which initially motivated this research.
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Abstract. We present a novel method based on Delaunay triangulation for shape recognition. The
method is able to represent invariant arcs in a topological context and use that representation for general
sign recognition. We utilize Delaunay triangulation for optimal weight assignment and apply maximum
bipartite algorithm for shape matching. Extensive runtime analysis indicates that the proposed Delaunay
triangulation based method had a significantly better detection rate for the test images than other current
methods.

Introduction

Image understanding is a classical problem which originated several decades ago [5]. Ap-
plication areas that have been extensively studied are military target recognition, image
recognition, object class recognition, image processing and enhancement, face recogni-
tion, biometric recognition, Augmented Reality (AR), and motion capture. One defining
characteristic of the Visual Sign Recognition problem is the presence of features that are
virtually identical if scale and/or rotation are ignored. This property makes the task of
shape matching difficult. Such inherent indistinctiveness cannot be properly addressed
by a local matching algorithm that considers individual features. The relative locations
of these features are important to perform recognition. Furthermore, the distinctiveness
of features does not depend on the feature itself but rather on the class of objects being
examined. Therefore, a group of training objects must be observed and learned to un-
derstand which features are more reliable. Thus, algorithms with simple correspondence
techniques that solely rely on features are not sufficient to properly identify geometrically
similar objects from a pool of similar shapes (such as traffic signs).

Literature review

Considerable progress has been made in object recognition domain using feature based
classification [6, 7]. However, these methods often fail to detect objects manifested by
geometric shapes that are often found in signs and landmarks [7]. Recent studies con-
firm that most state-of-the-art computer vision techniques struggle to detect geometric
properties in objects, resulting in confusion and misclassification [7, 8]. Some authors
proposed to discard rotation invariance and consider feature directionality to match the
object. In such approaches, the template is rotated at regular intervals and inserted
into the database [4, 7, 8]. The matching is performed against a single rotated (and/or
scaled) instance of a template. The problem, however, is that this method only works
when the shape contains enough distinctive features relative to other objects in the data-
base. Also, the accuracy of the method is dependent on the frequency of the rotation
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interval. To address the above problems, we propose an original method based on De-
launay triangulation (DT), which considers topological relationships among objects. DT
has been proven highly beneficial in many applied problems pertaining to space decom-
position, biometric processing, information systems, navigation, clustering, and pattern
analysis [3, 10].

Methodology based on Delaunay triangulation

To establish the uniqueness of an object class, we present an original method based on
topological relationships to incorporate the relative positions of the geometric features.
At first, we considered to establish a topology through a boundary-arc relational graph
or clustering from the transitive closure of the relations graph and applying original
Maximum Flow Bipartite Matching algorithm [10]. However, there were many issues
with methods being computationally expensive and not practical. To provide an optimal
topological representation of features, we propose training and matching algorithm to
identify objects based on Delaunay triangulation. Each vertex representing a matched
2D object feature, called CART feature (introduced by the authors in [1]), has three
directional vectors that define the orientation and characteristics of the edge, with DT
constructed on these feature vectors as sites. Next, each graph-edge in the DT represents
an augmented feature vector which is constructed using the edge and the CART feature
vectors (Fig. 1). The entries are the two simpletones of the CART feature vectors that
are joined by the DT edge, the angles of the directional vectors (three for each CART
feature), and the length of the DT edge. Then, the characteristics vector of each CART
feature is added, containing information such as sharpness, skew, scale, region influence
and rotation histogram. The weights are assigned in a consistent manner which is de-
pendent on the type of feature being compared. For Simpletone matching, three weights
are needed. Two weights are for the matching priority of the RGB colors, and the third
weight is for the dot product of the 2-Simpletone (rod-like patterns in color subspace)
directions. In order to compute the distance between two feature vectors, we use the
sum of weighted distances of all sub-components. Most distance computations are fairly
simple, except the Simpletone distances. These are the “S-tone 1” and “S-tone 2” compo-
nents of the feature vector. The distance between two 2-simpletones (or 2.5-simpletones)
is computed as the area of the minimal surface (or the maximum tension surface) that
contains both Simpletones. A good way to approximate this surface is by triangulating
the four endpoints of the Simpletone [2]. There are four such triangulation possible. The
triangulation with the minimum total surface area is chosen as the distance. The area
of a triangle in three dimensional space is computed using the cross product of the two
edge vectors. When computing distances between clusters in 2.5-simpletones, the closest
distance between Pi and Qj is chosen as the edge length.

For training, we assume that we have a number of instances of the object that we
call “the templates”. Each of these templates contains a single instance of the object
which occupies most of the area. A large number of templates should be collected for
training in such a way that the background is randomized and the instances cover all
aspects of small variations in perspective, lighting, etc. We devised a method based on
Delaunay triangulation to adjust the weight matrix in such a way that the impact of the
background and the unstable clutter of feature on the matching cost is attenuated. The
weight is then assigned to be the inverse of the computed cumulative cost. After the
training process is completed, we have a set of templates each consisting of a Delaunay
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Figure 1. The feature vector for a Delaunay edge consists of elements from the
vertices (green and red represents the two endpoints) and the edge (blue).

triangulation and feature vectors for all vertices and edges. In addition, each DT consists
of a weight matrix that maps each edge to an array of weights wk(e, k), where e belongs to
DT (t) for the given template t and the subcomponent index k for subcomponent Sk. For
matching, we consider a test image against a given template. The test image is processed
using the Simpletone analysis, followed by CART and the feature vector extraction. The
template is rescaled in the range [0..1] with respect to the test image at regulag interval.
For higher efficiency, we consider a correspondence matrix and examine scale at several
levels. Initially, we consider a few evenly distributed scales and pick the best match.
In the next level we reduce the range and further refine the scale (i.e., in our case 32
different scases, in 3 levels). For each scale, we find a matching cost is computed using
the Maximum Bipartite Matching Algorithm [2] (Figure 3). One crucial optimization is
to prune Delaunay edges using the connectivity graph and randomization.

Experimentation. We implemented the proposed method and performed exhaustive
experimental studies on performance of the object recognition system.

Figure 2. The two cases describe the response of the training algorithm for
two sets of training templates for a feature L.

First, training is carried out by providing positive and negative examples of the ob-
ject class we are attempting to detect. After this, object recognition system takes as
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input a test image and decides whether the image contains an instance of the object
class. We analyzed the detection characteristic of the proposed DT based method and
compare it with the result obtained from Haar Cascade [9] by creating a training data-
base of 128 stop signs cropped from natural images. In trial with 20 signs and non signs,
the detection rate at 80% had a 65% FAR, while our DT CART method showed much
better performance. The runtime profile indicates that our method outperforms the Haar
Cascade for the given set of test images. At 90% detection rate, the Haar method had a
28.67% error rate. In comparison, the false alarm rate for our CART based DT method
was only 5.33% at 90% detection rate. The training time for the Haar method was very
high (five day training). The training time for our method was 2 hours. The method
achieves near real-time performance with an average 6.73 seconds per frame speed or 9
frames per minute.

Figure 3. Example of a template and corresponding DT.

Conclusion

We presented a novel method based on DT for shape recognition. The method is able to
represent invariant arcs in a topological context and use that representation for general
sign recognition. Delaunay triangulation was utilized for optimal weight assignment and
then maximum bipartite algorithm ws applied for shape matching. Extensive runtime
analysis indicates that the proposed DT-based method has a significantly better detection
rate for the test images than popular methods such as Haar transform.
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Abstract. In this paper we present an ongoing research work on Delaunay triangulations using GPU-
based algorithms. The proposed algorithm is based on Lawson’s incremental insertion, taking special
care to avoid concurrent insertion of points in triangles and conflicts between edge swaps.

Introduction

Graphics Processing Units (GPUs) are specialized processors which use a highly par-
allel structure that makes them perfect for solving problems that can be partitioned
into independent and smaller parts. The development of CUDA (Compute Unified De-
vice Architecture) and some programming languages such as OpenCL (Open Computing
Language), makes GPUs attractive to solve problems in a parallel way.

Delaunay triangulation is one of the fundamental topics in Computational Geometry
and it is used in many areas such as terrain modelling, finite element methods, pattern
recognition, computer graphics, data interpolation, robotics, etc. Although the 2D De-
launay triangulation can be computed in O(n log n) time, where n is the number of input
points, it still consumes a lot of time, especially for current applications that often need to
work with millions of points. In such cases, a parallel algorithm is necessary to accelerate
its computation.

In Lawson’s incremental algorithm, when a point is inserted, the triangle that contains
it is found, and three new edges are inserted to attach the new vertex to the vertices of the
containing triangle. Next, a recursive procedure tests whether the new vertex lies within
the circumcircles of any neighbouring triangles. Each affirmative test triggers an edge
flip that removes a locally not Delaunay edge. Each edge flip reveals two additional edges
that must be tested. Thus, two points lying in the same triangle cannot be inserted at the
same time, and two points lying in different triangles can not be processed independently
if they share neighbours. In this paper we propose a GPU-based algorithm in OpenCL
language that avoids concurrent insertion of points in triangles and conflicts between edge
swaps.

1 Related work

Several methods [3, 4, 7, 9] for parallel Delaunay triangulation use the divide and conquer
strategy to construct partial Delaunay triangulations in subregions, and finally merge
these partial triangulations to get the result. However, this kind of algorithms have the
following drawbacks. First, the merge phase is quite complex because it involves not only
building the faces connecting the subregions but also correcting of existing faces in the
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subregions to satisfy the Delaunay criterion. In the worst case, these corrections affect
the whole triangulation. Second, the merge phase is done by just one processor and thus
it limits the efficiency of the algorithm.

Parallel 2D Delaunay triangulation algorithms [1, 2, 5, 6] avoiding the divide and
conquer strategy are inspired on Bowyer–Watson’s algorithm that is based on incremental
insertion with cavity retriangulation. Firstly, these algorithms create a coarse triangula-
tion of a subset of points. Secondly, the triangles are partitioned into areas and assigned
to processors and the parallel insertion begins. Synchronizations across area boundaries
are necessary.

In [8], a randomized insertion is used as a base for the parallel algorithm. The tri-
angulation is structured in a directed acyclic graph (DAG) that stores the history of its
changes. This algorithm consists of three phases: location, subdivision and legalization
where the circumcircle criterion is applied and, if necessary, the local part of the triangu-
lation is modified. All three phases of the algorithm need to access the DAG structure.
A node of the DAG can be accessed simultaneously by several threads. When any of
these threads needs to modify it, synchronizations among the threads are implemented
to avoid artifacts in the resulting triangulation.

Other methods [10, 11] are based on computing by GPU a discrete Voronoi diagram
of the points, store it in a texture, and use it to derive the Delaunay triangulation. The
drawback of these methods is that the accuracy of the triangulation strongly depends on
the resolution of the texture.

2 Our approach

In CUDA, the parallelizable parts of an algorithm are executed by a collection of threads
grouped into blocks of user defined size running in parallel. The code to be executed by
each thread is written in a kernel where different types of memory can be used: registers
(local memory of a thread), global (accessible to thread) and shared (accessible by every
thread of a block). Atomic operations are used to operate on a memory position without
allowing any other access to that memory position during the process.

After the initialization phase, we follow an iterative process that finishes when all
input points are inserted into the Delaunay triangulation. In each iteration we insert as
many points as possible with the condition that only one point can be inserted into one
single triangle. Each iteration is divided into three steps: location, where the triangle
containing every non inserted point is determined; insertion, where at most one point is
inserted in a triangle; and swapping, where non Delaunay edges are swapped avoiding
conflicts between them.

2.1 Initialization phase

In order to use as efficiently as possible the GPU’s resources the following data structures
are used. Let n be the number of vertices. Vertices is an array of size n+ 3 where each
element contains a position (x, y) in 2D. Its first three positions corresponds to the three
vertices of an auxiliary large triangle that contains all points. Triangles is a 2n + 1
sized array of indices to Vertices where each three consecutive indices correspond to
a triangle. Position zero of this array corresponds to the auxiliary triangle. The array
Neighbours contains indices to neighbors and future neighbors triangles of each triangle.
Each six consecutive indices are related to a triangle. The first three correspond to
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neighbors of the triangle and the last three to future neighbors of the triangle before
executing a swapping. Other arrays storing results of intermediate steps are needed to
facilitate the general process. For each vertex, the Inserted array contains a flag to
know whether the vertex has been inserted or not, and the ContainingTriangle array
indicates which triangle contains the vertex. Initially, all the vertices are contained in
the auxiliary triangle. For each triangle, the VertexToInsert and the EdgeToSwap arrays
respectively record the vertex to be insert in the triangle and the edge of the triangle to
be swapped. All arrays are allocated in the global memory.

2.2 Location step

This step updates ContainingTriangle and VertexToInsert by the use of a kernel. Each
thread operates on a vertex of index i. If vertex v = Vertices[i] is not inserted yet into
the triangulation (Inserted[i] = 0) and it is not contained into its assigned triangle t =
ContainingTriangle[i], a walking process is launched along direction cv, where c is the
centroid of t, until the triangle t′ containing v is reached. If v lies on an edge, it is assigned
to the triangle with less index incident to the edge. Then, ContainingTriangle[i] is
updated with t′ and VertexToInsert[t′] is updated with v by the use of an atomic
operation. In this manner, VertexToInsert[t′] contains the first vertex arriving to t′.

2.3 Insertion step

This step inserts the vertices stored in VertexToInsert into the triangulation by the use
of three kernels. Each thread of the kernels operates on a vertex of index i. Let triangle
t = ContainingTriangle[i]. If i = VertexToInsert[t], triangle t will be subdivided in
three triangles of indices t, 2i+ 1 and 2i+ 2. The first kernel checks, for each neighbour
t′ of t, if neigbour t of t′ will be 2i+ 1 or 2i+ 2 after the subdivision of t. In that case,
this information is stored in the future neighbours part of Neighbours[t′]. The second
kernel effectively inserts i in t by using its future neighbours.

2.4 Swapping step

This step swaps edges and is separated in three kernels that operate on a triangle of
index t. The first kernel selects, if there exists, an edge of t to be swapped and stores it
in EdgeToSwap. An edge is candidate to be swapped if it does not fulfill the Delaunay
criterion and it is the only one edge of the adjacent neighbour triangle candidate to be
swapped. Then three cases arise: (1) Only one edge can be swapped —then it is selected
to be swapped if t is lower than the adjacent neighbour; (2) two edges are candidates to
be swapped —then one of them is chosen for swapping; and (3) three edges are candidates
to be swapped —then again one of them is chosen for swapping. If an edge has been
selected, let t′ be the neighbouring triangle of t sharing the edge. Then, all triangles t′′
adjacent to the quadrilateral determined by t and t′ are updated in the following way.
If after the edge swapping, neighbour t of t′′ will be changed by t′ or viceversa, this
information is stored in the future neighbours part of Neighbours[t′′]. The second kernel
effectively swaps the selected edge, while the third kernel updates the neighbours with the
information stored in future neighbours. These three kernels are executed sequentially
until no edge can be selected.
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3 Results

The algorithm has been executed ten times on each of five different sets of random points.
Table 1 shows the mean running times (the input set of vertices is previously loaded
in memory) and mean number of iterations for computing the Delaunay triangulations.
These results have been carried out on a computer equipped with an Intel(R) Pentium(R)
D CPU 3.00GHz, 3.5GB RAM and a GPU NVidia GeForce GTX 580/PCI/SSE2 which
has a cached global memory, reducing the access to global memory problems and time.

n 25600 52100 256000 521000 1000000
Mean time (s) 0.088 0.146 0.665 1.283 2.373
Mean iterations 18 19 21 23 24

Table 1. Behaviour of the proposed algorithm.

As it has been pointed out in the abstract, in this paper we present an ongoing re-
search. Future work will consist in studying the behaviour of our approach on different
point distributions and comparing its performance with the current parallel implementa-
tions.
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Abstract. Let S be a set of n + m sites, of which n are red and have weight wR, and m are blue and
weigh wB . The objective of this paper is to calculate the minimum value of wR such that the union of the
red Voronoi cells in the weighted Voronoi diagram of S is a connected set. The problem is solved for the
multiplicatively-weighted Voronoi diagram in O((n+m)2 log(nm)) time and for the additively-weighted
Voronoi diagram in O(nm log(nm)) time.

Introduction

Suppose that S = R ∪ B is a set of n + m sites, n of which are red and m of which
are blue; and let VD(S) denote the ordinary Voronoi diagram of S. A Voronoi cell of
VD(S) is said to be red (resp. blue) if the corresponding generator site is red (blue). The
goal of this paper is to connect the red cells in order to allow one to travel within red
regions following paths that do not cross blue regions. If this is not possible for VD(S),
then there are several options to make this happen; for instance, one can add red sites
or delete some blue sites, or even move sites. The approach chosen in the following is
to assign different weights to red and blue sites and therefore consider their weighted
Voronoi diagram (using multiplicatively- and additively-weighted distances) [5]. All red
sites are assigned the same weight wR, as all blue sites are assigned wB. Consequently,
the main goal is to calculate the values of wR and wB for which the union of red cells
is connected. As it is easy to realise, in these conditions the only relevant data is the
relationship between wR and wB. Therefore, and assuming wB constant, the problem
can be restated as calculating the minimum weight w∗R of the red sites that connects all
red cells under the appropriate diagram.

Let VDw(S) denote the weighted Voronoi diagram of S. Bear in mind that VDw(S) =
VD(R) when the weight of R tends to infinity, which assures the existence of a solution
to our problem. It is clear that the structure of VDw(S) depends on the weight of R

2Partially supported by Projects MTM2008-05043 and HP2008-0060.
4Supported by FCT through CIDMA of University of Aveiro.
7Partially supported by Projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.
8Supported by FCT through CIDMA of University of Aveiro and grant SFRH/BPD/66572/2009.
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and if wR is small enough then VDw(S) = VD(B). Starting from this case, increasing
wR will expand the red cells and eventually two of them will meet and form one red
connected component of VDw(S). The point where these two cells meet is called a
critical point. As red cells keep expanding, more will connect at different weights and
each of these weights will be defined by a sole critical point. The sought weight is the one
that finally unites the last two disconnected red components of VDw(S). Consequently,
finding these critical points is the key to solve the problem. The remainder of this paper is
divided in two sections that correspond to the two types of weighted distances in question:
multiplicatively- and additively-weighted distance, respectively.

1 Multiplicatively-weighted distance

The weighted distance used in this section is called the multiplicatively-weighted distance.
Given a point p on the plane and si ∈ S, its distance is defined by dM (p, si) = 1

wdE(p, si),
where dE is the Euclidean distance and w should be replaced by the current weight of
R if si ∈ R or wB if si ∈ B. The multiplicatively-weighted distance characterises the
multiplicatively-weighted Voronoi diagram of S [2]. As previously mentioned, critical
points are the key to calculate w∗R, and in order to find them we need to understand how
red cells form clusters on this diagram. To this end, the following definition characterises
the events where the red cells of VDw(S) meet. Let b(si, sj) = {p ∈ R2 : dM (p, si) =
dM (p, sj)} denote the bisector between sites si and sj .

Definition 1.1. If wR is the exact weight of R when two red cells of VDw(S) meet for
the first time at point c, then c is a critical point of type I if there exist red sites ri and rj
and blue sites bk and bl such that {c} = b(ri, bk)∩ b(ri, bl)∩ b(rj , bk)∩ b(rj , bl). Otherwise
c is a type II critical point: if wR < wB and c belongs to the blue cell of VDw(S) defined
by bk then {c} = b(ri, bk)∩ b(rj , bk); if wR > wB and c belongs to the red cell of VDw(S)
defined by ri then {c} = b(ri, bk) ∩ b(ri, bl).

1

(a) c

c

(b)

c

(c)

r

2r
1b2b 1b1b1b 2b 3b 4b 5b

1r 2r

3r 1r

1b1b

2b

3b

Figure 1. VD(R) is shown in a dashed red trace and VD(B) in dark blue.
(a) Point c is a type I critical point. (b) Point c is a type II critical point for
wR < wB . (c) Point c is a type II critical point for wR > wB .

Figure 1(a) shows clearly that a type I critical can also be found as an intersection
point between VD(R) and VD(B). As the weight of R increases, the red cells defined
by r1 and r2 will meet at c and form one red connected component of VDw(S). Figures
1(b) and 1(c) illustrate two examples of critical points of type II. Figure 1(c) also shows
that the regions of the multiplicatively-weighted Voronoi diagram may be disconnected.
Therefore, a critical point is also created when a region meets itself (in this case, point c
at the intersection of the two red cells defined by r1).
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Proposition 1.2. Red connected components of VDw(S) can only meet at critical points
of type I or II.

Proposition 1.3. Red connected components of VDw(S) can only meet O(n+m) times.

