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Foreword

The Young Set Theory Workshop 2009 was held April 14–18 at the CRM
in Bellaterra (Catalonia, Spain). The purpose of this workshop was to give
talented young researchers in set theory an opportunity to learn from experts
and from each other in a friendly co-operative environment. Four tutorial
speakers, Mirna Džamonja, Moti Gitik, Ernest Schimmerling, and Boban
Veličković, were invited and gave tutorials of four hours each. Moreover,
the following postdoc speakers were invited to give a one-hour talk each:
Andrew Brooke-Taylor, Bernhard König, Jordi López-Abad, Luis Pereira,
Hiroshi Sakai, Dima Sinapova, and Asger Törnquist. Apart from the talks,
plenty of time was devoted to discussion sessions, where many ideas were
discussed, many questions were asked, and some problems were solved.

This volume contains two papers related to the tutorials held at the work-
shop. Mirna Džamonja contributed a paper on an open problem related to
the subject of her tutorial, and Laura Fontanella and Boban Veličković con-
tributed a paper on the tutorial of the second author. We would like to thank
the authors for their contributions and the CRM for their organizational and
financial support, for hosting this conference at their premises, and for pub-
lishing this volume. We would also like to thank the following institutions for
their financial support: Generalitat de Catalunya (AGAUR), Universitat de
Barcelona (Grup de Recerca en Teoria de Conjunts de Barcelona, Comissió
de Recerca de l’Agrupació en Humanitats, and Facultat de Filosofia), and
the Association for Symbolic Logic.

June 2011
David Asperó
Neus Castells
Miguel Ángel Mota
Jip Veldman
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Ramsey Methods and the
Problem DU

Mirna Džamonja

School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
m.dzamonja@uea.ac.uk

Abstract. We consider Fremlin’s notion of 1/2-density and the related notion of Fremlin
cardinals. A well-known related question is if every 1/2-dense hereditary family on an un-
countable cardinal must have an infinite homogeneous family. These notions do not seem
to lend themselves to Ramseyan methods. In particular, it is not known if a Fremlin car-
dinal must be a large cardinal. We introduce a related notion of 1/2-dense cardinals which
is easier to handle using Ramsey methods. We show that a 1/2-dense cardinal must be
at least strongly inaccessible. On the other hand, David Asperó showed that an ω-Erdős
cardinal must be 1/2-dense.1

Preface

I was a tutorial speaker at the Young Set Theory Workshop 2009 in Barce-
lona. The topic of my lectures were Ramsey principles. I talked both about
many successes of the applications of the Ramseyan methods in set the-
ory, topology and analysis, and about one Ramsey-like problem that is still
unsolved many years after it was posed. It is the problem of 1/2-density,
which we explain below. Rather than writing an article about successes of
Ramseyan methods, which are well documented in the literature (see for ex-
ample [2], [9]), I have decided to explain in detail the problem of 1/2-density,
bringing a Ramseyan perspective into it. There are several new results in
this article, but the answer to the main questions 1.1.2 is still not known.

1My thanks go to EPSRC for their support through the grant EP/G068720 and to the
organisers of the Young Set Theory Workshop 2009 in Barcelona for their invitation to
give a tutorial.

CRM Documents, vol. 7, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012



2 Mirna Džamonja

1.1 Introduction

We start with some definitions.

Definition 1.1.1. (i) A family D of finite subsets of a cardinal κ is called
1/2-dense if for all finite F ⊆ κ there is F0 ⊆ F with F0 ∈ D and
|F0| ≥ 1/2 · |F |. We say that D is hereditary if it is closed under
subsets. Hereditary 1/2-dense families are called 1/2-filling.

(ii) Suppose that D is a family of finite subsets of a cardinal κ and H ⊆ κ.
Then H is homogeneous for D if [H]<.ℵ0 ⊆ D.

The most interesting cardinals in the context of 1/2-dense families are
ω1 and c = 2ℵ0 . The following questions appear stated as Problem DU on
Fremlin’s list (see [6]):

Questions 1.1.2. Suppose that D is a 1/2-filling family on ω1.

(i) (Argyros) Must there be an infinite set homogeneous for D?

(ii) Under MA + ¬CH, is it true that D must have an uncountable homo-
geneous set?

It is known that under cov(N ) = ℵ1 in place of MA + ¬CH, the answer
to (ii) is negative; see [1] or [6] for a folklore proof. It is not known if the
positive answer is consistent. A meaningful concept is obtained if Defini-
tion 1.1.1 is made with an arbitrary α ∈ (0, 1) in place of 1/2; however, it
is known that this change does not add any generality. Namely, Fremlin [6]
showed that the truth of the statement “every α-filling family D on κ has
a homogeneous set of size λ” does not depend on α ∈ (0, 1). The paper [4]
gives a combinatorial characterisation of 1/2-filling families on ω1 which have
an uncountable homogeneous set under MA + ¬CH.

We use the notation P (κ, λ) to state that every 1/2-filling family D on κ
has a homogeneous set of size λ. This notation was introduced by Fremlin.
We use the word ‘homogeneous’ and notation from the theory of partition
relations to emphasise the intuition we expressed in [1], that P (κ, λ) is a
large-cardinal statement. Along these lines, Fremlin proved in [6] that if κ is
a real-valued measurable cardinal then P (κ, ω) holds; hence it is consistent
modulo a measurable cardinal that P (c, ω) holds. On the other hand, it is an
observation of Apter and Džamonja in [1] that, if κ is λ-Erdős, then P (κ, λ)
holds. The statement ¬P (c, ω) is of interest in analysis, as it can be used to
construct interesting examples of spaces and functions. From this point of
view, the former of the two large-cardinal results is more interesting, as an
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Erdős cardinal is necessarily strongly inaccessible. On the other hand, the
consistency strength of Erdős cardinals is weaker than that of real-valued
measurable cardinals. Namely, the consistency strength of the existence of
a real-valued measurable cardinal is that of a measurable cardinal, and the
consistency strength of the existence of an Erdős cardinal is that of the
assertion that the existence of 0# implies that in L there is an α-Erdős
cardinal for every α < ω1 (while from the existence of an ω1-Erdős cardinal
one can derive the existence of 0#).

One difficulty in treating the problem has been that 1/2-density is a
density notion which does not fit into the classical treatment of partition
relations. In this paper we explore the influence of Ramsey theory on this
notion. For example, we show that there is a notion closely connected to
1/2-filling families and including 1/2-density which can be treated by classical
Ramsey theory. Specifically, in §1.2 we show just in ZFC that there is a
1/2-dense family D of finite subsets of c such that there is no infinite X ⊆ c
homogeneous for D, and in fact that there is such a family on every cardinal
below the first strongly inaccessible cardinal. The family is not hereditary. In
view of the Fremlin’s result mentioned above, the result is optimal. However,
as pointed out by Kojman, if we completely give up on the requirement of
hereditariness, it is easy to give a trivial example of a 1/2-dense family F
of any cardinal such that there is no infinite X homogeneous for F ; namely,
just taking the finite subsets with even cardinality will do. This family F
has the property that there is no non-empty set homogeneous for F . The
family D constructed in §1.2 will have homogeneous sets of arbitrary finite
size within every infinite set. In §1.3 we remark how these results relate to
another known weakening of 1/2-fillingness.

In §1.4 we consider the problem of 1/2-density when restricted to sets of
fixed finite size.

Following the notation from [1], we say that κ is a λ-Fremlin cardinal if
P (κ, λ) holds, and when λ is ω we just speak of Fremlin cardinals. It is still
not known if the first Fremlin cardinal must be a large cardinal. In §1.2 we
introduce a related type of large cardinals, 1/2-dense cardinals, and we prove
that such a cardinal must be strongly inaccessible. In a previous version of
this article we asked if 1/2-dense cardinals exist. Asperó answered this by
observing that, in fact, an ω-Erdős cardinal must be 1/2-dense. We give an
argument for this at the end of §1.2.
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1.2 1/2-dense cardinals

In this section, 1/2-dense cardinals will be defined as cardinals that satisfy
a stronger version of Fremlin’s property P (κ, ω). We have been interested in
P (κ, ω) rather than P (κ, λ) for λ > ω, but many arguments in this section
apply to λ > ω as well.

Definition 1.2.1. Let κ ≥ ℵ0 be a cardinal. A family D of finite subsets of
κ is said to satisfy ϕ(κ) if the following properties hold:

(i) all singletons are in D,

(ii) D is a 1/2-dense family which has no infinite homogeneous set, and

(iii) (Spread Property) for any infinite A ⊆ κ there are subsets of A of
arbitrarily large finite size which are homogeneous for D.

A cardinal κ such that ϕ(κ) is not satisfied by any family of finite subsets of
κ is said to be a 1/2-dense cardinal.

In other words, a cardinal κ is 1/2-dense if every 1/2-dense family of finite
subsets of κ with the spread property and containing the singletons has an
infinite homogeneous set. Clearly every 1/2-dense hereditary family has the
spread property and contains the singletons, and therefore we have:

Observation 1.2.2. A 1/2-dense cardinal is necessarily Fremlin.

We may also observe that if a cardinal is 1/2-dense then so are all the
larger cardinals.

Lemma 1.2.3. Suppose that λ is an infinite cardinal ≤ κ and there is a
family Dκ satisfying ϕ(κ). Then there is a family Dλ satisfying ϕ(λ).

Proof. Let Dλ = Dκ ∩ [λ]<.ℵ0 . It is clear that Dλ is a 1/2-dense family of
finite subsets of λ which has no infinite homogeneous set and which contains
all singletons. If A ⊆ λ is infinite, then there are subsets of A of arbitrarily
large finite size which are homogeneous for Dκ, and hence also for Dλ. 1.2.3

We now prove that the first 1/2-dense cardinal is a large cardinal.

Theorem 1.2.4. The first 1/2-dense cardinal, if it exists, is strongly inac-
cessible.
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Proof. Suppose that λ∗ is the first 1/2-dense cardinal. By the example of
the Schreier family,2 we know that λ∗ > ℵ0.

Now we shall show that if κ < λ∗ then also 2κ < λ∗.

Lemma 1.2.5. Suppose that there is a family Dκ satisfying ϕ(κ). Then there
is a family D2κ satisfying ϕ(2κ).

Proof of the Lemma. Let <∗ be a fixed well-order of κ2 in order type 2κ. We
identify the cardinal 2κ with the tree κ2 ordered by <∗. Let K ⊆ ω>(κ2) be
the set of all u = 〈x0 <

∗ x1 <
∗ · · · <∗ xr−1〉 where r ≥ 2 is such that u is

either <lex-increasing or <lex-decreasing.
If x 6= y in κ2 we let ∆(x, y) = min{α : x(α) 6= y(α)}. For u as above,

we let δ(u) = 〈∆(x0, x1),∆(x1, x2), . . . ,∆(xr−2, xr−1)〉. Note that δ(u) is a
finite sequence of ordinals < κ.

