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Proemi

E
scriure uns apunts com aquests és com escriure un poema.
Per escriure un poema cal que descartem tots els milers de
paraules d’una llengua, llevat d’unes quantes i, aleshores,
cal que disposem aquestes poques paraules escollides en un

ordre adient, apropiat per aconseguir uns determinats objectius d’emoció
o coneixement. Escriure uns apunts de topologia no és gaire diferent
d’això. Cal renunciar a tots els innumerables coneixements que podŕıem
trobar, per exemple, a la Wikipedia, conservar-ne uns quants i —igual que
en el cas del poema— disposar-los en un ordre que generi en el lector
enteniment i potser, fins i tot, emoció intel·lectual.

Qualsevol persona que tingui accés als recursos d’Internet té al seu
abast, automàticament, la pràctica totalitat del corpus de coneixement
que hi ha a la topologia elemental —i a la topologia menys elemental. De
fet, tenim accés a massa coneixement que, a banda de ser inextricable, no
està disposat de manera lineal o seqüencial, que és l’única manera en què
podem assimilar-lo. Ensenyar és, entre altres moltes coses, linealitzar el
coneixement —i trencar la il·limitada cadena d’hyperlinks que tenim al
nostre abast.

Mentre he escrit aquests apunts, he tingut molt en compte això que
acabo de dir i —segons crec— he sabut resistir la temptació de l’enciclo-
pedisme i del “generalisme” que, si en un tractat de topologia poden ser
poc apropiats, en els apunts d’un curs serien un disbarat.

He explicat el contingut d’aquests apunts en un curs semestral a la
UAB, durant tres anys consecutius. He utilitzat materials de cursos ante-
riors —principalment exercicis— i he rebut l’ajuda d’alguns companys del
Departament de Matemàtiques, com Natàlia Castellana, Albert Ruiz, Joan
Porti i Carmen Safont. Publico aquests apunts amb una llicència Creative
Commons, amb el desig que tothom els pugui utilitzar lliurement. Aquesta
és la versió 1.1. Agrairé que em comuniqueu els errors que aneu trobant.

vii
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Caṕıtol 1

Introducció i prerequisits

1.1 La topologia

L
a topologia estudia el concepte d’espai. Per tant, l’hem de
pensar com una branca de la geometria. Mentre que, per
exemple, la geometria elemental es basa en l’axiomatització
del concepte de ĺınia recta, la topologia vol axiomatitzar con-

ceptes com els de connexió, continüıtat o ĺımit. La importància d’aquests
conceptes fa que la topologia ocupi un lloc central en l’edifici de la ma-
temàtica i que la seva influència arribi pràcticament a la totalitat d’aquest
edifici.

Quan estudiem la recta real R o, amb més generalitat, els espais eu-
clidians Rn, ens veiem obligats a pensar els seus punts com si formessin
un “continu”. Considerem, per exemple, els punts de la recta de coorde-
nada positiva R+ i considerem també l’origen de coordenades 0. Aquest
punt 0 està fora de R+, però no podem considerar que sigui del tot aliè a
R+. Hi està, d’alguna manera, “adherit”. Si volem donar un sentit prećıs
a això, podŕıem dir que R+ conté punts a distància de 0 tan petita com es
vulgui però, de fet, és més que això. Seguint aquesta ĺınia de raonament,
ens trobarem amb els conceptes de subconjunts oberts i tancats, entorns,
punts d’acumulació, continüıtat, compacitat, connexió... Són conceptes que
l’alumne ja coneix i que ens descriuen la topologia ordinària de l’espai eu-
clidià. L’alumne també haurà vist que aquests conceptes es deriven de
l’existència d’una funció de distància amb unes propietats senzilles.

Tenim, doncs, que l’alumne que comença aquest curs ja coneix una
bona quantitat de topologia. Coneix, ni que sigui de manera elemental, la

1
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topologia ordinària de Rn i potser també coneix la topologia dels espais
mètrics en general, pel que fa referència als conceptes de continüıtat,
compacitat o connexió. Però la topologia que estudiarem aquest curs és
una generalització de la topologia dels espais mètrics a un àmbit molt més
general —més general i, per això mateix, més flexible.

Dit això, l’alumne pot preguntar-se per la justificació de la necessitat
de tornar a estudiar el que ja sap des d’aquest punt de vista més general.
Aquesta necessitat quedarà clara al llarg del curs1 però és dif́ıcil justificar-
la abans d’iniciar l’estudi de la disciplina. El que śı que és relativament
senzill de fer és observar un experiment que ens hauria de convèncer de
l’excessiva rigidesa del concepte de distància en què es basa la topologia
dels espais mètrics. L’experiment és aquest: agafeu un full de paper i
rebregueu-lo (sense estripar-lo) tant com us vingui de gust. Penseu ara
que, mentre que la topologia intŕınseca del full de paper no ha canviat
gens ni mica, la funció distància entre els seus punts s’ha modificat d’una
manera monstruosa i indescriptible. Basar l’axiomatització de la topologia
en un concepte com la distància que s’altera tant amb la més mı́nima
transformació cont́ınua no sembla (no és) una bona idea.

Entendrem que l’estudi de la topologia d’un espai és l’estudi d’aque-
lles propietats de l’espai que no canvien si transformem l’espai de manera
bicont́ınua —és a dir, si fem una transformació cont́ınua invertible i amb
inversa també cont́ınua. En un llenguatge informal, tothom ha sentit dir
que un topòleg és aquella persona que no distingeix entre un dònut i una
tassa (vegeu la figura 1.1). Aquesta facècia fa referència al fet que, efecti-
vament, si imaginem el dònut fet a partir d’una substància indefinidament
mal·leable, podem transformar-lo de manera cont́ınua (sense trencar-lo)
en un objecte en forma de tassa. Cal dir que tot això és molt poc acurat
(ja en parlarem més endavant) però no deixa de tenir un cert fons de raó.

La topologia va néixer com una manera senzilla i sòlida de donar res-
posta a la petició de Riemann que l’any 1867 demanava una bona fona-
mentació del concepte d’espai. Al llarg del segle xx va desenvolupar-se
extraordinàriament i es va diversificar en diverses branques. Es parla,
per exemple, de topologia geomètrica o de topologia algebraica. Aquesta
branca —la topologia algebraica— va anar prenent, al llarg de tot el segle
passat, una dimensió extraordinària. En un moment donat, Dieudonné va
arribar a dir que la topologia algebraica era “la reina de les matemàtiques
del segle xx”. D’una manera molt general, podŕıem dir que la topologia
algebraica consisteix en l’estudi de les propietats topològiques dels es-

1Si més no, aix́ı ho espero i ho desitjo.
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Figura 1.1: “Doughnut Mug” (xkcd.com, Creative Commons License).

pais mitjançant mètodes algebraics. És a dir, en la topologia algebraica
l’àlgebra —ŕıgida, discreta— ens dóna informació sobre la topologia —
mal·leable, cont́ınua.

En aquest curs elemental de topologia introduirem l’axiomàtica dels es-
pais topològics i les aplicacions cont́ınues entre ells. Parlarem de subes-
pais i producte d’espais, de compacitat i de connexió, de superf́ıcies i dels
conceptes anàlegs en dimensió arbitrària. Estudiarem objectes relativa-
ment sorprenents —la topologia p-àdica, la topologia de Zariski, el conjunt
de Cantor o la corba de Peano— i també estudiarem objectes geomètrics
clàssics, com l’esfera, el tor, la banda de Moebius o l’espai projectiu —en
dimensió arbitrària. Parlarem del quocient d’un espai per l’acció d’un grup
i dels axiomes de separació —com el de Hausdorff. Acabarem el curs amb
el bonic teorema de classificació de les superf́ıcies compactes.

Aquests apunts són uns apunts. No són un llibre. A cada tema ens
concentrarem en allò que és estrictament fonamental i en allò que realment
farem a classe. Evitarem l’excessiva verbositat i deixarem per a les notes
a peu de pàgina els comentaris, aclariments o complements que no siguin
imprescindibles. Com que es tracta d’uns apunts, s’entén que els hem de
complementar amb el treball a l’aula.

En aquests apunts, només es donen demostracions per als teoremes
més dif́ıcils. Al llarg del text, hi una quantitat immensa d’afirmacions que
no es demostren. S’espera (i es recomana) que l’estudiant demostri per
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ell mateix cadascuna d’aquestes afirmacions. A més d’això, cada caṕıtol
s’acaba amb una llista d’exercicis sobre els temes que s’han tractat en el
caṕıtol.

1.2 Una mica de teoria de conjunts

En aquesta secció farem un repàs de la teoria de conjunts, tal com la
necessitarem en el nostre curs de topologia.2 Ho farem d’una manera
relativament superficial, ràpida, informal i esquemàtica perquè l’estudiant
que vulgui aprofundir en la teoria de conjunts ja trobarà altres textos més
adients.

Els axiomes

La teoria de conjunts es presenta com una fonamentació de la matemàtica3

en la qual hi ha uns objectes anomenats conjunts entre els que hi pot ha-
ver una relació designada pel śımbol ∈. Intüıtivament, es tracta de pensar
els objectes de les matemàtiques com a col·leccions d’altres objectes, de
manera que la relació A ∈ B s’interpreta intüıtivament com que A és un
element4 de la col·lecció (del conjunt) B. Aquesta relació de pertenència
ens permet definir la igualtat entre conjunts: Si A i B són conjunts, ales-
hores A = B significa que X ∈ A és equivalent a X ∈ B. Si X ∈ A implica
X ∈ B, direm que A és un subconjunt de B i utilitzarem la notació A ⊂ B.5

El pas següent és donar una sèrie d’axiomes que ens diran com po-
dem construir conjunts. Com que per començar necessitem alguna cosa,
el primer axioma ens diu que existeix algun conjunt. Un cop sabem que
hi ha algun conjunt, el mètode principal per construir conjunts, que utilit-
zarem constantment, el dóna l’anomenat axioma de comprensió: Si A és

2Recordem que aquesta topologia que estudiarem es coneix com a “topologia general”
i també com a “topologia conjuntista”.

3No tota la matemàtica actual es fonamenta en la teoria de conjunts que repassem
aqúı.

4Cal fer atenció a la diferència entre “conjunt” i “element”. Per exemple, la frase “X
és un conjunt” té sentit, però la frase “X és un element” no en té. La paraula “element”
només es pot utilitzar en una frase del tipus “A és un element de B”. Quan escrivim
A ∈ B, això vol dir que A és un conjunt, B és un conjunt i A és un element de B.

5Hi ha textos que, per denotar que A és un subconjunt de B, utilitzen el śımbol A ⊆ B.
En aquests apunts no ho farem aix́ı. Per exemple, escriurem A ⊂ A i, si volem indicar que
A és un subconjunt propi de B, escriurem A ⊊ B. Però mai no utilitzarem el śımbol ⊆.
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un conjunt i P és una propietat,6 aleshores existeix un conjunt que té per
elements exactament els elements de A que compleixen la propietat P . La
notació que utilitzarem per denotar aquest nou conjunt és aquesta:

{x ∈ A : x compleix P}.

Amb aquests dos axiomes ja en tenim prou per demostrar que existeix
un únic conjunt que no té cap element. L’anomenem el conjunt buit i el
designem per ∅.

Hi ha tres axiomes més que ens permeten construir nous conjunts a
partir d’uns altres conjunts donats. En primer lloc, si A i B són conjunts,
existeix un conjunt els elements del qual són exactament A i B. Aquest
conjunt es denota

{A,B}.
En segon lloc, si A és un conjunt, tots els subconjunts de A també formen
un conjunt, que es designa 2A o també P(A). Finalment, el tercer axioma
que ens permet construir nous conjunts és l’axioma que afirma l’existència
d’unions arbitràries. Diu aix́ı: Si A és un conjunt, existeix un conjunt els
elements del qual són els x tals que x ∈ X per algun X ∈ A. Això ens
diu que la unió de dos conjunts X ∪ Y és un conjunt, però va molt més
enllà perquè ens diu que podem considerar la unió de qualsevol conjunt
de conjunts.

Amb aquests axiomes ja podem definir els nombres naturals N i co-
mençar a fer matemàtiques. Com que, en teoria de conjunts, tot han de
ser conjunts, cada nombre natural ha de ser un conjunt. Definim 0 := ∅,
1 := {0}, 2 := 1∪{1}, etc. Com que “etcètera” no forma part de la teoria de
conjunts, caldrà un axioma espećıfic que garanteixi que N és un conjunt.7

Per acabar amb el que es coneix com l’axiomàtica de Zermelo-Fraenkel
de la teoria de conjunts, ens falten tres axiomes. El primer és el que es
coneix com l’axioma del reemplaçament que no discutirem aqúı perquè és
força tècnic i no l’utilitzarem en aquest curs.8 En segon és el famós axioma
de l’elecció que sortirà més endavant. El tercer és l’axioma de regularitat.

6Què és una “propietat”? Per poder contestar aquesta pregunta, hauŕıem de parlar
de teoria de conjunts des d’un punt de vista molt més formal del que fem en aquestes
notes.

7Aquest axioma diu aix́ı: Existeix un conjunt N que té aquestes tres propietats: 1)
∅ ∈ N; 2) Si x ∈ N, aleshores x ∪ {x} ∈ N; 3) Si ∅ ̸= x ∈ N, existeix y ∈ N tal
que x = y ∪ {y}. Es pot demostrar —utilitzant l’axioma de regularitat que veurem més
endavant— que aquest conjunt és únic.

8Per evitar cap misteri innecessari, diguem què diu aquest axioma, que tampoc no
és tan dif́ıcil. Imaginem que tenim una propietat P “de dues variables”, és a dir, una
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Aquest axioma afirma que si A és un conjunt no buit, existeix un x ∈ A tal
que x ∩ A = ∅. Per entendre la importància d’aquest axioma, pensem que
implica que x ∈ x és sempre fals o, més en general, implica que no hi ha
cap cadena infinita de conjunts9

x0 ∋ x1 ∋ x2 ∋ x3 ∋ · · ·

També implica que si A ∈ B, aleshores B /∈ A.

Productes, aplicacions, unions i interseccions

Si A i B són conjunts, el producte A × B serà el conjunt format per les
parelles ordenades (a, b) amb a ∈ A i b ∈ B. Hem de definir què és una
parella ordenada (que ha de ser un conjunt) i hem de demostrar que formen
un conjunt. En una parella ordenada, la propietat que volem garantir és
que (a, b) = (a′, b′) si i només si a = a′ i b = b′. Una manera d’aconseguir
això és definir (a, b) := {{a}, {a, b}}.

En el context de la teoria de conjunts, si volem definir el que és una
aplicació entre dos conjunts f : A → B ho farem a través de la gràfica de f .
Direm que una aplicació és un subconjunt f ⊂ A×B que té la propietat que
per tot a ∈ A existeix un únic b ∈ B tal que (a, b) ∈ f .10 En aquest cas,
escriurem b = f (a) i direm que b és la imatge de a per f . Si sobreentenem
f , també escriurem a 7→ b.11 Observem que, si A i B són conjunts, totes
les aplicacions f : A → B formen un conjunt que s’acostuma a designar
BA, però nosaltres designarem F (A,B). Una propietat essencial de les

propietat tal que, donats dos conjunts x, y, P(x, y) pot ser certa o falsa. Suposem que
aquesta propietat P compleix que per cada x hi ha un únic y tal que P(x, y) és cert.
Aleshores, si A és un conjunt, l’axioma afirma que {y : x ∈ A i P(x, y)} és un conjunt.
És com una mena de “teorema de la funció impĺıcita”. Comparem-lo amb l’axioma de
comprensió. Aquest axioma ens diu que si repassem un per un els elements d’un conjunt
A i ens quedem amb els x ∈ A que compleixen una certa propietat P(x), tindrem un
conjunt. L’axioma de reemplaçament, de manera similar, ens diu que si repassem un per
un els elements d’un conjunt A i, per cada x ∈ A ens quedem amb l’únic y que compleix
una certa propietat P(x, y), tindrem també un conjunt.

9Què volen dir aquests punts suspensius? Si ho volem dir ben dit, podem dir que no
hi ha cap aplicació N → X tal que f (n+ 1) ∈ f (n) per tot n.

10Aquesta definició té un problema: Si f : R → R i g : R → [0,∞) són les aplicacions
donades per f (x) = x2 i g(y) = y2, aleshores f = g, mentre que ens agradaria considerar
f i g com aplicacions diferents perquè tenen conjunts d’arribada diferents. La solució
consisteix en definir una aplicació com una terna F = (A,B, R) on R ⊂ A × B compleix
la propietat que hem indicat.

11Cal observar que els śımbols → i 7→ indiquen coses molt diferents. A més, el fet que
→ indiqui una aplicació fa que no puguem utilitzar aquest śımbol per a cap altra cosa.
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aplicacions és que, en determinats casos, es poden composar. D’altra
banda, per a qualsevol conjunt A podem considerar l’anomenada aplicació
identitat I : A → A que ve donada per I(a) = a. No insistirem més en això
perquè ja deu ser ben conegut.

Pel que fa a la unió de conjunts, ja hem vist que hi ha un axioma
espećıfic que ens assegura que podem considerar la unió de qualsevol
famı́lia de conjunts ∪

X∈A

X.

Això té sentit encara que A sigui el conjunt buit i en aquest cas, evident-
ment, la unió és també el conjunt buit.

La intersecció d’una famı́lia no buida de conjunts no necessita cap
axioma espećıfic. El conjunt ∩

X∈A

X

està ben definit sempre que A ̸= ∅.
Ens interessa també poder parlar del producte d’una famı́lia arbitrària

de conjunts. Suposem que A és un conjunt i volem definir el producte de
tots els elements de A: ∏

X∈A

X.

La manera de fer-ho és pensar que un element del producte és una funció
f que assigna a cada element X ∈ A un element x ∈ X . És a dir:

∏

X∈A

X :=
{
f ∈ F

(
A,
∪

X∈A

X
)

: f (X ) ∈ X per tot X ∈ A
}
.

En particular, si A = ∅, tenim que ΠX∈AX és un conjunt amb un únic
element. També és clar que si algun dels factors d’un producte de con-
junts és el conjunt buit, el producte és buit. L’axioma de l’elecció postula
que el rećıproc també és cert: Si tots els X ∈ A són diferents del buit,
aleshores ΠX∈AX ̸= ∅. Aquest axioma és equivalent a l’axioma que diu
que tot conjunt admet una bona ordenació i l’alumne ja deu haver vist les
importants conseqüències que això té.

Al llarg del curs utilitzarem una construcció conjuntista interessant
que s’anomena la unió disjunta. Imaginem, per exemple, que S és la
circumferència unitat. Si volem considerar dues circumferències, no podem
prendre S ∪ S perquè, evidentment, S ∪ S = S. La unió disjunta de dos
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conjunts serà com la unió ordinària, però després de considerar que els
elements del primer conjunt són diferents dels del segon, encara que no
ho siguin. Dit més ben dit, la unió disjunta de A i B serà un conjunt A′ ∪B′

on A′ està en bijecció amb A i B′ està en bijecció amb B. Si volem una
definició formal, podem prendre aquesta:

A ⨿ B := (A× {0}) ∪ (B × {1}).12

Imatges i antiimatges

Sigui f : A → B una aplicació i suposem que f (a) = b. Direm que b
és la imatge de a i que a és una antiimatge de b. Si tot element de B
té com a mı́nim una antiimatge, direm que f és una aplicació exhaustiva.
Si cada element de B té com a màxim una antiimatge, direm que f és
una aplicació injectiva. De vegades, utilitzarem la notació A ↠ B per
indicar que f és una aplicació exhaustiva (o una “projecció”) i la notació
f : A↣ B per indicar que f és una aplicació injectiva (o una “injecció”).13

Si f és a la vegada injectiva i exhaustiva, diem que és bijectiva (o que és
una “bijecció”). En aquest cas, cada element de B té una única antiimatge
i podem definir una aplicació g : B → A que és inversa de f , en el sentit
que, per tot a ∈ A es compleix que g(f (a)) = a i per tot b ∈ B es compleix
que f (g(b)) = b. La notació tradicional per aquesta aplicació inversa —
que és única— és f−1. Cal insistir que aquesta aplicació inversa només
existeix si f és bijectiva.

Si f : A → B és una aplicació i b ∈ B, podem considerar el conjunt
de totes les antiimatges de b. És un subconjunt de A, que pot ser buit.
Malauradament, la notació que utilitza tothom per indicar aquest conjunt
indueix a confusió:

f−1(b) := {a ∈ A : f (a) = b}.

Observem, doncs, que f−1(b) està sempre definit, encara que f no sigui
bijectiva, i és un subconjunt de A, que pot ser el conjunt buit.

12És interessant observar que ni el producte cartesià ni la unió disjunta compleixen la
propietat associativa. En canvi, a la pràctica ordinària de les matemàtiques, fem com si
aquestes operacions (i moltes altres operacions similars, com el producte tensorial) fossin
associatives. Això és fer trampa i, encara que sigui una trampa relativament inòqua, hi ha
moments en que cal treballar en un context més rigorós. Si esteu interessats en aquest
tema, podeu buscar informació sobre “categories monöıdals”.

13En llenguatge col·loquial, les aplicacions injectives es diu que són “mono” i les
exhaustives es diu que són “epi”.
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Una aplicació f : A → B dóna lloc a dues aplicacions

f∗ : P(A) → P(B)
f∗ : P(B) → P(A)

Aquestes dues aplicacions es defineixen aix́ı:

f∗(X ) := {b ∈ B : existeix a ∈ X tal que f (a) = b }
f∗(Y ) := {a ∈ A : f (a) ∈ Y }

Malauradament, per augmentar la confusió en les notacions, aquestes apli-
cacions que hem designat provisionalment per f∗ i f∗, es designen a la
pràctica f i f−1, respectivament. L’estudiant ha d’aprendre a no confon-
dre’s amb aquestes notacions tan poc afortunades.

Al llarg d’aquest curs de topologia, utilitzarem sovint aquestes propi-
etats de les aplicacions f∗ i f∗:

• f (
∪
i∈I Ai) =

∪
i∈I f (Ai).

• f (
∩
i∈I Ai) ⊂

∩
i∈I f (Ai) i la igualtat es compleix si f és injectiva.

• f−1(
∪
i∈I Bi) =

∪
i∈I f−1(Bi).

• f−1(
∩
i∈I Bi) =

∩
i∈I f−1(Bi).

• f−1(B − Y ) = A− f−1(Y ).

• X ⊂ f−1(f (X )) i la igualtat es compleix si f és injectiva.

• f (f−1(Y )) ⊂ Y i la igualtat es compleix si f és exhaustiva.

Observem que, en certa manera, f−1 té millors propietats que f .

Finit, infinit, numerable

Recordem que cada nombre natural es defineix com un cert conjunt. Un
conjunt A es diu que és finit si existeix un nombre natural n i una bijecció
f : n → A. Una definició equivalent és que A és finit si no hi ha cap
subconjunt B ⊊ A que es pugui posar en bijecció amb A. Els conjunts
que no són finits s’anomenen infinits. Per exemple, N, Q i R són conjunts
infinits.
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Entre els conjunts infinits, també n’hi ha de més grans que altres. La
teoria de cardinals i ordinals és molt interessant, però pràcticament no la
utilitzarem en aquest curs i per tant no cal dir-ne res en aquests apunts.
El que śı que cal és conèixer la diferència entre conjunts numerables i
conjunts no numerables. Un conjunt numerable és aquell que es pot posar
en correspondència bijectiva amb el conjunt N. Per exemple, el propi N.

Si A i B són conjunts numerables, també A × B ho és. En efecte, si
tenim A = {a0, a1, a2, . . .} i B = {b0, b1, b2, . . .}, podem numerar A×B aix́ı:

A× B = {(a0, b0), (a0, b1), (a1, b0), (a0, b2), (a1, b1), (a2, b0), . . .}.

D’altra banda, també és fàcil veure que un subconjunt d’un conjunt nu-
merable o bé és finit o bé és numerable. Això ens permet concloure que,
per exemple, Z i Q són conjunts numerables. També és relativament fàcil
veure que una unió finita o numerable de conjunts numerables és nu-
merable.14 En canvi, R no és numerable i la demostració és senzilla i
bonica. Si R fos numerable, també ho seria l’interval [0, 1). Suposem que
[0, 1) = {a0, a1, a2, . . .} i escrivim cadascun d’aquests nombres reals en
forma decimal:

a0 = 0.a01a02a03a04a05 . . .
a1 = 0.a11a12a13a14a15 . . .
a2 = 0.a21a22a23a24a25 . . .
a3 = 0.a31a32a33a34a35 . . .

· · ·

Considerem ara el nombre real b = 0.b1b2b3b4 . . . ∈ [0, 1) definit aix́ı:

bi :=
{

0, ai−1,i ̸= 0
2, ai−1,i = 0

És evident que b no pot ser a la llista anterior.

El quocient

Potser l’eina més poderosa de les matemàtiques és la que ens permet
considerar com a iguals coses que no ho són. Se’n diu el pas al quocient.
Recordem com funciona. La relació d’igualtat compleix tres propietats

14En el cas numerable, cal l’axioma de l’elecció.
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fonamentals: (1) x = x per tot x; (2) Si x = y, aleshores també y = x; (3)
Si x = y i y = z, aleshores també x = z. Aquestes tres propietats no són
exclusives de la igualtat: Una relació15 x ∼ y que les compleixi es diu que
és una relació d’equivalència.

Suposem, doncs, que tenim una relació d’equivalència ∼ en un conjunt
X . Un subconjunt A ⊂ X direm que és una classe d’equivalència si existeix
x ∈ X tal que

A = [x ] := {y ∈ X : y ∼ x}.

Direm que x és un representant de la classe A. Les classes d’equivalència
compleixen aquestes propietats:

1. [x ] = [y] si i només si x ∼ y.

2. La unió de totes les classes d’equivalència és igual a X .

3. Dues classes d’equivalència diferents són disjuntes.

Es defineix el conjunt quocient X/∼ com el conjunt de totes les classes
d’equivalència. Tenim una aplicació exhaustiva X ↠ X/∼ donada per
x 7→ [x ]. La primera de les propietats anteriors ens diu que, efectivament,
en el pas de X a X/∼ hem convertit la relació d’equivalència ∼ a X en la
igualtat al conjunt quocient X/∼.

Podem fer quocient per una relació que no sigui d’equivalència? Evi-
dentment que śı. Suposem que en un conjunt X tenim una relació ∽ que
potser no és d’equivalència. Podem fer quocient X/∽ simplement conside-
rant la relació d’equivalència més petita16 que contingui ∽ i fent quocient
per aquesta relació d’equivalència. La importància d’això s’entendrà millor
al llarg del curs.

Sovint, hem de definir una aplicació f : X/∼ → Y i ho fem definint
primer f sobre un representant i comprovant després que està ben definida
o no depèn del representant. La justificació d’això rau en aquest teorema
bàsic:

15El concepte de “relació” té una formulació senzilla al si de la teoria de conjunts.
Una relació en un conjunt X és un subconjunt R ⊂ X × X . Aleshores, diem que x està
relacionat amb y si (x, y) ∈ R .

16Recordem que una relació és un subconjunt de X × X . Com que la relació X × X
és una relació d’equivalència i com que la intersecció de relacions d’equivalència és
d’equivalència, si R és una relació, podem considerar la intersecció de totes les relacions
d’equivalència que continguin R . Aquesta és la relació d’equivalència més petita que
conté R .
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Teorema 1.1. Sigui π : X → X/∼ l’aplicació de pas al quocient. Si g :
X → Y és una aplicació, la condició necessària i suficient perquè existeixi
f : X/∼ → Y tal que g = fπ és que per tot x, y ∈ X tals que x ∼ y es
compleixi g(x) = g(y). Aquesta f és única. Direm que “g factoritza per
X/∼”.

1.3 La topologia dels espais mètrics

A Rn, els conceptes de funció cont́ınua, subconjunts oberts i tancats, punts
interiors, punts adherents, etc. es defineixen utilitzant la distància eucli-
diana ordinària. Si x = (x1, . . . , xn), y = (y1, . . . , xn) són punts de Rn, la
distància entre x i y és

d(x, y) =
( n∑

i=1

(xi − yi)2

) 1
2

.

Per cada x ∈ Rn i cada ε > 0 es defineix la bola de centre x i radi ε com

B(x, ε) := {y ∈ Rn : d(x, y) < ε}.

Més en general, en lloc de Rn poden considerar un conjunt arbitrari X
sobre el que tinguem una certa funció distància d : X × X → R que
compleixi aquestes quatre17 propietats:

1. d(x, y) = 0 si i només si x = y.

2. Per tot x, y, z ∈ X es compleix d(x, y) ≤ d(x, z) + d(y, z).

3. Per tot x, y ∈ X es compleix d(x, y) ≥ 0.

4. Per tot x, y ∈ X es compleix d(x, y) = d(y, x).

Direm que X és un espai mètric.18 Per exemple:

1. Rn amb la distància euclidiana ordinària.
17De fet, la propietat 3 és conseqüència de les altres i no caldria que figurés a la

llista.
18Per dir-ho ben dit, hauŕıem de dir que un espai mètric és una parella (X, d) on X

és un conjunt i d és una funció distància a X . Però, seguint una tradició general de les
matemàtiques, sempre que no hi hagi perill de confusió ometrem d i direm que X és un
espai mètric.
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2. Rn amb la distància d(x, y) =
∑n

1 |xi − yi|.

3. Rn amb la distància d(x, y) = màx |xi − yi|.

4. Qualsevol conjunt X amb la distància discreta

d(x, y) =
{

0, x = y
1, x ̸= y

5. Z amb la distància 2-àdica

d(x, y) =
{

0, x = y
2−ν2(x−y), x ̸= y

on ν2(x) = n si x = 2nx ′ amb x ′ senar. Canviant 2 per un primer
qualsevol p, tindrem la distància p-àdica a Z.

En un espai mètric X , un subconjunt A es diu que és obert si compleix
aquesta propietat

• Per tot x ∈ A existeix un nombre real ε > 0 tal que B(x, ε) ⊂ A.

I un subconjunt T es diu que és tancat si X − T és obert.19 És senzill
demostrar que els subconjunts oberts compleixen aquestes tres propietats
bàsiques:

(a) ∅ i X són oberts.

(b) La unió de qualsevol famı́lia de subconjunts oberts és un obert.

(c) La intersecció de qualsevol famı́lia finita de subconjunts oberts és
un obert.

En canvi, és fàcil trobar exemples d’una intersecció d’infinits oberts que no
és obert. Per exemple, a Rn, la intersecció de les boles obertes B(0, 1/n),
n = 1, 2, 3, . . . és {0}, que no és un subconjunt obert.

Podem ara definir el concepte central de la topologia que és el de
funció cont́ınua. Suposem que f : X → Y és una aplicació entre dos
espais mètrics. Direm que f és cont́ınua si compleix aquesta propietat:

19La paraula tancat és poc afortunada, des d’un punt de vista didàctic, perquè pot
induir a pensar que obert i tancat són antònims, és a dir, que tancat és el contrari
d’obert. Això és absolutament fals i l’estudiant ha de fer un esforç deliberat per no caure
mai en aquest error terrible. En un espai mètric hi pot haver (a) conjunts que siguin
oberts i no siguin tancats; (b) conjunts que siguin tancats i no siguin oberts; (c) conjunts
que siguin oberts i també siguin tancats; (d) conjunts que no siguin ni oberts ni tancats.
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• Per tot x ∈ X i per tot nombre real ε > 0, existeix un
nombre real δ > 0 tal que per tot x ′ ∈ X tal que d(x, x ′) <
δ es compleix que d(f (x), f (x ′)) < ε.

Sembla un embarbussament, més que no pas la definició d’un dels concep-
tes més importants de les matemàtiques! Això ens hauria de fer reflexionar
que el concepte de continüıtat hauria de tenir una definició molt més sen-
zilla, molt més conceptual. Aquesta reflexió és la que porta a la definició
axiomàtica de la topologia, com l’estudiarem en aquest curs. La idea que
ens diu que això és possible es troba continguda en aquest teorema fona-
mental:
Teorema 1.2. Sigui f : X → Y una aplicació entre espais mètrics. Aques-
tes dues condicions són equivalents:

(a) f és cont́ınua.

(b) Si U és un obert de Y , aleshores f−1(U) és un obert de X .

Demostració. Suposem que f és cont́ınua i sigui U un obert de Y . Volem
demostrar que f−1(U) és un obert de X . Per fer-ho, sigui x ∈ f−1(U), és
a dir, y := f (x) ∈ U . Com que U és obert, hi haurà una bola tal que
B(y, ε) ⊂ U . Si apliquem ara la definició-embarbussament de la conti-
nüıtat de f , tindrem que existeix un δ > 0 tal que si d(x, x ′) < δ aleshores
d(f (x), f (x ′)) < ε. Això ens diu que B(x, δ) ⊂ f−1(U) i hem demostrat que
f−1(U) és obert.

Suposem ara que f compleix la propietat de (b) i volem demostrar
que f compleix la definició-embarbussament de continüıtat. Per fer-ho,
sigui x ∈ X i sigui ε > 0. Cal trobar un δ > 0 apropiat. Ho fem aix́ı.
Considerem y := f (x) i considerem la bola B(y, ε), que és un obert de Y .
Per tant, f−1(B(y, ε)) serà un obert de X , per la propietat (b). Com que
x ∈ f−1(B(y, ε)), existirà una bola tal que B(x, δ) ⊂ f−1(B(y, ε)). És a dir,
si d(x, x ′) < δ , aleshores d(f (x), f (x ′)) < ε.

Aquest teorema té una importància conceptual immensa. Ens diu que
la funció distància no és important: el que realment és important és saber
quins són els conjunts oberts. Això suggereix una axiomatització més
general de la topologia en la qual ens oblidem de la distància i ho basem
tot en el concepte primari de subconjunt obert. És precisament el que
farem en aquest curs, a partir del caṕıtol següent.
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1.4 Exercicis addicionals

1.1 Quines de les proposicions següents són la negació de “la solució és 2 o 3”: (a) Ni
2 ni 3 no són la solució; (b) La solució no és 2 o no és 3; (c) La solució no és 2 i no és 3.

1.2 Escriviu la negació de les proposicions següents:
1. Dues rectes diferents d’un pla sempre es tallen en un únic punt.

2. Hi ha un polinomi a coeficients enters que no té arrels reals o, si en té, són totes
positives.

3. A tots els municipis hi ha alguna dona tots els fills de la qual no han tingut ni el
xarampió ni la rubèola.

4. Per tot nombre real a existeix un nombre real x tal que per tot nombre real y es
compleix que y > x implica 1 < y− a.

5. Si
√

2 és racional, jo sóc Juli Cèsar.

6. Si
√

2 és irracional, jo sóc Juli César.

