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Proemi

scriure uns apunts com aquests és com escriure un poema.
Per escriure un poema cal que descartem tots els milers de
paraules d'una llengua, llevat d'unes quantes i, aleshores,
. cal que disposem aquestes poques paraules escollides en un
ordre adient, apropiat per aconseguir uns determinats objectius d’emocid
o coneixement. Escriure uns apunts de topologia no és gaire diferent
d’aixo. Cal renunciar a tots els innumerables coneixements que podriem
trobar, per exemple, a la Wikipedia, conservar-ne uns quants i —igual que
en el cas del poema— disposar-los en un ordre que generi en el lector
enteniment i potser, fins i tot, emocio intel-lectual.

Qualsevol persona que tingui accés als recursos d’'Internet té al seu
abast, automaticament, la practica totalitat del corpus de coneixement
que hi ha a la topologia elemental —i a la topologia menys elemental. De
fet, tenim accés a massa coneixement que, a banda de ser inextricable, no
esta disposat de manera lineal o seqiiencial, que és l'inica manera en que
podem assimilar-lo. Ensenyar és, entre altres moltes coses, linealitzar el
coneixement —i trencar la il-limitada cadena d'hyperlinks que tenim al
nostre abast.

Mentre he escrit aquests apunts, he tingut molt en compte aixo que
acabo de dir i —segons crec— he sabut resistir la temptacié de l'enciclo-
pedisme i del “generalisme” que, si en un tractat de topologia poden ser
poc apropiats, en els apunts d'un curs serien un disbarat.

He explicat el contingut d'aquests apunts en un curs semestral a la
UAB, durant tres anys consecutius. He utilitzat materials de cursos ante-
riors —principalment exercicis— i he rebut l'ajuda d'alguns companys del
Departament de Matematiques, com Natalia Castellana, Albert Ruiz, Joan
Porti i Carmen Safont. Publico aquests apunts amb una llicencia Creative
Commons, amb el desig que tothom els puguti utilitzar lliurement. Aquesta
és la versio 1.1. Agrairé que em comuniqueu els errors que aneu trobant.
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Capitol 1

Introduccio i prerequisits

1.1 La topologia

a topologia estudia el concepte d'espai. Per tant, 'hem de
pensar com una branca de la geometria. Mentre que, per
exemple, la geometria elemental es basa en |'axiomatitzaci6
del concepte de linia recta, la topologia vol axiomatitzar con-
ceptes com els de connexid, continuitat o limit. La importancia d'aquests
conceptes fa que la topologia ocupi un lloc central en ledifici de la ma-
tematica i que la seva influencia arribi practicament a la totalitat d'aquest
edifici.

Quan estudiem la recta real R o, amb més generalitat, els espais eu-
clidians R”, ens veiem obligats a pensar els seus punts com si formessin
un “continu”. Considerem, per exemple, els punts de la recta de coorde-
nada positiva R* i considerem també lorigen de coordenades 0. Aquest
punt 0 esta fora de R*, perd no podem considerar que sigui del tot alié a
R*. Hi esta, d'alguna manera, “adherit”. Si volem donar un sentit precis
a aixo, podriem dir que R* conté punts a distancia de 0 tan petita com es
vulgui pero, de fet, és més que aix0. Sequint aquesta linia de raonament,
ens trobarem amb els conceptes de subconjunts oberts i tancats, entorns,
punts d’acumulacid, continuitat, compacitat, connexid... S6n conceptes que
Ualumne ja coneix i que ens descriuen la topologia ordinaria de l'espai eu-
clidia. L'alumne també haura vist que aquests conceptes es deriven de
Uexisténcia d’'una funcidé de distancia amb unes propietats senzilles.

Tenim, doncs, que l'alumne que comenca aquest curs ja coneix una
bona quantitat de topologia. Coneix, ni que sigui de manera elemental, la
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topologia ordinaria de R” i potser també coneix la topologia dels espais
metrics en general, pel que fa referéncia als conceptes de continuitat,
compacitat o connexid. Pero la topologia que estudiarem aquest curs és
una generalitzacid de la topologia dels espais métrics a un ambit molt més
general —més general i, per aixdo mateix, més flexible.

Dit aixo, l'alumne pot preguntar-se per la justificacid de la necessitat
de tornar a estudiar el que ja sap des d'aquest punt de vista més general.
Aquesta necessitat quedara clara al llarg del curs’ perd és dificil justificar-
la abans d'iniciar l'estudi de la disciplina. ELl que st que és relativament
senzill de fer és observar un experiment que ens hauria de convéncer de
l'excessiva rigidesa del concepte de distancia en qué es basa la topologia
dels espais métrics. Lexperiment és aquest: agafeu un full de paper i
rebregueu-lo (sense estripar-lo) tant com us vingui de gust. Penseu ara
que, mentre que la topologia intrinseca del full de paper no ha canviat
gens ni mica, la funcié distancia entre els seus punts s’ha modificat d'una
manera monstruosa i indescriptible. Basar l'axiomatitzacié de la topologia
en un concepte com la distancia que s'altera tant amb la més minima
transformaci6 continua no sembla (no és) una bona idea.

Entendrem que l'estudi de la topologia d'un espai és l'estudi d'aque-
lles propietats de l'espai que no canvien si transformem l'espai de manera
bicontinua —és a dir, si fem una transformacié continua invertible i amb
inversa també continua. En un llenguatge informal, tothom ha sentit dir
que un topoleg és aquella persona que no distingeix entre un donut i una
tassa (vegeu la figura 1.1). Aquesta facecia fa referencia al fet que, efecti-
vament, si imaginem el donut fet a partir d'una substancia indefinidament
mal-leable, podem transformar-lo de manera continua (sense trencar-lo)
en un objecte en forma de tassa. Cal dir que tot aix0 és molt poc acurat
(ja en parlarem més endavant) pero no deixa de tenir un cert fons de rad.

La topologia va néixer com una manera senzilla i solida de donar res-
posta a la peticié de Riemann que l'any 1867 demanava una bona fona-
mentacié del concepte d'espai. Al llarg del segle xx va desenvolupar-se
extraordinariament i es va diversificar en diverses branques. Es parla,
per exemple, de topologia geométrica o de topologia algebraica. Aquesta
branca —la topologia algebraica— va anar prenent, al llarg de tot el segle
passat, una dimensio extraordinaria. En un moment donat, Dieudonné va
arribar a dir que la topologia algebraica era “la reina de les matematiques
del segle xx". D’'una manera molt general, podriem dir que la topologia
algebraica consisteix en l'estudi de les propietats topologiques dels es-

'Si més no, aix{ ho espero i ho desitjo.
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DOUGHNUT

oy

Figura 1.1: “Doughnut Mug” (xkcd.com, Creative Commons License).

pais mitjancant metodes algebraics. Es a dir, en la topologia algebraica
l'algebra —rlgida, discreta— ens ddéna informacié sobre la topologia —
mal-leable, continua.