We let P0 consist of all u ∈ K such that δ(u) is strictly increasing, and
define P1 as the set of all those u ∈ K for which δ(u) is strictly decreasing.
Let P = P0 ∪ P1.

Let D = D2κ be given by

D = {{f} : f ∈ 2κ} ∪ {u ∈ P : ran(δ(u)) ∈ Dκ} ∪ ([κ2]<.ℵ0 \ P ).

Clearly D contains all singletons. To show that D is 1/2-dense in κ2, it
suffices to consider u ∈ P . Let us first suppose that u ∈ P0. If r = |u| = 2
then |δ(u)| ≤ 1, so ran(δ(u)) ∈ Dκ. Otherwise, ran(δ(u)) is in any case a
finite subset of κ and therefore there is F ⊆ ran(δ(u)) with F ∈ Dκ and |F | ≥
| ran(δ(u))|/2 = (|u| − 1)/2. Now F is the range of a sequence of the form
〈∆(xi0 , xi0+1), . . . ,∆(xik , xik+1)〉 for some i0 < i1 < · · · < ik and k ≤ r−2 and
therefore F is not immediately seen to be of the form ran(δ(v)) for any v ⊆ u.
However, since u ∈ P0, we have that ∆(xi, xi+1) increases with i. Therefore
for every s < k we have ∆(xis , xis+1) = ∆(xis , xis+1) and hence F = ran(δ(v))
for v = 〈xi0 , . . . , xik+1

〉. Since |v| = |F |+ 1 ≥ (|u|−1)/2 + 1 ≥ |u|/2, we have
found v ∈ D as desired. The argument for u ∈ P1 is similar.

Now suppose that X is infinite and homogeneous for D, and assume sim-
ply that X has order type ω under <∗. Define a colouring c by colouring pairs
{x, y} in X with colour 0 if the <∗ and <lex order agree on {x, y}, and colour 1
otherwise. By Ramsey’s theorem we can assume that all pairs are coloured
the same colour and therefore X is <lex-increasing or <lex-decreasing. Sup-
pose for simplicity that it is <lex-increasing —the argument in the other case
is similar.

2 The Schreier family consists of finite subsets F of ω which satisfy min(F ) ≥ |F |+ 1,
and the singleton {0}. This family is a well-known example of a 1/2-dense hereditary
family of subsets of ω for which there is no infinite homogeneous set.
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By induction on n < ω, we choose xn ∈ X and a final segment Bn of X
so that all Bn are non-empty and decreasing, and ∆(xn, xm) for n < m only
depends on n. Let x0 be the <∗-minimal element of X and

ξ0 = min{∆(x0, xn) : n > 0}.

Let B0 = {xn : ∆(x0, xn) = ξ0}, so clearly B0 is non-empty. Suppose
that xn ∈ B0 and n < m. Then xn <lex xm by the assumptions above and
x0 <lex xn. By the choice of ξ0 we can only have ∆(x0, xm) ≥ ξ0 and therefore
it must be that ∆(x0, xm) = ξ0 and m ∈ B0. Hence B0 is a final segment
of X. Now we let x1 be the <∗-minimal element of B0 and continue. Note
that the sequence ξ̄ = 〈ξn : n < ω〉 is strictly increasing.

At the end, by renaming, we can assume that X = {xn : n < m}. Then
note that [X]<.ℵ0 ⊆ P0, exactly because ξ̄ is strictly increasing. Hence for
any u ∈ [X]≥2 we have that ran(δ(u)) ∈ Dκ. This means that {∆(xn, xn+1) :
n < ω} is infinite homogeneous for Dκ, a contradiction.

To prove the final claim, suppose that A is an infinite subset of 2κ, where
2 ≤ n < ω, and we shall find a D-homogeneous subset of A of size ≥ n.
By an application of Ramsey’s theorem we can assume as above that the
order type of A under <∗ is ω, that A = {yk : k < ω} is an <∗-increasing
enumeration and that either A is <lex-increasing or <lex-decreasing. Note
that since the yks are binary sequences we must have that if k0 < k1 < k2

then ∆(yk0 , yk1) 6= ∆(yk1 , yk2). Since there is no infinite decreasing sequence
of ordinals we can thin A further if necessary to obtain that ∆(yk, yk+1) <
∆(yk+1, yk+2) for any k. Therefore, any finite subset of A gives rise to a
sequence in P . Let B = {∆(yk, yk+1) : k < ω}. By the inductive hypothesis,
there is a subset of B of size n which is homogeneous for Dκ. This implies, as
in the argument for 1/2-density, that {yk : ∆(yk, yk+1) ∈ B} is homogeneous
for D2κ . 1.2.5

Our next task is to show that λ∗ cannot be singular. For this, we recast
the property ¬ϕ(κ) in terms of a classically-looking partition relation:

Definition 1.2.6. We say that κ →0 (ω, dn/2e, ω̂)<ω if for every function
f : [κ]<ω → 2 satisfying f({α}) = 0 for all α,

(i) either there is an infinite A ⊆ κ such that f � [A]<ω is the constant 0
function,

(ii) or there is a finite B ⊆ κ such that f � [B]d|B|/2e is the constant 1
function,

(iii) or there is an infinite A ⊆ κ such that, for some n < ω, every B ∈ [A]≥n

has a subset C with f(C) = 1.
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Lemma 1.2.7. A cardinal κ satisfies the property ¬ϕ(κ) if and only if
κ→0 (ω, dn/2e, ω̂)<ω holds.

Proof of the Lemma. In the forward direction, given f : [κ]<ω → 2 satisfying
f({α}) = 0 for all α, define D = {F : f(F ) = 0}. If (ii) does not hold, then
D is 1/2-dense. If (iii) does not hold, then for every infinite A ⊆ κ and for
every n > ω there is B ⊆ A of size at least n all whose subsets are in D.
Since D cannot witness ϕ(κ), there must be an infinite D-homogeneous set,
so (i) holds.

In the backward direction the proof is similar: if we are given a 1/2-dense
family D of finite subsets of κ which contains all singletons and has the
property that within every infinite subset of κ there is an arbitrarily large
finite D-homogeneous set, then we can define f : [κ]<ω → 2 by f(F ) = 0
if and only if F ∈ D. Then 1/2-density of D implies that condition (ii) in
κ→0 (ω, dn/2e, ω̂)<ω cannot hold and the property that within every infinite
subset of κ there is an arbitrarily large finite D-homogeneous set shows that
(iii) cannot hold. Hence, (i) holds, and any infinite A witnessing it gives an
infinite D-homogeneous set. 1.2.7

Lemma 1.2.8. λ∗ is not singular.

Proof of the Lemma. By Lemma 1.2.7, this amounts to showing that the first
κ satisfying κ→0 (ω, dn/2e, ω̂)<ω cannot be singular. Suppose for contradic-
tion that this is the case. Let κ > cf(κ) and let 〈κi : i < cf(κ)〉 be an increas-
ing continuous sequence of cardinals converging to κ, with κ0 = 0 and κ1 ≥ ω.
For α < κ, define h(α) = i if and only if α ∈ [κi, κi+1). Let f : [cf(κ)]<ω → 2
exemplify that cf(κ) 90 (ω, dn/2e, ω̂)<ω, and let fi : [κi+1]<ω → 2 exemplify
the same for κi+1.

Define g : [κ]<ω → 2 as follows: for an increasing sequence (ξ1, . . . , ξn) in
[κ]<ω, let

g(ξ1, . . . , ξn) =


0 if n = 1;

fi+1(ξ1, . . . , ξn) if h(ξ1) = · · · = h(ξn) = i;

f(h(ξ1), . . . , h(ξn)) if h(ξ1) < · · · < h(ξn);

0 otherwise.

In our notation we use g(ξ1, . . . , ξn) in place of g({ξ1, . . . , ξn}), for clarity.
We claim that g exemplifies that the required partition relation does not
hold at κ. Clearly g maps all singletons to 0. Suppose that (i) holds, as
shown by an infinite A ⊆ κ. Suppose that h“A is infinite. By thinning A if
necessary, we can assume that for ξ < ζ in A we have h(ξ) < h(ζ). Therefore
{h(ζ) : ζ ∈ A} gives an infinite subset of cf(κ) which shows that condition (i)
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holds for f , a contradiction. Otherwise h“A is finite and by thinning A if
necessary we can assume that h(α) for α ∈ A is constantly i. Then A shows
that (i) holds for fi+1, a contradiction. A similar contradiction is obtained
by assuming that (iii) holds for g. Finally, suppose that 2 ≤ n < ω is given
and B ⊆ A has size n. If neither the second or the third clause of the
definition of g apply to B, then g(B) = 0 and so B does not exemplify (ii).
If either the second or the third clause applies to B, then so does it to any
of its subsets, and hence there must be a subset C of B of size ≥ n/2 which
satisfies g(C) = fi+1(C) = 0, or g(C) = f(h−1(C)) = 0. So (ii) does not hold
for g either, and hence we have a contradiction. 1.2.8

We have thus shown that λ∗ must be strongly inaccessible, hence the
theorem is proved. 1.2.4

Remark 1.2.9. To see specifically that D from the proof of Lemma 1.2.5
is not closed under subsets, say on 2ω, notice for example that there are
sequences in the complement of P with a subsequence in P0 which is not in D.
The proof of Lemma 1.2.5 shows that all infinite subsets of ω2 ‘concentrate’ on
P0 and that D∩P0 is closed under subsets. However, there is no uncountable
subset of ω2 all whose finite subsets are in P0. To see this, suppose that A
were such a set and let {xα : α < ω1} be a <∗-increasing subset of A. Let
nα = ∆(xα, xα+1). Then if α < β we have that {xα, xα+1, xβ, xβ+1} ∈ P0, so
nα < ∆(xα, xβ) < nβ, letting us obtain an increasing ω1-sequence in ω.

Theorem 1.2.4 in conjunction with Fremlin’s result that a real-valued
measurable cardinal is Fremlin shows that 1/2-dense cardinals are strictly
stronger than Fremlin cardinals. Asperó proved that any ω-Erdős cardinal
is 1/2-dense, as we now show.

Theorem 1.2.10 (Asperó). An Erdős cardinal is necessarily 1/2-dense.

Proof. Recall that a cardinal κ is Erdős if and only if κ → (ω)<ω, which
means that for every f : [κ]<ω → 2 there is H ∈ [κ]ω which is ‘homogeneous’
for f . In this context, homogenous means that either there are unboundedly
many n < ω such that f ′′[H]n = {1} or there is n0 < ω such that, for all
n ≥ n0, we have f ′′[H]n = {0}.