7. L’alarma sonarà si s’obre la porta i el botó d’anul·lació no es prem, o si hi ha
moviment i no succeeix que el botó d’anul·lació es prem o l’alarma no està activada.

1.3 Demostreu si les proposicions (1), (2), (4), (5), (6) de l’exercici anterior són certes o
falses.

1.4 Comproveu si aquests raonaments són lògicament correctes:

1. Perquè jo dugui el paraigües és necessari que plogui. Quan plou, mai no duc
sandàlies. Avui duc sandàlies. Per tant, no està plovent i en conseqüència no duc
el paraigües.

2. Si baixen els tipus d’interès, la borsa pujarà. Si els tipus d’interès no baixen,
aleshores la construcció i el consum privat baixaran. Ara, el consum privat no està
baixant. Per tant, és cert que la construcció no està baixant o el consum privat
no està baixant. És a dir, és fals que la construcció i el consum privat estiguin
baixant. Això vol dir que els tipus d’interès estan baixant i en conseqüència la
borsa pujarà.

1.5 Enuncieu el rećıproc, el contrari i el contrarrećıproc del teorema de Pitàgores. Quins
d’aquests teoremes són certs a la geometria ordinària?

1.6 Considereu aquestes dues proposicions: (A) 3 és parell; (B) El polinomi x2 + x + 1
no té cap arrel real. Considereu les proposicions: A implica B; A implica (no B); (no
A) implica B; (no A) implica (no B). Quines d’aquestes quatre proposicions són certes i
quines són falses. Demostreu-ho.
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1.7 Hi ha un teorema que diu que “tota successió acotada de nombres reals té una parcial
convergent”. Definiu “successió” i “parcial”.

1.8 Demostreu que A × B és un conjunt i que les parelles ordenades compleixen que
(a, b) = (a′, b′) si i només si a = a′ i b = b′.

1.9 Demostreu que si haguéssim definit (a, b) := {a, {a, b}} també es compliria la pro-
pietat que (a, b) = (a′, b′) si i només si a = a′ i b = b′.

1.10 Demostreu que F (A,B) és un conjunt.

1.11 Demostreu que si A = ∅, aleshores
∩
X∈A X no és un conjunt.

1.12 Si X és un conjunt qualsevol, demostreu que no hi ha cap aplicació bijectiva entre
X i P(X ).

1.13 Siguin A,B, C conjunts tals que (A × B) × C = A × (B × C ). Demostreu que algun
dels conjunts A,B, C és buit.

1.14 Demostreu que el conjunt dels nombres naturals és únic.

1.15 A partir de l’axioma de regularitat, demostreu que x ∈ x és fals per tot x i demostreu
que si x ∈ y, aleshores y /∈ x .

1.16 Demostreu que qualsevol subconjunt d’un conjunt numerable és finit o numerable.
Sigui A ⊂ R que no sigui ni finit ni numerable. Busqueu informació sobre si aquesta
proposició és certa o falsa: “Existeix una aplicació bijectiva A → R”.

1.17 Sigui A un conjunt i R una relació A. Definiu amb exactitud la relació d’equivalència
més petita que conté R i demostreu que existeix i és única.

1.18 Formuleu matemàticament l’afirmació “tota aplicació exhaustiva és un quocient” i
demostreu-la.

1.19 Demostreu les propietats de f i f−1 que apareixen a la pàgina 9 i vegeu que, en
general, les inclusions no es poden substituir per igualtats.

1.20 Demostreu el teorema 1.1.

1.21 A la definició de funció distància que hem donat al text, demostreu que la condició
(3) es pot demostrar a partir de les condicions (1), (2) i (4).

1.22 Demostreu que els cinc exemples d’espai mètric que apareixen al text són efectiva-
ment espais mètrics.

1.23 Demostreu que si eliminem l’arrel quadrada de la definició de distància euclidiana,
la funció que obtenim no és una funció distància.

1.24 Doneu exemples de subconjunts de R que siguin oberts no tancats, tancats no
oberts, oberts i tancats, ni oberts ni tancats. Feu el mateix amb Z amb la mètrica donada
per la distància 2-àdica.
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1.25 Un subconjunt A de R es diu que és connex si per qualsevol parella de conjunts
oberts B,C ⊂ R tals que A ⊂ B ∪ C es compleix que A ∩ B o A ∩ C és el conjunt buit o
A ∩ B ∩ C no és el conjunt buit. Decidiu si ∅, Q són connexos.

1.26 Si X és un espai mètric, A ⊂ X i x ∈ X , definim

d(x, A) = ı́nf{d(x, y) : y ∈ A}.

Demostreu que A és tancat si i només si d(x, A) > 0 per tot x /∈ A.
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Caṕıtol 2

L’axiomàtica d’espai topològic

E
n aquest caṕıtol introduirem de manera axiomàtica el con-
cepte d’espai topològic com una generalització —i també una
simplificació— del concepte d’espai mètric. La idea consisteix
en basar-ho tot en el concepte de subconjunt obert i exigir

com a axiomes que els subconjunts oberts compleixin les tres propietats
bàsiques dels oberts d’un espai mètric que hem vist al caṕıtol anterior.

2.1 Els tres axiomes de la topologia

Una topologia en un conjunt X és una famı́lia T de subconjunts1 de X que
compleix aquestes tres propietats:2

• ∅, X ∈ T .

• La intersecció de qualsevol famı́lia finita d’elements de T és un ele-
ment de T .3

• La unió de qualsevol famı́lia d’elements de T és un element de T .

1Observem que estem dient que T ∈ P(P(X )).
2Per ajudar-nos a recordar aquesta definició podem utilitzar aquesta petita es-

tratègia. Pensem en la famı́lia infinita d’intervals (−1/n, 1/n) per tot n > 0. La seva
unió és (−1, 1), que és obert. La seva intersecció és {0}, que no és obert. La condició
d’obert es conserva per unions infinites, però no per interseccions infinites.

3És clar que n’hi ha prou amb exigir que la intersecció de dos elements de T sigui
un element de T .

19
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Els elements del conjunt X els anomenarem punts. Els elements del con-
junt T els anomenarem subconjunts oberts de X . Un espai topològic és
un conjunt X amb una topologia T sobre X .4 Sobre un mateix conjunt X hi
pot haver, en general, moltes topologies diferents. Sovint, en lloc d’espai
topològic direm simplement espai.

Exemples

• El conjunt buit i el conjunt amb un únic punt X = {∗} admeten una
única topologia.

• Si X és un espai mètric, els subconjunts oberts de X , en el sentit del
caṕıtol anterior, compleixen les tres propietats d’una topologia i, per
tant, podem mirar-nos X com un espai topològic, de manera natural.
Direm que aquesta és la topologia indüıda per la mètrica de X . En
el cas particular de Rn amb la distància euclidiana, la topologia que
obtenim direm que és la topologia ordinària de Rn.

• Sobre qualsevol conjunt X podem considerar la topologia T = {∅, X}
que és, clarament, la topologia que té el mı́nim d’oberts. En direm
la topologia grollera i direm que X és un espai groller.

• En l’extrem oposat, sobre qualsevol conjunt X podem considerar la
topologia T = P(X ) en la qual tots els subconjunt de X són oberts.
Se’n diu la topologia discreta i és clarament la que té el màxim
possible d’oberts. Si X té la topologia discreta, direm que X és
un espai discret. Aquest exemple és un cas particular de topologia
indüıda per una distància. En efecte, si sobre X considerem la funció
distància

d(x, y) =
{

0, x = y
1, x ̸= y

la topologia que obtenim és precisament la topologia discreta.

• Sigui X un conjunt i diguem que A ⊂ X és obert si i només si A = ∅
o X − A és finit. És fàcil veure que obtenim una topologia sobre X .
Se’n diu la topologia cofinita.

• Sobre X = R considerem la topologia en què els oberts són ∅, X i
els intervals (−∞, x) per qualsevol x ∈ R. Obtenim una topologia
sobre R que és clarament diferent de la topologia ordinària.

4Com és habitual a matemàtiques, parlarem de “l’espai topològic X ”, però realment
hauŕıem de dir “l’espai topològic (X, T )”.
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Tot espai mètric ens el podem mirar, doncs, com un espai topològic,
oblidant-nos de la distància i de les boles i considerant només els sub-
conjunts oberts. Cal tenir present, però, que dos espais mètrics diferents
poden donar lloc al mateix espai topològic. És a dir, suposem que X és
un conjunt i que d i d′ són dues funcions distància sobre X . Tenim dos
espais mètrics Xd i Xd′ que, si d ̸= d′, són diferents. Ara bé, si Xd i Xd′

tenen els mateixos oberts, aleshores Xd i Xd′ , com a espais topològics, són
iguals. Posem dos exemples:

(a) Un exemple trivial. X = {a, b} un conjunt amb dos punts i d(a, b) =
1, d′(a, b) = 2. Són distàncies diferents però en els dos casos s’obté
un espai discret de dos punts.

(b) Un exemple menys trivial. Prenem a Rn la distància euclidiana or-
dinària d i la distància d′(x, y) =

∑
|xi − yi|. Es pot demostrar

(exercici) que A ⊂ Rn és obert per la distància d si i només si és
obert per la distància d′. És a dir, les dues distàncies donen la
mateixa topologia.

El concepte d’espai topològic és clarament més general que el d’espai
mètric. Per exemple, tot espai mètric compleix l’anomenada propietat de
Hausdorff :

Propietat de Hausdorff. Donats dos punts x ̸= y, existeixen
oberts disjunts U,V tals que x ∈ U , y ∈ V .

En canvi, hi ha espais topològics en els quals aquesta propietat no
es compleix. Per exemple, un espai X amb més d’un punt que tingui la
topologia grollera no complirà la propietat de Hausdorff. Un espai infinit
amb la topologia cofinita tampoc no complirà la propietat de Hausdorff.
L’espai R amb la topologia que hem definit en l’últim exemple de la pàgina
20 tampoc no compleix la propietat de Hausdorff.

Una topologia sobre X és un cert subconjunt de P(X ). Per tant, les
possibles topologies sobre X estan ordenades per inclusió. La més petita
—la que té menys oberts— és la topologia grollera; la més gran —la que
té més oberts— és la topologia discreta. Totes les altres topologies es
situen entremig. Si T ⊂ T ′, és a dir si tots els oberts de la topologia T
són també oberts de la topologia T ′, direm que T ′ és més fina que T .
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2.2 Tancats

Si X és un espai topològic, podem parlar de subconjunts tancats. La
definició és aquesta: T ⊂ X diem que és tancat si i només si X − T és
obert.

Exemples

• A la topologia grollera només hi ha dos tancats: ∅ i X .

• A la topologia discreta tots els subconjunts són tancats.

• A la topologia cofinita els tancats són els subconjunts finits.

• A la topologia sobre R que té per oberts ∅, R i els intervals (−∞, x)
per qualsevol x ∈ R, els tancats són ∅, R i els intervals [x,∞) per
qualsevol x ∈ R.

Figura 2.1: abstrusegoose.com (Creative Commons License).

Igual que ja vam insistir en el cas dels espais mètrics, cal tornar a
posar èmfasi en que “tancat” no és pas la negació de “obert” (vegeu la
figura 2.1). Si X és un espai topològic i A ⊂ X , hi ha quatre possibilitats:
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1. A és obert i no és tancat.

2. A és tancat i no és obert.

3. A és tancat i és obert.

4. A no és tancat i no és obert.

És fàcil veure que en un espai mètric un punt sempre és un subespai
tancat. En canvi, un punt d’un espai topològic pot ser que no sigui tancat.
Per exemple, a la topologia grollera els únics tancats són ∅ i X .

Les propietats dels conjunts oberts ens donen, per pas al complementa-
ri, tres propietats fonamentals dels conjunts tancats. En un espai topològic
X es compleix:

• ∅, X són tancats.

• La unió de qualsevol famı́lia finita de tancats és un tancat.

• La intersecció de qualsevol famı́lia de tancats és un tancat.

De fet, si coneixem els tancats d’un espai també coneixem els oberts, i
viceversa. El concepte d’espai topològic el podŕıem haver definit utilitzant
els tancats. És a dir, hauŕıem pogut dir que un espai topològic és un con-
junt X amb una famı́lia de subconjunts V anomenats tancats que compleix
les tres propietats dels tancats que acabem d’enunciar.

2.3 Bases d’una topologia

Per dotar X d’estructura d’espai topològic ens cal dir qui són tots els
seus oberts. Això pot ser pesat de fer i té sentit trobar una manera de
determinar una topologia donant només uns determinats oberts bàsics.

Definició 2.1. Si X és un espai topològic i B és una famı́lia d’oberts, direm
que B és una base de la topologia si per tot obert A de X i tot punt x ∈ A
existeix un obert B ∈ B tal que x ∈ B ⊂ A.

Per exemple, en un espai mètric X , la famı́lia de les boles

B = {B(x, ε) : x ∈ X, ε > 0}
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forma una base de la topologia. Una topologia pot tenir moltes bases
diferents.

Podem descriure una topologia a X donant no tots els oberts sinó
només una base? La proposició següent ens diu com ho hem de fer.
Proposició 2.2. Sigui X un conjunt i sigui B una famı́lia de subconjunts
de X . Suposem que B compleix aquestes dues propietats:

(a) La unió de tots els conjunts de B és X .

(b) Per tot U,V ∈ B i tot x ∈ U ∩ V , existeix W ∈ B tal que x ∈ W ⊂
U ∩ V .

Aleshores, existeix una única topologia T a X que compleix

1. B és una base de la topologia T .

2. T és la topologia menys fina que conté B .

Demostració. Comencem definint quins són els oberts de la topologia T .
Seran les unions d’elements de B . En particular, els elements de B són
oberts i els anomenarem oberts bàsics. Amb aquesta definició, és clar que
∅ i X són oberts i que la unió d’oberts és obert. Per veure que T és una
topologia cal comprovar que la intersecció de dos oberts és un obert.

Observem primer que la intersecció de dos oberts bàsics és un obert.
Siguin U,V ∈ B oberts bàsics. Per cada x ∈ U∩V existeix un obert bàsic
Wx ⊂ U ∩ V tal que x ∈ Wx , per la hipòtesi (b). Això ens diu que podem
expressar

U ∩ V =
∪

x∈U∩V

Wx

i, per tant, U ∩ V és un obert. Demostrem ara que la intersecció de dos
oberts és un obert. Siguin A =

∪
Ui i B =

∪
Vj dos oberts expressats com

unió d’oberts bàsics. Tenim

A ∩ B =
∪

i,j
(Ui ∩ Vj )

que és també un obert perquè ja hem vist que la intersecció de dos oberts
bàsics és un obert i que la unió d’oberts és un obert.

Per acabar la demostració ens cal veure que B és una base d’aques-
ta topologia, que T es la topologia menys fina que conté B i que T és
l’única topologia que compleix aquestes dues propietats. Les tres coses
són senzilles de demostrar i les deixem com a exercici.
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Aquesta proposició és força útil a la pràctica perquè, com hem dit, de
vegades ens permet donar una topologia sense haver de donar tots els
oberts sinó només una base d’oberts.

Exemple
Considerem el conjunt R i la famı́lia de subconjunts

B := {[a, b) : a < b, a, b ∈ R}.

És clar que aquesta famı́lia compleix les condicions (a) i (b) de la propo-
sició 2.2 i, per tant, ens defineix una topologia a R de la qual B és base.
Aquesta topologia es coneix com la topologia del ĺımit inferior. Estudiem-
la. D’entrada, observem

[t,∞) =
∪

n>0

[t, t + n)

(−∞, t) =
∪

n>0

[t − n, t)

la qual cosa ens diu que [t,∞) i (−∞, t) són oberts. D’altra banda,

R− [a, b) = (−∞, a) ∪ [b,∞)

i, per tant, [a, b) és tancat. És a dir, els intervals [a, b) són oberts i tancats.
Però aquesta topologia no és la topologia discreta perquè, per exemple,
l’interval [1, 2] no és obert. Demostrem-ho. Si [1, 2] fos obert, per la pròpia
definició de base d’una topologia, existiria un obert bàsic [a, b) tal que
2 ∈ [a, b) ⊂ [1, 2] que no és possible. D’altra banda,

(1, 2) =
∪

n>0

[
1 + 1

n, 2
)

i (1, 2) és obert. Aleshores,

R− [1, 2] = (−∞, 1) ∪ (2,∞)

és obert i [1, 2] és tancat.
Resumim en una taula el que hem descobert:

(1, 2) [1, 2) (1, 2] [1, 2]

obert Śı Śı No No

tancat No Śı No Śı
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2.4 Entorns, interior, adherència

Els conceptes d’entorn, interior i adherència ja els coneixem en el cas
dels espais mètrics. Com que es poden definir sense necessitat de la
distància, només amb el concepte d’obert, també podem introduir-los en
espais topològics generals. Suposem que X és un espai topològic.

Definició 2.3. 1. A és un entorn de x ∈ X si existeix un obert U tal que
x ∈ U ⊂ A.

2. x és un punt interior de A si A és un entorn de x .

3. L’interior de A és el conjunt de tots els seus punts interiors. Escriu-
rem Int(A).

L’interior d’un conjunt compleix aquestes propietats elementals:

1. Int(A) és obert.
En efecte, per cada x ∈ Int(A) existeix un obert Ux tal que x ∈ Ux ⊂
A. Aleshores, és fàcil veure que cada Ux ⊂ Int(A) i, per tant,

Int(A) =
∪

x∈Int(A)

Ux

és obert perquè és una unió d’oberts.

2. Int(A) és la unió de tots els oberts continguts a A.
Per l’apartat anterior, Int(A) és un obert, per tant, la unió de tots els
oberts continguts a A conté Int(A). Cal veure la inclusió contrària.
Sigui B ⊂ A, B obert. És clar que els punts de B són punts interiors
de A. Per tant, B ⊂ Int(A).

3. Int(A) és l’obert més gran contingut a A, és a dir, si B ⊂ A és obert,
aleshores B ⊂ Int(A).
Això és clar pel punt anterior.

4. A és obert si i només si A = Int(A).
Això es dedueix dels punts anteriors.

Passant al complementari, tenim conceptes paral·lels que fan referència
a tancats:
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Definició 2.4. 1. x és un punt adherent a A si tot entorn de x talla A.

2. L’adherència (o clausura) de A és el conjunt de tots els punts adhe-
rents a A. Escriurem Cl(A).5

L’adherència d’un conjunt compleix aquestes propietats elementals:

1. Cl(A) és tancat.

2. Cl(A) és la intersecció de tots els tancats que contenen A.

3. Cl(A) és el tancat més petit que conté A, és a dir, si A ⊂ T i T és
tancat, aleshores Cl(A) ⊂ T .

4. A és tancat si i només si A = Cl(A).

Això es pot demostrar directament (recomanable com a pràctica) o es
pot deduir de les propietats de l’interior utilitzant aquest resultat:

Proposició 2.5. Cl(A) = X − Int(X − A).

Dues definicions més:

Definició 2.6. A ⊂ X és dens si Cl(A) = X .

Definició 2.7. La frontera d’un conjunt A ⊂ X es defineix com

∂A := Cl(A) ∩ Cl(X − A).

Acabem amb alguns exemples:

Exemples

1. A la topologia discreta tots els conjunts són oberts. Per tant, també
tots els conjunts són tancats i per tot A tenim A = Cl(A) = Int(A).

2. A la topologia grollera només hi ha dos oberts i només hi ha dos
tancats: ∅ i X . Per tant, Si A ̸= ∅, X , aleshores Cl(A) = X i Int(A) =
∅.

3. Considerem la topologia del ĺımit inferior sobre R que hem estudiat
a l’exemple de la pàgina 25. És fàcil veure que

5És freqüent designar l’adherència de A amb la notació A. També és freqüent (però
no tant) designar l’interior de A com

◦
A.
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(1, 2) [1, 2) (1, 2] [1, 2]

Int (1, 2) [1, 2) (1, 2) [1, 2)

Cl [1, 2) [1, 2) [1, 2] [1, 2]

2.5 Exercicis addicionals

2.1 Un espai topològic es diu que és metritzable si la seva topologia prové d’una es-
tructura d’espai mètric. Demostreu que els espais topològics metritzables compleixen la
propietat de Hausdorff de la pagina 21. Demostreu que si un espai groller té més d’un
punt, no és metritzable. Doneu exemples de topologies no metritzables sobre R.

2.2 Sigui X = {a, b, c, d}. Quins dels següents subconjunts de P(X ) defineixen una
topologia i quins no.

1. ∅, X ,{a},{b},{a, c}, {a, b, c}, {a, b}.

2. ∅,X ,{a},{b}, {b, d}.

3. ∅, X ,{a, c, d}, {b, c, d}.

2.3 Determineu el nombre de topologies diferents que es poden donar en un conjunt de
tres elements.

2.4 Sigui X = R i T = {A ⊆ R|A = ∅ o A és infinit}. Defineix T una topologia a R?

2.5 Considerem la classe T = {R2,∅} ∪ {Gk ; k ∈ R} de subconjunts del pla R2, on

Gk = {(x, y) | x > y+ k}

Demostreu que T és una topologia a R2. És T una topologia a R2 si substitüım “k ∈ R”
per “k ∈ Z”? I si substitüım “k ∈ R” per “k ∈ Q”?

2.6 Comproveu que la topologia cofinita en un conjunt és una topologia. Sigui X un
conjunt. Comproveu que la famı́lia T defineix una topologia:

T = {∅} ∪ {A ⊂ X : X − A és numerable o finit}

2.7 Sigui (X, T ) un espai topològic. Considereu Y = X ⨿ {a} i definiu

T ′ = {∅} ∪ {U ⨿ {a} : U ∈ T }.

Comproveu que (Y , T ′) és un espai topològic. Més en general, trobeu una topologia
adient a la unió disjunta de dos espais topològics X ⨿ Y .
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2.8 Demostreu que la topologia del ĺımit inferior de l’exemple de la pàgina 25 és més
fina que la topologia ordinària.

2.9 Siguin A i B subconjunts d’un espai topològic X . Demostreu que:

1. Int(Int(A)) = Int(A), Int(A ∩ B) = Int(A) ∩ Int(B), Int(A ∪ B) ⊃ Int(A) ∪ Int(B).

2. Cl(Cl(A)) = Cl(A), Cl(A ∪ B) = Cl(A) ∪ Cl(B), Cl(A ∩ B) ⊂ Cl(A) ∩ Cl(B).

3. Int(B − A) = Int(B) − Cl(A), ∂(A ∪ B) ⊂ ∂A ∪ ∂B, ∂(∂(∂A)) = ∂(∂A) ⊂ ∂A.

i comproveu que aquests són els millors resultats possibles.

2.10 Sigui A un subconjunt d’un espai topològic X .

1. Tenen A i Cl(A) els mateixos interiors?

2. Tenen A i Int(A) les mateixes adherències?

3. (Problema de Kuratowski) Proveu:

Cl(Int(Cl(Int(A)))) = Cl(Int(A))
Int(Cl(Int(Cl(A)))) = Int(Cl(A))

4. Quants conjunts diferents es poden obtenir a partir d’un conjunt A prenent ad-
herències i interiors? (és a dir, Cl(A), Int(Int(A)), Cl(Int(A)), ...)

2.11 Sigui T la col·lecció de subconjunts de R formada per ∅, R i tots els intervals
(−∞, x), x ∈ R. Demostreu que T és una topologia. En aquesta topologia, determineu
l’interior de [0, 1], l’adherència de (0, 1) i la frontera de [0, 1). Demostreu que Z és dens
a R.

2.12 Sigui E un subconjunt dens d’un espai topològic X . Demostreu que per a tot obert U
de X es compleix que U ⊂ Cl(U ∩ E).

2.13 Sigui X un espai topològic. Demostreu que U ⊂ X és obert si i només si per tot
A ⊂ X es compleix que Cl(U ∩ Cl(A)) = Cl(U ∩ A).

2.14 Sigui X un espai topològic amb una base numerable. Demostreu que aleshores
existeix un subconjunt C de X que és dens i numerable. Utilitzeu la topologia del ĺımit
inferior de la pàgina 25 per demostrar que el rećıproc no és cert.
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Caṕıtol 3

Aplicacions cont́ınues

L
a topologia, essencialment, és l’estudi de la continüıtat i en
aquest caṕıtol definirem el concepte d’aplicació cont́ınua en-
tre espais. Per fer-ho, ens basarem en la caracterització de
la continüıtat en espais mètrics a través d’oberts (teorema

1.2): Vàrem veure que, en els espais mètrics, les aplicacions cont́ınues
són aquelles per a les quals l’antiimatge de qualsevol obert del conjunt
d’arribada és un obert del conjunt d’origen. En un espai topològic general,
aquesta serà la definició d’aplicació cont́ınua.

3.1 Aplicacions obertes, tancades i cont́ınues

Suposem que f : X → Y és una aplicació entre dos espais topològics. En
funció de com es comporti f respecte dels oberts o dels tancats de X i de
Y , donarem a f diversos qualificatius.

Definició 3.1. (a) Direm que f és oberta si per tot obert A de X es
compleix que f (A) és un obert de Y .

(b) Direm que f és tancada si per tot tancat A de X es compleix que
f (A) és un tancat de Y .

(c) Direm que f és cont́ınua si per tot obert B de Y es compleix que
f−1(B) és un obert de X .

Aparentment, faltaria una definició (d) corresponent a les aplicacions
tals que, per tot tancat B de Y es compleix que f−1(B) és un tancat de X ,
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però les propietats de f−1 ens diuen que aquesta condició és equivalent a
la propietat (c) anterior.

Exemples i propietats elementals

1. Si X i Y són espais mètrics, el teorema 1.2 ens diu que el concepte de
funció cont́ınua que hem introdüıt aqúı és el mateix que ja coneix́ıem.1

2. Si X és un espai discret, tota f : X → Y és cont́ınua.

3. Si Y és un espai groller, tota f : X → Y és cont́ınua.

4. L’aplicació identitat I : X → X és cont́ınua, oberta i tancada.

5. Qualsevol aplicació constant f : X → Y és cont́ınua.

6. La composició d’aplicacions obertes (tancades, cont́ınues) és també
oberta (tancada, cont́ınua).

Cal tenir present que les tres propietats que hem definit —oberta,
tancada, cont́ınua— són independents, en el sentit que hi ha exemples
de funcions que compleixen algunes d’aquestes tres propietats i no com-
pleixen la resta. Com que, donades tres propietats, hi ha vuit possibles
situacions, donarem vuit exemples (que l’estudiant haurà de comprovar,
com a exercici).

Exemples

(000) La funció f : R → R donada per

f (x) =
{
x + 1, x > 0
0, x ≤ 0

no és ni oberta ni tancada ni cont́ınua.

(001) Sigui X un conjunt que tingui més d’un punt. Designem per Xd l’espai
X amb la topologia discreta i Xg l’espai X amb la topologia grollera.
La identitat I : Xd → Xg no és ni oberta ni tancada, però és cont́ınua.

1Això vol dir, en particular, que quan treballem amb espais topològics que provinguin
d’espais mètrics, podem aplicar els coneixements sobre continüıtat en espais mètrics que
ja teńıem prèviament a aquest curs de topologia. Posem un exemple: Ja sabem que la
funció f : R → R donada per f (x) = 3x3 +2x−1 és cont́ınua, no cal tornar-ho a demostrar.
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(010) La funció f : R → R donada per

f (x) =
{

1, x ≥ 0
0, x < 0

no és ni oberta ni cont́ınua, però és tancada.

(011) La funció f : R → R donada per f (x) = x2 és tancada i cont́ınua, però
no és oberta.

(100) Considerem la inclusió i : (0, 1)g → R on (0, 1)g indica l’interval obert
(0, 1) ⊂ R amb la topologia grollera. i és oberta, però no és ni
tancada ni cont́ınua.

(101) Considerem la funció f : R2 → R donada per f (x, y) = x . f és oberta
i cont́ınua, però no és tancada.

(110) Si X té més d’un punt, la identitat I : Xg → Xd és oberta i tancada,
però no és cont́ınua.

(111) Per tot espai X , la identitat I : X → X és oberta, tancada i cont́ınua.

Esperem que aquests exemples serveixin per retenir a la memòria que,
igual com passa amb els subconjunts, aplicació oberta no és la negació
d’aplicació tancada.

3.2 Homeomorfismes

Molt sovint, una teoria matemàtica que estudia uns determinats objectes
té un concepte de transformació entre aquests objectes i un concepte d’e-
quivalència o isomorfisme.2 Per exemple, en l’estudi dels espais vectorials,
les transformacions són les aplicacions lineals i els isomorfismes són les
aplicacions lineals invertibles. En l’estudi dels grups, les transformacions
són els homomorfismes de grup i els isomorfismes són els homomorfismes
de grup invertibles. En l’estudi dels espais topològics, les transformacions
són les aplicacions cont́ınues i els isomorfismes són els que s’anomenen
homeomorfismes.

Definició 3.2. Una aplicació f : X → Y entre espais topològics diem que
és un homeomorfisme si compleix aquestes tres propietats:

2Aquesta idea es formalitza a la “teoria de categories”.
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1. f és cont́ınua.

2. f és bijectiva.

3. f−1 : Y → X és cont́ınua.

La condició (3) es pot substituir per

(3’) f és oberta.3

Si existeix un homeomorfisme f : X → Y direm que els espais X i Y
són homeomorfs i escriurem X ∼= Y . En aquest cas, és clar que qualsevol
propietat topològica que puguem afirmar de X també serà automàticament
vàlida a Y . Els dos espais X i Y seran, essencialment, el mateix espai.4

Donem ara una sèrie d’exemples d’homeomorfismes entre espais topo-
lògics, és a dir, de parelles d’espais aparentment diferents però que, des
del punt de vista de la topologia són, de fet, el mateix espai.

Exemples

• Dos intervals oberts de R són homeomorfs: (a, b) ∼= (a′, b′). Per
veure-ho, n’hi ha prou amb considerar l’aplicació af́ı f : (a, b) →
(a′, b′) tal que f (a) = a′ i f (b) = b′.

• Un interval obert de R és homeomorf a R: (a, b) ∼= R. Segons l’e-
xemple anterior, n’hi ha prou amb trobar un homeomorfisme entre R
i un interval obert concret, per exemple l’interval (−1, 1). Aquestes
dues funcions ens el donen:

f : R → (−1, 1), f−1 : (−1, 1) → R

t 7→ t
1 + |t| r 7→ r

1 − |r|
3En l’exemple dels espais vectorials, no exiǵıem res a f−1 perquè si f és lineal i bi-

jectiva es pot demostrar fàcilment que f−1 també és lineal. El mateix passa amb grups.
Aquest fet emmascara l’autèntic concepte d’isomorfisme que és aquest: f és un isomor-
fisme si és admissible (en cada cas, això tindrà un cert significat concret), bijectiva i f−1

també és admissible. En el cas dels espais topològics, una aplicació pot ser cont́ınua i
bijectiva sense que la seva inversa sigui cont́ınua (vegeu l’exemple (001) anterior). Per
tant, en la definició d’homeomorfisme cal exigir la condició (3).

4Ara ja podem donar un sentit matemàtic concret a l’afirmació que un topòleg és
aquella persona que no distingeix entre un dònut i una tassa. Vol dir que un dònut i una
tassa que, com a subconjunts de R3 són espais topològics, són homeomorfs.
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• De manera similar demostraŕıem que per tot a, b ∈ R tenim homeo-
morfismes

(−∞, a) ∼= R ∼= (b,∞).

• L’esfera menys un punt és homeomorfa a l’espai euclidià:

Sn − {∗} ∼= Rn

Recordem que l’esfera és el subconjunt de l’espai euclidià format pels
punts que estan a distància 1 de l’origen de coordenades:

Sn := {x ∈ Rn+1 : ||x|| = 1}.

En primer lloc, observem que si a i b són dos punts de l’esfera, hi ha
un homeomorfisme de l’esfera en ella mateixa que transforma a en
b. Per exemple, una simple rotació de l’esfera. Per tant, Sn − {a} ∼=
Sn−{b} i l’espai “l’esfera menys un punt” està ben definit perquè no
depèn de quin punt hem escollit. SiguiN = (0, . . . , 0, 1) el pol nord de
l’esfera. Demostrarem que Sn−{N} ∼= Rn i, per fer-ho, utilitzarem la
construcció geomètrica que es coneix com a projecció estereogràfica
(figura 3.1). Imaginem Rn com el pla equatorial de Sn. Donat un
punt p ̸= N de l’esfera, unim p amb N per una recta i considerem
el punt q en que aquesta recta talla el pla equatorial. La projecció
estereogràfica és l’aplicació p 7→ q i dóna un homeomorfisme Sn −
{N} ∼= Rn. Per tal de comprovar-ho, utilitzem una mica de geometria
anaĺıtica elemental per escriure les aplicacions f i f−1 i veure que
són cont́ınues:

f (x, y, z) = 1
1 − z (x, y)

f−1(a, b) = 1
1 + a2 + b2 (2a, 2b, a2 + b2 − 1)

• Com demostraŕıem que una tassa i un dònut són homeomorfs? Igual
que a l’exemple anterior, hauŕıem de donar funcions cont́ınues de la
tassa al dònut i del dònut a la tassa que siguin inverses una de l’altra.
Això és complicat, però no impossible. De fet, no ens resulta gens
dif́ıcil imaginar una pel·ĺıcula feta amb imatges generades per ordi-
nador en què una tassa es deforma cont́ınuament fins convertir-se en
un dònut. En aquest cas, l’ordinador fa aquesta transformació com
a composició d’un gran nombre d’homeomorfismes. A la pràctica, en
casos com aquest, admetrem que dos espais són homeomorfs sense
necessitat d’haver de mostrar un homeomorfisme expĺıcit.
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N

p

f (p)

Sn

Rn

Figura 3.1: Projecció estereogràfica de Sn − {N} a Rn.

Quan es tracta de demostrar que una certa aplicació entre espais to-
pològics és un homeomorfisme, sovint la part més dif́ıcil de la demostració
és comprovar que l’aplicació inversa és cont́ınua. Hi ha un teorema que ens
pot ajudar en aquesta situació perquè afirma que, sota certes hipòtesis,
una aplicació cont́ınua i bijectiva és automàticament un homeomorfisme:
Teorema 3.3. Siguin f : X → Y i g : Y → Z aplicacions cont́ınues. Supo-
sem que es compleixen aquestes condicions:

1. f és exhaustiva i g és bijectiva.

2. Z compleix la propietat de Hausdorff.

3. X és homeomorf a un subespai tancat de [0, 1]n per algun n > 0.

Aleshores, g és un homeomorfisme.

La demostració d’aquest resultat és força senzilla, però l’hem de deixar
per més endavant (vegeu el teorema 8.4).

