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Abstract 
 
 Mining and fishing are both extractive industries, although one resource is 
renewable and the other is not. Miners and fishers pursue financial objectives, 
although their objectives may differ. In both industries financial performance is 
influenced by productivity and price recovery. Finally, in both industries capacity 
constraints influence financial performance, perhaps but not necessarily through 
their impact on productivity, and both industries encounter external as well as 
internal capacity constraints. 

 The objective of this study is to develop an analytical framework that links all 
four phenomena. We use return on assets to measure financial performance, and 
the basic analytical framework is the duPont triangle. We measure productivity in two 
ways, with a theoretical technology-based index and with an empirical price-based 
index. We measure price change with an empirical quantity-based index. We 
measure internal capacity utilisation by relating a pair of output quantity vectors, 
actual output and full capacity output, and we develop physical and economic 
measures of internal capacity utilisation. External capacity constraints restrict the 
ability to reach full capacity output. The analytical framework has productivity 
change, price change and change in capacity utilisation influencing change in return 
on assets, the latter in two ways, directly and indirectly through its impact on 
productivity change.  
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Productivity, Price Recovery, Capacity Constraints  
and their Financial Consequences 

 
 
 
1. Introduction 

 Mining and fishing are both extractive industries, although one resource is 
renewable and the other is not. Miners and fishers pursue financial objectives, 
although their objectives may differ. In both industries productivity and prices 
influence financial performance. In both industries capacity constraints influence 
financial performance, perhaps but not necessarily through their impact on 
productivity, and both industries encounter external as well as internal capacity 
constraints. 

 We offer two relevant illustrations. First, global mining giant Rio Tinto has 
generated impressive, and volatile, financial results throughout the recent mining 
boom. Figure 1 shows five-year moving averages of return on assets and its two 
components, profit margin and asset turnover, from 2007 through 2011.1 One would 
like to learn something about the sources of the observed volatility in return on 
assets that digs deeper than just variation in the profit margin and asset turnover. 
Variation in productivity, prices and capacity constraints are likely sources.  

Second, ABARES (2012) publishes a fisheries surveys report. The report 
provides detailed boat-level financial information, averaged over boats, within each 
of two fisheries, and similarly detailed economic information for the fisheries 
themselves. The boat-level financial information includes alternative measures of 
profit and return on assets. The fishery economic information includes profit and net 
economic returns, which adjusts profit in several ways, including the incorporation of 
the costs of managing the fishery. One would like to know something about the 
sources of variation in profit and return on assets across boats within a fishery, and 
the sources of variation in net economic returns through time and across fisheries. 
Again, variation in productivity, prices and capacity constraints are likely sources.   

The objective of this study is to develop an analytical framework that links all 
four phenomena, financial performance, productivity, prices and capacity constraints. 
We use return on assets ROA to measure financial performance, and the basic 
analytical framework is the duPont triangle depicted in Figure 1. We measure 
productivity change Y/X in two ways, with a theoretical technology-based index and 
with an empirical price-based index. We measure price recovery change P/W with an 
empirical quantity-based index. We measure capacity utilization CU by relating a pair 
of output quantity vectors, actual output and full capacity output, and we develop 
physical and economic measures of CU. The analytical framework has Y/X, P/W and 
CU influencing ROA, the latter in two ways, directly and indirectly through its impact 
on productivity. 
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The study unfolds as follows. In Section 2 we introduce the duPont triangle as 
a framework for financial performance evaluation. In Section 3 we attempt to 
incorporate Y/X and CU into the duPont triangle. We succeed with CU and fail with 
Y/X because, while CU is an absolute indicator, Y/X is a relative indicator that 
compares one situation with another. Accordingly, in Section 4 we compare ROA in 
two time periods by converting the analytical framework to an inter-temporal one, 
and we seek to exploit the duPont triangle format to attribute ROA change from one 
period to the next to CU change and productivity change. Once again we succeed 
with CU change and fail with productivity change. In Sections 2-4 we ignore price 
change as an ROA driver; we would have failed, for the same reason we fail with 
productivity change. In Section 5 we develop a pair of analytical frameworks within 
which CU change, productivity change and price recovery change drive ROA 
change. In Sections 2-5 CU is an internal measure associated with short run fixity of 
some inputs used by the firm. In Section 6 we introduce external capacity constraints 
resulting from regulation and other sources outside the firm, and we show how these 
external capacity constraints can render some or all internal capacity constraints 
redundant. Section 7 concludes. 

2. The duPont Triangle 

ROA is a widely used measure of financial performance. Bliss (1923), in 
discussing ROA, claims that “[f]rom the operating point of view as distinguished from 
the stockholders’ point of view, the real measure of the financial return earned by a 
business is the percentage of operating profits earned on the total capital used in the 
conduct of such operations…regardless from what sources such capital may have 
been secured.” Two duPont executives, Kline & Hessler (1952), concur, writing that 
“It is our considered opinion, which has been critically re-examined many times over 
three decades, that a manufacturing enterprise with large capital committed to the 
manufacture and sale of goods can best measure and judge the effectiveness of 
effort in terms of ‘return on investment’.” Amey (1969) calls ROA “the key index of 
business ‘success’,” even though he acknowledges that maximizing ROA and 
maximizing profit in absolute terms do not generally coincide. Amey continues, 
“…maximization of profits in absolute terms will be taken as the firm’s objective; this 
can then be expressed as a rate of return.” (italics in the original) Thus ROA is an 
observable consequence of the pursuit of a different (indeed, almost any) objective. 