Suppose for contradiction that κ is an Erdős cardinal and that D is a
1/2-dense family of subsets of κ satisfying the property ϕ(κ) from Defini-
tion 1.2.1. Let f be the following coloring of [κ]<.ℵ0 into 2: f(F ) = 1 if and
only if all subsets of F are in D. Let H be an infinite set homogeneous for f .
By the spread property, there cannot be n0 < ω such that for all n ≥ n0

we have f ′′[H]n = {0}. Therefore, there are unboundedly many n < ω such
that f ′′[H]n = {1}. Let m < ω be arbitrary and let n ≥ m be such that
f ′′[H]n = {1}. Therefore [H]≤n ⊆ D and hence [H]m ⊆ D. In conclusion, H
is homogeneous for D. 1.2.10



Ramsey methods and the problem DU 9

1.3 Remarks on Fremlin cardinals

As mentioned before, Fremlin proved that a real-valued measurable cardinal
must be, in our notation, a Fremlin cardinal. Modulo the existence of a
measurable cardinal, it is consistent that 2ℵ0 is a real-valued measurable
cardinal, hence the analogue of Theorem 1.2.4 cannot be true for Fremlin
cardinals. Remark 1.2.9 shows exactly where the proof would fail. However,
some of the techniques of the proof do apply. For example, we can easily prove
the following theorem of Fremlin, the statement of which was communicated
to us by Henryk Michalewski:

Theorem 1.3.1 (Fremlin). There is a family of finite subsets Fc of c such
that Fc is closed under subsets, has no infinite homogeneous set, but for all
α < c and n < ω there is F ∈ Fc with |F | ≥ n and F ∩ α = ∅.

Proof. We use the notation of the proof of Theorem 1.2.4 with κ = ω. Let
Fc be the family of all sets {fα0 , . . . , fαn−1} in ω2 such that {∆(fαi , fαj) :
i 6= j < n, αi < αj} is in the Schreier family. This family of functions is
clearly closed under subsets, and any infinite homogeneous set would give us
an infinite homogeneous subset of the Schreier family. If α < c and n < ω are
given, we can find a finite subset of {fβ : β > α} of the form {fβ0 , . . . , fβ2n}
with βi increasing with i and ∆(fβi , fβi+1

) also increasing with i. Then the
set of such values has size 2n and it has a subset F of size n which is in
the Schreier family. From F we can recover a subset H of 2n + 1 such
that {fβi : i ∈ H} satisfies {∆(fαi , fαj) : i < j, i, j ∈ H} = F and then
{fβi : i ∈ H} is in Fc. 1.3.1

A version of this theorem was used by Avilés, Plebanek and Rodŕıguez in
[3] to prove that there exists a weakly compactly generated Banach space X
and a scalarly null function f : [0, 1]→ X which is not Mc Shane integrable.
This answered several open questions in the theory of Mc Shane integration.

1.4 Homogenous sets of fixed exponent

It is natural to ask to what extent the problem of 1/2-density is linked to
considering all finite subsets of a given set, rather than just finite sets of some
bounded cardinality. We concentrate on ω1 and observe that restricting to
fixed cardinalities gives rise to infinite homogeneous sets of order type ω + 1
for any 1/2-dense open family on ω1, as follows.
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Theorem 1.4.1. Suppose that n < ω and let D be a family of subsets of
[ω1]≤n closed under subsets and having the property that every element F
of [ω1]<ω has a subset F0 of size at least 1/2 · |F | such that [F0]≤n ⊆ D. Then
there is an A ⊆ ω1 of order type ω + 1 with [A]≤n ⊆ D.

If n = 2, then there is an uncountable such A and, in fact, for any
infinite κ, if D is a family of subsets of [κ]≤2 closed under subsets and having
the property that every element F of [κ]<ω has a subset F0 of size at least
1/2 · |F | such that [F0]≤2 ⊆ D, then there is A ∈ [κ]≥ω with [A]≤2 ⊆ D.

Proof. Let n < ω be given. The following theorem seems to be folklore in
partition calculus for ω1: for all n < ω,

ω1 −→ (ω + 1, ω + 1)n.

If D is a family as in the assumptions, then we can define a colouring
f : [ω1]n → 2 by letting f(F ) = 0 if and only if F ∈ D. The property of
1/2-density prevents any 1-homogeneous set of size 2n, so there must be a
0-homogeneous set of order type ω + 1.

The Erdős–Dushnik–Miller theorem (see [5]) states that κ → (κ, ω)2 for
any infinite κ, so the conclusion follows as in the previous argument. 1.4.1

Corollary 1.4.2. Suppose that D is a 1/2-dense open family on ω1. Then
for every n < ω there is an A ⊆ ω1 of order type ω + 1 with [A]≤n ⊆ D, and
if n = 2 then there is an uncountable A ⊆ ω1 with [A]≤2 ⊆ D .

Proof. Suppose that D is a 1/2-dense open family on ω1 and n < ω. Let
D0 = D∩ [ω1]≤n. Then D0 satisfies the assumptions of Theorem 1.4.1, so the
conclusions follow from the relevant parts of the Theorem. 1.4.2

A natural way to build a 1/2-dense open family on ω1 is to build, for
some fixed n, a family D0 satisfying the assumptions of Theorem 1.4.1, and
then to take D = {F ∈ [ω1]<ω : [F ]≤n ⊆ D0}. Corollary 1.4.2 says that such
a family will always have a homogeneous subset of order type ω + 1, and, if
n = 2, then it will have an uncountable homogeneous subset.

We note that improvements are available for larger order types in the
second coordinate of the Erdős–Dushnik–Miller theorem; for example, if κ
is regular then the original theorem has it as ω + 1, and for κ singular one
can consult [8]. For n ≥ 4, it is a well-known fact in partition calculus that
(ω1) 9 (ω+ 2, 5)n, as is (ω1) 9 (ω+ 2, ω)3. Schipperus proved recently ([7])
that ω1 → (ω2 + 1, 4)3.

Corollary 1.4.2 does not say anything about uncountable homogeneous
sets with n > 2. The following is a well-known folklore fact mentioned in the
Introduction:
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Fact 1.4.3. Suppose that there are ℵ1 many measure 0 sets whose union is
[0, 1] (i.e., cov(N ) = ℵ1). Then there is a 1/2-open dense family on ω1 with
no uncountable homogeneous sets.

The proof (see [1] or [6]) uses compactness. In particular, it does not
provide either an answer to the question about uncountable homogeneous
sets with n > 2 in the situation of Theorem 1.4.1. We state the question
explicitly:

Question 1.4.4. Suppose that n ≥ 3 and D is a 1/2-dense open family
on ω1. Must there be a set H ∈ [ω1]ℵ1 with [H]n ⊆ D ?
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Abstract. Oscillations are a powerful tool for building examples of colorings witnessing
negative partition relations. We survey several results illustrating the general technique
and present a number of applications.

Introduction

We start by recalling some well-known notation. Given three cardinals κ, λ,
µ and n < ω, the notation

κ→ (λ)nµ

means that for all functions f : [κ]n → µ there exists H ⊆ κ with |H| = λ
and such that f � [H]n is constant. We say that f is a coloring of [κ]n in
µ colors and H is a homogeneous set. Given κ, λ, µ, σ and n as before, we
write

κ→ [λ]nµ

if for every coloring f : [κ]n → µ there exists H ⊆ κ of cardinality λ such
that f ′′[H]n 6= µ. We write

κ→ [λ]nµ,σ

if for every coloring f : [κ]n → µ there exists H ⊆ κ of cardinality λ such
that |f ′′[H]n| ≤ σ.

CRM Documents, vol. 7, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012
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One can extend the above notation to sets with additional structures, such
as linear or partial orderings, graphs, trees, topological or vector spaces, etc.
For instance, if two topological spaces X and Y are given, then

X → (top Y )nµ

means that for all f : [X]n → µ there exists a subset H of X homeomorphic
to Y such that f � [H]n is constant. Similarly, we can define statements such
as X → [top Y ]nµ, X → [top Y ]nµ,σ, etc.

We denote by [N]<ω the set of all finite subsets of N and by [N]ω the set
of all infinite subsets of N. We often identify a set s in [N]<ω (or [N]ω) with
its increasing enumeration. When we do this, we will write s(i) for the i-th
element of s, assuming it exists. In this way, we identify [N]ω with (ω)ω,
the set of strictly increasing sequences from ω to ω, which is a Gδ subset of
the Baire space ωω, and thus is itself a Polish space. For s, t ∈ [N]<ω, we
write s v t to say that s is an initial segment of t. In this way, we can view
([N]<ω,v) as a tree. For a given s ∈ [N]<ω, we denote by Ns the set of all
infinite increasing sequences of integers which extend s. In general, if T is a
subtree of [N]<ω then Ts will denote the set of all sequences of T extending s.
We will need some basic properties of the Baire space (or rather [N]ω) and
the Cantor space {0, 1}ω with the usual product topologies. For these facts
and all undefined notions, we refer the reader to [5].

The paper is organized as follows. In §2.1 we discuss partitions of the
rationals as a topological space. The basic tool is oscillations of finite sets
of integers. In §2.2 we consider infinite oscillations of tuples of real numbers
and discuss several applications to the study of inner models of set theory. In
§2.3 we discuss finite oscillations of tuples of reals of a slightly different type.
Finally, in §2.4 we present oscillations of pairs of countable ordinals and, in
particular, outline Moore’s ZFC construction of an L-space. We point out
that none of the results of this paper are new and we will give a reference to
the original paper for each of the results we mention. Our goal is not to give
a comprehensive survey of all applications of oscillations in combinatorial set
theory, but rather to present several representative results which illustrate
the general method.

These are lecture notes of a tutorial given by the second author at the 2nd
Young Set Theory Workshop held at the CRM in Bellaterra, April 14–18,
2009. The notes were taken by the first author.
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2.1 Negative partition relations on the

rationals

We start with a simple case of oscillations. Given s, t ∈ [N]<ω, we define an
equivalence relation ∼ on s4 t by:

n ∼ m ⇐⇒ ([n,m] ⊆ (s \ t) ∨ [n,m] ⊆ (t \ s))

for all n ≤ m in s4 t. We now define a function osc : ([N]<ω)2 → N by

osc(s, t) = |(s4 t)/∼|

for all s, t ∈ [N]<ω. If, for example, s and t are the two sets represented in
the following picture, then osc(s, t) = 4.

-

-

ω

ω

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
s

t

The following theorem is due to Baumgartner (see [1]):

Theorem 2.1.1 ([1]). Q 9 [top Q]2ω.

This means, with our notation, that there exists a coloring c : [Q]2 → ω
such that c′′[A]2 = ω for all A ⊆ Q with A ≈ Q.

