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Preface

The 7th Grups d’Estudi de Matematica i Tecnologia (GEMT) was held at
the Centre de Recerca Matematica (CRM) and the Universitat Autonoma de
Barcelona (UAB) from 6th to 8th July 2010. This was the first GEMT to be
held under the auspices of the European Study Groups in Industry (ESGI)
and it was the 78th in the ESGI series.

The problems studied at the meeting covered a wide range of fields. Cisco
Systems presented a problem on bandwidth consumption; the group Sistemes
Avangats de Control proposed one on flood prevention, and Sabirmedical
presented one on monitoring blood pressure. This final problem led to a
follow-up meeting entitled Mathematical Modeling of Blood Flow and the
Baroreflex System, held at the CRM in December 2010. The final report of
this volume describes the results of that meeting.

Participants came primarily from the Barcelona region, although this
year there was stronger than usual international contingent through the par-
ticipation of researchers from the Oxford Centre for Collaborative Applied
Mathematics (OCCAM). Attendance at the meeting was free for both compa-
nies and academics. Funding came primarily through Ingenio Mathematica
(i-MATH), and OCCAM participants were supported by the KAUST Global
Research Partnership. The organisers wish to acknowledge both sources of
financial support.

Tim Myers, Barcelona 2010
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Analysis of the Baroreflex Model for
Automatic Interpretation of the
Plethysmograph

Problem presented by
Vicent Ribas Ripoll (Sabirmedical)

Report prepared by
Tim Myers (CRM), Maria Bruna (OCCAM), Joan Sola-Morales (UPC)

Study group contributors

Maria Bruna (OCCAM), Antoni Guillamon (UPC), Adam Mahdi (North
Carolina State University), Tim Myers (CRM), Joan Sola-Morales (UPC),
Jeff Springer (OCCAM), Amy Smith (OCCAM)

1.1 Introduction

A pulse oximeter is a device that measures oxygen saturation in blood. Typ-
ically it functions by shining two lights of different wavelength (but both
close to infra-red) through a translucent part of the body. The different
wavelength lights are absorbed to differing degrees by the oxygenated and
deoxygenated haemoglobin and so the ratio of oxygenation to deoxygenation
may be calculated. Since arterial blood vessels respond to pressure changes
(due to the heart pumping), the signal is time-dependent and so the output
of the pulse oximeter may also be used to monitor the heart rate. In fact this
variation in the signal is essential to the functioning of the device, since the
pulse oximeter only uses the varying part of the signal to distinguish light
absorption from blood and the surrounding tissue.

Standard uses for the pulse oximeter include medical monitoring of oxy-
genation and heart rate and also the diagnosis of sleep disorders. However,
it is recognised that the output signal (the photoplethysmograph or pleth

CRM Documents, vol. 9, Centre de Recerca Matematica, Bellaterra (Barcelona), 2012



2 Analysis of the baroreflex model

for short) contains a wealth of information that may be exploited for moni-
toring or diagnosis of other conditions. The pleth also exhibits very similar
behaviour to the standard blood pressure signal.

Until recently there was no way to correlate the pleth to blood pressure.
However, this problem has been solved by Sabirmedical. One of their goals
now is to develop a model of the cardiovascular system and relate this model
to the pressure predicted by the pleth, with the aim of automatically diag-
nosing certain conditions. Consequently, the research goal at GEMT was to
develop an appropriate mathematical model.

1.2 Mathematical model

To understand the output of the pleth, mathematical models of the cardio-
vascular system are required. The modelling of this sytem can be tackled in
various ways. Currently at Sabirmedical the output is interpreted through
the baroreflex model of Ottesen [6]. This is a simple ODE model describing
the interplay between arterial and venous pressure and heart rate. A more
detailed approach involves modelling the flow in blood vessels through a PDE
description. Although not immediately obvious, there is a relation between
these approaches. Indeed, the Ottesen model may be considered an extension
of the classical windkessel ODE model which describes the relation between
excess pressure and flow rate in the circulatory system [4, p. 471]. The wind-
kessel model may be obtained from standard flow equations in the limit of
plug flow and zero fluid density. The relation between ODE and PDE models
is described in more detail in [5]. However, in the following report we will
focus solely on the ODE approach.

The heart pumps blood through the body. Heart contraction usually be-
gins in the sino-atrial node. The action of this node is controlled by electrical
pulses travelling through two major systems of nerves, the sympathetic and
parasympathetic systems. The parasympathetic system is relatively fast act-
ing but the sympathetic system is slow. The sympathetic system works in
three ways. First it starts the contraction of blood vessels by the release of
vasoconstrictors. At the same time, hormones are released into the blood
and carried throughout the body to also cause contraction of blood vessels.
Finally, it acts to increase the heart rate. This triple action leads to a much
slower response than the parasympathetic system and so simple mathemat-
ical models require incorporating a delay term. More complex systems may
not need the delay term, which really reflects the fact that the sympathetic
system is not correctly modelled. Consequently, lumped models of the cardio-
vascular system typically involve delay differential equations. A summary of
simple models and methods for deriving them may be found in [3, 5].
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1.3 Baroreflex model

The basis of the current study is the baroreflex model of Ottesen,

> 1 1 V;tr
P(t) = ——=Pu(t) + —= P,(t
() = ——Pult) + PO+

By(t) = %iRPa(t) N (Cle n Cir) P(t),

H<t> - f(Pa(t>7 Pa(t - TH))?

H(t)v

(1.1a)

(1.1b)

(1.1c)

where P,, P, are the arterial and venous pressures, H is the heart rate, c
represents the vessel compliance, R is the resistance, and Vg, is the stroke

volume. The function f is given by

ag Bu
L+ [Pt =7 [aJP T oy /PO

f=

Typical parameter values are provided in Table 1.1; see [6].

’ Constant ‘ Value ‘ Units ‘
Ca 1.55 | mlmmHg™!
Co 519 | mlmmHg™!
R 1.05 | mmHgsml™!
r 0.068 | mmHgsml™!

Vitr 67.9 ml
) 93 mmHg
Qs 93 mmHg
ap 93 mmHg
oy 0.84 mmHg
Bo 7 1
Bs 7 1
By 7 1
Bu 1.17 1
Py 93 mmHg
T 4 S

Table 1.1: Typical parameter values for a baroreflex model

(1.2)
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To better understand the system, we first non-dimensionalise by setting
P,=Px, P,=Pux, H=Hz, t=1T, (1.3)

where the terms with overbars represent constant, typical values. The equa-
tion for the arterial pressure (1.1a) then becomes

P,. P +P_’U +V]:I (1.4)
;e caRxa caRxU Ca Th: )

This rearranges to give

. t n Pt +VHt_ (1.5)
T = caRxa caRPa% capaxh' .

The driving mechanisms for changing the arterial pressure are the pumping
of the heart and the arterial pressure itself. We therefore choose the corre-
sponding coefficients in equation (1.5) to be the unity, which leads to the
following time and pressure scales:

vhEb

t=c.R, P, VHR. (1.6)

Ca

Finally, the arterial pressure equation (1.5) may be written

Ty = —Tq+ &xv + xp. (1.7)
P(l
Ottesen [6] chooses the venous pressure scale to equal the arterial pressure
scale, P, = P,. A more rational approach is to choose the scale through
the appropriate governing equation. The non-dimensionalised version of the
venous pressure equation (1.1b) is

Pa a a aR
by o= Gy <C— 46 )x (1.8)

a
P,c, Co CoT

The venous pressure is driven by the arterial pressure and so we see that the
correct scale is P, = ¢, P,/c,. Since ¢,/c, = 1.55/519 ~ 0.003, it is clear that
P, < P, and Ottesen’s scaling is inappropriate. One obvious consequence
of this observation is that the venous pressure term in equation (1.1a) is
negligible (note that the same conclusion was reached in [3]). Taking values
from Ottesen’s paper (see Table 1.1) we also note that

a aR
€ = (C— + 5 ) ~ 0.01, (1.9)

Cy CyT
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which shows that the contribution of the venous pressure to (1.8) is negligible.
To determine the scale H, we consider the non-dimensionalised version
of the heart rate equation (1.1c),

T PaalT =)o T fay/ Para (D)

Th (1.10)
where 7" = 7/t. Since ay ~ By, the choice of H can come from either term

on the right hand side of (1.10). Given that Sg is slightly larger than ag,
we choose H = Byt = Byc,R ~ 1.8 and then

. o 1
T I e — )% 1+ Pa/aa(T)]%
- f(za(T)>$a(T_T*))7 (111)

where a = ay /By, \1 = P,/as, \a = ap/P,. Defining ¢, = P,/P, ~ 0.003,
we may write the governing equations as

Tq = —Tq + €124 + Tp, (1.12a)
Ty = Tgq — €27y, (1.12b)
in = f(@a(T), 24(T — 7). (1.12¢)

Since ¢; < 1, we may neglect these terms without losing accuracy and so
the venous pressure equation uncouples from the system. The problem then
simply reduces to solving, for z, and xj,

Tq = —Tq + Th, (1.13a)

T = f(xa(T)wra(T - T*)) (113b>

In fact we could simply differentiate equation (1.13a) and then replace &, to
solve a single second-order equation involving only x,.

Note that, with this scaling, all the model parameters are contained in
the function f(zq(T), z(T —7*)) and the form of the solution is determined
through the values of

2
a=2E Bs, B, )\1:%7 Ny = 2
B As VR?Bpc,
That is, the choice of f and the values of the parameters within it are key to
the success of the model. Given that f is defined in a rather ad hoc manner,
it would be sensible to investigate the accuracy of this form and consequently
determine whether it could be improved.

(1.14)
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Figure 1.1: Comparison of H(t) for reduced (dashed) and full (solid) model

In Figures 1.1 and 1.2 we show comparisons of the dimensional heart rate
and arterial pressure obtained through the reduced system, consisting of sys-
tem (1.13) (dashed line) and the full system (1.12) (solid line). The numerical
solutions were obtained using modified versions of the Matlab routine ddex2.

Note that the high values obtained initially are due to inaccurate guesses
in the initial conditions. However, these quickly settle to more sensible values
which endure over a long time scale. The correspondence between the curves
makes it clear that the small terms identified through non-dimensionalisation
can be neglected for a certain length of time —in the figures this is true up
to around 250 s. However, if the simulation is allowed to run for sufficiently
large times then the curves start to move out of synch.

This is termed the secular effect. It will be noticeable when et = O(1) or
t = O(100), a figure consistent with the observation that the curves start to
diverge around 250 s. We could improve accuracy through a multiple scale
(or, in this case, two-time scale) analysis; see Bender & Orszag [1] for exam-
ple. However, given the short time of GEMT, this route was not explored.