ROA sits atop the duPont triangle, a management accounting system 
developed at duPont and General Motors (GM) early in the 20th century. Even then 
both duPont and GM were diversified corporations, producing a variety of products in 
several locations, and management had to decide how to allocate capital investment, 
as well as other resources and managerial compensation, across product lines and 
among plants. The allocation criterion duPont and GM used was the return on those 
investments, ROA. The developers also devised a product pricing formula designed 
to set product prices that would yield a desired ROA when production was at 
standard volume, defined at GM to be two shifts per day.  
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To assist in the resource allocation and product pricing strategies, ROA = /A 

was decomposed into a pair of financial ratios that drive /A. This in turn enabled 

management to develop strategies intended to enhance either ratio, and hence /A. 

The decomposition states that /A is the product of the profit margin /R, and asset 

turnover R/A. /R indicates how much of sales revenue a firm retains as profit rather 

than absorbs as expense. An increase in /R is consistent with an improvement in 
cost efficiency, the adoption of cost-saving technology, a reduction in input prices or 
an increase in output prices. R/A indicates the revenue productivity of a firm’s 
assets. An increase in R/A suggests that capital is being allocated to higher-valued 
uses, or output prices are increasing.2 

For our purposes it is important to note that the duPont triangle does not 
contain measures of CU, Y/X or P/W, any one of which is a potential driver of /R 
and/or R/A. We incorporate CU in Section 3, we incorporate CU and Y/X in Section 
4, and we incorporate CU, Y/X and P/W in Section 5. 

3. Capacity Utilization  

Incorporating CU into a duPont triangle requires a definition of capacity, and 
there are several to choose from. A generic approach is to write the triangle as 
 

/A = /R × R/A  
 

       = /R × (pTy/pTyc) × (pTyc/A),                          (1) 
 

with output price vector p  R , output quantity vector y  R  and capacity output 

quantity vector yc  R . Weighting y and yc by p maintains the financial structure of 
the triangle and, more significantly for our purposes, allows M>1. Expression (1) 
decomposes ROA into the product of three drivers: the profit margin, the rate of 
capacity utilization, and potential asset turnover, the turnover that would occur at full 
capacity output. We now consider how to define yc.  

 Figure 2 supports three definitions of capacity and its rate of utilization. We 
observe output vector y and input vector x, with y  P(x) and feasible set P(x) 

bounded above by its frontier PF(x). All y  PF(x) are maximum output vectors that 
can be produced with x and given technology. The technically efficient output vector 
associated with y is ya = y/Do(x,y), with Do(x,y) an output distance function defined as 
Do(x,y) = min{: y/  P(x), and the technical efficiency of y is y/ya = Do(x,y)  1. We 
next partition x into fixed and variable sub-vectors, so that x = (x ,x ), and by fixity of 

x  we mean x   x . Following Gold (1955) and Johansen (1968), we define P(x ) as 

the set of feasible output vectors obtainable from x   x  when no constraint is 
imposed on the availability and use of x . P(x ) is bounded above by its frontier 

PF(x ), and all y  PF(x ) are full capacity output vectors, given x   x  and 
technology.3 
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Our first definition of capacity and its rate of utilization follows Gold and 
Johansen, and solves an output maximization problem. It is independent of prices, 
and defines capacity output as the largest feasible radial expansion of y. In Figure 2 
yGJ = y/Do(x ,y)  PF(x ) is the full capacity output vector associated with actual 

output vector y, with Do(x ,y) = min{: y/  P(x )},  and so the rate of capacity 

utilization is CUGJ = Do(x ,y)  1. The superscript “GJ” honors the two pioneers, Gold 
and Johansen. CUGJ is measured holding the output mix constant, and so is useful 
without output price information even when M > 1. CUGJ is a gross measure that can 
be decomposed into the product of an output-oriented technical efficiency term 
[Do(x,y)  1] and a net capacity utilization term [Do(x ,y)/Do(x,y)  1]. We refer to the 
two components of CUGJ as wasted capacity and excess capacity, respectively.4 

Our second definition follows Segerson & Squires (1995) and Lindebo et al. 
(2007), and solves a revenue maximization problem.5 It is dependent on the output 
price vector p, and defines capacity output as the vector yr  PF(x ) that solves the 

revenue maximization problem max {pTy: x   x }, and so the rate of capacity 

utilization is CUr = pTy/pTyr  1. In Figure 2 the vectors ya = y/Do(x,y)  PF(x) and yGJ 

= y/Do(x ,y)  PF(x ) divide revenue-based capacity utilization into three components, 

an output-oriented technical efficiency term pTy/pTya = Do(x,y)  1 and a pair of 
capacity utilization components, a radial capacity utilization term pTya/pTyGJ = 
Do(x ,y)/Do(x,y)  1 and an output mix term pTyGJ/pTyr. We refer to the three 
components as wasted capacity, excess capacity, and misallocated capacity, 
respectively. Wasted capacity and excess capacity have the same interpretations 
and magnitudes as in the output maximization problem, and misallocated capacity is 
new. It captures the economic value of an optimizing movement along PF(x ) to 
adapt the output mix to prevailing output prices. 