Consider [N]<ω with the topology of pointwise convergence. Let X ⊆
[N]<ω and s ∈ [N]<ω. Then s ∈ X if and only if for every n > sup(s) there is
t ∈ X such that t∩n = s. Given s, t ∈ [N]<ω, we write s < t if max s < min t.

Remark 2.1.2. It is well known that Q ' [N]<ω, so we can view osc as a
coloring of [Q]2.

In order to prove Theorem 2.1.1, we recall the definition of the Cantor–
Bendixson derivative:

δ(X) = {x ∈ X : x ∈ X \ {x}},
δ0(X) = X,

δk+1(X) = δ(δk(X)).

We need the following lemma.
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Lemma 2.1.3. Suppose that X ⊆ [N]<ω and let k > 0 be an integer such
that δk(X) 6= ∅. Then osc′′[X]2 ⊇ {1, 2, . . . , 2k − 1}.

Proof. The proof is by induction on k. First assume k = 1; then let s ∈ δ(X).
This means that we can find t, u ∈ X such that s < t, u and t \ s < u \ s. It
follows that osc(t, u) = 1. Assume that the property holds for all l < k; we
show that osc′′[X]2 takes values 2k − 2, 2k − 1. Fix s ∈ δk(X). Recursively
pick ui, ti ∈ δk−i(X) for all i ≤ k such that the following hold:

1. t0 = u0 = s;

2. s < t1 < t2 < · · · < tk;

3. s < u1 < u2 < · · · < uk;

4. ti \ ti−1 < ui \ ui−1 < ti+1 \ ti for all i ∈ {1, 2, . . . , k}.

Then osc(tk−1, uk−1) = 2k − 2 and osc(tk, uk−1) = 2k − 1.

Proof of Theorem 2.1.1. By Remark 2.1.2, it is sufficient to check that, for
all A ⊆ [N]<ω homeomorphic to Q, osc′′[A]2 = ω. Since A ≈ Q, we have
δk(A) 6= ∅ for all integers k. Hence we can apply Lemma 2.1.3 and this
completes the proof.

An unpublished result of Galvin states that

η → [η]2n,2

when η is the order type of the rational numbers and n is any integer. There-
fore, the order-theoretic version of Theorem 2.1.1 does not hold. Also, the
coloring we build to prove Baumgartner’s theorem is not continuous. In fact,
if we only consider continuous colorings, then we have

Q→cont [top Q]22.

If we want a continuous coloring, we need to work in [Q]3. The following
result is due to Todorčević ([10]).

Theorem 2.1.4 ([10]). There is a continuous coloring c : [Q]3 → ω such that
c′′[A]3 = ω for all A ⊆ Q with A ≈ Q.

Proof. Given s, t, u ∈ [N]<ω, we define

4(s, t) = min(s4 t)

4(s, t, u) = max{4(s, t), 4(t, u), 4(s, u)}.
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The value of 4(s, t, u) is equal to the least n ∈ N such that

|{s ∩ (n+ 1), t ∩ (n+ 1), u ∩ (n+ 1)}| = 3.

So, in particular, for such an integer n we have |{s∩n, t∩n, u∩n}| = 2. Let
{v, w} = {s ∩ n, t ∩ n, u ∩ n}. Then we define

osc3(s, t, u) = osc(v, w).

The coloring osc3 is obviously continuous. The proof that this color-
ing works is similar to the one given for Theorem 2.1.1. We can prove,
analogously, that if X ⊆ [N]<ω and δk(X) 6= ∅ for some integer k > 0,
then osc′′3[X]2 ⊇ {1, 2, . . . , 2k − 1}. Let us just see the case k = 1. Fixing
s ∈ δ(X), we can find t, u ∈ X such that s < t, u and t \ s < u \ s. Then
osc3(s, t, u) = 1. Finally, one can apply this result to all subsets of [N]<ω

that are homeomorphic to Q, and this completes the proof.

2.2 Oscillations of real numbers – Part 1

We now discuss infinite oscillations and their applications.
For x ⊆ N, we define an equivalence relation ∼x on N \ x as

n ∼x m ⇐⇒ [n,m] ∩ x = ∅

for all n ≤ m in N \ x. Thus, the equivalence classes of ∼x are the intervals
between consecutive elements of x. Given x, y, z ⊆ N, suppose that (Ik)k≤t
for t ≤ ω is the natural enumeration of those equivalence classes of x which
meet both y and z. We define a function o(x, y, z) : t→ {0, 1} as follows:

o(x, y, z)(k) = 0 ⇐⇒ min(Ik ∩ y) ≤ min(Ik ∩ z).

Notice that o is a continuous function from

{(x, y, z) ∈ [[N]ω]3 : |(N \ x)/∼x| = ℵ0}

to 2≤ω. Note also that [N]<ω ordered by v is a tree. A subset T of [N]<ω is
a subtree if it is closed under initial segments.

Definition 2.2.1. Let T be a subtree of [N]<ω. We say that t ∈ T is
∞-splitting if for all k there exists u ∈ T such that t v u and u(|t|) > k.

Definition 2.2.2. A subtree T of [N]<ω is superperfect if for all s ∈ T there
exists t ∈ T such that s v t and t is ∞-splitting in T .
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Definition 2.2.3. We say thatX ⊆ [N]ω is superperfect if there is a superper-
fect tree T ⊆ [N]<ω such that X = [T ] = {A ∈ [N]ω : A ∩ k ∈ T for all k}.

The following theorem is due to Veličković and Woodin ([11]).

Theorem 2.2.4 ([11]). Let X, Y, Z ⊆ [N]ω be superperfect sets. Then

o′′[X × Y × Z] ⊇ 2ω.

Proof. Let T1, T2, T3 ⊆ [N]<ω be superperfect trees such that X = [T1], Y =
[T2] and Z = [T3]. Given an α ∈ 2ω, we build sequences 〈sk〉k, 〈tk〉k, 〈uk〉k of
nodes of T1, T2 and T3, respectively, such that the following properties hold:

1. s0, t0, u0 are the least ∞-splitting nodes of T1, T2 and T3, respectively;

2. s0 < s1 < s2 < · · · < sk < · · · ;

3. t0 < t1 < t2 < · · · < tk < · · · ;

4. u0 < u1 < u2 < · · · < uk < · · · ;

5. ti \ ti−1, ui \ ui−1 < si \ si−1;

6. ti \ ti−1 < ui \ ui−1 if α(i) = 0 and ui \ ui−1 < ti \ ti−1 if α(i) = 1.

If x =
⋃
k<ω sk, y =

⋃
k<ω tk and z =

⋃
k<ω uk, then o(x, y, z) = α, and

this completes the proof.

Corollary 2.2.5 ([11]). If X ⊆ [N]ω is superperfect, then o′′[X]3 ⊇ 2ω.

We now apply the previous theorem to prove some results about reals of
inner models of set theory.

Theorem 2.2.6 ([11]). Let V , W be models of set theory such that W ⊆ V .
If there is a superperfect set X in V such that X ⊆ W , then RW = RV .

Proof. This is trivial by applying Corollary 2.2.5.

Question 2.2.7. Can we replace superperfect by perfect in the previous
theorem?

Surprisingly, the answer depends on whether CH holds in the model W ,
as asserted in the following theorem due to Groszek and Slaman (see [4]).

Theorem 2.2.8 ([4]). Suppose that W and V are two models of set theory
such that W ⊆ V . Assume that there is a perfect set P in V such that
P ⊆ W . If CH holds in W , then RW = RV .
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In order to prove this theorem, let us introduce the following notion.

Definition 2.2.9. Given two models of set theory W and V with W ⊆ V ,
we say that (W,V ) satisfies the countable covering property for the reals if,
for all X in V such that X ⊆ RW and X is countable in V , there is an Y in
W such that X ⊆ Y and Y is countable in W .

We prove first the following theorem.

Theorem 2.2.10. Given two models of set theory W and V with W ⊆ V ,
suppose that there is a perfect set P in V such that P ⊆ W . If (W,V )
satisfies the countable covering property for the reals, then RW = RV .

Proof. Work in V and fix a perfect subset P of (2ω)W . Let X be a countable
dense subset of P . By the countable covering property for the reals, we can
cover X by some set D ∈ W such that D is countable in W , it is a dense
subset of 2ω, and D∩P is dense in P . In W , fix an enumeration {dn : n < ω}
of D. For x, y ∈ 2ω with x 6= y, let

4(x, y) = min{n : x(n) 6= y(n)}.

Given x ∈ 2ω \ D, first define a sequence 〈kx(n) : n < ω〉 by induction as
follows:

kx(n) = min{k : 4(x, dk) > 4(x, dkx(i)) for all i < n}.

Note that kx(0) = 0. Since D is dense in P and x ∈ P \D, kx(n) is defined
for all n. Now define f : P \D → [N]ω by setting

f(x)(n) = 4(x, dkx(n)).

Clearly, f is continuous and f(x) is a strictly increasing function for all
x ∈ 2ω \D. Since D ∈ W , f is coded in W . We can now prove that f ′′[P \D]
is superperfect. Let T = {f(x) � n : x ∈ P \ D ∧ n ∈ ω}. First note that
f ′′[P \D] is closed, i.e., it is equal to [T ]. To see this, note that, if b ∈ [T ],
then for every i there is xi ∈ P \ D such that b � i = f(xi) � i. Since P is
compact, it follows that the sequence (xi)i converges to some x ∈ P . Note
then that kx(n) = kxm(n) for all m > n; in particular, kx(n) is defined for
all n. It follows that x /∈ D. Since f(x) = b, it follows that b ∈ f ′′[P \D], as
desired.

Next, we show that every node of T is∞-splitting. Let s ∈ T and suppose
that n = |s|. Then there is some x ∈ P \D such that s v f(x). Therefore,
s(i) = 4(x, dkx(i)) for all i < n. Let l = kx(n). Since P is perfect, we can find,
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for every j ≥ 4(x, dl), some xj ∈ P \D such that 4(xj, dl) ≥ j. It follows
that f(xj) � n = s and f(xj)(n) ≥ j. This shows that s is ∞-splitting.

Since P ⊆ W and f is coded in W , we have f ′′[P \D] ⊆ W , that is, W
contains a superperfect set. By Corollary 2.2.5, we have RW = RV and this
completes the proof.

Proof of Theorem 2.2.8. By the previous theorem, it is enough to prove that
(W,V ) satisfies the countable covering property for the reals. By assumption,
W satisfies CH, so we can fix in W a well-ordering on (R)W of height (ω1)W .
Since every perfect set is uncountable and P ⊆ W , we have ω1

W = ω1
V .

Therefore, any X ⊆ (R)W which is countable in V is contained in a proper
initial segment Y of the well-ordering. Then Y ∈ W and Y is countable
in W . This completes the proof.