1.4 The dicrotic notch

In real measurements of the arterial pressure P,, at least in healthy patients,
a secondary bump known as the dicrotic notch is observed in the descending
phase of the signal. These bumps may be seen in Figure 1.3, which shows
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Figure 1.2: Comparison of arterial pressure for reduced (dashed) and full
(solid) model

the arterial pressure P, obtained by using an intra-arterial catheter in a real
patient. In Figure 1.4 we show a close-up of a dimensional result produced
by the mathematical model of equations (1.1). Whilst we are clearly able to
predict the general variation of blood pressure, our model currently misses
the dicrotic notch.

The dicrotic notch is caused by the closure of the aortic valve, which is due
to the pressure difference between ventricle and aorta. When the ventricle
pressure is greater than that in the aorta, the valve stays open, whereas when
the ventricle pressure falls below that of the aorta then the valve slams shut.
At this point, some blood which was situated on the ventricle side is rapidly
pushed through to the aorta. This small, rapid injection of mass produces
the pressure pulse observed as the dicrotic notch. Therefore, we could say
that the valve closure occurs at a certain (decreasing) value of P, and ends
soon afterwards.

In this section we present a first attempt to modify the full non-dimen-
sional model (1.12) to reproduce, at least phenomenologically, these peaks.
As mentioned above, the origin of this bump is the closure of the aortic valve.
The mathematical model, so far, does not contain a term to describe this
effect. Consequently, we introduce a new term G into the non-dimensional
equation for the arterial pressure (1.12a):

Ty = —Tq+ €12, + x5 + G. (1.15)

To place the notch in the correct position, this forcing function has to
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Figure 1.3: Arterial pressure measurement using an intra-arterial catheter
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Figure 1.4: Arterial pressure P, obtained from solving (1.1)

detect when P,(t) crosses the value z, = x*, where z* is a specified constant
indicating the non-dimensional ventricle pressure (non-dimensionalised with

P,), but also when the crossing occurs in the decreasing direction.

Given that our model already uses a time delay, we found it sensible to
discern if the function is in the increasing or decreasing phase at the time of
the crossing using another time delay A, rather than a new time derivative.
Furthermore, we note that the aortic valve does not close instantaneously
but it takes a certain time, although small, which we call the closing time.
Hence, we choose the forcing term G to be a function of x,(T") and z, (T —A);
the existence of this closing time will show up in the fact that G is nonzero
over a small pressure range near z*.
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Figure 1.5: The black solid area represents the support of the forcing term
G(2a(T), za(T — A))
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Figure 1.6: Two possible shapes for the forcing term G(xq(T"), zo(T — A))

Figure 1.5 shows the action of this forcing function G. We take G to be
zero everywhere except at the strip shown in the figure. Note that this strip
is placed when z,(T") < z,(T — A) and that it has a width § > 0 to account
for the finite closing time of the valve. The health of the aortic valve is then
quantified by the parameters A, ¢ and also by the form of the function G.

In the following calculations we use two different forcing terms G in the
strip, as shown in Figure 1.6: a triangular ramp —Figure 1.6(a)— and a
Gaussian —Figure 1.6(b). The numerical results obtained using these forcing
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Figure 1.7: Dimensional arterial pressure P, obtained from solving (1.1)
with the ramp profile forcing
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Figure 1.8: Dimensional arterial pressure P, obtained from solving (1.1)
with the Gaussian profile forcing

functions are shown in Figures 1.7 and 1.8. Figure 1.7 shows the arterial
pressure when a triangular ramp profile is used, and Figure 1.8 shows the
arterial pressure when a Gaussian profile is used. In both cases we see a
reasonable approximation to the dicrotic notch. Following from this, the next
goal is clearly to adjust the parameters carefully to ensure good matching
between the artificial notch and that observed in practice. Again we did not
follow this route due to the limited time of the GEMT.

1.5 Conclusions
During the GEMT we were able to understand and analyse the baroreflex

model of Ottesen. Through non-dimensionalisation we noted that for time
scales of the order of 100 s it is possible to uncouple the venous pressure from
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the system and so to solve a simpler two ODE model. (It was later found that
the same conclusion was reached in [3].) However, as time goes on, the effect
of neglecting venous pressure accumulates until the arterial pressure moves
out of phase with the solution obtained through solving the full system.
For continuous monitoring one should then either include all terms in the
equations or carry out a more detailed analytic solution that includes multiple
time scales. The dicrotic notch was accounted for by including a source term
in the arterial pressure equation.

Finally we note that Ottesen’s model is reliant on a number of assump-
tions. The form of the pressure curve is determined to a large extent by
the rather arbitrarily chosen function f(¢,7). The inclusion of a delay term
7 may be interpreted as a neglect of the correct model for the sympathetic
system. Consequently, we may conclude that an alternative approach may
reproduce the blood pressure curve more accurately. This is now the focus of
a current investigation and was the subject of the Workshop on Mathemati-
cal Modeling of Blood Flow and the Baroreflex System, held at the CRM in
December 2010 (see Chapter 4 of this volume).
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Problem statement

Internet service providers charge their customers according to a volume util-
isation scheme or by a percentile billing scheme. Customers usually opt for
volume billing, but as their business grows and start to solicit more traffic to
their websites, they change to the percentile billing scheme. Currently, there
is no logical link or explanation between the two schemes, especially when the
differences in cost could possibly be large. Cisco Systems wish to find /define
a relationship between the volume and percentile invoicing models. This may
include linking both billing schemes to the cost of the bandwidth, taking into
account the constraints of bandwidth supply or capacity and measuring the
fairness/unfairness of the billing schemes, either from the point of view of a
provider or a customer.

CRM Documents, vol. 9, Centre de Recerca Matematica, Bellaterra (Barcelona), 2012



14 Bandwidth consumption and invoicing models

2.1 Introduction

Transit Internet Service Providers (ISPs) and other web hosting companies
acquire the capability to host websites onto the Internet by buying bandwidth
capacity and in turn selling this bandwidth service to customers that need
their websites to be online. A diagram of this is shown in Fig. 2.1. This
industrial project examines the billing aspect between the ISP (provider)
and the customers.

Internet

Figure 2.1: Diagram of an ISP provider buying Internet capacity and sell-
ing the bandwidth to customers

We will examine two current price models for commercial Internet billing
and attempt to define sound mathematical relationships between them. This
aims to help customers compare easily the schemes and decide on the suit-
ability of each one for them. Other billing schemes exist such as those based
on average billing utilisation or purchasing a Committed Information Rate
value from an ISP but are not in the scope of this study. In addition, this
study will focus on this simple model between a single tier ISP and its cus-
tomers; we do not consider the more complicated scenario of a multi-tier
network where the ISP can buy or resell its bandwidth capacity to other
transit ISPs [1].

The two billing schemes under consideration between Internet Service
Providers and customers are:

e Volume-based.

e Percentile-based.

Each has advantages and drawbacks, seen differently between ISPs and web-
site customers. Both these methods are briefly described and the prob-
lems/issues are presented in the next three subsections.
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2.1.1 Volume billing method

The volume billing method allows the customer to pay for Internet access
based on the amount of data transmitted. Typically, the customer pays for
a fixed amount of data transfer per month and this is paid before the start
of service. This method is perhaps more deterministic than the other, as the
customer:

e Knows how much data can be transferred in that period.
e Allows pre-payment for service.

However, when the customer’s quota is exhausted, no more data transfer is
possible and thus customers suffer a denial of service due to exceeding their
bandwidth limit. This billing method is suitable for amateur or personally
managed website, where they do not expect to attract a lot of traffic or are not
providing a critical service where a denial of service would be catastrophic.
In addition, because of the pre-payment method, the customer will typically
use up less than the allowed amount of volume within the billing period if we
assume that no denial of service takes place by not exceeding the data limit.

2.1.2 Percentile billing method

Also known as burstable billing [2], this is perhaps the most common billing
method for professional and corporate ISPs and webhosts. The scheme is
seen as a compromise between a customer paying volume and paying peak
bandwidth utilisation. It works by sampling the traffic in a time window,
typically five minutes and each of these interval samples determines a band-
width rate for that particular period. Over a period of thirty days, these
five minute samples are collected and sorted from highest to lowest. A per-
centage of the highest samples are then discarded and the customer is billed
on the bandwidth rate sample at that percentile mark. A popular percentile
figure in the market is 95; so, in an example of a billing period of thirty days,
a total of 36 hours is discarded, which will contain the highest bandwidth
rates (usually measured in bits per second). Fig. 2.2 shows an example of
a bandwidth graph and marking out the 95 percentile mark. This scheme
offers advantages over the volume billing method:

e Accommodates for occasional ‘bursty’ traffic without the extra cost
for peak utilisation or having to pay more for a higher Committed
Information Rate from the ISP provider.

e No quota limit, hence no limit of service.
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Figure 2.2: Example of a bandwidth utilisation graph (left) sorted from
lowest to highest (right). For a 95 percentile billing scheme, the top 5%
samples are discarded and the next highest value, marked by the arrow,
becomes the billable utilisation for the entire billing period.

Unlike the volume method, the customer pays for the Internet service af-
ter the billing period, since the 95 percentile value can only be determined
after the billing period.

We describe a possible scenario such that the customer pays more un-
der this pricing scheme compared to the volume or an average throughput
billing method: if a website proves popular over a 48 hour period, such as
a weekend, it would experience high bandwidth data throughput for more
than the permitted 36 hours. Consequently the 95 percentile value would be
far higher than usual and so the customer pays more for that billing period,
even though the website may experience lower rates of traffic than on aver-
age within that same period. Other events that could push the unusual peak
rate over the 36 hour window include distributed denial-of-service (DDoS)
attacks or excessive traffic due to backups.

2.1.3 Issues and fairness for providers and customers

Having described two billing methods for Internet service provision, we will
now look at the fairness of these methods. This issue stems from the fact
that providers and customers view these billing schemes differently from one
another with regard to fairness.

The maximum throughput of a data channel conduit is called the capacity
and this is what providers pay for, which in turn is served to customers
to host their websites. In the simple model depicted in Fig. 2.1, the ISP
(provider) buys a certain amount of capacity and the three customers host
their websites through this ISP and are billed either by volume or percentile
described earlier.
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BW1 BW2 BW3

Figure 2.3: Three examples of bandwidth utilisation by three different
customers. Under the volume billing scheme, all three would pay the same.
But for the provider, customers BW2 and BW3 require higher capacity
pipes in order to deliver full, uncapped bandwidth service to their visitors.
This would incur higher costs than simply paying for 3 times the capacity
of customer BW1.