Our third definition follows Coelli et al. (2002), and solves a variable profit 
maximization problem, with variable profit π  = pTy – w Tx , w  being the variable 
input price vector and w Tx   being variable cost. This definition is dependent on two 
price vectors, p and w . It defines capacity output as the output vector y   
PF(x ,x ) that, together with x , solves the variable profit maximization problem 
max , {pTy - w Tx : x   x }, so that maximum π  = pTyv - w Tx . The rate of 

capacity utilization is CUv = pTy/pTyv. The vectors ya = y/Do(x,y)  PF(x) and yb = 

y/Do(x , x ,y)  PF(x ,x ) divide CUv into an output-oriented technical efficiency 

term pTy/pTya = Do(x,y)  1 and a pair of capacity utilization components, a radial 

capacity utilization term pTya/pTyb = Do(x ,x ,y)/Do(x,y)  1, and an output mix term 

pTyb/pTyv. As in the revenue maximization problem we refer to the three components 
as wasted capacity, excess capacity, and misallocated capacity, although excess 
capacity and misallocated capacity have different magnitudes in the two problems.6 

We are now prepared to introduce capacity utilization into a duPont triangle. 
For the output maximization problem we have 
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      /A = /R × R/A 
        

       = /R × pTy/[pTy/Do(x ,y)] × [pTy/Do(x ,y)]/A,                       (2) 

 
in which CUGJ is pTy/[pTy/Do(x ,y)] = pTy/pTyGJ = R/RGJ = Do(x ,y), and asset turnover 
is converted to potential asset turnover, defined as [pTy/Do(x ,y)]/A = pTyGJ/A = RGJ/A. 
Although CUGJ appears to be price-dependent, prices appear in CUGJ to implement 
the division operator, and to maintain a revenue-based numerator in the potential 
asset turnover term. As above, CUGJ decomposes into wasted capacity and excess 
capacity components, and so expression (2) contains four drivers of ROA. 

For the revenue maximization problem we have 

 
      /A = /R × R/A 
 
       = /R × pTy/pTyr × pTyr/A,                   (3) 
 

in which CUr is pTy/pTyr = R/Rr and potential asset turnover is pTyr/A = Rr/A. In this 
case CUr is price-dependent, and decomposes into wasted capacity, excess 
capacity and misallocated capacity. Consequently expression (3) contains five 
drivers of ROA. 

 For the variable profit maximization problem we have 

 
     π /A = π /R × R/A          
  

        = π /pTyv × π /π  × pTyv/A,                (4)
  

in which the profit margin is converted to a potential profit margin π /pTyv = π /Rv, 

CUv is π /π , and potential asset turnover is pTyv/A = Rv/A. CUv remains price-
dependent, and decomposes into wasted capacity, excess capacity and misallocated 
capacity. Expression (4) also contains five drivers of ROA. 

 The three CU measures are derived from an analytical framework in which x  

 x , and therefore C  = w Tx   C  = w Tx . However it is possible to impose C   C  

without imposing x   x , thereby allowing substitution among fixed inputs along a 

fixed input budget constraint C   C . This formulation is particularly appropriate if 
information on w  is unavailable. However if this information is available, then the 

constraints x   x  collapse to a single constraint wf
Txf  C   (w /C )Tx   1. This 

strategy allows the construction of three “fixed cost indirect” CU measures 
corresponding to the three direct measures in expressions (2) – (4). In this case P(x ) 
is replaced by P(w /C )  P(x ), and so each indirect CU measure is smaller than its 
corresponding direct CU measure. Referring to Figure 8.2, PF(x) remains 
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unchanged, PF(x ,x ) expands to PF(w /C ,x ), and PF(x ) expands to PF(w /C ). The 
full capacity output quantity vectors increase accordingly.7  

The output maximization problem becomes max {y: (w /C )Txf  1}, and the 

associated duPont triangle is  

 
      /A = /R × R/A 
        

       = /R × pTy/[pTy/Do(w /C ,y)] × [pTy/Do(w /C ,y)]/A,            (5) 

 

in which the fixed cost indirect CUGJ simplifies to Do(w /C ,y). 

 The revenue maximization problem becomes max {pTy: (w /C )  1}, and the 

associated duPont triangle is unchanged from that in expression (3), with the proviso 
that yr  PF(w /C ). The variable profit maximization problem becomes max , {pTy - 

w x : (w /C )  1}, and the associated duPont triangle is unchanged from that in 

expression (4), with the proviso that yv  PF(w /C ,x ).  

 The direct and fixed cost indirect analyses are structurally similar; the only 
difference is the expansion of the direct output sets PF(xf,xv

v) and PF(xf) to the fixed 

cost indirect output sets PF(w /C ,x ) and PF(w /C ), and the corresponding 
reductions in capacity utilization. The virtues of the fixed cost indirect approach are 
(i) at the producer level it offers flexibility in the allocation of fixed cost budgets, (ii) at 
the industry level it offers managers and/or regulators an alternative way of 
restricting capacity, by assigning quotas to a single variable C   C  rather than 

several x   x , and (iii) at the analyst level it shrinks the number of direct constraints 
in an optimization problem.  

We have introduced direct and fixed cost indirect measures of capacity 
utilization into a duPont triangle. We now attempt to introduce productivity into a 
duPont triangle by extending expression (1) to 

 
/A = /R × pTy/pTyc × pTyc/A 
 
       = [1 – (C/R)] × pTy/pTyc × pTyc/A,                (6) 
 

in which C/R is the ratio of cost to revenue, also known as the operating ratio or the 
expense ratio. Gold argued, convincingly, that productivity was negatively related to 
C and positively related to R, both of which are positively related to /R.  

Gold’s argument is persuasive, but analytically deficient. Y/X does not appear 
explicitly in expression (6) as a driver of /R. Its role is played out behind the scenes. 
There is a reason for its absence. The components of the duPont triangle are 
absolute variables describing levels. But Y/X is a relative variable describing change 
from one situation to another. Any attempt to incorporate a relative variable into a 
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relationship among absolute variables is destined to fail. Incorporating productivity 
into a duPont triangle requires construction of a pair of triangles, so that change from 
one to another may be driven in part by productivity change. We undertake this 
exercise in Section 4. 

4. Drivers of  ROA Change 

In this Section we convert an atemporal duPont triangle to an intertemporal 
duPont triangle change. We then show how change in the rate of capacity utilization 
and productivity change affect ROA change.  