En aquest curs elemental de topologia introduirem l'axiomatica dels es-
pais topologics i les aplicacions continues entre ells. Parlarem de subes-
pais i producte d'espais, de compacitat i de connexid, de superficies i dels
conceptes analegs en dimensié arbitraria. Estudiarem objectes relativa-
ment sorprenents —la topologia p-adica, la topologia de Zariski, el conjunt
de Cantor o la corba de Peano— i també estudiarem objectes geométrics
classics, com lesfera, el tor, la banda de Moebius o l'espai projectiu —en
dimensid arbitraria. Parlarem del quocient d'un espat per l'accié d'un grup
i dels axiomes de separacié —com el de Hausdorff. Acabarem el curs amb
el bonic teorema de classificacié de les superficies compactes.

Aquests apunts son uns apunts. No son un llibre. A cada tema ens
concentrarem en allo que és estrictament fonamental i en allo que realment
farem a classe. Evitarem l'excessiva verbositat i deixarem per a les notes
a peu de pagina els comentaris, aclariments o complements que no siguin
imprescindibles. Com que es tracta d'uns apunts, s'entén que els hem de
complementar amb el treball a l'aula.

En aquests apunts, només es donen demostracions per als teoremes
més dificils. Al llarg del text, hi una quantitat immensa d'afirmacions que
no es demostren. S'espera (i es recomana) que l'estudiant demostri per
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ell mateix cadascuna d'aquestes afirmacions. A més d'aixo, cada capitol
s'acaba amb una llista d'exercicis sobre els temes que s’han tractat en el
capitol.

1.2 Una mica de teoria de conjunts

En aquesta seccié farem un repas de la teoria de conjunts, tal com la
necessitarem en el nostre curs de topologia.? Ho farem d'una manera
relativament superficial, rapida, informal i esquematica perqué l'estudiant
que vulgui aprofundir en la teoria de conjunts ja trobara altres textos més
adients.

Els axiomes

La teoria de conjunts es presenta com una fonamentacié de la matematica’
en la qual hi ha uns objectes anomenats conjunts entre els que hi pot ha-
ver una relacio designada pel simbol €. Intuitivament, es tracta de pensar
els objectes de les matematiques com a col-leccions d'altres objectes, de
manera que la relacié A € B s'interpreta intuitivament com que A és un
element? de la col-leccié (del conjunt) B. Aquesta relacié de pertenéncia
ens permet definir la igualtat entre conjunts: St A i B son conjunts, ales-
hores A = B significa que X € A és equivalent a X € B. Si X € A implica
X € B, direm que A és un subconjunt de B i utilitzarem la notacié A C B>

El pas seglient és donar una serie d'axiomes que ens diran com po-
dem construir conjunts. Com que per comencar necessitem alguna cosa,
el primer axioma ens diu que existeix algun conjunt. Un cop sabem que
hi ha algun conjunt, el meétode principal per construir conjunts, que utilit-
zarem constantment, el déna l'anomenat axioma de comprensié: Si A és

2Recordem que aquesta topologia que estudiarem es coneix com a “topologia general”
i també com a “topologia conjuntista”.

3No tota la matematica actual es fonamenta en la teoria de conjunts que repassem
aqui.

4Cal fer atencié a la diferéncia entre “conjunt” i “element”. Per exemple, la frase “X
és un conjunt” té sentit, pero la frase “X és un element” no en té. La paraula “element”
només es pot utilitzar en una frase del tipus “A és un element de B". Quan escrivim
A € B, aixo vol dir que A és un conjunt, B és un conjunt i A és un element de B.

°Hi ha textos que, per denotar que A és un subconjunt de B, utilitzen el simbol A C B.
En aquests apunts no ho farem aix(. Per exemple, escriurem A C A i, si volem indicar que
A és un subconjunt propi de B, escriurem A C B. Perd mai no utilitzarem el simbol C.
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un conjunt i P és una propietat,® aleshores existeix un conjunt que té per
elements exactament els elements de A que compleixen la propietat P. La
notacié que utilitzarem per denotar aquest nou conjunt és aquesta:

{x € A : x compleix P}.

Amb aquests dos axiomes ja en tenim prou per demostrar que existeix
un Unic conjunt que no té cap element. L'anomenem el conjunt buit i el
designem per @.

Hi ha tres axiomes més que ens permeten construir nous conjunts a
partir d'uns altres conjunts donats. En primer lloc, st A i B sén conjunts,
existeix un conjunt els elements del qual sén exactament A i B. Aquest
conjunt es denota

(A, B}.

En segon lloc, si A és un conjunt, tots els subconjunts de A també formen
un conjunt, que es designa 2 o tambhé P(A). Finalment, el tercer axioma
que ens permet construir nous conjunts és l'axioma que afirma lexisténcia
d’'unions arbitraries. Diu aixt: St A és un conjunt, existeix un conjunt els
elements del qual son els x tals que x € X per algun X € A. Aixo ens
diu que la unié de dos conjunts X U Y és un conjunt, pero va molt més
enlla perqué ens diu que podem considerar la unié de qualsevol conjunt
de conjunts.

Amb aquests axiomes ja podem definir els nombres naturals N i co-
mencar a fer matematiques. Com que, en teoria de conjunts, tot han de
ser conjunts, cada nombre natural ha de ser un conjunt. Definim 0 := &,
1:= {0}, 2:=1U{1}, etc. Com que “etcétera” no forma part de la teoria de
conjunts, caldra un axioma especific que garanteixi que N és un conjunt.’

Per acabar amb el que es coneix com l'axiomatica de Zermelo-Fraenkel
de la teoria de conjunts, ens falten tres axiomes. ELl primer és el que es
coneix com l'axioma del reemplacament que no discutirem aqul perque és
forca técnic i no l'utilitzarem en aquest curs.® En segon és el famds axioma
de leleccid que sortira més endavant. El tercer és l'axioma de reqularitat.

®Qué és una “propietat”? Per poder contestar aquesta pregunta, hauriem de parlar
de teoria de conjunts des d'un punt de vista molt més formal del que fem en aquestes
notes.