A method to find candidates to critical points follows directly from Definition 1.1. As
previously noted, candidates to type I critical points are easily found since they exist on
the intersections of the edges of VD(R) with VD(B). If {c} = b(ri, rj) ∩ b(bk, bl), then
the weight wR needed to reach c with red sites is given by

dM (c, ri) = wB
dE(c, ri)

dE(c, bk)
.

Candidates to type II critical points depend on the relationship between wR and wB to
be found on edges of VD(R) or on edges of VD(B). However, the procedure to find
them is similar and so only the first case will be described: candidates to critical points
on edges of VD(R) that fall in the interior of cells of VD(B). Since an edge of VD(R)
may cross several cells of VD(B) (see Figure 1(b)), one decides which is the blue site
responsible for c by computing all the intersection points between such edge of VD(R),
b(ri, rj), and VD(B). For each intersection point pk that corresponds to a blue site bk,
calculate dM (pk, ri)− dM (pk, bk). This distance will be zero at c and therefore studying
how this value alternates along b(ri, rj) is the solution to find the cell of VD(B) where
c is. Once blue site bk is found, one can work out the functions that describe b(ri, bk)
and b(rj , bk), both depending on the unknown weight of R. Finally, c is found at the
minimum weight of R for which these bisectors are tangent.

Proposition 1.4. There are O(nm) candidates to critical points.

This proposition shows that there is a gap between the actual number of critical
points and the number of candidates to critical points. To conclude, a binary search will
then locate w∗R amongst these candidates, as stated in the following theorem.

Theorem 1.5. Concerning the multiplicatively-weighted distance, weight w∗R can be found
in O((n+m)2 log(nm)) time.

Proof. The first task to find candidates to critical points is to construct and intersect
VD(B) and VD(R), which takes O(nm log(n+m)) time [3]. According to Proposition 1.4,
there are O(nm) of these candidates that correspond to O(nm) different weights. After-
wards, sort these weights into a list in ascending order, which takes O(nm log(nm)) time.
A binary search will locate w∗R on this list: for each listed weight, construct VDw(S) in
O((n+m)2) time [2]. Using this diagram, build a graph G that has a node for each red
cell and two nodes are connected if the respective cells are neighbours. To verify if G is
connected, traverse it using the Depth-First Search algorithm that runs in O((n + m)2)
time [4]. If G is indeed connected, then the search proceeds to lower weights, otherwise
it proceeds to higher weights. Finally, this step takes O((n + m)2) time for each weight
and so it is concluded in O((n+m)2 log(nm)) time. �

2 Additively-weighted distance

The weighted distance studied in this section is called the additively-weighted distance
and is defined by dA(p, si) = dE(p, si) − w. Such distance characterises the additively-
weighted Voronoi diagram of S [1]. The method to find critical points on this diagram is
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similar to the one used in the last section —the main difference here is that the regions
of the additively-weighted Voronoi diagram are always connected, if they exist. Let
b(si, sj) = {p ∈ R2 : dA(p, si) = dA(p, sj)} represent the bisector between sites si and sj .

Definition 2.1. If wR is the exact weight of R when two red cells of VDw(S) meet for
the first time at point c, then c is a critical point of type I if there exist red sites ri and rj
and blue sites bk and bl such that {c} = b(ri, bk)∩ b(ri, bl)∩ b(rj , bk)∩ b(rj , bl). Otherwise
c is a type II critical point if {c} =

−→
biri ∩ b(ri, rj), where

−→
biri is a ray from bi to ri.

c

c

1b1b

2bb

1b1b

2b

2r 2r

1r

1r
(a) (b)

Figure 2. VD(R) is shown in a dashed red trace and VD(B) in dark blue.
Point c is a critical point of type I in (a) and of type II in (b).

As before, type I critical points are found on the intersections of VD(R) and VD(B)
(see Figure 2(a)). A type II critical point {c} =

−−→
b1r1 ∩ b(r1, r2) is shown in Figure 2(b).

Proposition 2.2. Red connected components of VDw(S) can only meet at critical points
of type I or II, and they will meet O(n) times at most.

Proposition 2.3. There are O(nm) candidates to critical points.

Once again, there is a gap between the actual number of critical points and the
number of candidates to critical points. As soon as the list of these candidates is found,
w∗R can be located by means of a binary search. Since this is the same method as used
in Theorem 1.5, the proof of the ensuing result is omitted.

Theorem 2.4. Concerning the additively-weighted distance, the weight w∗R can be found
in O(nm log(nm)) time.

Observe that it is possible for a type II critical point to exist “in the infinity” and this
is true for both weighted distances. Nonetheless, this solution is not interesting to our
problem as a path visiting all red cells would be infinitely long. Therefore, we assume
the existence of a bounding box or of a polygon containing all the sites of S. In both
cases, this type of critical point can be found as the intersection between the respective
bisector (between the red sites) and such bounding box.
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Abstract. In this paper we propose the use of Voronoi diagrams to automatically recalibrate sensors.
Every sensor will compute some estimate of its own value that depends on the information measured by
its Delaunay neighbors using Sibson’s interpolation. Whenever this value is too different from its own
measures, the sensor should recalibrate and assume the estimate to be its real measurement. We have
implemented a software simulating the behaviour of this recalibration process. Our experiments show
that, for perturbations higher than a 30% of their original values, a 99.62% of the sensors are recalibrated
even for very degradated sensor networks. The total number of comunication rounds averages 6.33, having
98.87% of the experiments required 9 rounds or less. On the other hand, for perturbations ranging from
10 to 100%, we wrongly recalibrate on average a 20.0% of the sensors that had correct values, but the
average translation of the wrong recalibrations is nearly one half of the correct ones.

Introduction

Wireless sensor networks can provide dense monitoring of environments. Whenever fac-
tors like humidity, temperature, light or others have to be strictly controlled, sensor
networks happen to be one of the best solutions [1]. In these situations, redundant in-
formation is usually captured in order to successfully detect misfunctions in the sensors.
A dense deployment of the sensors is therefore needed due to the error-prone nature of
these little devices. In fact, environments such as nuclear plants or concrete factories
among others have strict regulations on how often sensors have to be recalibrated in or-
der to ensure the accuracy of the measured values. This calibration process is usually
performed manually with a high cost on human resources. Moreover, the need to certify
the correct behaviour of the sensors in the meantime increases their manufacturing cost.

In this paper we present a second step (see the first in [3]) towards the study of the
usefulness of Sibson’s interpolation [4] in sensor networks, and evaluate its power in order
to automatically detect and correct outliers in a densely deployed wireless sensor network
(see [2] for a survey on other outlier detection methodologies). For each sensor, we
compare its measured value with a weighted mean of the values measured by its Delaunay
neighbors. Whenever these two values differ significantly, the sensor is recalibrated and
the interpolated value is assumed to be the real measure.

1 Sibson’s interpolation for a sensor network

Given a point p and a set S of sites si in the plane with associated values zi, the value
at point p is computed as a weighted mean as follows. Let s1, . . . , sk be the Delaunay
neighbors of p when we insert it in the Voronoi V D(S) diagram of S. The weight of
neighbor sj for j ∈ {1, k} is the proportion of the area of the Voronoi region of p in
V D(S ∪ p) that intersects the Voronoi region of sj in V D(S); see Figure 1.

1Partially supported by VA094A08, HP-2008-0060 and MTM2008-05043/MTM.
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Figure 1. Sibson’s interpolation assigns weights to the Delaunay neighbors
according to the proportion of their area in the shaded Voronoi region.

In [3] we explored the effect of different synchronization schemes for this technique
since circular references arise in the process. We simulated both synchronous and asyn-
chronous processes. In the first, recalibrations happen after communication rounds, while
in the latter, values are updated independently. We concluded that the synchronous pro-
cess needs less rounds to reach stability and shows better correction levels. Another
interesting result therein is that whether the simulated input shape was a circle or a
square did not significantly affect the measured values. The results in the present work
are thus performed with a synchronous scheme for simulated disc-shaped sensor networks.

2 Experimental results

The sensor network has been simulated following a uniform distribution on a disc. We
have set the values of the sensors according to a normal distribution centered at the origin
(see Figure 2). We have changed the values of some of the sensors by some proportion
and marked which of the sensors were recalibrated afterwards. We call the proportion
of corrected values the success ratio. On the other hand, the non-correct ratio is the
proportion of the sensors that have been wrongly recalibrated.

Figure 2. Input sensor network and assigned data (left). 3D view of a degra-
dated network with a 20% of faulty sensors that need recalibration (center).
3D view of a recalibrated network (right).
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We have performed 1500 simulations using a latin hypercube scheme, where the fol-
lowing four parameters have been studied:

• Size: The number of sensors is a value between 100 and 1000.
• Resistance: A sensor accepts its neighbour’s value when it differs from its mea-
sured value from 0.005 to 0.05.
• Errors: The proportion of sensors with wrong values varies between 10% and
50%.
• Strength: The measures of the sensors with errors are between 10% and 100%
of their original values.

Since wrongly calibrated sensors are chosen randomly, for each combination of these four
parameters, 5 runs have been performed.

Our experiments show that the most significant parameter is strength, being the other
three of little to none effect. Figure 3 shows the performance ratios and the translation for
the measured values with respect to the strength. We can see that, for small perturbations
(a strength value of less than 30%), the success ratio sometimes does not even reach 50%,
but the miscalculated recalibrations are also very low. On the other hand, for values bigger
than 30%, 99.62% of the wrongly working sensors are correctly detected and recalibrated.

With respect to the average translation of the measured values, we can say that,
as expected, the higher the value of the strength parameter, the bigger the translation
performed. Nevertheless, the translation of the successful recalibrations for those high
values nearly doubles the one of the wrongly recalibrated sensors.
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Figure 3. On the left, success ratio (dark) and non-correct calibrations ratio
(light). On the right, average translation of correct calibrations (dark) and non-
correct ones (light).

The number of communication rounds is less sensitive to the strength but tends to
increase both with high strength values and bigger input sizes. Anyway, the average
number of rounds is as low as 6.33, and 98.87% of the experiments have required 9
rounds or less. Figure 4 shows the histogram of the number of comunication rounds for
all experiments performed.
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Figure 4. Histogram of the number of comunication rounds.

3 Conclusions

We have implemented a software that simulates a recalibration process based on Sibson’s
interpolation. Among the four parameters used in order to launch the experiments using
Latin hypercube sampling, the variation on the original values (strength) is the most
important one. In fact, all measured values have a high dependence on this parameter
and it affects from the success ratio to the number of comunication rounds. On the other
hand, the threshold value that marks when a sensor has to be recalibrated (resistance)
seemed to be of importance a priori, but the experimental results show that its effect is
negligible. Similarly, the amount of wrong data (errors) was not important, at least with
the reasonable assumption that it had to be less than 50%.

This is an ongoing work and we still seem to have more questions than answers. In
particular, it would be very useful to address the same problem in a non-random setting,
where sensors do not simply misfunction, but are attacked in a strategical way. Two
interesting approaches appear: how to defend a sensor network from such an attack, and
how to attack such a sensor network.
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Abstract. We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set
S of n ≥ 3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed
polygon at no extra cost, runs in O(n logn) time and uses O(n) space.

Introduction

A polygonization of a planar point set S is a simple polygon having S as the set of
its vertices. Different types of polygonizations have been investigated in settings where
objects are being constructed from limited data, such as pattern recognition and image
reconstruction [3, 5, 6]. The number of polygonizations for a given point set can be
exponential in n, even when restricted to monotone or star-shaped polygonizations [7].

Agarwal et al. have discussed the attractiveness of the subset of polygonizations that
admit thin triangulations, which minimize the number of nodes of degree three in the
dual, and in particular, serpentine triangulations, whose dual graph is a path. In [2],
the authors gave an O(n log n) algorithm for computing a serpentine polygonization of a
point set S.

We show that any point set S has a spiral serpentine polygonization. A spiral ser-
pentine polygon is a simple polygon possessing at most one chain of reflex vertices and
exactly one chain of convex vertices (see Figure 1) and admitting a serpentine triangula-
tion. We present a simple algorithm in Section 1 for constructing such a polygonization
in O(n log n) time, requiring O(n) space and explicitly giving a serpentine triangulation
at no extra cost. In Section 2, a series of claims are presented (many without proof due
to space constraints) establishing the correctness of the algorithm.

(a.) (b.)

Figure 1. A spiral polygon is shown in (a.) and a serpentine triangulation of
this polygon is shown in (b.), where the dual of the triangulation is the path
depicted.

1This work is partially supported by the National Science Foundation (CCF-1018388).
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1 The algorithm

Here we introduce the algorithm SpiralSerpentinePolygonize, which produces a spiral
serpentine polygonization of a planar set S of n ≥ 3 points. During the first step of
the algorithm’s execution, we compute the convex layers of all points in S. The points
of a convex layer L have depth dL, the number of times one would have to iteratively
remove the convex hull of S until the points of L are removed [1, 4]. After identifying
the rightmost point with minimum y-coordinate, the algorithm processes one unvisited
point of S at a time. Each point becomes a vertex of a new triangle that is attached to a
visible edge of the triangulation constructed so far. The spiral and serpentine invariants
are maintained throughout as we discuss in Section 2.

Algorithm: SpiralSerpentinePolygonize(S)

1.) Compute the convex layers of S.
2.) Determine p1 ∈ S, the point with smallest y-coordinate (breaking ties by maximizing the

x-coordinate). Mark p1 as visited.
3.) Set p∗ = p1 as the pivot point. Let p2 be the first point encountered by rotating counterclockwise

the rightwards ray emanating from p1 (breaking ties by picking the point closest to p∗); mark
p2 as visited. Set p∗∗ = p2; we call p∗∗ the pass through point. Set p̂∗ = null; p̂∗ is the previous
pivot point. Draw the segment p∗p∗∗.

4.) while all points have not been visited

Find the next unvisited point q encountered by rotating ccw the ray
−−−→
p∗p∗∗ about the pivot

point p∗. (q is found in time O(logn) using binary search on points of depth within 1 of
the depth of p∗. Ties are broken by picking the point closest to p∗.)
if p∗∗p∗q forms a right turn

Mark q as visited
Draw segments p∗q and p∗∗q
Set p̂∗ = p∗

Set p∗ = q
else

Set p∗∗ = p∗

Set p∗ = p̂∗

Set p̂∗ = null
end while

p∗

p∗

p̂∗

p∗∗
p̂∗ p∗∗

Figure 2. The states of the algorithm at iterations i and i + 1, respectively,
during the execution of SpiralSerpentinePolygonize on an example point set.
The gray region indicates where unvisited points may lie. No point will be
marked as visited during the (i+ 1)th iteration in this example.
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In Figure 2 we illustrate a typical state of the algorithm at iteration i. The region of
points yet to be visited is depicted in gray. In this example, the point with the maximum
y-coordinate among the unvisited points in the gray region will be marked as visited
during the ith iteration. After updating the labels of the points according to the if
clause, we obtain the state shown on the right. Clearly, the next point q encountered by
rotating

−−−→
p∗p∗∗ will not be such that p∗∗p∗q forms a right turn. Thus, the else clause is

executed, causing a “back-up” relabeling of the pivot point and reassignment of the pass
through point.

2 Correctness

Lemma 2.1. The while loop of SpiralSerpentinePolygonize terminates within 2n it-
erations.

The reasoning behind this claim is that execution of the else clause of the while
loop, during which no point is marked as visited, can only happen at most on every other
iteration of the loop. We now show that the algorithm’s output is a spiral polygon:

Lemma 2.2. SpiralSerpentinePolygonize constructs a spiral polygon P .

Proof. The proof is by induction on the iteration count. After the first iteration, we have
just one triangle, which is trivially spiral. Assume the claim holds after k < n iterations
and consider the state after the (k + 1)th iteration. We remove the point qk+1 that was
most recently appended along with the two edges incident to this point (if no point was
appended on the (k+1)th iteration, then the triangulation is unchanged and we are done).
Use labels p̂∗, p∗, p∗∗ as assigned at the end of the kth iteration. The resulting polygon is
spiral by the induction hypothesis. We need to show that, when qk+1 is processed, (a) p∗∗
remains a convex vertex, and (b) p∗ becomes a reflex vertex (unless p∗ = p1).

We consider p∗∗ first. When this vertex was originally marked as visited during
iteration j < k, it took on the label p∗ during iteration j. On the subsequent iteration,
no unvisited point q was discovered such that p∗∗p∗q formed a right turn; otherwise, p∗
would have been given the label p̂∗ and could never become a pass through point during
some future iteration. It follows that any unvisited point q (including qk+1) encountered
in a subsequent iteration must be to the left of the oriented line p∗∗p∗. Hence, p∗∗ remains
a convex vertex.

We now look at p∗. If p∗ = p1, then it is on the convex hull and will necessarily be a
convex vertex.

Now, let i be the first iteration for which p∗ 6= p1 and p∗∗p∗q forms a right turn. If
no such i exists, we argue as before. Since p∗ necessarily has a depth of 2 at iteration
i, there must be a point to the left of the oriented line p1p

∗ with an edge to p∗ in the
polygonization, ensuring that p∗ is reflex. This establishes the base case.

Suppose the claim holds after k > i iterations. Then we wish to show that the
current pivot point p∗ becomes a reflex vertex upon the appendage of qk+1. If no point
is marked as visited on the (k+ 1)th iteration, then we simply relabel the pivot and pass
through points, and the polygonization remains the same. Otherwise, we observe that
qk+1 cannot be to the right of the oriented lined vp∗, where v is the reflex vertex previous
to p∗ along the reflex polygonal chain (v = p̂∗ if p̂∗ 6= null); otherwise, qk+1 would have
been discovered previously according to the behavior of the algorithm. In other words,
as in the left image of Figure 2 (v = p̂∗ in this example), the remaining unvisited points
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are to the left of the oriented line vp∗. It follows that vp∗qk+1 forms a left turn, making
p∗ a reflex vertex. We conclude that Q is spiral. �

The subsequent two lemmas establish that, at the completion of the algorithm, a
serpentine triangulation of the polygon is constructed. Although the proofs are omitted
here, they are based on the observation that the algorithm constructs the polygon by
simply attaching triangles iteratively. The serpentine property follows from each triangle
being attached to a visible edge of the most recently formed triangle.

Lemma 2.3. SpiralSerpentinePolygonize constructs a triangulation T of P .

Lemma 2.4. The triangulation T constructed by SpiralSerpentinePolygonize is ser-
pentine.

The previous four lemmas yield the desired result, stated in the following theorem:

Theorem 2.5. SpiralSerpentinePolygonize constructs a spiral serpentine polygon.

We see below that we need only consider a subset of all unvisited points during an
iteration of the algorithm’s while loop. Finally, we examine the algorithm’s runtime and
space usage:

Lemma 2.6. When searching for the next unvisited point during the execution of Spiral-
SerpentinePolygonize, we need only consider points having depth within one of the depth
of the current pivot point.

Theorem 2.7. SpiralSerpentinePolygonize runs in O(n log n) time and requires O(n)
space.

Proof. The convex layers of S can be computed in O(n log n) time using O(n) space [4].
Each subsequent point marked as visited during the execution of the while loop has depth
within one of the depth of the current pivot point by Lemma 2.6. Hence, we may perform
binary type searches on unvisited points of candidate convex layers in O(log n) time per
iteration. There are at most 2n iterations by Lemma 2.1 arriving us at the desired
O(n log n) run time. Since the convex layers, input points, and outputted segments can
be stored in arrays of linear size, we require just O(n) space. �
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Abstract. Let P be a set of n points in the plane. We solve the problem of computing the orientations
for which the rectilinear convex hull of P has minimum area in optimal Θ(n logn) time and O(n) space.

Introduction

The interest in the rectilinear convex hull of planar point sets arises from the study of
ortho-convexity [10], a relaxation of traditional convexity. Unlike convex regions, an
ortho-convex region might be disconnected, which makes the study of the ortho-convex
closure for a point set [5, 8] harder. Several definitions have been presented by different
authors. We will use a definition stated by Ottman et al. [8] as the mr-convex hull, see
also Matousěk et al. [5, 7]. The study of rectilinear convex hulls has gained attention
partly because of some applications in digital image processing [3] and VLSI circuit layout
design [11].

The rectilinear convex hull of point sets is an orientation-dependent region, i.e., it
changes as the orientation of the plane changes. In this paper we are interested in
computing an orientation for which the rectilinear convex hull of P has minimum area.
We show that the set of orientations θ ∈ [0, 2π) can be divided into a set of linear
intervals such that, within each interval I, the angle θ ∈ I which minimizes the area of
the rectilinear convex hull of a point set (save the first one we process) can be calculated
in constant time. These intervals can be computed in O(n log n) time and O(n) space.
Using this result and based on techniques from Avis et al. [1], Bae et al. [2], and Díaz-
Báñez et al. [4], we present an optimal Θ(n log n) time and O(n) space algorithm for this
problem. Our result improves the O(n2) time complexity presented by Bae et al. [2].