Capacity of an ISP’s data pipeline

Throughout this study, we work on the presumption that transit ISPs acquire
their Internet hosting capability using a capacity based method. Referring
to Fig. 2.1, we define this to be the ISP acquiring a fixed amount of band-
width capacity from a network provider in exchange for money. For example,
the ISP pays a network provider for a 30 Mbps capacity link, meaning that the
ISP can transfer a maximum of 30 Mbps at any one time. This property is
important because the ISP’s quality of service can depend on the website
traffic patterns of its three customers. If each customer’s peak usage does
not exceed 10 Mbps at any time, the ISP will have no problem providing ser-
vice since the total usage of the three customers would not exceed 30 Mbps
at any one time. However, if two customers send data at 20 Mbps each and
the other at 30 Mbps at the same time, the ISP will have a problem as it
cannot provide the data service at full speed for all three customers since the
bandwidth capacity of the pipe is reached. To provide full service, the ISP
needs to buy the data link with a 70 Mbps capacity. This leads to several
issues for the provider to consider, especially the subject of fairness between
the ISP and its customers.
Several issues for the provider are the following:

e Suppose that the provider wants to provide uninterrupted/uncapped
bandwidth to all three customers. This means buying enough capacity
that is wide enough to accommodate the sum of the customers’ peak
utilisation. But this is very expensive and is not cost-effective, since
the data pipe becomes under-utilised most of the time.
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e This leads to the question of predicting peak occurrences. Different
business outlets have different spiky behaviour such as news sites tend-
ing to peak on weekday mornings or travel agencies getting most of
their traffic on evenings and weekends. Should bandwidth be sold at
different prices to customers that are the odd one out, e.g., sell differ-
ently to a travel agent when all your other customers are newspapers?

e Suppose that the provider bills all three customers with the volume
method. Because Internet provision is by capacity of that data pipe,
all three customers can possibly use the same amount in a billing pe-
riod but have different peak utilisation values, as shown in Fig. 2.3
as an example. Customers B and C have higher utilisation peaks, so
the provider has to buy a wider data pipe for them than that for cus-
tomer A, which will cost more, but charging the same price for all three.
Hence this is seen as an unfair scenario for the provider.

An issue common to both provider and customer is the non-deterministic
nature of both pricing schemes and the fairness/unfairness for either party
depending on the actual bandwidth utilisation outcome. For example, cus-
tomers could virtually have all their bandwidth for little cost if most of their
Internet traffic happens within a 36 hour period for the case of 95 percentile
billing, though unlikely. Extreme scenarios of this nature are addressed in
Section 2.2. On the other hand, the provider could get most of the capac-
ity cost paid for by one customer whose utilisation graph shows a very high
95 percentile mark but statistically show under-utilisation of the pipe’s ca-
pacity most of the time, an example shown in Fig. 2.4. For volume billing,
customers have to predict how much data they are likely to transfer before
suffering a denial of service by their ISP.

2.1.4 Aims

It has been said that the 95 percentile billing method has not been designed
on any sound mathematical theory or optimisation techniques. This was
used by a small number of large corporate providers and over time the billing
method was adopted by many other companies and became a standard billing
scheme [3|. In addition, scenarios are possible where customers discover that
the difference in cost/payment between the schemes can be large with no
sound explanation as to the reason why.

The objective of this report is to provide an insight into the relative
cost between the two pricing schemes and to give further information such
that either the provider or customer can make decisions on pricing and cost.
The report is divided into the following sections. Section 2.2 expands on
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Figure 2.4: Example of bandwidth utilisation during a week. If this was
the typical scenario for the whole billing period, this customer would be
charged for 2.62 MBits/sec whereas an alternative billing scheme based
on average use of 1.1 MBits/sec or by volume could work out cheaper.
(Graphic taken from [2].)

the fairness issue that this project tries to address. Section 2.3 outlines
three mathematical models that we pursue, and their results are presented
in Section 2.4. Finally, the last section gives a summary of the study.

2.2 Improving the fairness of the billing

We concentrate on the case of a customer with high needs of bandwidth, such
as big companies. Nowadays, the billing method used by the provider is the
percentile method (see 2.1.2). As already commented in the introduction, a
major problem with this method is the high variability of the volume billed
due to the isolated peaks of traffic that may appear. As a consequence, we
find two main problems: on the one hand, we have the impossibility of pre-
dicting a priori the expenses that a customer who moves from pre-payment
to post-payment will have to pay for and on the other hand the possible un-
fairness, both for the customer and the provider, that may appear depending
on the situation. The first problem reveals itself to be an intractable prob-
lem without adding extra assumptions, so here we concentrate on giving a
solution to the second one and propose three models which try to reduce the
unfairness in extreme cases. These models reduce the variability of the 95
percentile method, thus smoothing out the first problem as a by-product.
Before presenting the models, let us show examples of the two possible
extreme situations we mentioned above, which will help us clarify this point.
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e Case 1: The customer pays less volume than its actual consumption.
In this case, the traffic generated by the customer for a whole month
consists of very high peaks within a period of aggregated time corre-
sponding to less than 5% of the total.

An extreme (unreal) example of this situation would be the following.
Suppose that the customer generates a traffic rate of 5 Mbps during
29 days but during the other day it is 100 Mbps. In this case, the
95 percentile mark would be 5 Mbps, so the customer would pay a
total volume of 12960 Gb (5 x 30 x 86400), whilst the actual volume
consumed is 21168 Gb.

e Case 2: The customer pays much more volume than its actual con-
sumption. In this case, the traffic generated by the customer for a
whole month consists of very high peaks of traffic for a period of time
that exceeds just over 5% of the total.

Again, let us show an extreme (unreal) example of this situation. Sup-
pose that the customer generates a traffic rate of 5 Mbps during 28 days
but during the other two days it is 100 Mbps. In this case, the 95
percentile mark would be 100 Mbps, so the customer would pay a to-
tal volume of 259320 Gb, whilst the actual volume consumed is only
29376 Gb.

Our goal is to propose new methods that decrease the unfairness of such
cases. To do this, first of all we need to make it clear what do we mean
by “fairness” of the billing method. One would think that the ideal billing
method would be when the customer pays for the exact volume consumption
(like the billing method used by phone companies). The problem with this
method is that the hosting provider needs to buy enough bandwidth to supply
the demand of all the customers, so the isolated peaks of traffic that may
appear should be penalized. In general, looking at the real examples, we can
see that the typical customer pays for about twice the real volume consumed,
so we will consider this value as normal. For the three models that we describe
here, first we need to introduce some notation related to the data sampling
we consider here. Let us assume that we have a set of data as described in
the introduction, that is, a set of T" samples equally distributed in a time
window of size [ seconds, typically every 300 seconds (i.e., 5 minutes), so
that the total billing time is T" - [ seconds. In the following we shall refer to
this set as S = (x;, dj);.:(), where x; = j - [ is the time associated to sample
J and d; is the mean bandwidth used during this time. For the time j - [ we
have the data d;. Note that without loss of generality we can also assume
that the sequence d; is non-decreasing, i.e., that the samples are ordered like
the way in Fig. 2.2.
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2.3 Proposed models

The following solutions were proposed taking into account some constraints:

e Both the provider and the consumer should get maximum benefit in
terms of service and money.

e The model should be easy to communicate.

e The model should be comparable with existing models in the market.

2.3.1 Convex combination model

As we have just explained, it is not always the best choice to use the percentile
model, nor paying for the real consumption, so we propose a simple convex
combination between both methods. Let us consider a set of samples in a
billing period. Then we can compute the actual volume consumption, V,
given in gigabits (Gb) and the percentile 95, P, given in megabits per second
(Mbps), associated to this sample. We have to take into account that, in
order to compare these two values, we need to scale them so that they are
expressed in the same units. Therefore, let us denote by s the scaling factor
associated to the billing period, which is the number of seconds in that period
divided by 1000. Then the convex combination, CC'M, is given by

CCM = (1—/\)g+>\P. (2.1)

It is important to remark the differences between this model and the
weighted percentile model (see 2.3.3): In this case we make the convex com-
bination between the whole volume data and the 95 percentile, while in the
other only the volume of data less than the 95 percentile is taken into account.
Moreover, as we show in the sequel, we give an explicit formula to compute
the parameter A implied in Eq. (2.1). Another difference is that here we do
not consider the unit prices of the models, because we are only interested in
the comparison of the amount of data that is paid for (as already discussed
before, this could be the real amount, more, or even, in some cases, less).

Now, the problem consists in finding the best A in order to minimize the
unfairness for both the provider and the customer. Looking at Fig. 2.5 below,
one can see that the unfairness of the 95 percentile method comes from the
relation between the areas A and B, where A corresponds to the unused
volume that the customer pays for and B is the volume he obtains for free.
Mathematically, let us denote by Ngs = t-[ the time corresponding to the 95
percentile sample consisting of ¢ time samples of length [; by Vi, the volume
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Figure 2.5: Convex combination model

up to that time; by 7" the total time of the billing period; by Vr the total
volume for the whole billing period, and by Py; the bandwidth rate value at
the 95 percentile mark. Then we can write

A:t'l'P95—VN95 and B:VT—VN95—P95'(T—t)’l.

These two quantities allow us to see if the customer is paying more or
less than the real volume of data consumed by looking at A/B. Taking
A = A/B could be a good choice here. We have three possibilities: either
A/B > 1 when the customer is paying more than he consumes, or A/B < 1,
which represents the opposite case, or A/B = 1, that would correspond
to rare situations in which the customer is billed exactly for the real volume
consumed. It is important to remark that in the first case if we take A = A/B
we could obtain negative CC'M values; to avoid this, we require that A € [0, 1]
by taking A = (A/B)~! = B/A when A > B.

Note that, in general, the C'C'M billing model tends to benefit the cus-
tomer against the provider. However, it will always charge for more than the
actual volume consumption, except in those extreme cases where the per-
centile billing model itself does not. This is a coherent thing to do taking
into account everything we have already discussed about how a fair billing
method should be.

2.3.2 Weighted mean model

Another approach to reduce the unfairness of the percentile billing method
would be taking into account not the number of peaks but the distribution of
the total consumption. In the percentile model it is not considered whether
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the volume corresponding to the discarded data is big or not, or if the traffic
prior to this point (when we consider sorted data) is moderate or even non-
existent. One may argue that a high peak which is not representative of
the behaviour can be neglected whilst the same peak, when it corresponds
to the main consumption, cannot. In the next paragraph we shall explain
in detail one method to achieve this, but the idea is to distribute the area
under an appropriate graph in several blocks, for which we shall choose a
representative height, and then compute the mean of these values. Doing
this, in the first case, the weight corresponding to high peaks will be low,
whence their influence in the average is small. On the contrary, in the second
case, the peak will deserve a high weight, since there will be many blocks
with a high representative.