’Aquest axioma diu aixi: Existeix un conjunt N que té aquestes tres propietats: 1)
g e N; 2) St x € N, aleshores x U {x} € N; 3) Si @ # x € N, existeix y € N tal
que x = y U {y}. Es pot demostrar —utilitzant l'axioma de reqularitat que veurem més
endavant— que aquest conjunt és Unic.

8Per evitar cap misteri innecessari, diguem qué diu aquest axioma, que tampoc no
és tan dificil. Imaginem que tenim una propietat P “de dues variables”, és a dir, una
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Aquest axioma afirma que si A és un conjunt no buit, existeix un x € A tal
que x NA = &. Per entendre la importancia d'aquest axioma, pensem que
implica que x € x és sempre fals o, més en general, implica que no hi ha
cap cadena infinita de conjunts®

X0 DX1DX22DX3D -+

També implica que si A € B, aleshores B ¢ A.

Productes, aplicacions, unions i interseccions

Si At B sén conjunts, el producte A x B sera el conjunt format per les
parelles ordenades (a, b) amb a € Ai b € B. Hem de definir qué és una
parella ordenada (que ha de ser un conjunt) i hem de demostrar que formen
un conjunt. En una parella ordenada, la propietat que volem garantir és
que (a,b) = (a’,b’) stinomés si a = a’ i b = b’. Una manera d'aconsequir
aixo és definir (a, b) := {{a}, {a,b}}.

En el context de la teoria de conjunts, si volem definir el que és una
aplicacio entre dos conjunts f : A — B ho farem a través de la grafica de f.
Direm que una aplicacid és un subconjunt f C Ax B que té la propietat que
per tot a € A existeix un Unic b € B tal que (a, b) € £.° En aquest cas,
escriurem b = f(a) i direm que b és la imatge de a per f. Si sobreentenem
f, també escriurem a +— b."" Observem que, si A i B sén conjunts, totes
les aplicacions f : A — B formen un conjunt que s'acostuma a designar
BA, perod nosaltres designarem F(A, B). Una propietat essencial de les

propietat tal que, donats dos conjunts x, y, P(x,y) pot ser certa o falsa. Suposem que
aquesta propietat P compleix que per cada x hi ha un Unic y tal que P(x,y) és cert.
Aleshores, st A és un conjunt, 'axioma afirma que {y : x € Ai P(x,y)} és un conjunt.
Es com una mena de “teorema de la funcié implicita”. Comparem-lo amb l'axioma de
comprensio. Aquest axioma ens diu que si repassem un per un els elements d’'un conjunt
A i ens quedem amb els x € A que compleixen una certa propietat P(x), tindrem un
conjunt. L'axioma de reemplacament, de manera similar, ens diu que si repassem un per
un els elements d'un conjunt A i, per cada x € A ens quedem amb l'Uinic y que compleix
una certa propietat P(x, y), tindrem també un conjunt.

%Queé volen dir aquests punts suspensius? Si ho volem dir ben dit, podem dir que no
hi ha cap aplicacié N — X tal que f(n + 1) € f(n) per tot n.

OAquesta definicié té un problema: Si f: R — R i g : R — [0, 00) sén les aplicacions
donades per f(x) = x? i g(y) = y?, aleshores f = g, mentre que ens agradaria considerar
f i g com aplicacions diferents perqué tenen conjunts d'arribada diferents. La solucid
consisteix en definir una aplicacié com una terna F = (A, B, R) on R C A x B compleix
la propietat que hem indicat.

"Cal observar que els simbols — i — indiquen coses molt diferents. A més, el fet que
— indiqui una aplicacié fa que no puguem utilitzar aquest simbol per a cap altra cosa.
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aplicacions és que, en determinats casos, es poden composar. D’altra
banda, per a qualsevol conjunt A podem considerar l'anomenada aplicacio
identitat / : A — A que ve donada per /(a) = a. No insistirem més en aixo
perqué ja deu ser ben conequt.

Pel que fa a la unié de conjunts, ja hem vist que hi ha un axioma
especific que ens assegura que podem considerar la unié de qualsevol
famlilia de conjunts

U x.

XeA

Aix0 té sentit encara que A sigui el conjunt buit i en aquest cas, evident-
ment, la unid és també el conjunt buit.

La interseccié d'una familia no buida de conjunts no necessita cap
axioma especific. El conjunt
ik

XeA
esta ben definit sempre que A # @.

Ens interessa també poder parlar del producte d'una familia arbitraria
de conjunts. Suposem que A és un conjunt i volem definir el producte de
tots els elements de A:

[ ]Xx

XeA

La manera de fer-ho és pensar que un element del producte és una funcié
f que assigna a cada element X € A un element x € X. Es a dir:

[ 1 X:={feF|A[JX]| : f(X) € X per tot X € A

XeA XeA

En particular, st A = &, tenim que [lxcaX és un conjunt amb un Unic
element. També és clar que si algun dels factors d'un producte de con-
junts és el conjunt buit, el producte és buit. L'axioma de l'eleccid postula
que el reciproc també és cert: Si tots els X € A son diferents del buit,
aleshores lxcaX # . Aquest axioma és equivalent a l'axioma que diu
que tot conjunt admet una bona ordenacié i 'alumne ja deu haver vist les
importants conseqiiencies que aixo té.

Al llarg del curs utilitzarem una construcciéd conjuntista interessant
que s'anomena la unié disjunta. Imaginem, per exemple, que S és la
circumferéncia unitat. St volem considerar dues circumferéncies, no podem
prendre S U S perqué, evidentment, SUS = S. La unié disjunta de dos
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conjunts sera com la unié ordinaria, pero després de considerar que els
elements del primer conjunt sén diferents dels del segon, encara que no
ho siguin. Dit més ben dit, la unié disjunta de A i B sera un conjunt AU B’
on A" esta en bijecci6 amb A i B’ esta en bijecci6 amb B. Si volem una
definicié formal, podem prendre aquesta:

AUB:=(Ax {0})U (B x {1}).”2

Imatges i antiimatges

Sigui f : A — B una aplicacié i suposem que f(a) = b. Direm que b
és la imatge de a i que a és una antiimatge de b. Si tot element de B
té com a minim una antiimatge, direm que f és una aplicacié exhaustiva.
Si cada element de B té com a maxim una antiimatge, direm que f és
una aplicacié injectiva. De vegades, utilitzarem la notaci6 A — B per
indicar que f és una aplicacié exhaustiva (o una “projeccid”’) i la notacid
f: A— B per indicar que f és una aplicacié injectiva (o una “injeccig”).’
Si f és a la vegada injectiva i exhaustiva, diem que és bijectiva (o que és
una “bijeccid”). En aquest cas, cada element de B té una lnica antiimatge
i podem definir una aplicacié g : B — A que és inversa de f, en el sentit
que, per tot a € A es compleix que g(f(a)) = a i per tot b € B es compleix
que f(g(b)) = b. La notacid tradicional per aquesta aplicacidé inversa —
que és Unica— és f~1. Cal insistir que aquesta aplicacié inversa només
existeix si f és bijectiva.