1 Terminology and notation

An orthogonal wedge is the intersection of two open half-planes whose supporting lines are
orthogonal. The apex of the wedge is the intersection point of these supporting lines. An
orthogonal wedge is P -free if it does not contain points of P in its interior. An orthogonal
wedge is called a θ-wedge if its supporting lines can be obtained by first rotating the X-

1Coauthors from UNAM are partially supported by projects MTM2006-03909 of Spain and SEP-
CONACYT 80268 of México. The coauthor from UPC is partially supported by projects MTM2009-07242
and Gen. Cat. DGR 2009GR1040.
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and Y -axis θ degrees, and then translating the origin to the apex of our wedge. The
rectilinear convex hull of P with orientation θ is the region

RHθ(P ) = R2 −
⋃

w∈Wθ

w,

where Wθ is the set of all P -free orthogonal θ-wedges [2, 4, 8].
As θ changes, the set of orthogonal P -free θ-wedges change, and, thus, RHθ(P )

changes (see Figure 1). A θ-orientation of the plane, θ ∈ [0, 2π), is the coordinate system
obtained by rotating the axes of R2 by θ degrees with respect to the origin. For a fixed θ,
RHθ(P ) has a close relation to the maxima problem [6, 9]. A vertex ofRHθ(P ) is a point
in P that lies on the boundary of RHθ(P ). Let Xθ(P ) be the set of maximal points of
P with respect to vector dominance in the θ-orientation of the plane. The set of vertices
of RHθ(P ) is equal to the set Xθ(P )∪Xθ+π

2
(P )∪Xθ+π(P )∪Xθ+ 3

2
π(P ) [2, 8]. Given a

fixed θ, RHθ(P ) can be computed in optimal Θ(n log n) time and O(n) space [6, 9].
We say that a point p ∈ P is θ-maximal with respect to P if there is an orthogonal

P -free wedge with apex at p in a θ-orientation of the plane. The set of orientations for
which p is θ-maximal forms at most three intervals. The endpoints of each interval mark
the in- and an out- events of p, i.e., the θ-orientations when p becomes and stops being
θ-maximal. The set of intervals corresponding to the elements of P and the set of angles
at which these points of P start and stop being θ-maximal can be computed in optimal
Θ(n log n) time and O(n) space [4].

(a) (b) (c)

(d) (e) (f)

Figure 1. The rectilinear convex hull of P changes with the orientation.

Let Xθ-axis and Yθ-axis denote the coordinate axes rotated θ degrees. For a θ orien-
tation, consider the coordinates of the points of P in terms of the Xθ- and Yθ-axes. Since
RHθ(P ) is monotone with respect to the Xθ-axis [8], the points of P can be re-labelled
as v1, . . . , vm in increasing order according to Xθ. Two consecutive points vi, vi+1 ∈ P
with respect to Xθ define the step sθ(vi, vi+1). Given two orientations α and β, we say
that two steps sα(vi, vi+1) and sβ(vj , vj+1) are opposite to each other if |α− β| = π; see
Figure 1(b). Every step sθ(vi, vi+1) supports a P -free θ-wedge. Let W1 and W2 be the
wedges supported by two opposite steps sθ(vi, vi+1) and sθ+π(vj , vj+1), respectively. If
W1 and W2 intersect, RHθ(P ) is disconnected. In such case, we say that sθ(vi, vi+1) and
sθ+π(vj , vj+1) overlap, and denote W1 ∩W2 = tθ(i, j); see Figure 1(f).
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Consider four points vi, vi+1 and vj , vj+1 and let I be the the interval of orientations
θ for which sθ(vi, vi+1) and sθ+π(vj , vj+1) overlap. As before, we call the ends of I
the start- and stop-events of tθ(i, j); see Figures 1(e) and 1(f). We wish to compute a
counterclockwise ordered start- and stop-event list that resembles the one we computed
for in- and out-events of the elements of P . Overlap events are not necessarily vertex
events and thus, they have to be computed independently.

2 Computing the start- and stop-overlap events list

The apex of a step is the apex of the wedge that it supports. As θ changes from 0 to 2π,
the θ-orientation of the plane rotates counterclockwise, and the apex of every step traces
a circular arc. We orient the arcs traced by the elements of P as shown in Figures 1(a)–
1(c). The arc-chain A(P ) of P is the closed curve formed by the union of the set of
arcs traced by the elements of P which, at some point in time are θ-maximal for some
θ ∈ [0, 2π), let A(P ) = 〈a1, . . . , al〉 (Figure 2(a)). Since there is a linear number of steps
in a complete rotation, l = O(n). Observe that the endpoints of the arcs in A(P ) include
the points in P that are θ-maximal for some θ ∈ [0, 2π).

Let {e1, . . . , eh}, be the set of edges of the convex hull CH(P ) of P in counterclockwise
order. A sub-chain Ai(P ) of A(P ) is a subsequence of consecutive elements of A(P ),
whose endpoints are the endpoints of ei. It is easy to see that Ai(P ) is monotone in the
direction determined by ei. Thus the orthogonal projection of Ai(P ) on ei defines a total
order (≺i) on the set of endpoints of its arcs. Moreover, using the fact that every point
in Ai(P ) is an apex of a P -free wedge, the next lemma follows easily.

Lemma 2.1. Let a, b, c be three points in Ai(P ) such that a ≺i b ≺i c. Then, the angle
∠abc is such that π

2 ≤ ∠abc < π.

Suppose that we relabel the endpoints of the arcs in Ai(P ) as p1, . . . , pm so that,
if r < s, then pr ≺i ps. Let `r,s be a subsequence pr, . . . , ps of Ai(P ) such that for
r < t < s, pt /∈ P and pr, ps ∈ P . We call any such `r,s a link. Observe that, if two
opposite steps overlap, then the arcs traced by their apices belong to links that intersect;
see Figure 2(a). The open area bounded by Ai(P ) and ei is P -free, since it is covered
by P -free wedges. Thus, two intersecting links have at least two intersection points. By
Lemma 2.1, this number is tight, as none of the intersecting links can cross a line segment
joining its intersection points; see Figure 2(b). Thus we have the following result, that is
a central tool for computing the start- and stop-overlap event list in O(n log n) time.

(a)

ei

Ai

(b)

Figure 2. The arc-chain A(P ) of P .
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Theorem 2.2. There are O(n) intersections between links in A(P ).

3 Computing the orientation of RHθ(P ) with minimum area

The event points obtained in the previous section generate a set of intervals of orientations,
in which the set of vertices of RHθ(P ) remain unchanged, and the set of overlaps among
the steps of RHθ(P ) does not change. Let I(θ1,θ2) be one such interval. Then, for any
θ ∈ (θ1, θ2), the area of RHθ(P ) is given by the following formula [2]:

area(RHθ(P )) = area(P)−
∑

area(sθ(vi, vi+1)) +
∑

area(tθ(i, j)).

It is easy to see that the areas of the steps sθ(vi, vi+1) and overlaps tθ(i, j) of RHθ(P )
can be expressed as a function of sin 2θ and cos 2θ. Doing the derivative, we obtain:

(1)
∑

area′(sθ(vi, vi+1)) = −
[∑

Ai
]

sin 2θ +
[∑

Bi
]

cos 2θ,

(2)
∑

area′(tθ(i, j)) =
[∑

Ci
]

cos 2θ −
[∑

Di

]
sin 2θ,

and thus the value θ ∈ (θ1, θ2) for which the area of RHθ(P ) is minimized can be com-
puted in linear time. For each new event interval, we update these values in constant time
by subtracting or adding new constant values. There can be more than one θ-orientation
in which RHθ(P ) has minimum area, but our algorithm is able to report all of them.
From the discussion above and from the fact that the convex hull of P can be computed
from the rectilinear convex hull of P in O(n) time, we obtain the following:

Theorem 3.1. Computing the set of orientations for which the rectilinear convex hull
of P has minimum area can be done in optimal Θ(n log n) time and O(n) space.
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Abstract. In this paper we study a facility location problem in the plane in which a single point (facility)
and a rapid transit line (highway) are simultaneously located in order to minimize the total travel time
from the clients to the facility, using the L1 or Manhattan metric. The rapid transit line is given by a
segment with fixed length and it is an alternative transportation line that can be used by the clients to
reduce their travel time to the facility. This problem was introduced by Espejo and Chía in [4]. They
gave both a characterization of the optimal solutions and an algorithm running in O(n3 logn) time, where
n represents the number of clients. In this paper it is shown that the Espejo and Chía’s algorithm does
not always work correctly. At the same time, we provide a proper characterization of the solutions with
a simpler proof and give an algorithm solving the problem in O(n3) time.

1 Introduction

In computational geometry, geometric problems related to transportation networks have
been recently considered. Abellanas et al. introduced the time metric model in [1]: Given
an underlying metric, the user can travel at speed ν(h) when moving along a highway
h or unit speed elsewhere. The particular case in which the underlying metric is the
L1 metric and all highways are axis-parallel segments of the same speed, is called the
city metric [2]. The optimal positioning of transportation devices that minimize the
maximum travel time among a set of points has been deeply treated recently [5]. In the
variant introduced by Espejo and Chía [4], the objective is to minimize the sum of the
travel times from the demand points to the new facility service that has to be located
simultaneously with a highway. The highway is used by a demand point whenever it
saves time to reach the facility. Díaz-Báñez et al. [3] study a variation of this problem in
which they want to minimize the largest travel time between the clients and the facility.

We introduce some notation. Let S be the set of n client points, f be the service
facility point, h be the highway, ` be the length of h, t and t′ be the endpoints of h,
and v > 1 be the speed in which the points move along h. Let wp > 0 be the weight (or
demand) of a client point p. Given a point u of the plane, let x(u) and y(u) denote the
x- and y-coordinates of u respectively. The travel time between a point p and the service
facility f is denoted by

dt,t′(p, f) = min{‖p− f‖1, ‖p− t‖1 + `
v + ‖t′ − f‖1, ‖p− t′‖1 + `

v + ‖t− f‖1},
where ‖ · ‖1 denotes the L1 norm. The problem is formulated as follows:

1Partially supported by MEC project MTM2009-08652.
3Partially supported by MEC project MTM2009-08652.
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190 Locating a service facility and a rapid transit line

Facility and Highway Location Problem (FHL-problem). Given a set S of n points,
a weight wp > 0 associated with each point p of S, a fixed highway length ` > 0, and a
fixed speed v > 1, locate a point (facility) f and a line segment (highway) h of length `
with endpoints t and t′ such that the function

∑
p∈S wp · dt,t′(p, f) is minimized.

In Section 2 we first provide a proper characterization of the solutions. Our proof uses
geometric observations and is simpler than the proof given in [4]. After that, we show
that Espejo and Chía’s characterization is not true in general. In Section 3 we present an
improved algorithm running in O(n3) time that correctly solves the FHL-problem. Due
to space constraints, some of the proofs are omitted.

2 Properties of an optimal solution

A straightforward observation (also stated in [4]) is that the service facility can be located
at one of the endpoints of the rapid transit line. Therefore, we assume throughout
the paper that f = t′, thus the distance from a point p ∈ S to the facility f is now
dt(p, f) = min{‖p− f‖1, ‖p− t‖1 + `

v}.
We say that a point p uses the highway if ‖p− t‖1 + `

v < ‖p−f‖1, and that p does not
use it (or goes directly to the facility) otherwise. Given f and t, we say that the bisector
of f and t is the set of points z such that ‖z − f‖1 = ‖z − t‖1 + `

v ; see Figure 1.

f

t

f

t

f

t

a) b)

c)

Figure 1. The bisector of f and t.

Consider the grid G defined by the set of all axis-parallel lines passing through the
elements of S.

Lemma 2.1. There exists an optimal solution to the FHL-problem satisfying one of
the next conditions: (a) One of the endpoints of the highway is a vertex of G; (b) one
endpoint of the highway is on a horizontal line of G, and the other endpoint is on a
vertical line of G.

Proof. Let f and t be the endpoints of an optimal highway h and assume that none of the
two conditions is satisfied. Using local perturbation, we will transform this solution into
one that satisfies one of the two conditions. Assume that neither f nor t is on vertical
lines of G. Let δ1 > 0 (resp. δ2 > 0) be the smallest value such that if we translate h with
vector (−δ1, 0) (resp. (δ2, 0)) then one endpoint of h touches a vertical line of G. Given
ε ∈ [−δ1, δ2], let fε, tε, and hε be f , t, and h translated with vector (ε, 0), respectively.
We partition S into three sets B, L and R as follows:

• s ∈ B if s is in the bisector between f and t;
• s ∈ L if s walks to f and x(s) > x(f) or if s uses the highway and x(s) > x(t);
• s ∈ R if s walks to f and x(s) < x(f) or if s uses the highway and x(s) < x(t).
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That is, the set L contains the demand points that travel leftwards to reach f (analogously
R contains the points that travel rightwards). Let wB =

∑
p∈B wp be the sum of weights

of the points in set B (we define wL and wR analogously ). By linearity of the L1 metric,
for any ε ∈ [−δ1, δ2] the change in the objective function is as follows:

∑

p∈S
wpdtε(p, fε) =

∑

p∈S
wp · dt(p, f) + ε(wR − wL)− |ε|wB.

By optimality of f and t, we must have wR−wL = 0 and wB = 0. In particular, this
implies that B = ∅ and that we can translate h either rightwards or leftwards until one
of the highway endpoints reaches a vertical line of G. We repeat the same operation on
the y coordinates and also obtain that one of the two endpoints must be on a horizontal
line of G, hence satisfing one of the two conditions of the Lemma. �

In [4] the authors stated that there always exists an optimal solution satisfying
Lemma 2.1 (a). Unfortunately, the above claim is false and their algorithm may miss
some highway locations; indeed, it may miss the optimal location and thus fail. We
provide here one counterexample —see Figure 2 and the following result.

Lemma 2.2. There exists a set of unweighted points in which no optimal solution to the
FHL-problem satisfies Lemma 2.1 (a).

OY

(0, 0)
(−4, 0)

(−3,−1)

(13, 5)

(13, 7)

(12, 8)

(12, 6)

G

t

f

OX

h

Figure 2. A counterexample to the algorithm of Espejo and Chía.

3 The algorithm

We will discuss the solution of the FHL-problem for the case in which Lemma 2.1 (a)
holds. The case in which Lemma 2.1 (b) holds can be treated similarly. For each vertex
u of the grid G we can solve the problem subject to f = u or t = u. We show how to
obtain a solution if f = u. The case where t = u can be solved analogously.

We will assume without loss of generality that θ ∈ [0, π4 ]. Given a point u and an
angle θ, let u(θ) be the point with coordinates (x(u) + cos θ, y(u) + sin θ). There exists
an angle φ ∈ [0, π4 ] such that the bisector of the endpoints u and u(θ) has the shape in
Figure 1 (a) for all θ ∈ [0, φ), and has the shape in Figure 1 (b) for all θ ∈ (φ, π4 ].
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The distance between a point p ∈ S and the facility u has the expression c1+c2 cos θ+
c3 sin θ, where c1 > 0 and either c2, c3 = ±wp (p uses the highway) or c2 = c3 = 0 (p
does not use the highway). When θ goes from 0 to π

4 this expression changes at the
values of θ such that one of the following conditions is satisfied: a) The point p switches
from using the highway to going directly to the facility (or vice versa). We call these
changes bisector events; b) the highway endpoint u(θ) crosses the vertical or horizontal
line passing through p —we call this event a grid event ; c) θ = φ. This event is called a
φ-event.

Lemma 3.1. After an O(n log n)-time preprocessing, the angular order of all the events
associated with a given vertex of G can be obtained in linear time.

Proof (sketch). Let Πx, Πy, and Πx+y denote the point set S sorted according to the x-,
y-, and (x + y)-order, respectively, and let u be a vertex of G. It is straightforward to
see that they are O(n) grid events and that we can obtain their angular order in linear
time by using both Πx and Πy. The calculation of the bisector events in linear time
needs more elaboration. The bisector of u and u(θ) consists of two axis-aligned half-lines
and a line segment with slope −1 connecting their endpoints. Given a point p ∈ S, if p
belongs to the line segment of the bisector then the event is denoted by αp. If p belongs
to the leftmost half-line of the bisector, which is always vertical, we denote that event
by βp. Otherwise, if p belongs to the rightmost half-line, which can be either vertical or
horizontal, we denote that event by γp.

Let Π1 be the subsequence of Πx+y containing all elements p such that αp ∈ [0, π4 ],
Π2 be the subsequence of Πx containing all elements p such that βp ∈ [0, π4 ], and Π3 be
the subsequence of Πx that contains all elements p such that y(p) < y(u) and γp ∈ [0, π4 ],
concatenated with the subsequence of Πy that contains all elements p such that x(p) >
x(u) and γp ∈ [0, π4 ]. Given a point p ∈ S, the corresponding events of p in [0, π4 ] can be
found in constant time, thus Π1, Π2, and Π3 can be built in linear time.

Let Γ1 (resp. Γ2, Γ3) be the sequence obtained by replacing each element p in Π1

(resp. Π2, Π3) by αp (resp. βp, γp). Then Γ1, Γ2, and Γ3 are sorted sequences. We now
merge in linear time Γ1, Γ2, Γ3, the grid events, and the φ-event. Thus, the angular order
of all events associated with a vertex u can be obtained in O(n) time. �

Lemma 3.2. After an O(n log n)-time preprocessing, the angular order of all the events
associated with a pair of perpendicular lines of G (case Lemma 2.1 (b)) can be obtained
in linear time.

Theorem 3.3. The FHL-problem can be solved in O(n3) time.
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Abstract. We study a variation of the 1-center problem, in which, in addition to a single supply facility,
we are allowed to locate a highway. This highway increases the transportation speed between any demand
point and the facility. That is, given a set S of points and v > 1, we are interested in locating the facility
point f and the highway h that minimize the expression maxp∈S dh(p, f), where dh is the time distance
between p and f . We show that we can find the optimal location of both the facility and the highway in
O(n2) or O(n logn) time, depending on whether or not the highway’s length is fixed.

1 Introduction

Geometric optimization related to urban transportation systems is an important topic
in computational geometry. Although the metric given by a real urban transportation
system is often quite complicated, simplified mathematical models have been widely stud-
ied in order to investigate basic geometric properties of urban transportation systems.
Abellanas et al. [1] considered a geometric modeling of this environment: represent high-
ways as polygonal chains consisting of line segments in the plane, giving each line segment
an associated speed. Then, the travel time between two points gives a metric called the
time distance.

Recently, there has been an interest in problems derived from urban modeling. In
many cases we are interested in locating a highway that optimizes some given function
that depends on the distance between elements of a given point set (see for example
[2, 4, 7]). Espejo and Chía [6] introduced a variant of the problem in which we are given
a set of clients (represented by a set of points S) located in a city. Then, one is interested
in locating a service facility and a highway simultaneously in a way that the average
supply time between the clients and the supply point is minimized. Unfortunately, it
was shown that their algorithm could give an incorrect solution in some cases [5]. In
this paper we study a variation of this problem in which we want to minimize the largest
travel time between the clients and the facility.

2 Definitions and notation

Let S be the set of n client points, f be the service facility point, h be the highway, ` be
the length of h, t and t′ be the endpoints of h, and v > 1 be the speed. We assume that

1Partially supported by MEC project MTM2009-08652.
3Partially supported by MEC project MTM2009-08652.
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194 The 1-center and 1-highway problem

the highway to locate can have any orientation. Given a point u of the plane, let x(u)
and y(u) denote respectively the x and y coordinates of u.

s1

s2

s3

f

t′

t

h

Figure 1. The distance model; in the example, s1 uses the highway from t to
t′ in order to reach f faster. The highway does not speed up transportation
between s2 and f , hence is not used by s2. Demand point s3 however, can either
walk or use the highway to reach f , and will need the same time in both cases.
Observe that, since we are interested in paths that reach f , the highway will
only be used in one direction.

Fixed the location of the facility and the endpoints of the highway, the distance from
a demand point p ∈ S to f is defined as

dh(p, f) = min

{
‖p− f‖1, ‖p− t‖1 +

`

v
+ ‖t′ − f‖1, ‖p− t′‖1 +

`

v
+ ‖t− f‖1

}
,

where || · ||1 represents the L1 distance between two points; see Figure 1. Whenever
dh(p, f) < ‖f − p‖1, we say that p uses the highway to reach f . Otherwise, we say that
p walks (or does not use h) to reach the facility.

The problem that we study can be formulated as follows:

The 1-center and 1-highway problem (1C1H-problem). Given a set S of n points
and a fixed speed v > 1, locate a point (facility) f and a line segment (highway) h with
endpoints t and t′ such that the function maxp∈S dh(p, f) is minimized. The case in
which the highway’s length ` = ||t − t′||2 is fixed is called the fixed length 1-Center and
1-Highway problem (FL-1C1H for short). The case in which the highway can have any
length is called the variable length (or VL-1C1H) problem.