3.3 Exercicis addicionals

3.1 Decidiu quins d’aquests subconjunts de R2 (amb la topologia ordinària) són oberts,
quins són tancats, quins són oberts i tancats i quins no són ni oberts ni tancats:

(i) {(x, y) | |x + y| < 1}. (iv) {(x, y) | x = y, x ̸= 0}.
(ii) {(x, y) | |x + y| ≤ 1}. (v) {(x, y) | x4 + y4 < 1}.
(iii) {(x, y) | xy ≥ 0}. (vi) {(x, y) | |x| > 1} ∪ {(x, y) | y = 0}.
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3.2 Siguin (X, T1) i (X, T2) dues topologies sobre un mateix conjunt X . Proveu que l’apli-
cació identitat I : (X, T2) → (X, T1) és cont́ınua si i només si T2 és més fina que T1. Si T2
és estrictament més fina que T1 proveu que aleshores l’aplicació identitat és una bijecció
cont́ınua però no un homeomorfisme.

3.3 Sigui f : X → Y una aplicació entre espais topològics. Proveu que són equivalents:
1. f és cont́ınua;

2. f−1(Int(B)) ⊂ Int((f−1(B))) per tot B ⊂ Y ;

3. f (Cl(A)) ⊂ Cl(f (A)) per tot A ⊂ X .

3.4 Sigui f : X → Y una aplicació cont́ınua i A ⊂ X un subconjunt dens. Si f |A és
constant i Y = R aleshores f és també constant. Trobeu un contraexemple si Y no és
la recta real. Doneu una condició necessària i suficient sobre Y per tal que l’enunciat
anterior sigui cert.

3.5 Sigui f : X → Y una aplicació entre dos espais topològics i sigui U una base de la
topologia de Y . Suposem que f−1(U) és obert de X per tot obert bàsic U ∈ U. Demostreu
que f és cont́ınua.

3.6 Sigui f : X → Y una aplicació entre dos espais topològics i sigui U una base de la
topologia de X . Suposem que f (U) és obert de Y per tot obert bàsic U ∈ U. Demostreu
que f és oberta.

3.7 Considereu una aplicació f : X → Y entre dos espais topològics X i Y . Demostreu
que f és oberta si i només si per tot A ⊂ X es compleix que f (Int(A)) ⊂ Int(f (A)).

3.8 Considerem el conjunt X = R∪ {∗}. Posem una topologia a X de la següent manera.
Anomenem tancats de X aquests subconjunts: ∅ i X ; els conjunts T ∪ {∗} on T és un
tancat de R; els conjunts T ⊂ R que són tancats i acotats. Demostreu que hem definit
una topologia a X . Demostreu que X és homeomorf a la circumferència S1.

3.9 A la pàgina 34 hem donat exemples per a totes les combinacions possibles d’apli-
cacions que siguin obertes/no obertes, tancades/no tancades, cont́ınues/no cont́ınues.
Suposeu que afegim la condició que les aplicacions han de ser bijectives. Quines combi-
nacions són possibles en aquest cas?

3.10 Sigui X = R amb la topologia del complement numerable, és a dir, els oberts de X
són els subconjunts A ⊂ X tals que X − A és X , finit o numerable.

1. Els punts de X són oberts? Són tancats?

2. Considereu Q ⊂ X . És Q obert? És Q tancat?

3. Calculeu l’interior i l’adherència de Q.

4. Sigui f : X → X l’aplicació f (x) = x2. És cont́ınua? És tancada? És oberta?
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5. Sigui g : X → X l’aplicació

g(x) =
{

0, x ∈ Q
1, x /∈ Q

És cont́ınua? És tancada? És oberta?

6. Sigui B la famı́lia dels A ⊂ X tal que X − A és numerable. Demostreu que B és
una base de la topologia de X .

7. Sigui B ′ la famı́lia dels A ⊂ X tal que X − A és finit. Demostreu que B ′ no és una
base de la topologia de X .



Caṕıtol 4

Subespais

S
i X és un espai topològic i A ⊂ X és un subconjunt de X ,
aquest subconjunt A adquireix immediatament una topologia
“natural”.1 En aquest caṕıtol definirem aquesta topologia in-
düıda sobre un subconjunt, estudiarem les seves propietats i

treballarem diversos exemples.

4.1 La topologia de subespai

Sigui X un espai topològic i sigui A ⊂ X un subconjunt de X .

Definició 4.1. Direm que U ⊂ A és un obert de A si existeix un obert W
(de X ) tal que U = A ∩W .

Amb aquesta definició, els oberts de A formen una topologia sobre
A. Direm que aquesta topologia sobre A és la topologia indüıda per la
inclusió A ⊂ X i direm que A és un subespai de X .2

Algunes propietats senzilles de la topologia indüıda són aquestes:

1. T ⊂ A és un tancat de A si i només si existeix un tancat K de X tal
que T = A ∩ K .

1Observem que, en contrast amb això, un subconjunt arbitrari d’un espai vectori-
al no és automàticament un espai vectorial i un subconjunt arbitrari d’un grup no és
automàticament un grup.

2Quan tinguem la situació A ⊂ X i parlem d’un obert caldrà que quedi clar si estem
parlant d’un obert de A o estem parlant d’un obert de X . Són coses diferents.

39
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2. Si A és obert, aleshores U ⊂ A és obert a A si i només si és obert a
X .

3. Si A és tancat, aleshores T ⊂ A és tancat a A si i només si és tancat
a X .

4. L’aplicació d’inclusió i : A ↪→ X és cont́ınua.

5. La topologia indüıda sobre A és la menys fina que fa que la inclusió
i : A ↪→ X sigui cont́ınua.

6. Si f : X → Y és una aplicació cont́ınua, aleshores la restricció a A
d’aquesta aplicació, f |A : A → X , també és cont́ınua.

7. Si X és un espai mètric amb una distància d i A ⊂ X , la restricció
de d a A fa que A també sigui un espai mètric. Tenim, per tant,
dues topologies sobre A. D’una banda, la topologia donada per la
distància d. De l’altra, la topologia indüıda per la topologia de X .
Aquestes dues topologies coincideixen.

8. La mateixa idea de la topologia indüıda es pot generalitzar a la
situació següent. Sigui X un espai topològic, A un conjunt i f : A → X
una aplicació. Aleshores, podem definir una topologia sobre A que
tingui per oberts els conjunts f−1(U) per a cada obert U de X . Si f
és una inclusió, recuperem la definició de la topologia indüıda.

4.2 Alguns subespais de Rn

Com que tot subconjunt d’un espai topològic és automàticament un espai
topològic, l’espai euclidià Rn ens proporciona una quantitat il·limitada
d’exemples d’espais topològics.

• Considerem A = [0, 1) ⊂ R amb la topologia ordinària a R i la topo-
logia indüıda a A. Veiem, per exemple, que [0, 1/2) és un obert de A
i [1/2, 1) és un tancat de A.

• Considerem A = (0, 1) ∪ (3, 4) ⊂ R. En aquest exemple, tenim que
(0, 1) és un obert de A i és també un tancat de A.

• Considerem Z ⊂ R. És senzill adonar-se que la topologia indüıda
sobre Z és la topologia discreta: tots els subconjunts de Z són oberts
i tancats a Z.
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Figura 4.1: Un Tor de revolució a R3. (Imatge de DemonDeLuxe, Wikimedia
Commons.)

• Sigui A = {1/n : n = 1, 2, 3, . . .} ⊂ R. A té la topologia discreta i és
homeomorf a Z.

• Sigui A = {0} ∪ {1/n : n = 1, 2, 3, . . .} ⊂ R. A no té la topologia
discreta perquè {0} no és obert a A. Tot subconjunt de A que no
contingui el zero és obert. Un subconjunt de A que contingui el zero
és obert si i només si el seu complement és finit.

• Ja coneixem l’esfera

Sn = {x ∈ Rn+1 : ||x|| = 1}.

És un tancat de Rn+1 i ho podem veure amb aquest argument senzill
(i molt útil). Considerem l’aplicació f : Rn+1 → R donada per f (x) =
||x||, que és una aplicació cont́ınua. Veiem que {1} ⊂ R és un tancat
i que Sn = f−1(1). Per tant, Sn és un tancat.

• El tor (figura 4.1) és la superf́ıcie de revolució generada a R3 per una
circumferència que gira al voltant d’un eix que està en el seu mateix
pla i no la talla. Amb aquesta definició i una mica de geometria
anaĺıtica, no és dif́ıcil donar una descripció en coordenades del tor.
Per fer-ho, considerem la circumferència (x−2)2 +z2 = 1 al pla ⟨x, z⟩
i fem-la girar al voltant de l’eix z. Obtenim

T = {(x, y, z) ∈ R3 : (
√
x2 + y2 − 2)2 + z2 = 1}.

Un argument com el de l’esfera ens diu que T és un tancat de R3.
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Figura 4.2: Una banda de Moebius. (Imatge de David Benbennick, Wiki-
media Commons.)

• La banda de Moebius (figura 4.2) es pot pensar com l’objecte de
R3 generat per un segment que gira 360 graus al voltant d’un eix
i, al mateix temps, gira 180 graus sobre ell mateix.3 Amb aquesta
descripció és senzill escriure equacions paramètriques per als punts
de la banda de Moebius:

x(u, v ) =
(

1 + v cos u2

)
cosu

y(u, v ) =
(

1 + v cos u2

)
sinu

z(u, v ) = v sin u2
3Tots hem constrüıt alguna vegada un model f́ısic de la banda de Moebius agafant un

rectangle de paper més llarg que ample (quant més llarg?) i enganxant els dos extrems
curts després de donar-los un gir de 180 graus. Aquest model f́ısic és homeomorf al
model anaĺıtic que donem aqúı. De tota manera, és interessant observar que el model
f́ısic fet amb un paper no és pas isomètric a la superf́ıcie parametritzada M que definim.
Per veure-ho, cal saber una mica de geometria diferencial de superf́ıcies i adonar-se que
la superf́ıcie M té curvatura de Gauss diferent de zero —no és desenvolupable— mentre
que la superf́ıcie que fem amb paper śı que té curvatura zero a tots els seus punts. Ara
bé, fer una construcció amb un full de paper no és una demostració matemàtica i aquest
raonament que acabem de fer ens planteja aquest problema: Existeix una banda de
Moebius a R3 que sigui una superf́ıcie diferenciable amb curvatura nul·la? La resposta
és śı però, curiosament, aquest problema no va ser reconegut i atacat fins molts anys
després que Moebius inventés la seva banda. L’estudiant interessat en el tema —un
tema que té moltes ramificacions, principalment a la matemàtica aplicada a la ciència de
materials— pot consultar l’article de divulgació The Dark Side of the Moebius Strip, de
Gideon E. Schwarz a Amer. Math. Monthly 97, No. 10 (1990), p. 890–897.
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Aleshores, podem definir la banda de Moebius com

M := F ([0, 2π] × [−1/2, 1/2])

on F és la funció cont́ınua (u, v ) 7→ (x, y, z). Per veure que M és un
tancat de R3 necessitaŕıem saber que F és tancada. Més endavant
(caṕıtol 8) aprendrem un mètode molt útil per demostrar aquest tipus
de coses. De moment, ho deixem en suspens.
De vegades s’utilitza també la banda de Moebius sense vora M ′ que
és F ([0, 2π] × (−1/2, 1/2)). Observem que M i M ′ difereixen en una
circumferència.

4.3 El conjunt de Cantor

El conjunt de Cantor és un subconjunt de la recta R que té un interès
especial i tot estudiant de topologia ha de conèixer. En aquesta secció
donarem la seva definició i veurem algunes de les seves propietats. Hi ha
una manera molt senzilla de definir aquest conjunt:
Definició 4.2. El conjunt de Cantor C és el subespai de [0, 1] format per
tots els nombres reals que es poden escriure en base 3 sense utilitzar la
xifra 1.

En aquesta definició hem de tenir en compte que admetem infinites
xifres 2 seguides. Per exemple, 1/3 pertany al conjunt de Cantor perquè,
encara que, en base 3, 1/3 s’escriu 0.1, també es pot escriure 0.022222 · · · .

Si intentem fer-nos una idea de C , observarem que l’interval (1/3, 2/3)
no conté cap punt de C perquè tots els punts d’aquest interval s’escriuen
0.1 · · · . Si ara ens fixem en l’interval [0, 1/3], veurem també que el terç
central d’aquest interval, que és l’interval (1/9, 2/9), tampoc no té cap punt
de C . Successivament, si dividim en tres parts iguals cada interval que
vagi apareixent, l’interval central no té cap punt de C . Això ens suggereix
una definició inductiva del conjunt C que podem fer d’aquesta manera:

1. Posem I0 = [0, 1], X1 = (1/3, 2/3) i I1 = I0 − X1.

2. Definim inductivament

Xn+1 = Xn ∪
[3n−1∪

k=0

(
1 + 3k
3n+1 , 2 + 3k

3n+1

)]
, n > 1

i In+1 = I0 − Xn+1.
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3. Definim C =
∩
n≥0 In.

Enunciem ara algunes propietats d’aquest espai topològic C :

1. C ̸= ∅. En particular, 1 ∈ C .

2. C és un tancat de R perquè cada In en la definició inductiva és un
tancat i C és la intersecció dels In.

3. C no conté cap interval perquè a tot interval sempre podem trobar
algun nombre que no es pot escriure sense la xifra 1.

4. Int(C ) = ∅ perquè si x ∈ C fos un punt interior, hi hauria d’haver un
interval (x − ε, x + ε) ⊂ C .

5. C no té la topologia discreta. Per veure-ho n’hi ha prou amb adonar-
se que els punts de C no són oberts de C . Si x ∈ C fos obert a C ,
això voldria dir que existeix ε > 0 tal que (x − ε, x + ε) ∩ C = {x}.
Però això és impossible, perquè tot interval té infinits nombres reals
que es poden escriure sense la xifra 1.

6. C no és numerable. Podem utilitzar exactament la mateixa demos-
tració que vam utilitzar per veure que R no és numerable (pàgina 10).

Tornarem a parlar d’aquest espai més endavant.

4.4 Continüıtat de funcions definides a trossos

Acabarem aquest caṕıtol amb un teorema que és força útil. Suposem que
tenim una aplicació f : X → Y entre espais topològics que volem saber
si és cont́ınua o no ho és. Suposem que X = A ∪ B i que sabem que f
és cont́ınua quan la restringim a A i que també ho és quan la restringim
a B. Podem afirmar que f és cont́ınua? En general, no, de cap manera,
(doneu un contraexemple) però śı que ho podem afirmar en alguns casos
importants.

Teorema 4.3. Siguin X = A ∪ B i Y espais topològics i sigui f : X → Y
una aplicació. Suposem que f |A i f |B són cont́ınues. Aleshores:

(a) Si A i B són oberts, f és cont́ınua.

(b) Si A i B són tancats, f és cont́ınua.
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Demostració. Demostrarem només l’afirmació (a) perquè l’altra es demos-
tra igual. Sigui U ⊂ Y un obert. Cal demostrar que f−1(U) és un obert.
Observem això:

f−1(U) =
(
f−1(U) ∩ A

)
∪
(
f−1(U) ∩ B

)

= f |−1
A (U) ∪ f |−1

B (U)

Com que f |A és cont́ınua, tenim que f |−1
A (U) és un obert de A. Però A és

obert a X i, per tant, f |−1
A (U) és un obert de X . Pel mateix motiu, f |−1

B (U)
és un obert de X i dedüım que f−1(U) és un obert de X .

4.5 Exercicis addicionals

4.1 Sigui A un recobriment de X , és a dir, A = {Ai}i∈I amb Ai ⊂ X tal que X =
∪
i∈I Ai.

Demostreu que en cadascun dels casos següents una aplicació f : X → Y és cont́ınua si
i només si ho és restringida a cada Ai ∈ A:

1. A és un recobriment per oberts (i.e. els Ai són oberts).

2. A és un recobriment finit per tancats (i.e. els Ai són tancats i I és finit).

3. A és un recobriment per tancats localment finit (tot punt de X té un entorn que
talla un nombre finit de Ai).

4.2 Considerem R amb la topologia ordinària i Z ⊂ R amb la topologia de subespai.
(a) Descriviu quins són exactament els oberts de Z amb aquesta topologia. (b) Doneu
condicions necessàries i suficients per tal que una aplicació f : Z → R sigui cont́ınua. (c)
Demostreu que l’aplicació f : R → Z donada per la “part entera” no és cont́ınua.

4.3 Sigui X un espai topològic i A ⊂ X . Considerem la inclusió i : A ↪→ X . Considerem a
A la topologia indüıda T . Demostreu: (a) f : Y → A és cont́ınua si i només si if : Y → X
és cont́ınua. (b) T és l’única topologia a A que té la propietat de l’apartat anterior.

4.4 Sigui A = {0, 1, 1/2, 1/3, . . . , 1/n, . . .} amb la topologia indüıda per la inclusió A ⊂ R.
Demostreu que tot subespai de A és obert o tancat.

4.5 Sigui F : [0, 2π] × [−1/2, 1/2] → R3 l’aplicació cont́ınua que hem utilitzat per definir
la banda de Moebius. Demostreu que F és injectiva.
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Caṕıtol 5

La topologia producte

E
n aquest caṕıtol volem definir i estudiar una topologia apro-
piada sobre el producte de dos espais topològics. Més en-
davant, generalitzarem aquesta construcció al producte de
qualsevol famı́lia arbitrària d’espais topològics, i acabarem

amb un exemple topològic important: la corba de Peano.

5.1 Topologia a X × Y

Suposem que X i Y són dos espais topològics i considerem el conjunt
producte X × Y . Quina topologia podŕıem considerar sobre X × Y que
sigui “apropiada”, és a dir, que tingui bones propietats?

La primera cosa que hem de tenir en compte és que, si prenem com
a oberts de X × Y els productes U × V on U és un obert de X i V és
un obert de Y , aquests oberts, en general, no compleixen els axiomes de
topologia.1 Ho hem de fer millor. El que śı que és cert és que la famı́lia

B := {U × V : U obert de X, V obert de Y }

compleix les condicions de base d’una topologia que apareixen a la pro-
posició 2.2.

Definició 5.1. La topologia producte a X × Y és la topologia que té per
base els conjunts de la forma U×V on U és un obert de X i V és un obert
de Y .

1Quins axiomes fallen? Doneu un contraexemple.

47
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D’aquests oberts U×V en direm oberts bàsics de X×Y . Recordem que,
segons la proposició 2.2, els oberts de X ×Y seran les unions (arbitràries)
d’oberts bàsics. Dit d’una altra manera,

• A ⊂ X × Y és obert si i només si per tot a ∈ A existeixen un obert
Ua de X i un obert Va de Y tals que a ∈ Ua × Va ⊂ A.

Per aquest mateix mètode, podem definir una topologia sobre qualsevol
producte finit d’espais topològics X1 × · · · × Xn.

Estudiem ara les propietats més bàsiques de la topologia producte.

1. Les projeccions

πX : X × Y → X, πY : X × Y → Y

són cont́ınues.

2. Una aplicació f : Z → X × Y és cont́ınua si i només si els seus com-
ponents són continus, és a dir, si i només si πX f i πY f són aplicacions
cont́ınues.
Demostrem-ho. En un sentit és molt senzill perquè la composició
d’aplicacions cont́ınues és cont́ınua. En l’altre sentit, suposem que
πX f i πY f són cont́ınues i demostrem que f també ho és. En primer
lloc, sobre un obert bàsic de X × Y tenim que

f−1(U × V ) = (πX f )−1(U) ∩ (πY f )−1(V )

és un obert de Z . Si ara A ⊂ X ×Y és un obert arbitrari i z ∈ f−1(A)
amb f (z) = a ∈ A, existirà un obert bàsic U×V tal que a ∈ U×V ⊂
A. Aleshores,

z ∈ f−1(a) ⊂ f−1(U × V ) ⊂ f−1(A).

Com que ja hem vist que f−1(U × V ) és un obert de Z , dedüım que,
efectivament, f−1(A) és un obert de Z .

3. Les projeccions πX , πY són obertes.2

2Això és un regal inesperat. La topologia producte s’ha definit amb la intenció que
les projeccions siguin cont́ınues (propietat 1) i amb la intenció que una aplicació a valor
en un producte sigui cont́ınua si i només si ho són els seus components (propietat 2) però
ens trobem que aquesta topologia també fa que les projeccions siguin obertes.
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Demostrem-ho. Sigui A un obert de X ×Y i mirem de veure que, per
exemple, πX (A) és un obert de X . Apliquem la condició d’obert que
hem vist fa un moment. Sigui x = πX (a) ∈ πX (A) amb a = (x, y) ∈ A.
Com que A és obert, hi haurà un obert bàsic U × V tal que a ∈
U × V ⊂ A. Aleshores, x ∈ U = πX (U × V ) ⊂ πX (A) i πX (A) és obert
de X .
En general, les projeccions no són tancades. Ho hem vist a l’exemple
(101) de l’apartat 3.1.

4. Si fi : Xi → Yi, i = 1, 2, són aplicacions cont́ınues, aleshores f1 × f2 :
X1 × X2 → Y1 × Y2 també és cont́ınua.

5. Si X1
∼= X2 i Y1

∼= Y2, aleshores X1 × Y1
∼= X2 × Y2.

6. X × {∗} ∼= X .

7. X × Y ∼= Y × X .

8. La topologia producte i la topologia indüıda en un subespai són
compatibles en el sentit següent. Suposem que A ⊂ X i B ⊂ Y i
considerem A×B ⊂ X×Y . En principi, sobre A×B podem considerar
dues topologies

(a) La topologia indüıda sobre A × B com a subespai de l’espai
X × Y .

(b) La topologia producte A × B, considerant que A i B són espais
topològics.

Aquestes dues topologies coincideixen. La demostració queda com a
exercici.

9. En principi, tenim dues topologies sobre Rn:

(a) La topologia d’espai mètric donada per la distància euclidiana.
(b) La topologia producte Rn = R× · · · × R.

Aquestes dues topologies coincideixen. La demostració —que també
es deixa com a exercici— es basa en la següent observació ge-
omètrica. Considerem una bola B := B(x, ε) ⊂ Rn i un punt y =
(y1, . . . , yn) ∈ B. Aleshores, existeix δ > 0 tal que

(y1 − δ, y1 + δ) × · · · × (yn − δ, yn + δ) ⊂ B.
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D’altra banda, si tenim un producte d’intervals oberts

P := (a1, b1) × · · · × (an, bn) ⊂ Rn

i un punt z ∈ P , existeix ε > 0 tal que B(z, ε) ⊂ P .

Acabem aquesta secció amb dos exemples interessants.

Exemples

• El tor com a producte de circumferències. Hi ha un homeomorfisme
T ∼= S1 × S1. Això es pot demostrar directament donant un homeo-
morfisme f : T → S1 × S1 i el seu invers g : S1 × S1 → T , d’aquesta
manera:

f (x, y, z) =
(

x√
x2 + y2

, y√
x2 + y2

,
√
x2 + y2 − 2, z

)

g(a, b, c, d) = (a(c + 2), b(c + 2), d)

Tanmateix, cal comprovar que aquestes aplicacions estan ben defi-
nides, són cont́ınues i són inversa una de l’altra.

• El cilindre. Hi ha un homeomorfisme Rn − {0} ∼= Sn−1 ×R. Conside-
rem aquestes aplicacions

Rn − {0} −→ Sn−1 × (0,∞) −→ Rn − {0}

x 7→
(
x

||x|| , ||x||
)

(a, t) 7→ ta

Són cont́ınues i inverses una de l’altra. D’altra banda, ja sabem que
(0,∞) ∼= R.

5.2 El producte infinit

Suposem ara que tenim una famı́lia infinita d’espais topològics {Xi}i∈I
i volem definir una topologia apropiada sobre el seu producte cartesià∏
i Xi. Ho podem fer igual que ho hem fet en el cas finit, és a dir, prenent

la topologia que té per base els oberts bàsics
∏

i∈I

Ui
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on cada Ui és un obert de Xi. Això ens dóna una topologia sobre el
producte

∏
i Xi.

Aquesta topologia no té les propietats que voldŕıem, com es posa de
manifest en aquest exemple interessant. Considerem l’aplicació diagonal

f : R →
∞∏

i=1

R

donada per f (x) = {x}i∈I , on prenem la topologia ordinària a R i la topo-
logia producte que acabem de definir a

∏∞
i=1R. Lamentablement, aquesta

aplicació no és cont́ınua. Per veure-ho, considerem

U :=
∞∏

i=1

(
−1
i ,

1
i

)
⊂

∞∏

i=1

R

que, en la topologia que estem considerant, és un obert bàsic. És evident
que f−1(U) = {0}, que no és un obert de R.

Per tant, la topologia en el producte infinit que pren com a oberts
bàsics els productes d’oberts no té bones propietats i pràcticament no
s’utilitza mai.

Definició 5.2. La topologia producte a
∏
Xi és la topologia que té com a

base d’oberts els productes ∏

i∈I

Ui

tals que

1. Cada Ui és un obert de Xi.

2. Ui = Xi excepte per a un nombre finit de i ∈ I .

Es comprova fàcilment que aquests oberts compleixen les propietats
que exigeix la proposició 2.2. Observem que, si el conjunt d’́ındex I és
finit, recuperem la mateixa definició de topologia producte que teńıem
abans. Aquesta topologia producte śı que compleix les propietats 1–8 que
hem vist a l’apartat 5.1.

Posem ara un exemple molt significatiu de producte infinit: el mateix
conjunt de Cantor C que hem estudiat a l’apartat 4.3.
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Teorema 5.3. El conjunt de Cantor C és homeomorf al producte infinit

∞∏

i=1

{a, b}

on {a, b} és un espai discret amb dos punts.

Demostració. Recordem que hem definit C com els punts de [0, 1] que es
poden escriure en base 3 sense utilitzar la xifra 1. Si pensem l’espai {a, b}
com {0, 2} ⊂ R, podem considerar l’aplicació

ϕ :
∞∏

i=1

{0, 2} → C

que envia cada successió de xifres 0, 2 al nombre real que té aquestes
xifres en la seva expressió en base 3. És a dir:

ϕ({ai}) =
∞∑

i=1

ai
3i .

Es tracta d’una funció bijectiva. Per veure que és un homeomorfisme cal
demostrar que és cont́ınua i que la inversa és també cont́ınua. Sigui
c =

∑∞
1 ai3−i ∈ C i considerem una bola B(c, ε) ∩C . Escollim un valor de

N tal que
∑∞

i=N+1 3−i < ε/2. Aleshores, es compleix que

ϕ({a1} × · · · × {aN} × {0, 2} × {0, 2} × · · · ) ⊂ B(c, ε) ∩ C

i això demostra la continüıtat de ϕ.
Demostrem ara que ϕ és oberta. N’hi ha prou amb veure que la imatge

d’un obert bàsic del producte
∏

{0, 2} és un obert de C . Considerem un
obert bàsic

U = {a1} × · · · × {aN} × {0, 2} × {0, 2} × · · ·

i sigui x =
∑∞

1 ai3−i ∈ ϕ(U). Es compleix que

B(x, 3−N) ∩ C ⊂ ϕ(U).

En efecte, sigui
sN := a1

3 + a2

32 + · · · + aN
3N .
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Aleshores, es compleix x ∈ [sN , sN+3−N ] i, per tant, si y ∈ B(x, 3−N), tenim

y ∈
(
sn − 1

3N , sN + 2
3N

)
.

Si ara recordem la construcció de C a partir de l’interval [0, 1], dividint-lo
en tres parts, eliminant el terç central i repetint el procés, veurem que

(
sN − 1

3N , sN + 2
3N

)
∩ C ⊂ [sN , sN + 3−N ].

Per tant, si y ∈ B(x, 3−M) ∩C , tindrem que y =
∑∞

1 bi3−i amb bi = ai per
i = 1, . . . , N i, en conclusió, y ∈ ϕ(U).

Aquest teorema ens dóna també un exemple d’un producte d’espais
discrets que no és discret. De fet, un producte infinit d’espais discrets
gairebé mai no és discret.

5.3 La corba de Peano

La corba de Peano és un objecte matemàtic que sembla que vulneri la
nostra intüıció de l’espai i de la dimensió. Es tracta, simplement, d’una
corba cont́ınua que passa per tots els punts del quadrat unitat [0, 1]×[0, 1].3
La construcció d’aquesta corba utilitza el conjunt de Cantor C i la seva
expressió com a producte infinit. Construirem

ϕ : [0, 1] → [0, 1] × [0, 1]

en diversos passos.
3Aquesta corba va ser descoberta el 1890 pel matemàtic, lògic i filòsof italià Giuseppe

Peano. Cantor havia demostrat que els punts de Rn es podien posar en correspondència
bijectiva amb els punts de R. Dit d’una altra manera, hi ha tants punt en un interval
[0, 1] com en un quadrat [0, 1] × [0, 1], la qual cosa ens diu que la idea de dimensió
no té sentit a la teoria de conjunts. Té sentit a la topologia? Podria passar que dos
espais euclidians de dimensions diferents Rn i Rm fossin el mateix espai? Una resposta
afirmativa —el descobriment d’un homeomorfisme Rn ∼= Rm— destruiria completament
la idea geomètrica de dimensió. Peano, amb la seva corba, va donar un primer pas en la
construcció d’aquest homeomorfisme: va trobar una aplicació [0, 1] → [0, 1] × [0, 1] que és
cont́ınua i exhaustiva. Però no és injectiva. De fet, en aquest mateix curs demostrarem
que no hi pot haver cap aplicació cont́ınua i bijectiva [0, 1] → [0, 1] × [0, 1]. Sobre el
problema general de si Rn ∼= Rm diguem que la resposta és negativa, però la demostració
s’escapa del contingut d’aquest curs.
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• Si observem que cada punt de [0, 1] es pot escriure en base 2 com
una suma infinita x =

∑
bi 2−i amb bi = 0, 1, tenim que l’aplicació

ψ :
∞∏

i=1

{0, 2} → [0, 1]

donada per ψ({ai}) =
∑

(ai/2) 2−i es exhaustiva. A més, un raona-
ment similar al del teorema 5.3 ens diu que ψ és cont́ınua.

• Si X és un producte infinit numerable,4 aleshores X ∼= X × X . En
efecte, si X =

∏
Xi, podem considerar l’aplicació bijectiva X → X×X

donada per
({ai}), {bi}) 7→ {a1, b1, a2, b2, . . .}

i comprovar que és cont́ınua i oberta. En particular, tenim un home-
omorfisme

ρ :
∞∏

i=1

{0, 2} →
∞∏

i=1

{0, 2} ×
∞∏

i=1

{0, 2}.

• Reunint la informació dels apartats anteriors, tenim una aplicació
h : C → [0, 1] × [0, 1] definida com aquesta composició d’aplicacions

C ϕ−1

−−→
∞∏

i=1

{0, 2} ρ−→
∞∏

i=1

{0, 2} ×
∞∏

i=1

{0, 2} ψ×ψ−−→ [0, 1] × [0, 1]

que és cont́ınua i exhaustiva.

• Ara ja gairebé hem acabat la construcció. Només cal estendre l’a-
plicació h : C → [0, 1] × [0, 1] a tot l’interval [0, 1]. Això és senzill i es
fa aix́ı. Volem definir h sobre tots els punts de [0, 1], sabent que ja
està definida sobre els punts del conjunt de Cantor C .
Si [a, b] és algun dels intervals centrals que hem anat eliminant per
construir C de manera inductiva, tindrem que a, b ∈ C i (a, b) ∩C =
∅. Aleshores, definim h sobre [a, b] com el segment de recta de
[0, 1] × [0, 1] que uneix h(a) i h(b). No és dif́ıcil veure que, amb
aquesta definició, tenim una aplicació cont́ınua definida sobre tot
[0, 1] que és exhaustiva sobre [0, 1] × [0, 1]. És la corba de Peano que
buscàvem.

4Encara que no sigui numerable, això també és cert.
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5.4 Exercicis addicionals

5.1 Sigui D2 el disc unitat de R2 i sigui f : S1 → S1 un homeomorfisme. Demostreu que
existeix una extensió de f al disc, f̂ : D2 → D2, que és un homeomorfisme.

5.2 Demostreu que l’anell tancat {x ∈ R2 : 1 ≤ x ≤ 2} és homeomorf al cilindre

{(x1, x2, x3) ∈ R3 : x2
1 + x2

2 = 1, 0 ≤ x3 ≤ 1}.

5.3 Diem que un subespai X ⊂ Y és un retracte de Y si existeix una aplicació cont́ınua
r : Y → X tal que r ◦ ι = id, on ι denota la inclusió de X en Y . Demostreu que:

1. [0, 1] és un retracte de R.

2. Dn és un retracte de Rn.

3. Sn−1 és un retracte de Rn − {0}.

5.4 Siguin A ⊂ X i B ⊂ Y subespais d’espais topològics X i Y .

1. Quina relació hi ha entre Cl(A× B) i Cl(A) × Cl(B) ?

2. I entre Int(A× B) i Int(A) × Int(B) ?

5.5 Demostreu que
∏
i Ai és dens a

∏
i Xi ̸= ∅ si i només si ho és cada Ai ⊂ Xi.

5.6 Siguin X , Y i Z espais topològics no buits tals que X × Y ∼= X × Z . Implica això que
Y ∼= Z ?

5.7 Trobeu condicions necessàries i suficients perquè un producte d’espais discrets sigui
discret.

5.8 Demostreu la “fórmula de Leibnitz”: ∂(A× B) = (∂A× Cl(B)) ∪ (Cl(A) × ∂B).
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Caṕıtol 6

La topologia quocient

S
i tenim una aplicació injectiva A ↣ X i X és un espai to-
pològic, al caṕıtol 4 vam estudiar la topologia indüıda sobre
A i vam veure que era la topologia natural que hav́ıem de
posar a A. En aquest caṕıtol estudiarem la situació simètrica

quan tenim una aplicació exhaustiva p : X ↠ Y d’un espai topològic X en
un conjunt Y i trobarem una topologia apropiada per a Y , a partir de la
topologia de X i de l’aplicació p.1

6.1 Definició de la topologia quocient

Suposem que X és un espai topològic, Y és un conjunt i p : X ↠ Y és una
aplicació exhaustiva.

Definició 6.1. La topologia quocient a Y és la topologia que té per oberts
els subconjunts U ⊂ Y que tenen la propietat que p−1(U) és un obert de
X . Si considerem Y com espai topològic amb aquesta topologia, direm
que “Y té la topologia quocient per p”.

La comprovació que es tracta efectivament d’una topologia és molt sen-

1Ara śı que ja entrem plenament en la topologia, perquè el que estudiarem en aquest
caṕıtol no té paral·lelisme en la teoria d’espais mètrics. De fet, la topologia quocient és
una de les eines que justifiquen que abandonem els espais mètrics i ens situem en el
marc més general dels espais topològics.

57
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zilla.2 Fem un llistat de les seves propietats més bàsiques:3

1. p : X → Y és cont́ınua.