Si f: A— B és una aplicacio i b € B, podem considerar el conjunt
de totes les antiimatges de b. Es un subconjunt de A, que pot ser buit.
Malauradament, la notacié que utilitza tothom per indicar aquest conjunt
indueix a confusié:

f='(b) :={a € A : f(a) = b}.

Observem, doncs, que f~'(b) estd sempre definit, encara que f no sigui
bijectiva, i és un subconjunt de A, que pot ser el conjunt buit.

12Es interessant observar que ni el producte cartesia ni la unié disjunta compleixen la
propietat associativa. En canvi, a la practica ordinaria de les matematiques, fem com si
aquestes operacions (i moltes altres operacions similars, com el producte tensorial) fossin
associatives. Aixo és fer trampa i, encara que sigui una trampa relativament inoqua, hi ha
moments en que cal treballar en un context més rigords. Si esteu interessats en aquest
tema, podeu buscar informacié sobre “categories monoidals”.

BEn llenguatge col-loquial, les aplicacions injectives es diu que sén “mono” i les
exhaustives es diu que sén “epi”.
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Una aplicacio f : A — B ddna lloc a dues aplicacions

f, : P(A) — P(B)
f: P(B) - P(A)

Aquestes dues aplicacions es defineixen aixt:

f(X):={b € B : existeix a € X tal que f(a) =b }
F(Y):={a €A: fla)e Y}

Malauradament, per augmentar la confusid en les notacions, aquestes apli-
cacions que hem designat provisionalment per f, i f*, es designen a la
practica f i f~', respectivament. L'estudiant ha d’aprendre a no confon-
dre's amb aquestes notacions tan poc afortunades.

Al llarg d'aquest curs de topologia, utilitzarem sovint aquestes propi-
etats de les aplicacions f, i f*:

i f(UielAi) = Uiel f(Ai)~

o f((Nic;A) C e f(A) i la igualtat es compleix si f és injectiva.
o T (Uiei B) = Uie) F7'(By)-
o M Mici B) = Nies F7(By).

o F(B=Y)=A—f(Y)

X C f71(f(X)) i la igualtat es compleix si f és injectiva.

o f(f~1(Y)) C Y ila igualtat es compleix si f és exhaustiva.

Observem que, en certa manera, ' té millors propietats que f.

Finit, infinit, numerable

Recordem que cada nombre natural es defineix com un cert conjunt. Un
conjunt A es diu que és finit si existeix un nombre natural n i una bijeccid
f:n — A Una definicido equivalent és que A és finit si no hi ha cap
subconjunt B C A que es pugui posar en bijeccid6 amb A. Els conjunts
que no son finits s'anomenen infinits. Per exemple, N, Q i R sén conjunts
infinits.
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Entre els conjunts infinits, també n’hi ha de més grans que altres. La
teoria de cardinals i ordinals és molt interessant, pero practicament no la
utilitzarem en aquest curs i per tant no cal dir-ne res en aquests apunts.
El que sl que cal és conéixer la diferéncia entre conjunts numerables i
conjunts no numerables. Un conjunt numerable és aquell que es pot posar
en correspondencia bijectiva amb el conjunt N. Per exemple, el propi N.

Si At B sén conjunts numerables, també A x B ho és. En efecte, si
tenim A = {ag, a1, a2, ...} it B={bg, by, by, ...}, podem numerar Ax B aix(:

Ax B= {(Clo, /_70), (Clo, b1), (CI1, /30), (CI(), /_72), (CI1 , b1), (Clz, bo), .. }

D'altra banda, també és facil veure que un subconjunt d'un conjunt nu-
merable o bé és finit o bé és numerable. Aixo ens permet concloure que,
per exemple, Z i Q sén conjunts numerables. També és relativament facil
veure que una unio finita o numerable de conjunts numerables és nu-
merable.” En canvi, R no és numerable i la demostracid és senzilla i
bonica. St R fos numerable, també ho seria l'interval [0, 1). Suposem que
[0,1) = {ag,ay,az,...} U escrivim cadascun d’aquests nombres reals en
forma decimal:

ag = 0.apg10092003004005 . . .
a, = 0.CI11CI12CI13CI14CI15 R
ar = 0.ax0n03024055 . ..

a3 = 0.a3103033034035 . . .

Considerem ara el nombre real b = 0.b1b,b3by ... €[0,1) definit aixt:

0, ai1:#0

b[ =
2, a1, = 0

Es evident que b no pot ser a la llista anterior.

El quocient

Potser l'eina més poderosa de les matematiques és la que ens permet
considerar com a iguals coses que no ho sén. Se'n diu el pas al quocient.
Recordem com funciona. La relacid d'igualtat compleix tres propietats

1*En el cas numerable, cal l'axioma de leleccié.
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fonamentals: (1) x = x per tot x; (2) St x = y, aleshores també y = x; (3)
Six =y iy =z aleshores també x = z. Aquestes tres propietats no son
exclusives de la igualtat: Una relacié™ x ~ y que les compleixi es diu que
és una relacio d'equivaléncia.

Suposem, doncs, que tenim una relacié d'equivaléncia ~ en un conjunt
X. Un subconjunt A C X direm que és una classe d'equivaléncia si existeix
x € X tal que

A=[x]={ye X : y~x}

Direm que x és un representant de la classe A. Les classes d'equivaléncia
compleixen aquestes propietats:

1. [x] =[y] st it només si x ~ y.
2. La unio de totes les classes d'equivalencia és igual a X.

3. Dues classes d'equivaléncia diferents sén disjuntes.

Es defineix el conjunt quocient X/~ com el conjunt de totes les classes
d'equivalencia. Tenim una aplicacié exhaustiva X — X/~ donada per
x — [x]. La primera de les propietats anteriors ens diu que, efectivament,
en el pas de X a X/~ hem convertit la relacié d'equivaléncia ~ a X en la
igualtat al conjunt quocient X/~.

Podem fer quocient per una relacié que no sigui d'equivaléncia? Evi-
dentment que si{. Suposem que en un conjunt X tenim una relacié - que
potser no és d'equivaléncia. Podem fer quocient X/~ simplement conside-
rant la relacié d'equivaléncia més petita'® que contingui « i fent quocient
per aquesta relacid d'equivaléncia. La importancia d'aixo s'entendra millor
al llarg del curs.