In order to do this, let n > 1 be an integer, and consider the total volume
V given in Mb for convenience of notation. Let {z;} , be such that the area
of the step function between z; 1 and z; for 1 < i < nis V/n and xy = 0.
Note that x, = (t7 + 1) - | = T where 7 is the total number of samples in
the billing period. Then the weighted mean WM M is given by

V< 1
WMM = — _
n ; T; — Ti—1
In Fig. 2.6 we apply it to a simple function as an example of how to use it.
In that case, we see that

vV 1 1 1
WMM=— 1+ + + :
2T( V2—-1 V3-412 2—\/§)

It is clear that the value of WMM depends on the choice of the pa-
rameter n. Observe for instance that, when n = 1, the volume associated
to W MM coincides with the real volume that the customer has consumed.
However, this dependence is neither linear nor monotonic and we should ex-
pect that, for some choices of n, W MM gives results that are too high in
relation to V. Because of that, an appropriate value for this parameter has
to be chosen in order to get a result that we can consider acceptable in as
many different situations as possible. After the results in our set of exam-
ples, we propose taking n = 4, but this value can be modified by the provider
depending on sales policy.

2.3.3 Weighted percentile model

The third approach that we suggest incorporates some aspects of both the
volume and percentile model; we refer to this new model as the weighted
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Figure 2.6: Weighted mean model for n =4

percentile model. The provider is interested in providing the service for larger
companies that have localized bandwidth peaks, but also has to consider an
extra charge for the peaks they use. This model aims to find subcategories
of profiles that describe bandwidth usage amongst the clients. This way it is
easy to identify which companies have concentrated bandwidth usage within
peaks and the provider can bill them in such a way that is fair for both
customer and provider.

In summary, the weighted percentile model will use the 95 percentile with
an additional penalty term. The penalty term takes into account historic data
of the customer. This way the bill is based on the bulk bandwidth usage,
whilst still having the attraction of not being penalized for the highest peaks
over the 95 percentile. The following equations give the costs by the weighted
percentile billing (W B) and the cost by volume billing (V B):

Nos
WB = (AZ Vit (1 - )\)P%N) X Pus (2.2)
=1
N
VB =) Vixp, (2.3)

i=1
where
W B = Weighted percentile cost,
V' B = Volume cost,
P = Unit price of weighted percentile model,

p, = Unit price of volume model,
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V; = Volume in the interval 7,
Nys = Interval in which the 95 percentile is observed,
Pys = Value at the 95 percentile mark,

N = Number of billing intervals.

With A = 0 the weighted percentile model is equivalent to that of the current
percentile model employed by providers today. By increasing the value of A,
one decreases the penalty of the 95 percentile. As A — 1 the weighted
percentile model takes on the form of the volume model. The idea of the
weighted percentile model is to find a value for A that is fair for all. The
value of A is determined by equating volume cost and weighted percentile cost.
Different datasets will result in different A values, making up the different
profile categories sought after.

2.4 Results

2.4.1 Comparisons between the convex combination
and weighted mean models against the percentile
billing method

In this section we present some examples in order to compare the proposed
models with the currently most used model, the 95 percentile (P). Note that
P, CCM and WMM can be compared easily since all of them are given
in Mbps. Since we also want to measure the unfairness of the method, we
will also take into account the real volume V' given in Gb in relation to the
volume billed for by each of these three methods, Vp, Voear and Viy .

In the following examples we will consider sets of 720 equidistant samples
taken along one month of 30 days, that is, each sample corresponds to one
hour, and fix the parameter n = 4 for the WM M. Example 2 is based on
real data. Instead of showing all the data, we will introduce the examples
with a graph where we can see its distribution once ordered. Finally, the line
marks the 95 percentile point.

Example 1. In this example, we can see that the volume consumed is way
lower than the volume charged for with the percentile method. With both
the CCM and the W MM methods, we would have charged the customer
for a volume that is much closer to the real volume consumed. It can be
seen that the CCM charges for a volume that is really close to the real one,
whilst the W M M charges for a volume that is closer to the one given by the
percentile billing method.
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E Example 1 Parameters
=0 V = 6485290 Gb | CCM = 2.75 Mbps
o P = 9.45 Mbps Veonm = 7123.74 Gb
3 : Vp = 24499.58 Gb | WMM = 7.09 Mbps
. A= 0.035 Vv = 18382.75 Gb
Intervals Table 2.1: Parameter values for Example 1

Figure 2.7: Data for Example 1

Example 2. Here we present three sets of real data which, once sorted,
display different typical profiles: a gentle slope in (2.a), a smoothered jump
in (2.b) and a step slope in (2.c). We can see in all of them that the vol-
ume consumed is around half of the volume charged for with the percentile
method. This is what we could call a normal situation.

In all three cases, the CCM and the W M M methods charge the customer
for a volume that is between the real one and the volume charged with the
percentile method, albeit closer to the real volume, especially the CCM.

£ Example 2.a Parameters ‘
= V =25714.04 Gb | CCM = 10.09 Mbps
o P = 17.2 Mbps Veom = 26158.71 Gb
:cg " Vp = 44582.4 Gb | WMM = 11.32 Mbps
’ A= 0.02 Viwmm = 29351.35 Gb
Intervals Table 2.2: Parameter values for Example 2.a

Figure 2.8: Data for Example 2.a

B Example 2.b Parameters
= . V = 1824552 Gb | CCM = 7.14 Mbps
o P = 12.6 Mbps Veon = 18499.80 Gb
Q‘c‘g’ j Vp = 32659.2 Gb | WMM = 8.55 Mbps
. A= 0.02 Viwmm = 22153.31 Gb
Intervals Table 2.3: Parameter values for Example 2.b

Figure 2.9: Data for Example 2.b
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Example 2.c Parameters

8.
§ " V = 24936.80 Gb CCM = 9.66 Mbps
o P = 15.6 Mbps Veon = 25039.80 Gb
= Vp = 404352 Gb | WMM = 11.07 Mbps
. A= 0.01 Viwmm = 28693.92 Gb
Intervals Table 2.4: Parameter values for Example 2.c

Figure 2.10: Data for Example 2.c

Example 3. In this example, we can see that the volume consumed is even
more than the volume charged for with the percentile method. With both
the CCM and the W MM methods, we would charge more than with the
percentile method. However, with the CCM method we would still charge
the customer for less than its actual consumption, while with the WM M
method the customer would pay more than the consumed volume, which
would be desirable.

Example 3 Parameters

2.
= . V = 2404458 Gb | CCM = 9.04 Mbps
o P = 8.99 Mbps Voo = 23434.98 Gb
5. Vp = 23312.45 Gb | WMM = 13.94 Mbps
. A= 0.83 Vivaram = 36126.41 Gb
Intervals Table 2.5: Parameter values for Example 3

Figure 2.11: Data for Example 3

2.4.2 Results for the weighted percentile model

We have applied this analysis to three sets of data; see Figs. 2.12(a)-2.12(c).
In the finding of X in this paper, we assumed p,, = p, = 1 for ease of compu-
tation. In reality, p, will be higher than p, as the customer will be paying
for the advantage of not being penalized for the high peaks of bandwidth
usage. The value of A specified in the title is that found by equating volume
cost and weighted percentile cost. W B is the weighted percentile cost as
calculated with A\, while W By is the 95 percentile billing cost when A = 0.
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In all three cases the 95 percentile billing cost is considerably higher than
that of the fair weighted percentile price, suggesting that the current billing
scheme is overcharging customers.
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Figure 2.12: Three sets of data for the weighted percentile model

Each data set used here is distinctly different and each returns a different
value of A. This suggests that we should select few profiles of bandwidth
usage, each having a different A value. Upon looking at a customer’s historic
bandwidth usage, the customer can be assigned to a A value that best suits
their profile. The customer will be billed using the model specified in Eq. (2.2)
calculated with their assigned A\ value.

2.4.3 Fair percentile

Perhaps the 95 percentile is not the optimal percentile for charging the largest
companies, so the objective of this analysis is to determine which percentile
should be the optimal.

To determine a new percentile, we equate the amount of bandwidth that
the client is paying for but not using (A;) with the amount of bandwidth
that the provider is not charging for but has already given up (Ay). This is
shown in Fig. 2.13.
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Ny
Figure 2.13: Fair percentile —the amount of bandwidth that the client and
the provider lose is the same

The equations used are as follows:

Py
Ay =a2P, =) Vi (2.4)
=1
Ny
A=) Vi—(1-x)P, (2.5)
=Py
Al = A27

where

A; = Amount of bandwidth that the client is not using,

Ay = Amount of bandwidth that the provider has to guarantee,
N, = Fair percentile,

P, = Bandwidth rate at percentile N,.

The idea of this analysis is to find the percentile mark that guarantees
areas A; and Ay on the graph to be of the same size. This is equivalent to
saying that both the client and the provider are exposed to the same risk.
The value of P, can be found by equating A; and As.

The results from three different sets of data are shown in Figs. 2.14(a)—
2.14(c). The value of P, is reported in the figure titles. As it happens, the
most favoured value for P, is roughly 70%. For different profiles, the fair
percentile values differ. These can then be adjusted by the ISP according to
commercial policy, perhaps depending also on the particular client or client
profile.
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Figure 2.14: Three sets of data for the fair percentile analysis

Summary

This project studies attempts to address the issue of linking two billing
methods commonly used by ISPs to charge their customers for Internet
access. These are:

1. Volume method.
2. Percentile method.

The two billing schemes raise the issue of fair billing between ISPs and
their customers. This mainly results from how these ISPs acquire their
ability to provide Internet bandwidth for their web hosting customers.
Namely, ISPs acquire data pipes of a certain capacity from network
providers which have a maximum rate transfer at any one time.

Three mathematical models have been proposed in this study. All
models assume the scenario of a simple network where an ISP buys
capacity from any network provider and sells that bandwidth capacity
to its customers in whatever way.