2. La topologia quocient és la topologia més fina sobre Y que fa que
p : X → Y sigui cont́ınua.

3. T ⊂ Y és tancat si i només si p−1(T ) és tancat de X .

4. Sigui f : Y → Z una aplicació. Es compleix que f és cont́ınua si i
només si fp és cont́ınua.
Aquesta propietat és essencial i s’utilitza sovint. La demostració és
senzilla.

Hi ha un cas particular4 d’això que és especialment important. Supo-
sem que tenim un espai topològic X i una relació d’equivalència ∼ sobre
X . Considerem el conjunt quocient i l’aplicació de projecció π : X → X/∼.
Aleshores, podem prendre a X/∼ la topologia quocient per π.5

Un altre exemple important de topologia quocient és el que es coneix
com col·lapsar un subespai a un punt. Sigui X un espai topològic i sigui
A ⊂ X un subespai diferent del buit. Definim un conjunt

X/A := (X − A) ⨿ {∗}
2No cal que p sigui exhaustiva, però només ens interessarà aquest cas i, per tant,

sempre que parlem de topologia quocient entendrem que va donada per una aplicació
exhaustiva.

3Hi ha dues propietats importants de la topologia quocient que no són certes, en
el cas general. Es tracta de la compatibilitat entre la topologia quocient, la topologia
producte i la topologia indüıda. Pel que fa al producte, podem trobar aplicacions ex-
haustives f : X → Y i f ′ : X ′ → Y ′ tals que Y i Y ′ tenen la topologia quocient per
f i f ′, respectivament, i en canvi Y × Y ′ no té la topologia quocient per f × f ′. Com a
anècdota curiosa, podem fer esment del fet que a la primera edició del llibre de topologia
de Bourbaki hi havia un teorema que afirmava el contrari. Sobre aquest assumpte, vegeu
R. Brown, “Topology and Groupoids” p. 111. Pel que fa a la compatibilitat entre topologia
quocient i subespais, és fàcil trobar exemples d’aplicacions f : X → Y i subespais A ⊂ Y
de manera que Y tingui la topologia quocient per f i en canvi A no tingui la topologia
quocient per f : f−1(A) → A. Als exercicis addicionals d’aquest caṕıtol hi ha un exemple
d’aquests.

4De fet, no és un cas particular perquè tota aplicació exhaustiva es equivalent al pas
al quocient per una relació d’equivalència. En efecte, suposem que f : X → Y sigui una
aplicació exhaustiva. Definim a X la relació d’equivalència a ∼ b si i només si f (a) = f (b).
Sigui π : X → X/∼ el pas al quocient. Existeix una única aplicació bijectiva h : X/∼ → Y
tal que f = πh.

5Ja hem dit a 1.2 que podem “fer quocient” per qualsevol relació, encara que no sigui
d’equivalència.
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on {∗} és un punt. Tenim una aplicació exhaustiva p : X → X/A que envia
tots els punts de A al punt ∗ i és la identitat sobre els punts de X − A.
Posem a X/A la topologia quocient per p. Obtenim un espai topològic X/A
que direm que hem obtingut a partir de X col·lapsant A a un punt. Si ens
hi fixem, això és exactament el que hem fet. Hem deixat els punts de fora
de A “tal com estaven” i hem substitüıt tots els punts de A per un únic
punt ∗.6

6.2 Exemples d’espais amb la topologia quocient

Proposició 6.2. L’espai quocient [0, 1]/{0 ∼ 1} és homeomorf a la circum-
ferència S1.

Demostració. Estem prenent l’interval unitat de R, amb la topologia or-
dinària, i fem quocient per la relació 0 ∼ 1 que identifica els dos extrems
de l’interval. Intüıtivament, el que fem és unir els dos extrems d’un interval
i sembla lògic que el resultat sigui una circumferència.7 Per demostrar-ho
hem de construir un homeomorfisme f : [0, 1]/{0 ∼ 1} → S1.

Considerem l’aplicació cont́ınua ben coneguda h : [0, 1] → S1 donada
per h(t) = exp(2πit). Aquesta aplicació té la propietat que h(0) = h(1)
i, per tant, factoritza a través d’una aplicació f : [0, 1]/{0 ∼ 1} → S1

que, per una propietat fonamental de la topologia quocient que hem vist
abans, també és cont́ınua. El càlcul diferencial ens diu que l’aplicació f és
bijectiva. Que f és un homeomorfisme resulta d’aplicar el teorema 3.3.

La llibertat que tenim per identificar punts d’un espai topològic i obte-
nir un altre espai topològic és total. D’aquesta manera podem tenir noves
maneres de construir espais coneguts —com ara mateix, que hem cons-
trüıt la circumferència identificant els dos extrems d’un segment— i també
podem construir nous espais abstractes.

Per exemple, prenem un quadrat I2 := [0, 1] × [0, 1] i identifiquem punts
de la vora, segons ens vingui de gust. Obtindrem nous espais que poden

6De tota manera, les coses poden ser molt més complicades del que aquesta idea
intüıtiva suggereix, perquè, encara que la topologia de X sigui “senzilla”, la topologia de
X/A pot ser molt salvatge. Com a exercici, podem pensar en l’espai topològic [0, 1]/(0, 1).

7Aqúı tenim un exemple del que dèiem que no ens hem d’obsessionar amb les relacions
d’equivalència. La relació 0 ∼ 1 no és d’equivalència. Fer quocient per aquesta relació
significa fer quocient per la relació d’equivalència més petita que la conté. Aquesta
relació és la que es defineix aix́ı: x ≈ y si i nomes si x = y o x, y ∈ {0, 1}.



60 CAṔITOL 6. LA TOPOLOGIA QUOCIENT

Figura 6.1: El cilindre com a quocient del quadrat I2.

Figura 6.2: El tor com a quocient del quadrat I2.

ser interessants i el que potser és més important és que els obtenim amb
molt poc esforç.

• (0, t) ∼ (1, t) per tot t ∈ [0, 1]. Un raonament com el de la proposició
anterior ens demostra que I2/∼ ∼= S1 × [0, 1]. És un cilindre (figura
6.1).

• (0, t) ∼ (1, t) i (s, 0) ∼ (s, 1) per tot s, t ∈ [0, 1]. Aqúı estem identi-
ficant dos costats oposats del quadrat I2 —obtenim un cilindre— i
a continuació identifiquem els altres dos costats. Intüıtivament, ob-
tenim un tor i el mètode anterior ens demostraria que efectivament
I2/∼ ∼= T 2 (figura 6.2).

• (0, t) ∼ (1, 1− t) per tot t ∈ [0, 1]. Aqúı estem identificant dos costats
oposats d’un quadrat, però identifiquem el punt d’ordenada t amb el
punt d’ordenada 1 − t. El resultat és una banda de Moebius (figura
6.3).

• Considerem ara el disc D2 := {x ∈ R2 : ||x|| ≤ 1} i fem quocient
per la relació (x, y) ∼ (x,−y) per tot (x, y) ∈ S1. El conjunt quocient
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Figura 6.3: La banda de Moebius com a quocient del quadrat I2.

Figura 6.4: L’esfera com a quocient del disc D2.

és l’esfera S2 (figura 6.4).

• Tornem a considerar el quadrat I2 i fem les identificacions (0, t) ∼
(1, t) i (s, 0) ∼ (1 − s, 1) per tot s, t ∈ [0, 1] (figura 6.5). Si intentem
construir f́ısicament l’espai quocient com hem fet abans, no ho acon-
seguirem perquè resulta que hi ha un teorema8 que diu que l’espai
quocient no és homeomorf a cap subespai de R3. D’aquest espai
quocient s’en diu l’ampolla de Klein9 i s’acostuma a representar pel
dibuix de la figura 6.6, que ens mostra un cert objecte de R3 que,
segons hem dit, no pot ser homeomorf a l’ampolla de Klein, però śı
que, en certa manera, la representa.10

8En aquest curs no tenim prou eines topològiques per demostrar aquest teorema.
9Hi ha una teoria —descrita per Francis Bonahon— que afirma que el fet d’anomenar

“ampolla” a aquest espai procedeix d’una mala traducció de l’alemany o d’un simple joc
de paraules entre la superf́ıcie (Fläche) de Klein i l’ampolla (Flasche) de Klein.

10Per entendre el significat d’aquest dibuix, imaginem que un dibuix com ∞ vulgui
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Figura 6.5: L’ampolla de Klein com a quocient del quadrat I2.

Figura 6.6: La representació clàssica de l’ampolla de Klein a R3. (Dibuix
de Tttrung, Wikimedia Commons.)
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• Tornem a considerar el disc D2 i fem ara quocient per les identifi-
cacions (x, y) ∼ (−x,−y) per tot (x, y) ∈ S1. És a dir, cada punt
de la vora del disc està identificat amb el seu diametralment oposat.
Novament, si intentem fer aquestes identificacions amb un objecte
f́ısic de R3 no ho aconseguirem i el motiu és que hi ha un teorema8

que diu que aquest espai topològic quocient no és homeomorf a cap
subespai de R3. Però és un espai topològic ben definit i, de fet, és un
objecte matemàtic molt important que es coneix com el pla projectiu
RP2. L’estudiarem a l’apartat següent.

6.3 L’espai projectiu

La perspectiva —que ja existia al segle v aC i es va començar a estudiar
matemàticament al segle xiv— va acostumar els geòmetres a la idea de
punt ideal o punt a l’infinit en el qual conflueixen les rectes paral·leles
que van en una certa direcció. Aquests punts no existeixen a la geometria
d’Euclides —que avui diŕıem que és la geometria de l’espai af́ı— però la
visió d’un observador els introdueix automàticament. A partir del segle
xvii, els geòmetres —començant amb Girard Desargues— s’adonen gra-
dualment que si afegim a l’espai aquests punts de l’infinit on es tallen les
rectes paral·leles, la geometria esdevé més senzilla. Molts teoremes ad-
meten formulacions més generals, algunes demostracions poden ser més
simples i —el que és més important— apareixen nous teoremes i fins i
tot nous principis —com el principi de dualitat— que són propis d’aques-
ta nova manera d’entendre la geometria. A partir del segle xix s’arriba
al convenciment que l’àmbit natural de la geometria és l’espai projectiu
entès com la completació de l’espai af́ı amb l’addició dels punts de l’infinit.

representar una circumferència ⃝. ∞ no és una circumferència perquè el punt central
on es tallen els dos “braços” és un únic punt, mentre que a la circumferència haurien
de ser dos punts diferents. Podem imaginar-nos que ∞ realment “representa” una
circumferència si pensem que el punt central són realment dos punts, és a dir, si imaginem
que un ésser unidimensional que caminés cap el punt central per un dels braços mai no
xocaria amb un altre ésser que caminés també cap el punt central anant per l’altre braç.
Si apliquem aquest mateix mètode al dibuix clàssic de l’ampolla de Klein, podem tenir una
bona idea mental d’aquest espai. Observem que, en el dibuix, la superf́ıcie es talla a ella
mateixa en una circumferència. Hem de pensar, doncs, que els punts de la circumferència
són “dobles” i que la superf́ıcie, realment, no es talla a ella mateixa. En qualsevol cas,
la definició de l’ampolla de Klein com l’espai topològic que s’obté com a quocient de I2
per unes certes identificacions, és totalment precisa i formal i no requereix cap mena
d’intüıció geomètrica.
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La manera d’afegir d’un manera absolutament rigorosa aquests punts
de l’infinit —que no són pas punts especials sinó punts com qualsevol
altre punt de la geometria— és relativament senzilla si utilitzem la idea
bàsica de la perspectiva. Per simplificar, imaginem que volem fer geome-
tria plana. Considerem, a l’espai R3, el pla z = −1 i pensem en aquest
pla P com el pla de la geometria plana d’Euclides. P és un espai af́ı de
dimensió dos on hi ha rectes paral·leles i rectes que no són paral·leles.
Imaginem ara un observador O situat al punt (0, 0, 0) ∈ R3 i imaginem que
aquest observador mira la geometria af́ı del pla P. Cada punt del pla P
es correspon uńıvocament amb una recta no horitzontal que passa per O.
D’altra banda, si considerem dues rectes paral·leles del pla P, l’observa-
dor O veurà que aquestes dues rectes es tallen en un punt que ell veu
perfectament clar quan dirigeix la mirada en una direcció horitzontal.

És a dir, hi ha una correspondència bijectiva entre els punts del pla
af́ı P i les rectes de R3 que passen per l’origen i no són horitzontals. Les
rectes horitzontals, en canvi, es corresponen a punts a l’infinit del pla
af́ı, punts on es tallen les rectes paral·leles. Això ens porta a aquesta
definició:

Definició 6.3. L’espai projectiu de dimensió n és el conjunt de rectes de
Rn+1 que passen per l’origen de coordenades. El denotarem per RPn.

Però estem fent un curs de topologia i no podem estudiar ni que sigui
de manera superficial la geometria projectiva, que és la geometria de
l’espai projectiu.11

En aquest curs, l’espai projectiu ens interessa com a exemple d’espai
topològic. Quina topologia hem de posar a RPn? Si pensem RPn com el
conjunt de rectes per l’origen de Rn+1, no es veu cap topologia evident i
natural. Fem aquesta observació: Per determinar una recta per l’origen
de Rn+1 n’hi ha prou amb donar un vector unitari de Rn+1. Ara bé, si
v ∈ Rn+1 és un vector unitari, v i −v determinen la mateixa recta. Per
tant, els punts de l’espai projectiu RPn es poden posar en correspondència
bijectiva amb els vectors unitaris de Rn+1, sempre que identifiquem cada
vector unitari v amb el seu oposat −v . Com que els vectors unitaris de
Rn+1 són els punts de l’esfera unitat Sn, això ens duu a una nova definició
de l’espai projectiu:

RPn = Sn/{−v ∼ v}.
11És molt probable —i molt lamentable— que l’estudiant que arriba a aquest curs de

topologia no hagi estudiat mai la geometria projectiva. L’única cosa que puc dir és que,
en la meva opinió, aquesta mancança en els plans d’estudi actuals és un greu error.
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Aquesta nova definició té l’avantatge que dota RPn d’una topologia na-
tural. Prenem la topologia ordinària a l’esfera Sn i prenem la topologia
quocient per les identificacions −v ∼ v . Tenim que RPn és un espai
topològic.

Estudiem RP1 —la recta projectiva— i RP2 —el pla projectiu.

RP1 = S1/{−v ∼ v}.

Pensem S1 com els nombres complexos de norma 1 i considerem l’aplicació
f : S1 → S1 donada per f (z) = z2. És una aplicació cont́ınua que factoritza
per

f̃ : RP1 → S1.

Aquesta aplicació f̃ és cont́ınua i bijectiva. Pel teorema 3.3, és un homeo-
morfisme. Per tant, la recta projectiva és el mateix que la circumferència.12

Proposició 6.4. Hi ha un homeomorfisme entre el pla projectiu RP2 i l’espai
quocient D2/ ∼ on D2 és el disc unitat de R2 i ∼ és la relació

(x, y) ∼ (−x,−y) per tot (x, y) ∈ S1 ⊂ D2.

Demostració. L’aplicació

f : D2 −→ S2

(x, y) 7→ (x, y,
√

1 − x2 − y2)

(que consisteix en posar el disc D2 com l’hemisferi superior de l’esfera S2)
factoritza aix́ı:

D2 f−−−→ S2
y

y

D2/∼ f̃−−−→ S2/{−v ∼ v}

L’aplicació f̃ és cont́ınua i bijectiva i, novament, el teoreme 3.3 ens demos-
tra que és un homeomorfisme, si abans demostrem que el pla projectiu
compleix la propietat de Hausdorff, cosa que és senzilla de fer.

Ja hem dit que aquest espai no existeix com a subespai de R3 però
ens podem preguntar si existeix una representació de RP3 a R3 similar
a la que teńıem per a l’ampolla de Klein, és a dir, una representació de
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Figura 6.7: Una representació del pla projectiu a R3. Si al disc de la figura
A identifiquem els dos costats indicats amb la lletra a, seguint el sentit de
les fletxes, obtenim un pla projectiu. És clar que això és el mateix que B i
que C . Els dibuixos D i E ens mostren que és possible identificar els dos
segments indicats x , obtenint la figura F . Ara caldria identificar els dos
segments marcats y, però això no és possible fer-ho a R3 perquè caldria
que la figura es travessés a ella mateixa. L’objecte de G no és, doncs,
el pla projectiu RP2, però n’és una “representació” en la qual hauŕıem
d’entendre que cada punt del “séc” central representa dos punts de RP2.
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Figura 6.8: La superf́ıcie de Boy, des de dos punts de vista diferents.

RP3 com a una superf́ıcie de R3 amb autointerseccions. La manera més
senzilla d’aconseguir això és fer el procés que està indicat a la figura 6.7

El resultat no és gaire bonic —no es pot comparar amb la representació
de l’ampolla de Klein. Una representació més bonica és la que es coneix
com a superf́ıcie de Steiner.13 Hi ha un tercer exemple molt més bonic
però també més dif́ıcil de visualitzar que es coneix com a a superf́ıcie
de Boy.13 Respecte als dos exemples anteriors, la superf́ıcie de Boy té la
particularitat que no té cap “punt singular”.14 De fet, no és dif́ıcil construir
una superf́ıcie de Boy amb cartró, tal com a la figura 6.8.

Per acabar aquesta secció, relacionarem el pla projectiu amb la banda
de Moebius. Demostrarem que si fem un forat a un pla projectiu obtenim
una banda de Moebius o, equivalentment, que si adjuntem a una banda de
Moebius un disc al llarg de tota la vora de la banda de Moebius, obtenim
un pla projectiu. Diguem això mateix amb més precisió. Una banda de
Moebius és un quocient del quadrat després d’identificar dos dels quatre
costats:

M = ([0, 1] × [0, 1])
/

{(0, t) ∼ (1, 1 − t) per tot t ∈ [0, 1]}.

Els altres dos costats queden “lliures” i formen el que anomenarem la “vo-
ra” deM que denotarem ∂M .15 Observem que aquesta vora és homeomorfa

12Intüıtivament, la recta projectiva ha de ser la recta af́ı R a la que hem afegit un únic
punt de l’infinit. És d’esperar, doncs, que el resultat sigui la circumferència.

13A Internet hi ha una gran quantitat d’imatges i v́ıdeos d’aquesta superf́ıcie.
14Per entendre què volem dir quan parlem de “punt singular” cal tenir alguns conei-

xements de geometria diferencial que no podem discutir aqúı.
15No hem de confondre això amb el concepte topològic de “frontera” que hem definit

a 2.7.
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a una circumferència

∂M = ([0, 1] × {0} ⨿ [0, 1] × {1})
/

{(0, 0) ∼ (1, 1), (0, 1) ∼ (1, 0)}
∼= S1.

Ara ja podem enunciar amb precisió el que estem dient.

Proposició 6.5. (M ⨿D2)/∼ ∼= RP2, on ∼ és la identificació natural entre
S1 ⊂ D2 i S1 ∼= ∂M .

Demostració. L’homeomorfisme entre els dos espais es pot visualitzar amb
la sèrie de dibuixos de la figura 6.9.16

6.4 Acció d’un grup sobre un espai

El concepte de grup

El concepte de grup és potser el més important i fonamental de les
matemàtiques —i de la ciència. L’estudiant ja coneix què és un grup.
Recordem-ho.

Definició 6.6. Un grup és un conjunt17 G amb una operació18 x ∗ y que
compleix aquestes tres propietats:

1. Per tot x, y, z ∈ G, es compleix que (x ∗y) ∗ z = x ∗ (y ∗ z) (propietat
associativa).

2. Existeix un element e ∈ G tal que x ∗ e = e ∗ x = x per tot x ∈ G
(existència d’element neutre).

16Alguns estudiants, acostumats a demostracions algebraiques o anaĺıtiques, poden
pensar que aquests dibuixos no donen cap autèntica demostració formal de la proposició.
Aquests escrúpols no estan justificats i en els caṕıtols posteriors utilitzarem més d’una
vegada dibuixos com aquests per demostrar alguns teoremes. Es tracta de demostrar
que hi ha un homeomorfisme entre dos espais. Cada pas de la successió de dibuixos és
la representació gràfica d’un determinat homeomorfisme que, si calgués, podria donar-se
expĺıcitament per una funció cont́ınua. L’homeomorfisme que busquem és la composició
de tots aquests homeomorfismes successius.

17Com tantes altres vegades, si volguéssim ser totalment precisos, hauŕıem de dir que
“un grup és una parella (G, ∗)”.

18Una operació a G no és altra cosa que una aplicació G × G → G.
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Figura 6.9: Si fem un forat a un pla projectiu obtenim una banda de
Moebius.

3. Per tot x ∈ G existeix y ∈ G tal que x ∗ y = y ∗ x = e (existència
d’inversos).

Si G compleix també la propietat commutativa (x ∗ y = y ∗ x per tot
x, y ∈ G) es diu que G és un grup abelià.

A la pràctica, gairebé mai no s’utilitza el śımbol ∗ per denotar l’operació
d’un grup, sinó que s’utilitza una d’aquestes dues notacions:

• Notació multiplicativa. L’operació de x i y es denota xy, l’element
neutre es denota 1 i l’invers de x es denota x−1.
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• Notació additiva. L’operació de x i y es denota x + y, l’element
neutre es denota 0 i l’invers de x es denota −x . Aquesta és la
notació preferida en el cas de grups abelians.

Aquesta definició de grup té l’inconvenient que no dóna cap idea so-
bre per què els grups són objectes importants ni per què s’han escollit
precisament aquestes tres propietats i no d’altres. Per entendre el pa-
per absolutament central de l’estructura de grup a la ciència en general,
necessitem aquesta segona definició de grup, més conceptual.

Meta-definició de grup. Un grup és el conjunt de simetries
d’un objecte X .

N’hi hem dit “meta-definició” perquè hi apareixen dues paraules —ob-
jecte i simetria— a les que no hem donat un significat prećıs. La paraula
objecte pot fer referència a moltes coses, dintre i fora de la matemàtica.
Per exemple, X pot ser un conjunt, un espai vectorial, un espai topològic,
l’esfera, l’icosàedre, un polinomi, el cub de Rubik, un graf, etc., etc. En
cada cas, aquest objecte X té un concepte propi de simetria. Per exemple,
les simetries d’un conjunt X serien les aplicacions bijectives de X en X ; les
simetries d’un espai vectorial serien els seus automorfismes; les simetries
d’un espai topològic serien els seus auto-homeomorfismes; les simetries
de l’icosàedre són ...les simetries de l’icosàedre, és a dir, les isometries
de l’espai que deixen fix l’icosàedre; les simetries d’un polinomi serien les
permutacions de les seves arrels que són al “grup de Galois” del polinomi;
les simetries del cub de Rubik serien les configuracions del cub que es
poden assolir fent moviments acceptables, etc.

Vist aix́ı, ens adonem que “hi ha grups arreu” i que realment el concepte
de grup és un dels més fonamentals que hi pugui haver.19

Recordem alguns exemples de grups que l’estudiant ja coneix:

• El grup ćıclic infinit Z.
19Caldria veure que aquesta meta-definció de grup és “equivalent” a la definició for-

mal. Depèn de què entenguem per “equivalent”. El que śı que és cert és que les sime-
tries d’un objecte es poden “composar” entre elles i formen, doncs, un grup abstracte.
Rećıprocament, si G és un grup, hi ha un objecte X del qual G siguin exactament les
simetries? La resposta és śı i una demostració la va donar Johannes de Groot el 1959.
Recordem que un graf és un conjunt de vèrtex i un conjunt d’arestes entre parelles d’a-
quests vèrtex. A partir d’un grup abstracte arbitrari G, de Groot va construir un graf X (G)
—la idea d’aquest graf procedeix d’uns treballs d’Arthur Cayley del 1878— tal que els
seus automorfismes —les seves “simetries”— son exactament els elements del grup G.
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• Els grups ćıclics finits Z/nZ.

• El grup simètric Σn és el grup de les aplicacions bijectives d’un con-
junt de n elements en ell mateix (el grup de les permutacions de n
elements). Aquest grup conté el grup alternat An que està format
per les permutacions “parelles”. Σn té n! elements i An en té n!/2.

• El grup dièdric D2n és el grup de les simetries d’un poĺıgon regular de
n costats. Està format, doncs, per les rotacions d’angle un múltiple
de 2π/n i les reflexions respecte dels n eixos de simetria. D2n té 2n
elements.

• El grup de simetria de l’icosàedre és un grup finit amb 120 elements.

• La multiplicació dels nombres complexos ens dóna una multiplicació
a S1 que compleix els axiomes de grup abelià.

• Els nombres racionals Q, reals R o complexos C amb la suma.

• Q− {0}, R− {0}, C− {0} amb el producte.

• El producte cartesià de grups.

Acció d’un grup sobre un espai

Suposem que X és un espai topològic i G és un grup (escrit multiplica-
tivament). Direm que G actua sobre X si els elements de G ens donen
transformacions de X , de manera coherent amb la multiplicació de G i la
topologia de X . La definició formal és aquesta.

Definició 6.7. Una acció d’un grup G sobre un espai topològic X consisteix
en tenir, per cada g ∈ G, una aplicació cont́ınua

θg : X −→ X

de manera que

(a) θ1 és la identitat I : X → X .

(b) θgθh = θgh per tot g, h ∈ G.
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Si tenim una acció de G sobre X , definim gx := θg(x) per tot g ∈ G,
x ∈ X . De vegades, per fer més clara la notació, escriurem g · x en lloc de
gx .

Observem que, en una acció de G sobre X , les aplicacions θg són
necessàriament homeomorfismes perquè θg−1 és l’aplicació inversa de θg.

Direm que x és un punt fix de l’acció si gx = x per tot g ∈ G.
Quan tenim una acció de G sobre X , és important el concepte de regió

fonamental. Una regió fonamental —també, domini fonamental— és un
subespai D ⊂ X tal que, per tot x ∈ X existeix g ∈ G i x0 ∈ D únic tal
que x = gx0. Sovint ens interessa trobar una regió fonamental D que sigui
topològicament “senzilla” i que la seva clausura també ho sigui.

Alguns exemples

• Hi ha una acció de Z sobre R donada per k · x := k + x . Un domini
fonamental és D = [0, 1).

• Hi ha una acció de Zn sobre Rn donada per

(k1, . . . , kn) · (x1, . . . , xn) := (k1 + x1, . . . , kn + xn).

Un domini fonamental és el cub D = [0, 1)n.

• Hi ha una acció de Z/2Z sobre l’esfera Sn definida per l’aplicació
antipodal A : Sn → Sn, A(x) = −x . És a dir, si, en notació multipli-
cativa, Z/2Z = {1, ε}, aleshores ε · x := −x . L’hemisferi nord és la
clausura d’un domini fonamental.

• Podem considerar aquestes aplicacions afins del pla R2:

S(x, y) := (x, y+ 1), T (x, y) = (x + 1,−y)

i podem considerar el grup G = ⟨S, T ⟩ generat per aquestes dues
aplicacions. G actua sobre R2 i el quadrat [0, 1]× [0, 1] és la clausura
d’un domini fonamental.

Quocient d’un espai per l’acció d’un grup

Si G és un grup que actua sobre un espai topològic X , podem considerar
aquesta relació d’equivalència sobre X :

x ∼ y si i només si existeix g ∈ G tal que gx = y.
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Això ens permet definir l’espai quocient X/∼ que denotarem X/G.20 Tin-
drem també una aplicació de pas al quocient

π : X −→ X/G

que té una propietat especial.

Proposició 6.8. La projecció π és oberta.

Demostració. Sigui U un obert de X . Volem demostrar que π(U) és un
obert de X/G. Com que X/G té la topologia quocient per l’aplicació π,
caldrà comprovar que π−1(π(U)) és un obert de X . Observem això:

π−1(π(U)) = {x ∈ X : π(x) ∈ π(U)}
= {x ∈ X : x = gy per alguns y ∈ U,g ∈ G}
=
∪

g∈G

gU =
∪

g∈G

θg(U)

Com que cada θg és un homeomorfisme, tenim que els subespais θg(U)
són oberts i, per tant, π−1(π(U)) és un obert.21

Els quocients d’espais per accions de grups ens donen exemples d’es-
pais topològics interessants. Mirem si podem identificar els espais quoci-
ents en els exemples anteriors:

• El quocient R/Z amb l’acció k · x := k + x és homeomorf a la circum-
ferència S1. Això es pot demostrar de manera totalment idèntica a
la demostració de la proposició 6.2.

• De manera similar, el quocient Rn/Zn amb l’acció producte és el tor
de dimensió n, T n = S1 × · · · × S1.

• El quocient de l’esfera Sn per l’acció antipodal és, evidentment, l’es-
pai projectiu RPn.

20Observem que aquesta notació és enganyosa perquè l’espai X/G no depèn només
de l’espai X i del grup G, sino que depèn de quina sigui l’acció de G sobre X . És clar que
un mateix grup G podria actuar de maneres diferents sobre un espai X —com veurem
ara mateix— i els espais quocients podrien ser diferents.

21Observem que, si el grup G és finit, aquesta mateixa demostració, canviant la paraula
“obert” per la paraula “tancat”, ens demostra que la projecció π es tancada.
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• El quocient R2/⟨S, T ⟩ amb l’acció

S(x, y) := (x, y+ 1), T (x, y) = (x + 1,−y)

és l’ampolla de Klein K perquè

R2/⟨S, T ⟩ = R2/{(x, y) ∼ (n+ x,m+ (−1)ny) : n,m ∈ Z}
= [0, 1] × [0, 1]/{(0, t) ∼ (1, 1 − t), (s, 0) ∼ (s, 1)}
∼= K.

• També és possible obtenir l’ampolla de Klein com a quocient d’un
tor per l’acció del grup de dos elements. En efecte, considerem T
com el quocient del quadrat unitat per les identificacions habituals
(x, 0) ∼ (x, 1) i (0, y) ∼ (1, y). Considerem aquesta aplicació cont́ınua
del tor en ell mateix:

ε : [x, y] 7→ [−x, y+ 1/2].

És clar que ε2 és la identitat i, per tant, ε dóna una acció del grup
G := Z/2Z sobre T . Si considerem el quocient T /G, veiem fàcilment
que el podem identificar al quocient

[0, 1] × [0, 1/2]
{(x, 0) ∼ (1 − x, 1/2), (0, y) ∼ (1, y) : x, y ∈ [0, 1]}

∼= K.

Observem que hem obtingut el tor T 2 i l’ampolla de Klein K com a quoci-
ents del pla R2 per l’acció d’un grup i també hem obtingut el pla projectiu
RP2 com a quocient de l’esfera S2 per l’acció un altre grup.22,23

6.5 Exercicis addicionals

6.1 Sigui X un espai topològic i sigui A ⊂ X un subconjunt dens. Demostreu que tots
els oberts no buits de X/A tenen un punt comú.

22Podem obtenir el pla projectiu o l’esfera com a quocient del pla R2 per l’acció d’un
grup? Si l’acció és prou “bona” (com les dels exemples anteriors) la resposta és no però
en aquest curs no tindrem instruments per demostrar-ho.

23A la vista del que hem dit a la nota 3, els arguments d’aquests exemples, encara
que semblin plausibles, no estan totalment justificats. De tota manera, es poden donar
demostracions vàlides de tots aquests exemples utilitzant el teorema 3.3.
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6.2 Sigui f : X → Y una aplicació cont́ınua. Suposem que f té una secció, és a dir,
existeix una aplicació cont́ınua s : Y → X tal que fs és la identitat. Demostreu que Y té
la topologia quocient per f .

6.3 Considereu els espais quocient X = R/(0, 1) i Y = R/[0, 1]. Demostreu que Y ∼= R.
Demostreu que X i Y no són homeomorfs.

6.4 Demostreu que si A és obert o tancat a X , aleshores X −A ∼= X/A− {∗}. Comproveu
que això no és necessàriament cert per a un conjunt A qualsevol.

6.5 Sigui A = {(x, y) ∈ R2 : x ≥ 0 o y = 0} i sigui q : A → R la projecció sobre la primera
coordenada. Demostreu que R té la topologia quocient per q però q no és oberta ni
tancada.

6.6 Sigui X un espai i ∼ una relació d’equivalència a X . Per cada A ⊂ X , definim

Â := {x ∈ X : existeix a ∈ A tal que x ∼ a}

Demostreu que són equivalents: (a) La projecció p : X → X/ ∼ és oberta; (b) A obert
implica Â obert.

6.7 El grup additiu de Q opera sobre la recta real com q · x = q+ x . Demostreu que la
projecció π : R −→ R/Q no és tancada.

6.8 Sigui G un grup que actua sobre els espais X i Y i sigui f : X → Y una aplicació
cont́ınua. Direm que f és equivariant si es compleix que f (gx) = gf (x) per tot x ∈ X i tot
g ∈ G. Demostreu que si f és equivariant i és un homeomorfisme, aleshores f indueix
un homeomorfisme X/G ∼= Y /G.

6.9 Considerem un quadrat Q = [0, 1] × [0, 1] ⊂ R2 amb la topologia ordinària. Sigui
p : Q → T la projecció canònica sobre el tor T . Demostreu que p no és oberta.

6.10 Considerem l’acció del grup G := Z/2Z sobre l’esfera S2 donada per (x, y, z) 7→
(x, y,−z). Demostreu que l’espai quocient és homeomorf al disc D2.
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Caṕıtol 7

Espais compactes

E
n l’estudi dels espais mètrics o en l’estudi de la topologia de
Rn, és gairebé segur que l’estudiant ja ha vist el concepte
d’espai compacte. En aquest caṕıtol estudiarem el concepte
de compacitat en espais topològics generals.

7.1 Recobriments

La compacitat és una certa propietat de finitud extraordinàriament impor-
tant que poden tenir els espais topològics. Té a veure amb la quantitat
d’oberts necessària per recobrir un espai. Comencem parlant de recobri-
ments d’un espai.

Definició 7.1. • Un recobriment d’un espai X és una famı́lia {Ui}i∈I
de subespais de X tals que X =

∪
i∈I Ui. Si I és finit, direm que

el recobriment és finit. Si I és infinit, direm que el recobriment és
infinit.

• Si els subespais Ui, i ∈ I són oberts (a X , s’entén), direm que X =∪
i∈I Ui és un recobriment obert de X .

• Si X =
∪
i∈I Ui és un recobriment de X , un subrecobriment és un

recobriment X =
∪
i∈J Uj format per una subfamı́lia de la famı́lia

inicial {Uj}j∈J , J ⊂ I .

Posem alguns exemples.

77
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• X = X i X = X ∪ X ∪ X ∪ X són dos recobriments oberts de X amb
un obert i amb quatre oberts, respectivament. X = X ∪X ∪ · · · és un
recobriment obert infinit de X .