The ratio of comparison period to base period duPont triangles is 

 (/A)1/(/A)o = (/R)1/(/R)o × (R/A)1/(R/A)o.              (7) 

We consider three different strategies for incorporating change in the rate of capacity 
utilization and productivity change into expression (7). All three strategies are based 
on Gold’s expression 

Y/X = Yc/X × Y/Yc,                  (8) 

 
in which Y and X are output and input quantity indexes and Yc is a full capacity 
output quantity index derived from any one of the six direct and indirect capacity 
output vectors defined in Section 3. The three quantity indexes can be either 
theoretical technology-based indexes or empirical price-based indexes. Expression 
(8) states that actual productivity change Y/X is the product of potential productivity 
change Yc/X and change in capacity utilization Y/Yc. Gold provides a detailed 
discussion of the relationship, and of the relative merits of Y/X and the less volatile 
Yc/X as productivity indexes. 

One strategy is to introduce Y/X = Yc/X × Y/Yc directly into the profit margin 
change leg of expression (7), generating a model in which CU change influences 
Y/X, which influences /R change, which drives ROA change. In this strategy the 
analysis proceeds in two steps. In the first step we use any of the six optimization 
problems to create a full capacity output vector yc. In the second step we use yc to 
derive CU = Y/Yc and to derive (and perhaps decompose) the Yc/X component of 
Y/X. This generates the expression 
 

(/A)1/(/A)o = (/R)1/(/R)o × (R/A)1/(R/A)o      
 
                                   Y/X = Yc/X × Y/Yc.                         (9) 
 

A second strategy starts with a duPont triangle that incorporates capacity 
utilization. It converts the triangle to a triangle change and continues by introducing 
Y/X into the profit margin change leg of the triangle. This strategy generates a model 
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in which Y/X influences ROA change through the /R change leg, and CU change 
influences ROA change independently, but CU change does not influence Y/X. 
Using generic expression (1) and writing Rc = pTyc generates the expression  
 

(/A)1/(/A)o = (/R)1/(/R)o × CU1/CUo × (Rc/A)1/(Rc/A)o 

  

                 Y/X.                         (10)
      

A third strategy starts with a duPont triangle that incorporates capacity 
utilization, converts it to a triangle change, and continues by introducing Y/X = Yc/X × 
Y/Yc into the profit margin change leg of the triangle change. This strategy generates 
a model in which Y/X influences ROA change through the /R change leg, and CU 
change influences ROA change twice, once through its impact on productivity 
change in the profit margin change leg, and again independently. Again using 
expression (1) to illustrate, we have8 
 

(/A)1/(/A)o = (/R)1/(/R)o × CU1/CUo × (Rc/A)1/(Rc/A)o 

  
                  Y/X = Yc/X × Y/Yc.                                 (11) 
 

These three strategies raise an issue. What is the most likely relationship 
linking CU change, productivity change and ROA change? The first strategy is 
preferred if CU change influences productivity change, which influences ROA 
change, but CU change has no independent influence on ROA change. The second 
strategy is preferred if CU change influences ROA change independently and has no 
influence on productivity change. The third strategy encompasses the first two, and 
is preferred if CU change influences ROA change independently, and again through 
its impact on productivity change, which influences ROA change. All three choices 
face the challenge, originally encountered by Gold, of showing analytically how Y/X 
influences the profit margin change leg of the duPont triangle. The driving 
relationships in expressions (9) – (11) are hypotheses rather than analytical 
demonstrations. We meet this challenge in Section 5. 

5. Incorporating Productivity Change into a duPont Triangle Change 

In this Section we introduce price change, and we show how productivity 
change and price change drive margin change, and thus ROA change. We have 
already shown that it is straightforward to incorporate change in the rate of capacity 
utilization into a duPont triangle change expression, and we write, using yc as the 
solution vector to any of the six direct and indirect optimization problems in Section 
3, 



9 
 

 
⁄

⁄
 = 

⁄

⁄
 × 

⁄
 × 

⁄

⁄
 ,          (12) 

which attributes ROA change to profit margin change, change in the rate of capacity 
utilization, and change in potential asset turnover. Change in the rate of capacity 
utilization exerts an independent influence on ROA change, but neither productivity 
change nor price change appears in expression (12). 

  We now consider how price change and productivity change influence ROA 
change. The key is to acknowledge that change in the profit margin derives from 
price change and quantity change, and we write 

 
	 ⁄ 				

⁄

	 ⁄

⁄

⁄

⁄
 

     =	
⁄

⁄

	 ⁄

⁄
,                                                       (13) 

where π  = poTy1 – woTx1 and R  = poTy1 in the first equality are comparison period 

profit and revenue evaluated at base period prices, and π  and R  in the second 
equality are base period profit and revenue evaluated at comparison period prices. 
We focus on the first equality, in which the first term on the right side is that part of 
the margin change that can be attributed solely to price change, since it compares 
nominal and real comparison period margins. The second term on the right side is 
that part of the margin change attributable solely to quantity change, since it 
compares the real comparison period margin with the nominal base period margin. 
We return to the second equality in Section 5.2.9 

 We develop two strategies for decomposing the margin change component of 
ROA change. In the first we express the quantity effect in terms of the theoretical 
productivity index proposed by Caves et al. (1982). In the second we express the 
quantity effect in terms of empirical Laspeyres, Paasche and Fisher quantity 
indexes. Both strategies decompose the quantity effect, but in different ways. 
Problems with the first strategy include (i) the CCD productivity index is not in Y/X 
form; (ii) decomposing the quantity effect in terms of a CCD productivity index 
requires cost allocation, so that wTx = cTy, with c  R  a vector of unit costs of 
producing each output; (iii) it is not possible to express the price effect in terms of a 
CCD price recovery index that has a meaningful economic interpretation; and (iv) 
the CCD productivity index must be estimated, which requires degrees of freedom. 
The second strategy requires information on output and input prices. Of course 
drawbacks of one strategy are strengths of the other. 