It is easy to see that, in either variant of the 1C1H problem, the highway will only be
used in one direction. In particular, there always exists an optimal location in which one
of the rapid transit line endpoints coincides with the facility. This result was also observed
in [6, Lemma 2.1]. Therefore, we assume throughout the paper that f = t′; thus the
distance from a demand point p ∈ S to f is now dh(p, f) = min{‖p− f‖1, ‖p− t‖1 + `

v}.

3 Solving the 1C1H Problem

In this section we give a general algorithm for solving the 1C1H problem. Unless otherwise
stated, all results of this section hold for both variants of the problem. Due to space
constraints, some of the proofs of this paper have been omitted. Using the standard
transformation from L1 to L∞, we solve the problem using L∞ instead. Let f∗ and h∗
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be an optimal solution of a given problem instance. Let t∗ be the endpoint of h∗ other
than f∗, and let R∗ = maxp∈S dh∗(p, f

∗).
Let B(u, r) denote the axis-parallel square of radius r centered at u, and consider

the balls B(f∗, R∗) and B(t∗, R∗ − `/v). By definition of R∗, all points of S must be
included in the union of both balls. We partition the pointset S into two sets W ∗ and
H∗ as follows: the set W ∗ contains the points whose L∞ distance to f∗ is at most R∗,
while the set H∗ = S \W ∗ contains the points that must use the highway to reach f∗ in
R∗ or less units of time.

Observe that we cannot have W ∗ = ∅, since by reversing the positions of f∗ and t∗
we would obtain a better solution. By definition, the set H∗ is empty if and only if all
points of S can walk to f∗ in R∗ or less units of time. This case can be easily handled,
since f∗ is the solution of the rectilinear 1-center problem (which can be computed in
linear time). Hence, from now on we assume that neither W ∗ nor H∗ is empty.

We consider the next problem, called the basic problem: Given a partition {W,H}
of S, find the smallest value R (called the radius of the partition) and the coordinates of
f and t such that W ⊆ B(f,R) and H ⊆ B(t, R− `/v). When we consider the fixed-
length variation of the problem, we also add the constraint that f and t must satisfy
‖f − t‖2 = `. Since f∗ and t∗ are optimal, it is easy to see that they are the solution of
the basic problem for the partition {W ∗, R∗}. Moreover, the radius of any other partition
of S will have equal or higher radius than R∗.

Our algorithm works as follows: we consider different partitions of S and solve the
basic problem associated to each partition. We identify {W ∗, R∗} as the partition whose
radius is smallest. A naive method would be to guess the partition {W ∗, R∗} among the
O(2n) candidates. In the following we reduce the search space to one of polynomial size:

B(f∗, D∗) B(f∗, D∗) B(f∗, D∗)

B(t∗, D∗ − `/v)

B(t∗, D∗ − `/v)

B(t∗, D∗ − `/v)

(a) (b) (c)

Figure 2. Relative positions of the balls B(f∗, R∗) and B(t∗, R∗ − `/v). For
each of the cases, the sets W ∗ (marked in grey) can be split from H∗ with either
an axis-aligned line or an upper-left quadrant.

Lemma 3.1. For any set S, the partition {W ∗, R∗} can be found among O(n2) candi-
dates.

Proof. Without loss of generality we can assume that f∗ is above and to the left of t∗.
It is then easy to see that there are three possible relative positions of the two balls (see
Figure 2). In each of these cases the two sets can be split by either an axis-aligned line or
an upper left quadrant (see dashed lines in Figure 2). Each possible partition is uniquely
determined by the number of points above and/or to the left of the splitting line/quadrant.
In particular, there are O(n2) different cases, hence the Lemma is shown. �

Given a set T of points, let X(T ) ⊆ T be the set containing the points with highest
and lowest x and y coordinate of T (this set is called the set of extreme points of T ).
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Lemma 3.2. Let {W,H} be a partition of S. If we are given the extreme sets X(W )
and X(H), then the basic problem can be solved in constant time (for both fixed-length
and variable-length cases).

Theorem 3.3. Both variants of the 1C1H problem can be solved in O(n2) time and O(n)
space.

The bottleneck of the algorithm is case (c) of Lemma 3.1. In the following we show
how to treat this case more efficiently for the variable-length case.

Lemma 3.4. If in every optimal solution of the VL-1C1H problem each ball contains a
corner of the other one, then there exists an optimal solution (f∗, t∗) of radius R∗ of the
VL-1C1H problem in which the extreme points X(S) are in the boundary of B(f∗, R∗) ∪
B(t∗, R∗ − `/v).

Theorem 3.5. The VL-1C1H problem can be solved in O(n log n) time.

4 Concluding remarks

In our model we only allow entering and leaving the highway at its endpoints (in other
literature, this kind of highway is called walkway [4] or turnpike [3]). We note that there
exists another model of highway (called freeway [3] or simply highway [1]) in which one
is allowed to enter and leave at any point. A natural extension of the problems studied
in this paper is considering the location of a freeway instead.

The faster algorithm for the variable length variant of the problem is based on
Lemma 3.4. Unfortunately, we have examples in which this result does not hold when-
ever the highway’s length is fixed. Thus it remains open to show whether or not the
fixed-length problem can also be solved in O(n log n) time (or showing that it is 3-SUM
hard).
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Abstract. In this paper we present an implementation of longest edge refinement algorithms for ap-
plication in real-time terrain operations. The proposed refinement schemes are suitable tools for the
subdivision of underlying mesh triangles. They pose quite acceptable properties as quality ratio, linear
time operation and algorithm simplicity. We provide a comparison of the performance of the algorithms
when applied to virtual fracture terrains in Gran Canaria island.

Introduction

Local refinement can be useful when modeling hierarchical terrain meshes, in order to
have a better representation of problems where the initial discretization is not the best,
especially when more resolution is needed or there are non linear regions in the terrain [1,
2, 3]. The refinement problem can be defined as any technique that involves the insertion
of at least one additional vertex in a mesh in order to produce more accurated meshes.
Frequently, representations of the real world are not static because they change over time
or depend on a prescribed observed terrain distance or a numerical solution within the
mesh. This can be viewed as real-time terrain triangulations. If there is an alteration of
the terrain, the mesh which represents it must consequently change and local refinement
will be needed in order to have a resulting mesh which represents the area in a precise way.

A well-known triangle partition which has received much attention is the four trian-
gles longest-edge subdivision (4T-LE); see [1] and the references therein. This partition
scheme bisects a triangle into four subtriangles: the original triangle is first subdivided
by its longest edge and then the two resulting triangles are bisected by joining the new
midpoint of the longest edge to the midpoints of the remaining two edges of the original
triangle. In this work, for the sake of comparison, we provided an implementation of
4T-LE following [1].

The longest-edge trisection algorithm (3T-LE), recently presentend in [4], offers a
valid strategy to refine triangular meshes, but it has not been applied for the refinement of
real terrain representations before. In this work, we provide a MATLAB implementation
of the algorithm, in order to find out how it behaves when applied to real-time terrain
triangulations in comparison to other refinement algorithms like 4T-LE and algorithms
based on Delaunay triangulations. This will confirm that longest edge algorithms provide
suitable representation tools for real-time terrain triangulations.

This work is organized as follows: first, the longest-edge trisection (3T-LE) refinement
algorithm is described and implemented in MATLAB. Afterwards 3T-LE and 4T-LE
algorithms are applied to a real-time terrain triangulation in order to compare their

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

197



198 Longest-edge refinement schemes for real-time terrain triangulations

performance. A further comparison of their performance and accuracy is made with a
Delaunay triangulation.

1 3T-LE refinement algorithm

The longest-edge trisection of a triangle T (3T-LE) is obtained by connecting two equally
spaced points, which trisect the longest edge of T , with the opposite vertex [4]. The
trisection of a triangle has been used recently for the introduction of a new partition called
the seven triangle longest-edge partition (7T-LE); see [5]. To assure that any adjacent
elements share an entire edge or a common vertex (mesh conformity), the refinement is
propagated after the subdivision of the target triangles. Once the longest edge of the
triangle T is divided, the refinement is extended to the adjacent non conforming triangle,
which is the neighbor of T by its longest edge. The process is repeated for all non
conforming triangles. We refer to the set of these additional triangles as the propagation
zone. The algorithm finishes once all triangles in the mesh are conforming.

The longest edge propagation path of a triangle is the ordered finite list of all adjacent
triangles such that Tn is the longest edge neighbor triangle of Tn+1. Although it is possible
to implement the algorithm by first dividing the target triangles and then propagating
the refinement, in this work we will first find the longest edge propagation path and, after
that, the triangles in this path will be trisected. Given a mesh of triangles M(T ), which
contains a list of triangles to be refined, named S, the algorithm preforms as follows:

Require: a mesh of triangle M(T ), a list S of triangles of M(T ) to be refined
for each triangle Tn of the list S do
P = propagation path
store Tn in P
while P is not empty do

extract Tn from P
find longest edge of Tn
find Tn+1 = neighbor of Tn by LE
if LE of Tn is LE of Tn+1 or Tn is a boundary then

equally divide LE in three by inserting points v1 and v2

if LE of Tn is a boundary edge then
join v1 and v2 with the opposite vertex of Tn

else
join v1 and v2 with the opposite vertex of Tn and Tn+1

end if
else

store Tn in P
store Tn+1 in P

end if
end while

end for

The algorithm starts by analyzing the first triangle Tn of the list S and finding its
neighbor Tn+1 by its longest edge. If the shared edge of both triangles is also the longest
edge of Tn+1, both triangles are trisected by inserting points in the longest edge and
joining them with the opposite vertex. Otherwise, Tn is stored in P , which is a LIFO
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(last in, first out) queue, and the process is repeated for Tn+1. Only in case a couple of
triangles which share their longest edge is found, or a boundary edge is reached, triangles
are trisected. After that, the next triangle is extracted from P and the process is repeated
for the extracted triangle. Once the LIFO stack P is empty, the refinement of Tn and its
propagation path is finished, so that all triangles are conforming, thus we can repeat the
refinement algorithm for the next triangle of the list S. Notice that, if a triangle is in the
list S and it is also part of the propagation path of a triangle which occupies a previous
position on that list, it will not be necessary to refine it, because its propagation path is
part of the path of the previous triangle to be refined.

2 Real-time terrain application and conclusions

MATLAB implementations of 3T-LE and 4T-LE algorithms were applied to an example
real-time triangulation of Gran Canaria island. Given a right tringulated irregular net-
work (RTIN) terrain mesh sample, the refinement experiment is simulated by supposing
there is an unexpected linear fracture in the terrain of Gran Canaria island. The algo-
rithms were applied for local refinement on the triangles which represented areas of the
terrain affected as the fracture was moving forward. Those triangles conform the list S
of triangles to be refined. Results of the local refinement performed by 3T-LE can be
observed in Figure 1.
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Figure 1. Refinement of a fracture with the 3T-LE algorithm. (a) 3D view of
the refined fracture with one level of refinement. (b) 3D view with two levels of
refinement.

A comparison of the performance of the algorithms is shown in Table 1. We applied
the algorithms to the sample mesh and measured: the number of vertex of the resulting
mesh (V ), the execution time (T (s)) in an Intel Core 2 Duo 2.53 GHz processor with
4 GB RAM and the quality of the generated triangles (q), evaluated with the MATLAB
function pdetriq( ), which states that a triangle is of acceptable quality if q > 0.6. Further-
more, we present the results observed when we simply insert points ir order to section the
longest edge as prescribed by 3T-LE and 4T-LE and then make a Delaunay triangulation
of the original and inserted points. In Tables 2 and 3 we show results of the consecutive
application of the algorithms for two and three levels of refinement. It can be observed
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Algorithm V T (s) mean(q)
3T-LE 1466 1.4060 0.7728
3T-LE with Delaunay 1506 2.8120 0.8085
4T-LE 1209 2.4690 0.8591
4T-LE with Delaunay 1775 2.9690 0,8158

Table 1. Performance comparison with 1 level of refinement

Algorithm V T (s) mean(q)
3T-LE 2300 5.0930 0.6876
3T-LE with Delaunay 2112 7.6720 0.7654
4T-LE 1563 6.3910 0.8382
4T-LE with Delaunay 2573 9.8130 0,7906

Table 2. Performance comparison with 2 levels of refinement

Algorithm V T (s) mean(q)
3T-LE 3169 10.5480 0.6159
3T-LE with Delaunay 2744 14.7500 0.7380
4T-LE 1927 12.5630 0.8183
4T-LE with Delaunay 3389 13.2650 0,7659

Table 3. Performance comparison with 3 levels of refinement

that the application of 3T-LE and 4T-LE algorithms implemented in this work provides
good results in terms of execution time and quality of the mesh when compared with
3T-LE and 4T-LE performed with a Delaunay triangulation. Other tests were executed
on different terrain meshes leading to similar results as those presented in Tables 1–3.
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Abstract. The longest-edge (LE) trisection of a triangle ∆ is obtained by joining the two equally spaced
points of its longest-edge with the opposite vertex. Let α > 0 be the smallest interior angle of ∆ and α′

the smallest angle of any triangle obtained after iteration of the LE-trisection. In this paper we prove
that α′ ≥ α/c, where c = (π/3)/(arctan

(√
3

11

)
).

Introduction

Mesh refinement has been an important research area in applied mathematics and en-
gineering applications. For example, longest-edge bisection guarantees the construction
of good-quality irregular and nested triangulations. The main reason is the lower bound
condition on the small angles of the triangles so generated: It has proven to be critical to
numerical convergence, for example in finite element method. So non-degeneracy of the
involved mesh partitions has received much interest: from early works in the seventies [1]
to last studies [2, 3, 4].

The longest-edge (LE) trisection of a triangle t = t(A,B,C) is obtained by joining
the two equally spaced points of the longest-edge of ABC with the opposite vertex.
Figure 1(a) shows the LE-trisection of triangle t. The three new triangles generated will
be named tL = tL(A,D1, C), tM = tM (C,D1, D2) and tR = tR(D2, B,C), where the
subscripts L,M,R stand for left, medium and right respectively. Repeated application of
the partition generates a triangular mesh (Figure 1(b)).

Figure 1. (a) LE-trisection of the triangle ABC. (b) 2nd iteration with hanging
nodes.

We have proved in [2] that, for a given initial triangle with smallest interior angle
α > 0, the LE-trisection produces three new triangles such that any of their interior angles

2Partially supported by research grant SMCG-2730062011.

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

201



202 A lower bound on the angles of triangles constructed by LE-trisection

α1 satisfies α1 ≥ α/c1, where c1 = π/3

arctan(
√

3/5)
≈ 3.1403. Besides, empirical evidence has

been given of the non-degeneracy of the meshes or partitions obtained by iteration of
the LE-trisection. In fact, if α is the minimum interior angle of the initial triangle, and
α′ is the minimum interior angle of any triangle in a mesh after iterated applications of
LE-trisection, then α′ ≥ α/6.7052025350.

We have proved more recently in [5] a sharp upper bound of the diameters of triangles
generated in LE-trisection method. It follows implicitly the non-degeneracy property of
LE-trisection from our proof of this result. In this work we prove mathematically that
α′ ≥ α/c, where c = π/3

arctan
(√

3
11

) . It confirms our previous numerical research in [2].

1 LE-trisection and hyperbolic geometry

A method used in the literature of triangular mesh refinement is to normalize trian-
gles [6, 7]. The normalization process consists in applying, possibly, several isome-
tries and dilations to a triangle, matching its longest edge with the segment whose
endpoints are (0, 0) and (1, 0), leaving its shortest edge to the left. In this way, all
the similar triangles are represented by a complex number z in the normalized region
{0 ≤ Re z ≤ 1/2, Im z ≥ 0, |z − 1| ≤ 1}, being z the opposite vertex to the longest
edge of the triangle, once it has been normalized.

Figure 2. Transformations to obtain the expression of wL(z) for z in the gray zone.

Let z be a complex number in the normalized region which satisfies Re z ≥ 1/6 and
|z − 1/3| ≥ 1/3; see Figure 2(a). The LE-trisection is applied to the triangle 0, 1 and
z (we name a triangle with its vertices). Three triangles are performed joining z with
1/3 and 2/3. The normalization of the triangle 0, 1/3 and z (resp. 1/3, 2/3 and z or
2/3, 1 and z) defines the point wL(z) (resp. wM (z) or wR(z)) in the normalized region.
The geometric transformations used in the normalization of the triangle 0, 1/3 and z are
showed in Figure 2. For this case it is obtained wL(z) = 1

3z̄ .
In the same way we obtain the expressions which are given in Figure 3. Therefore,

the normalization reduces the LE-trisection method to the complex dynamic in the nor-
malized region associated to three complex functions wL, wM and wR.

We use results of hyperbolic geometry and particularly the Poincaré half plane model
[8]. The circumferences and the straight line which appear in the description of wL, wM
and wR are geodesics in the Poincaré half plane. The expressions which appear in wL,
wM and wR are isometries in the half plane hyperbolic model too. These functions have
the additional following property.
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Figure 3. Left: function wL. Middle: function wM . Right: function wR.

Lemma 1.1. Let W be any of the functions wL, wM and wR. If z1 and z2 are in the
normalized region, then d(W (z1),W (z2)) ≤ d(z1, z2), where d( · , · ) denotes the hyperbolic
distance in the half plane.

Proof. First we mention thatW is invariant under inversion with respect to the circumfe-
rences (or symmetry with respect the straight line) which appear in its description. For
example, let W = wL. The symmetry with respect to Re z = 1/6 is given by z 7→ 1

3 − z̄.
This symmetry composed with −1

3z−1 (resp. 3z̄
3z̄−1 , 3z) is 1

3z̄ (resp. 3z−1
3z , 1− 3z̄).

Now, if z1 and z2 are in a zone with same expression of W , then d(W (z1),W (z2)) =
d(z1, z2), because W is isometric in the half plane hyperbolic model. In any case, by the
symmetries of W , there exist z′1 and z′2 in the normalized region with W (z1) = W (z′1)
and W (z2) = W (z′2), z′1 and z′2 in a zone with same expression of W and, finally, with
d(z′1, z

′
2) ≤ d(z1, z2). Thus the lemma follows. �

2 Closed for trisection and non-degeneracy property

A set Ω in the normalized region is closed for trisection (or closed) if, for all z ∈ Ω,
wL(z), wM (z) and wR(z) are in Ω. The union of the three hyperbolic circles C1, C2 and
C3 with radius ln

√
2 and centers 1

3 +
√

2
3 i,

1
3 +

√
2

6 i and
4
9 +

√
2

9 i, respectively, form a closed

region; see Figure 4(a). In fact, the set
{

1
3 +

√
2

3 i,
1
3 +

√
2

6 i,
4
9 +

√
2

9 i
}

is closed; therefore
the union of C1, C2 and C3 is closed too by Lemma 1.1.

Let z be a complex number in the normalized region. We define Γz as the set of
successive images of z by the functions wL, wM and wR. If z is the complex associated to
a triangle in the normalization process, the minimum angle α of the triangle is equal to
the argument of 1− z̄. We denote by α′ the argument of 1− z̄′ with z′ ∈ Γz. We have to
prove that α′/α has a lower bound. In our proof we split the normalized region in other
closed regions where it is possible obtain a lower bound.

Let zeq = 1
2 +

√
3

2 i. Let Γ be the complex numbers in Γzeq exterior to C1, C2 and C3.
We consider the union of the circles C1, C2, C3 and the circles with centers in Γ and radius
ln
√

3. The intersection of this union with the normalized region is a closed region Σ (see
Figure 4(a)) with the following nice property.

Proposition 2.1. If z ∈ Σ and z′ ∈ Γz, then α′ ≥ α/c, where c = π/3

arctan
(√

3
11

) ≈ 6.7052.
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Figure 4. (a) The region Σ is shadowed. (b) The region Σ∗ is shadowed.

Let Σ∗ be the set of complex numbers in the normalized region under circumferences
with centers 1

3 +
√

2
3 i,

1
3 +

√
2

6 i y
4
9 +

√
2

9 i and radius ln
(√

2+
√

6
2

)
in the hyperbolic sense

(see Figure 4(b)). The following proposition concludes our research.

Proposition 2.2. If z ∈ Σ∗ and z′ ∈ Γz, then α′ ≥ α/c, where c =
arctan

(
3
√
3

13

)
arctan

(√
3

12

) ≈ 2.6527.

3 Conclusions

In this paper the non-degeneracy property of the LE-trisection method has been settled,
as well as a sharp lower bound of the angles of triangles constructed by trisecting the
longest-side. Hyperbolic geometry has been applied successfully to study the quality of
the triangular mesh refinement based on LE-trisection.
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Abstract. The minimum feature size of a planar straight-line graph is the minimum distance between
a vertex and a nonincident edge. When a polygon is partitioned into a mesh, the degradation is the
ratio of original to final minimum feature size. We show that some planar straight-line graphs cannot be
triangulated with constant degradation, even with an unbounded number of Steiner points and triangles.
This result answers a 14-year-old open problem by Bern, Dobkin, and Eppstein. For an n-vertex input, we
obtain matching worst-case lower and upper bounds on degradation of Θ(lgn). Our upper bound comes
from a new meshing algorithm that uses O(n) triangles and O(n) Steiner points. If we allow triangles to
have Steiner points along their sides, a construction is presented that achieves O(1) degradation.