Sovint, hem de definir una aplicacié f : X/~ — Y i ho fem definint
primer f sobre un representant i comprovant després que estd ben definida
o no depén del representant. La justificacié d'aixo rau en aquest teorema
basic:

SEL concepte de “relacié” té una formulacié senzilla al si de la teoria de conjunts.
Una relacié en un conjunt X és un subconjunt R C X x X. Aleshores, diem que x esta
relacionat amb y si (x,y) € R.

"®Recordem que una relacié és un subconjunt de X x X. Com que la relacié X x X
és una relacio d'equivaléncia i com que la interseccié de relacions d'equivaléncia és
d’equivaléncia, si R és una relacid, podem considerar la interseccid de totes les relacions
d’equivaléncia que continguin R. Aquesta és la relacié d’equivaléncia més petita que
conté R.
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Teorema 1.1. Sigui 7 : X — X/~ laplicacié de pas al quocient. Si g :
X — Y és una aplicacio, la condicio necessaria i suficient perqué existeixi
f: X/~ —Y tal que g = frrt és que per tot x,y € X tals que x ~ y es

compleixi g(x) = g(y). Aquesta f és tnica. Direm que “g factoritza per
X[~

1.3 La topologia dels espais meétrics

A R", els conceptes de funcid continua, subconjunts oberts i tancats, punts
interiors, punts adherents, etc. es defineixen utilitzant la distancia eucli-
diana ordinaria. Si x = (x1,....X,), y = (Y1,...,x,) son punts de R", la
distancia entre x it y és

n 2

dix,y) = | )_(xi—y)

i=1
Per cada x € R" i cada € > 0 es defineix la bola de centre x i radi € com
B(x,€):={y € R" : d(x,y) < €}.

Més en general, en lloc de R"” poden considerar un conjunt arbitrari X
sobre el que tinguem una certa funcié distancia d : X x X — R que
compleixi aquestes quatre'” propietats:

1. d(x,y) =0 sii només six =y.
Per tot x,y,z € X es compleix d(x, y) < d(x,z) + d(y, ).

Per tot x,y € X es compleix d(x, y) > 0.

> W N

Per tot x,y € X es compleix d(x, y) = d(y, x).
Direm que X és un espai métric.'® Per exemple:

1. R" amb la distancia euclidiana ordinaria.

7De fet, la propietat 3 és conseqiiéncia de les altres i no caldria que figurés a la
llista.

8Per dir-ho ben dit, hauriem de dir que un espai métric és una parella (X, d) on X
és un conjunt i d és una funcid distancia a X. Pero, sequint una tradicié general de les
matematiques, sempre que no hi hagi perill de confusié ometrem d i direm que X és un
espai metric.
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2. R” amb la distancia d(x,y) = Y1 |xi — yil.
3. R” amb la distancia d(x, y) = max|x; — y|.

4. Qualsevol conjunt X amb la distancia discreta

0, =
dix, y) = =Y
1, x#y
5. Z amb la distdancia 2-adica
0, X=1y

CI(X’ y) - 2*V2(X*U), X 5& y

on vu(x) = n st x = 2"x" amb x’ senar. Canviant 2 per un primer
qualsevol p, tindrem la distancia p-adica a Z.

En un espai metric X, un subconjunt A es diu que és obert si compleix
aquesta propietat

e Per tot x € A existeix un nombre real € > 0 tal que B(x, €) C A.

| un subconjunt T es diu que és tancat si X — T és obert." Es senzill
demostrar que els subconjunts oberts compleixen aquestes tres propietats
basiques:

(@) @ i X son oberts.
(b) La unié de qualsevol familia de subconjunts oberts és un obert.

(c) La intersecci6o de qualsevol familia finita de subconjunts oberts és
un obert.

En canvi, és facil trobar exemples d'una interseccié d'infinits oberts que no
és obert. Per exemple, a R”, la interseccié de les boles obertes B(0,1/n),
n=1,23,... és {0}, que no és un subconjunt obert.

Podem ara definir el concepte central de la topologia que és el de
funcié continua. Suposem que f : X — Y és una aplicacié entre dos
espais metrics. Direm que f és continua st compleix aquesta propietat:

"La paraula tancat és poc afortunada, des d'un punt de vista didactic, perqué pot
induir a pensar que obert i tancat sén antonims, és a dir, que tancat és el contrari
d’obert. Aixo és absolutament fals i l'estudiant ha de fer un esfor¢ deliberat per no caure
mai en aquest error terrible. En un espai métric hi pot haver (a) conjunts que siguin
oberts i no siguin tancats; (b) conjunts que siguin tancats i no siguin oberts; (c) conjunts
que siguin oberts i també siguin tancats; (d) conjunts que no siguin ni oberts ni tancats.
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e Per tot x € X i per tot nombre real e > 0, existeix un
nombre real 0 > 0 tal que per tot X’ € X tal que d(x, x') <
0 es compleix que d(f(x), f(x')) < e.

Sembla un embarbussament, més que no pas la definicié d'un dels concep-
tes més importants de les matematiques! Aixo ens hauria de fer reflexionar
que el concepte de continuitat hauria de tenir una definicié molt més sen-
zilla, molt més conceptual. Aquesta reflexio és la que porta a la definicid
axiomatica de la topologia, com l'estudiarem en aquest curs. La idea que
ens diu que aixo és possible es troba continguda en aquest teorema fona-
mental:

Teorema 1.2. Sigui f : X — Y una aplicacié entre espais métrics. Aques-
tes dues condicions sén equivalents:

(a) f és continua.

(b) Si U és un obert de Y, aleshores f~'(U) és un obert de X.

Demostracié. Suposem que f és continua i sigui U un obert de Y. Volem
demostrar que f~'(U) és un obert de X. Per fer-ho, sigui x € f~'(U), és
a dir, y := f(x) € U. Com que U és obert, hi haura una bola tal que
B(y,e) c U. Si apliquem ara la definicié-embarbussament de la conti-
nuitat de f, tindrem que existeix un 0 > 0 tal que si d(x, x’) < 0 aleshores
d(f(x), f(x')) < e. Aixo ens diu que B(x,d) C f~'(U) i hem demostrat que
f=1(U) és obert.