In particular, we can state the following corollary.

Corollary 2.2.11 ([4]). If there is a perfect set of constructible reals, then
R ⊆ L.

Is the countable covering condition necessary to obtain this result? The-
orem 2.2.12 below (see [11]) gives a partial answer to this question.

Theorem 2.2.12 ([11]). There is a pair (W,V ) of generic extensions of L
with W ⊆ V such that ℵW1 = ℵV1 and V contains a perfect set of W -reals,
but RW 6= RV .

On the other hand, in [11] we also have the following theorem.

Theorem 2.2.13 ([11]). Suppose that M is an inner model of set theory and
RM is analytic. Then either ℵM1 is countable or all reals are in M .

In order to prove Theorem 2.2.13, let us introduce a generalization of the
notion of a superperfect set.

Definition 2.2.14. Suppose that λ is a limit ordinal and T is a subtree
of [λ]<ω. We say that t ∈ T is λ-splitting if for all ξ < λ there exists u ∈ T
such that t v u and u(|t|) > ξ.

Definition 2.2.15. Suppose that λ is a limit ordinal and let T be a subtree
of [λ]<ω. We say that T is λ-superperfect if for all s ∈ T there exists t ∈ T
such that s v t and t is λ-splitting.

Definition 2.2.16. A set P ⊆ [λ]ω is λ-superperfect if there is a λ-super-
perfect tree T ⊆ [λ]<ω such that P = {x ∈ [λ]ω : ∀n < ω (x � n ∈ T )}. Here
x � n denotes the set of the first n elements of x in the natural order.
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The definition of o : ([N]ω)3 → {0, 1}ω can be trivially generalized to a
coloring

oλ : ([λ]ω)3 −→ {0, 1}ω.
As for o, one can easily check that, for all λ-superperfect P , we have o′′λ[P

3] ⊇
{0, 1}ω (the proof is the same as for Theorem 2.2.4). Moreover, we have
oλ(x, y, z) ∈ L[x, y, z] for all x, y, z ∈ [λ]ω. To complete the proof of Theo-
rem 2.2.13, it suffices to prove the following lemma.

Lemma 2.2.17. Suppose that A is an analytic set such that

sup{ωCK, x
1 : x ∈ A} = ω1.

Then every real is hyperarithmetic in a quadruple of elements of A.

Proof. Let T ⊂ (ω × ω)<ω be a tree such that A = p[T ]. Note that the
statement sup{ωCK, x

1 : x ∈ p[T ]} = ω1 is Π1
2(T ) and thus absolute.

For an ordinal α, let Coll(ℵ0, α) be the usual collapse of α to ℵ0 using
finite conditions. Let P denote Coll(ℵ0,ℵ1). If G is V -generic over P , then,
by Shoenfield’s absoluteness theorem, in V [G] there is x ∈ p[T ] such that
ωCK, x

1 > ωV1 . In V fix a name ẋ for x and a name σ for a cofinal ω-sequence
in ωV1 such that the maximal condition in P forces that ẋ ∈ p[T ] and σ ∈ L[ẋ].

Claim 2.2.18. For every p ∈ P there is k < ω such that for every α < ω1

there is q ≤ p such that q 
 σ(k) > α.

Proof. Assume otherwise and fix p for which the claim is false. Then for
every k there is αk < ω1 such that p 
 σ(k) < αk. Let α = sup{αk : k < ω}.
Then p 
 ran(σ) ⊂ α, contradicting the fact that σ is forced to be cofinal
in ωV1 .

Let Q denote Coll(ℵ0,ℵ2) as defined in V . Suppose that H is V -generic
over Q. Work for a moment in V [H]. If G is a V -generic filter over P , let
σG denote the interpretation of σ in V [G]. Let B be the set of all σG where
G ranges over all V -generic filters over P .

Claim 2.2.19. B contains an ωV1 -superperfect set in (ωV1 )ω.

Proof. Let {Dn : n < ω} be an enumeration of all dense subsets of P which
belong to the ground model. For each t ∈ (ωV1 )<ω, we define a condition pt in
the regular open algebra of P as computed in V , and st ∈ (ωV1 )<ω inductively
on the length of t, such that:

1. pt ∈ Dlh(t);

2. pt 
 st ⊂ σ;
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3. if t ⊆ r then pr ≤ pt and st ⊂ sr;

4. if t and r are incomparable then st and sr are incomparable;

5. for every t the set {α < ωV1 : there is q ≤ p such that q 
 st̂ α ⊂ σ} is
unbounded in ωV1 .

Suppose that pt and st have been defined. Using 5, choose in V a 1-1
order-preserving function ft : ω

V
1 → ωV1 and for every α qt,α ≤ pt such that

qt,α 
 st̂ ft(α) ⊂ σ. By extending qt,α if necessary, we may assume that it
belongs to Dlh(t)+1. Now, by applying Claim 2.2.18, we can find a condition
p ≤ qt,α and k > lh(st) + 1 such that for some s ∈ (ωV1 )k p 
 s ⊂ σ and for
every γ < ωV1 there is q ≤ p such that q 
 σ(k) > γ. Let then st ̂α = s and
pt ̂α = p. This completes the inductive construction.

Now if b ∈ (ωV1 )ω then {pb�n : n < ω} generates a filter Gb which is V -gen-
eric over P . The interpretation of σ under Gb is sb =

⋃
n<ω sb�n. Since the

set R = {sb : b ∈ (ωV1 )ω} is ωV1 -superperfect, this proves Claim 2.2.19.

Using the remark following Definition 2.2.16, for any real r ∈ {0, 1}ω we
can find b1, b2, b3 ∈ (ωV1 )ω such that r ∈ L[sb1 , sb2 , sb3 ]. Let xi be the in-
terpretation of ẋ under Gbi . Then it follows that xi ∈ p[T ] and sbi ∈ L[xi]
for i = 1, 2, 3. Thus r ∈ L[x1, x2, x3]. Pick a countable ordinal δ such
that r ∈ Lδ[x1, x2, x3]. Using the fact that sup{ωCK, x

1 : x ∈ p[T ]} = ω1

in V [H], we can find y ∈ p[T ] such that ωCK,y
1 > δ. Then we have that r is

∆1
1(x1, x2, x3, y). Note that the statement that there are x1, x2, x3, y ∈ p[T ]

such that r ∈ ∆1
1(x1, x2, x3, y) is Σ1

2(r, T ). Thus for any real r ∈ V , by Shoen-
field absoluteness again, it must be true in V . This proves Lemma 2.2.17.

We complete this section by stating some related results.

Theorem 2.2.20 ([11]). There is a pair W ⊆ V of generic extensions of L
such that RW is an uncountable Fδ set in V and RW 6= RV .

Theorem 2.2.21 ([3]). Suppose that W ⊆ V are two models of set theory,
κ > ωV1 , and there exists C ⊆ [κ]ω which is a club in V such that C ⊆ W .
Then RW = RV .

Theorem 2.2.22 ([2]). Let W ⊆ V be two models of set theory such that
V,W |= PFA and ℵW2 = ℵV2 . Then RW = RV ; in fact, P(ω1)W = P(ω1)V .
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2.3 Oscillations of real numbers – Part 2

The results of this section are taken from [9]. We look at increasing sequences
of integers and slightly change the definition of oscillation. For s, t ∈ (ω)≤ω,
we define

osc(s, t) = |{n < ω : s(n) ≤ t(n) ∧ s(n+ 1) > t(n+ 1)}|.

In the next picture, s and t are two functions in (ω)<ω with osc(s, t) = 2.

-

6

ω

ω
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t e
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We now define two orders ≤m and ≤∗ on (ω)ω:

f ≤m g ⇐⇒ ∀n ≥ m (f(n) ≤ g(n));

f ≤∗ g ⇐⇒ ∃m (f ≤m g).

Given X ⊆ (ω)ω and s ∈ (ω)<ω, we let Xs = {f ∈ X : s v f} and

TX = {s ∈ (ω)<ω : Xs is unbounded under ≤∗}.

Lemma 2.3.1. Suppose that X ⊆ (ω)ω is unbounded under ≤∗ and that
X =

⋃
n<ωAn. Then there exists n such that An is unbounded.

Proof. Suppose that every An is bounded and, for all n, let gn be such that
f ≤∗ gn for all f ∈ An. If we define g(n) = sup{gk(n) : k ≤ n}, then X is
bounded by g with respect to ≤∗. This leads to a contradiction.

Lemma 2.3.2. Suppose that X ⊆ (ω)ω is unbounded under ≤∗. Then TX is
superperfect.

Proof. Suppose, by way of contradiction, that there is a node s ∈ TX with
no ∞-splitting extensions in TX . We define a function gs : ω → ω as follows:

gs(n) = sup{t(n) : t ∈ (TX)s ∧ n ∈ dom(t)},
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where (TX)s = {f ∈ TX : s v f}. First note that gs(n) < ω for all
n < ω. Let Q = {t ∈ (ω)<ω : Xt is bounded under ≤∗}. By Lemma 2.3.1,
the set

⋃
{Xt : t ∈ Q} is bounded under ≤∗ by some function g. Now let

h = max(g, gs). It follows that Xs is ≤∗-bounded by h, a contradiction.

We first consider oscillations of elements of (ω)<ω. Our first goal is to
prove that if T is a superperfect subtree of (ω)<ω then osc′′[T ]2 = ω. In fact,
we prove a slightly stronger lemma.

Lemma 2.3.3. Let S and T be two superperfect subtrees of (ω)<ω and let s
and t be ∞-splitting nodes of S and T respectively. Then for all n there are
∞-splitting nodes s′ in S and t′ in T such that s v s′, t v t′ and

osc(s′, t′) = osc(s, t) + n.

Proof. We may assume without loss of generality that |s| < |t| and s(|s|−1) ≤
t(|s| − 1). We can recursively pick some ∞-splitting extensions si ∈ S and
ti ∈ T , for i ≤ n, such that:

• s0 = s and t0 = t;

• s0 < s1 < · · · < sn;

• t0 < t1 < · · · < tn;

• osc(si, ti) = osc(s, t) + i for all i;

• |si| < |ti| and si(|si| − 1) ≤ ti(|si| − 1).

Given si and ti, since S is superperfect and si is∞-splitting in S, we can
find some ∞-splitting extension u of si in S such that u(|si|) > ti(|ti| − 1)
and such that |u| > |ti| + 1. In the same way, we can take an ∞-splitting
extension v of ti in T such that v(|ti|) > u(|u| − 1) and |v| > |u| + 1. Since
u and v are strictly increasing, we have osc(u, v) = osc(si, ti) + 1, so we can
define si+1 = u and ti+1 = v.

Finally, osc(sn, tn) = osc(s, t) + n and this completes the proof.