 

5.1 The Theoretical CCD Productivity Index Strategy 



10 
 

We focus on the quantity effect 
π ⁄

π ⁄
 in the first equality in expression (13). 

Assuming that cost allocation is feasible, we can write10 
 

o = poTyo - woTxo  

    = poTyo – coTyo  

    = (po- co)Tyo,                 (14) 

where woTxo = coTyo, co being a vector of base period unit costs of producing each 
output. Writing base period profit in this way enables us to rewrite the base period 
profit margin as 

   = [(po- co)Tyo]/Ro 

      = [(po- co)/Ro]Tyo] 

      = oTyo,                            (15)                       
 

where o = (po - co)/Ro. Similarly, we can rewrite the real comparison period profit 
margin as 

 = [(po- c )Ty1]/R              

                = [(po- c )/R ]Ty1 

                = ρ Ty1,                            (16)                       
 

where c y1 = woTx1 and ρ  = (po - c )/R . Consequently the quantity effect can be 
rewritten as  
 

 
π ⁄

π ⁄
	 	

ρ
.                 (17) 

 
 

The next step is to interpret expression (17), which we do with the assistance 
of Figure 3, in which To and T1 are base period and comparison period production 
frontiers analogous to PFo(xo) and PF1(x1). We have 

 

 
π ⁄

π ⁄
		 	

ρ ρ

ρ

ρ
,                  (18) 

 
where yA = yo/D (xo,yo), yB = yo/D (xo,yo) and yC = y1/D (x1,y1). We can rewrite 
expression (18) as 



11 
 

 
π ⁄

π ⁄
	 	 ,

,
 

ρ
 

                     =  
,

,

,

,

ρ
,                   (19) 

 

where 
,

,
 = 

,

,

,

,
 is an output-oriented comparison period 

CCD productivity index. We know from Caves et al. (1982) that the two components 
D (x1,y1)/D (xo,yo) and D (xo,yo)/D (xo,yo) measure technical efficiency change and 
technical change respectively, as is apparent from Figure 3. Consequently11 

     
π ⁄

π ⁄
	 	M y , y , x , x

ρ
.                      (20) 

The term [ρ TyC/ρ yB] measures the productivity impact of size change that is 
absent from M (yo,y1,xo,x1), and corresponds to the movement along T1 from 

(xo,yB) to (x1,yC) in Figure 3. Thus the quantity effect 
π ⁄

π ⁄
 is a measure of 

productivity change, because it includes the impact of size change along with the 
impacts of technical efficiency change and technical change.12  

Substituting expression (20) into expression (12) yields a decomposition of 
ROA change incorporating (and decomposing and augmenting) a theoretical CCD 
productivity index 

π A⁄

π A⁄
		
	π R⁄

π R⁄
D x , y
D x , y

D x , y
D x , y

ρ y
ρ y

 

                                         
/

/
	

⁄

⁄
,																							(21) 

where Rtc = ptTytc, t=o,1. Expression (21) attributes ROA change to price recovery 
change, three components of productivity change, change in capacity utilization and 
change in potential asset turnover. Although capacity utilization change influences 
ROA change, it does so without influencing productivity change. 

 Starting with the first equality in expression (13) leads to a decomposition of 
ROA change in expression (21) built on a comparison period CCD productivity index 
and a size change term measured along comparison period technology. Starting with 
the second equality in expression (13) and following the same procedures generates 
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a decomposition of ROA change built on a base period CCD productivity index and a 
size change term measured along base period technology. Omitting intermediate 
steps, this decomposition is 

π A⁄

π A⁄
		
	π R⁄

π R⁄
D x , y
D x , y

D x , y
D x , y

ρ y

ρ y
 

                                         
/

/
	

⁄

⁄
,                  (22) 

 

in which ρ  = [(p1- c )/R ]Tyo, R  = p1yo and yD is located on To in Figure 3. 
Expression (22) decomposes ROA change into price recovery change, a base period 
CCD productivity index, a size change term measured along base period technology, 
change in capacity utilization and change in potential asset turnover. The capacity 
and turnover terms are the same as in expression (21). It is straightforward to 
calculate the geometric mean of expressions (21) and (22) to create an ROA change 
decomposition based on a geometric mean price recovery effect, a geometric mean 
CCD productivity index, and a geometric mean size change effect. 

Kendrick & Grossman (1980) have argued, and demonstrated empirically, that 
productivity change is positively related to change in the rate of capacity utilization at 
the aggregate level. Many subsequent writers concur. Our objective is to introduce 
capacity utilization change as a driver of productivity change in expression (21).  

The key to relating the two is contained in Gold’s expression Y/X = Yc/X × 
Y/Yc, which states that Y/X depends on change in CU, which is nice because a lot of 
empirical evidence supports the linkage, and the sign of the impact of CU change on 
Y/X is indeterminate, which is also nice because it makes pro-cyclicality a testable 

hypothesis. Suppose, as seems reasonable but not certain, that Yc/X ≷ 1 ≷ Y/Yc, so 

that potential productivity and capacity utilization move in opposite directions.  Then 

productivity is pro-cyclical if (Y/Yc) ≷ 1  [(Yc/X) × (Y/Yc)] ≷ 1 and counter-cyclical if 

(Y/Yc) ≷ 1  [(Yc/X) × (Y/Yc)] ≶ 1. Alternatively, if causation moves in the opposite 

direction, productivity is pro-cyclical if (Yc/X) ≷ 1  [(Yc/X) × (Y/Yc)] ≶ 1 and counter-

cyclical if (Yc/X) ≷ 1  [(Yc/X) × (Y/Yc)] ≷ 1. In words, productivity change is pro-

cyclical if CU adjusts more than proportionately to change in potential productivity.13 