Suposem ara que f compleix la propietat de (b) i volem demostrar
que f compleix la definicio-embarbussament de continuitat. Per fer-ho,
sigut x € X i sigui € > 0. Cal trobar un 0 > 0 apropiat. Ho fem aixt.
Considerem y := f(x) i considerem la bola B(y, €), que és un obert de Y.
Per tant, f~'(B(y, €)) sera un obert de X, per la propietat (b). Com que
x € f~Y(B(y, €)), existira una bola tal que B(x, d) C f~'(B(y, €)). Es a dir,
st d(x, x") < 0, aleshores d(f(x), f(x')) < e. O

Aquest teorema té una importancia conceptual immensa. Ens diu que
la funcid distancia no és important: el que realment és important és saber
quins son els conjunts oberts. Aix0 suggereix una axiomatitzacié més
general de la topologia en la qual ens oblidem de la distancia i ho basem
tot en el concepte primari de subconjunt obert. Es precisament el que
farem en aquest curs, a partir del capitol segtient.
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1.4 Exercicis addicionals

1.1 Quines de les proposicions segiients sén la negacié de “la solucié és 2 o 3": (a) Ni
2 ni 3 no soén la solucio; (b) La solucié no és 2 o no és 3; (c) La solucié no és 2 i no és 3.

1.2 Escriviu la negacioé de les proposicions seglients:

1. Dues rectes diferents d'un pla sempre es tallen en un Unic punt.

2. Hi ha un polinomi a coeficients enters que no té arrels reals o, si en té, sén totes
positives.

3. A tots els municipis hi ha alguna dona tots els fills de la qual no han tingut ni el
xarampid ni la rubéola.

4. Per tot nombre real a existeix un nombre real x tal que per tot nombre real y es
compleix que y > x implica 1 < y — a.

5. Si V2 és racional, jo séc Juli Cesar.
6. Si V2 és irracional, jo soc Juli César.

7. L'alarma sonara si s'obre la porta i el botéd d'anul-lacié no es prem, o si hi ha
moviment i no succeeix que el botd d'anul-lacié es prem o l'alarma no esta activada.

1.3 Demostreu si les proposicions (1), (2), (4), (5), (6) de l'exercici anterior sén certes o
falses.

1.4 Comproveu si aquests raonaments sén logicament correctes:

1. Perqué jo dugui el paraiglies és necessari que plogui. Quan plou, mai no duc
sandalies. Avui duc sandalies. Per tant, no esta plovent i en conseqtiéncia no duc
el paraigties.

2. Si baixen els tipus d'interés, la borsa pujara. Si els tipus d’interés no baixen,
aleshores la construccio i el consum privat baixaran. Ara, el consum privat no esta
baixant. Per tant, és cert que la construccié no esta baixant o el consum privat
no esta baixant. Es a dir, és fals que la construccid i el consum privat estiguin
baixant. Aix0 vol dir que els tipus d'interés estan baixant i en conseqiliéncia la
borsa pujara.

1.5 Enuncieu el reciproc, el contrari i el contrarreciproc del teorema de Pitagores. Quins
d’aquests teoremes son certs a la geometria ordinaria?

1.6 Considereu aquestes dues proposicions: (A) 3 és parell; (B) El polinomi x? + x + 1
no té cap arrel real. Considereu les proposicions: A implica B; A implica (no B); (no
A) tmplica B; (no A) implica (no B). Quines d'aquestes quatre proposicions sén certes i
quines son falses. Demostreu-ho.
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1.7 Hi ha un teorema que diu que “tota successid acotada de nombres reals té una parcial

n

convergent”. Definiu “successié” i “parcial”.

1.8 Demostreu que A x B és un conjunt i que les parelles ordenades compleixen que
(a,b)=(d’,b')siinoméssia=d ib=0>"

1.9 Demostreu que si haguéssim definit (a, b) := {a, {a, b}} també es compliria la pro-
pietat que (a,b) = (a’,b') siinoméssia=d i b=0>"

1.10 Demostreu que F(A, B) és un conjunt.
1.11 Demostreu que si A = @, aleshores (yc4 X no és un conjunt.

1.12 Si X és un conjunt qualsevol, demostreu que no hi ha cap aplicacié bijectiva entre
X i P(X).

1.13 Siguin A, B, C conjunts tals que (A x B) x C = A x (B x C). Demostreu que algun
dels conjunts A, B, C és buit.

1.14 Demostreu que el conjunt dels nombres naturals és Unic.

1.15 A partir de U'axioma de reqularitat, demostreu que x € x és fals per tot x i demostreu
que si x € y, aleshores y ¢ x.

1.16 Demostreu que qualsevol subconjunt d’'un conjunt numerable és finit o numerable.
Sigut A C R que no sigui ni finit ni numerable. Busqueu informacié sobre si aquesta
proposicio és certa o falsa: “Existeix una aplicacié bijectiva A — R".

1.17 Sigui A un conjunt i R una relacid A. Definiu amb exactitud la relacié d’equivaléncia
més petita que conté R i demostreu que existeix i és Unica.

1.18 Formuleu matematicament l'afirmacié “tota aplicacié exhaustiva és un quocient” i
demostreu-la.

1.19 Demostreu les propietats de f i f~' que apareixen a la pagina 9 i vegeu que, en
general, les inclusions no es poden substituir per igualtats.

1.20 Demostreu el teorema 1.1.

1.21 A la definicié de funcié distancia que hem donat al text, demostreu que la condicié
(3) es pot demostrar a partir de les condicions (1), (2) i (4).

1.22 Demostreu que els cinc exemples d’espai métric que apareixen al text son efectiva-
ment espais metrics.

1.23 Demostreu que si eliminem l'arrel quadrada de la definicié de distancia euclidiana,
la funcié que obtenim no és una funcié distancia.

1.24 Doneu exemples de subconjunts de R que siguin oberts no tancats, tancats no
oberts, oberts i tancats, ni oberts ni tancats. Feu el mateix amb Z amb la métrica donada
per la distancia 2-adica.
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1.25 Un subconjunt A de R es diu que és connex si per qualsevol parella de conjunts
oberts B, C C R tals que A C BU C es compleix que AN B o AN C és el conjunt buit o
AN BN C no és el conjunt buit. Decidiu si @, Q sén connexos.

1.26 Si X és un espai meétric, A C X i x € X, definim
d(x,A) = inf{d(x, y) : y € A}.

Demostreu que A és tancat si i només si d(x, A) > 0 per tot x ¢ A.
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Capitol 2

| 'axiomatica d'espai topologic

n aquest capitol introduirem de manera axiomatica el con-
cepte d’'espai topologic com una generalitzacid —i també una
simplificacio— del concepte d'espai métric. La idea consisteix
en basar-ho tot en el concepte de subconjunt obert i exigir
com a axiomes que els subconjunts oberts compleixin les tres propietats
basiques dels oberts d'un espai metric que hem vist al capitol anterior.