Corollary 2.3.4. If T is a superperfect subtree of (ω)<ω then the equality
osc′′[T ]2 = ω holds.

We now turn to oscillations of elements of (ω)ω. We will need the following
definition.

Definition 2.3.5. A subset X of (ω)ω is σ-directed under ≤∗ if, and only if,
for all countable D ⊆ X there is f ∈ X such that d ≤∗ f for all d ∈ D.



Oscillations and their applications in partition calculus 25

Lemma 2.3.6. Suppose that X ⊆ (ω)ω is σ-directed and unbounded under
≤∗ and Y ⊆ (ω)ω is such that for every a ∈ X there is b ∈ Y such that
a ≤∗ b. Then there is an integer n0 such that for all k < ω there are f ∈ X
and g ∈ Y such that osc(f, g) = n0 + k.

Proof. Fix a countable dense subset D of X. Since X is σ-directed, there is a
function a ∈ X such that d ≤∗ a for all d ∈ D. Then Y ′ = {g ∈ Y : a ≤∗ g}
is unbounded under ≤∗. We define Ym = {g ∈ Y ′ : a ≤m g} for all m < ω.
By Lemma 2.3.1 and the fact that Y ′ =

⋃
{Ym : m < ω}, there exists m0 < ω

such that Ym0 is also ≤∗-unbounded. Let s0 ∈ TX and t0 ∈ TYm0
be the two

least ∞-splitting nodes of TX and TYm0
respectively. Let n0 = osc(s0, t0).

Now, fix k < ω. By Lemma 2.3.3, there are two ∞-splitting s ∈ TX and
t ∈ TYm0

such that osc(s, t) = n0 + k. We may assume without loss of
generality that |t| ≤ |s| and t(|t| − 1) > s(|t| − 1). Since D is dense, there
is f ∈ D such that s v f ≤∗ a. Fix m ≥ m0 such that f ≤m a. Since t is
∞-splitting in TYm0

, we can pick i > f(m) and g ∈ Ym0 such that t̂i v g.
We know that for all k ≥ m0, a(k) ≤ g(k), so f(k) ≤ g(k) for all k ≥ m.
Moreover, f and g are increasing and t̂i v g, so for all k between |t| and m
we have g(k) > f(k). It follows that osc(f, g) = osc(s, t) = n0 + k and this
completes the proof.

The following theorem is due to Todorčević (see [9]).

Theorem 2.3.7 ([9]). Suppose that X ⊆ (ω)ω is unbounded under ≤∗ and
σ-directed. Then osc′′[X]2 = ω.

Proof. The proof is the same as for Lemma 2.3.6, by assuming Y = X. Thus
s0 = t0 and, consequently, n0 = 0 in the previous proof. Hence, for all k < ω
there are f, g ∈ X such that osc(f, g) = k. This completes the proof.

We recall that b is the least cardinal of an ≤∗-unbounded subset of (ω)ω.
Fix an unbounded F ⊆ (ω)ω of cardinality b. We may assume that F is
well ordered under ≤∗ and (F ,≤∗) has order type b.

Remark 2.3.8. Every unbounded subset of F is σ-directed and cofinal in
F under ≤∗.

Corollary 2.3.9. Let X, Y ⊆ F be unbounded under ≤∗. There exists
n0 < ω such that for all k < ω there exist f ∈ X and g ∈ Y such that
osc(f, g) = n0 + k.

Proof. Trivial by Remark 2.3.8 and Lemma 2.3.6.

In [9], Todorčević proved a more general result:
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Theorem 2.3.10 ([9]). Suppose that F is ≤∗-unbounded and well ordered
by ≤∗ in order type b. Suppose that A ⊆ [F ]n, |A| = b, and A consists of
pairwise disjoint n-tuples. Then there exists h : n × n → ω such that for all
k < ω there exist A,B ∈ A such that A 6= B and osc(A(i), B(j)) = h(i, j)+k
for all i, j < n. Here A(i) denotes the i-th element of A in increasing order,
and similarly B(j) denotes the j-th element of B.

Proof. For any A,B ∈ [F ]n, we will write A <m B if, and only if, a <m b
for all a ∈ A and b ∈ B. Similarly, with A ≤∗ B we mean that a ≤∗ b for all
a ∈ A and b ∈ B. Finally, if A ∈ A and m < ω, we denote by A � m the
sequence 〈A(i) � m〉i<n.

We may assume that A is everywhere unbounded, that is, for all m < ω
and A ∈ A, the set {B ∈ A : B � m = A � m} is also unbounded in ((ω)ω)n

under ≤∗. Take a countable dense D ⊆ A. There is A ∈ A such that D ≤∗ A
for all D ∈ D. For all m < ω, let Am = {B ∈ A : A <m B}. As before,
there is m0 < ω such that Am0 is everywhere unbounded.

Given any ~t ∈ (ω<ω)n, we denote by ti the i-th element of ~t in increasing
order. If B ∈ (ωω)n, then ~t v B means ti v B(i) for all i < n. Now, we
define

TAm0
= {~t ∈ (ω<ω)n : ∀i < n (|ti| < |ti+1|) ∧ ∃B ∈ Am0(~t v B)}.

For any sequence ~s ∈ TAm0
, we say that ~s is ∞-splitting if for all l < ω

there is ~t ∈ TAm0
such that ~s v ~t and ti(|si|) > l for all i < n.

Claim 2.3.11. TAm0
is superperfect, that is, for all ~s ∈ TAm0

there is an

∞-splitting sequence ~t ∈ TAm0
such that ~s v ~t.

Proof. Given ~s ∈ TAm0
, define t0 as the least ∞-splitting extension of s0 in

TZ(0), where Z(0) = {B(0) : B ∈ Am0}. Assume that ~t � i is defined. The

set Z(i) = {B(i) : B ∈ Am0 and B � i = ~t � i} is unbounded (because Am0

is everywhere unbounded). Let ti be any ∞-splitting extension of si in TZ(i)

such that |ti| > |ti−1|. The sequence ~t, so defined, is ∞-splitting in TAm0
.

This completes the proof of the claim.

Let ~r ∈ TAm0
be the least∞-splitting sequence. We define, for all i, j < n,

h(i, j) = osc(ri, rj).

Claim 2.3.12. For all k < ω, there are two∞-splitting sequences ~s,~t ∈ TAm0

such that ~r v ~s,~t and osc(si, tj) = osc(ri, rj) + k for all i, j < n.
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Proof. We prove this by induction on k < ω. The case k = 0 is trivial. Let
~s,~t ∈ TAm0

be ∞-splitting, such that ~r v ~s,~t and osc(si, tj) = osc(ri, rj) + k
for all i, j. Assume without loss of generality that |si| < |tj| and si(|si|−1) ≤
tj(|si|−1) for all i, j. Since ~s is∞-splitting, there is an∞-splitting sequence
~u ∈ TAm0

such that ~s v ~u and ui(|si|) > tj(|tj| − 1) for all i, j. We also ask
that |ui| > |tj|+ 1 for all i, j. Similarly, we can find an ∞-splitting sequence
~v ∈ TAm0

such that ~t v ~v and vi(|ti|) > uj(|uj| − 1) for all i, j. It follows
that osc(ui, vj) = osc(si, tj) + 1 for all i, j. This completes the proof of the
claim.

Fix ~s and ~t as in Claim 2.3.12. Assume without loss of generality that
|si| ≤ |tj| and si(|si| − 1) > tj(|si| − 1) for all i, j. Consider now the families
X = {B ∈ A : ~t v B} and D′ = D ∩ X. We have that X is everywhere
unbounded and D′ is dense in X. Take any D ∈ D′. Then ~t v D <m A
for some m > m0. Since ~s is ∞-splitting, there is l ≥ D(n − 1)(m) and
B ∈ Am0 such that ~s ̂l := 〈sîl〉i<n v B. By construction, osc(D(i), B(j)) =
osc(si, tj) = h(i, j) + k for all i, j < n. This completes the proof.

Sometimes we need to improve osc to get an even better coloring. First
we want to get rid of the function h of Theorem 2.3.10. We fix a bijection
e : ω → ω×ω and define a new partial function o on pairs of elements of (ω)<ω

or (ω)ω as follows. Let osc(f, g) = 2i0 + 2i1 + · · · + 2ik for i0 > i1 > · · · > ik
be the binary expansion of osc(f, g). We define o(f, g) = π0 ◦ e(i0), where π0

is the projection onto the first component.

Lemma 2.3.13. Suppose that F and A ⊆ [F ]n are as in Theorem 2.3.10.
For all k < ω there exist A,B ∈ A such that A 6= B and o(A(i), B(j)) = k
for all i, j < n.

Proof. Given k, consider the function h : n× n→ ω of Theorem 2.3.10. For
all i, j < n, let li,j be the largest integer such that 2li,j ≤ h(i, j), and let
l = max{li,j : i, j < n}. The set {m : ∃p (e(m) = (k, p))} is infinite, so we
can find m > l such that π0 ◦ e(m) = k. By definition of h, there exist two
different A,B ∈ A such that osc(A(i), B(j)) = h(i, j) + 2m for all i, j < n.
It follows that o(A(i), B(j)) = π0 ◦ e(m) = k for all i, j < n. This completes
the proof.

Finally, we want to be able to choose the color of {A(i), B(j)} indepen-
dently for all i, j. First we need the following lemma.

Lemma 2.3.14. Given an unbounded family A ⊆ [F ]n of pairwise disjoint
sets, there are k < ω and A∗ ⊆ A unbounded such that, for every i < n, there
exists ai ∈ (ω)k such that A(i) � k = ai for all A ∈ A∗ and ai 6= aj for all
i 6= j < n.
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Proof. We prove it by induction on n < ω. It is trivial for n = 1. Assume
that the statement is true for n. We prove it for n + 1. Given A ⊆ [F ]n+1,
let k < ω, A′ ⊆ A � n, and {ai}i<n be as in the conclusion of the lemma
for A � n. The set B = {A ∈ A : A � n ∈ A′} is unbounded, hence
X = {A(n) : A ∈ B} is also unbounded. By Lemma 2.3.2, we have that TX
is superperfect, so let b be the least ∞-splitting node of TX . We can assume
without loss of generality that |b| < k. Take any an w b in TX such that
|an| = k and an(k − 1) > max{ai(k − 1) : i < n}. Then an 6= ai for all
i < n. Recall that TX = {s ∈ (ω)<ω : {f ∈ X : s v f} is unbounded}. Thus
A∗ = {B ∈ B : an v B(n)} is unbounded. This completes the proof.