Referring to Figure 2, in each period ptTyt/ptTyat = ptTyt/ptTyGJt  ptTyat/ptTyGJt, 
t=o,1, which states that wasted capacity (technical inefficiency) can be expressed as 
the ratio of gross excess capacity to net excess capacity. Change in wasted capacity 
coincides with the technical efficiency change component of the CCD productivity 
index. Following De Borger & Kerstens (2000), we replace the technical efficiency 
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change component of the CCD productivity index with the ratio of gross excess 
capacity to net excess capacity to obtain 

        
,

,
	 	 ,

,

, ,

, ,⁄

,

,
,             (23) 

 

which states that a CCD productivity index can be expressed as the product of 
technical efficiency change relative to PFo(x ) and PF1(x ), change in the net rate of 
capacity utilization, and technical change. Substituting expression (23) into 
expression (19) yields 

 

 
π ⁄

π ⁄
	 	 ,

,

, ,

, ,⁄

,

,
	

ρ

ρ
,		 (24) 

which decomposes actual productivity change into change in net capacity utilization 
and potential productivity change (the CCD productivity index analogue to Yc/X). 
Gold’s expression (8) is embedded in expressions (23) and (24), in theoretical index 
number form. Finally, substituting expression (24) into expression (21) yields the 
complete CCD decomposition of ROA change 

π A⁄

π A⁄
		
	π R⁄

π R⁄
	
D x , y

D x , y

D x , y D x , y

D x , y D x , y⁄

D x , y
D x , y

	 

                             
ρ

ρ
	 /

/
	

⁄

⁄
,            (25) 

 

which attributes ROA change to price change, potential productivity change, change 
in the rate of capacity utilization, and change in potential asset turnover. Change in 
capacity utilization plays a dual role, as an independent driver of ROA change, and 
as a driver of potential productivity change, which in turn drives ROA change. A 
similar decomposition can be derived from expression (22), and the geometric mean 
of expression (25) and the decomposition based on expression (22) can be 
calculated.14 

5.2 The Empirical Index Number Strategy 

Expressions (23) – (25) use a pair of augmented CCD productivity indexes to 
interpret the quantity effect as a productivity effect, on the assumption that cost 
allocation is feasible. Although these expressions do provide an augmented CCD 
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productivity index interpretation of the quantity effect, they do not provide an 
analogous interpretation of the price recovery effect. This requires empirical quantity-
based and price-based indexes. 

 A few mathematical manipulations enable us to write the price recovery effect 
in the first equality of expression (13) as  

 
	π ⁄

π ⁄
 = 

	
 ,                  (26) 

in which PP/WP is a quantity-based Paasche price recovery index, with 
	π ⁄

π ⁄
 ⋛ 1 

 PP/WP ⋛ 1. Expression (26) contains comparison period and base period prices, 

but only comparison period quantities, and shows the contribution of PP/WP to profit 
margin change.  

We follow the same strategy to write the quantity effect in the first equality of 
expression (13) as  

 
π ⁄

π ⁄
	 	 π

	
	

 ,                                (27) 

in which YL/XL is a price-based Laspeyres productivity index, with 
π ⁄

π ⁄
 ⋛ 1  

YL/XL ⋛ 1. Expression (27) contains comparison period and base period quantities, 

but only base period prices, and shows the contribution of YL/XL to profit margin 
change.  

Substituting expressions (26) and (27) into expression (12) yields a 
decomposition of ROA change based on empirical price and quantity indexes        

π A⁄
π A⁄

	
π

R 	 P
W w x

		 	
π

R Y
X w x

 

                                         
/

/
	

⁄

⁄
,                  (28) 

which attributes ROA change to price change, productivity change, change in 
capacity utilization and change in potential asset turnover. The difference between 
expressions (25) and (28) is that the augmented CCD productivity index 
decomposes by economic driver, while the Paasche price recovery index and the 
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Laspeyres productivity index decompose by variable. In both expressions price 
recovery change, productivity change and change in the rate of capacity utilization 
exert independent influences on ROA change. Change in the rate of capacity 
utilization is a driver of productivity change in expression (25), but not in expression 
(28). We explore this relationship next.  

The key to relating productivity change to capacity utilization change is, as in 
Section 5.1, Gold’s expression Y/X = Yc/X × Y/Yc. If the quantity indexes Y, Yc and X 
are empirical indexes we can write 

 

⁄
 = 

⁄
 ×	

⁄
 

 

        = 
⁄

 ×	
⁄

 ,                                (29) 

where p and w can be base period or comparison period price vectors. The first term 
on the right side of expression (29) is Yc/X and the second is Y/Yc. The second 
equality rewrites and clarifies the capacity utilization change term. Expression (29) is 
interpreted exactly as Gold’s expression (8), in empirical index number form. 
Substituting a Laspeyres version of expression (29) into expression (27) yields 

 

 
π ⁄

π ⁄
	 	 o1

Ro
1 	

YL
YL
c

YL
c

XL
woTx1

,                                 (30) 

 

which expresses actual productivity change in terms of change in capacity utilization 
and potential productivity change. Substituting expression (30) into expression (28) 
yields 

 
⁄
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/

/
	

⁄

⁄
,              (31) 
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which attributes ROA change to price recovery change, productivity change, change 
in the rate of capacity utilization and change in potential asset turnover. Change in 
the rate of capacity utilization appears twice, as an independent driver of ROA 
change, and as a driver of productivity change.  