2.1 Els tres axiomes de la topologia

Una topologia en un conjunt X és una familia 7 de subconjunts' de X que
compleix aquestes tres propletats:2

o . XeT.

e La interseccid de qualsevol familia finita d'elements de 7 és un ele-
ment de 7.3

e La unié de qualsevol familia d'elements de 7 és un element de 7.

"Observem que estem dient que 7 € P(P(X)).

2Per ajudar-nos a recordar aquesta definicié podem utilitzar aquesta petita es-
tratégia. Pensem en la familia infinita d'intervals (—1/n,1/n) per tot n > 0. La seva
unié és (—1,1), que és obert. La seva interseccié és {0}, que no és obert. La condicid
d’'obert es conserva per unions infinites, pero no per interseccions infinites.

3Es clar que n’hi ha prou amb exigir que la interseccid de dos elements de 7 sigui
un element de 7.

19
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Els elements del conjunt X els anomenarem punts. Els elements del con-
junt 7 els anomenarem subconjunts oberts de X. Un espai topologic és
un conjunt X amb una topologia 7 sobre X.* Sobre un mateix conjunt X hi
pot haver, en general, moltes topologies diferents. Sovint, en lloc d'espai
topologic direm simplement espai.

Exemples

e El conjunt buit i el conjunt amb un dnic punt X = {*} admeten una
unica topologia.

e Si X és un espai meétric, els subconjunts oberts de X, en el sentit del
capitol anterior, compleixen les tres propietats d'una topologia i, per
tant, podem mirar-nos X com un espai topologic, de manera natural.
Direm que aquesta és la topologia induida per la métrica de X. En
el cas particular de R” amb la distancia euclidiana, la topologia que
obtenim direm que és la topologia ordinaria de R".

e Sobre qualsevol conjunt X podem considerar la topologia 7 = {&, X}
que és, clarament, la topologia que té el minim d'oberts. En direm
la topologia grollera i direm que X és un espai groller.

e En lextrem oposat, sobre qualsevol conjunt X podem considerar la
topologia 7 = P(X) en la qual tots els subconjunt de X sén oberts.
Se'n diu la topologia discreta i és clarament la que té el maxim
possible d'oberts. Si X té la topologia discreta, direm que X és
un espai discret. Aquest exemple és un cas particular de topologia
induida per una distancia. En efecte, si sobre X considerem la funcié
distancia

0, x=y

1, x#y

la topologia que obtenim és precisament la topologia discreta.

d(x,y) =

e Sigui X un conjunt i diguem que A C X és obert si i només si A = @
o X — A és finit. Es facil veure que obtenim una topologia sobre X.
Se'n diu la topologia cofinita.

e Sobre X = R considerem la topologia en que els oberts sén @, X i
els intervals (—oo, x) per qualsevol x € R. Obtenim una topologia
sobre R que és clarament diferent de la topologia ordinaria.

*Com és habitual a matematiques, parlarem de “l'espai topologic X", perd realment
hauriem de dir “l'espai topologic (X, T)"
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Tot espat métric ens el podem mirar, doncs, com un espai topologic,
oblidant-nos de la distancia i de les boles i considerant només els sub-
conjunts oberts. Cal tenir present, pero, que dos espais metrics diferents
poden donar lloc al mateix espai topologic. Es a dir, suposem que X és
un conjunt L que d i d’ son dues funcions distancia sobre X. Tenim dos
espais metrics Xy t Xy que, si d # d’, son diferents. Ara bé, si Xy i Xy
tenen els mateixos oberts, aleshores X, i Xy, com a espais topologics, son
iguals. Posem dos exemples:

(@) Un exemple trivial. X = {a, b} un conjunt amb dos punts i d(a, b) =
1, d’(a, b) = 2. Sén distancies diferents pero en els dos casos s'obté
un espai discret de dos punts.

(b) Un exemple menys trivial. Prenem a R” la distancia euclidiana or-
dinaria d i la distancia d'(x,y) = )_|x; — y;|. Es pot demostrar
(exercici) que A C R" és obert per la distancia d si i només si és
obert per la distancia d’. Es a dir, les dues distancies donen la
mateixa topologia.

El concepte d'espai topologic és clarament més general que el d'espai
métric. Per exemple, tot espai metric compleix 'anomenada propietat de
Hausdorff:

Propietat de Hausdorff. Donats dos punts x # y, existeixen
oberts disjunts U, V tals que x € U, y € V.

En canvi, hi ha espais topologics en els quals aquesta propietat no
es compleix. Per exemple, un espai X amb més d'un punt que tingui la
topologia grollera no complira la propietat de Hausdorff. Un espai infinit
amb la topologia cofinita tampoc no complira la propietat de Hausdorff.
L'espai R amb la topologia que hem definit en l'Gltim exemple de la pagina
20 tampoc no compleix la propietat de Hausdorff.

Una topologia sobre X és un cert subconjunt de P(X). Per tant, les
possibles topologies sobre X estan ordenades per inclusié. La més petita
—la que té menys oberts— és la topologia grollera; la més gran —la que
té més oberts— és la topologia discreta. Totes les altres topologies es
situen entremig. Si 7 C 7', és a dir si tots els oberts de la topologia T
son també oberts de la topologia 77, direm que 7' és més fina que 7.
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2.2 Tancats

Si X és un espai topologic, podem parlar de subconjunts tancats. La
definicié és aquesta: T C X diem que és tancat si it només st X — T és
obert.

Exemples

e A la topologia grollera només hi ha dos tancats: @ i X.
e A la topologia discreta tots els subconjunts sé6n tancats.
e A la topologia cofinita els tancats sén els subconjunts finits.

e A la topologia sobre R que té per oberts @, R i els intervals (—oo, x)
per qualsevol x € R, els tancats sén &, R i els intervals [x, o0) per
qualsevol x € R.

-~ ~ - o -~
~ - T A -,
L R L S o’ L
- - - - - y
= g - e - 7
= oy . o T e
e A ot | = e } [ B 2 weT
o= < cLesEn = ~ |aostn NE s 7 eeosED

)
~
@)
=
!

Scumbag topologist
'opens’ a store.

Figura 2.1: abstrusegoose.com (Creative Commons License).

Igual que ja vam insistir en el cas dels espais metrics, cal tornar a
posar emfasi en que “tancat” no és pas la negacié de “obert” (vegeu la
figura 2.1). St X és un espai topologic i A C X, hi ha quatre possibilitats:
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1. A és obert i no és tancat.
2. A és tancat i no és obert.
3. A és tancat i és obert.