Introduction
In this paper5, we study the problem of polygon triangulation, with the possible aid of
Steiner vertices. Our goal is to not introduce small distances between vertices and non-
incident edges, compared to distances already existing in the shape. To compare the
input and output, we use the minimum feature size of a planar straight-line graph G,
denoted by mfs(G). This is the minimum distance between a vertex and a nonincident
edge. We are interested in decomposing a polygon P into a planar straight-line graph
(more specifically, a triangulation) G such that the minimum feature size of G is as
close as possible to that of P . We call the ratio mfs(P )/mfs(G) the degradation of the
decomposition of P into G. Note that mfs does not distinguish between the interior and
exterior of P when measuring distances.

Minimum feature size is a parameter well suited for describing the resolution needed
to visually distinguish elements in a mesh. For example, it measures the maximum
thickness that the edges in a mesh can be drawn. Also, mfs measures the amount of error
allowed in the placement of vertices, so that a drawing preserves its topology. This could
be useful in manufacturing, as well as in finite element simulation.

One important issue here is the type of desired triangulation. This choice has a large
effect on the results that can be achieved; see Figure 1. The most common decomposition

2Research supported by NSF grants CCF-1018370, CCF-0430849 and by an Alfred P. Sloan fel-
lowship. Research partially completed as a visiting professor at MADALGO (Center for Massive Data
Algorithmics, a Center of the Danish National Research Foundation), Department of Computer Science,
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5 The research presented in this paper was initiated at the 24th Annual Winter Workshop on Com-
putational Geometry at the Bellairs Research Institute of McGill University, at which the presence of
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of a polygon is the classic triangulation, where noncrossing chords are added between
vertices of P , until the interior of P is partitioned into triangles. If we allow Steiner
points, a proper triangulation is such that any two edges that lie on the same interior
face and are incident to a common vertex are not collinear. A non-proper triangulation
simply partitions P into triangles, with no restrictions.

Figure 1. Triangulation types: classic, proper, non-proper. Steiner points are blue.

Bern, Dobkin, and Eppstein [BDE95] studied this problem, using the notion of
internal feature size ifs(P ), which is the minimum distance inside P between a vertex
and a nonincident edge. (Note that “internal feature size” is called “minimum feature size”
in [BDE95].) They proved that every polygon P (possibly with holes) has a non-proper
triangulation in which every triangle has height Ω(ifs(P )).

For a planar straight-line graph, triangulating all of its faces with triangles that have
height at least h is equivalent to guaranteeing that the triangulation itself has minimum
internal feature size at least h. Notice that the internal feature size of a triangle equals
its height. Thus ifs(P ) is an upper bound on the smallest height of a triangle in any
triangulation of P , so this bound is the best possible up to constant factors. However the
method does not guarantee that the minimum feature size of the resulting triangulation is
bounded by a function of mfs(P ). Thus, partitioning both the inside and the outside of a
polygon into triangles whose height is bounded by a function of mfs(P ) is not guaranteed
either. Consequently, the first open problem the authors list is whether their result
can be generalized to planar straight-line graphs, that is, whether such graphs can be
triangulated while preserving their minimum feature size.

We answer this open problem negatively. Specifically, we provide a simple polygon
G such that every proper triangulation of G has degradation Ω(lg n), independent of
the number of Steiner points and triangles. We match this lower bound by providing
an algorithm for properly triangulating any given planar straight-line graph G so that
degradation is O(lg n). Our algorithm uses O(n) Steiner points and hence O(n) triangles.
Steiner points are necessary to obtain a degradation smaller than a linear factor; Bern
and Eppstein [BE95] showed that all classic triangulations of a regular n-gon have a
minimum feature size degradation of Ω(n). This can be extended trivially to quadrangles
or any decomposition with constant size faces.

Until now, no meshing algorithm with a constant degradation was known. Ruppert’s
Delaunay mesh refinement algorithm claims such a bound [Rup93, Theorem 1], but
the constant actually depends on the minimum angle of the input graph (as well as the
minimum triangle angle guaranteed by the algorithm).

What causes the need for logarithmic degradation in proper triangulations of planar
straight-line graphs? We show that the essential issue is forbidding Steiner points along
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the sides of a triangle. However, by allowing Steiner points along the sides of triangular
elements (what we call non-proper triangulation), O(1) degradation is actually possible.

1 Non-proper triangulations can preserve minimum
feature size

In this section we show how to construct a non-proper triangulation for any polygon P ,
such that the minimum feature size degradation is Θ(1). We use Θ(n) Steiner points,
and the construction can be computed in linear time.

We provide a brief overview of our construction. There are two distinct regions of P
which will be triangulated separately. The two regions will be separated by a polygon
Q interior to P whose boundary remains at distance Θ(mfs) to that of P . The region
between P and Q is called the tube. The algorithm places all Steiner points on or interior
to Q; none are placed on P .

The polygon Q is constructed to have the following properties with respect to absolute
constants c1, c2, c3: (1) All points on Q are at most c1 away from the closest point on P ,
and at least c2 away from the nearest point on P . (2) All vertices on Q have y-coordinates
which are multiples of c3 (i.e., they are on a c3 horizontal grid). (3) There areO(n) vertices
(initially) on Q. The details of how to find such a Q are omitted, but we note that the
grassfire transformation plays a vital part in the construction.

Next, an edge from each vertex of Q is added to the closest vertex on P ; now the
region between the P and Q is subdivided into triangles and quadrangles. The interior
of Q is then quadrangulated by performing a trapezoidal decomposition of the interior
of the tube; this will introduce new Steiner vertices on Q. However, since all vertices
on Q are at least c3 separated, this does not cause any issues with respect to minimum
feature size. The decomposition at this point contains triangles and quadrangles; the
quadrangles need to be triangulated. The most difficult cases are the quadrangles in the
tube; these will have one edge from P and one edge from Q. The edge from Q may
have many Steiner vertices introduced by the trapezoidal decomposition, separated by a
distance of at least c3. The edge from P does not have any Steiner vertices, and it cannot
be assumed that it is safe to put any Steiner vertices on P because there could be another
edge of P arbitrary close. For example, see Figure 2 (D), where a constant fraction of the
boundary of P is off-limits to the introduction of Steiner points). The other two edges
connecting P and Q do not have Steiner points. Figure 2 (A) shows how to triangulate a
rectangle subject to these restrictions while maintaining constant minimum feature size;
this construction can be slightly modified to decompose any of the needed quadrangles
and complete the construction, yielding the following theorem.

Theorem 1.1. Every polygon has a non-proper triangulation with constant minimum
feature size degradation.

2 Degradation upper bound for proper triangulations
The decomposition method is the same as for non-proper triangulations, with the excep-
tion that the decomposition of quadrangles shown in Figure 2 (A) can not be used as it is
a non-proper triangulation. Instead the construction of Figure 2 (C) is used; this yields
O(log n) degradation.

Theorem 2.1. Every n-vertex polygon has a proper triangulation with O(log n) minimum
feature size degradation.
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3 Lower bounds fuck A B C D

Due to lack of space and complexity of proofs, we only
state our main results of this section.

Let Pn be the generalized version of the n+ 6 vertex
polygon illustrated in Figure 2 (D). This polygon has
width 2, height n + 1, and minimum feature size of 1.
Let Rn be the rectangular region of Pn shaded in Fig-
ure 2 (D). A τ -grid is a set of τ vertical lines. Let a
τ -grid triangulation of Pn be a non-proper triangulation
of Pn where all Steiner vertices are on a τ -grid.

Theorem 3.1. For every τ and n, every τ -grid (non-
proper) triangulation G of Pn has degradation

Ω

(
min

{
lg n

lg lgn
,
lg n

lg τ

})
.

When considering proper triangulations, our (omitted)
proof for Theorem 3.1 simplifies to a Ω

(
lgn

lg lgn

)
bound on

degradation. However, we are able to improve as follows.

Theorem 3.2. For every n, every proper triangulation
G of Pn has degradation Ω(lg n).

This can be shown to extend to a bound of Ω(lgr n)
for proper r-rangulations.

References
[BDE95] Marshall Bern, David Dobkin, and David Eppstein.

Triangulating polygons without large angles. Interna-
tional Journal of Computational Geometry & Applica-
tions, 5(1–2):171–192, March–June 1995.

[BE95] Marshall Bern and David Eppstein. Mesh generation
and optimal triangulation. In Ding-Zhu Du and Frank
Kwang-Ming Hwang, editors, Computing in Euclidean
Geometry, number 4 in Lecture Notes Series on Com-
puting, pages 47–123. World Scientific, second edition,
1995.

[Rup93] Jim Ruppert. A new and simple algorithm for quality
2-dimensional mesh generation. In Proceedings of the 4th
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 83–92, Austin, Texas, 1993.

Figure 2. (A)–(C) are triangulations of the same rectangle with
129 vertices on the right edge. (A) is a non-proper triangulation,
with O(1) degradation. For comparison, (B) is a simple proper fan
triangulation withO(n) degradation. (C) is a proper triangulation
with O(logn) degradation. Observe how for (A) the interiors of
all the triangles are clearly visible; in (C) it is more difficult to
discern the individual triangles, and in (B) it is impossible. (D)
is a polygon that shows Steiner vertices cannot be placed on a
significant fraction of the boundary close to the reflex vertex.
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Abstract. Let S be a permutation of In = {1, . . . , n}. The weight of a subsequence of S is the sum
of its elements. We prove that any permutation S of In always contains an increasing or a decreasing
subsequence of weight greater than n

√
n/3; our bound is asymptotically tight. We also show that S

contains a unimodal subsequence of weight at least n
√

2n/3−O(n). Our problem arises in the following
geometric setting: Let P be a set of n points whose elements are labelled with the integers in In. A simple
path of P is an increasing path if when we traverse it starting at one of its endpoints, the labels of its
elements always increase. The weight of a path is the sum of the labels of its elements. We study the
problem of finding simple increasing paths with large weight. We also study the problem of finding
non-crossing matchings of P with large weight, where the weight of an edge with endpoints i, j ∈ P is
min{i, j}, and the weight of a matching is the sum of the weights of its edges.

Introduction

Consider any permutation S of In = {1, . . . , n}. A well-known result of Erdős and Szek-
eres [3] asserts that any permutation of In always contains an increasing or a decreasing
subsequence with at least d√n e elements. The weight of a subsequence of S is the sum
of its elements. If we consider the permutation S = {5, 2, 8, 1, 7, 4, 3, 6}, the weight of the
increasing subsequence {2, 4, 6} is equal to 12. Among all the increasing or decreasing
subsequences of S, the one with maximum weight is {8, 7, 6}, with weight 21. In this
paper we study the problem of finding the increasing or decreasing subsequence of a per-
mutation with maximum weight. We prove that any permutation of In always contains
an increasing or a decreasing subsequence with weight greater than n

√
n/3; our bound is

asymptotically tight. The permutations obtained to solve this problem produce efficient
packings of squares with areas 1, 22, . . . , n2. We also study the problem of finding uni-
modal subsequences of large weight of permutations of In. We show that any permutation
of In always has a unimodal subsequence of weight at least n

√
2n/3−O(n).

Our results are motivated by the following problem: Let P be a set of n points on
the plane in general position such that its elements are labelled with the integers of In.
Different elements of P receive different labels (we call this point set a labelled point set,
or simply a point set). A path W whose vertices are elements of P is called simple if no
two of its edges cross each other. W is called an increasing path if when we traverse it
starting at one of its endpoints, the labels of its vertices always increase. The weight of a
path is the sum of the labels of its vertices. Finding increasing or decreasing subsequences
in permutations of In allows us to establish bounds on the weight of the heaviest simple
increasing path in labelled point sets. For point sets in convex position, we use unimodal

2Partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT 80268 (Mexico).
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210 Paths and matchings on point sets

or anti-unimodal subsequences of large weight. We also study the problem of finding
non-crossing matchings of labelled point sets with large weight, where the weight of the
edge joining i and j is the smaller of {i, j}, and the weight of a matching is the sum of the
weights of its edges. We show that a point set in convex position always has a matching
of weight at least n2/5−O(n). Point sets in general position always have matchings with
weight at least n2/6 + Ω(n).

Finding structures in point sets on the plane that optimize some given functions
has been of interest to many computational geometers for some time. Problems studied
so far include finding simple paths, matchings, cycles, and trees of maximum length;
see Dumitrescu and Tóth [1]. Pach, Károlyi, and Tóth [5] show that if the edges of a
complete geometric graph on k2 + 1 points are colored red or blue, then there always
exists a simple red or blue path of length k + 1. The problem of finding long simple
increasing paths was first studied by Czyzowicz et al. [4]. They proved that any labelled
point set in convex position contains a simple increasing path of length at least

√
2n.

This bound was improved recently by Sakai and Urrutia [6] to
√

3n− 3/4− 1/2.

1 Heavy simple increasing paths

1.1 Heavy increasing subsequences of a permutation

Let S = {s(1), . . . , s(n)} be a permutation of In. To each s(i) of S, we associate the point
(xi, yi) as follows: xi is the weight of the heaviest increasing subsequence of S ending at
s(i), and yi is the weight of the heaviest decreasing subsequence of S starting at s(i). If
S = {4, 3, 7, 2, 5, 1, 6}, then we associate to s(3) = 7 the point (x3, y3) = (4+7, 7+5+1) =
(11, 13). We also associate to each s(i) the square SQ(i) whose top right vertex is (xi, yi)
and whose bottom left vertex is the point (xi − s(i), yi − s(i)).

Observation If i 6= j, then (xi, yi) 6= (xj , yj), and SQ(i) and SQ(j) have disjoint
interiors.

Let α be the minimum value such that the square SQ with vertices (0, 0), (0, α), (α, α),
(α, 0) contains all SQ(i). Since the area of SQ must be at least the total area of the
SQ(i), we must have α > n

√
n
3 . This implies:

Theorem 1.1. Any permutation of In contains an increasing or a decreasing subsequence
whose weight is greater than n

√
n/3. Our bound is asymptotically tight.

To see that our bound is asymptotically tight, let k = 4
√

4n3/3, and m =
√

3n/2.
Consider now the following permutation Π:

dke, dke − 1, . . . , 1, d
√

2ke, d
√

2ke − 1, . . . , dke+ 1,

d
√

3ke, d
√

3ke − 1, . . . , d
√

2ke+ 1, . . . , n, n− 1, d
√
m− 1 ke+ 1.

Thus, Π consists of m blocks of decreasing integers such that, for each block, the sum of
its elements is n

√
n/3 + O(n). On the other hand, the heaviest increasing subsequence

of Π is the subsequence containing the elements dke, d
√

2 ke, d
√

3 ke, . . . , n, which again
has weight n

√
n/3 +O(n). As a consequence, we have:

Theorem 1.2. Any labelled point set with n elements has a simple increasing path of
weight greater than n

√
n/3.
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1.2 Heavy increasing paths of point sets in convex position

A subsequence {s(i1), . . . , s(ik)} of a permutation S of In is called unimodal if there is
a j, 1 ≤ j ≤ k, such that s(i1) < · · · < s(ij) > · · · > s(ik); it is called anti-unimodal if
for some j, s(i1) > · · · > s(ij) < · · · < s(ik). The next result is given without a proof.

Theorem 1.3. Any permutation of In contains a unimodal subsequence of weight greater
than n

√
2n/3−O(n).

Observe that the problem of finding a simple increasing path of maximum weight for
a labelled point set in convex position can be reduced to that of finding a unimodal or
anti-unimodal sequence of maximum weight in a permutation of In obtained from P by
reading its elements starting at a suitable point of P . Thus the next result follows:

Theorem 1.4. Any labelled point set in convex position has a simple increasing path of
weight greater than n

√
2n/3−O(n).

The best upper bound we have for the weight of a unimodal or an anti-unimodal
subsequence of a permutation is approximately 2n

√
n/3, and is given by the permutation

used in Theorem 1.1. On the other hand, the best upper bound we have for the weight of
a simple increasing path of n labelled points in convex position is approximately n

√
2n.

This is given by the following permutation Π′ with n = 2k2:

n− k + 1, n− 2k + 1, . . . , k + 1, 1,
n− k + 2, n− 2k + 2, . . . , k + 2, 2,

. . .
n = 2k2, n− k, . . . , 2k, k.

It is easy to see that the maximum weight unimodal or anti-unimodal subsequence of Π′

has weight ≈ n
√

2n; this weight is achieved by the subsequence

n− k + 1, n− k + 2, . . . , n, n− k, . . . , 2k, k.

2 Heavy non-crossing matchings

In this section, we study the problem of finding non-crossing matchings of a labelled point
set that maximize the sum of the weights of its edges. We give lower bounds of the sums
of the weights while efficient upper bounds are still open.

2.1 Point sets in convex position

Lemma 2.1. The weight of any non-crossing perfect matching of a point set P in general
position with 2m elements is at least

(
m+1

2

)
and at most m2. These bounds are tight.

To prove the tightness of the lower bound, let P be an unlabelled point set with 2m
elements in convex position. Color the elements of P red or blue in such a way that when
we traverse the boundary of the convex hull of P the colors of its elements alternate.
Observe that any edge of a perfect matching M of P joins a red and a blue point.
Label the red and blue points of P with the integers {1, . . . ,m} and {m + 1, . . . , 2m},
respectively, not necessarily in order. Then the weight of any edge of M belongs to
{1, . . . ,m}. Since different edges inM have different weights, the weight ofM is precisely(
m+1

2

)
. The tightness of the upper bound is easy to prove.

Using similar arguments, we can prove:
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Lemma 2.2. Let P be a set of points in general position whose elements have been labelled
with the set of integers {2r + 1, 2r + 2, . . . , 2m}. Then the weights of perfect matchings
of P have the following bounds, and these bounds are tight:

• at least (2r + 1) + (2r + 2) + · · ·+ [2r + (m− r)] = 2r(m− r) +
(
m−r+1

2

)
, and

• at most (2r + 1) + (2r + 3) + · · ·+ (2m− 1) = 2r(m− r) + (m− r)2.

Next we consider matchings that are not necessarily perfect.

Lemma 2.3. Let P be a point set in convex position such that some of its elements are
colored red and the rest blue. Then there is a non-crossing matchingM of P that matches
all, but at most two, elements of P such that the endpoints of each edge of M have the
same color.

We are now ready to prove the main result of this section.

Theorem 2.4. Let P be a labelled point set in convex position. Then the heaviest non-
crossing matching of P has weight at least n2/5−O(n).

Proof. To make our proof easy to understand, let us assume that P has n = 10s elements.
Discard from P all the elements with labels in {1, . . . , 2s}. Now color with blue and red
all the elements of P with labels in {2s+1, . . . , 6s} and {6s+1, . . . , 10s}, respectively. By
Lemma 2.3, we can find matchingsM′ andM′′ of {2s+ 1, . . . , 6s} and {6s+ 1, . . . , 10s},
respectively, that leave at most two elements of {2s+ 1, . . . , 10s} unmatched.

Suppose first that all the elements of {2s+ 1, . . . , 10s} are matched. By Lemma 2.2
with r = s, and m = 3s, the weight ofM′ is at least (2s+1)+(2s+2)+ · · ·+(4s−1)+4s.
Similarly, by applying Lemma 2.2 with r = 3s and m = 5s, the weight ofM′′ is at least
(6s+ 1) + (6s+ 2) + · · ·+ (8s− 1) + 8s. It is easy to see now that the sum of the weights
ofM′ andM′′ is at least n(n+ 1)/5.

Observe now that if two elements of {2s+1, . . . , 10s} are unmatched, then the sum of
the weights ofM′ andM′′ decreases from n(n+ 1)/5 by at most 2n. Hence the weight
ofM′ ∪M′′ is at least n2/5−O(n). �

2.2 Point sets in general position

For point sets in general position, by discarding the elements with labels smaller than
n/3 +O(1) and applying Lemma 2.2, we obtain:

Theorem 2.5. Let P be a labelled point set in general position. Then the heaviest non-
crossing matching of P has weight at least n2/6 + Ω(n).
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Abstract. Let S be a set of n points in general position in the plane. A k-island I of S is a subset
of k points of S such that Conv(I) ∩ S = I. We show that, for an arbitrary but fixed number k ≥ 2,
the minimum number of k-islands among all sets S of n points is Θ(n2). The following related counting
problem is also studied: For l < k, an l-island covers a k-island if it is contained in the k-island. Let
Ck,l(S) be the minimum number of l-islands needed to cover all the k-islands of S and let Ck,l(n) be the
minimum of Ck,l(S) among all sets S of n points. We find asymptotic bounds for Ck,l(n).