 The first equality in expression (13) generates a Paasche price recovery effect 
and a Laspeyres quantity index that eventually make their way into the ROA change 
decomposition in expression (31). We now return to the second line, in which the first 
term is a price recovery effect and the second term is a quantity effect. It is easy to 
manipulate the two effects to generate 

 

 
⁄

⁄
	 		

	
 ,           (32) 

 

which is a Laspeyres price recovery effect in which PL/WL is a Laspeyres price 

recovery index, with 
⁄

⁄
 ⋛ 1  PL/WL ⋛ 1.15 Similarly, 

		
	 ⁄

⁄
		 		

	 	
	

	,                (33)                  

  

which is a Paasche productivity effect in which YP/XP is a Paasche productivity index, 

with 
	 ⁄

⁄
 ⋛ 1  YP/XP ⋛ 1. Noting that  = , substituting this 

expression into expression (33), and replacing the price and quantity effects in 
expression (31) with those in expressions (32) and (33) generates 
 

 
⁄

⁄ 	
	 	

	 	
		

																																									 /

/
	

⁄

⁄
,         (34) 

which is an alternative decomposition of ROA change based on a Laspeyres price 
recovery recovery index and a Paasche productivity index with capacity utilization 
appearing twice. 
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 Taking the geometric mean of expressions (26) and (32) generates a Fisher 
price recovery effect, and taking the geometric mean of expressions (27) and (33) 
generates a Fisher productivity effect. It does not, however appear possible to 
express the Fisher price recovery effect in terms of PF/WF or the Fisher productivity 
effect in terms of YF/XF. 

The quantity vectors needed to implement the ROA change decompositions in 
expressions (31) and (34) (and also in expression (25) in Section 5.1) are either 
observed (y1,yo,x1,xo) or solutions to optimization problems specified above (yc1,yco). 
All that is required is to specify a functional form for the index numbers in 
expressions (31) and (34) (and specify base period or comparison period technology 
and conditioning variables for the distance functions in expression (25) in Section 
5.1). The two decompositions are interpreted in exactly the same way; the only 
difference is that one uses distance functions and the other uses prices to 
decompose productivity change and to measure change in capacity utilization. 
 
 
6. External Capacity Constraints 
 

Thus far we have treated capacity utilization as a short run phenomenon 
created by a fixed input constraint x  		x  or by a weaker fixed input expenditure 

constraint C   C . These capacity constraints are internal to the firm. However firms 
also face external capacity constraints that have financial consequences. Mining 
firms are constrained by health, safety and environmental regulations, by weather 
conditions, by a lack of social infrastructure (e.g., housing and schools), and also by 
inadequate transport infrastructure that inhibits their ability to move minerals to ports 
to satisfy demand in a timely fashion.16 Fishers are constrained by a variety of fishery 
management policies intended to limit catch in a fishery in pursuit of maximum 
economic yield. Input-oriented policies constrain fisher fixed input use, or “effort,” 
and output-oriented policies impose total allowable catch (TAC) limits on the fishery, 
often combined with individual transferrable quota (ITQ) allocation among fishers.17 
In both industries external capacity constraints may make at least some internal 
capacity constraints redundant for at least some firms at least some of the time.18  

Figure 4, a simultaneously simplified and augmented version of Figure 2, 
illustrates the potential impact of external capacity constraints. Two internal frontiers, 
PF(x) and PF(x ), remain, and the third internal frontier, PF(x ,xv

v) remains as well, 
but for expositional simplicity is replaced by a new external frontier PF(Z). The three 
internal frontiers are interpreted as before. The external frontier PF(Z) represents the 
collective impacts of industry management practices and regulations, supply chain 
bottlenecks and other production-limiting capacity constraints unrelated to x  or C .  

Using the output maximization framework of Gold and Johansen, output 
vector y has wasted capacity pTy/pTya and excess capacity pTya/pTyGJ. It also has 
over-capacity pTyGJ/pTyE. In mining overcapacity may be due to the transport 
infrastructure constraint, and in fishing it may be due to the imposition of TAC and 
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ITQ. The interpretation is similar in the revenue maximization and variable profit 
maximization frameworks, although yE would not be a revenue maximizing or profit 
maximizing output mix given output price vector p. Since P(Z)  P(x ), the internal 
capacity constraints associated with the output maximization and revenue 
maximization frameworks are rendered redundant by Z. The external capacity 
constraints have eliminated overcapacity by reducing capacity, thereby increasing 
capacity utilization from pTy/pTyGJ to pTy/pTyE. PF(Z) is not a neutral contraction of 
PF(x ), and may constrain some outputs proportionally more than others. PF(Z) may 
also constrain some firms more than others, inducing exit by relatively weak forms 
that creates a more efficient industry structure. 
 