Consider all finite functions t : D × E → ω where D,E ⊆ (ω)k and k is
an integer. Let {(tn, Dn, En, kn)}n<ω be any enumeration of such functions.
We define c : [F ]2 → ω as follows: given f, g ∈ F and letting n = o(f, g),
we set

c(f, g) =

{
tn(f � kn, g � kn) if f � kn ∈ Dn and g � kn ∈ En;
0 otherwise.

Theorem 2.3.15 ([9]). Given an unbounded family A ⊆ [F ]n of pairwise
disjoint sets and an arbitrary u : n×n→ ω, there are two different A,B ∈ A
such that c(A(i), B(j)) = u(i, j) for all i, j < n.

Proof. Take k < ω, A∗, and {ai}i<n as in the conclusion of Lemma 2.3.14,
and let D = {ai : i < n}. Consider the function t : D × D → ω defined
by t(ai, aj) = u(i, j) for all i, j < n. Assume that (tm, Dm, Em, km) is the
corresponding sequence in the previous enumeration. By Lemma 2.3.13,
there exist different A,B ∈ A∗ such that o(A(i), B(j)) = m for all i, j < n.
It follows that u(i, j) = t(ai, aj) = tm(A(i) � km, B(j) � km) = c(A(i), B(j)).
This completes the proof.

Corollary 2.3.16. There exists a b-c.c. partial order whose square is not
b-c.c.

The following question is still open.

Question 2.3.17. Can we do the same for some other cardinal invariant
such as t or p?
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2.4 Partitions of countable ordinals

Oscillations provide the main tool for constructing partitions of pairs of
countable ordinals with very strong properties. The goal of this section is
to present the construction of an L-space due to Moore [7] which uses oscil-
lations in an ingenious way. In order to motivate this construction we start
with a simple example.

For each limit α < ω1, fix cα ⊆ α cofinal of order type ω. As before,
we will view cα both as a set and as an ω-sequence which enumerates it in
increasing order. Thus, we will write cα(n) for the n-th element of cα. The
sequence 〈cα : α < ω1, lim(α)〉 is called a ~c-sequence.

We can generalize the definition of osc as follows: for f, g ∈ (ω1)≤ω,

osc(f, g) = |{n < ω : f(n) ≤ g(n) ∧ f(n+ 1) > g(n+ 1)}|.

Given a subset S of ω1 consisting of limit ordinals, let

US = {s ∈ [ω1]<ω : {α ∈ S : s v cα} is stationary}.

Lemma 2.4.1. Assume that S ⊆ ω1 is stationary. Then US is an ω1-super-
perfect tree.

Proof. Given s ∈ US let (US)s = {t ∈ US : s v t} and let αs,n = sup{t(n) :
t ∈ (US)s}. Then there is n such that αs,n = ω1. To see this, assume
otherwise and let α = sup{αs,n : n < ω}. Then α < ω1. For each δ ∈
S \ (α+ 1) such that s v cδ, let nδ be the least integer such that cδ(nδ) > α.
By the Pressing Down Lemma, there is t ∈ [ω1]<ω such that s v t and the
set {δ ∈ S : cδ � (nδ + 1) = t} is stationary. It follows that s v t ∈ US and
max(t) > α, a contradiction.

Lemma 2.4.2. Given two stationary sets S, T ⊆ ω1, there is n0 < ω such
that for all k < ω there exist α ∈ S and β ∈ T such that osc(cα, cβ) = n0 +k.

Proof. By Lemma 2.4.1 both US and UT are ω1-superperfect. Let s and t be
the least ω1-splitting nodes of US and UT respectively. We may assume that
|s| ≤ |t| and s(|s|−1) ≤ t(|s|−1). Let n0 = osc(s, t)+1. Now, as in the proof
of Lemma 2.3.3, given an integer k we can find ω1-splitting nodes s′ and t′ of
US and UT respectively, such that s v s′, t v t′ and osc(s′, t′) = n0 + k − 1.
Moreover, we can arrange that |s′| ≤ |t′| and s′(|s′| − 1) ≤ t′(|s′| − 1). Now,
pick any β ∈ T such that t′ v cβ. Since s′ is an ω1-splitting node of US, there
is γ > β such that s′̂ γ ∈ US. Pick α ∈ S such that s′̂ γ v cα. It follows
that osc(cα, cβ) = osc(s′, t′) + 1 = n0 + k, as desired.
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We can then improve osc as before to get some better coloring. We know
that our coloring cannot be as strong as in the case of b, since MAℵ1 implies
that the countable chain condition is productive, so we have to give up some
of the properties of our coloring.

We now present a construction of Moore [7] of a coloring of pairs of count-
able ordinals witnessing ω1 9 [ω1;ω1]2ω and use it to construct an L-space.
As before, we fix a sequence 〈Cα : α < ω1〉 such that

• if α = ξ + 1, then Cα = {ξ};

• if α is limit, then Cα ⊆ α is cofinal and of order type ω.

Given α < β, we define the walk from β to α. We first define a sequence
β0 > β1 > · · · > βl = α as follows:

• β0 = β;

• βi+1 = min(Cβi \ α).

Then we define ξ0 ≤ ξ1 ≤ · · · ≤ ξl−1 by setting

ξk = max
k⋃
j=0

(Cβj ∩ α)

for all k ≤ l − 1. We call Tr(α, β) = {β0, . . . , βl} the upper trace and
L(α, β) = {ξ0, . . . , ξl−1} the lower trace of the walk from β to α.
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Lemma 2.4.3. Suppose that α ≤ β ≤ γ and max(L(β, γ)) < min(L(α, β)).
Then L(α, γ) = L(α, β) ∪ L(β, γ).
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Proof. Since max(L(β, γ)) < min(L(α, β)), we have Cξ∩α = Cξ∩β whenever
ξ is in Tr(β, γ) and ξ 6= β. It follows that β ∈ Tr(α, γ) and

Tr(α, γ) = Tr(α, β) ∪ Tr(β, γ).

Assume that Tr(α, γ) = {γ0, . . . , γl} and L(α, γ) = {ξ0, . . . , ξl−1}. Then there
is l0 ≤ l such that γl0 = β. Therefore, {ξk}k≤l0−1 = L(β, γ). On the other
hand, max(Cγl0 ∩ α) > ξl0−1 because ξl0−1 ∈ L(β, γ) and maxCγl0 ∈ L(α, β).
Hence, if k ≥ l0, then

ξk = max
k⋃
j=0

(Cγj ∩ α) = max
k⋃

j=l0

(Cγj ∩ α),

and so L(α, β) = {ξk}l−1
k=l0

.

Lemma 2.4.4. If α < β, then L(α, β) is a non-empty finite set and, for
every limit ordinal β, lim

α→β
min(L(α, β)) = β.

Proof. The first statement is trivial. Let us prove that lim
α→β

min(L(α, β)) = β

for every limit ordinal β. Given α < β, one can take α′ ∈ Cβ \ (α+ 1). Then
α < α′ = max(Cβ ∩ (α′ + 1)) = minL(α′ + 1, β) ≤ lim

α→β
min(L(α, β)). It

follows that β ≤ lim
α→β

min(L(α, β)) ≤ β, and this completes the proof.

Fix a sequence 〈eα : α < ω1〉 satisfying the following conditions:

1. eα : α→ ω is finite-to-one;

2. α < β implies eβ � α =∗ eα, i.e., {ξ < α : eβ(ξ) 6= eα(ξ)} is finite.

Given α < β < ω1, let4(α, β) be the least ξ < α such that eα(ξ) 6= eβ(ξ),
if it exists, and α otherwise. We define osc(α, β) as follows:

osc(α, β) = |{i ≤ l − 1 : eα(ξi) ≤ eβ(ξi) ∧ eα(ξi+1) > eβ(ξi+1)}|,

where L(α, β) = {ξ0 < · · · < ξl−1}.
It will be convenient to also use the notation Osc(eα, eβ, L(α, β)) for the

set {ξi ∈ L(α, β) : eα(ξi) ≤ eβ(ξi) ∧ eα(ξi+1) > eβ(ξi+1)}.
Our aim is to prove the following theorem due to Moore (see [7]).

Theorem 2.4.5 ([7]). Let A,B ⊆ ω1 be uncountable. Then for all n < ω
there exist α ∈ A, β0, β1, . . . , βn−1 ∈ B, and k0 such that α < β0, . . . , βn−1

and osc(α, βm) = k0 +m for all m < n.
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This means that we can get arbitrarily long intervals of oscillations with
a fixed lower point α ∈ A. We can generalize this to get even more:

Theorem 2.4.6 ([7]). Given A ⊆ [ω1]k and B ⊆ [ω1]l uncountable and
pairwise disjoint, and given n < ω, we can find A ∈ A and B0, . . . , Bn−1 ∈ B
such that maxA < minBi for all i < n, and

osc(A(i), Bm(j)) = osc(A(i), B0(j)) +m

for all i < k, j < l and m < n.

In order to prove Theorem 2.4.5, we demonstrate the following lemma.

Lemma 2.4.7. Let A,B ⊆ ω1 be uncountable. There exists a club C ⊆ ω1

such that if δ ∈ C, α ∈ A \ δ, β ∈ B \ δ, and R ∈ {=, >}, then there are
α′ ∈ A \ δ and β′ ∈ B \ δ satisfying the following properties:

1. maxL(α, β) < 4(α, α′),4(β, β′);

2. L(δ, β) v L(δ, β′);

3. for all ξ ∈ L+ = L(δ, β′) \ L(δ, β), we have eα′(ξ) R eβ′(ξ).

Proof. Fix a sufficiently large regular cardinal θ. We are going to show that,
if M ≺ Hθ is a countable elementary substructure containing all the relevant
objects, then δ = M ∩ ω1 satisfies the conclusion of the lemma. Since the
set of such δ contains a club in ω1, this will be sufficient. Thus, fix M and
δ as above and let α and β be as in the hypothesis of the lemma. We first
suppose that R is =. Since δ is a limit ordinal, we can take γ0 < δ such that

1. max(L(δ, β)) < γ0, and

2. for all ξ ∈ (γ0, δ), eα(ξ) = eβ(ξ).

By Lemma 2.4.4, we can also fix γ < δ such that γ0 < minL(ξ, δ) for all
ξ ∈ (γ, δ). Let D be the set of all δ′ < ω1 such that for some α′ ∈ A \ δ′ and
β′ ∈ B \ δ′ the following properties are satisfied:

(a) eα′ � γ0 = eα � γ0, eβ′ � γ0 = eβ � γ0;

(b) L(δ′, β′) = L(δ, β);

(c) for all ξ ∈ (γ, δ′), γ0 < minL(ξ, δ′);

(d) for all ξ ∈ (γ0, δ
′), eα′(ξ) = eβ′(ξ).
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For all ξ ≥ γ0, eξ � γ0 is in M , since, by definition, eξ � γ0 =∗ eγ0 . This
means that D is definable in M ; hence D ∈ M . Moreover D 6⊆ M (since
δ ∈ D), and therefore D is uncountable. Choose δ′ > δ in D with α′ ∈ A \ δ′
and β′ ∈ B \ δ′ witnessing δ′ ∈ D. By condition (a) of the definition of D,

γ0 ≤ 4(α, α′),4(β, β′).