Introduction

Let S be a set of n points in general position in the plane. An island I of S is a subset
of S such that the convex hull of I does not contain points of S\I. Problems related to
islands have been studied recently in [4, 5]. A k-island is an island I with |I| = k. The
set of k-islands of S will be denoted as Ik(S). Thus I2(S) are the

(
n
2

)
segments connecting

pairs of points of S and I3(S) are the empty triangles of S. Katchalski and Meir [13]
proved that the minimum number of empty triangles among all sets of n points is Θ(n2).
Lower and upper bounds for the exact leading constant of the quadratic term have then
been improved in [2, 3, 8, 16]. We show that also for k > 3 the minimum of |Ik(S)|
among all sets S of n points is Θ(n2). Note that, for k > 3, a k-island might contain
points in the interior of its convex hull. The special case when all the points of a k-island
form a convex polygon, that is to say, they form an empty convex k-gon in the point set,
has been studied extensively. For k = 4, the minimum number of empty convex k-gons
is quadratic [3]. For k = 5 and k = 6 a linear lower bound is known [9, 10, 14, 17]. A
construction of n points without empty convex heptagons is due to Horton [11]. We will
see that Horton sets also provide O(n2)-examples for the minimum number of k-islands.

We then study coverings of k-islands. Some problems related to coverings were studied
in [1, 15]. For l < k, an l-island covers a k-island if it is contained in the k-island. Let
Ck,l(S) be the minimum number of l-islands needed to cover Ik(S). Let Ck,l(n) be the
minimum of Ck,l(S) among all sets S of n points in general position in the plane. The
problem to determine Ck,l(n) is closely related to counting empty convex polygons in point
sets. For example, since every set of ten points contains an empty convex pentagon [10],
C10,5(n) is at most the minimum number of empty convex pentagons among all sets of n
points. Also, the particular case C3,2(n) has been studied recently in [6] by considering
the question: What is the maximum number of edges that a geometric graph on a point
set S can have such that it does not contain empty triangles? There it is shown that
n− 2 +

⌊
n
8

⌋
≤ C3,2(n) ≤ O(n log n). The latter bound is achieved by the Horton set. We
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value of l ≤ bk+5
6 c ≤ dk2e ≥ dk2e+ 1

Ck,l(n) Θ(n) O(n log n) Ω(n log n)

Table 1. The obtained bounds for Ck,l(n).

will see that also for each l ≤ dk2e the Horton set provides the upper bound O(n log n)
on Ck,l(n). Table 1 summarizes our obtained bounds for Ck,l(n).

Throughout the text, k ≥ 2 is an arbitrary but fixed natural number, and n is
arbitrarily large with respect to k.

1 Islands of the Horton set

A Horton set, see e.g. [2, 3, 7, 11], is defined recursively as follows: H(1) = {(1, 1)} and
H(2) = {(1, 1), (2, 2)}. When H(n) is defined, set

H(2n) = {(2x− 1, y) | (x, y) ∈ H(n)} ∪ {(2x, y + 3n) | (x, y) ∈ H(n)}.
We denote the subset of points of a Horton set H(n) with even x-coordinate as the upper
set H+(n), and subset of H(n) with odd x-coordinate as the lower set H−(n). Horton
sets have the following property: Any line connecting two points from H+(n) leaves all
points from H−(n) below, and any line connecting two points from H−(n) leaves all
points from H+(n) above.

We say that an island I of a point set S is open from above if the vertical stripe
bounded by the leftmost point and rightmost point of I contains no points of S \ I
above I. Likewise I is open from below if there are no points of S \ I below I in this
stripe. Denote with I+

k (S) and I−k (S) the set of k-islands of S open from above and open
from below, respectively.

We estimate the number |I+
k (H(n))| of k-islands of the Horton set H(n) open from

above. The following lemma also applies to the number |I−k (H(n))| of k-islands open
from below. The proof is omitted due to lack of space.

Lemma 1.1. There exist positive constants ck and c′k that only depend on k such that
c′kn ≤ |I+

k (H(n))| ≤ ckn.
Lemma 1.2. The number of k-islands of the Horton set H(n) is Θ(n2).

Proof. The k-islands that are contained entirely in the upper set H(n)+ or in the lower
set H(n)− can be counted recursively. A k-island that has points in both of H(n)+ and
H(n)− consists of an i-island open from below in H(n)+ and a (k − i)-island open from
above in H(n)−, for some i ∈ {1, . . . , k − 1}. We thus obtain the recurrence for the
number |Ik(H(n))| of k-islands of the Horton set:

|Ik(H(n))| = 2|Ik(H(n2 ))|+∑k−1
i=1 |I−i (H(n2 ))| · |I+

k−i(H(n2 ))|.
Since k is a constant, |I−i (H(n2 )| and |I+

k−i(H(n2 ))| are both in Θ(n) by Lemma 1.1. Thus,

|Ik(H(n))| = 2|Ik(H(n2 ))|+ Θ(n2).

It follows that |Ik(H(n))| is Θ(n2). �

Lemma 1.3. Let S be a set of n points in general position in the plane, and let k ≥ 2.
Then |Ik(S)| = Ω(n2).
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Proof. For a point p ∈ S, sort the points of S\{p} cyclically around p. Divide these
points into Ω(n) groups of k − 1 consecutive points in this order. Each group together
with p forms a k-island. Repeating this for every point of S, we count Ω(n2) k-islands;
each one is counted at most k times. �

Lemmas 1.2 and 1.3 imply the following result:

Theorem 1.4. The minimum number of k-islands among all sets of n points in general
position is Θ(n2).

2 Covering islands

We now show asymptotic bounds for Ck,l(n).

Theorem 2.1. For l ≤ bk+5
6 c, Ck,l(n) is Θ(n). For l ≤ dk2e, Ck,l(n) is O(n log n). For

l ≥ dk2e+ 1, Ck,l(n) is Ω(n log n).

The proof is split into the following three cases.

• For l ≤ bk+5
6 c, there exist sets of n = ml points, for any m, such that their k-islands

can be covered with m l-islands.

Proof. The construction starts with a Horton set of m points; if m is not a power of
2 then take a larger Horton set and only consider its m leftmost points. Then l − 1
additional points are placed in an ε-neighborhood of each point of the Horton set, where
ε > 0 is chosen small enough. It remains to provide a covering of all k-islands of this
point set with m l-islands: Choose each point of the given Horton set together with its
l−1 additional nearest points as an l-island of the covering. Thus, m l-islands are chosen.
Assume the point set has a k-island I that is not covered by some chosen l-island. Note
that k ≥ 6(l−1)+1. Also note that I contains at most l−1 points of each chosen l-island.
We now use the fact that Horton sets have no empty convex heptagons. Therefore, I
cannot have points from more than six l-islands. But since k > 6(l − 1), this gives a
contradiction. �

• For l ≤ dk2e, the k-islands of the Horton set H(n) can be covered with O(n log n)
l-islands.

Proof. To cover all the k-islands, choose all the l-islands open from below of H(n)+ and
all the l-islands open from above of H(n)−. By Lemma 1.1, the number of these l-islands
is O(n). Moreover, these l-islands cover all the k-islands that have points in both H(n)+

and H(n)−. Recursively cover the k-islands of H(n)+ and H(n)−. Let T (n) denote the
number of l-islands in this covering. We obtain the recurrence:

T (n) ≤ 2T (n2 ) +O(n),

which gives O(n log(n)) as an upper bound. �

• For l ≥ dk2e+ 1 and for every set S of n points, at least Ω(n log n) l-islands are needed
to cover all the k-islands of S.

Proof. Consider a halving line `h for S. We want to find Ω(n) pairwise disjoint k-islands
crossing `h such that at most

⌈
k
2

⌉
points of each island are on each side of `h. But this

follows easily as a special case of the Equitable Subdivision Theorem [12]: assume the
points of S on one side of `h are colored red; the remaining ones are colored blue. Possibly
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ignore the leftmost and rightmost points of S (up to Θ(n) points) so that there are g
⌈
k
2

⌉

red points and g
⌊
k
2

⌋
blue points, where g is Θ(n). Then, there exists a subdivision of

the plane into g disjoint convex polygons such that each of them contains exactly
⌈
k
2

⌉

red points and
⌊
k
2

⌋
blue points. Each such polygon gives a k-island. We thus have Ω(n)

pairwise disjoint k-islands crossing `h and therefore need Ω(n) pairwise disjoint l-islands
to cover these k-islands. Since l ≥ dk/2e + 1, also each l-island crosses `h. We iterate
on both sides of `h and obtain the following recurrence, which gives the claimed lower
bound for Ck,l(n) of Ω(n log n):

Ck,l(n) ≥ 2Ck,l(
n
2 ) + Ω(n). �

We finally determine Ck,l(H(n)), for l > dk2e. Based on the following lemma, whose
proof is omitted, we believe that, for l > dk2e, Ck,l(n) is Θ(n2).

Lemma 2.2. For l ≥ dk2e + 1, the number of l-islands needed to cover the k-islands of
the Horton set H(n) is Θ(n2).
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Abstract. Consider 2n points in the plane in convex position, where n points are red and n points
are blue. Edges are straight line segments connecting points of different color. A separated matching
is a geometrically non-crossing matching where all edges can be crossed by a line. Separated matchings
are closely related to non-crossing, alternating paths. Abellanas et al. and independently Kynčl et al.
constructed convex point sets allowing at most 4

3
n+O(

√
n) points on any non-crossing, alternating path.

We present a coloring with constant discrepancy parameter where the number of points in the maximum
separated matching is very close to 4

3
n. When the dicrepancy is at most three we show that there are at

least 4
3
n points in the maximum separated matching.

Introduction

Consider a 2n-element point set with a balanced coloring (n points red and n points
blue) in the plane. Edges will be straight line segments connecting points of different
color. Erdős posed the following problem: How many points are there on the longest
non-crossing, alternating path in an arbitrary balanced 2n-element convex point set in
the plane? Without loss of generality we may assume that the points are on a circle C.

Erdős constructed a convex point set that allows at most 3n
2 +2 points on the longest

non-crossing, alternating path. He conjectured that his configuration was asymptotically
extremal. Erdős’ conjecture was disproved. Kynčl, Pach and Tóth gave a single construc-
tion in 2008 [7]. They showed the 4

3n + O(
√
n) upper and the n + Ω(

√
n/ log n) lower

bound. Abellanas et al. found a similar construction independently of the previously
mentioned researchers [2]. It is conjectured that the presented upper bound is asymp-
totically tight. Hajnal and Mészáros improved the lower bound to n + Ω(

√
n) and gave

a class of configurations for the 4
3n+O(

√
n) upper bound [5].

In the non-convex version of the problem you may find results in the following papers:
[1], [3], [4] and [6].

The proof techniques introduced the notion of separated matchings, that is, geomet-
rically non-crossing matchings where all edges can be crossed by a single line. In some
sense, separated matchings form a building element to alternating paths, as each sep-
arated matching can be easily completed to a non-crossing, alternating path when the
points are in convex position.

An advantage of separated matchings is that we may consider point sets with small
discrepancy. We say that the discrepancy is d if on any interval on the circle C the
difference between the cardinality of color classes is at most d.

Small discrepancy coloring draws attention to the separated matching conjecture [7],
that is formulated as follows. Let 2k denote the number of alternations between the two

1Partially supported by OTKA Grant K76099 and by the Centre Interfacultaire Bernoulli at EPFL
in Lausanne.
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218 Separated matchings in convex point sets with small discrepancy

colors in a 2n-element point set on C. Then for any fixed k and large n, any configuration
admits a separated matching that contains at least 2k−1

3k−2 2n+ o(n) points.
So far no one was concerned with the discrepancy parameter, since small discrep-

ancy means many alternations among the two colors and this alone guarantees a long
noncrossing, alternating path [5]. However, when we consider separated matchings, it is
reasonable to investigate this case. We believe it might shed light on the difficulties of
the original Erdős problem.

We will present a coloring where the discrepancy parameter is constant and the num-
ber of points in the maximum separated matching is very close to the conjectured value.
Furthermore, if we restrict the discrepancy, we obtain an interesting result. For discrep-
ancies two and three, we show that there are at least 4

3n points in the maximum separated
matching. This result suggests that the order of magnitude in the separated matching
conjecture is feasible. All these results can be found in [8] in detail, together with other
related results in this area.

When the discrepancy is relatively small, the truth might be much closer to 2n than
4
3n. Although the case of small discrepancy looks very promising, unfortunately already
the analysis of discrepancy three is rather long by the current techniques. New ideas
could yield further interesting results on small discrepancy colorings.

1 Coloring

First we introduce some necessary definitions to describe our coloring on C. Let our
2n-element convex point set with a balanced coloring be denoted by P . An arc is an
interval of points on C ∩ P . The size of an arc is the number of its elements. In an
arc the points are ordered —we always read the order in clockwise direction. A run is
a maximal set of consecutive points on C of the same color. The length of a run is the
number of its elements.

The previous configurations contained long runs colored red or blue and at most two
arcs consisting of alternating short runs of the two colors. We will present a coloring with
arbitrary many arcs of alternating short runs. The idea originates from the Kynčl–Pach–
Tóth construction. We cut that construction into two pieces. We repeat the two pieces
in arbitrary order an equal number of times along the circle.

We describe two special arcs called blocks. They will be the building elements of our
configuration. The bluish block will consist of a red run of length s and a blue run of
length 2s. We denote the bluish block by (s, 2s) block. The reddish block will consist of
a red run of length s followed by a mixed arc M . The mixed arc M consists of 2s points
alternating in color. Hence, the reddish block will contain 2s red and s blue points. We
denote the reddish block by (s, s(1, 1)) block.

The construction is a class of coloring C(s, t): Take t many (s, 2s) blocks and t many
(s, s(1, 1)) blocks in arbitrary order along C. In other words, the same number of bluish
and reddish blocks are placed along the circle in an arbitrary order.

2 Results

In this section we describe the results. First we take such a coloring from the previously
given class where the discrepancy parameter is a large constant. Then we will estimate
the number of points in the maximum separated matching in that coloring. Later we will
recall a general theorem about our class of coloring C(s, t).
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Before we proceed to our claims, we need to introduce another definition. Let the
size of a separated matching be the number of points participating in it. Thus, it is twice
the number of edges in the matching.

Now we are ready to make our statements.

Observation 2.1. Let C2 be that coloring from C(1000, t) where the reddish and bluish
blocks alternate. Then the size of the largest separated matching in C2 is at most 1.34n.

Consider the following theorem in [8]:

Let C1 be any coloring from C(s, t). Then the size of every separated matching in C1 is
at most 4

3n+O(s+ t).

In this theorem, we have O(s+ t) as the remainder term. We can choose s and t so
that s, t = O(

√
n) and the order of magnitude of O(s + t) becomes negligible. This is

how the reader should think about this theorem.
Observation 2.1 is a special case of this general theorem described above. We choose

a setting where s is a large constant and t is ε ·n. So O(s+t) is very small. The reason for
choosing such a setting is that in C2 the discrepancy of the coloring is constant (2000).
At the same time the size of the optimal matching is very close to the conjectured value.

Now we will present our results on small discrepancy colorings.

Theorem 2.2. For any coloring with dicrepancy at most three there is a separated match-
ing of size at least 4n

3 .

Proof. The colored point set can be viewed as follows: for each red point take a unit up
line segment and for each blue point a unit down line segment. (When the discrepancy
is one, then these up and down segments alternate.)

t

r

r′

Figure 1. When the discrepancy is two, at most 1
3 of the points will not

participate in the constructed separated matching.

When the discrepancy is two, we will not choose a good axe that divides our point
set. We can be given any axe that halves the number of runs and we will construct a
separated matching of the desired size.

There are two types of runs regarding their length: runs of length 1 and runs of
length 2. Each run contains at most two up and at most two down segments; see Figure 1.
Let us take a drawing for any case of discrepancy two and halve the number of runs by
taking an axe t. Then we pair up all the runs. The run r will have pair run r′ if r
and r′ are on different sides of t but for the same distance to t regarding the number of
runs. We make the separated matching S so that each run will face only its pair in the
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matching. Therefore, all runs of length 1 will be fully covered in S. Now consider the
runs of length 2. If a run r of length 2 faces a run r′ of length 1, then 2

3 of all the vertices
of r and r′ will be in S. Otherwise, the run r is also fully covered in S. Hence, it follows
that when the discrepancy is two, there exists a separated matching of size at least 4n

3 .
The case of discrepancy three uses similar ideas but it includes a more sophisticated

pairing of the runs. As it is quite extensive, we omit it from this extended abstract. �

3 Closing thoughts

Small discrepancy colorings have an importance in trying to achieve a better lower bound
for the problem of long non-crossing, alternating paths. Although at separated matchings
the truth might be much closer to 2n when the discrepancy parameter is small, by our
current methods it is not easy to reveal it. For discrepancies at most three, a pairing
algorithm of intervals yields that there are at least 4n

3 points in the maximum separated
matching. It would be feasible to improve this result by new ideas. Also the case of the
subsequent relatively small discrepancies seems promising. Just by our current methods
it gets rather extensive.

Small discrepancy colorings also suggest the separated matching conjecture stated in
the Introduction. A more appealing version of this conjecture was formulated in [5]:

Conjecture 3.1. Every balanced coloring of 2n points on C admits a separated matching
of size 4

3n+ o(n).

Regarding the remainder term, even O(
√
n) is feasible. It would be an interesting

result to settle this conjecture in the affirmative. That would also prove the conjecture
related to the upper bound for non-crossing, alternating paths.
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Abstract. Let C = {c1, . . . , cn} be a collection of disjoint closed convex sets in the plane. Suppose
that one of them, say c1, represents a valuable object we want to uncover. We are allowed to pick a
direction α ∈ [0, 2π) along which we can translate (remove) the elements of C one at a time while avoiding
collisions. In this paper we solve the problem of finding the direction α0 that minimizes the number of
elements of C that have to be removed before we can reach c1, in O(n2 logn) time.

Introduction

Consider a set C = {c1, . . . , cn} of pairwise disjoint closed convex sets, and a direction
α ∈ [0, 2π); e.g., the vertical upwards direction. It is well known that the elements of
C can be translated (removed) one at a time by moving them upwards while avoiding
collisions with other elements of C [4, 6]. Suppose that c1 is a special object that we
want to uncover, and that we are allowed to choose a direction α along which we can
remove the elements of C one at a time while avoiding collisions.

We want to find the direction α0 that minimizes the number of elements of C that
have to be removed before we can remove c1 itself. For example, in Figure 1(a) for α2

four elements of C have to be removed, while for α1 we only need to remove two.
This problem can be seen as a variant of the problem known in computational geome-

try as the “separability problem” [1, 2, 5]. It is also related to spherical orders determined
by light obstructions [3].

1 Preliminaries

Given ci, cj ∈ C and a direction α, we say that cj is an α-cover of ci if any directed
line segment with direction α, starting at a point in ci and ending at a point in cj , does
not intersect any other set in C. Observe that, if cj is an α-cover of ci, then ci is an

1Partially supported by Spanish Government under MEC Project MTM2009-08652.
2Partially supported by CONACYT of Mexico.
3Partially supported by the Spanish MCI grant TIN2010-20590-C02-02.
4Partially supported by SEP-CONACYT of Mexico, Proyecto 80268, and by Spanish Government

under MEC Project MTM2009-08652.

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

221



222 Convex blocking on the plane

(a) A set C of convex sets. (b) Truncated lattice of C for α = π/2.

Figure 1. A set of convex sets and its truncated lattice.

(α + π)-cover of cj . We say that cj blocks ci in the direction α, written as cj �α ci, if
there is a sequence cσ(1) = ci, cσ(2), . . . , cσ(k) = cj of elements of C such that cσ(i+1) is an
α-cover of cσ(i), i = 1, . . . , k − 1.

For each α, the blocking relation �α is a partial order on C, which is a truncated
planar lattice [6]. An ordered set is called a lattice if any two elements have a unique
supremum and infimum. A lattice is called planar if its Hasse diagram can be drawn
without intersecting edges. Finally, a finite order P is called a truncated lattice if, by
adding to P both a least and a greatest element, the resulting order is a lattice.

The planar diagram of such a truncated lattice has the elements of C as vertices in
which two elements ci and cj are joined by an arc oriented from ci to cj if cj is an α-cover
of ci (Figure 1(b)). The elements of C that we need to remove in the direction α before
reaching an element ci of C are those convex sets cj such that cj �α ci. Such a set is
usually called the upper set of ci in �α, or for short, the up-set of ci.

Lemma 1.1. Let ci and cj be two convex sets in C. The set of directions in which cj
blocks ci forms a unique non-empty interval Ii,j. The endpoints of any such Ii,j are
directions determined by lines tangents to pairs of elements of C.

Then, there are at most 4
(
n
2

)
combinatorially distinct values of α where the truncated

lattice changes. These changes occur in slopes determined by lines tangent to pairs of
elements of C. The search space for α0 is reduced then to the set D = {γ1, . . . , γ4(n2)

}
of these directions. For the sake of clarity, we suppose that no two internal tangents are
parallel and that the elements of D are ordered such that γi < γj if i < j.