The convex combination model links the entire amount of volume that
a customer uses and the 95 percentile model through a parameter .
The value of this parameter is calculated whilst taking into account the
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amount of data the customer does not pay for against the amount of
data obtained for free in a whole billing cycle.

e The weighted mean model attempts to take into account both the num-
ber and distribution of a customer’s peak traffic spikes within a whole
billing cycle. This is done by ordering the data into several blocks and
computing the mean value of each of them.

e Comparisons were made between the convex combination and weighted
mean models for five sets of data. Both models have shown to bill cus-
tomers in between real volume billing and the 95 percentile billing and
this has often been the case, making them consistent and predictable
billing schemes for both providers and customers, with less chance of
extreme variations.

e The weighted percentile model is similar to the convex combination
model except that the data consumed before the 95 percentile mark in
a billing cycle is taken into account, rather than the entire amount of
volume consumed. This model includes a parameter, A, regarded as
a penalty term. Tested against three sets of data, this model shows
that the classical 95 percentile billing scheme overcharges customers.
With A chosen based on the customer’s usage history, this weighted
percentile model can tailor the fairness of billing.

e Whilst analysing a (fair) percentile value that exactly equates the data
volumes used in the volume and percentile billing schemes, it was often
shown that a percentile value lower than 95 was required to equate the
two schemes. This suggests that a percentile value lower than 95 would
often make things fairer.
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Problem statement

Under heavy rain, some rivers used to have a discharge large enough to flood
into nearby urban areas. A way to cope with this problem is to designate
some fields adjacent to the river as floodable: at a cost, it is allowed to divert
part of the flow into these fields by way of large gates which exist alongside
the river. The area of the gate opening can be modified remotely. One wants
to know the best control strategy for opening the gates, given the hydrologic
profile of the flood which is gathered upstream some hours before it reaches
the control point.

3.1 Motivation

Flooding resulting from excessive precipitation and surface runoff is a prin-
cipal cause of significant damage, loss of property, and human suffering
throughout the world. During the GEMT 2010 study group at the Cen-
tre de Recerca Matematica in Bellaterra (Barcelona), our team was given
the task of determining a mathematical model to optimize gate operation
along the Ebro River in Spain. Finding an optimal way to manage these

CRM Documents, vol. 9, Centre de Recerca Matematica, Bellaterra (Barcelona), 2012
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gates is a prominent goal of the CTP projects PREGO (2008ITT00007) and
GECOZI (2010CTP00043).

We designed a simple model in which we assumed that the flood wave
would maintain its original shape as it propagated downstream. This sim-
plified model of the situation allowed us to look more closely at the mathe-
matics involved in river flooding and gain some insight on a basic strategy
for regulating flood gates. In addition to deriving this model for gate regula-
tion, we also investigated the costs associated to the situation when flooding
cannot be avoided. In this situation it is important to minimize the costs
in terms of human suffering and property damage. We investigate in this
paper two methods for approaching the situation where flooding cannot be
avoided: strategy A —opening the gates when the wave is about to overflow
the gates; and strategy B —opening the gates when the typical maximal
level is achieved. This paper discusses the analysis of both strategies in de-
tail. As a conclusion of our analysis, we state some future problems that
might be taken up by our group or by other researchers with an interest in
this problem.

3.1.1 States

The initial data is the forecasted avenue hydrogram (the graph of the flow as
a function of time) computed from observations at a point upstream of the
control point. Two parameters are relevant: the mazimal flow and the total
volume of the avenue.

We assume that the water height at the control point is an increasing
function of the flow ¢ at that point.

Let us consider three states related to the flow ¢:

e The steady state corresponds to ¢ < @min, Where g¢,., is the flow that
brings the water at the control point high enough for the gates to open.

o A typical avenue state corresponds to ¢min < ¢ < Gmao- The How ¢rqo
is the maximum flow for a recurrent avenue, one that happens every
two or three years.

e The high avenue state happens when ¢ < ¢ < Gmaz, Where ¢naz is
the flow that makes the water level spill over the floodable areas.

e Finally, when ¢ > ¢4z-
For this, the following control strategies are defined:

e If the maximum forecast flow ¢; is less than ¢,,.., the gates are not
opened.
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e When ¢; > ¢nq but it is possible to level out the wave to a maximum
¢, and this value is less than ¢,,4,, then the goal is to minimize the peak
discharge after leveling. To compute this, one cuts from the hydrogram
an area equivalent to the capacity of the floodable areas, to get a maxim
plateau of ¢; flow.

3.2 First simple model

First we will discuss a simple control strategy:

Given a set point gy, open the gates completely when the dis-
charge reaches this threshold.

As a simple first approximation, we ignored the geometry of the river bed
and assumed that the flood wave would maintain its shape as it propagated
down the river. We also assumed that the height of the river at a given point
depends only on the discharge at this point by an increasing function. In
this way we could use height and discharge interchangeably.

Given that opening a gate to a floodplain can reduce the flood by a given
volume W, we look for the set point ¢; to open and close the gate in order
to reduce the flood by this area optimally.

Mathematically speaking, we define the discharge of a flood wave at the
gate point as ¢(t) and choose a reference interval [y, t1] containing the flood
episode. For simplicity, we assume that ¢ is unimodal and has a forecast
maximum discharge ¢; expected at time ¢, € [tg,t;]. Define, for 0 < y < ¢;,

Vi(y) = /tl [q(t) —y], dt < W, (3.1)

to
where [z], = max{z,0}.
This expression could be written on the time interval defined by the con-
dition g(a) = q(b) = y with ¢ty < a < t,, < t; < b using an iterated integral as

V(y) = / ’ ( /y " dq) dt.

By inverting the order of the integration, we get

qi t1(q) qi
Viy) = dt | dg = (q) —t_(q))dg, 3.2
) / (/t(q) t) ’ /y(t @ —t-()de, (32

where t_(q) (respectively t;(q)) is the unique ¢ < t,, (respectively t > t,,)
with ¢(t) = ¢. Since V'(y) = t_(y) — t+(y) < 0, V(y) is decreasing with
V(g:;) = 0 and it is easy to find the unique point ¢, such that V(¢y) = W by
numerical integration followed by bisection or inverse interpolation.
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3.2.1 A numerical experiment

We tried this idea with a mock flood wave made by adding a Rayleigh function
to a constant flow (we chose such a function because real flood waves are
typically asymmetrical —see [2]):

t
ot) = 14 40 -erem (33)
o
with ¢ = 10 and a goal capacity of W = 22. The discharge is sampled
between t = —10 and ¢ = 100 for 1000 points (assuming one hour as time
unit, which means roughly a sample every 6 minutes). The procedure was as
follows:

1. The maximum discharge ¢; is located at point £, by inspecting the first
differences of the sampled data (M data points). This partitions the
time samples into two sets: the domains of ¢_ and ..

2. The difference ¢, (q¢) —t_(q) is approximated by inverse interpolation of
q(t) data, for a uniform sampling of N values between the steady flow
(¢ = 1) and the maximum flow (¢ = ¢;).

3. By cumulative addition we approximate y fyqi (t+(q) —t_(q))dq.

4. Again by inverse interpolation of the above table, we compute ¢ = ¢y
fory =W.

For M = 1000 and N = 100 and W = 22, we got q; ~ 1.70, t_(qr) =
1.782 and ¢4 (gr) = 22.613. To check the accuracy of this simple procedure,
we compare the integral (which could be computed exactly in this case as
F(t) =t — k(1 — e */2)) for k = 40 and ¢ = 10, giving

t+(ar)
[ a(t)dt = F(ta(ay) — F(t_(qr)) = 57.09, (3.4)

—(ay)

while W + q¢(t+(qr) —t_(qr)) = 57.44.

3.3 Heavy flooding

When the flooding is particularly heavy, the capacity of the floodplains may
be insufficient. In this case, even when the peak of the flood is reduced by W,
it is still higher than ¢,,., the levee height, causing floods. In this situation
we have two options for controlling the gates. The first strategy is that the
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Figure 3.1: Left: V(q) for the test function with the cut volume W = 22.0
corresponding to ¢ = qy. Right: The cut volume is the part of the graph
of the test function above ¢ = ¢y.

gates are opened as soon as the water level reaches ¢, and the reservoir
is filled to capacity, hence reducing the front of the flood wave. This then
gives us more time to deal with the flood, e.g., preparing to open more gates
downstream (see Figure 3.2).

In the case of flows with multiple flood waves it is always ideal to open
the gates at gmq, instead of ¢y, as it allows some capacity of the floodplain to
be reserved for later flood waves. Thus when we have multiple flood waves
we will never open the gates before ¢ = ¢q.. See Figure 3.3 for a situation
involving multiple waves and Figure 3.4 for a case where we can do even
better.

3.4 Cost modelling of the main strategies in a
flooding

In this section we assume that a flood that cannot be totally prevented is
about to happen. Recall that a flooding corresponds to the scenario g,q0 < gy
and then any possible gate opening strategy can avoid that the water level
of the Ebro surpasses at the analysed point the constructed walls and that
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Figure 3.2: Flux versus time for a peak where flooding is inevitable

a®
1.4 :

121 q

0.8

flux

0.6 bl

0.4 q

0.2 B

Figure 3.3: Opening the gate at gmnq, allows maximum remaining capacity
for the second flood wave
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Figure 3.4: Opening the gate at gq, allows us to prevent flooding entirely
in this case

floods the surrounding lands. When this happens, the controller of the gate
opening must choose when to open the gate in order to reduce as much as
possible the damage caused by the flooding. In this case, note that two
main strategies can be raised: the gate can be either opened when the flow
q achieves gp,q, or it may be opened when g is achieved.

The objective of this section is to extract a numerical criterion, based on
the observations that have been carried out in the previous sections, that
allows us to choose the best strategy in each possible situation.

As we are going to see, each strategy has advantages and drawbacks:

e On the one hand, if the gate is opened at 4., the flood is going to be
delayed for as long as possible. However, once the flooding capacity is
surpassed, we are not going to have any control of the amount of water
that the river carries from this point on. Hence, when the flooding
arrives to the most sensitive areas the greatest intensity of the flood
will not be mitigated. Figure 3.5 shows schematically the inherent
idea that defines strategy A. The water coloured in light blue is the
amount of water that is able to be drained through the gates. The
water coloured in red corresponds to the amount of water that is going
to flood the area of interest where we analyse the scenario. Hence, in
the presented strategy, once the water overpasses the acceptable level
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qf

Qmao

Figure 3.5: Flow diagram for strategy A

of the river, the door is opened. Then, while the flooding area is able to
drain water, the flood is prevented. However, once we are not able to
drain more water through the gates, all the remaining flooding water
will continue on its way, flooding freely the area of interest.