• R = (−∞, 1) ∪ (0,∞) és un recobriment obert de la recta real R.
Aquest recobriment obert no té cap subrecobriment propi (és a dir,
diferent d’ell mateix).

• El recobriment
R =

∞∪

i=1

(−i, i)

és un recobriment obert infinit de la recta real R. Aquest recobriment
té molts subrecobriments. Per exemple,

R =
∞∪

i=1

(−2i, 2i)

és un subrecobriment del recobriment anterior, també amb infinits
oberts. Observem, en canvi, que aquest recobriment obert no té cap
subrecobriment que sigui finit.

• El recobriment
[0, 1] = (1/3, 1] ∪

∞∪

i=2

[0, 1/i)

és un recobriment obert infinit de l’interval [0, 1]. Aquest recobriment
śı que té subrecobriments finits. Per exemple:

R = (1/3, 1] ∪ [0, 1/2).

• En canvi, el recobriment obert

(0, 1] =
∞∪

i=2

(1/i, 1]

no admet cap subrecobriment finit.

• El recobriment obert de la recta R donat per

R =
∞∪

i=−∞
(i, i+ 2)

no admet cap subrecobriment propi. En efecte, si suprimim l’obert
(i, i + 2) ja no tenim un recobriment de R perquè l’obert (i, i + 2) és
l’únic obert del recobriment que conté el punt i+ 1.
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• El recobriment
R =

∪

x∈R

{x}

és un recobriment tancat de R que no admet cap subrecobriment
propi. Aquest exemple il·lustra el fet que els recobriments tancats
no ens interessen gaire.

És a dir, tenir recobriments oberts finits o infinits no té cap mèrit:
tots els espais en tenen. El que ja és més problemàtic, com hem vist
als exemples anteriors, és que un cert recobriment tingui subrecobriments
propis o no en tingui —i que en tingui de finits o no en tingui de finits.

7.2 El concepte de compacitat

A l’apartat anterior hem posat exemples de recobriments oberts que tenen
subrecobriments finits i exemples de recobriments oberts que no tenen
subrecobriments finits. Això ens permet fer aquesta definició:

Definició 7.2. Un espai topològic X direm que és compacte si tot recobri-
ment obert de X té algun subrecobriment finit.

Comentaris i exemples

• La propietat de ser compacte o no ser-ho és una propietat intŕınseca
de l’espai topològic X i no depèn de que X el considerem com a
subespai de Y o de Z .1

• La propietat de ser compacte és una propietat topològica i, per això
mateix, si X és compacte i X ∼= Y , també Y serà compacte.

• Per demostrar que un espai no és compacte, n’hi ha prou amb tro-
bar un recobriment obert que no tingui cap subrecobriment finit. En
canvi, demostrar que un espai śı que és compacte requereix demos-
trar que tot recobriment obert té algun subrecobriment finit. Això,
normalment, és més dif́ıcil.

1Comparem, per exemple, amb ser “obert”, que no té significat intŕınsec, sinó que
només té sentit en relació a un altre espai. X sempre és obert (i tancat) a X , però pot
ser obert o no ser-ho a Y . En canvi, un espai X és compacte o no ho és, sense que calgui
dir res del tipus “compacte a tal espai”.
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• Si un espai només té un nombre finit d’oberts, és evident que qual-
sevol recobriment obert tindrà un subrecobriment finit i l’espai haurà
de ser compacte. En conseqüència, qualsevol espai amb la topologia
grollera és compacte i qualsevol espai amb un nombre finit de punts
també és compacte.

• Un espai discret és compacte si i només si és finit.

• A l’apartat anterior hem vist un exemple d’un recobriment obert de R
que no tenia cap subrecobriment finit. Això ens demostra que R no
és compacte. Com que R ∼= (a, b), qualsevol interval obert de R és
no compacte. També hem trobat un recobriment obert de (0, 1] sense
cap subrecobriment finit. Per tant, (0, 1] tampoc no és compacte.

• Si en un espai mètric X la funció distància d és no acotada —és a
dir, hi ha punts a distància tan gran com es vulgui— aleshores X
no pot ser compacte. N’hi ha prou amb prendre un punt x0 ∈ X i
considerar el recobriment obert de X format per les boles B(x0, n),
n > 0. En particular, Rn no és compacte.

• Si tenim un recobriment obert de X

X =
∪

i∈I

Ui

i prenem complementaris a X , tenim una igualtat

∅ =
∩

i∈I

Ci

on els Ci := X −Ui són tancats. Això ens porta a una caracterització
de la compacitat per tancats: X és compacte si i només si tota
famı́lia de tancats amb intersecció buida té alguna subfamı́lia finita
amb intersecció buida. Aquesta caracterització per tancats pot ser
útil en algun cas.

• Suposem que A ⊂ X . Aleshores, és fàcil veure que la compacitat de
A es pot caracteritzar d’aquesta manera lleugerament diferent a la
definició d’espai compacte.

A és compacte si i només si per tota famı́lia {Ui}i∈I d’oberts
de X tals que A ⊂

∪
i∈I Ui, existeix una subfamı́lia finita

{Uj}j∈J , J ⊂ I , tal que A ⊂
∪
j∈J Uj .
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7.3 Tres propietats importants dels espais
compactes

Teorema 7.3. La imatge d’un compacte per una aplicació cont́ınua és un
compacte

Demostració. Sigui f : X → Y una aplicació cont́ınua entre espais to-
pològics i sigui S ⊂ X un espai compacte. Estem dient que f (S) és també
un espai compacte. La demostració és molt senzilla. Sigui

f (S) ⊂
∪

i∈I

Ui

un recobriment obert de f (S) (per oberts de Y ). Aleshores, considerant les
antiimatges tenim que

S ⊂
∪

i∈I

f−1Ui

és un recobriment de S per oberts de X . Com que S és compacte, aquest
recobriment tindrà un subrecobriment finit

S ⊂ f−1Ui1 ∪ · · · ∪ f−1Uin.

Aplicant f als dos costats d’aquesta inclusió, tenim que

f (S) ⊂ Ui1 ∪ · · · ∪ Uin.

En particular, aquest teorema ens diu que un quocient d’un espai com-
pacte és compacte.

Teorema 7.4. Un subespai tancat d’un espai compacte és compacte

Demostració. Suposem que X és compacte i S ⊂ X un subespai tancat.
Volem demostrar que S també és compacte. Sigui

S ⊂
∪

i∈I

Ui

un recobriment de S per oberts de X . Aleshores,

X =
(
∪

i∈I

Ui

)
∪ (X − S)



82 CAṔITOL 7. ESPAIS COMPACTES

és un recobriment obert de X . Com que X és compacte, tindrem

X = Ui1 ∪ · · · ∪ Uin ∪ (X − S)

i, en conseqüència, S ⊂ Ui1 ∪ · · · ∪ Uin .

Teorema 7.5. El producte d’una famı́lia d’espais compactes no buits és
compacte si i només si cada espai ho és.

Demostració. La demostració d’aquest resultat —que es coneix com a te-
orema de Tychonoff— és complicada i només la farem en el cas d’un pro-
ducte de dos espais —que implicarà que el teorema és cert per a qualsevol
producte d’un nombre finit d’espais.

Suposem que X × Y ̸= ∅ és un espai compacte. La projecció πX :
X × Y → X és cont́ınua. Pel teorema 7.3, X és compacte. El mateix és
cert per a Y .

La part dif́ıcil és, doncs, veure que si X i Y són espais compactes, també
X × Y és un espai compacte. Sigui

X × Y =
∪

i∈I

Wi

un recobriment obert de X × Y . Per cada punt (x, y) ∈ X × Y , escollim un
obert del recobriment Wi(x,y) que contingui (x, y). Com que l’́ındex d’aquest
obert dependrà del punt (x, y), escrivim aquest ı́ndex com i(x, y).

Per la definició de la topologia producte, existirà un obert bàsic tal
que

(x, y) ∈ Ux,y × Vx,y ⊂ Wi(x,y).

Observem ara que, si fixem un punt x ∈ X , podem escriure

Y =
∪

y∈Y

Vx,y

que és un recobriment obert de l’espai compacte Y . Per tant, tindrem un
subrecobriment finit

Y = Vx,y1(x) ∪ · · · ∪ Vx,yn(x)(x).

Observem que el nombre d’oberts dependrà de x i, per això, hem escrit
n(x). També, el segon sub́ındex de cada obert dependrà de x i, per això,
hem escrit yj (x).
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Ara definim
Ux := Ux,y1(x) ∩ · · · ∩ Ux,yn(x)(x)

que, com que és una intersecció finita d’oberts, és un obert. Tenim x ∈ Ux .
Ara observem que

X =
∪

x∈X

Ux

és un recobriment obert de X , que és un espai compacte. Tindrem un
subrecobriment finit

X = Ux1 ∪ · · · ∪ Uxm .
Ara, si hi posem una mica d’atenció, veurem que aquesta igualtat compli-
cada és certa:

X × Y =
m∪

r=1

n(xr )∪

j=1

Uxr × Vxr ,yj (xr )

i, en conseqüència,

X × Y =
m∪

r=1

n(xr )∪

j=1

Wi(xr ,yj (xr ))

és un subrecobriment finit del recobriment obert inicial.

La topologia compacte-obert

Quina topologia podem considerar en el conjunt de les aplicacions cont́ı-
nues entre dos espais? Hi ha diversos candidats, però la topologia que
més s’utilitza és l’anomenada topologia compacte-obert que introduirem
en aquest apartat.

Siguin X , Y espais topològics i definim
map(X, Y ) := {f : X → Y : f és cont́ınua}.

Per cada A ⊂ X i B ⊂ Y , podem considerar aquest subconjunt de l’espai
d’aplicacions cont́ınues map(X, Y ):

F(A,B) := {f ∈ F (X, Y ) : f (A) ⊂ B}.
Considerem ara totes les interseccions finites

U := F(A1,B1) ∩ · · · ∩ F(An,Bn)

amb n > 0, Ai ⊂ X compacte i Bi ⊂ Y obert de Y . Es compleix que aquests
subconjunts U ⊂ F (X, Y ) compleixen les condicions del teorema 2.2 i són,
per tant, base d’una topologia ben definida sobre el conjunt map(X, Y ).
Se’n diu la topologia compacte-obert.
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7.4 Compactes de Rn

Molt probablement, l’estudiant ja coneix aquest teorema important2 que
es coneix amb el nom de teorema de Heine-Borel.

Teorema 7.6. Un subespai de Rn —amb la topologia ordinària— és com-
pacte si i només si és tancat i acotat.

Demostració. L’únic pas dif́ıcil de la demostració consisteix en veure que
l’interval [0, 1] és un espai compacte. Suposem-ho vist. Com que qualsevol
interval tancat és homeomorf a [0, 1],3 ja tenim que tot interval tancat és
compacte. Com que el producte de compactes és compacte (teorema 7.5),
ja tenim que tot cub [a, b]n ⊂ Rn és compacte. Suposem ara que A ⊂ Rn
és tancat i acotat. Per ser acotat, estarà inclòs a algun cub A ⊂ [a, b]n.
Pel teorema 7.4, A serà compacte.

Rećıprocament, ja hem dit abans que un espai mètric amb distància no
acotada no pot ser compacte. Faltaria demostrar que tot compacte de Rn
és tancat a Rn. Això es deduirà d’una proposició senzilla que veurem més
endavant (proposició 8.2).

Per tant, tot es redueix a demostrar que [0, 1] és un espai compacte.
Això s’ha de fer, necessàriament, pel mateix mètode —basat en la propietat
del suprem dels nombres reals— que l’alumne ja deu haver estudiat en
algun curs anterior. No reproduirem aquesta demostració aqúı.

Aquest teorema ens permet donar molts exemples d’espais compactes.
Per exemple, entre els espais que han anat apareixent en aquest curs,
tenim que les esferes Sn, els tors T n, el conjunt de Cantor i la banda de
Moebius són compactes per aplicació directa del teorema de Heine-Borel.
D’altra banda, el teorema 7.3 ens diu que qualsevol quocient d’un compacte
és un compacte. Per tant, l’espai projectiu RPn —que és un quocient de
l’esfera— i l’ampolla de Klein —que és un quocient del quadrat [0, 1]2—
són espais compactes.

2Fins i tot, molts estudiants coneixen massa bé aquest teorema! Prenen com una
mena de mantra que “compacte és tancat i acotat” i això els pot dur a error en el cas
d’espais topològics generals. En efecte, en un espai topològic X hi pot haver subespais
no tancats que siguin compactes. D’altra banda, el concepte d’acotat no té cap sentit en
un espai topològic que no sigui un espai mètric. Cal tenir-ho present.

3Per exemple, podem prendre un homeomorfisme af́ı f : [a, b] → [0, 1] per tot a, b ∈ R.
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Compacitat i successions

La majoria d’estudiants que arriben a aquest curs de topologia saben que

• Els compactes són els tancats i acotats.

• Compacte és equivalent a que tota successió té una parcial conver-
gent.

Sobre el primer punt, ja hem dit quina és la situació: és cert a Rn (amb
la topologia ordinària!) i simplement no té sentit en un espai topològic
general.4

Què passa amb la segona afirmació que caracteritza els compactes
com aquells espais on tota successió té una parcial convergent? Resulta
que les successions són molt útils en els espais mètrics i, principalment,
a Rn, però no es comporten gaire bé en un espai topològic general. Per
exemple:

• El concepte de ĺımit d’una successió es pot definir a un espai to-
pològic sense cap problema, però pot passar que el ĺımit d’una suc-
cessió no sigui únic.

• La relació que hi ha a Rn entre ĺımit de successions i punts adherents
deixa de ser vàlida a un espai topològic general. És a dir, podem
tenir un espai topològic X i un puny x ∈ Cl(A) ⊂ X tal que no hi
hagi cap successió de punts de A que convergeixi a y. Si repassem la
demostració d’aquest teorema en el cas de Rn veurem que utilitza un
argument amb les boles B(x, 1/n) per n = 1, 2, 3, . . . Aquest argument
no es pot generalitzar a un espai topològic general.

• És cert que en un espai compacte de Hausdorff (recordem la propietat
de Hausdorff que hem mencionat a la pàgina 21) tota successió té
algun punt d’acumulació, però hi ha espais compactes de Hausdorff
amb successions sense cap parcial convergent.

• Hi ha espais de Hausdorff que no són compactes i on tota successió té
una parcial convergent. Aqúı el problema és que la propietat que tota

4En un espai mètric general, el teorema śı que té sentit, però és fals perquè, encara
que śı que és cert que un compacte dintre d’un espai mètric ha de ser tancat i acotat,
en canvi hi pot haver subespais tancats i acotats dintre d’un espai mètric que no són
compactes. Un exemple trivial d’això seria un espai discret infinit on tots els punts estan
a distància 1 un de l’altre. És tancat (en ell mateix) i acotat, però no és compacte.
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successió tingui una parcial convergent implica que tot recobriment
numerable té un subrecobriment finit. Però això és més fluix que ser
compacte —se’n diu compacitat numerable.

En resum, quan treballem amb subespais de Rn podem utilitzar les
dues caracteritzacions d’espai compacte —subespais tancats i acotats o
bé subespais on tota successió té una parcial convergent—, però no hem
d’utilitzar aquestes caracteritzacions en un espai topològic general.

7.5 La compactificació per un punt

Hi ha diverses maneres d’incloure un espai topològic X arbitrari en un es-
pai compacte X̃ . La més senzilla és la que es coneix com a compactificació
per un punt, que es diu aix́ı perquè X̃ s’obté afegint a X un únic punt.

Sigui X un espai topològic i definim X̃ = X ⨿ {∗}. És a dir, X̃ s’obté
afegint un nou punt a X . Tenim una inclusió natural X ⊂ X̃ . Ara definirem
una topologia apropiada sobre el conjunt X̃ .

Direm que U ⊂ X̃ és un obert si es compleix una d’aquestes dues
condicions

1. U ⊂ X i U és un obert de X .

2. U = U ′ ⨿ {∗}, U ′ és un obert de X i X − U ′ és compacte.

Deixem com a exercici la demostració d’aquest resultat:

Proposició 7.7. Aquesta definició dota X̃ d’una topologia. L’espai X té la
topologia indüıda per la inclusió X ⊂ X̃ . L’espai X̃ és compacte.5

Si prenem X = Rn —que no és compacte— i el compactifiquem per
aquest mètode, quin espai compacte obtenim? Obtenim l’esfera.

Proposició 7.8. La compactificació per un punt de Rn és un espai home-
omorf a Sn.

5Si l’espai X inicial ja és compacte, la compactificació X̃ és poc interessant. És
simplement X ⨿ {∗} amb el que es coneix com la topologia de la unió disconnexa (vegeu
l’inici del caṕıtol 9).
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Demostració. Sigui x0 un punt fixat a l’esfera Sn. Definim f : Rn⨿{∗} → Sn
aix́ı:

f (x) :=
{
p(x) x ̸= ∗
x0 x = ∗

on p : Rn → Sn−{x0} és la projecció estereogràfica —o, millor dit, la seva
inversa— respecte del punt x0. Demostrarem que f és un homeomorfisme.
És evident que f és bijectiva. Estudiem-ne la continüıtat.

Sigui U un obert de Sn. Si x0 /∈ U , aleshores f−1(U) = p−1(U) és un
obert de Rn ⨿ {∗}. Si x0 ∈ U , aleshores f−1(U) = p−1(U − {x0}) ⨿ {∗} i tot
es redueix a demostrar que K := Rn − p−1(U − {x0}) és un compacte de
Rn. És clar que és tancat. Cal només veure que és acotat, és a dir que
existeix r tal que

Rn − p−1(U − {x0}) ⊂ B(0, r).

Considerem x0 ∈ U . Com que U és un obert de Sn, existirà un ε > 0 tal
que B(x0, ε) ⊂ U ⊂ Sn. Per projecció estereogràfica, la bola B(x0, ε) ⊂
Sn es transforma en el complement d’una bola B(0, r) ⊂ Rn. Per tant,
Rn −p−1(U − {x0}) ⊂ B(0, r) i hem acabat la demostració de la continüıtat
de f . Ens faltaria veure que f−1 també és cont́ınua. Això es pot demostrar
directament, utilitzant un argument similar al de la continüıtat de f , o bé
es pot deduir immediatament com a conseqüència del teorema 8.4.

7.6 Exercicis addicionals

7.1 Considerem l’el·lipsoide

{
(x, y, z) ∈ R3 ∣∣ x

2

2 + y2

3 + z2 = 1
}

i l’hiperboloide {
(x, y, z) ∈ R3 ∣∣ z2 = x2 − y2 }

amb la topologia de subespai de R3. Raoneu si són o no són compactes.

7.2 Demostreu que la gràfica d’una funció f : [0, 1] → R és compacta si i només si f és
cont́ınua. Doneu un exemple d’una funció discont́ınua g : [0, 1] → R amb gràfica tancada
però no compacta.
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7.3 Demostreu que tota intersecció de compactes tancats és compacta i tancada. En
canvi, en general, una intersecció de compactes pot no ser compacta. Per veure-ho, sigui
X = N ∪ {−1,−2} i sigui T definit per: M ∈ T si i només si M ⊂ N o bé N ⊂ M .
Proveu que T és una topologia sobre X , que X és compacte amb aquesta topologia i que
existeixen subconjunts compactes X1 i X2 de X tals que X1 ∩ X2 no és compacte.

7.4 Sigui X un espai topològic i sigui I = [0, 1]. Considerem X × I amb la topologia
producte. Fixem x0 ∈ X i sigui U ⊂ X × I un obert que conté {x0} × I . Proveu que hi ha
un obert V ⊂ X tal que {x0} × I ⊂ V × I ⊂ U .

7.5 Siguin X1 i X2 dos espais topològics i siguin Ki ⊂ Xi, i = 1, 2, subespais compactes.
Demostreu que tot entorn U de K1 × K2 a X1 × X2 conté un entorn de la forma U1 × U2
amb Ki ⊂ Ui, i = 1, 2.

7.6 Proveu que si X és compacte, la projecció p2 : X × Y → Y és tancada.

7.7 Sigui X =
∪∞
n=1 Cn on

Cn =
{

(x, y) ∈ R2 :
(
x − 1

n

)2
+ y2 = 1

n2

}

(aquest espai s’anomena les arracades hawaianes), amb la topologia de subespai. Sigui
Y = R/Z amb la topologia quocient. Proveu que X i Y no són espais homeomorfs.

7.8 Sigui X = [−1, 1] amb la següent topologia: U ⊂ [−1, 1] és obert si (−1, 1) ⊂ U o bé
0 /∈ U . És X compacte?

7.9 Direm que una aplicació f : X → Y és pròpia si la antiimatge de tot compacte és
compacte. Demostreu que si f és cont́ınua i tancada i f−1(y) és compacte per tot y ∈ Y ,
aleshores f és pròpia.

7.10 Siguin X , Y espais i considerem la topologia compacte-obert al conjunt d’aplicacions
cont́ınues map(X, Y ). Sigui x0 ∈ X . Demostreu que l’aplicació d’avaluació

e : map(X, Y ) → Y

donada per e(f ) = f (x0), és cont́ınua.

7.11 Si x1, x2, . . . és una successió infinita de punts d’un espai topològic X , diem que
a ∈ X és un quasiĺımit de (xn) si tot entorn de a conté infinits termes de la successió
(xn). Demostreu que si X és compacte, aleshores tota successió de punts de X té algun
quasiĺımit.



Caṕıtol 8

Espais de Hausdorff

8.1 L’axioma de Hausdorff

L
’axiomàtica dels espais topològics tal com la coneixem avui es
deu al matemàtic Felix Hausdorff (1868–1942) que la va esta-
blir a la seva obra fonamental Grundzüge der Mengenlehre1

publicada el 1914. Hausdorff no axiomatitza el concepte d’o-
bert —com hem fet nosaltres— sinó el concepte d’entorn d’un punt. En
tot cas, els seus primers tres axiomes d’entorn són equivalents als nostres
axiomes d’espai topològic. A més d’aquests tres axiomes,2 Hausdorff impo-
sa també un quart axioma que, traspassat a la nostra axiomàtica d’oberts,
diu això:

Axioma de Hausdorff. Donats x ̸= y, existeixen oberts disjunts
U , V tals que x ∈ U , y ∈ V .

1Aquesta obra de 476 pàgines comença amb la teoria de conjunts i acaba amb l’estudi
dels espais topològics. En aquells moments inicials, la topologia era indestriable de la
teoria de conjunts. Per fer-nos una idea de la importància de l’obra de Hausdorff, podem
llegir el primer paràgraf del comentari que es va publicar sobre aquest llibre el 1920
al Bull. Amer. Math. Soc.: “If there are still mathematicians who hold the theory of
aggregates [la teoria de conjunts] under general suspicion, and are reluctant to grant
it full recognition as a rigorous, mathematical discipline, they will find it hard to retain
their doubts under fire of the logic of Hausdorffs treatise. It would be difficult to name
a volume in any field of mathematics, even in the unclouded domain of number theory,
that surpasses the Grundzüge in clearness and precision.

2Aquests axiomes diuen això: (A) Cada punt té algun entorn i tot entorn d’un punt
conté el punt; (B) la intersecció de dos entorns d’un punt x conté un entorn del punt x;
(C) Si un punt y és a un entorn U de x , aleshores existeix un entorn V de y tal que
V ⊂ U .

89
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Aquest axioma és una propietat de separació i té una gran importància.
Ja n’hav́ıem parlat a la pàgina 21. De tota manera, els nostres espais to-
pològics no compleixen, en general, aquest axioma. Pensem, per exemple,
en un espai groller de dos punts. Els espais que śı que el compleixen els
anomenarem espais de Hausdorff o —utilitzant la paraula Hausdorff com
a adjectiu— espais Hausdorff :

Definició 8.1. Un espai topològic X direm que és Hausdorff si compleix
l’axioma de Hausdorff.

Vegem algunes propietats elementals dels espais Hausdorff:

• La propietat de Hausdorff és una propietat topològica intŕınseca de
l’espai. Per tant, si X és Hausdorff i X ∼= Y , també Y ha de ser
Hausdorff.

• Un espai mètric és sempre Hausdorff. En efecte, si d(x, y) = r > 0,
podem prendre U := B(x, r/2), V := B(y, r/2) i comprovar fàcilment
que aquestes dues boles són disjuntes.

• Un espai groller amb més d’un punt no és Hausdorff.

• En un espai Hausdorff els punts són subespais tancats.3 La demos-
tració és immediata.

• La propietat de Hausdorff s’hereta per subespais. Si X és Hausdorff
i A ⊂ X , aleshores A també és Hausdorff.

• En canvi, la propietat de Hausdorff no s’hereta per pas al quocient.
És a dir, un quocient d’un espai Hausdorff pot ser que no sigui Haus-
dorff. Considerem per exemple el quocient [0, 1]/(0, 1] que és un espai
amb dos punts que no és Hausdorff.

Hi ha altres axiomes de separació, més febles o més forts que l’axioma
de Hausdorff. Per exemple, tenim aquests axiomes escrits per ordre del
més feble al més fort:

• Espais T0 o espais de Kolmogorov. Donats dos punts diferents, hi ha
un obert que conté un d’ells i no l’altre.

3Convé recordar que en un espai topològic general els subespais amb un únic punt
poden no ser tancats.
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• Espais T1 o espais de Fréchet. Donats x ̸= y, hi ha oberts U , V tals
que x ∈ U − V , y ∈ V − U . Aquest axioma és equivalent a que els
punts siguin tancats.

• Els espais T2 són els espais Hausdorff.

• Espais T3 o espais regulars. Es compleix l’axioma T1 i a més donats
un tancat F i un punt x /∈ F , existeixen oberts disjunts U , V tals que
x ∈ U , F ⊂ V .

• Espais T4 o espais normals. Es compleix l’axioma T1 i a més donats
tancats disjunts A, B, existeixen oberts disjunts U , V tals que A ⊂ U ,
B ⊂ V .

8.2 Algunes propietats dels espais Hausdorff

Proposició 8.2. Si X és un espai de Hausdorff i A ⊂ X és compacte,
aleshores A és tancat a X .4

Demostració. Podem suposar que A ̸= ∅, X . Sigui x /∈ A. Volem trobar un
obert U tal que x ∈ U i U ∩A = ∅. Procedim d’aquesta manera. Per cada
a ∈ A, aplicant la propietat de Hausdorff a x, a, tindrem oberts disjunts
Ua, Va tals que x ∈ Ua, a ∈ Va. Prenent tots els oberts Va per a ∈ A,
tindrem un recobriment obert de A.

A ⊂
∪

a∈A

Va.

Com que A és compacte, aquest recobriment tindrà un subrecobriment finit

A ⊂ Va1 ∪ · · · ∪ Van.

Aleshores, l’obert
U := Ua1 ∩ · · · ∩ Uan

compleix el que voĺıem.5

4Recordem que la propietat de ser compacte és una propietat intŕınseca d’un espai,
mentre que la de ser tancat és una propietat relativa a un altre espai. Malgrat això,
aquest teorema ens diu que, en els espais Hausdorff, els espais compactes són el que en
podŕıem dir “intŕınsecament tancats”, és a dir, són tancats en qualsevol espai Hausdorff
que els contingui.

5Aquest tipus d’argument l’utilitzarem diverses vegades. És important que l’estudiant
el conegui i el sàpiga usar.
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Aquesta proposició ens permet completar l’argument del teorema 7.6
que havia quedat inacabat.

Proposició 8.3. Un producte d’espais no buits és Hausdorff si i només si
ho són cada un dels factors.

Demostració. Ho farem amb un producte de dos espais perquè el cas ge-
neral es fa igual. Si X × Y és Hausdorff, aleshores podem prendre y ∈ Y
i observar que X ∼= X × {y} ⊂ X × Y ha de ser Hausdorff. Podem fer el
mateix amb Y .

Rećıprocament, suposem que X , Y són espais Hausdorff i siguin (x1, y1),
(x2, y2) dos punts diferents del producte X × Y . Sense pèrdua de gene-
ralitat, podem suposar x1 ̸= x2. Com que X és Hausdorff, existiran oberts
disjunts U1, U2 de X tals que x1 ∈ U1, x2 ∈ U2. Aleshores, U1 × Y i
U2 × Y són dos oberts disjunts de X × Y que separem els dos punts
(x1, y1), (x2, y2).

Fins ara hem utilitzat diverses vegades un resultat que no hem de-
mostrat. Es tracta del teorema 3.3 que ens dóna un criteri per concloure
que una aplicació cont́ınua i bijectiva és un homeomorfisme, sense neces-
sitat de demostrar que la seva inversa és cont́ınua. Ara podem demostrar
fàcilment aquell teorema, que és un corol·lari immediat d’aquest resultat:

Proposició 8.4. Sigui f : X → Y una aplicació cont́ınua i bijectiva. Supo-
sem que X és un espai compacte i Y és un espai Hausdorff. Aleshores, f
és un homeomorfisme.

Demostració. La demostració és molt senzilla. Per tal que f sigui un ho-
meomorfisme només caldria comprovar que és una aplicació tancada. Sigui
A ⊂ X un tancat. Com que X és compacte, per la proposició 7.4, A és com-
pacte. Aleshores, la proposició 7.3 ens diu que f (A) ⊂ Y és un compacte.
Finalment, la proposició 8.2 ens diu que f (A) és un tancat de Y .

El següent resultat ens demostra que, en el cas compacte, la propietat
de Hausdorff implica una propietat de separació molt més forta com és la
dels espais T4 o normals.

Proposició 8.5. Tot espai compacte Hausdorff és normal.

Demostració. Tornarem a utilitzar un argument que ja hem usat abans.
Suposem que A i B són dos tancats disjunts d’un espai compacte Hausdorff
X . Volem trobar oberts disjunts que els separin. Fixem un punt a ∈ A.
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Per cada punt b ∈ B existiran oberts disjunt Ua,b, Va,b tals que a ∈ Ua,b,
b ∈ Va,b. Observem ara que els oberts Va,b, variant b ∈ B, formen un
recobriment obert de B:

B ⊂
∪

b∈B

Va,b.

Però B és un tancat de l’espai compacte X . Per la proposició 7.4, B és
compacte i podem trobar un subrecobriment finit

B ⊂ Va,b1(a) ∪ · · · ∪ Va,bn(a)(a).

Considerem ara

Ua : = Ua,b1(a) ∩ · · · ∩ Ua,bn(a)(a)

Va : = Va,b1(a) ∪ · · · ∪ Va,bn(a)(a)

Tenim que Ua i Va són oberts disjunts i es compleix a ∈ Ua, B ⊂ Va. Fem
ara variar a ∈ A. Tenim un recobriment obert

A ⊂
∪

a∈A

Ua.

Novament, com que A és compacte, podrem extreure un subrecobriment
finit

A ⊂ Ua1 ∪ · · · ∪ Uam .
Definim ara

U : = Ua1 ∪ · · · ∪ Uam
V : = Va1 ∩ · · · ∩ Vam

Tenim que U i V són oberts disjunts amb A ⊂ U , B ⊂ V , com voĺıem
demostrar.

Hem vist que un quocient d’un espai Hausdorff pot deixar de ser Haus-
dorff. La proposició següent ens presenta un cas important en que aquest
problema no apareix.

Proposició 8.6. Sigui X un espai compacte Hausdorff i sigui A ⊂ X un
subespai tancat. El quocient X/A és compacte Hausdorff.

Demostració. Ja hem vist que un quocient d’un compacte és compacte (teo-
rema 7.3). Es tracta de provar que X/A compleix la propietat de Hausdorff.
Designem per π : X → X/A la projecció canònica. Siguin x, y ∈ X dos
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punts que representin punts diferents a l’espai quocient X/A. Si x, y /∈ A,
com que X és Hausdorff podem trobar oberts disjunts U,V ⊂ X − A tals
que x ∈ U , y ∈ V . Aleshores, π(U) i π(V ) són oberts disjunts de X/A que
separen π(x) i π(y).

El cas interessant és quan un dels dos punts x, y que volem separar
és a A. Suposem y ∈ A. Per la proposició 8.5, X és un espai normal i A,
{x} són tancats de X . Per tant, existiran oberts disjunts U , V tals que
x ∈ U , A ⊂ V . Aleshores, π(U) i π(V ) són oberts disjunts que separen
π(x) i π(y).

Proposició 8.7. Sigui X un espai compacte Hausdorff i sigui G un grup finit
que actua sobre X . Aleshores, el quocient X/G és compacte Hausdorff.

Demostració. La demostració és similar a la de la proposició anterior i la
deixem com a exercici.

Ja tenim instruments per decidir si són Hausdorff o no ho són els di-
versos exemples d’espais que hem anat trobant al llarg d’aquest curs. En
primer lloc, els espais que són subespais de Rn són automàticament Haus-
dorff. D’altra banda, l’espai projectiu i l’ampolla de Klein són Hausdorff
per aplicació de la proposició anterior perquè hem de recordar que l’espai
projectiu és un quocient de l’esfera per una acció del grup de dos elements
i l’ampolla de Klein és un quocient del tor per una acció del grup de dos
elements (pàgina 74).

8.3 La topologia de Zariski

Com és que no exigim l’axioma de Hausdorff a la nostra axiomàtica dels
espais topològics? Hi ha dos motius. En primer lloc, sabem que en els
espais Hausdorff no podem, en general, fer quocients. El segon motiu és
que, en contrast amb el que passava quan Hausdorff va introduir la seva
axiomatització, ara tenim exemples importants d’espais topològics que no
compleixen l’axioma de Hausdorff. Potser l’exemple més interessant el
proporciona la topologia de Zariski, que és una topologia que juga un
paper fonamental a la geometria algebraica.

Sigui k un cos arbitrari —per exemple el cos des complexos C— i con-
siderem l’espai af́ı X := kn. Hi ha una manera de dotar X d’una topologia
que reflecteix la geometria de X . Definirem aquesta topologia utilitzant



8.3. LA TOPOLOGIA DE ZARISKI 95

els subconjunts tancats. Els subconjunts tancats de X seran les solucions
de famı́lies d’equacions polinòmiques. És a dir, si

fi(Z1, . . . , Zn), i ∈ I

és una famı́lia de polinomis en n variables amb coeficients al cos k , definim
un subconjunt de X aix́ı:

V ({fi : i ∈ I}) := {(z1, . . . , zn) ∈ X : fi(z1, . . . , zn) = 0 per tot i ∈ I}.

Aleshores, aquests subconjunts V ({fi : i ∈ I}) ⊂ X compleixen els axiomes
de tancats d’una topologia.

1. ∅ = V (1) i X := V (0) són tancats.

2. És clar que
∩

j∈J

V ({f ji : i ∈ Ij}) = V ({f ji : i ∈ Ij , j ∈ J}).

Per tant, la intersecció arbitrària de tancats és un tancat.