2 The transitive triangulation

Our problem can be trivially solved by calculating the truncated lattice for every direction
in D, obtaining the up-set of c1 in each one, and selecting the γi with the smallest up-set.
Since calculating the truncated lattice has a cost of O(n log n) time for each of the 4

(
n
2

)

directions, this yields an O(n3 log n) time algorithm.
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To improve this complexity, we calculate the truncated lattice only for the first di-
rection in D, and for each γi we update a data structure containing the truncated lattice
for γi−1 in constant time, with i > 1.

For each direction α ∈ [0, 2π), we complete the truncated lattice for �α to a lattice
by adding two special vertices, a source s and a sink t. These vertices will be such that
for each maximal element ci of the relation �α, we have t �α ci, and for each minimal cj
we have cj �α s. For a fixed direction we can picture t as a very large convex set standing
above all of C, and s as a very large convex set standing below all of C (Figure 2(a)).

For each α, we now extend such a lattice to a triangulation Tα, which we will call the
α-transitive triangulation, by adding oriented arcs (compatible with �α) between pairs
of elements of C which are α-visible; see Figure 2(b).

(a) The lattice of C for α = π/2. (b) Transitive triangulation Tα.

Figure 2. Complete lattice and its corresponding transitive triangulation.

By Lemma 1.1, there are at most 4
(
n
2

)
such lattices, and we want to know how Tα

changes as α goes from γi to γi+1. This leads to the following lemma:

Lemma 2.1. Given the transitive triangulation Tγi , the transitive triangulation Tγi+1 can
be obtained by flipping an arc in Tγi. Moreover, such an arc flip either adds or removes
an arc between the convex sets cj and ck that define γi+1.

We omit the proof of Lemma 2.1 because of space restrictions, but an illustration of
this fact is shown in Figure 3. Note that the arc flip can be done preserving transitivity.

3 An O(n2 logn) time algorithm to find α0

Theorem 3.1. A direction α0 minimizing the up-set of c1 can be computed in O(n2 log n).

The proof of this theorem uses the following results, given without proof:

Lemma 3.2. As we rotate from the direction γ1 to γ4(n2)
, the up-set of ci changes at most

a linear number of times.

Lemma 3.3. Given cj , ck ∈ C, we can answer the query of whether cj is in the up-set of
ck in O(log n) time.
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(a) The arc ck → cj before flipping. (b) The arc ca → cb after flipping.

Figure 3. An example of an arc flip: The arc ca → cb replaces ck → cj as cj no
longer blocks ck in the γi+1 direction. Note that ca → cb preserves transitivity.

The set D can be calculated in O(n2 log n), if we suppose that the internal tangents
between any two convex sets in C can be determined in constant time. For each γi we
store the indexes j, k of the convex sets (cj and ck) that determine it. After computing
the up-set of c1 for γ1 (in O(n log n) time using Lemma 3.3), as we move from γi to γi+1,
we can update the up-set of c1 as follows: Let k and j as defined above for γi. There are
three types of events that can arise when moving from γi−1 to γi:

(1) ck and cj are not in the up-set of c1 in the direction γi−1. In this case the up-set
of c1 remains unchanged.

(2) ck and cj belong to the up-set of c1 for γi−1. If ck and cj become comparable,
the up-set of c1 remains. Suppose that ck and cj become uncomparable. It can
be proved that by checking a constant number of the neighbors of each of ck and
cj , we can verify whether they remain in the up-set of c1. If they do, then the
up-set of c1 remains. If not, then we recalculate the up-set of c1 (O(n log n)).

(3) A similar process happens when exactly one of ck and cj is in the up-set of c1.
By Lemma 3.2, we have to update the up-set of c1 at most a linear number of times,

and thus the whole process takes O(n2 log n) time. This proves Theorem 3.1.
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Abstract. The notion of Gröbner cover has recently been introduced [7], yielding most precise and
compact information about parametric polynomial systems of equations. The purpose of our contribution
here is to exemplify, through a challenging generalization of the Steiner–Lehmus theorem [4], how this
tool can be applied to the automatic discovery of geometry theorems.

Introduction

This extended abstract is about a particular role of computations in geometry: those
leading to the automatic discovery of the necessary and sufficient conditions that are
required for a (perhaps false) geometric statement to become true.

The theorem of Steiner–Lehmus states that if a triangle has two (internal) angle-
bisectors with the same length, then the triangle must be isosceles (the converse is,
obviously, also true). This is an issue which has attracted along the years a considerable
interest, and we refer to [10] for a large collection of references and comments on this
classical statement and its proof. More recently, its generalization, regarding internal as
well as external angle bisectors, has been approached through automatic tools, cf. [1], [8]
or [9]. The goal is to find a similar statement concerning triangles verifying the equality
of two bisectors (of whatever kind) for different vertices. This generalization has been also
achieved through the automatic discovery protocol of [2], including the (perhaps new)
case describing the simultaneous equality of three (either internal or external) bisectors,
placed on each one of the vertices. We refer to [3] (in Spanish) and to [4] for further
details.

On the other hand, a different and more complete protocol for automatic discovery of
theorems has been presented in [6], particularly well suited for those contexts involving
the analysis of indistinguishable objects from a complex-geometry point of view, such
as the internal/external bisectors at a vertex. The algebraic engine for the protocol was
founded on the idea of Minimal Canonical Comprehensive Gröbner Systems (MCCGS)
of [5]. Now, since the idea of Gröbner cover, as described in [7], represents a radical
improvement of the MCCGS concept and algorithm, it deserved being also tested in a
challenging automatic theorem proving situation. This is the precise goal of this extended
abstract.

1Partially supported by the Spanish MCT project MTM2009-07242 and by the Gen. Cat. project
2009SGR1040.

2Partially supported by grant MTM2008-04699-C03-03 from the Spanish MICINN.
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226 Gröbner cover and Steiner–Lehmus

1 On Gröbner covers

There exist different methods to discuss parametric polynomial system of equations, that
can be used to find new geometric theorems. What follows is a concise description of the
Gröbner cover procedure [7], that gives precise and compact information about parametric
polynomial systems of equations.

Let a = a1, . . . , am be a set of parameters, x = x1, . . . , xn a set of variables, and I ⊂
K[a][x] an ideal (for example generated by the set of parametric equations of a geometric
problem), where K is a computable field (usually Q). Denote by K an algebraically
closed extension of K (usually C). Then Km is the parameter space.

Selecting a monomial order � for the variables, the Gröbner cover of Km with respect
to I is a set of pairs GC = {(Si, Bi) : 1 ≤ i ≤ s}, where the Si, called segments, are locally
closed subsets of the parameter space Km, and the Bi are sets of I-regular functions
gij : Si → O(Si)[x], that for every point a ∈ Si specialize to the reduced Gröbner basis
of the specialized ideal Ia.

Moreover, the segments are disjoint and cover the whole parameter space, the set of
leading power products on each segment are constant (and characteristic of the segment
if the ideal is homogeneous) and the whole description is canonical (independent of the
algorithm). It also gives a very compact discussion of the cases.

The GC-segments are given in canonical form (P-representation) providing the irre-
ducible components of Si and the irreducible components of the non-included points in
Si (holes). The I-regular functions in the basis Bi,

gij : Si −→ O(Si)[x],

are described in terms of one or more polynomials in Q[a][x] such that, for every point
(a1, . . . , am) ∈ Si, if one of them does not specialize to 0, then it specializes (after
normalizing) to the corresponding polynomial of the reduced Gröbner basis, and at least
one of these polynomials specializes to non-zero.

2 Automatic discovery of geometric theorems

Very roughly speaking (see [6] for examples and details), assume we are given a geometric
construction depending on a set of points A1, . . . , As, whose coordinates are taken as
parameters a. For instance, we are given a triangle and the A-points are its vertices.
Moreover, it might happen that the construction includes some new points P1, . . . , Pr,
whose coordinates are taken as (dependent) variables x, such as the end points of the
bisector segments for each vertex.

The main problem related to theorem discovery is determining the configuration of
the points A, the parameters a varying in the parameter space Cm, in order that the
points P verify some property (for example, a thesis concerning the equality of lengths
for some of the segments they determine). For this purpose, we write the equations
reflecting the given geometric construction and thesis, and consider the corresponding
parametric ideal I ⊂ Q[a][x].

Let {(Si, Bi) : 1 ≤ i ≤ s} be the Gröbner cover of the parameter space with respect
to I. Assuming the given thesis does not generally hold, since the locus of points A where
it is satisfied will have dimension less than that of the whole parameter space. Then, the
generic segment must correspond to lpp = {1}. The generic segment will be of the form
S1 = K

m \⋃i V (pi). The remaining segments will be all in
⋃
i V (pi).
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In most cases, we expect the locus to be associated to segments S2 corresponding to
a solution in x whose reduced Gröbner basis has the set of variables as lpp. But there
can exist segments with more than one solution that we need to analyze. Moreover, there
can also exist segments corresponding to degenerate constructions in which we are in
general not interested. The important fact about Gröbner cover is that it provides —in
a compact and concise way— all the essential pieces (a finite number of them) on the
parameter space, allowing to determine those that correspond to the validity of the given
statement.

3 Generalizing the Steiner-Lehmus theorem

Let ABC be a triangle. To construct the bisectors, say, at A, we consider the circle with
center A and radius AC. There are two intersection points P and P ′ of the circle with
line AB, and thus two middle points Q and Q′ of CP and CP ′ determining the bisectors
AM and AM ′ whose length we are interested in. Setting coordinates A(0, 0), B(1, 0),
C(x, y) and (p, 0) for the intersection of the circle centered at A passing through C (i.e.,
points P or P ′), and (a, b) for the feet of the bisectors (i.e., points M or M ′) we obtain
the equations determining (a, b) in terms of (x, y). Notice that the sign of p determines
which bisector (internal or external) of A is actually described by these equations. The
length lA of the corresponding bisector satisfies l2A = a2 + b2.

Similarly we describe the bisectors of B and, then, in order to determine the conditions
for which a bisector of A is equal to a bisector of B, we consider a set of equations giving
the bisectors of A, the corresponding ones for B, plus the condition that one bisector
(of whatever type) in A and one in B have equal length, i.e., a2 + b2 = (m − 1)2 + n2.
Then we build the Gröbner cover for the ideal given by these equations. Take the point
C(x, y) as a parametric point, for which we want to obtain the conditions for the system
with variables a, b,m, n, p, r to have solutions. These solutions will correspond to one
bisector of A being equal to one bisector of B, but the conditions over x, y will not
distinguish between internal and external bisectors. Only looking for extra information
on the solutions (signs of p and 1 − r) will give information about which bisectors are
coincident: when p is positive, the bisector of A will be internal and it will be external
if p is negative. The same happens for 1− r for the bisector of B. See the colors in the
figure below.

The Gröbner cover algorithm is used taking the grevlex(a, b,m, n, p, r) order for the
variables. Then it automatically yields a collection of segments (which is too large to
be described in detail here), involving the following curves and points; see Figure 1:
C1 = V(8x10 + 41x8y2 + 84x6y4 + 86x4y6 + 44x2y8 + 9y10 − 40x9 − 164x7y2 − 252x5y4 −
172x3y6−44xy8+76x8+246x6y2+278x4y4+122x2y6+14y8−64x7−164x5y2−136x3y4−
36xy6 + 16x6 + 31x4y2 + 14x2y4− y6 + 8x5 + 20x3y2 + 12xy4− 4x4− 10x2y2− 6y4 + y2),
C2 = V(2x − 1), C3 = V(y). In fact, placing vertex C at one of these curves yields the
equality of lengths for bisectors at A,B. Of course, the curve C1 is the one providing
some new insight into this theorem and leading to its generalization, too involved to be
stated here in detail, cf. [4].
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Figure 1. Curves C1, C2, C3 and special points.
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1 Introduction

Let R and B be two finite sets of points in R2, of size |R| = n and |B| = m, respectively.
We refer to R as the set of red points and to B as the set of blue points. In [2] the
authors define the static version of the circular separability problem, called the minimum
separating circle problem, as follows. Let S denote the set of circles such that each circle
in S encloses all points inR while having the smallest number of points of B in its interior.
The problem asks to find the smallest circle in S, called the minimum separating circle.
Let CB(R) denote that circle. See Figure 1 for an illustration.

Figure 1. The red-blue minimum separating circle.

In this paper, we study a kinetic version of the red-blue minimum separating circle
problem, in which one blue point moves with constant speed along a straight line tra-
jectory. We want to find the locus of the minimum separating circle over a period of
time.

For the case when two (static) point sets can be separated by a circle, Fisk [3] gave
a quadratic time and space algorithm to compute the minimum separating circle, which
was later improved to optimal linear time and space by O’Rourke et al. [5]. The linear
separability problem, in which the separator is a hyperplane, reduces to linear program-
ming, which in turn can be solved in linear time for any fixed dimension using Megiddo’s
algorithm [4]. Aronov et al. [1] considered the linear separability problem for point sets
that may be inseparable, that is, when the points are linearly partitioned into two parts,
each part may contain some misclassified points.

Our result. We show that the locus of the center of CB(R) with one moving blue point
has a complexity of O(mn) and can be found in O(mn log(mn)) time.
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230 Red-blue minimum separating circle with a moving blue point

2 Preliminaries

We first discuss two algorithms proposed in [2] to solve the static version of the minimum
separating circle problem that are useful for our problem. The first algorithm is based on
a sweep procedure on edges of FV D(R), while the second algorithm is based on circular
range counting queries.

Given a set of static red points R and a set of static blue points B, in [2] they showed
that the minimum separating circle is either the minimum enclosing circleMEC(R) of R
or the circumcircle of two red points and one blue point. It follows that the center of the
minimum separating circle is either a vertex of FV D(R) or lies on an edge of FV D(R).

Consider a Voronoi edge eij , defined by two red points ri and rj . The first algorithm
in [2] starts on eij by constructing an enclosing circle C of R which passes through ri and
rj and has the smallest possible radius. The center c of C is one endpoint of eij . Then,
C is grown by sweeping c along eij and keeping ri and rj on the boundary of C. A point
E ∈ eij is an event point if, when c sweeps through E, the circle C sweeps through a blue
point (see Figure 2 for an illustration).

c

an exit event point
r

r

i

j

Figure 2. An event point on edge eij .

An event point is an exit event point if, at which, a blue point leaves C. It is shown
in [2] that a blue point in B defines at most one exit event point on FV D(R). The second
algorithm in [2] finds the minimum separating circle by examining exit event points only.

3 The minimum separating circle with one mobile blue point

We formally define the problem as follows: Let R be a set of n fixed red points, let S
be a set of m − 1 blue points, and let p be a mobile blue point moving with constant
speed along a straight line. Let B = S ∪ p. We want to find the locus of the center of the
minimum separating circle CR(B) over a period of time.

If not mentioned otherwise, we assume every point is either stationary or moving
along a linear trajectory with constant speed and all stationary points are in general
position. We first study a structure called exit region, which plays a key role in solving
the kinetic version of the minimum separating circle problem. In the sweep algorithm
introduced in [2], the center c of a separating circle C is swept along a Voronoi edge,
while keeping the red points which define the Voronoi edge on its boundary. Certain
region of the circle C at its initial state is excluded during the sweep. We define the
exit region associated with a Voronoi edge of FV D(R) as the union of points excluded
from C during the execution of the sweep algorithm on this edge. Only points within
MEC(R) \ CH(R) can be excluded by a sweep, where CH(R) is the convex hull of R.
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All exit regions must lie within MEC(R) \ CH(R). It is known that all exit regions are
piecewise disjoint [2].

Lemma 3.1. Exit regions give a partition of MEC(R) \ CH(R), which is a dual of
FV D(R).

Proof. Omitted. �

Given a blue point b ∈ B, if b is enclosed by an exit region associated with a Voronoi
edge eij , which is a part of the perpendicular bisector between two red points ri and rj ,
b generates an exit event point on eij and the exit event point is the center of the
circumcircle C(b, ri, rj) of b, ri, and rj . If b moves with constant speed along a straight
line, the exit event point moves along eij .

Lemma 3.2. If the trajectory of the mobile blue point is a straight line, the trajectory of
the corresponding mobile exit event point is a cyclic path on FV D(R).

Proof. Obviously, the trajectory of an exit event point is a continuous curve. We prove
this lemma by considering two cases. Case one: the trajectory of the mobile blue point
p is a line intersecting both CH(R) and MEC(R). When p enters MEC(R), it creates
an exit event point at the root of FV D(R), which moves along the edge defining the
first exit region it visits. When p enters a new exit region by crossing a circumcircle of
three red points, the exit event point crosses a vertex of FV D(R), which is the center
of the circumcircle that separates these two exit regions, and moves to a new Voronoi
edge. Eventually, the exit event point visits an unbounded Voronoi edge, when it enters
an exit region bounded by an edge of CH(R) and one circumcircle, and moves to ∞ as
it approaches the boundary of CH(R). Note that p does not have an exit event point
when p ∈ CH(R). Similarly, when p exits from CH(R), its exit event point re-appears
at∞, and travels along a path on FV D(R), and eventually reaches the root of FV D(R)
when p crosses MEC(R) the second time to form a closed path.

Case two: the trajectory of p is a line intersecting MEC(R) but not CH(R). Let ri
and rj be two red points which define a Voronoi edge eij in FV D(R). The exit region
associated with eij is bounded by two circular arcs, which are both incident to ri and rj .
It follows that if the trajectory of p intersects one arc of the exit region, it must intersect
the arc exactly twice. Otherwise the trajectory intersects the line segment connecting ri
and rj , which is enclosed by CH(R). Note that ri and rj must be vertices of CH(R).
This implies that the trajectory of the corresponding exit event point starts at the root
of FV D(R) and traverses a path along edges of FV D(R) and returns back to the root
following the same path. �

Next, we give details of the solution for this problem. Observe that each fixed blue
point defines at most one static exit event point, which in turn defines a fixed candidate
separating circle. The number of blue points enclosed by such candidate separating circle
changes only when the mobile blue point p enters or leaves the circle. The mobile blue
point p defines a mobile exit event point. Not only the center and radius of the corre-
sponding candidate circle changes continuously, but the number of blue points enclosed
by the corresponding candidate separating circle changes over time, as well. We need
to dynamically maintain two classes of structures: (1) the trajectory of the moving exit
event point, and (2) the number of blue points enclosed by each candidate separating
circle over time. We need to analyze the following events and update the corresponding
structures accordingly.
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Case 1) The mobile blue point enters or leave a static candidate circle.
Case 2) The exit event point associated with the mobile blue point moves to a new

edge of the farthest neighbor Voronoi diagram FV D(R) of R.
Case 3) The candidate circle associated with the mobile blue point encloses or ex-

cludes a new blue point.
To avoid ambiguity, we refer to these events as instant events, distinguishing from

the event points introduced in Section 2.

Case 1 instant events. These are the instant events when the mobile blue point enters or
leave a fixed candidate circle.

Lemma 3.3. There are O(m) case 1 instant events, and can be found in constant time
each, given that all fixed exit event points are known.

Proof. Trivial. �

Case 2 instant events. These are the instant events when the exit event point associated
to the mobile blue point moves to a new edge of the farthest neighbor Voronoi diagram
FV D(R) of R.
Lemma 3.4. We have O(n) case 2 instant events, which can be computed in O(n) time.

Proof. Omitted. �

Case 3 instant events. These are the instant events when the candidate circle associated
to the mobile blue point encloses or excludes a blue point.

Lemma 3.5. There are O(mn) case 3 instant events.

Proof. Omitted. �

Thus the trajectory of each exit event point and the count of blue points enclosed by
each candidate circle are maintained over time.

Theorem 3.6. The locus of the minimum separating circle of R and B has a complexity
of O(mn) can be computed in O(mn log(mn)) time by a sweep algorithm.
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Abstract. In this paper we study two problems related to vector dominance and rectilinear separators
of point sets on the plane. We show that the best weak separator of a set of bicolored points on the plane
can be obtained in O(n2) time. We also study some problems arising from the rectilinear convex hull of
point sets, but in the dual space. This produces some attractive geometric visualizations of staircases
and rectilinear separators in that space.

Introduction

In this paper we study two problems arising from the study of the rectilinear convex
hull of point sets on the plane. Without loss of generality, and to make our presentation
easier, we will assume that all the points in our point sets have positive coordinates.

A quadrant of the plane is the intersection of two half-planes whose supporting lines
are parallel to the x- and y-axes. Let S be a set of points in the plane in general position.
We say that a quadrant is S-free if its interior contains no point in S.

The rectilinear convex hull of a point set S is defined as

RH(S) = R2 −
⋃

Q is an S-free quadrant

Q.

Observe that, if we rotate the plane around the origin, the rectilinear convex hull of
a point set changes. The problem of finding a rotation of the plane that produces a recti-
linear convex hull with minimum area was studied in [1], where an O(n2) time algorithm
to solve this problem was presented. Their algorithm was improved to Θ(n log n) in [2].