On the other hand, the controller of the gate can wait to open it until
q achieves gy. Then, the flooding of the sensitive areas starts earlier,
whereas the most dangerous peak in the water amount that the flooding
carries on is going to be cut out. This way, the main effects of the
flooding will be reduced, because the intensity of the flow is going to
be lower. However, we are going to allow less time for the affected
population to leave the affected areas. Figure 3.6 shows a water profile
of the river channel where strategy B is applied. The colouring scheme
is the same as the one presented on Figure 3.5. Hence, Figure 3.6 clearly
presents the main drawback and the main advantage of this strategy
in front of strategy A. First, note that the red profile starts earlier

q
af

Qmao

£ ;1

Figure 3.6: Flow diagram for strategy B
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than in the previous strategy, and hence the flooding is not delayed as
it happened before. However, the red profile does not reach the high
values that strategy A achieved. Hence, strategy B avoids the flood in
the peak where it has more intensity.

3.4.1 Damage cost function

Accounting for a correct selection of the strategy to follow in each possible
scenario, we aim to define a cost function in order to measure the human,
economical, etc. cost of each strategy. The defined cost function takes into
account two main factors:

e the number of affected people depending on the height of the water in
the flood, and

e the time that the strategy is able to delay the flood.

Assuming that the flooding starts at a given time tj, the proposed cost
function of the flood at a certain time ¢ is

o) = /t pila(®) 4 (3.5)

to t

where p is the density of population that lives below a certain height h. Note
that the height of the flooding is a function of ¢ (the height that the flooding
reaches depends on ¢), and that both ¢ and h are known in any possible
scenario. We have divided the density by ¢ in order to “decrease the cost”
when increasing the time, since we want to minimize the effects of the flood
but we also want to penalize the time that a strategy gives to the population
to leave the affected zone.

Note that, in this cost function definition, it can be decided if more im-
portance is given to the amount of affected people or to the delaying of the
flooding. For instance, if we want to give more importance to the delay of
the flood, we can change the modelling cost and use some other t", r > 1,
penalizing then a strategy that does not let enough time to the population
to evacuate. Analogously, if we choose not to involve the delaying time in
the cost penalization, we can also take r = 0.

3.4.2 Finding the strategy that minimizes the cost
function

Given a scenario, we know all the variables that are involved in the definition
of the cost function (3.5). Hence, in order to execute the better strategy, we
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are only required to compute the integral (3.5) and take the strategy with a
lower cost. The most valid strategy is the one that results in the minimum
cost at the end time of the flood, t;.

However, it may be interesting to be able to know a priori bounds about
the possible cost of each situation. Hence, we could have information before
the flooding occurs about how each strategy behaves and, for example, we
could be able to fix a default strategy that is known to be safer through the
a priori bounds. Furthermore, if we are able to find lower and upper bounds
for both strategies we may find interesting conclusions about the procedure
to follow when a flood occurs.

Strategy A: Opening the gates when ¢,,q, is achieved.

With strategy A we find that, despite reaching higher flow values, the
time in which ¢, is surpassed is delayed, and thus there are no costs
for a longer time than in strategy B. However, we are just able to delay
the flow until a known time t,, where the auxiliary flooding area is
full and we cannot take more water from the river. Thus, the cost of
strategy A is

it = [N g [ i),

t t

to

where we must recall that all the data required in the integral are
known, and thus in a particular case it is straightforward to compute

the cost. Hence,
t1
ou- [ o), 56
tm

is the cost of strategy A.

Note that an upper bound of this expression can be found, namely

C’A:/:Mdtg/t:%dt

¢ .
= p.In <t_1) =: Cly,

where p, = p(h(q.)), being ¢, = maxe,, +)q(t) the peak value of g.
Recall that this bound may be slightly coarse, but it is useful in the
sense that if the cost that the bound assigns is acceptable compared
to B, then the strategy is valid for our purposes.
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Strategy B: Opening the gates when ¢y is achieved.

For this strategy we can easily find an accurate upper bound for its
cost. Note that, except at the beginning and at the end of the flow
diagram, the flow that is flooding the area of interest is known, since
we cut it using the gates at g value. Hence, we control that ¢(t) = ¢y
in all the diagram except in a small region, where ¢(t) < g, for all ¢.
Thus,

= [ 2O o [ oH)

to to

t1
: t
- [ ()
to t tO

where we have denoted by p,, the density of population that lives below

h(gqs). Thus,
O = /tl wdt (3.7)

is the cost of strategy B, and it can be bounded as

t R
Cp < pg; In (t_l) =: O, (3.8)
0
where p, s to and ¢; are all known.

Depending on the scenario that is placed, we can compute both Cy and
Cp and have a reference of which one of the strategies will bring up more
advantages. The bounds are simplified expressions that require less data and
give useful information, since they tell the limit of the cost that the strategy
may result in.

However, note that, judging just by the a priori found bounds of both
strategies, no conclusions can be drawn about if there is one strategy that is
always better than the other one just judging by either the affected popula-
tion or the maximum flood capacity. No a priori conclusions can be extracted
from the comparison CA < C’B.

Summarizing, we first have been able to develop two main strategies to
deal with a flood. Moreover, we have defined a cost function that can be
used as a key to choose the ideal strategy to select in each scenario. Two
upper bounds of the cost of both strategies have been extracted. However,
no conclusions about the selection of the best strategy can be drawn just by
judging the a priori bounds.
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3.5 Conclusion and further work

In this paper we have stated an algorithm for determining the opening and
closing times of a single flood gate. In addition we have studied how cost
functions can be used to minimize damage and hardship caused by flooding
in highly populated areas along the Ebro River.

We propose that in future research studies the case of gate control is
considered more closely, perhaps in conjunction with the idea of minimizing
costs in the case that flooding cannot be avoided. The most important ex-
tension of our ideas is to work with multiple gates and multiple flood waves.
This case will be more complex but also will more closely impact actual im-
plementation of gate control along the Ebro River. By assigning a cost to
the flooding of particular floodplains, it will be possible to obtain the mini-
mum amount of damage in case that we cannot prevent a flood with the gate
control scheme.

Bibliography

[1] Directive 2007/60/EC of the European Parliament and of the Coun-
cil of 23 October 2007 on the assessment and management of flood
risks, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do7uri=
0J:L:2007:288:0027:0034:EN:PDF.

[2] A. K. Lohani, N. K. Goel, K. K. Bahtia, Real time flooding forecasting
using fuzzy logic, International Conference on Hydrological Perspectives
for Sustainable Development (HYPESED 2005), Roorkee, India.



GEMT 2010 45

Modelling the Cardiovascular System for
Automatic Interpretation of the Blood
Pressure Curve

Problem presented by
Vicent Ribas Ripoll and Anna Séez de Tejada (Sabirmedical)

Report prepared by

Tim Myers (CRM), Mark McGuinness (Victoria University of Wellington),
Sarah Mitchell (MACSI, University of Limerick)

Study group contributors

Michelle De Decker (CRM), Francesc Font (CRM), Andrew Fowler (MACSI,
University of Limerick), Jonathan Low (CRM)

This report stems from a follow-up meeting entitled Mathematical Modeling
of Blood Flow and the Baroreflexr System, held at the CRM in December
2010. The work continues from the Sabirmedical problem described in the
first report of this book.

4.1 Introduction

The cardiovascular system is in charge of conveying nutrients and oxygen to
the tissues and maintaining the gas exchange between tissues (COy and Os)
necessary for homeostasis. The main components of the cardiovascular sys-
tem are the heart, arteries and veins. It includes the pulmonary circulation
—a closed loop through the lungs where blood is oxygenated— and the sys-
temic circulation. Oxygenated blood enters the systemic system at the left
heart and is then pumped into the aorta. The aorta branches into smaller
arteries, arterioles and capillaries, where oxygen exchange takes place, and
blood enters the systemic veins through which it flows in vessels of progres-

CRM Documents, vol. 9, Centre de Recerca Matematica, Bellaterra (Barcelona), 2012
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sively increasing size toward the right heart. The right heart pumps CO,
rich blood into the lungs.

The term blood pressure refers to the force that blood exerts on the walls
of blood vessels. This parameter changes both in time and with distance
from the aortic arch. Systolic pressure is the highest surge of pressure during
ventricular contraction whilst diastolic pressure is the lowest/baseline pres-
sure reached during ventricular relaxation (diastole) [10]. Currently there
exist two principal methods for measuring blood pressure:

e The sphygmomanometer —this is the standard cuff which is usually
inflated on the upper arm. In general it is manually operated and
requires a quiet environment. It is an old technology (from the 1800s)
that is prone to operator error. It also provides data only for a short
period. Whilst digital cuffs exist, these may be highly inaccurate.

e The catheter —this is inserted into an artery and can provide contin-
uous data. However, it is an invasive technique which has a number of
associated risks and so is primarily used on bed-ridden patients.

Obviously there is a clear need for a non-invasive, continuous monitoring
technique and various research groups have attacked this problem by different
methods. One such approach involves the use of the pulse oximeter [16].
This has particular appeal since the pulse ox is already standard equipment
in most medical practices.

The pulse oximeter is a device that measures the oxygen saturation of
the blood. Typically it functions by shining two lights of different wave-
length (but both close to infra-red) through a translucent part of the body.
The different wavelength lights are absorbed to differing degrees by the oxy-
genated and deoxygenated haemoglobin and so the ratio of oxygenation to
deoxygenation may be calculated. Since arterial blood vessels respond to
pressure changes, the obtained signal is time-dependent and so the output of
the pulse oximeter may also be used to monitor the heart rate. In fact this
variation in the signal is essential to the functioning of the device, since, to
distinguish the light absorption from blood and the surrounding tissue, the
pulse oximeter only uses the varying part of the signal.

The output from the pulse oximeter is termed photoplethysmograph (or
pleth for short). The pleth closely resembles the blood pressure curve. Cur-
rently the main uses of the pulse oximeter are monitoring of oxygenation and
heart rate and diagnosis of sleep disorders. However, the detailed features of
the blood pressure curve and hence the pleth contain a wealth of information
useful for diagnostic purposes. For example, the blood pressure curve may
be used for:
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Detection of cardiac arrhythmia;
Measuring the heart output;

Measuring blood loss;

Ll

Monitoring respiratory variation (which in turn may be related to fluid
responsiveness in ventilated patients with circulatory failure);

5. Depending on different base pathologies such as sepsis or severe res-
piratory distress, the peripheral pulse waveform may be attenuated/
dampened and may be considered as an important measure for the
assessment of microcirculation and tissue perfusion.