3. La unió de dos tancats és un tancat. En efecte, considerem dos
tancats V ({fi : i ∈ I}), V ({gj : j ∈ J}). Considerem ara la famı́lia
formada per tots els polinomis h tals que h es pot escriure

h =
∑

i∈I

aifi

h =
∑

j∈J

bjgj

on ai i bj són polinomis en n variables amb coeficients al cos k (i,
evidentment, són tots zero excepte un nombre finit, per tal que les su-
mes anteriors tinguin sentit). Aleshores, es pot comprovar fàcilment
que

V ({fi : i ∈ I}) ∪ V ({gj : j ∈ J}) = V ({h}).

Aquestes són algunes de les propietats més elementals d’aquesta to-
pologia:

1. Els punts són tancats, és a dir, la topologia de Zariski és T1.
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2. Si el cos k és infinit, la topologia de Zariski a X := kn no és
Hausdorff. En efecte, siguin x, y ∈ X dos punts diferents i siguin
A, B oberts disjunts que els separen. Aleshores, A = X − V ({fi}),
B = X − V ({gj}) i es complirà que

X = V ({fi}) ∪ V ({gj})

Escollim ara un polinomi f ∈ {fi} i un polinomi g ∈ {gj} i considerem
el polinomi h := fg. Tindrem que aquest polinomi h s’ha d’anul·lar
a tots els punts de kn. Ara bé, un resultat senzill de la teoria de
polinomis ens diu que l’únic polinomi que s’anul·la a tots els punts
de kn (amb k infinit) és el polinomi zero. Per tant, A = ∅ o B = ∅,
una contradicció.

3. També es pot demostrar que kn, amb la topologia de Zariski, és un
espai compacte i, de fet, tots els seus subespais són també com-
pactes. Per demostrar això cal tenir alguns coneixements de teoria
d’anells commutatius, perquè el resultat es dedueix de l’anomenat
teorema de la base de Hilbert. No en parlarem aqúı.

4. En particular, podem considerar la topologia de Zariski a l’espai
af́ı Rn que ens dóna un exemple d’una topologia a Rn que és ma-
temàticament significativa i molt diferent de la topologia ordinària.

8.4 Exercicis addicionals

8.1 Sigui X = [−1, 1] amb la següent topologia: U ⊂ [−1, 1] és obert si (−1, 1) ⊂ U o bé
0 /∈ U . És X Hausdorff?

8.2 Sigui X un espai Hausdorff i x ∈ X . Demostreu que la intersecció de tots els oberts
que contenen x és {x}. Doneu un contraexemple si X no és Hausdorff.

8.3 Sigui A ⊊ X un subespai dens d’un espai topològic X . Demostreu que X/A no és
Hausdorff.

8.4 Siguin f , g : X → Y aplicacions cont́ınues entre espais topològics, amb Y Hausdorff.
Sigui A un subconjunt dens de X tal que f (a) = g(a) per tot a ∈ A. Proveu que f = g.

8.5 Siguin X un espai topològic Hausdorff i A1, . . . , An subespais compactes tals que∩n
i=1 Ai = ∅. Proveu que existeixen oberts U1, . . . , Un de X amb Ai ⊂ Ui per tot i =

1, . . . , n i tals que
∩n
i=1 Ui = ∅.
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8.6 Sigui f : X → Y cont́ınua i exhaustiva, amb X compacte i Y Hausdorff. Demostreu
que Y té la topologia quocient determinada per f .

8.7 Sigui X compacte Hausdorff i sigui f : X → Y una aplicació exhaustiva tal que Y té
la topologia quocient per f . Proveu que les següents afirmacions són equivalents: (1) Y
és Hausdorff. (2) f és tancada. (3) ∆f és tancat a X × X , on ∆f = {(x1, x2) ∈ X × X :
f (x1) = f (x2)}.

8.8 Sigui X ̸= ∅ un espai topològic compacte Hausdorff i f : X → X una aplicació
cont́ınua. Considereu el subespai A =

∩∞
i=1 f i(X ). Proveu les següents afirmacions: (a) A

és compacte i tancat; (b) A no és buit; (c) f (A) = A.

8.9 Sigui f : Dn → Dn una aplicació cont́ınua tal que d(f (x), f (y)) < d(x, y) per tot x ̸= y,
on d és la mètrica euclidiana. Proveu que f té un únic punt fix. (Aqúı Dn := {x ∈ Rn :
||x|| ≤ 1}.)

8.10 Demostreu que la condició T1 és equivalent a que els punts siguin tancats.

8.11 Sigui X un conjunt i siguin T ′ ⊊ T ⊊ T ′′ topologies sobre X . Suposem que X ,
amb la topologia T , és compacte Hausdorff. Demostreu que X , amb la topologia T ′′, no
és compacte. Demostreu que X , amb la topologia T ′, no és Hausdorff. (Aquest curiós
resultat es pot interpretar dient que els espais compactes Hausdorff es troben en un cert
punt d’equilibri, en el sentit que si els traiem algun obert, deixen de ser Hausdorff, i si
els afegim algun obert, deixen de ser compactes.)

8.12 Si X és un espai i x ∈ X , diem que x és un punt d’acumulació si tot entorn de x
té punts de X diferents de x . Sigui X un espai Hausdorff amb dos punts d’acumulació
diferents. Demostreu que X té un subespai que no és ni obert ni tancat.
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Caṕıtol 9

Connexió

S
i X i Y són dos espais topològics, és molt senzill posar una
topologia a la unió disjunta X ⨿ Y prenent com a oberts les
unions U ⨿ V on U és un obert de X i V és un obert de
Y . Direm que X ⨿ Y , amb aquesta topologia, és la unió

disconnexa de X i Y . Observem que, amb aquesta topologia, X i Y són
oberts i tancats a X⨿Y . En aquest caṕıtol estudiarem la situació contrària:
espais que no es poden posar com a unió disconnexa d’altres espais (no
buits!).1

Com que la frase espai topològic no buit es repetirà moltes vegades en
aquest caṕıtol, utilitzarem aquest conveni: un espai-p (“espai ple”) serà
un espai topològic no buit. També parlarem d’obert-p, tancat-p, etc.

9.1 Espais connexos

Proposició 9.1. Sigui Z un espai topològic. Aquestes condicions són equi-
valents:

1. Z no és (homeomorf a una) unió disconnexa de dos espais-p.

2. Z no és unió de dos oberts-p disjunts.
1Observem que no és el mateix una unió disjunta que una unió disconnexa. Unió

disjunta és un terme de teoria de conjunts i vol dir que X = A∪B amb A∩B = ∅, mentre
que unió disconnexa és un concepte de topologia i vol dir que X és unió disjunta de A
i B i, a més, la topologia de X és tal que els seus oberts són les unions d’un obert de
A i un obert de B. Per exemple, [0, 2] és unió disjunta de [0, 1] i (1, 2], però no és unió
disconnexa de [0, 1] i (1, 2].

99
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3. Z no és unió de dos tancats-p disjunts.

4. Si A ⊂ Z és obert i tancat, aleshores A = ∅, Z .

La demostració d’aquesta proposició és molt senzilla i no l’escrivim
aqúı.

Definició 9.2. Un espai topològic diem que és connex si compleix les con-
dicions de la proposició anterior.

A la pràctica, quan volem demostrar que un cert espai és connex o
no ho és, hem de triar, entre les condicions equivalents de la proposició
anterior, la que sigui més senzilla de comprovar.

Exemples

• Tot espai groller és connex.

• Un espai discret amb més d’un punt no és connex.

• La recta real menys un punt no és connexa. En efecte:

R− {a} = (−∞, a) ∪ (a,∞)

és una descomposició de R− {a} com unió de dos oberts-p.

• Q, amb la topologia de subespai de R, no és connex perquè podem
escriure

Q =
(
Q ∩ (−∞,

√
2)
)

∪
(
Q ∩ (

√
2,∞)

)
.

De fet, Q és un exemple del que es coneix com a espai totalment dis-
connex. Un espai X diem que és totalment disconnex si té més d’un
punt i tot subespai de X amb més d’un punt és no connex. Observem
que un espai discret amb més d’un punt és totalment disconnex, però
Q ens dóna un exemple d’espai totalment disconnex no discret.2

• Igual que en el cas de Q, és fàcil veure que el conjunt de Cantor C
és totalment disconnex.

2Observem que els punts de Q no són oberts, mentre que en un espai discret els
punts són oberts.
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• Tot interval tancat de la recta real és connex. En efecte, suposem
que tenim una descomposició [a, b] = A ∪ B amb A, B tancats-p a
[a, b] (i, per tant, tancats-p a R) disjunts. Suposem, sense pèrdua de
generalitat, que a ∈ A. Sigui

a0 := sup {t ∈ A : t < s per tot s ∈ B}.

Aleshores, és fàcil comprovar que tot entorn de a0 conté punts de A
i punts de B i, per tant, a0 ∈ A ∩ B = ∅, una contradicció.

9.2 Algunes propietats dels espais connexos

En primer lloc, si enganxem espais connexos amb intersecció no buida, el
resultat és connex. Dit amb més precisió,

Proposició 9.3. Siguin Yi ⊂ X , i ∈ I , subespais connexos d’un espai X ,
tals que ∩iYi ̸= ∅. Aleshores, ∪iYi és un espai connex.

Demostració. Utilitzarem que els espais connexos són aquells en què l’únic
subespai-p obert i tancat és l’espai total. Sigui A ⊂ ∪iYi un subespai-p
obert i tancat. Existirà i0 ∈ I tal que A ∩ Yi0 és un subespai-p obert i
tancat de Yi0 . Com que Yi0 és connex, tindrem A ∩ Yi0 = Yi0 i Yi0 ⊂ A. Per
tot j es compleix que Yi0 ∩Yj ̸= ∅. Per tant, A∩Yj és també un subespai-p
obert i tancat de Yj i dedüım, igual que abans, que Yj ⊂ A. En conclusió,
A = ∪iYi.

Corollari 9.4. Siguin Yi ⊂ X , i = 0, 1, 2, . . ., subespais connexos d’un espai
X , tals que, per tot i, Yi ∩ Yi+1 ̸= ∅. Aleshores, ∪iYi és un espai connex.

Demostració. Ni ha prou amb considerar

Zj :=
j∪

i=0

Yi, j = 0, 1, 2, . . .

i aplicar la proposició anterior dues vegades.

Corollari 9.5. R és connex. Qualsevol interval de R (acotat o no, obert,
tancat o semi-obert) és connex. Rećıprocament, si A ⊂ R és connex, ales-
hores A és un interval.

Si apliquem una funció cont́ınua a un espai connex, seguirà essent-ho.
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Proposició 9.6. Si f : X → Y és cont́ınua i A ⊂ X és connex, aleshores
f (A) és connex.

Demostració. Considerem la restricció f : A → f (A) que també és cont́ınua.
Si Z ⊂ f (A) és un subespai-p que és obert i tancat, aleshores f−1(Z ) serà
un subespai-p obert i tancat a A. Com que A és connex, necessàriament
f−1(Z ) = A i, per tant, Z = f (A).

En particular, la connexió es manté per pas al quocient. També es
manté per producte:

Proposició 9.7. Un producte d’espais-p és connex si i només si ho és cada
factor.

Demostració. Només considerarem el cas de dos espais. Si X × Y és
connex, aleshores X i Y ho són per la proposició 9.6. Rećıprocament,
suposem que X i Y són connexos. Escollim y ∈ Y i escrivim

X × Y =
∪

x∈X

[
(X × {y}) ∪ ({x} × Y )

]
.

Per la proposició 9.3, X × Y és connex.

Ja sabem, doncs, que Rn és connex. Com que el tor T n és un quocient
del pla, també sabem que el tor és connex. El mateix podem dir de l’am-
polla de Klein o la banda de Moebius. Pel que fa a l’esfera Sn, n > 0,
observem que l’esfera es pot posar com a unió

Sn =
(
Sn − {(1, 0, . . . , 0)}

)
∪
(
Sn − {(0, . . . , 0, 1)}

)
.

Observem ara que cada un dels dos subespais de la descomposició anterior
és connex perquè és homeomorf a Rn per projecció estereogràfica. Per tant,
per la proposició 9.3 l’esfera Sn és connexa si n > 0. Finalment, l’espai
projectiu RPn que és un quocient de l’esfera també serà un espai connex.

Un altre resultat útil és el que diu que l’adherència d’un subespai
connex és connex. De fet, això es pot generalitzar una mica:

Proposició 9.8. Sigui A ⊂ B ⊂ Cl(A) ⊂ X i suposem que A és connex.
Aleshores B també ho és.

Demostració. Sigui Y ⊂ B obert i tancat a B. Això vol dir que existeixen un
obert U de X i un tancat T de X tals que U ∩B = Y = T ∩B. Considerem
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Z := Y ∩ A que serà un obert i tancat de A. Com que A és connex, només
hi ha dues possibilitats: Z = ∅ o Z = A.

Si Z = A, això implica que A ⊂ T . Per tant, Cl(A) ⊂ T i Y = B.
Si Z = ∅, això implica que U ∩ A = ∅. Per tant, U ∩ Cl(A) = ∅ i

Y = ∅.

9.3 Connexió per camins

Si X és un espai topològic, un caḿı a X és una aplicació cont́ınua ω : I → X
on I és l’interval tancat [0, 1] ⊂ R. Els punts ω(0) i ω(1) són els punt origen
i final del camı́ ω, respectivament. Si ω(0) = ω(1), direm que el camı́ ω és
un llaç.

Definició 9.9. Un espai X és connex per camins —també en direm arc-
connex— si per tota parella de punts x, y ∈ X existeix un camı́ ω que té
origen a x i final a y.

Sembla que aquesta condició de connexió per camins ha de tenir alguna
relació amb la connexió. Efectivament:

Proposició 9.10. Tot espai connex per camins és connex.

Demostració. En primer lloc, observem que, com que l’interval I és connex
(corol·lari 9.5), la imatge de qualsevol camı́ ω(I) és un espai connex, per la
proposició 9.6.

Suposem que X ̸= ∅ és un espai connex per camins i sigui x0 ∈ X . Per
cada punt x ∈ X sigui ωx un camı́ de X amb origen x0 i final x . Aleshores

X =
∪

x∈X

ωx(I)

i, aplicant la proposició 9.3, X és connex.

En canvi, un espai pot ser connex sense ser arc-connex. Un exem-
ple interessant d’aquest fenomen és el següent. Considerem la gràfica
(figura 9.1) de la funció

f (x) = sin 1
x
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Figura 9.1: La funció y = sin(1/x) (en escala logaŕıtmica perquè es vegi
millor).

per x ∈ (0, 1] i unim a aquesta gràfica el segment vertical entre (0,−1)
i (0, 1). Anomenem X el subespai de R2 que resulta, amb la topologia
indüıda per la topologia ordinària de R2:

A : = {(0, y) : −1 ≤ y ≤ 1}
B : = {(x, y) : y = sin(1/x), 0 < x ≤ 1}
X : = A ∪ B

Aleshores,

• X no és connex per camins. Suposem que hi ha un camı́ ω amb inici
a (0, 0) i final a (1, sin 1). Tindrem, per cada t ∈ I ,

ω(t) = (ω1(t), ω2(t)) ∈ X ⊂ R2.

El conjunt {t : ω1(t) = 0} és un tancat de [0, 1] i, per tant, tindrà un
element màxim t0. Aleshores, si t > t0 es compleix que ω(t) ∈ B i

ω2(t) = sin 1
ω1(t)

mentre que ω2(t0) ∈ [−1, 1]. Això és absurd perquè

lim
t→t0

sin 1
ω1(t)

no existeix.
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• X és connex. En efecte, B és connex perquè és la imatge del connex
(0, 1] per l’aplicació cont́ınua ω. Com que X = Cl(B) a R2, aplicant la
proposició 9.8, tenim que X és connex.

Algunes de les propietats dels espais connexos són també vàlides per
als espais connexos per camins. Per exemple, un producte (d’espais-p) és
connex per camins si i només si ho és cada factor; la imatge d’un espai
connex per camins per una aplicació cont́ınua és connexa per camins; un
quocient d’un espai connex per camins és connex per camins. La connexió
per camins és també una propietat topològica. Com que dos punts qual-
sevol de Rn es poden unir amb un segment, Rn és connex per camins. Els
cercles màxims de Sn (n > 0) ens demostren que l’esfera Sn amb n > 0 és
connexa per camins. També ho són el tor, l’ampolla de Klein i els espais
projectius.

9.4 Components connexos d’un espai

Sigui X un espai i considerem aquesta relació d’equivalència:

x ∼ y si i només si existeix C ⊂ X connex tal que x, y ∈ C .

Les propietats reflexiva i simètrica són evidents i la propietat transitiva
resulta de la proposició 9.3. Les classes d’equivalència respecte d’aquesta
relació s’anomenen components connexos3 de X .

Fem una llista d’algunes de les propietats bàsiques dels components
connexos d’un espai.

• Si x ∈ X , el component connex que conté x és

C (x) =
∪

x∈A
A connex

A

3Component connex o component connexa? Hi havia una certa tradició d’utilitzar la
paraula component en femeńı —per exemple en el cas de “les components d’un vector”—
que es va estendre al cas de “les components connexes” d’un espai. Tanmateix, la primera
edició del DLC només admetia el gènere mascuĺı, en tots els casos. És més, en aquesta
primera edició hi consta l’exemple concret “els components d’un vector”. Per tant, és
evident que cal parlar de “els components connexos d’un espai”. Curiosament, la segona
edició del DLC diu que la paraula “component” es pot usar en mascuĺı o femeńı en el cas
dels vectors. No sabem quina és la justificació d’aquest canvi de criteri entre les dues
edicions del DLC. En conclusió, encara que potser es podria usar “component” en femeńı
per referir-se a les parts connexes d’un espai topològic, ens sembla que és més apropiat
utilitzar aquesta paraula en mascuĺı.
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• C (x) és maximal entre els subespais connexos de X que contenen x .

• Cada component connex C (x) és connex. Això resulta de la proposició
9.3.

• Els components connexos d’un espais són disjunts.

• Cada component connex de X és un tancat de X . En efecte, si C
és un component connex de X , hem vist que C és connex. Per la
proposició 9.8, Cl(C ) també és connex. Per la maximalitat de C ,
tenim C = Cl(C ).

• En canvi, els components connexos poden no ser oberts. Pensem, per
exemple, en l’espai Q amb la topologia ordinària. Hem vist que és un
espai totalment disconnex. Per tant, els seus components connexos
són els punts, que no són oberts.

• Si X té un nombre finit de components connexos C1, . . . , Cn, aleshores
cada component connex és obert i tancat i X és homeomorf a la unió
disconnexa C1 ⨿ · · · ⨿ Cn.

De manera similar a com hem definit els components connexos d’un
espai, podem definir els components arc-connexos d’un espai X . Consi-
derem la relació d’equivalència

x ∼ y si i només si existeix un camı́ de X que uneix x i y.

i definim els components arc-connexos de X com les classes d’equivalència
respecte d’aquesta relació. Evidentment, si dos punts són al mateix com-
ponent arc-connex, també són al mateix component connex, però l’exemple
anterior d’un espai connex que no és arc-connex ens demostra que, en ge-
neral, els components connexos i els components arc-connexos d’un espai
poden ser diferents.

El concepte de connexió que estudiem en aquest caṕıtol ens permet
distingir entre espais que, fins ara, no pod́ıem saber si eren homeomorfs
o no. Per exemple:

Proposició 9.11. R no és homeomorf a Rn, n > 1.4

4Aquest no és el teorema que ens agradaria. El que realment voldŕıem és demostrar
que si n ̸= m, aleshores Rn i Rm no són homeomorfs. L’argument de connexió que acabem
d’utilitzar no és útil en aquesta situació més general. La demostració d’aquest teorema
necessita eines de topologia algebraica que introdueixen conceptes de connexió d’ordre
superior.
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Demostració. Suposem que f : R → R2 fos un homeomorfisme. Aleshores,
restringint f a R− {0} tindŕıem un homeomorfisme

R− {0} ∼= Rn − {f (0)}.

Però això és impossible perquè R − {0} no és connex i Rn − {f (0)} és
connex per camins i, per tant, és connex.5

9.5 El teorema de la corba de Jordan

Imaginem un llaç al pla, és a dir, una aplicació cont́ınua ω : [0, 1] → R2

tal que ω(0) = ω(1). Observem que això és essencialment el mateix que
dir que tenim una aplicació cont́ınua S1 → R2. Imaginem que aquesta
aplicació és injectiva. Tradicionalment, diŕıem que ω és una corba tancada
simple o també una corba de Jordan, en honor al matemàtic francès Camille
Jordan (1838–1922).

El teorema de la corba de Jordan fa una afirmació que sembla evident
i que, en canvi, és relativament dif́ıcil de demostrar:

Teorema 9.12. Una corba tancada simple al pla R2 divideix el pla en dos
components connexos. Un d’aquests components és acotat i s’anomena
l’interior de la corba; l’altre component és no acotat i s’anomena l’exterior
de la corba. La frontera de cada component és la corba.

És a dir, el teorema diu que R2 −ω(I) té dos components connexos, un
és acotat i l’altre no. La història d’aquest teorema és interessant perquè
es va donar com a evident fins que alguns matemàtics es van adonar que
no ho era gens. Finalment, Jordan va donar una demostració del teorema
el 1887, que no era gens trivial. Per tal d’adonar-nos que aquest teorema
és més profund del que sembla, fem aquests comentaris:

• Tinguem present l’existència de la corba de Peano, que és una corba
cont́ınua al pla que passa per tots els punts del quadrat unitat. El
teorema de la corba de Jordan no s’aplica a la corba de Peano, perquè
no és injectiva, però aquest exemple ens ha de fer recordar que una
corba cont́ınua pot ser un objecte força complex.

5El mateix argument ens demostraria que, si n > 1, S1 i Sn no són homeomorfs i
I = [0, 1] i In, no són homeomorfs. Com a conseqüència, obtenim que no pot existir una
corba de Peano injectiva, és a dir, una aplicació cont́ınua exhaustiva I → I2 no pot ser
injectiva. Si ho fos, pel teorema 8.4 hauria de ser un homeomorfisme.
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• El teorema de la corba de Jordan es pot generalitzar a dimensions
superiors. La idea és la següent. Una corba de Jordan és una aplica-
ció cont́ınua injectiva S1 → R2, per tant, l’objecte anàleg en dimensió
n seria una aplicació cont́ınua injectiva ω : Sn−1 → Rn. Aleshores,
el teorema (que es coneix com a teorema de separació de Jordan-
Brouwer ) diria que, en aquestes circumstàncies, Rn−ω(Sn−1) té dos
components connexos, un d’acotat i l’altre que no ho és.

• Intüıtivament, sembla que el teorema de la corba de Jordan es podria
completar amb una conclusió suplementària, consistent en afirmar
que l’interior de la corba és homeomorf a l’interior d’un disc D2 i
l’exterior de la corba és homeomorf al complement del disc. Efec-
tivament, això és cert i es coneix com a teorema de Schönflies (i
tampoc no és senzill de demostrar). Curiosament, aquest teorema
que també sembla “evident” és fals en dimensions superiors. En
particular, podem posar una esfera S2 de manera cont́ınua i injectiva
a R3 de manera que l’interior no sigui homeomorf a l’interior de la
bola D3.6

• Com ja hem dit, la demostració del teorema de la corba de Jordan per
mètodes més o menys elementals no és senzilla. En canvi, les eines
bàsiques de la topologia algebraica permeten donar una demostració
senzilĺıssima del teorema en dimensió arbitrària.

9.6 Exercicis addicionals

9.1 Siguin T1 i T2 dues topologies en el mateix conjunt X , de manera que T2 sigui més
fina que T1. Si X és connex amb la topologia T1, és cert que també ho serà amb la
topologia T2?

9.2 Demostreu que aquests dos subconjunts del pla R2 (amb les topologies usuals) no són
homeomorfs: X = {x : d(x, p0) = 1 o d(x, p1) = 1}, Y = {x : d(x, p2) = 1} on p0 = (0,−1),
p1 = (0, 1) i p2 = (0, 5).

6L’exemple més conegut és l’esfera amb banyes d’Alexander, descoberta el 1924 per
James Alexander, quan intentava generalitzar el teorema de Schönflies a dimensions
superiors. L’estudiant podrà trobar a Internet moltes imatges d’aquest objecte, si hi està
interessat.
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9.3 Sigui X un espai topològic amb la topologia discreta que conté com a mı́nim dos
punts. Proveu que un espai topològic Y és connex si i només si tota aplicació cont́ınua
f : Y → X és constant.

9.4 Sigui X un conjunt infinit amb la topologia cofinita. Proveu que X és connex.

9.5 Direm que dos subconjunts A i B d’un espai topològic X estan separats si Cl(A)∩B =
∅ = Cl(B) ∩ A. Proveu les afirmacions següents:

1. X és connex si i només si X no és la unió de dos subconjunts-p separats.

2. Sigui Y un subespai connex de X . Per tota parella de subespais separats A i B
de X tals que Y ⊂ A ∪ B, es compleix que Y ⊂ A o Y ⊂ B.

9.6 Siguin A i B dos subespais connexos de X tals que A ∩ Cl(B) ̸= ∅. Demostreu que
A ∪ B és connex.

9.7 Demostreu que aquest subespai de R2 és connex:

{(x, y) : 1/2 ≤ x ≤ 1, y = 0} ∪ {(x, y) : 0 ≤ x ≤ 1, y = x/n, n ∈ Z}.

9.8 Siguin {Cn}n>0 subconjunts connexos i compactes d’un espai Hausdorff tals que
Cn+1 ⊂ Cn per tot n > 0. Demostreu que

∩∞
n=1 Cn és connex.

Doneu un exemple d’una famı́lia de subconjunts connexos tancats Cn ⊂ R2 tals que
Cn+1 ⊂ Cn per a tot n ∈ N, però

∩∞
n=1 Cn no sigui connex.

9.9 Sigui A ̸= ∅, X un subespai de X , on X és connex. Proveu que ∂A ̸= ∅.

9.10 Proveu les següents afirmacions:

1. Sigui X un espai topològic i C un subespai connex de X . Si per a un subespai E
de X es compleix C ∩ E ̸= ∅ i C ∩ (X − E) ̸= ∅, aleshores C ∩ ∂E ̸= ∅.

2. Siguin X un espai topològic, A ⊂ X , x ∈ Int(A), y /∈ A. Aleshores tot camı́ que
uneix x amb y talla la frontera de A.

9.11 Sigui f : S1 → R una aplicació cont́ınua. Proveu que existeix x ∈ S1 tal que
f (x) = f (−x). [Això es pot expressar dient que, en cada instant de temps, hi ha dos punts
de l’equador de la Terra, ant́ıpoda un de l’altre, amb la mateixa temperatura.]

9.12 A R2, considereu la famı́lia de subconjunts B = {[a, b) × [c, d) : a, b, c, d ∈ R}.

1. Proveu que B és base d’oberts d’una topologia S de R2 i que S és més fina que la
topologia usual de R2.

2. Proveu que el conjunt

A = {(x, y) ∈ R2 : x2 + y2 < 1} ∪ {(1, 0)} ∪ {(x, y) ∈ R2 : (x − 2)2 + y2 < 1}

és connex amb la topologia usual però no ho és amb la topologia S.
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9.13 Sigui d la distància ordinària de R2 i considereu aquests tres subespais:

A := {x : d(x, (1, 0)) < 1} ∪ {x : d(x, (−1, 0)) < 1}

B := A ∪ {(0, 0)}, C := Cl(A)

Demostreu que A, B, C no són homeomorfs.

9.14 Un espai es diu que és localment arc-connex si hi ha una base de la seva topologia
que està formada per espais connexos per camins. Demostreu que si X és un espai
connex i localment arc-connex, aleshores X és connex per camins.



Caṕıtol 10

Varietats topològiques

S
i comparem espais com puguin ser l’esfera, el tor o l’espai pro-
jectiu amb espais com el conjunt de Cantor, un espai groller o
l’espai Q, veiem que els primers tenen en comú que, a petita
escala, són indistingibles de l’espai euclidià Rn. Els espais

que tenen aquesta propietat d’assemblar-se “localment” a l’espai euclidià
tenen una enorme importància. Reben el nom de varietats1 —o, si volem
evitar la confusió amb altres tipus de varietats, varietats topològiques.2

10.1 El concepte de varietat

Definició 10.1. Un espai topològic X ̸= ∅ és una varietat de dimensió n
si tot punt x ∈ X té un entorn que és homeomorf a Rn (i X compleix dues
propietats tècniques que discutirem més endavant).3

Observem que res no canviaria si haguéssim definit una varietat com
un espai on tot punt té un entorn que és homeomorf a un obert de Rn.4

1En anglès, aquests objectes que estudiarem ara s’anomenen manifolds. En aquest
punt tenim un petit dèficit de lèxic respecte de l’anglès perquè les dues paraules angleses
variety i manifold corresponen a una única paraula en català.

2En aquest curs només estudiarem varietats topològiques i, per tant, no tindrem cap
problema si les anomenem simplement “varietats”. La idea dels altres tipus de varietats
—per exemple, les varietats diferenciables— és la mateixa: espais que s’assemblen,
localment, a l’espai euclidià. El que canvia, però és el significat de “assemblar-se”. En
el nostre cas, el que volem és que la topologia s’assembli a la de Rn.

3Sovint, direm que una varietat és un espai localment homeomorf a Rn.
4Cal utilitzar el fet que una bola oberta B(0, ε) és homeomorfa a Rn. Un homeomor-

fisme ve donat per l’aplicació x 7→ x/(ε − ||x||).

111
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Si X és una varietat de dimensió 2, direm que X és una superf́ıcie.
Per exemple, la Terra no és plana —l’esfera S2 no és homeomorfa al

pla R2— però a cada punt de la Terra podem dibuixar un “mapa” —en
direm una carta local— que ens doni un homeomorfisme entre un entorn
d’aquest punt i un obert de R2. De fet, podem construir un atles, que serà
un conjunt de cartes locals que cobreixin tota la Terra. Aquests conceptes
tenen sentit en una varietat qualsevol M . Una varietat admet un atles

U = {Ui : i ∈ I}

que és un conjunt de cartes locals Ui que són oberts de M amb homeo-
morfismes

ϕi : Ui
∼=−→ Rn

de manera que ∪iUi = M . En els llocs on dues cartes locals es tallin,
tindrem uns canvis de coordenades que seran homeomorfismes

Rn ⊃ ϕj (Ui ∩ Uj )
ϕ−1
j−−→ Ui ∩ Uj

ϕi−→ ϕi(Ui ∩ Uj ) ⊂ Rn.

Aquests homeomorfismes s’anomenen funcions de transició.

Exemples

• No cal dir que la propietat de ser una varietat és topològica.

• Tot espai discret és una varietat de dimensió zero. (Vegeu, però, més
avall.)

• Rn és una varietat de dimensió n.5

• Un obert de Rn és una varietat de dimensió n. Més en general, un
obert d’una varietat de dimensió n és també una varietat de dimensió
n.

• Si N és una varietat de dimensió n i M és una varietat de dimensió
m, aleshores N ×M és una varietat de dimensió n+m.

• L’esfera Sn és una varietat de dimensió n. La projecció estereogràfica
ens demostra que el complement d’un punt a Sn és homeomorf a Rn.
Per tant, tot punt de Sn té un entorn homeomorf a Rn.

5Però encara no som capaços de demostrar que Rn no sigui una varietat de dimensió
m per algun m ̸= n.



10.2. DUES CONDICIONS TÈCNIQUES 113

• El tor T n = S1 × · · · × S1 és una varietat de dimensió n.

• L’espai projectiu RPn és una varietat de dimensió n. La demostració
és senzilla. Recordem que

RPn = Sn/{−v ∼ v}.

Donat [x ] ∈ RPn, sigui U := B(x, ε) una bola de Sn de radi prou petit
perquè no hi hagi dos punts de U que siguin diametralment oposats.
Recordem (proposició 6.8) que la projecció π : Sn → RPn és oberta
i tancada. Aleshores, la imatge de U a RPn és un obert homeomorf
a U i, per tant, a Rn.

• L’ampolla de Klein és una varietat de dimensió 2. Recordem que
l’ampolla de Klein es pot obtenir com un quocient del tor per una
certa acció del grup de dos elements (pàgina 74) i podem aplicar el
mateix argument del punt anterior.

10.2 Dues condicions tècniques

A la definició de varietat hem dit que, a banda de la caracteŕıstica essen-
cial d’una varietat de ser localment homeomorfa a un espai euclidià, una
varietat també ha de complir dues condicions més que hav́ıem de discutir
més endavant. Ho farem ara.

La primera condició que cal exigir a la definició de varietat és que sigui
Hausdorff. A primera vista, podria semblar que, com que Rn és Hausdorff,
qualsevol espai localment homeomorf a Rn també ho hauria de ser, però
hi ha exemples senzills que demostren que això no és aix́ı. Sigui X la unió
disconnexa de dues còpies de la recta R

X := R1 ⨿ R2

i ara fem un quocient de X consistent en identificar cada punt de la primera
recta amb el mateix punt de la segona recta x1 ∼ x2 —excepte l’origen.
Sigui M l’espai quocient.

Podem imaginar M com una recta real amb “dos oŕıgens” 01, 02. La
topologia de M és tal que cada punt té un entorn homeomorf a R, és a
dir, M podria ser una varietat. Però M no és Hausdorff perquè tot entorn
de 01 talla tot entorn de 02.
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Per tal d’explicar quina és la segona condició convé fer aquesta obser-
vació. Considerem aquesta famı́lia d’oberts de Rn.

{
B
(
x, 1
n

)
: x ∈ Qn, n = 1, 2, 3, . . .

}
.

Aquesta famı́lia és numerable i és una base d’oberts de Rn. És a dir, l’espai
topològic Rn té una base d’oberts numerable. També diem que compleix
el segon axioma de numerabilitat.6 Un exemple trivial d’un espai que no
compleix aquest segon axioma seria un espai discret no numerable. En
principi, un espai Hausdorff localment homeomorf a Rn podria no complir
aquest segon axioma de numerabilitat. Per tant, a partir d’ara exigim que
una varietat compleixi aquest segon axioma de numerabilitat.7 Aquesta
condició és important perquè el segon axioma es necessita per demostrar
diverses propietats de les varietats.

Com que hem posat dues noves restriccions al concepte de varietat,
ara ens cal veure que en els exemples de varietat que hem considerat
a l’apartat anterior es compleixen aquestes dues condicions. Només cal
corregir el que hem dit abans sobre els espais discrets. Tot espai discret
numerable és una varietat, però un espai discret no numerable no compleix
el segon axioma de numerabilitat i no és una varietat.

En principi, no insistirem en aquestes qüestions.

10.3 Varietats connexes

Evidentment, una varietat pot ser connexa o no ser-ho. Si M i N són
varietats, és clar que la unió disconnexa M ⨿ N és també una varietat i
no és connexa.