 
7. Summary and Conclusions 
 

Change in the financial health of a business depends on trends in its price 
recovery, its productivity, its rate of capacity utilization, and in the external capacity 
constraints it faces. We have developed a pair of analytical frameworks with which to 
examine the relationship between change in financial health and its four drivers. We 
measure financial health with return on assets, and both analytical frameworks begin 
with the duPont triangle. The first framework exploits a theoretical productivity index, 
and the second is based on empirical price and quantity index numbers. Both 
frameworks provide valuable information to management concerning the likely 
sources of changes in its financial performance. The two frameworks have offsetting 
strengths. The first does not require price information, and decomposes the 
productivity effect into three economic drivers of productivity change, technical 
efficiency change, technical change, and size change. The second framework 
decomposes both the productivity effect and the price recovery effect into the 
contributions of individual quantity changes and price changes. The second does not 
require cost allocation, and it is calculated rather than estimated, so it does not face 
a degrees of freedom constraint. Both frameworks include change in capacity 
utilization twice, once as an independent driver of ROA change and again as a driver 
of productivity change. We also show how external capacity constraints influence 
capacity output.  
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Figure 1  The duPont Triangle at Rio Tinto 
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Figure 2  Capacity and its Rate of Utilization 
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Figure 3 Output-Oriented Productivity Effect Decomposition 
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Figure 4  Internal and External Capacity Constraints 
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1 Source: http://au.advfn.com. 
2 Chandler (1962) and Johnson (1975, 1978) detail the development and use of the ROA 
triangle at duPont and GM. 
3 Gold and Johansen proposed virtually identical physical definitions of yc, and their definition 
of yc was given a managerial slant akin to the use of standard volume at GM. Gold 
emphasized “practically sustainable capacity,” determined by “the customary number of 
shifts and the normally acceptable length of work day and work week,” and with allowance 
made for breakdowns, repairs and maintenance. Johansen conditioned his definition on the 
assumption that the firm is “operating under normal conditions with respect to number of 
shifts, hours of work etc.”   
4 The United Nations Food and Agriculture Organization (FAO) (2000) has endorsed the 
physical measure of capacity utilization proposed by Gold and Johansen, in part due to the 
shortage of reliable information on output and variable input prices. 
5 Segerson & Squires justify a revenue maximization objective on the grounds that in the 
short run all inputs are quasi-fixed, so that x = x . Their CU analysis is based on a dual 
shadow price approach. 
6 If M=1 the solution to the variable profit maximization problem is very similar to the solution 
to the short run average cost minimization problem proposed by Klein (1960) and Berndt & 
Morrison (1981) and widely used in the fisheries literature. Sources of the difference are (i) 
price  minimum short run average cost and (ii) minimum short run average cost  minimum 
short run average variable cost. An overlooked definition of full capacity output was 
proposed by de Leeuw (1962), who defined capacity output as that level of output at which 
short run marginal cost exceeds minimum short run average cost by some percent, the logic 
being that at that output level marginal cost is well above minimum average cost, signalling 
upward pressure on output price.  
7 The theory of cost indirect and return indirect production was developed by Shephard 
(1974). Empirical applications are regrettably rare. A fixed cost indirect capacity utilization 
measure was proposed by Färe et al. (2000).  
8 Schultze (1963) summarizes the theory behind and evidence for the argument that 
changes in capacity utilization influence productivity change and profit margin change. 
9 It does not appear possible to implement decomposition (13) into pure price and quantity 
effects using Edgeworth-Marshall arithmetic mean price and quantity vectors (p,w  and (y, x   
because this introduces three pairs of price vectors (po,wo), (p1,w1) and (p,w), and three pairs 
of quantity vectors (yo,xo), (y1,x1) and (y, x). 
10 Cost allocation is a contentious issue. Allocating operating cost is feasible, although the 
allocation may not be optimal, but allocating overhead cost is difficult; Shubik (2011) calls it 
an open problem in economic theory and accounting. Estache & Grifell-Tatjé (2011) 
compromise by ignoring overhead cost, or general expenses, and allocating operating cost 
to three activities in a sample of Mali water utilities. 
11 Although the CCD productivity index is not in Y/X form, we can calculate MCCD(y,x) and 
M (yc,x) and define change in capacity utilization residually as MCCD(y,x)/M (yc,x). 
12 Expression (20) augments the CCD productivity index with what we call a size change 
term, in an effort to introduce a size-related driver of productivity change that might capture 
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the joint impacts of economies of scale and diversification. Our effort has several 
antecedents; Färe et al. (1994), Ray & Desli (1997) and Grifell-Tatjé & Lovell (1999) all 
augment the CCD productivity index, which ignores the potential impact of size change on 
productivity change, with a size change term, although these terms differ. 
13 The indexes Y, Yc and X, and therefore Y/X, Yc/X and Y/Yc, must equal unity in the base 
period. Thus, for example, CU grows or shrinks from an initial value of unity. However we 
observe or solve for the underlying output quantity vectors. This allows us to calculate CUm

t 
= ym

t/ym
ct, m=1,…,M, t=o,1, for each output individually, or we can calculate an aggregate 

price-dependent measure CUt = Rt/Rct = ptTyt/ptTyct.  
14 We base our decompositions on a CCD productivity index. We prefer to decompose the 
Malmquist productivity index proposed by Bjurek (1996), in part because it is in Y/X form. 
This index decomposes as 

 
, ,⁄

, ,⁄
 = 

, ,⁄

, ,⁄
 × 

, ,⁄

, ,⁄
 , 

where DI(y,x) is an input distance function. The first term on the right side is Yc/X and the 
second is Y/Yc. Unfortunately it does not appear possible to link this productivity index with 

the quantity effect 
π ⁄

π ⁄
.                             

15 Frankel (1963) recommends use of Paasche quantity indexes (and, to satisfy the product 
test, Laspeyres price indexes) because, being based on comparison period weights, they 
are better suited to a company’s current needs than are the more popular Laspeyres 
quantity indexes. 
16 Mining Australia reports that floods in 2011 reduced Queensland’s coal exports by 20%. 
http://www.miningaustralia.com.au/news/qld-flood-damage-confirmed. Pincus & Ergas 
(2008) analyze Australian mining supply infrastructure bottlenecks, due in part to diffuse and 
uncoordinated ownership of port terminals, tracks and rolling stock. They cite a study 
commissioned by the Queensland government that estimated that revenues in excess of a 
billion AUD per year were being sacrificed to inefficiencies in a single coal supply chain. 
17 Squires et al. (2010) provide evidence on the capacity-reducing and distributional impacts 
of TAC and ITQ in the British Columbia halibut fishery. 
18 Overcapacity in a fishery results from lack of ownership, which creates a tragedy of the 
commons; external capacity constraints such as TAC and ITQ are intended to create 
property rights and alter fisher incentives. Overcapacity in mining results from the opposite 
problem, diffuse and uncoordinated ownership of links in the transport infrastructure. 
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