More comprehensive lists may be found in [3, 15, 17, 18|. Until recently
there was no way to accurately relate the pleth to the blood pressure (the
scaling can depend on patient age, obesity, gender and many other factors).
The problem was solved by researchers at Sabirmedical using a random forest
algorithm [16]. Unfortunately the random forest approach does not provide
an understanding of the mechanisms behind the pleth (although, of course,
physicians are able to interpret it). At two meetings, held in the Centre de
Recerca Matematica in 2010, mathematicians were challenged to develop an
accurate model of the cardiovascular system in order to better understand the
pleth and so extract further information. This would allow the pulse oximeter
to be used as an automatic diagnostic tool (so eliminating operator error and
allowing less highly trained operators to perform preliminary diagnoses). The
following work results from those meetings.

The specific goal of this paper is thus to produce a mathematical model
capable of accurately reproducing the dominant features of the blood pressure
curve and in particular the dicrotic notch and the variation due to respiratory
sinus arrhythmia (RSA). To allow for easy interpretation and to minimise the
number of parameters, effort was made to keep the model as simple as pos-
sible. In the next section we describe the compartment model approach that
was used. Subsequent sections deal with model refinements and parameter
estimation. Finally we compare the results of our model to data.

4.2 Compartment models

Differential equation models of the cardiovascular system vary from a pair
of first-order ordinary differential equations [12] to systems of more than 40
coupled differential-delay equations [8, 20, 22]. Ottesen’s approach [12] is to
simply split the system into arterial and venous compartments, with non-
pulsatile flow and the left ventricle adding a source term, whilst Grodins and
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Ursino et al. [8, 20, 22| describe the pulsatile flow of blood through multiple
compartments including the lungs, compliant arteries and veins and driven by
a heart that is regulated by a sophisticated nervous feedback control system
that responds to blood pressure and chemistry in a variety of ways.

Despite this level of complexity, in general compartment models are con-
ceptually quite simple. They involve splitting the cardiovascular system
into a number of compliant zones or compartments and as the blood passes
through each zone, blood mass should be conserved. The change in volume in
each zone is simply the difference between the flux entering from upstream
and that leaving downstream. The heart drives this flux and the flow is
resisted by the vessels through the shear stress at vessel walls.

In the present study we have tried to take the simplest approach pos-
sible, along the lines of Ottesen’s model. Initially we employed a three-
compartment model, involving the arteries, veins and left ventricle. However,
one of our main goals was to capture the dicrotic notch. The dicrotic notch
occurs due to a pressure pulse when the aortic valve closes and closure is
caused by the pressure drop across the valve becoming negative. The size
and location (in time) of the notch provides information about the health
of the valve. In the three-compartment model the arterial pressure is an
average across the whole arterial system, so that using this as a measure
of when the valve closes will lead to late closure in the model. To improve
this behaviour, we introduced a new compartment to describe the exit region
close to the valve. Mathematically speaking, there is no problem in divid-
ing the cardiovascular system into any number of compartments (as is done
with finite element computations) but to give a physical meaning to this new
compartment one could think of it as representing the aortic arch. Our basic
model is therefore described by the following four-compartment system:

"/e:QLV_Qev ‘./a:Qe_Qaa V;;:Qa_Qva VLV:Q’U_QLV7 (41)

where V; represents the volume and @); the flux of blood. The subscripts e,
a, v, LV represent exit, arterial, venous and left ventricle, and dots indicate
derivative with respect to time. The first equation indicates that the change
in volume in the exit region depends on the difference between the fluid
flowing in from the left ventricle and the fluid flowing out of the aortic arch.
In the arteries the volume increases due to fluid flowing in from the arch and
decreases as it flows out of the arteries (into the veins), etc. Hence these
equations express conservation of blood mass. Summing the four we find
vV = Ve + V;l + V;) + VLV = 0, so the total volume is constant. Note that
we assume the blood to be incompressible (see [14]) —changes in pressure
are associated with the compliance of blood vessels rather than the relatively
small compressibility of blood itself.
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In a compliant elastic vessel we may relate the pressure to the volume
via V = Vi + Cp, where C is a constant, termed the compliance, and Vj is
the (constant) volume at ambient pressure (the value of the compliance is
discussed in detail later). This equation serves to define compliance.

Special attention should be paid to the left ventricle, where the pumping
of the heart is driven by changes in the elastance (the inverse of compliance).
Consequently, in the left ventricle we write V' = Vy + p/Epry. In fact here
we see a loose definition of the elastance, E, which is the change in pressure
divided by the change in volume (it is analogous to the spring constant in
Hooke’s law, which is defined by the change in force divided by the change
in length). Differentiating the compliance and elastance definitions, we can
relate volume and pressure as

‘./e = Cepea Va = Capav V;; = Cva VLV == di (pL_V) . (42)
Note that we assume that the compliance of the blood vessels is a constant
whereas the elastance, representing the contraction of the heart muscle, varies
with time. We may relate the fluxes to the pressure by considering standard,
uni-directional pressure driven laminar flow (Poiseuille flow) in a pipe which
leads to a relation of the form ) oc Ap. This may be expressed as Q = Ap/R
where R is termed resistance [10]. Obviously the cardiovascular system does
not consist of a single straight pipe and blood flow is often turbulent, so this
definition of @) is rather approximate and the resistance R must represent
the many intricacies of the system, rather than simply the viscous resistance
from the classical Poiseuille low model. With the fluxes written in terms of
pressure drop, our initial system of differential equations can be expressed as

PrLv — De Pe — Pa

Ceope = I — 5 (4.3)
. Pe — Pa Pa — Do
Copa = 7R (4.4)
Cvpv = paf_z P - b _RpLV7 (45)
d (pLv Po—PLV DLV — Pe
— = — . 4.6
dt (ELV) R'u Re ( )

4.3 Model refinements

The above system, equations (4.3)—(4.6), constitutes our basic set of equa-
tions but still requires certain refinement: the driving mechanism for the flow
is not defined, neither is there a mechanism to describe the dicrotic notch or
the aortic valve.
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The driving mechanism for the flow comes through the definition of the
elastance. Modelling of the elastance is discussed in a number of papers.
Whilst there is some difference in the fine detail, the general form is of a
sequence of roughly Gaussian curves when contraction occurs separated by
flat regions denoting the relaxation [5, 11, 13|. In [4] the elastance has an
approximately square waveform. However, Suga [19] points out that an in-
stant rise cannot account for the Fenn effect of the skeletal muscle, whereas
a gradual rise model can. The elastance also exhibits a longer term variation
and this leads to Respiratory Sinus Arrhythmia (RSA), which is a term for
the observed changes in heart rate associated with respiration. Heart rate is
usually observed to increase during inspiration and decrease during expira-
tion. This is primarily due to a coupling through the vagal (nervous) system,
and to a lesser extent it is also due to the effect of breathing on the pressure
in the chest cavity near the heart. Denervated (transplanted) human hearts
do still exhibit RSA but at around 7.9% of normal levels [2|. Dat [5] defines
the elastance as

Erv =Ej+a(t)(Es — Ey), (4.7)

where the diastolic elastance Ey is constant and a(t) = sin?(wt).

We employ the same form as Dat but with two important refinements.
Firstly, a(t) should switch off for 2/3 of the heart cycle. If T represents the
period of one heart beat, then we want the sin? term to rise from zero and
fall back to zero once as t varies from a starting value ¢y to to + 7'/3. So we
set w = 27/T and define

o sin?(3w(t — tg)/2) if t —to € (0,T/3),
alt) = 0 ift —ty € (T/3,T).

The period T is set to be time dependent to model RSA with heart rate
varying with respiration, by choosing

t
w = wp + c3sin <w_0> . (4.8)
C2

Secondly, the peak in the elastance height varies over a longer time scale
(related to heart beats per respiration). To account for this, we take the
systolic elastance

t
Ey = Ey + cpsin (w_o) ) (4.9)
Ca

The constants ¢y, ¢y, c3 in the above definitions represent half the varia-
tion of elastance height, the number of heart beats per respiration (typically
around 5) and half the variation of w respectively. The constant wy is an
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angular frequency wy = (27/60) x HR where HR is an average heart rate in
beats/minute.

A typical form for the elastance is shown in Figure 4.1. The minimum
value E; = 0.06 mmHg/ml, while the maximum value varies according to
equation (4.9) with an average value Fyy = 3 mmHg/ml. We took a heart
rate of 72 beats/minute to give wy ~ 7.54. Other parameter values used to
generate this graph are given in Table 4.1.

L i

Figure 4.1: Variation of elastance with time

The resistances R,, R., R, are constant while R, accounts for the aortic
valve that closes when the pressure drop becomes negative. Consequently, R,
must be time-dependent. Since closure depends on the pressure difference,
we write

R. = R [1 + 61(eXP(—A1 (PLV - Pe)))] ) (4-10)

where R, is the constant value when the valve is fully open. The factor ¢; <1
ensures that the exponential term remains small whenever pry —p. > 0 but
it increases rapidly when pry — p. < 0. The constant A; is chosen such
that the product A;(pry — pe) rises sufficiently rapidly as the valve closes.
In practice we set € = 107°, A = % These values are simply chosen to
provide the correct properties. Since the exit region is much smaller than
the arterial region, we also assume R,y < R,. Another option would be
to simply set a switch via a Heaviside function. However, our subsequent

numerical calculations showed that this led to a poor representation of the
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pressure around the dicrotic notch. Ellwein et al. [6] employ a similar, but
cut-off, exponential representation for all heart valves. They do not include
the factor ¢; < 1 but choose A = 2, which is greater than our value, and this
has a similar effect. The typical behaviour of the valve is shown in Figure 4.2.

;[ S S TR S S S NS

R (0)

Figure 4.2: Valve resistance against time

Note that we could equally well define a valve at the entrance to the
ventricle through

Ry = Ry [1 4 ea(exp(—Aa(py — prLv)))] - (4.11)

However, since this region is of lesser interest, to avoid more parameter esti-
mation we use a Heaviside function for R, (tests confirm that this makes no
noticeable difference to the results).

The modelling of the dicrotic notch is based on the assumption that it
is caused when blood attempting to flow back through the valve, due to
the negative pressure and inertia, impacts with the now closed valve and
rebounds into the exit region. We approximate this impulse by a Gaussian,
with a strength related to the pressure difference p. — pry. Since pressure is
a function of time, we can represent the impulse by the following function:

f(t) = caexp(—cs(t — t, — csAt)*/(AL)?). (4.12)

The constants ¢4, c¢s5, ¢g indicate the height of the pulse, the sharpness, and
the position of the centre. The time ¢, is when p. = pr and so it indicates
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when the valve should begin closing (obviously as the pressure varies over
time there are many values of ¢,). The maximum value of f occurs when
t = t, + At; hence At denotes the delay in closure after the pressure drop
becomes negative. It therefore controls the position of the dicrotic notch
and it is an important indicator of the health of the valve. In the numerical
solution we use a value of At from the previous cycle (and taken as some
typical value for the initial condition).