6El primer axioma de numerabilitat afirma que per tot punt de l’espai hi ha una famı́lia
numerable B d’entorns d’aquest punt tal que tot entorn del punt conté un entorn de la
famı́lia B .

7L’exemple clàssic de varietat connexa que no compleix el segon axioma de numera-
bilitat —i que, per tant, no considerarem que sigui una varietat— és l’espai topològic
que es coneix com la recta llarga. Com que no l’utilitzarem en aquest curs, n’hi haurà
prou amb donar una idea aproximada de com es construeix aquest espai. En primer lloc,
observem que la recta ordinària R es pot construir com la unió d’una famı́lia numerable
d’intervals [0, 1) amb una topologia que fa que l’extrem superior de cada interval estigui
“adherit” a l’extrem inferior del següent interval. De manera similar, la recta llarga es
construeix a partir d’una famı́lia no numerable d’intervals [0, 1) amb una topologia que
fa que l’extrem superior de cada interval estigui adherit a l’extrem inferior del “següent”
interval. Per tal de donar sentit a l’expressió “següent” cal utilitzar la teoria d’ordinals.
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El teorema següent ens diu que si coneixem les varietats connexes, ja
coneixem totes les varietats.8

Teorema 10.2. Sigui M una varietat de dimensió n i siguin Mi, i ∈ I els
seus components connexos.

1. Els Mi són oberts de M .

2. I és numerable. Si M és compacta, aleshores I és finit.

3. Cada Mi és una varietat de dimensió n.

4. M és unió disconnexa dels seus components connexos: M =
⨿
i∈IMi.

Demostració. Cada punt de M té un entorn homeomorf a Rn. Per tant,
cada punt de M té un entorn connex. Això implica immediatament que
cada Mi és obert. Com que un obert d’una varietat és una varietat, tenim
que cada Mi és una varietat. La condició (4) és certa per a tot espai en
que els components connexos siguin oberts. Si I no fos numerable, M no
podria tenir una base numerable d’oberts. Si I és infinit, és evident que
M no pot ser compacta.

En conclusió, tota varietat és unió disconnexa numerable de varietats
connexes. A partir d’ara, doncs, només ens preocuparem per les varietats
connexes.

10.4 Poĺıedres amb cares identificades

Hem vist diversos exemples de superf́ıcies obtingudes fent quocient d’un
quadrat I2 per unes certes identificacions entre els punts dels costats. El
tor, l’esfera, el pla projectiu i l’ampolla de Klein els hem obtingut d’aques-
ta manera —encara que també hem vist construccions alternatives. Po-
dem fer coses similars amb un poĺıgon (“ple”). Podem prendre un poĺıgon
P ⊂ R2 i fer quocient per algunes identificacions entre els seus cos-
tats. Normalment, aquestes identificacions es representen gràficament

8Per entendre millor el teorema que ve a continuació, recordem que tot espai és unió
disjunta dels seus components connexos, però no tot espai és unió disconnexa dels seus
components connexos. Per exemple, els components connexos de Q són els punts, però
una unió disconnexa de punts és un espai discret i Q no ho és. Aquest fenomen també es
pot donar en espais compactes: els components connexos del conjunt de Cantor C —que
és compacte— són els punts, però C no és discret. El que diu el teorema és que aquesta
situació no es pot donar a les varietats.
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orientant els costats i anomenant amb una mateixa lletra els costats que
identifiquem, com a la figura 10.1.

Figura 10.1: Un octògon amb els costats identificats.

En cada cas, l’espai quocient està perfectament ben definit, però pot
ser que no sigui una superf́ıcie. En una superf́ıcie, cada punt ha de tenir
un entorn homeomorf a un disc D2. Per als punts de l’interior del poĺıgon
P , això és evident, però per als punts dels costats de P , dependrà de com
siguin les identificacions i en cada cas, cal comprovar amb paciència si
els punts interiors de les arestes tenen entorns homeomorfs a D2 i si això
també és cert per als vèrtex. Per exemple, si volem que el quocient sigui
una superf́ıcie, és clar que una condició necessària és que els costats
estiguin identificats dos a dos, és a dir, que cada costat de P estigui
identificat a un únic costat de P —en particular, el nombre de costats de
P ha de ser parell.9 També és cert —encara que no sigui evident— que
aquesta condició és suficient.

Per exemple, en el cas de l’octògon P de la figura 10.1, es pot com-
provar que el quocient és una superf́ıcie que es pot representar com un
subespai de R3 (figura 10.2) que s’anomena el “doble tor”. Però hi pot
haver exemples en que s’obtinguin superf́ıcies que, com el pla projectiu o
l’ampolla de Klein, no siguin subespais de R3.

Aquestes construccions també es poden fer en dimensions superiors.
Per exemple, si agafem un poĺıedre (“ple”) de R3 i identifiquem les seves

9Sembla evident que si hi ha tres arestes identificades, el quocient no pot ser una
superf́ıcie, però la demostració no és del tot trivial i utilitza el teorema de la corba de
Jordan.
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Figura 10.2: El doble tor a partir d’un octògon amb els costats identificats.

cares d’alguna manera, l’espai quocient podria resultar que és una varietat
de dimensió 3. Un exemple fàcil consisteix en prendre un cub I3 i identificar
els seus costats de manera que l’espai quocient sigui el tor de dimensió 3
T 3 = S1 ×S1 ×S1. Un exemple més sofisticat i molt més interessant és el
de l’esfera de Poincaré.10

10Aquesta varietat de dimensió 3 la va descobrir Henri Poincaré el 1904 com a con-
traexemple a la primera versió de la famosa conjectura de Poincaré. A la vista d’aquest
contraexemple, el mateix Poincaré va modificar la seva conjectura i la nova versió va ser
un dels problemes fonamentals de les matemàtiques fins l’any 2002 en que Grigori Perel-
man va demostrar que la conjectura és correcta. Si llegim l’obra original de Poincaré,
observarem que no va mai presentar el seu problema com una conjectura, sinó com una
pregunta. “Est-il possible que le groupe fondamental de V se réduise à la substitution
identique, et que pourtant V ne soit pas simplement connexe? [...] Mais cette question
nous entrainerait trop loin.” I tant! Han calgut cent anys d’avenços de la topologia i la
geometria per respondre aquesta pregunta!
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Podem construir l’esfera de Poincaré a partir d’un dodecàedre (sòlid)
identificant les seves cares de la següent manera. Cada cara és un
pentàgon. Identifiquem cada cara amb la seva diametralment oposada
fent un gir de π/5 en el sentit de les agulles del rellotge (figura 10.3).

Figura 10.3: Un dodecàedre amb les cares identificades de manera que
l’espai quocient és l’esfera de Poincaré.

No és evident que l’espai quocient del dodecàedre per aquestes iden-
tificacions sigui una varietat: cal comprovar amb paciència que els vèrtex
i els punts de les arestes del dodecàedre tenen entorns homeomorfs a D3.
Hi ha una altra construcció més conceptual d’aquesta varietat de dimen-
sió 3 com a quocient d’una esfera S3 per l’acció d’un cert grup finit G que
actua lliurement sobre S3.11

11La situació és aquesta. Existeix un poĺıedre regular a R4, inscrit a l’esfera unitat
S3 ⊂ R4, que té 120 cares que són dodecàedres sòlids. Hi ha un grup de 120 simetries
d’aquest poĺıedre que té per regió fonamental un qualsevol d’aquests dodecàedres i de
manera que l’espai quocient per l’acció d’aquest grup és una varietat de dimensió 3 que
és l’esfera de Poincaré. A Internet hi podem trobar visualitzacions molt interessants —i
boniques— de tot això.
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10.5 Orientacions

Orientar un segment és posar-se d’acord en què significa, a cada punt,
“endavant” i “endarrere”. Orientar una superf́ıcie és posar-se d’acord en
quin ha de ser el sentit de les agulles del rellotge a cada punt. Orientar
una varietat de dimensió tres és posar-se d’acord en com han de girar els
tirabuixons a cada punt de la varietat. Això de vegades es pot fer i de
vegades és impossible. Per exemple, si dibuixem un rellotge sobre una
banda de Moebius i fem que es mogui per la banda, quan torni al punt
inicial les seves busques podrien girar en sentit contrari —en funció de
quin camı́ hagi seguit.

Aquesta és la idea intüıtiva d’orientabilitat. Si volem formalitzar ma-
temàticament aquesta idea, de seguida topem amb dificultats importants.
A continuació, intentarem donar un tractament correcte d’aquest concepte,
però cal avisar que no és possible tractar el tema de l’orientabilitat de les
varietats (topològiques) sense utilitzar eines de topologia algebraica. Per
això mateix, al llarg d’aquesta secció donarem arguments que no podrem
justificar completament.

Comencem amb els espais vectorials sobre R.12 Per exemple, una recta
—és a dir, un espai vectorial V de dimensió 1 sobre el cos R. Tindrem V
orientat tan bon punt hàgim escollit un vector v ∈ V , v ̸= 0. Aleshores,
qualsevol vector λv amb λ > 0 donarà la mateixa orientació i qualsevol
vector λv amb λ < 0 donarà l’orientació contrària. Per orientar un espai
vectorial de dimensió 2 cal escollir una base ordenada v1, v2. Això també
ens determinarà un sentit de gir positiu que serà el que passa de v1
a v2 pel camı́ més curt. Una segona base ordenada w1, w2 donarà la
mateixa orientació si el determinant del canvi de base és positiu i donarà
l’orientació contrària si el determinant del canvi de base és negatiu.

En general, orientar un espai vectorial és escollir una base ordenada,
de manera que dues bases ordenades donen la mateixa orientació si el
determinant del canvi de base és positiu. Un espai vectorial té, doncs, dues
orientacions possibles. L’espai vectorial Rn el podem considerar sempre
orientat per la seva base canònica.

Si f : V → V ′ és un isomorfisme lineal entre dos espais vectorials

12Que el cos base sigui el cos del nombres reals és essencial en el concepte d’orientabi-
litat. En el fons, el “problema” de l’orientabilitat prové del fet que l’espai d’automorfismes
lineals de Rn té dos components connexos: el dels automorfismes de determinant positiu
i el dels automorfismes de determinant negatiu. Sobre el cos dels nombres complexos,
per exemple— podŕıem dir que no hi ha problema d’orientabilitat.
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orientats, direm que f conserva (inverteix) l’orientació si el determinant de
f —respecte de les bases que donen les orientacions— és positiu (nega-
tiu).13

Suposem ara que f : Rn → Rn és un homeomorfisme. Resulta que,
encara que f no sigui una aplicació lineal té sentit dir si f conserva l’o-
rientació. Per exemple, si f és una aplicació diferenciable, direm que f
conserva l’orientació si el determinant de la seva matriu jacobiana és po-
sitiu. Si f és simplement una aplicació cont́ınua, no podem utilitzar les
eines del càlcul diferencial —com el jacobià— i és aqúı on ens calen unes
eines de topologia algebraica que no caben en aquest curs. Acceptem,
doncs, que aquest concepte està ben definit. Amb aquestes mateixes ei-
nes, no és pas més dif́ıcil donar sentit a la frase f conserva l’orientació si
f : U → U ′ és un homeomorfisme entre dos oberts de Rn.14

Ara ja podem definir què entenem per varietat orientable. Suposem
que tenim una varietat M . Recordem que M tindrà un atles format per
cartes locals homeomorfes a Rn i que a les interseccions de parelles de
cartes locals tindrem unes funcions de transició ϕi,j que són homeomor-
fismes entre oberts de Rn. Per tant, aquestes funcions de transició poden
conservar l’orientació o no.
Definició 10.3. Direm que una varietat M és orientable si admet un atles
on totes les funcions de transició conserven l’orientació.

Vegem alguns exemples de varietats orientables i varietats no orien-
tables.

• Rn —i, més en general, qualsevol obert de Rn— és orientable.

• L’esfera Sn és orientable.
Hem vist que la projecció estereogràfica ens dóna un atles de Sn
amb dues úniques cartes locals

U = Sn − {(0, . . . , 0, 1)}, V = Sn − {(0, . . . , 0,−1)}.

Per tant, hi ha una única funció de transició.

Φ : Rn − {0} → Rn − {0}.
13Per exemple, una rotació conserva l’orientació i una reflexió respecte d’un hiperplà

inverteix l’orientació.
14Si els oberts són connexos, només hi ha dues possibilitats: f conserva l’orientació o

f inverteix l’orientació. Si els oberts no fossin connexos, aleshores podria passar que f
conservés l’orientació en uns components connexos i l’invert́ıs en uns altres components
connexos.
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Figura 10.4: “Moebius Battle” (xkcd.com, Creative Commons License).

Si calculem aquesta funció de transició i veiem que conserva l’ori-
entació ja haurem demostrat que Sn és orientable. De fet, si n > 1
no cal fer cap càlcul. En efecte, com que Φ està definida sobre un
espai connex, només hi ha dues possibilitats: conserva l’orientació o
bé inverteix l’orientació. Si conserva l’orientació, ja tenim que Sn és
orientable. Si inverteix l’orientació, aleshores n’hi ha prou amb can-
viar una de les dues projeccions estereogràfiques —composant, per
exemple, amb una reflexió a Rn— i tindrem que la funció de transició
conserva l’orientació. En el cas n = 1, aquest argument no és vàlid,
perquè la funció de transició està definida sobre l’espai no connex
R− {0} i podria, per exemple, conservar l’orientació en els negatius
i invertir-la en els positius. Si calculem aquesta funció de transició,
veiem que és la funció Φ(x) = 1/x que té derivada negativa arreu i,
per tant, inverteix l’orientació arreu.

• La banda de Moebius no és orientable (figura 10.4).15

15Sovint es diu que la banda de Moebius és una superf́ıcie d’una sola cara, com
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D’entrada, la banda de Moebius tal com l’hem definida al llarg d’a-
quests apunts no és una superf́ıcie,16 però si hi fem una petita mo-
dificació consistent en eliminar els punts de la vora, és a dir, si
considerem

M ′ := [0, 1] × (0, 1)
/

{(0, t) ∼ (1, 1 − t) : t ∈ (0, 1)}

aleshores śı que tenim una superf́ıcie. Aquesta superf́ıcie no és ori-
entable. Donem una idea de la demostració. Considerem M ′ ⊂ R3

de la manera habitual i suposem que tenim una orientació a M ′. Al
voltant de cada punt x ∈ M ′ hi podem dibuixar una petita circum-
ferència cx i, utilitzant l’orientació, podem marcar un sentit de gir en
aquesta circumferència “de manera coherent” a tota la superf́ıcie. Si
ara prenem la recta normal a la superf́ıcie a cada punt, en aquesta
recta normal hi ha dos vectors unitaris que apunten en direccions
contràries. D’aquests dos vectors, definim vx que sigui el que, res-
pecte del sentit de gir de cx , segueix la regla del tirabuixó.
Sigui ara M ′′ := (0, 1) × (0, 1) ⊂ M ′. Orientem M ′′ i fem amb M ′′ el
mateix que hem fet amb M ′: obtenim, per a cada punt x ∈ M ′′ un
vector normal wx . Evidentment, per a cada punt x ∈ M ′′ es complirà
que vx = ±wx . Invertint, si cal, l’orientació de M ′′, podem aconseguir
que hi hagi com a mı́nim un punt x ∈ M ′′ tal que vx = wx . Considerem
ara aquesta funció cont́ınua (⟨−,−⟩ és el producte escalar de R3)

M ′′ → {+1,−1}
x 7→ ⟨vx , wx⟩

Com que M ′′ és un espai connex, aquesta funció ha de ser constant.
Per tant, vx = wx per tot x ∈ M ′′. Això és impossible. En efecte,
considerem el punt [0, 1/2] = [1, 1/2] ∈ M ′−M ′′ i el vector w[0,1/2] ∈ S2.
D’una banda, la funció w[t,1/2] és cont́ınua. D’altra banda, w[t,1/2] =
v(t,1/2) si t ̸= 0, 1. Finalment,

lim
t→0
v(t,1/2) = − lim

t→1
v(t,1/2)

si això fos sinònim de no orientabilitat. El cas és que són conceptes molt diferents.
L’orientabilitat d’una superf́ıcie és una propietat intŕınseca de la superf́ıcie, mentre que
tenir una cara o dues cares és un concepte que depèn de la inclusió de la superf́ıcie en
un espai de dimensió tres, com pugui ser R3. Per exemple, com que l’ampolla de Klein
no es pot incloure a R3, no té sentit preguntar-se si té una cara o dues cares.

16De fet, la banda de Moebius que hem estudiat és un exemple de varietat amb vora.
Aquest concepte de varietat amb vora —que no volem tractar en aquest curs— generalitza
el concepte de varietat. La banda de Moebius, el disc Dn, el cilindre S1 × [0, 1], etc. són
exemples de varietats amb vora que no són varietats.
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i això és impossible.

• Si una superf́ıcie conté una banda de Moebius, no pot ser orientable.
Això és “evident”17 perquè una orientació a la superf́ıcie donaria
immediatament una orientació a la banda de Moebius, que sabem
que no en té cap. Com que hem vist que el pla projectiu i l’ampolla
de Klein contenen una banda de Moebius, obtenim que ni el pla
projectiu ni l’ampolla de Klein són orientables.

• El producte de dues varietats orientables és orientable. Per tant, el
tor és orientable.

• L’espai projectiu RPn és orientable si i només si n és senar. L’ex-
plicació d’això es basa en el fet que l’aplicació antipodal v 7→ −v
conserva l’orientació a R2m (té determinant 1) i inverteix l’orientació
a R2m+1 (té determinant −1).

10.6 Varietats de dimensió 1

Essencialment, només hi ha dues varietats connexes de dimensió 1: la
recta i la circumferència —que són diferents, perquè una és compacta i
l’altra no ho és.

Teorema 10.4. Si M és una varietat connexa de dimensió 1, aleshores
M ∼= R o M ∼= S1.

Demostració. La farem en diverses etapes.

• Evidentment, si M es pot recobrir amb una única carta local, ales-
hores M ∼= R i hem acabat.

• El pas clau de la demostració és entendre què passa si M es pot
recobrir amb dues cartes locals.

17Si entenem que la banda de Moebius és la superf́ıcie sense vora M ′ de l’apartat
anterior i si suposem que M ′ és un obert d’una superf́ıcie S, aleshores śı que és evident
que S no pot ser orientable, perquè si {Ui} és un atles orientable a S, tindŕıem que
{Ui ∩M ′} seria un atles orientable a M ′, que sabem que no pot existir. La condició que
M ′ sigui un obert de S és una conseqüència del teorema d’invariància del domini, que
no podem demostrar en aquest curs.
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Suposem que M = U ∪ V on U,V ⊊ M són oberts de M , cadascun
d’ells homeomorf a R a través d’homeomorfismes

ϕ : U
∼=−→ R, ψ : V

∼=−→ R.

Com que M és connexa, aquests dos oberts no poden ser disjunts.
Considerem

A := ϕ(U ∩ V ) ⊂ R
que és un obert de R i, per tant, és una varietat de dimensió 1. Pel
teorema 10.2, els seus components connexos són oberts connexos de
R, és a dir, intervals oberts (corol·lari 9.5). El pas següent consisteix
en veure que aquests intervals no poden ser acotats.
Suposem que, per exemple, A tingués un component connex de la
forma (a, b), amb a, b ∈ R. Considerem

ϕ−1(a, b) ⊂ U ∩ V ⊂ V .

En primer lloc, ϕ−1(a, b) és un obert de V . Però també és tancat a
V , perquè

ϕ−1(a, b) =
(
ϕ−1[a, b]

)
∩ V

i ϕ−1[a, b] és tancat de M perquè és compacte (proposició 8.2). Com
que ϕ−1(a, b) és un obert i tancat de V ∼= R, tenim que ϕ−1(a, b) = V
i això implica V ⊂ U i U = M , contradicció.
Hem vist que els components connexos de A són intervals no acotats
(diferents de tota la recta R). Com que els components connexos han
de ser disjunts, això només és possible en dos casos:

– A és connex de la forma (−∞, a) o (a,∞), per algun a ∈ R.
– A és de la forma (−∞, a) ∪ (b,∞) per uns certs a < b.

Com que B := ψ(U ∩ V ) ∼= ϕ(U ∩ V ) = A, el mateix podem dir de B.
Ara, és relativament senzill en el primer cas construir un homeomor-
fisme M ∼= R i en el segon cas construir un homeomorfisme M ∼= S1.
Deixem aquests detalls com exercici.

• Suposem ara que M es pot recobrir amb un nombre finit de cartes
locals U1, . . . , Un. Demostrem el teorema per inducció sobre n. Si
n = 1, 2, ja hem vist que el teorema és cert. Apliquem el teorema a
M ′ := U1 ∪ · · · ∪Un−1. Si M ′ ∼= R, tenim que M ′ és una carta local de
M i M es pot recobrir per dues cartes locals. Si M ′ ∼= S1, aleshores
M ′ és compacte, per tant, és tancat a M i com que és també obert,
tindrem M = M ′ ∼= S1 i hem acabat.
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• Ens falta el cas general en que M no es pot recobrir amb un nombre
finit de cartes locals. En primer lloc, és fàcil adonar-se que el segon
axioma de numerabilitat implica que M es pot recobrir amb una
quantitat numerable de cartes locals

M = U1 ∪ U2 ∪ U3 ∪ · · ·

Pel raonament del punt anterior, per tot n > 1 tenim

Vn := U1 ∪ · · · ∪ Un ∼= R ∼= (0, 1)

i és senzill “enganxar” tots tots aquests homeomorfismes per obtenir
un homeomorfisme M ∼= R.

10.7 Exercicis addicionals

10.1 Demostreu que l’espai M := {(x, y) ∈ R2 : xy = 0} no és una varietat.

10.2 Demostreu que l’espai M := {(x, y, z) ∈ R3 : xy = 0, z ≥ 0} no és una superf́ıcie.

10.3 Doneu un exemple d’un espai que no sigui unió disconnexa dels seus components
connexos. Doneu un exemple d’un espai compacte Hausdorff que no sigui unió disconnexa
dels seus components connexos.

10.4 Sigui n ≥ k i definim G(k, n) com el conjunt dels subespais vectorials de dimensió
k de Rn. Trobeu una topologia natural a G(k, n) que faci que sigui un espai compacte.
Feu-ho seguint aquests passos:

1. Considereu l’aplicació ϕ : G(k, n) → Mn×n(R) que assigna a cada subespai la
projecció ortogonal sobre ell. Demostreu que ϕ és injectiva i, per tant, G(k, n) és
un subespai de Mn×n(R) ∼= Rn2 .

2. Demostreu que la imatge de ϕ consisteix en les matrius idempotents, simètriques
i de traça k .

3. Demostreu que G(k, n) és un espai compacte.

10.5 Demostreu que l’espai topològic G(k, n) de l’exercici anterior és una varietat dife-
renciable. Seguiu aquests passos:
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1. Sigui L ∈ G(k, n) i sigui A ∈ Mn×k (R) la matriu que té per columnes els vectors
d’una base de L. Aleshores, la projecció ortogonal sobre L ve donada per la matriu
P = A(AtA)−1At .

2. Fixem L0 ∈ G(k, n) i considerem l’aplicació Ψ : L(L0, L⊥
0 ) → G(k, n) que assigna a

cada aplicació lineal ϕ el subespai Ψ(ϕ) := {v +ϕ(v ) : v ∈ L0}. Demostreu que Ψ
és cont́ınua.

3. Sigui U és el subespai de G(k, n) format per les matrius tals que el seu primer
menor principal k × k té determinant diferent de zero. Demostreu que U és un
obert de G(k, n) i que la imatge de Ψ és U.

4. Demostreu que Ψ : L(L0, L⊥
0 ) → U és un homeomorfisme i que G(k, n) és una

varietat topològica.

10.6 Considereu un triangle equilàter ple i identifiqueu els seus costats en la forma
aaa−1. Considereu l’espai quocient M (conegut com a dunce hat). Demostreu que M no
és una superf́ıcie.

10.7 Utilitzeu la “recta amb dos oŕıgens” per donar un exemple d’una famı́lia de subcon-
junts connexos compactes tancats Cn, n > 0, tals que Cn+1 ⊂ Cn per a tot n, però

∩∞
n=1 Cn

no sigui connex.

10.8 Demostreu que l’esfera de Poincaré és una varietat de dimensió 3.

10.9 Considereu l’aplicació F : [0, π] × [0, 2π] → R4 donada per

F (u, v ) = (cos 2u cos v, sin 2u cos v, cosu sin v, sinu sin v ).

Demostreu que la imatge de F és un subespai de R4 homeomorf a l’ampolla de Klein.

10.10 Considereu l’aplicació F : S2 → R4 donada per F (x, y, z) = (xy, xz, y2 − z2, 2yz).
Demostreu que la imatge de F és un subespai de R4 homeomorf al pla projectiu.

10.11 Considereu S3 ⊂ R4. Escrivim els punts de R4 en la forma (x, y) amb x, y ∈ R2.
Tenim: S3 = A+ ∪ A− on A+ := {(x, y) ∈ S3 : |x| ≤ |y|} i A− := {(x, y) ∈ S3 : |x| ≥ |y|}.
Demostreu que A+

∼= A−
∼= S1 ×D2 i A+ ∩A−

∼= T 2. És a dir, l’esfera S3 es pot representar
com dos tors sòlids amb les vores identificades.



Caṕıtol 11

Superf́ıcies compactes

A
l final del caṕıtol anterior hem classificat, sense fer gaire
esforç, les varietats de dimensió 1, però la classificació de
les varietats de dimensió arbitrària és un problema irresolu-
ble.1 En canvi, śı que és possible classificar les superf́ıcies

compactes, és a dir, fer una llista completa i sense repeticions de totes
les superf́ıcies compactes (llevat d’homeomorfisme) i trobar un criteri per
decidir si dues superf́ıcies compactes són homeomorfes o no. En aquest
caṕıtol discutirem aquest teorema de classificació. Enunciarem el teorema
i donarem una idea precisa de com es demostra, però no entrarem en els
detalls de la demostració.

Al llarg del curs hem anat trobant algunes superf́ıcies compactes. Per
exemple, coneixem l’esfera S2, el tor T , l’ampolla de Klein K , el pla pro-
jectiu RP2 i també hem vist el doble tor. Algunes d’aquestes superf́ıcies
són orientables i algunes altres no ho són. El teorema de classificació ens
dirà que les superf́ıcies compactes s’obtenen a partir d’aquestes per unió
disconnexa i per una nova operació que s’anomena suma connexa.

En aquest caṕıtol, la paraula “superf́ıcie” voldrà dir “superf́ıcie com-
pacta i connexa”.

11.1 La suma connexa de superf́ıcies

La idea és geomètricament ben senzilla. Suposem que tenim dues su-
perf́ıcies. La seva suma connexa és la superf́ıcie que s’obté fent un petit

1L’any 1960, Andrey Markov va demostrar que el problema de la classificació de les
varietats de dimensió ≥ 4 és indecidible.
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forat circular a cada superf́ıcie i enganxant les dues superf́ıcies per aquest
forat (figura 11.1).

Figura 11.1: Suma connexa de dues superf́ıcies.

Siguem una mica més precisos. Sigui S una superf́ıcie i x ∈ S un punt
qualsevol. Sigui U una carta local al punt x . És a dir, x ∈ U i hi ha un
homeomorfisme ϕ : U ∼= R2. No és restrictiu suposar que ϕ(x) = 0 ∈ R2.
Sigui D ⊂ U l’obert que, en aquest homeomorfisme, es correspon amb la
bola oberta B(0, 1) ⊂ R2. Direm que S ′ := S − D és “la superf́ıcie S amb
un forat”. La vora del forat és

∂S ′ := ϕ−1(S1) ⊂ U
on S1 és la circumferència unitat de R2. Es compleix, per tant, que ∂S ′ ∼=
S1.

Sigui ara R una altra superf́ıcie. Li fem un forat i obtenim R ′. També
tenim que ∂R ′ ∼= S1. Ara definim la suma connexa de les superf́ıcies S i
R com el quocient2

S + R := S ′ ⨿ R ′/{∂S ′ ∼ ∂R ′}
on la identificació consisteix en identificar cada punt de la circumferència
∂S ′ amb el punt de la circumferència ∂R ′ que li correspon per l’homeo-
morfisme ∂S ′ ∼= S1 ∼= ∂R ′.

Ja veiem que hi ha diverses coses que cal demostrar si volem que
aquesta operació tingui sentit.
Proposició 11.1. Si R i S són superf́ıcies, l’espai topològic S+R està ben
definit i és una superf́ıcie.3

2Indicarem la suma connexa amb el śımbol +. Molts autors utilitzen el śımbol #, però
no sembla que calgui introduir un śımbol nou.

3En canvi, la suma connexa no està ben definida en el cas d’espais topològics generals.
Hi ha problemes fins i tot en el cas de varietats de dimensió més gran que dos.
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Observem que, a priori, l’espai S+R depèn de diverses eleccions. Hem
escollit un punt a cada superf́ıcie i una carta local a cadascun d’aquests
punts. La proposició ens diu que el resultat final és independent d’aques-
tes eleccions. No demostrarem aquest resultat.

Proposició 11.2. La suma connexa de superf́ıcies compleix aquestes pro-
pietats:

1. És commutativa:4 S + R ∼= R + S.

2. És associativa: S + (R +M) ∼= (S + R) +M .

3. L’esfera actua com a element neutre: S + S2 ∼= S.

4. S + R és orientable si i només si S i R són orientables.

Aquesta operació ens permet, en principi, construir una infinitat de
superf́ıcies. Per exemple, aquestes:

• La superf́ıcie orientable de gènere g es defineix, per cada enter
g ≥ 0, com la superf́ıcie

Sg := S2 + T +
g

· · · + T .

Geomètricament, és molt fàcil visualitzar aquestes superf́ıcies perquè
es poden representar a R3. La superf́ıcie orientable de gènere zero
és l’esfera, la de gènere 1 és el tor, la de gènere dos és el doble tor
i aix́ı successivament (figura 11.2).

• La superf́ıcie no orientable de gènere h es defineix, per cada enter
h > 0, com la superf́ıcie

Nh := RP2 + h· · · + RP2.

Aquestes superf́ıcies no es poden representar a R3 (això no ho podem
demostrar ara). Com que un pla projectiu amb un forat és una banda
de Moebius, la superf́ıcie Nh ens la podem imaginar com una esfera
amb h forats a la que hem enganxat una banda de Moebius a cada
forat.

4De fet, la suma connexa no és ni commutativa ni associativa ni té element neutre.
El que succeeix és que aquestes propietats es compleixen “llevat d’homeomorfisme”.
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Figura 11.2: Les superf́ıcies orientables Sg per g = 0, 1, 2, 3, 4.

Evidentment, també podem fer sumes connexes “mixtes” de superf́ıcies
orientables i no orientables, per exemple

T + T + RP2 + K + RP2

però veurem més endavant (proposició 11.6) que aquestes sumes mixtes
no ens donen exemples nous.

Una altra operació que podem fer a una superf́ıcie és la que es coneix
com adjuntar una nansa. Suposem que S és una superf́ıcie i fem dos forats
(disjunts!) a S. Obtenim una superf́ıcie amb dos forats S ′. Considerem
ara un cilindre M = S1 × [0, 1] (que és el mateix que una esfera amb dos
forats) i considerem l’espai que s’obté de S ′ ⨿M identificant cada extrem
del cilindre amb un dels forats que hem fet a S.
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Figura 11.3: Adjuntar una nansa es el mateix que fer suma connexa amb
un tor.

Direm que hem adjuntat una nansa a S (figura 11.3). Tanmateix, aques-
ta operació no dóna res nou, perquè

Proposició 11.3. Si adjuntem una nansa a una superf́ıcie S la superf́ıcie
que obtenim és homeomorfa a S + T (figura 11.3).

Per tant, la superf́ıcie Sg també s’acostuma a anomenar l’esfera amb g
nanses.

11.2 Poĺıgons amb costats identificats

Recordem que un mètode que hav́ıem utilitzat a l’apartat 10.4 per construir
superf́ıcies era el de començar amb un poĺıgon (ple) amb un nombre parell
de costats i identificar els costats dos a dos. Per indicar com es fan
aquestes identificacions, cada costat té una lletra i un sentit, de manera
que dos costats s’identifiquen si tenen la mateixa lletra i la identificació
es fa en el sentit indicat. L’espai que obtenim és una superf́ıcie.

Hi ha una manera natural de codificar aquesta construcció que con-
sisteix en començar a recórrer la vora del poĺıgon en un cert sentit i anar
anotant les lletres de cada costat, amb l’exponent −1 si el costat està
orientat en sentit contrari a com recorrem el poĺıgon. Per exemple:

• L’esfera es pot representar per aa−1.

• El tor es pot representar per aba−1b−1.
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• El pla projectiu es pot representar per aa.

• L’ampolla de Klein es pot representar per aba−1b.

• El doble tor es pot representar per aba−1b−1cdc−1d−1.

Aquestes representacions no són úniques: dues “paraules” diferents

a1 · · ·an i b1 · · ·bm

poden donar superf́ıcies homeomorfes. Aquestes representacions es poden
relacionar fàcilment amb la suma connexa.

Proposició 11.4. Sigui S una superf́ıcie representada per la paraula

a1 · · ·an

i sigui S ′ una superf́ıcie representada per la paraula

b1 · · ·bm.

Aleshores, la superf́ıcie S + S ′ està representada per la paraula

a1 · · ·anb1 · · ·bm. □

Això és evident si ens adonem que fer un forat a una superf́ıcie que
hem obtingut com un poĺıgon amb els costats identificats és el mateix
que afegir un nou costat al poĺıgon, que no està identificat a cap altre.5
D’aquesta manera, veiem (figura 11.4) que les superf́ıcies Sg i Nh que hem
definit abans es poden obtenir com a poĺıgons amb els costats identificats:

• Sg es pot representar com un poĺıgon de 4g costats, identificats
segons

a1b1a−1
1 b−1

1 · · ·agbga−1
g b−1

g

• Nh es pot representar com un poĺıgon de 2h costats, identificats
segons

a1a1 · · ·ahah

Donem ara un exemple interessant de dues representacions diferents
d’una mateixa superf́ıcie.

5Sempre que els vèrtex del poĺıgon estiguin tot identificats a un únic vèrtex, com és
el cas dels poĺıgons que donen Sg i Nh.



11.2. POĹIGONS AMB COSTATS IDENTIFICATS 133

Figura 11.4: Suma connexa de dos poĺıgons amb costats identificats.

Proposició 11.5. K ∼= RP2 + RP2.

Demostració. Estem dient que les paraules aba−1b i xxyy representen
la mateixa superf́ıcie. La demostració es fa per un mètode que sovint
s’anomena “tisores i cola” que ve indicat a la figura 11.5.