The rectilinear convex hull of a point set was first studied in [3]. A point p = (a, b) ∈ S
is dominated by q = (c, d) ∈ S, p 6= q, if a ≤ c and b ≤ d. A polygonal curve C is called
rectilinear if it consists of a sequence of line segments each of which is horizontal or
vertical, and C is called a staircase if it is monotone with respect to the x- and y-axes. In
the rest of this paper, we will further assume that a staircase is monotonically decreasing
with respect to the x-axis.

1Partially supported by project SEP-CONACYT of México, Proyecto 80268. The authors would like
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3Partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT 80268 (México).

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

233



234 Weak separators, vector dominance, and the dual space

Let S = R ∪ B be a set of n points on the plane in general position such that the
elements of R and B are colored red and blue respectively. In this paper, we are interested
in the following problem: Find a staircase that best classifies R and B; that is, find a
staircase C such that the number of red points below it plus the number of blue points
above it is maximized. Such a staircase we called the best weak staircase separator. We
obtain an O(n2)-time algorithm to solve this problem.

Figure 1. A staircase polygonal weak separator C separating red points (•)
and blue points (�).

While solving the above problem, we stumbled on the following problem: Can we
give an interpretation of the rectilinear convex hull of a set of points in the dual space?
What about the concept of rectilinear separability?

Recall that the dual of a point p = (a, b) of the plane, denoted by `p, is the non-
vertical line with equation y = ax− b. The dual of `p is p. It is well known that, under
duality, collinear points are mapped to sets of concurrent lines, and concurrent lines are
mapped to collinear points [4, 5].

In Section 2, we study this problem, and show an attractive interpretation of the
rectilinear convex hull of a point set. We will assume that our point sets are contained in
the positive quadrant of the plane, and show that the rectilinear convex hull of a point
set looks like a set of rays emanating from a sun.

1 Computing the best staircase weak separator

In this section, we outline our algorithm to obtain a best staircase weak separator. Our
algorithm is based on dynamic programming. We perform first an O(n log n) preprocess-
ing on R ∪ B, and then perform a line sweep from left to right, stopping at every point
of R. It is easy to see that the best staircase weak separator can be chosen in such a
way that it is determined by a set of points in R, which are the right endpoints of the
horizontal lines of the staircase. For every point ri in R, we maintain the optimal weak
separator whose rightmost vertex is precisely ri.

Let us assume that the elements of S are sorted from left to right according to their
x-coordinate, and that the elements of R are labelled {r1, . . . , rm} in such a way that,
if i < j, the point ri is to the left of rj . This labeling can be achieved in O(n log n)
time. Recall that using quadratic preprocessing on S [6], we can find in constant time
the number of red and blue points of S within any isothethic rectangle. We now sweep a
vertical line from left to right stopping at all the points in R.

For each point rj in R, we find in O(n) time the point ri such that the optimal weak
separator whose last two vertices are ri and rj . We can do this in O(n) time since, for
each rk, k < j, we can calculate in constant time the number of red and blue points
dominated by rj that are not dominated by rk. Due to lack of space, the proof of the
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correctness of our algorithm is omitted. Our algorithm works in O(n2) time. Thus we
have the following result:

Theorem 1.1. An optimal staircase weak separator of S can be calculated in O(n2) time.

Suppose now that we can rotate the plane. We would like to find an angle θ such that,
when we rotate the plane θ degrees around the origin, we obtain the best weak separator
over all θ ∈ [0, 2π). An immediate corollary of Theorem 1.1 is that we can find the best
unoriented weak separator in O(n4) time by getting the best oriented weak separators in
each of the

(
n
2

)
combinatorially distinct directions of S, and choosing the best one of all.

We believe that finding the angle θ that produces the best unoriented weak separator can
be done in O(n3 log n) time.

2 Vector dominance and staircases in the dual space

Consider the elements of S under the partial order defined by (a, b) � (c, d) if and only
if a ≥ c and b ≥ d, (a, b) 6= (c, d). Since all the lines `p in the dual space are non-vertical,
the y-axis splits them into two rays. The ray to the right of y-axis will be denoted by `+p ,
the one to its left `−p , and they will be called, respectively, the positive and the negative
semi-lines of `p.

Observe that a point p dominates another point s in the partial order � if and only
if the slope of `p is greater than the slope of `s, and `p intersects the y-axis below the
point where `s intersects it. This implies that `p and `s intersect each other to the right
of y-axis, or simply that `+p intersects `+s (Figure 2).

Figure 2. The anti-chain formed by p, q, and r, the dominated point s, and
their transformations in the dual space.

On the other hand, if two points p and q of S are not comparable in �, then `+p and
`+q do not intersect. If in the dual we consider only the positive semi-lines of the dual
lines of the elements of S, then we can see that an anti-chain of points in the partial order
generates a set of non-intersecting rays with increasing slopes (Figure 2).

Every anti-chain p1, p2, . . . , pk of S with respect to � determines a staircase polygonal
chain S as shown in Figure 3(a). Define points q0, . . . , qk on the staircase defined by
p1, p2, . . . , pk as in Figure 3(a). Since p1, . . . , pk are pairwise non comparable, `+p1 , . . . , `

+
pk

do not intersect each other.
If we traverse S from q0 to qk, we can see that, when we traverse the horizontal

segment defined by the points qi and pi+1, in the dual space we rotate the ray `+qi until
its slope is the same as that of `+pi+1

. When we traverse the vertical segment defined by
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(a) An anti-chain with extra points
to form a staircase.

(b) The anti-chain and extra points
in the dual space.

Figure 3. An anti-chain p1, . . . , p4 with extra points q0, . . . , q4 and how it looks
in the dual space.

the points pi and qi in the dual space we translate the ray `+pi upwards until it reaches `
+
qi ;

see Figure 3(b).

3 Conclusions

We point out that our study of vector dominance in the dual space has allowed us to give
attractive geometric interpretations of objects such as empty isothetic rectangles with
opposite vertices in a fixed point set. In addition, it has enabled us to develop algorithms
such as finding the rectilinear convex hull of a point set, or efficiently calculating the set
of points below a staircase. These algorithms work directly in the dual space, and usually
have the same complexity as those in the primal space. In the full version of this paper,
we will explore these results in more detail.
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Abstract. We consider the problem of designing space-efficient explicit data structures for planar and
surface meshes. Our main result is a new explicit data structure for compactly representing planar
triangulations (corresponding to genus 0 triangle meshes): if one is allowed to permute input vertices,
then a triangulation with n vertices requires at most 4n references (5n references if vertex permutations
are not allowed). Our solution combines existing techniques from mesh encoding with a novel use of
Schnyder woods. As far as we know, our solution provides the most parsimonious data structures for
triangle meshes, allowing constant time navigation in the worst case.

1 Introduction

The large diffusion of geometric meshes and especially their increasing combinatorial
complexity has motivated a huge number of recent works in the domain of graph encoding.
Many works addressed the problem from the compression [11, 12] point of view, where
the goal is to reduce the number of bits as much as possible. For applications requiring
the manipulation of input data, a number of explicit data structures [2, 4, 7] have been
developed for most common classes of meshes. Some solutions [1, 6, 8, 9, 10, 14] aimed
to reduce the redundancy of common explicit representations: the goal is to obtain more
compact explicit data structures, whose performances (in terms of running time and space
efficiency) are of practical interest. Table 1 provides a comparison of most existing mesh
data structures.

1.1 Preliminaries

A key ingredient of our work is a fine characterization of planar triangulations given in
terms of edge orientations. As pointed out by Schnyder [13], the inner edges of a planar
triangulation with root face (v0, v1, v2) can be partitioned into three sets T0, T1, T2, which
are plane trees spanning all inner nodes, and rooted at v0, v1 and v2 respectively.

Definition 1.1 ([13]). Let G be a planar triangulation with root face (v0, v1, v2). A
Schnyder wood of G is an orientation and labeling, with labels in {0, 1, 2} of the inner
edges such that the edges incident to the vertices v0, v1, v2 are all ingoing (and respectively
of color 0, 1, and 2). Moreover, each inner vertex v has exactly three outgoing incident
edges, one for each color, and the edges incident to v in counter clockwise (ccw) order
are: one outgoing edge colored 0, zero or more incoming edges colored 2, one outgoing
edge colored 1, zero or more incoming edges colored 0, one outgoing edge colored 2, and
zero or more incoming edges colored 1.

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011
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Data structure size navigation vertex access dynamic
2D catalogs [6] 7.67n O(1) O(1) yes

Compact array-based half-edge [1] 7n O(1) O(1) yes
Star vertices [10] 7n O(d) O(1) no

TRIPOD [14] + reordering 6n O(1) O(d) no
SOT data structure [9] 6n O(1) O(d) no

SQUAD data structure [8] (4 + c)n O(1) O(d) no
Our DS, Theorem 2.2 5n O(1) O(d) no
Our DS, Theorem 2.3 4n O(1) O(d) no

Table 1. Comparison between compact data structures for triangle meshes.
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Figure 1. Array-based representation using 6n references.

2 Compactly representing triangulations

The data structures presented here are edge-based and support efficient navigation opera-
tions as in most common mesh representations; operators are illustrated in Fig. 1 (right).
One main step, as suggested in [9], is to reorder the cells in the mesh (the half-edges in
our case), to implicitly represent the map from vertices to edges, and the map from edges
to vertices: this saves one reference for each vertex and one reference for each edge). Then
we exploit the existence of 3-orientations (edge orientations where every inner vertex has
outgoing degree 3) for planar triangulations [13]. These two first ideas lead to a compact
representation requiring 6 references per vertex, with 2 references for each outgoing edge
(a similar approach has been proposed by Snoeyink and Speckmann [14]).

Vertices will be identified to integers 0 ≤ i < n and edges to integers 3 ≤ j < 3n.
Our data structure consists of an array T of size 6n, two arrays of bits Sa, Sb of size 3n,
and an array P of size n storing the geometric coordinates of the points. The entries
of T and P are sorted according to the order of input points. By convention, the three
edges having vertex i as source are indexed 3i, 3i+ 1 and 3i+ 2, where the edge having
index 3i+ c has color c. For each oriented edge we store two references to 2 neighboring
edges. References are arranged in table T , in such a way that for each inner node u of G,
the outgoing edges associated with u are stored consecutively in T . Then the adjacency
relations of edge j are stored in entries 2j and 2j + 1 of table T , as follows:

• T [2j] contains the index of LeftFront(j), and T [2j + 1] = RightFront(j).
Arrays Sa and Sb have an entry for each edge and are defined as follows:

• Sa[j] = 1 if edge j and LeftBack(j) have the same source, 0 otherwise;
• Sb[j] = 1 if edge j and RightBack(j) have the same source, 0 otherwise.

Theorem 2.1. Let G be a triangulation with n vertices. The representation above requires
6n references, while supporting in O(1) time navigation between faces, and the access to
a vertex of degree d in O(d) time. The construction phase requires O(n) time.
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Figure 2. A more compact scheme. Neighboring relations between edges are
represented by tiny oriented (green) arcs corresponding to stored references, and
by filled (green) corners which describe adjacency relations between outgoing
edges incident to a same vertex.

2.1 A more compact solution

In order to reduce the space requirements, we exploit the existence of a special Schnyder
wood, calledminimal, without ccw oriented cycles of directed edges —a minimal Schnyder
wood can be computed in linear time. In particular, a minimal Schnyder wood does
not contain ccw oriented triangles; this property allows to reduce by 1 the number of
references per vertex. We slightly modify the representation described in the previous
section. Outgoing edges of color 0 and 1 will be still represented with two references each,
while we will store only one reference for each outgoing edge of color 2 (different cases
are illustrated by Fig. 2, top pictures). Let us denote by e = (u, v) an edge having face
(u, v, w) at its left and face (u, v, z) at its right, and let q the vertex defining the triangle
(v, z, q). Then, for an edge (u, v) of color c, outgoing from vertex u (for vertex u we store
five entries T [5u], . . . , T [5u+ 4]):
• for c = 1 (as in Theorem 2.1), we store in T [5u + 2] and T [5u + 3] two references,
respectively to (v, w) and (v, z) (edges cw and ccw around v);
• for c = 2, we store in T [5u+ 4] a reference to:

– edge (v, z), if (z, u) is directed toward u (edge ccw around v);
– edge (v, w) otherwise (edge cw around v);

• for c = 0, we store one reference in T [5u] to (v, w) (edge cw around v) and one reference
in T [5u+ 1] to:

– edge (v, q) if (v, q) is of color 1 oriented toward v —and thus (v, z) must be of
color 2 (second edge ccw around v);

– edge (v, z) otherwise (edge ccw around v), as in Theorem 2.1.
Concerning service bits, we need a third array Sc of size 3n (which is needed to

distinguish the two different cases above when c = 0):
• as in the previous section, the values of Sa[e] and Sb[e] describe the orientations of
edges LeftBack(e) and RightBack(e);
• Sc[e] = 1 if the second edge which follows e around v in ccw direction is of color 1, and
Sc[e] = 0 otherwise (see top-right pictures in Fig. 2).

The correctness of the next theorem is based on an involved case analysis (see Fig. 2).

Theorem 2.2. Let G be a triangulation with n vertices. There exists a representation
requiring 5n references, allowing efficient navigation, as in Theorem 2.1.
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Figure 3. Vertices are labeled according to DFUDS order of T 0 (left). Most
adjacency relations can be described by the DFUDS labels (right).

2.2 Further reducing the space requirement

Let us first recall a result concerning the traversal of plane trees, which has been already
applied to the encoding of trees [3]. Let T be a plane tree whose nodes are labeled ac-
cording to the DFUDS (Depth First Unary Degree Sequence) traversal of T : the children
of a given node v ∈ T have all consecutive labels. We now allow to exploit a permu-
tation of the input vertices: we re-order all vertices (their associated data) according to
their DFUDS label, and we store entries in table T accordingly. This allows us to save
one reference per vertex: we do not need to store a reference to LeftFront for edges in
T 0 := T0 ∪ (v0, v1), which leads to store for each vertex 4 references in table T .

Theorem 2.3. Let G be a triangulation with n vertices. If one is allowed to permute
the input vertices (their associated geometric data), then G can be represented using 4n
references, supporting navigation as in previous representations.

References
[1] T. J. Alumbaugh and X. Jiao. Compact array-based mesh data structures. In Proc. of the 14th

International Meshing Roundtable (IMR), 485–503, 2005.
[2] B. G. Baumgart. Winged-edge polyhedron representation. Technical report, Stanford, 1972.
[3] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing trees of

higher degree. Algorithmica, 43(4):275–292, 2005.
[4] J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. Triangulations in CGAL. Comp.

Geometry, 22:5–19, 2002.
[5] S. Campagna, L. Kobbelt, and H. P. Seidel. Direct edges —a scalable representation for triangle

meshes. Journal of Graphics Tools, 3(4):1–12, 1999.
[6] L. Castelli-Aleardi, O. Devillers, and A. Mebarki. 2D triangulation representation using stable cat-

alogs. In CCCG, 71–74, 2006.
[7] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and computation

of Voronoi diagrams. ACM Trans. Graph., 4(2):74–123, 1985.
[8] T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac. SQUAD: Compact representation for triangle

meshes. In Proc. of Eurographics 2011, 2011.
[9] T. Gurung and J. Rossignac. SOT: compact representation for tetrahedral meshes. In Proc. of the

ACM Symp. on Solid and Physical Modeling, 79–88, 2009.
[10] M. Kallmann and D. Thalmann. Star-vertices: a compact representation for planar meshes with

adjacency information. Journal of Graphics Tools, 6:7–18, 2002.
[11] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations. Algorithmica, 46:505–

527, 2006.
[12] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. Transactions on Visual-

ization and Computer Graphics, 5:47–61, 1999.
[13] W. Schnyder. Embedding planar graphs on the grid. In SODA, 138–148, 1990.
[14] J. Snoeyink and B. Speckmann. Tripod: a minimalist data structure for embedded triangulations.

In Workshop on Computational Graph Theory and Combinatorics, 1999.



Index of Authors

Abellanas, Manuel; 31, 117, 173
Aichholzer, Oswin; 7, 35, 145
Akiyama, Jin; 11
Alegría-Galicia, Carlos; 185
Aloupis, Greg; 205
Angelini, Patrizio; 125
Apu, Russel; 165
Bajuelos, Antonio L.; 83, 173
Barba Flores, Luis Felipe; 15,43
Bezdek, Károly; 149
Bogdanov, Mikhail; 113
Bose, Prosenjit; 25
Cáceres González, José; 121
Canales, Santiago; 83, 173
Cano, Javier; 15, 141
Castelli Aleardi, Luca; 237
Cetina, Mario; 35
Chalmeta, Ramon; 71
Cheung, Yam Ki; 229
Claverol, Mercè; 117, 173
Coll, Narcís; 169
Cortés Parejo, Carmen; 121
Daescu, Ovidiu; 229
de Mier, Anna; 55
Demaine, Erik; 19, 91, 205
Demaine, Martin; 205
Devillers, Olivier; 105, 113, 237
Di Battista, Giuseppe; 125
Díaz-Báñez, José Miguel; 67, 189, 193, 221
Didimo, Walter; 125
Dorzán, Maria Gisela; 79
Dujmović, Vida; 205
Dumitrescu, Adrian; 59
Fabila-Monroy, Ruy; 35, 47, 67, 213
Feito, Francisco; 87
Fort, Marta; 75
Frati, Fabrizio; 125
Gagliardi, Edilma Olinda; 79
García, Alfredo; 101, 141, 145
Garduño, Tzolkin; 185
Gavrilova, Marina; 165
Grima Ruiz, Clara Isabel; 121
Guedes de Oliveira, António; 161
Guerrieri, Marité; 169



242

Hachimori, Masahiro; 121
Hackl, Thomas; 7
Heredia, Marco Antonio; 221
Hernández Peñalver, Gregorio; 79, 83, 117, 173
Hong, Seok-Hee; 125
Hosono, Kiyoshi; 99
Huemer, Clemens; 213
Hurtado, Ferran; 117, 141, 145, 157
Iacono, John; 205
Itoh, Jin-ichi; 95
Iwerks, Justin; 181
Jiang, Minghui; 59
Kano, Mikio; 153
Kato, Sho; 133
Kaufmann, Michael; 125
Kim, Edward D.; 161
Korman, Matías; 189, 193
Leaños, Jesús; 35, 129
Leguizamón, Mario Guillermo; 79
Liotta, Giuseppe; 125
López, Mariló; 109
Lubiw, Anna; 91, 125
Márquez, Alberto; 23, 121
Martins, Ana Mafalda; 83
Matos, Inês; 173
Mészáros, Viola; 217
Mitchell, Joseph; 29, 181
Montes, Antonio; 225
Mori, Ryuichi; 133
Mukae, Raiji; 31, 121
Nakamoto, Atsuhiro; 121, 133
Nara, Chie; 95
Ndjatchi Mbe Koua, Christophe; 129
Negami, Seiya; 121
Noy, Marc; 55, 157, 161
Omaña-Pulido, Elsa; 51
O’Rourke, Joseph; 63
Ortega, Lidia; 87
Pach, János; 27
Padrol, Arnau; 161
Palop, Belén; 177
Peláez, Canek; 221, 233
Perdomo, Francisco; 201
Pérez Lantero, Pablo; 67, 189, 193
Pfeifle, Julian; 161
Pilaud, Vincent; 161
Plaza, Ángel; 197, 201



243

Quevedo, Eduardo; 201
Ramírez Vigueras, Adriana; 233
Recio, Tomás; 225
Rivera, Luis Manuel; 129
Rivera-Campo, Eduardo; 51, 157
Robles Arias, Rafael; 121
Robles Ortega, M. Dolores; 87
Rodrigo, Javier; 109
Rosas-Navarrete, Areli; 185
Sacristán, Vera; 3, 71, 117
Sakai, Toshinori; 15, 141, 209
Salazar, Gelasio; 35
Santos Falcón, Lucana; 197
Saumell, Maria; 71, 117
Seara, Carlos; 185, 233
Sellarès, J. Antoni; 75, 221
Silveira, Rodrigo; 117
Souvaine, Diane; 39, 137
Suárez, José Pablo; 197, 201
Suzuki, Kazuhiro; 153
Teillaud, Monique; 113
Tejel, Javier; 141, 145
Tóth, Csaba; 137
Toussaint, Godfried; 21
Urabe, Masatsugu; 99
Urrutia, Jorge; 15, 35, 43, 141, 185, 209, 221, 233
Valenzuela Muñoz, Jesús; 121
Ventura Molina, Inmaculada; 189, 193, 221
Veroy, Raoul; 39
Vîlcu, Costin; 95
Vogtenhuber, Birgit; 7
Winslow, Andrew; 39, 137
Wood, David; 47
Zivanic, Marko; 229