Put L+ = L(δ, δ′). Then maxL(δ, β) = maxL(δ′, β′) < minL+; hence

L(δ, β′) = L(δ′, β′) ∪ L+ = L(δ, β) ∪ L+.

Given ξ ∈ L+, by condition (c) we have γ0 < minL+ ≤ ξ. It follows that
ξ ∈ (γ0, δ

′), so (d) implies that eα′(ξ) = eβ′(ξ).
Now assume that R is >. Let E be the set of all limits ν < ω1 such that,

for all α0 ∈ A \ ν, ν0 < ν, ε < ω1, n < ω and finite L+ ⊆ ω1 \ ν, there exists
α1 ∈ A \ ε with ν0 ≤ 4(α0, α1) and eα1(ξ) > n for all ξ ∈ L+. Since E is
definable from parameters in M , it follows that E ∈M as well.

Claim 2.4.8. The ordinal δ is in E. In particular, E is uncountable.

Proof. Let α0, ν0, ε, n, L+ be given as in the definition of E for ν = δ.
Since eα0 is finite-to-one, we can assume without loss of generality that
ν0 > sup{ξ < δ : eα0(ξ) ≤ n}. By the elementarity of M , there exists δ′ big-
ger than ε, δ and maxL+, and α1 ∈ A\ δ′, such that the following conditions
hold:

• eα0 � ν0 = eα1 � ν0;

• for all ξ in (ν0, δ
′), we have eα1(ξ) > n.

Since L+ ⊆ δ′ \ δ, this completes the proof of the claim.

Now apply the elementarity of M and the fact that E is uncountable to
find γ0 ∈ E such that L(δ, β) < γ0 < δ. By Lemma 2.4.4, we can find γ < δ
such that if ξ ∈ (γ, δ) then γ0 < L(ξ, δ). Again by the elementarity of M , we
may select δ′ > δ and β′ ∈ B \ δ′ such that the following conditions hold:

• eβ′ � γ0 = eβ � γ0;

• L(δ′, β′) = L(δ, β);

• γ < ξ < δ′ implies γ0 < L(ξ, δ′).

If L+ = L(δ, δ′), then L+ ⊆ ω1 \ γ0. Since γ0 ∈ E, we can apply the
definition of E with ν0 = maxL(δ, β) + 1, n = max{eβ′(ξ) : ξ ∈ L+}
to find α′ ∈ A \ δ such that, for all ξ ∈ L+, maxL(δ, β) < 4(α, α′) and
eα′(ξ) > eβ′(ξ). This completes the proof of Lemma 2.4.7.
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We can finally prove Theorem 2.4.5.

Proof of Theorem 2.4.5. Let A,B ⊆ ω1 be uncountable sets and let M ≺ Hℵ2
be a countable substructure containing everything relevant with δ = M ∩ω1.
Since M contains A and B, the club C provided by Lemma 2.4.7 is in M .
Use Lemma 2.4.7 to select α0, α1, . . . , αn, . . . in A\δ, β0, β1, . . . , βn, . . . in B\δ
and ξ0, ξ1, . . . , ξn, . . . in δ such that for all n < ω the following conditions are
satisfied:

1. L(δ, βn) < L(δ, βn+1);

2. ξn ∈ L(δ, βn+1) \ L(δ, βn);

3. Osc(eαn+1 , eβn+1 , L(δ, βn+1)) = Osc(eαn , eβn , L(δ, βn)) ∪ {ξn};

4. if m > n, then ξn < 4(αm, αm+1),4(βm, βm+1);

5. eαn(maxL(δ, βn)) > eβn(maxL(δ, βn)).

Suppose that αn and βn have been defined. We obtain αn+1 and βn+1 by
applying Lemma 2.4.7 twice: first with R being =, second with R being >.
If α′ and β′ are the two ordinals obtained by applying the lemma the first
time, then ξn = min(L(δ, βn+1) \ L(δ, β′)).

Now let n be given, and pick γ0 < δ such that

γ0 > maxL(δ, βn), max{ξ < δ : ∃m,m′ ≤ n (eβm(ξ) 6= eβm′ (ξ))}.

Using the elementarity of M and Lemma 2.4.4, select α ∈ A ∩ δ such that

maxL(δ, βn) < 4(α, αn) and γ0 < minL(α, δ).

Now let m < n be fixed. It follows from Lemma 2.4.3 that

L(α, βm) = L(α, δ) ∪ L(δ, βm).

Finally, eβm � L(α, δ) does not depend on m, since

minL(α, δ) > γ0 > max{ξ < δ : ∃m,m′ ≤ n (eβm(ξ) 6= eβm′ (ξ))}.

Therefore,
Osc(eα, eβ0 , L(α, δ)) = Osc(eα, eβm , L(α, δ)).

By 5, Osc(eα, eβm , L(α, βm)) = Osc(eα, eβm , L(α, δ)) ∪Osc(eα, eβm , L(δ, βm)),
so, by 3, Osc(eα, eβm , L(α, βm)) = Osc(eα, eβ0 , L(α, β0)) ∪ {ξm′ ; m′ < m}.
Hence osc(α, βm) = osc(α, β0) +m and this completes the proof.
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By using the previous results we can, finally, prove the existence of an
L-space, that is, a regular Hausdorff space which is hereditarily Lindelöf but
not hereditarily separable. We will work in T = {z ∈ C : |z| = 1}. We fix
a sequence 〈zα : α < ω1〉 of rationally independent elements of T. It is easy
to find such a sequence, since, given any countable rationally independent
subset I of T, there are only countable many z for which I ∪{z} is rationally
dependent. Consider now the function defined as

o(α, β) = zosc(α, β)+1
α

for all α < β < ω1.

We will use Kronecker’s Theorem (see [6] or [8]), which is the following
statement:

Theorem 2.4.9. Suppose that 〈zi〉i<k is a sequence of elements of T which
are rationally independent. For every ε > 0, there is nε ∈ N such that, if
u, v ∈ Tk, then there is m < nε such that

|uizmi − vi| < ε

for all i < k.

Now we can define the L-space. For every β < ω1, we define a function
wβ : ω1 → T as follows:

wβ(ξ) =

{
o(ξ, β) if ξ < β;
1 otherwise.

Let L = {wβ : β < ω1}, viewed as a subspace of Tω1 .

Remark 2.4.10. L is not separable.

For all X ⊆ ω1, let LX = {wβ � X : β ∈ X}, viewed as a subspace of TX .
We will simply write wβ for wβ � X when referring to elements of LX . Our
aim is to prove that LX is an L-space for every X uncountable.

Lemma 2.4.11. Let A ⊆ [ω1]k and B ⊆ [ω1]l be uncountable families of
pairwise disjoint sets. For every sequence 〈Ui〉i<k of open neighborhoods in T
and every φ : k → l, there are a ∈ A and b ∈ B such that max(a) < min(b)
and, for all i < k,

o(a(i), b(φ(i))) ∈ Ui.
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Proof. We may assume without loss of generality that every Ui is an ε-ball
about a point vi, for some fixed ε > 0. We can also assume that the integer
nε of Kronecker’s Theorem for the sequence 〈za(i)〉i<k is uniform for a ∈ A .
Apply Theorem 2.4.6 to find a ∈ A and a sequence 〈bm〉m<nε of elements of
B such that

max(a) < min(bm),

osc(a(i), bm(j)) = osc(a(i), b0(j)) +m,

for all i < k, j < l and m < nε. For each i < k, put ui = o(a(i), b0(φ(i))).
There is an m < nε such that

|uizma(i) − vi| < ε

for all i < k or, equivalently, o(a(i), bm(φ(i))) ∈ Ui. This fact completes the
argument.

Lemma 2.4.12. If X, Y ⊆ ω1 have countable intersection, then there is no
continuous injection from any uncountable subspace of LX into LY .

Proof. Suppose, by way of contradiction, that such an injection g does exist.
Then there are an uncountable set X0 ⊆ X and an injection f : X0 → Y
such that g(wβ) = wf(β). We may assume without loss of generality that X0

is disjoint from Y . For each ξ < ω1, let βξ ∈ X0 and ζξ ∈ Y be such that
f(βξ) > ζξ and, if ξ < ξ′, then βξ < ζξ′ . Let Ξ ⊆ ω1 be uncountable and
such that for every ξ ∈ Ξ there is an open neighborhood V in T such that
g(wβξ)(ζξ) /∈ V̄ . Let Wξ = {w ∈ LY : w(ζξ) /∈ V̄ }, for all ξ < ω1. Since
g is continuous at wβξ , there is a basic open neighborhood Uξ of wβξ such
that Uξ ⊆ g−1Wξ. Using the ∆-system lemma and the second countability
of T, we can find an uncountable Ξ′ ⊆ Ξ, a sequence of open neighborhoods
〈Ui〉i<k in T, and aξ ∈ [X]k such that, for all ξ ∈ Ξ′, the following conditions
hold:

• {aξ}ξ∈Ξ′ is a ∆-system with root a;

• wβξ ∈ {w ∈ LX : ∀i < k (w(aξ(i)) ∈ Ui)} ⊆ Uξ;

• the inequality βξ < f(βξ) does not depend on ξ;

• |ζξ ∩ aξ| does not depend on ξ.
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Let A = {aξ∪{ξ}\a}ξ∈Ξ′ and B = {βξ, f(βξ)}ξ∈Ξ′ . By applying Lemma
2.4.11 we can find ξ < ξ′ in Ξ′ such that, for all i < k,

max(aξ ∪ {ζξ}) < min(βξ′ , f(βξ′)),

wβξ′ (aξ(i)) = o(aξ(i), βξ′) ∈ Ui,

g(wβξ′ ) = wf(βξ′ )
(ζξ) = o(ζξ, f(βξ′)) ∈ V.

Thus we have that wβξ′ ∈ Uξ and g(wβξ′ ) /∈ Wξ, a contradiction.

Theorem 2.4.13 ([7]). For every X, LX is hereditarily Lindelöf.

Proof. If not, then LX would contain an uncountable discrete subspace.
Moreover it would be possible to find disjoint Y, Z ⊆ X such that LY and
LZ contain uncountable discrete subspaces. It is well known that any func-
tion from a discrete space to another discrete space is continuous, and this
contradicts Lemma 2.4.12.

Corollary 2.4.14 ([7]). There exists an L-space, i.e., a hereditarily Lindelöf
non-separable T3 topological space.
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