A l’apartat anterior ens hem plantejat si sumant tors i plans projectius
podem obtenir superf́ıcies noves. La resposta és no perquè tenim aquest
resultat:

Proposició 11.6. T + RP2 ∼= RP2 + RP2 + RP2. Per tant, Sg + Nh ∼= Nk
amb k = h+ 2g.

Demostració. Podŕıem demostrar aquest resultat amb tisores i cola6 però
és més divertit utilitzar un argument de tipus geomètric. Segons la pro-

6Vegeu L. Ch. Kinsey, Topology of Surfaces p. 85.
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Figura 11.5: L’ampolla de Klein com a suma connexa de dos plans projec-
tius.

posició anterior, n’hi ha prou amb demostrar que

T + RP2 ∼= K + RP2.

Per poder visualitzar aquest homeomorfisme, fem un forat a RP2 i recordem
que obtenim una banda de Moebius M , que śı que podem dibuixar a R3.
Si demostrem que M + T ∼= M + K , després tornarem a adjuntar el disc
que hem tret a cada costat i tindrem l’homeomorfisme que voĺıem.

Figura 11.6: Adjunció d’una nansa a una banda de Moebius, de dues
maneres equivalents.

M + T és el mateix que una banda de Moebius amb una nansa. La
figura 11.6 representa una banda de Moebius amb una nansa i ens mostra
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com podem fer un homeomorfisme de manera que la nansa quedi adjuntada
com en el segon dibuix de la mateixa figura.

Figura 11.7: Una ampolla de Klein amb un forat.

Una ampolla de Klein amb un forat també es pot representar a R3:
n’hi ha prou amb prendre el dibuix ordinari de l’ampolla de Klein a R3

—que no és “correcte” perquè hi ha una circumferència de punts dobles—
i fer-li el forat precisament de manera que la “trompa” pugui entrar dintre
de l’ampolla. Si ho fem aix́ı, els dibuixos de la figura 11.7 ens mostren
que el resultat és homeomorf a un rectangle amb una nansa adjuntada de
manera que el resultat no és orientable. Si ara fem un forat rectangular
a una banda de Moebius i en aquest forat hi adjuntem l’ampolla de Klein
amb forat, obtenim la banda de Moebius amb nansa de la figura 11.6.

11.3 Superf́ıcies triangulades

Una triangulació d’una superf́ıcie és una descomposició de la superf́ıcie en
triangles (plens) de manera que els triangles que es toquin comparteixin
una aresta o un vèrtex. Per exemple, la superf́ıcie d’un tetràedre regular
és una triangulació de l’esfera amb quatre triangles i la superf́ıcie de
l’icosàedre regular és una triangulació de l’esfera amb vint triangles.

La paraula “triangle” s’acostuma a reservar per indicar un poĺıgon de
tres costats sense l’interior. Per al triangle “ple” s’acostuma a utilitzar la
paraula “śımplex” o, si volem fer èmfasi en que és una figura de dimensió
2, parlarem del 2-simplex. Exactament, el 2-śımplex estàndard es defineix
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com aquest triangle equilàter ple:

∆2 := {(x, y, z) ∈ R3 : x + y+ z = 1, x, y, z ≥ 0}.7

Els vèrtex del śımplex són els punts (0, 0, 1), (0, 1, 0) i (1, 0, 0) i les arestes
són les interseccions amb els plans x = 0, y = 0, z = 0.

Si S és una superf́ıcie, una triangulació de S és una descomposició

S = D1 ∪ · · · ∪Dn

on cada Di ∼= ∆2 i a més es compleix que si Di ∩ Dj ̸= ∅ amb i ̸= j ,
aleshores Di ∩Dj és una aresta de Di i de Dj o bé és un vèrtex de Di i de
Dj .

Totes les superf́ıcies que hem vist fins ara admeten alguna triangulació.
En el cas de l’esfera, ja ho sabem. La figura 11.8 ens mostra un exemple
de triangulació del tor i la figura 11.9 ens mostra una triangulació del pla
projectiu.

Figura 11.8: Una triangulació del tor amb 18 triangles.

Si tenim una triangulació de S i una triangulació de S ′, és molt fàcil
obtenir una triangulació de la suma connexa S+S ′. N’hi ha prou amb fer

7Aquesta definició és interessant perquè ens permet definir molt fàcilment els anàlegs
del triangle equilàter (que és el 2-śımplex estàndard) i el tetràedre regular (que és el
3-śımplex estàndard) en dimensió arbitrària. Definim

∆n := {(x0, . . . , xn) ∈ Rn+1 : x0 + · · · + xn = 1, xi ≥ 0, i = 0, . . . , n}.



11.4. LA CARACTEŔISTICA D’EULER 137

Figura 11.9: Una triangulació del pla projectiu amb 10 triangles.

que el forat que fem a cada superf́ıcie abans d’enganxar-les sigui preci-
sament l’interior d’un 2-śımplex. Per tant, totes les superf́ıcies Sg, g ≥ 0
i Nh, h > 0, són triangulables. Pot haver-hi superf́ıcies que no siguin
triangulables? La resposta és no, però la demostració és relativament
complicada i l’ometrem.

Teorema 11.7. Tota superf́ıcie és triangulable.8

11.4 La caracteŕıstica d’Euler

El tetràedre té 4 vèrtex, 6 arestes i 4 cares. El cub té 8 vèrtex, 12 arestes
i 6 cares. L’octàedre té 6 vèrtex, 12 arestes i 8 cares. El dodecàedre té
20 vèrtex, 30 arestes i 12 cares. L’icosàedre té 12 vèrtex, 30 arestes i 20

8Què podem dir de les varietats de dimensió > 2? La pregunta si totes les varietats
són triangulables es va plantejar des dels inicis de la teoria de varietats. El 1920,
el matemàtic hongarès Tibor Radó va demostrar que les superf́ıcies són triangulables
(teorema 11.7) i trenta anys més tard Edwin E. Moise i R.H. Bing van demostrar que
les varietats de dimensió tres també ho són. En un article publicat el 1982, Michael
Freedman va construir una varietat de dimensió 4 que no es pot triangular. Freedman
va rebre la medalla Fields el 1986. En el moment d’escriure aquests apunts (juliol de
2013) fa pocs mesos que s’ha penjat a Internet un treball del matemàtic romanès Ciprian
Manolescu que demostra que en qualsevol dimensió ≥ 5 hi ha varietats que no es poden
triangular.
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cares. Observem això:

4 − 6 + 4 = 2
8 − 12 + 6 = 2
6 − 12 + 8 = 2

20 − 30 + 12 = 2
12 − 30 + 20 = 2

Va ser Euler qui va adonar-se que si fem aquesta suma alternada per a
qualsevol poĺıedre —regular o no— sempre surt 2. El 1752, en una de
les obres que es consideren fundacionals de la topologia,9 Euler publica
el Teorema d’Euler sobre els poĺıedres que afirma que, en un poĺıedre
qualsevol, si sumem el nombre de cares amb el nombre de vèrtex obtenim
un nombre que supera en dues unitats el nombre d’arestes. La demostració
d’aquesta insigne propietat es fa per inducció i no és dif́ıcil imaginar un
argument heuŕıstic que fa que el resultat sigui plausible. Considerem un
poĺıedre i eliminem-li un vèrtex. Imaginem que en aquest vèrtex que hem
eliminat hi conflüıen n arestes. Això fa que el nombre de vèrtex decreixi en
una unitat, el nombre d’arestes decreix en n unitats i el nombre de cares
decreixi en n− 1 unitats. Per tant, la suma alternada de vèrtex, arestes i
cares no ha canviat.

De fet, la demostració d’Euler no és del tot correcta i el teorema només
és cert per a poĺıedres que, en el nostre llenguatge, siguin homeomorfs a
l’esfera. Per exemple, si acceptéssim com a vàlid el poĺıedre homeomorf al
tor de la figura 11.10, veuŕıem que la suma alternada de vèrtex, arestes
i cares no dóna 2 sinó que dóna 0. El cas és que el teorema d’Euler és
realment un teorema sobre les descomposicions de l’esfera en poĺıgons.
El que és més important és que el teorema d’Euler es pot generalitzar a
qualsevol superf́ıcie, substituint 2 per un nombre que depèn únicament del
tipus topològic de la superf́ıcie.

Una descomposició simplicial d’una superf́ıcie S és el mateix que una
triangulació, però admetent que cada peça de la triangulació, en lloc de
ser un triangle és un poĺıgon arbitrari. Aleshores:

Teorema 11.8. Per cada superf́ıcie S existeix un nombre enter χ(S), ano-
menat la caracteŕıstica d’Euler de S, que compleix que si tenim una des-

9Són dos treballs d’Euler a la revista Novi commentarii academiae scientiarum Pe-
tropolitanae que es titulen Elementa doctrinae solidorum i Demonstratio nonnullarum
insignium proprieatatum, quibus solida hedris planis inclusa sunt praedita. L’altre tre-
ball que es considera que marca el naixement de la topologia és el d’Euler del 1736
sobre el problema dels ponts de Koenigsberg.
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Figura 11.10: Un poĺıedre tòric que té 16 cares (que són quadrilàters), 16
vèrtex i 32 arestes.

composició simplicial qualsevol de S i aquesta descomposició simplicial
té v vèrtex, a arestes i c cares, aleshores

v − a+ c = χ(S).

No tenim prou instruments per demostrar aquest teorema. Si l’accep-
tem com a vàlid, podem calcular fàcilment la caracteŕıstica d’Euler de les
superf́ıcies que coneixem. N’hi ha prou amb trobar una descomposició
simplicial de la superf́ıcie —per exemple una triangulació.

• Ja hem vist que la caracteŕıstica d’Euler de l’esfera S2 és 2.

• El poĺıedre tòric de la figura anterior ens diu que el tor té carac-
teŕıstica igual a 0.

• Si calculem el nombre de vèrtex, arestes i cares de la triangulació del
pla projectiu que hem vist a la secció 11.3, obtindrem que χ(RP2) = 1.

• És senzill trobar quin és el comportament de la caracteŕıstica d’Euler
respecte de la suma connexa de superf́ıcies. Quan fem els dos forats,
eliminem dues cares i quan enganxem les dues superf́ıcies eliminem
3 arestes i 3 vèrtex. Per tant:

χ(S + S ′) = χ(S) + χ(S ′) − 2.
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Per inducció, la caracteŕıstica de les superf́ıcies Sg i Nh és

χ(Sg) = 2 − 2g
χ(Nh) = 2 − h.

• Del teorema 11.8 es desprèn que dues superf́ıcies homeomorfes han
de tenir la mateixa caracteŕıstica d’Euler. Però dues superf́ıcies di-
ferents poden tenir la mateixa caracteŕıstica. Per exemple, el tor i
N2 tenen caracteŕıstica zero, però no són superf́ıcies homeomorfes,
perquè el tor és orientable i N2 no ho és.

• Hem enunciat el teorema 11.8 de manera molt més general que l’o-
riginal d’Euler, però encara no és l’enunciat més general possible.
Fixem-nos en aquest cas extrem. Considerem un punt a l’esfera i pen-
sem això com una mena de pseudo-descomposició amb un vèrtex, cap
aresta i una cara. Curiosament, també es compleix que 1−0+1 = 2.10

11.5 El teorema de classificació

A la secció 10.6 vam classificar les varietats de dimensió 1: només n’hi
ha dues de connexes, una de compacta que és la circumferència i una
de no compacta que és la recta. També hi ha un fantàstic teorema de
classificació de les superf́ıcies:

Teorema 11.9. Tota superf́ıcie compacta i connexa és homeomorfa a una i
només una d’aquestes superf́ıcies: Sg, g ≥ 0, Nh, h > 0.

Demostrar ara aquest resultat fonamental no seria gens complicat per-
què els tres punts dif́ıcils ja els hem acceptat sense demostració. Són
aquests:

• Tota superf́ıcie és triangulable (teorema 11.7).

• El concepte d’orientabilitat està ben fonamentat (secció 10.5).

• El teorema d’Euler per a les superf́ıcies compactes (teorema 11.8).
10El teorema encara es pot generalitzar molt més, perquè no és només un teorema

de superf́ıcies ni de varietats, sinó que és vàlid per a qualsevol espai que admeti alguna
descomposició simplicial amb śımplex de dimensió arbitrària. És un dels primers teoremes
de la teoria d’homologia.
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La demostració del teorema de classificació aniria aix́ı.
En primer lloc, entre les superf́ıcies Sg i Nh no n’hi pot haver dues d’-

homeomorfes perquè no n’hi ha dues que tinguin la mateixa caracteŕıstica
d’Euler i la mateixa orientabilitat.

Si tenim una superf́ıcie arbitrària S, en primer lloc la triangulem i a
continuació utilitzem aquesta triangulació per convertir-la en un poĺıgon
amb els costats identificats. Finalment, agafem aquest poĺıgon i apliquem
sistemàticament tècniques de “tisores i cola” i els teoremes 11.5 i 11.6 fins
que el convertim en un dels poĺıgons estàndard de Sg o Nh. Tot això és
relativament senzill i no ho farem perquè, des d’un punt de vista didàctic, té
un interès limitat. Les idees realment importants ja les hem anat discutint
al llarg d’aquests dos últims caṕıtols del curs.

Corollari 11.10. Dues superf́ıcies (compactes, connexes) S i S ′ són home-
omorfes si i només si χ(S) = χ(S ′) i les dues tenen la mateixa orientabi-
litat.

Després d’aquests dos teoremes tan bonics, és un bon moment per
donar el curs per acabat.

11.6 Exercicis addicionals

11.1 Sigui X ̸= ∅ un graf finit connex. És a dir, X és un subespai de R3 format per
un nombre finit de punts (anomenats vèrtex), units per un nombre finit de corbes lineals
a trossos (anomenades arestes) que només es tallen en els vèrtex. Es pot demostrar
que existeix un ε > 0 tal que els punts de R3 a distància ε de X formen una superf́ıcie
compacta connexa orientable S(X ). Calculeu el gènere de S(X ) en funció del nombre de
vèrtex v i el nombre d’arestes a del graf X .

11.2 La vora d’una banda de Moebius és una circumferència. Considereu dues bandes
de Moebius i identifiqueu les seves vores. Demostreu que s’obté una ampolla de Klein.

11.3 Sigui S una superf́ıcie compacta connexa i sigui χ la seva caracteŕıstica d’Euler.
Si c és el nombre de cares, a és el nombre d’arestes i v el nombre de vèrtexs d’una
triangulació de S, proveu que 3c = 2a, a = 3(v − χ) i v ≥ 1

2 (7 +
√

49 − 24χ).

11.4 Demostreu que els únics poĺıedres regulars possibles són els cinc sòlids platònics.

11.5 Un habitant d’un món bidimensional vol saber la forma global del seu món. Per
això el divideix en pentàgons de manera que cada aresta és comú a dos pentàgons i
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cada vèrtex és comú a quatre pentàgons. Observa, a més, que tothom sempre porta el
rellotge a la mà dreta. Cada vegada que compta les cares s’equivoca, però sempre obté
un número entre vint i trenta. Quantes cares hi ha realment? Com és el seu món?

11.6 Suposem que tenim una superf́ıcie compacta S subdividida en pentàgons, de manera
que (a) dos pentàgons són o bé disjunts o bé tenen un únic vèrtex en comú o bé tenen una
única aresta en comú; (b) a cada vèrtex hi conflueixen el mateix nombre de pentàgons.
Demostreu que S no pot ser el tor.

11.7 Demostreu que tota superf́ıcie compacta connexa és homeomorfa a una, i només una
de les següents superf́ıcies: S2 + nT , P + nT o bé K + nT on n és un nombre enter
positiu o zero, T és un tor, P és un pla projectiu i K és una ampolla de Klein.

11.8 Sigui S una superf́ıcie compacta connexa que resulta d’identificar dos a dos els
costats d’un octògon. Demostreu que χ(S) ≥ −2. Demostreu que qualsevol superf́ıcie X
tal que χ(X ) ≥ −2 es pot aconseguir identificant dos a dos els costats d’un octògon.

11.9 Una superf́ıcie està triangulada amb 54 triangles i 26 vèrtex. Classifiqueu-la.

11.10 Considerem la superf́ıcie Sg i la superf́ıcie Nh. Fem dos petits forats disjunts
D1, D2 a Sg i dos petits forats disjunts D′

1, D′
2 a Nh. Identifiquem ∂Di = ∂D′

i per i = 1, 2.
Classifiqueu la superf́ıcie que s’obté.

11.11 Designem per Qn les funcions polinòmiques reals de grau ≤ 2 en n variables i
identifiquem Qn amb un espai euclidià. Per exemple, Q2

∼= R6 i Q1
∼= R3. Sigui D el disc

unitat de R2 i considerem

M :=
{
f ∈ Q2 :

∫
D f = 0,

∫
D f

2 = 1
}

amb la topologia indüıda. (Aquest espai apareix en uns certs treballs de percepció visual.
Vegeu, per exemple, G. Carlsson, Topology and data, Bull. Amer. Math. Soc. 46-2 (2009)
255–308.) Definim M0 com el subespai de M format per les funcions f ∈ M que es
poden expressar com

f (x, y) = q(λx + µy)

per uns certs q ∈ Q1 i (λ, µ) ∈ S1. Es tracta de demostrar que l’espai topològic M0 és
homeomorf a l’ampolla de Klein. Feu-ho seguint aquests passos:

1. Sigui A := {q = a+ bt − 4at2 ∈ Q1 :
∫ 1

−1 q
2 = 1}. Demostreu que A ∼= S1.

2. Si q ∈ A i (λ, µ) ∈ S1, considereu la funció f ∈ Q2 donada per

f (x, y) := q(λx + µy).

Demostreu que
∫
D f = 0 i

∫
D f

2 ̸= 0.

3. Considereu l’aplicació F : A× S1 → M0 definida

F (q, λ, µ)(x, y) :=
(∫
D q(λx + µy)2

)− 1
2 q(λx + µy).

Demostreu que F és exhaustiva.
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4. Si F (q, λ, µ) = f , demostreu que

F−1(f ) = {(q, λ, µ), (q,−λ,−µ)}

on hem utilitzat la notació q(t) = q(−t).

5. Demostreu que M0 és homeomorf a l’ampolla de Klein.
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Caṕıtol 12

Eṕıleg

L
’estudiant que ha seguit aquest curs haurà adquirit un llen-
guatge i uns fonaments mı́nims que li han de permetre intuir
la grandesa i la profunditat d’aquest univers anomenat to-
pologia. És probable que tingui ganes de saber-ne més, de

caminar una mica més per aquestes regions immenses. En aquest eṕıleg
donarem alguns indicis d’algunes comarques i serralades que anirà tro-
bant si emprèn aquest camı́. Tanmateix, haurem de ser força superficials
en les nostres descripcions.

Teoria d’homologia

La teoria d’homologia va néixer de la ment de Poincaré a l’hora que naixia
el segle xx i es va anar desenvolupant i consolidant al llarg de la primera
meitat del segle passat. Aquesta teoria permet associar a cada espai
topològic X una famı́lia d’invariants algebraics que s’anomenen els grups
d’homologia de X .

X 7→ Hi(X ), i = 0, 1, 2, . . .

L’homologia permet resoldre alguns dels problemes que han aparegut al
llarg d’aquest curs, la solució dels quals ha quedat fora del nostre abast.
Per exemple, la teoria d’homologia és l’eina que permet demostrar que, si
n ̸= m, aleshores Sn i Sm són espais diferents i també que Rn i Rm són
espais diferents si n ̸= m. Permet fonamentar rigorosament el concepte
d’orientabilitat. Serveix per demostrar el teorema de la corba de Jordan
i el teorema de la caracteŕıstica d’Euler—en dimensió arbitrària. És una
eina molt poderosa.

145
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Topologia algebraica

La teoria d’homologia va molt més enllà de ser una eina per demostrar els
teoremes que hem mencionat abans. És la porta d’entrada a la topolo-
gia algebraica, una de les branques més importants de les matemàtiques.
Dit d’una manera molt general, la topologia algebraica associa invariants
algebraics —grups, anells, etc.— als espais topològics. Aquests invari-
ants ens permeten distingir els espais entre ells i estudiar-ne les seves
propietats.

Un exemple elemental podria ser la caracteŕıstica d’Euler, que és un
nombre enter que és un invariant topològic dels espais. Un altre exemple
serien els grups d’homologia H∗(X ). El desenvolupament de la topolo-
gia algebraica des dels treballs de Poincaré ha condüıt a la introducció
d’invariants algebraics més i més sofisticats: l’anell de cohomologia, les
operacions de Steenrod, la teoria K , la teoria de cobordisme, la cohomo-
logia el·ĺıptica,...

Si, per exemple, h és un d’aquests invariants i som capaços de calcular-
lo per a dos espais X i Y i veiem que h(X ) ≇ h(Y ), aleshores dedüım que
X ≇ Y . Si, en canvi, obtenim h(X ) ∼= h(Y ) i sospitem que X ≇ Y , aleshores
en caldrà inventar un invariant més sofisticat, més fi, que distingeixi l’espai
X de l’espai Y .

El grup fonamental

La famosa conjectura de Poincaré afirma que l’única varietat compacta de
dimensió 3 que és simplement connexa és l’esfera. Aquest concepte de
“simplement connexa” va ser introdüıt pel mateix Poincaré i fa referència
a que tot llaç es pot contraure a un punt. Més en general, considerem un
espai topològic X , escollim un punt x0 ∈ X i considerem tots els llaços
de X amb origen i final a x0. Aleshores, identifiquem dos llaços ω0 ∼
ω1 si es pot passar d’un a l’altre per una famı́lia cont́ınua de llaços ωt ,
t ∈ [0, 1]. Resulta que el conjunt que obtenim és un grup amb l’operació
de concatenar un llaç després d’un altre. Aquest grup és un invariant
topològic de l’espai X i s’anomena el grup fonamental de X :

π1(X )

El grup fonamental d’un espai ens dóna informació important sobre l’es-
pai, però també ens dóna un pont entre la teoria de grups i la topologia.
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En efecte, si G és un grup arbitrari, podem construir un cert espai to-
pològic, anomenat BG, canònicament associat al grup G, que té per grup
fonamental el grup G.

π1(BG) = G

Això ens permet, en alguns casos, estudiar propietats dels grups a partir
d’estudiar la topologia dels espais BG. Per exemple, qualsevol dels ins-
truments de la topologia algebraica que hem comentat abans, quan els
apliquem a un espai BG d’aquests, ens donarà algun invariant del grup
abstracte G.

Varietats diferenciables i fibrats vectorials

Hem dit que les varietats són uns dels espais topològics més importants
que hi ha. Dintre de les varietats, les més importants són les varietats
diferenciables. Una varietat és un espai que, localment, té la topologia de
Rn. Però Rn té molta més estructura, més enllà de la seva topologia. Per
exemple, hi ha una estructura diferencial que ens permet parlar de funcions
diferenciables, derivades parcials, formes diferencials, camps vectorials,
integració, etc. Una varietat diferenciable és una varietat topològica que, a
més, està localment modelada sobre Rn, amb la seva estructura diferencial.

Tot estudiant de matemàtiques hauria de conèixer la teoria elemental
de les varietats diferenciables i les seves subvarietats, els conceptes de
camp tangent, forma diferencial, integració, derivada covariant, etc.

Dins de la topologia, les varietats diferenciables també hi juguen un
paper molt important perquè són les varietats que tenen un millor com-
portament i sobre les que és possible desenvolupar una teoria més satis-
factòria.

L’estudi de les varietats diferenciables ens durà a la teoria de fibrats
vectorials i classes caracteŕıstiques, que són les eines bàsiques per atacar
preguntes com aquestes, que ja hem trobat en aquests apunts:

• És possible incloure una varietat N a Rn?

• És possible incloure una varietat N a la varietat M?

• Si N és una varietat compacta, existirà una varietat compacta M que
tingui N com a vora?
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Teoria d’homotopia

A la topologia ens agradaria poder decidir si dos espais són homeomorfs
o no i ens agradaria poder conèixer quines són les aplicacions cont́ınues
entre ells. Com que això és monstruosament dif́ıcil (de fet, és impossible
en general), la teoria d’homotopia proposa una relació més feble que la
de ser homeomorfs, que és la de ser homotòpicament equivalents.

Dues aplicacions cont́ınues f0, f1 : X → Y es diu que són homotòpiques
si pertanyen a una famı́lia cont́ınua d’aplicacions ft , t ∈ [0, 1]. Aleshores,
dos espais X , Y són homotòpicament equivalents si existeixen aplicacions
f : X → Y i g : Y → X tals que fg i gf siguin aplicacions homotòpiques a
les aplicacions identitat corresponents.

El pas a la categoria homotòpica és una simplificació dràstica. Per
exemple, les aplicacions cont́ınues de Sn a Sn formen un espai topològic
que sembla molt dif́ıcil de descriure però, llevat d’homotopia, les aplica-
cions de Sn a Sn es coneixen perfectament i n’hi ha exactament una per
cada nombre enter. Tanmateix, aquesta simplificació dràstica ens manté
encara en un món d’una riquesa i una complexitat impressionants.

La pregunta central de la teoria d’homotopia és la de determinar quines
són, llevat d’homotopia, les aplicacions d’una esfera Sm en una altra esfera
Sn. La teoria neix el 1931 quan Heinz Hopf va donar la idea clau per
classificar les aplicacions

S3 → S2

llevat d’homotopia —n’hi ha exactament una per cada nombre enter. Des
d’aleshores, la tecnologia que s’ha anat desenvolupant per atacar aquest
problema —que no s’ha resolt— és impressionant.

La teoria d’homotopia està ı́ntimament relacionada amb la topologia
algebraica i va molt més enllà d’atacar el problema de les aplicacions
Sm → Sn, per dos motius:

1. Hi ha molts problemes de topologia que a primera vista no sembla
que siguin problemes de teoria d’homotopia, fins que es demostra que
la solució del problema és equivalent a la solució d’un determinat
problema homotòpic.

2. S’ha vist que les idees abstractes que són a la base de la teoria
d’homotopia es poden aplicar a molts altres àmbits fora de la topo-
logia.
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Topologia geomètrica

Normalment, s’anomena topologia geomètrica l’estudi topològic de les va-
rietats, amb totes les eines que hem discutit fins ara i també amb unes
eines espećıfiques, d’un caire més geomètric, com la teoria de la cirur-
gia. En el cas de les varietats diferenciables, també s’ha utilitzat el nom
topologia diferencial.

Normalment, es distingeix entre la topologia de dimensió baixa, que
és la de les varietats de dimensió 3 i 4 i la topologia de les varietats de
dimensió ≥ 5, que tenen un comportament molt diferent i, curiosament,
més senzill que el de les varietats de dimensions inferiors. Pensem, per
exemple, en la conjectura de Poincaré, que pot generalitzar-se a qualsevol
dimensió. Poincaré la va plantejar l’any 1900. El 1961 Stephen Smale va
demostrar que és certa en qualsevol dimensió ≥ 5. Vint-i-un anys més
tard, Michael Freedman va demostrar que és certa en dimensió 4. El cas de
dimensió 3 —el més dif́ıcil— no es va resoldre fins l’any 2003. L’explicació
d’aquesta dificultat especial de les dimensions 3 i 4 és que en dimensions
grans hi ha “prou espai” per utilitzar una tècnica de transformació d’unes
varietats en unes altres que va inventar John Milnor el 1961 i es coneix
amb el nom de cirurgia.

La conjectura de Poincaré ha estat esperonant l’estudi de les —difi-
ciĺıssimes— varietats de dimensió tres durant més d’un segle i ara la
teoria matemàtica d’aquestes varietats és una àrea riqúıssima dins de la
geometria.

A l’àmbit de la topologia geomètrica també hi podem incloure la teoria
de nusos, que és una branca ben activa de la topologia. Matemàticament,
un nus és una aplicació injectiva i diferenciable de la circumferència a
R3 i dos nusos són equivalents —són el mateix nus— si hi ha un home-
omorfisme de R3 que conserva l’orientació i transforma un en l’altre. El
concepte és molt senzill, però la teoria de nusos és molt rica en proble-
mes oberts. Quins nusos hi ha? Com podem decidir si dos nusos són
iguals? Els avenços més importants s’han prodüıt quan s’han pogut des-
cobrir invariants dels nusos, és a dir, objectes matemàtics —per exemple,
un polinomi— associats a qualsevol nus, que es puguin calcular i tals que
dos nusos equivalents tinguin sempre el mateix invariant.

Pensem que comptar i fer nusos deuen haver estat les primeres ac-
tivitats matemàtiques dels éssers humans. Curiosament, l’aritmètica i la
teoria de nusos estan plenes de problemes no resolts, amb enunciats ele-
mentals.
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Topologia i teoria de grups

Ja hem indicat que, formalment, podŕıem mirar la teoria de grups com una
branca de la topologia perquè hi ha una manera canònica d’associar a
cada grup G un espai BG i a cada homomorfisme de grups ϕ : G → H una
aplicació cont́ınua Bϕ : BG → BH . De fet, aquestes construccions es fan
dintre de la teoria d’homotopia.

El cas és que la relació entre la teoria de grups i la topologia ha estat
constant des de l’època de Poincaré. Per exemple, s’ha utilitzat topologia
per demostrar teoremes sobre grups —principalment a partir de la idea
de les accions d’un grup sobre un espai— i s’han utilitzat els invariants
de la topologia algebraica per obtenir invariants significatius del grups
abstractes.

Un cas especialment interessant és el dels grups de Lie, que són objec-
tes que són, simultàniament, grups i varietats diferenciables. L’estudi de
la topologia dels grups de Lie G i dels espais BG ha suscitat alguns dels
avenços més significatius de la història de la teoria d’homotopia. Recent-
ment, s’ha encunyat el terme teoria homotòpica de grups per incloure tota
una sèrie de desenvolupaments en els que les tècniques de la topologia
—més exactament, de la teoria d’homotopia— s’usen per estudiar diverses
famı́lies importants de grups, com poden ser els grups finits, els grups de
Lie i algunes generalitzacions.

Topologia i medalles Fields

Repassant la llista de matemàtics guardonats amb les medalles Fields
—52 fins l’any 2013— podem fer-nos una idea del pes que ha tingut la
topologia en la matemàtica dels últims vuitanta anys. Els casos més no-
tables són aquests:

1954 Jean-Pierre Serre havia fet una sèrie d’avenços que pràcticament
inauguraven la topologia algebraica moderna.

1958 René Thom rep la medalla pels seus treballs sobre cobordisme, que
utilitzen les tècniques més avançades de topologia algebraica de
l’època per classificar les varietats respecte de la relació de ser co-
bordants.

1962 John Milnor acabava de demostrar una sèrie de resultat revoluci-
onaris en topologia. Per exemple, l’existència d’esferes exòtiques
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—espais homeomorfs a l’esfera però que com a varietats diferen-
ciables no són equivalents a l’esfera—, o la demostració que una
conjectura fonamental sobre triangulacions que havia rebut el nom
de Hauptvermutung és falsa.

1966 Michael Atiyah havia descobert la teoria K i, juntament amb Isado-
re Singer, havia demostrat el gran teorema de l’́ındex que relaciona
el comportament dels operadors pseudo-diferencials en una varietat
amb la topologia de la varietat. Stephen Smale, ja ho hem dit abans,
va demostrar la conjectura de Poincaré en totes les dimensions ≥ 5 i
va demostrar el famós teorema del h−cobordisme, que és la base per
començar a estudiar la topologia de les varietats de dimensió gran.
Aquest mateix any també es va concedir la medalla Fields a Alexan-
der Grothendieck que, en tant que geni universal, també ha tingut
una influència molt gran en el desenvolupament de la topologia.

1970 Sergei Novikov era un dels grans topòlegs de l’època. En topologia
algebraica havia treballat en cobordisme i havia inventat la succes-
sió espectral d’Adams-Novikov, però també va jugar un paper molt
important a la topologia geomètrica. És l’autor de la conjectura de
Novikov, un dels problemes oberts més importants de la topologia.

1978 La teoria K algebraica va relacionar, de manera sorprenent, la teoria
d’homotopia i la teoria d’anells. Va ser inventada per Daniel Quillen,
que també és el creador de l’axiomàtica abstracta de la teoria d’ho-
motopia. A banda d’aquests dos resultats fonamentals, la influència
de Quillen en el desenvolupament de la topologia algebraica i en les
relacions amb l’àlgebra i la teoria de grups, ha estat molt gran.

1982 William Thurston ha estat definit com el més gran dels geòmetres
del segle xx i ha inspirat una gran part dels desenvolupaments al
voltant de la conjectura de Poincaré. En particular, ell va intuir i
formular el que es va conèixer com a conjectura de geometrització
—ara és un teorema— que explica quina és l’estructura de totes les
varietats de dimensió 3.

1986 Simon Donaldson i Michael Freedman van rebre la medalla Fields
pels seus treballs fonamentals sobre varietats de dimensió 4.

1990 Vaughan Jones havia descobert el polinomi que du el seu nom, que
és un invariant dels nusos que, curiosament, va néixer a partir dels
estudis de Jones sobre àlgebres d’operadors. També va rebre una
medalla Fields el polifacètic Edward Witten que, encara que se’l
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consideri principalment com a f́ısic teòric, l’impacte de les seves idees
a la topologia és immens.

1998 Maxim Kontsevich ha treballat en les relacions entre la teoria de
nusos i la f́ısica.

2002 Vladimir Voevodsky va demostrar la conjectura de Milnor i ho va
fer inventant tècniques noves de topologia algebraica. Gràcies a la
seva obra, la teoria d’homotopia ha anat trobant significat en camps
com la geometria algebraica o, més recentment, els fonaments de les
matemàtiques.

2006 Aquest any es concedeix la medalla Fields al famós Grigori Perel-
man —que la va rebutjar— per haver trobat, després de més de cent
anys, una demostració de la conjectura de Poincaré. De fet, Perel-
man ha demostrat molt més que la conjectura de Poincaré, perquè
ha resolt la conjectura de geometrització de Thurston.

Setze sobre 52: més del 30% de les medalles Fields fins el 2006 han
premiat contribucions rellevants en el camp de la topologia.
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adherència, 27
adjuntar una nansa, 130
ampolla de Klein, 61, 74, 132, 134
antiimatge, 8
aplicació, 6
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aplicació tancada, 31
aplicacions homotòpiques, 148
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conservar l’orientació, 120
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dònut i tassa, 2, 34, 35
de Groot, Johannes, 70
Desargues, Girard, 63
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espai de Kolmogorov, 90
espai groller, 20

espai Hausdorff, 90
espai localment arc-connex, 110
espai mètric, 12
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Thurston, William, 151
tisores i cola, 133, 141
topologia, 1, 19
topologia algebraica, 2, 108, 146
topologia cofinita, 20, 28, 109

topologia compacte-obert, 83
topologia conjuntista, 4
topologia de Zariski, 94
topologia del complement numera-

ble, 37
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