The function f(t) represents an input of mass to the p. equation and so
it is added to equation (4.3): to conserve mass it must be subtracted from
the left ventricle —equation (4.6). In general its maximum value is much
lower than the other terms in the equation and so it represents only a small
contribution to the pressure. The full system to model the pressure is now
given by equations (4.4), (4.5) and

. PLvV — De i Pe — Pa
d ( prv \ _ Po—PLv  Prv —Pe
dt (ELV(t)) - R O (4.14)

with Epy defined by (4.7) and R, by (4.10).

4.4 Calculating parameter values

Key to the success of the mathematical model is the choice of parameter
values. Obviously this is not a simple task. However, many of the values
can be found in the literature whilst a few were obtained heuristically. Of
course the term heuristics can hide a multitude of sins. Our choices are
largely based on knowledge of pressure signals. For example, the constants
¢4, C5, g simply come from inspection of the signal for a dicrotic notch. The
beats/breath ¢, is a standard value of the order of 5 (in fact we take it to be
6 based on our experimental data). The small parameter ¢; has merely to be
sufficiently small so that the exponential term in equation (4.10) is negligible
when the valve is closed, and A; sufficiently large so that the exponential
term becomes significant when the valve opens.

Compliances and resistances may be calculated through a given pressure
signal. For example, rearranging the volume pressure relation discussed in

Section 4.2, we find
c-Y—1 (4.15)
p

This may be interpreted as the stroke volume to mean average pressure;
see [10]. According to [1], it may be interpreted as the ratio of stroke volume
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to arterial pulse pressure. Since we have data for the arterial pressure, we
may calculate

SV
Cop=——"—"-—. 4.16
Pa,sys - Pa,dia ( )
We then use this to estimate C, = C, and C,, = 20C,. Similarly, the systemic
resistance may be estimated from the arterial pressure signal [1] via

Pa,mecm - Pv,mean
R, =

V. AR , (4.17)

where SV is the stroke volume and HR the heart rate. Values close to those
obtained from the above formulae are quoted in [4]. In the exit region (the
aortic arch) we assumed that the compliance was the same as in the rest of
the arterial system. However, since it is wider than other vessels, we used a
lower resistance R, = R,.

The full set of parameter values, together with the source for the values,
are given in Table 4.1. Typical values for most model parameters may be
found in [5, 12].

’ Parameter \ Value \ Units \ Source \ Parameter \ Value \ Units \ Source ‘
Ce 1.5 ml/mmHg 1 C, 1.5 ml/mmHg 1
Cy 50 ml/mmHg 1 Reo 0.016 |s'mmHg/ml 1
R, 0.06 | ssmmHg/ml 1 R, 1.2 ssmmHg/ml 1
R, 0.016 | smmHg/ml | 1 Toys T/3 s 2
Tiin 2T/3 s 2 T 0.9 s 2
Eq 0.06 | mmHg/ml 2 Ey 3.0 mmHg/ml 2
€1 10-3 3 Al 0.5 3

Re oz 10 ssmmHg/ml 3 c1 0.1 mmHg,/ml 3
Cy 6 beats/breath 3 c3 0.01 g1 3
N 500 3 Ccs 41og 100 3
Ce 7.5 3 wo 7.54 3

Table 4.1: Parameter values. Sources are: 1. Equations (4.16), (4.17);
2. References [4, 5, 12|; 3. Heuristics.

4.5 Results

In Figure 4.3 we present the pressure curves obtained from the numerical
solution of the governing equations. As should be expected, the pressures
decrease with distance from the heart, so the pressure curve with the highest
maximum represents the left ventricle. Below this is the exit region pressure,
the arterial pressure, and finally the venous pressure. Both the exit and
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arterial curves exhibit a distinct dicrotic notch: the exit notch being sharp
whilst in the arterial system it is more diffuse. The time axis has been shifted
so that we only present pressure curves when the system has settled down,
that is, when the effect of the input initial conditions has died out.
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Figure 4.3: Model prediction of pressure variation with time. Moving from
the highest peak to the lowest the curves are pry, pe, Pa, Pv-

Obviously our main interest lies in the arterial pressure, since this is what
is measured in practice. In Figure 4.4 we show only the arterial pressure and
for comparison we also present data provided by the ICU at Hospital Vall
d’Hebron, Barcelona. Clearly the agreement is excellent. Slight differences
can be observed in the maximum and minimum values, but the greatest
difference appears to lie in the variation of the dicrotic notch —our model
misses this slightly at certain times.

4.6 Conclusion

The results presented in the previous section clearly indicate that our model
can accurately reproduce a blood pressure signal with the correct choice of
parameter values. The challenge now is to take a pleth and automatically
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Figure 4.4: Comparison of arterial pressure from model and data from ICU
at Hospital Vall d’Hebron

calculate the parameter values required for the model and, based on the
output, be able to make some recommendation concerning the health of the
patient. This will comprise the next stage of this investigation. In order to
achieve this, we note that the vascular tree can be modelled as a non-linear
time-variant channel, and there are tools that can either linearize this system
in order to do the translation from catheter to pleth (i.e., Wiener filters) or
just live with these non-linearities and make predictions (Kalman filter). On
the positive side, we have a large amount of data both from arterial catheters
and the corresponding pleth on which to validate the method.

Acknowledgements

The initial work for this paper was carried out in the Centre de Recerca
Matematica during December 2010 at the Workshop on Mathematical Mod-
eling of Blood Flow and the Baroreflex System. We acknowledge the assis-
tance of other participants at that workshop, including Michelle De Decker,

Francesc Font, Jonathan Low (all from the CRM) and Prof. Andrew Fowler
of the University of Limerick.



GEMT 2010 57

Financial support was provided through a Marie Curie International Rein-

tegration Grant Industrial applications of moving boundary problems, grant
no. FP7-256417, Ministerio de Ciencia e Innovaciéon grant MTM2010-17162
and the Mathematics Applications Consortium for Science and Industry
(www.macsi.ul.ie), funded by the Science Foundation Ireland mathematics
initiative grant 06/MI/005.

Bibliography

1]

2l

3]

4]

[5]

(6]

7l

8]

19]

[10]

J. F. Augusto, J. L. Teboul, P. Radermacher, P. Asfar, Interpretation of
blood pressure signal: physiological bases, clinical relevance and objec-
tives during shock states, Intensive Care Medicine 37 (2011), 411-419.

L. Bernardi, F. Keller, M. Sanders, P. S. Reddy, B. Griffith, F. Meno,
M. R. Pinsky, Respiratory sinus arrhythmia in the denervated human

heart, J. Appl. Physiol. 67 (1989), 1447-1455.

M. Cannesson et al., Relation between respiratory variations in pulse
oximetry plethysmographic waveform amplitude and arterial pulse pres-
sure in ventilated patients, Critical Care 9 (2005), R562-R568.

S. J. Chapman, A. C. Fowler, R. Hinch, An introduction to mathematical
physiology, Mathematical Institute, Oxford University, preprint, 2010.

M. Dat, Modeling cardiovascular autoregulation of the preterm infant,
Thesis, Eindhoven University of Technology.

L. M. Ellwein, H. T. Tran, C. Zapata, V. Novak, M. S. Olufsen, Sensitiv-
ity analysis and model assessment: Mathematical models for arterial
blood flow and blood pressure, Cardiovasc. Eng. 8 (2008), 94-108, DOI:
10.1007/s10558-007-9047-3.

J. A. Goodwin et al., A model for educational simulation of infant
cardiovascular physiology, Anesth. Analg. 99 (2004), 1655-1664, DOI:
10.1213/01.ANE.0000134797.52793.AF.

F. Grodins, Integrative cardiovascular physiology: a mathematical syn-
thesis of cardiac and blood vessel hemodynamics, Quart. Rev. Biol. 34
(1959), no. 2, 93-116.

A. C. Guyton, J. E. Hall, Textbook of Medical Physiology, W. B. Saun-
ders Company, 2000.

J. Keener, J. Sneyd, Mathematical Physiology, Springer, 1998.



98

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Blood pressure modelling

B. Oommen et al., Modelling time varying elastance: The meaning of
“‘load-independence”, Cardiovasc. Eng. 3 (2003), no. 4, 123-130.

J. T. Ottesen, Modelling of the baroreflex-feedback mechanism with time-
delay, J. Math. Biol. 36 (1997), 41-63.

J. L. Palladino, J. P. Mulier, A. Noordergraaf, Defining ventricular elas-
tance, in: Proceedings of the 20th Annual International Conference of
the IEEE, vol. 1, Engineering in Medicine and Biology Society, Hong
Kong, 1998, 383-386.

T. J. Pedley, Mathematical modelling of arterial flurd dynamics, J. En-
grg. Math. 47 (2003), 419-444.

M. D. Reisner et al., Utility of the photoplethysmogram in circulatory
monitoring, Anesthesiology 108, no. 5, May 2008.

Patent: System and apparatus for the non-invasive measurement of
blood pressure, WO2010043728 (A1), ES2336997 (A1), Ribas Ripoll, V.,
Sabirmedical S.L.

K. H. Shelley, S. Shelley, Pulse oximeter waveform: Photoelectric
plethysmography, in: Clinical Monitoring, C. Lake, R. Hines, and
C. Blitt (Eds.), W. B. Saunders Company, 2001, pp. 420-428.

K. H. Shelley, Photoplethysmography: Beyond the calculation of arterial
ozxygen saturation and heart rate, Anesth. Analg. 105 (2007), S31-S36.

H. Suga, Cardiac energetics: from FE(mazx) to pressure-volume area,
Clin. Exp. Pharmacol. Physiol. 30 (2003), no. 8, 580-585.

M. Ursino, Interaction between carotid baroregulation and the pulsating
heart: a mathematical model, Am. J. Physiol. 275 (Heart Circ. Physiol.
44) (1998), H1733-H1747.

M. Ursino, M. Antonucci, E. Belardinelli, Role of active changes in ve-
nous capacity by the carotid baroreflex: analysis with a mathematical

model, Am. J. Physiol. 267 (1994), H2531-H2546.

M. Ursino, A. Fiorenzi, E. Belardinelli, The role of pressure pulsatility
in the carotid baroreflex control: a computer simulation study, Comput.
Biol. Med. 26 (1996), 297-314.