4. A no és tancat i no és obert.

Es facil veure que en un espai métric un punt sempre és un subespai
tancat. En canvi, un punt d'un espat topologic pot ser que no sigui tancat.
Per exemple, a la topologia grollera els Unics tancats son @ i X.

Les propietats dels conjunts oberts ens donen, per pas al complementa-
ri, tres propietats fonamentals dels conjunts tancats. En un espat topologic
X es compleix:

e J, X sdn tancats.

e La unid de qualsevol familia finita de tancats és un tancat.

e La interseccidé de qualsevol familia de tancats és un tancat.

De fet, si coneixem els tancats d'un espai també coneixem els oberts, i
viceversa. El concepte d'espai topologic el podriem haver definit utilitzant
els tancats. Es a dir, haurlem pogut dir que un espai topologic és un con-

junt X amb una familia de subconjunts ¥V anomenats tancats que compleix
les tres propietats dels tancats que acabem d'enunciar.

2.3 Bases d'una topologia

Per dotar X d'estructura d'espai topologic ens cal dir qui son tots els
seus oberts. Aixd pot ser pesat de fer i té sentit trobar una manera de
determinar una topologia donant només uns determinats oberts bdsics.

Definicié 2.1. Si X és un espai topologic i B és una familia d'oberts, direm
que B és una base de la topologia si per tot obert A de X i tot puntx € A
existeix un obert B € B tal que x € B C A.

Per exemple, en un espai metric X, la familia de les boles

B={B(x,e) : xe€ X, e >0}
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forma una base de la topologia. Una topologia pot tenir moltes bases
diferents.

Podem descriure una topologia a X donant no tots els oberts siné
nomeés una base? La proposicié seglient ens diu com ho hem de fer.

Proposicio 2.2. Sigui X un conjunt i sigui B una familia de subconjunts
de X. Suposem que B compleix aquestes dues propietats:

(a) La unid de tots els conjunts de B és X.

(b) Per tot U,V € Bitotx € UNYV, existeix W € B tal que x € W C
unv.

Aleshores, existeix una tnica topologia T a X que compleix

1. B és una base de la topologia T .

2. T és la topologia menys fina que conté B.

Demostracié. Comencem definint quins sén els oberts de la topologia 7.
Seran les unions d'elements de B. En particular, els elements de B son
oberts i els anomenarem oberts basics. Amb aquesta definicid, és clar que
& it X son oberts i que la unié d'oberts és obert. Per veure que 7 és una
topologia cal comprovar que la interseccid de dos oberts és un obert.

Observem primer que la interseccié de dos oberts basics és un obert.
Siguin U, V € B oberts basics. Per cada x € UNV existeix un obert basic
W, c UnNV tal que x € W,, per la hipotesi (b). Aixd ens diu que podem
expressar

unv= J w
xeunVv
i, per tant, UN V és un obert. Demostrem ara que la interseccidé de dos
oberts és un obert. Siguin A= JU; i B =]V, dos oberts expressats com
uni6 d'oberts basics. Tenim

AnB={JUinV)
i
que és també un obert perque ja hem vist que la interseccié de dos oberts
basics és un obert i que la unié d'oberts és un obert.

Per acabar la demostracid ens cal veure que B és una base d'aques-
ta topologia, que 7 es la topologia menys fina que conté B i que T és
l'tinica topologia que compleix aquestes dues propietats. Les tres coses
son senzilles de demostrar i les deixem com a exercici. ]
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Aquesta proposicio és forca util a la practica perqué, com hem dit, de
vegades ens permet donar una topologia sense haver de donar tots els
oberts sind només una base d'oberts.

Exemple

Considerem el conjunt R i la familia de subconjunts
B:={[a,b) : a<b, abeR}

Es clar que aquesta familia compleix les condicions (a) i (b) de la propo-
sicié 2.2 i, per tant, ens defineix una topologia a R de la qual B és base.
Aquesta topologia es coneix com la topologia del limit inferior. Estudiem-
la. D’entrada, observem

[t,o0) = [t t +n)

n>0

(=00, t) = [ J[t=n. 1)

n>0

la qual cosa ens diu que [t, ) i (—oo, t) s6n oberts. D'altra banda,
R —[a, b) = (=00, a) U[b, x)

i, per tant, [a, b) és tancat. Es a dir, els intervals [a, b) s6n oberts i tancats.
Pero aquesta topologia no és la topologia discreta perque, per exemple,
Uinterval [1, 2] no és obert. Demostrem-ho. Si[1, 2] fos obert, per la propia
definicié de base d'una topologia, existiria un obert basic [a, b) tal que
2 €[a,b) C[1,2] que no és possible. D'altra banda,

(1'2):U[1+,l7'2)

n>0

i (1,2) és obert. Aleshores,
R—[1,2] = (—00,1) U (2, 00)
és obert i [1, 2] és tancat.

Resumim en una taula el que hem descobert:

(1,2) | [1.2) | (1.2]] [0, 2]

obert St S No No

’ ’

tancat | No S No Si
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2.4 Entorns, interior, adheréncia

Els conceptes d'entorn, interior i adherencia ja els coneixem en el cas
dels espais meétrics. Com que es poden definir sense necessitat de la
distancia, només amb el concepte d'obert, també podem introduir-los en
espais topologics generals. Suposem que X és un espai topologic.

Definiciéo 2.3. 1. A és un entorn de x € X si existeix un obert U tal que
xe UCA

2. x és un punt interior de A si A és un entorn de x.

3. L'interior de A és el conjunt de tots els seus punts interiors. Escriu-
rem Int(A).

L'interior d'un conjunt compleix aquestes propietats elementals:

1. Int(A) és obert.

En efecte, per cada x € Int(A) existeix un obert U, tal que x € U, C
A. Aleshores, és facil veure que cada U, C Int(A) i, per tant,

Int(A) = ) U

x€lnt(A)
és obert perqué és una unié d'oberts.

2. Int(A) és la unié de tots els oberts continguts a A.

Per l'apartat anterior, Int(A) és un obert, per tant, la unié de tots els
oberts continguts a A conté Int(A). Cal veure la inclusié contraria.
Sigui B C A, B obert. Es clar que els punts de B sén punts interiors
de A. Per tant, B C Int(A).

3. Int(A) és l'obert més gran contingut a A, és a dir, si B C A és obert,
aleshores B C Int(A).

Aixo és clar pel punt anterior.
4. A és obert si i només si A = Int(A).

Aixo es dedueix dels punts anteriors.

Passant al complementari, tenim conceptes paral-lels que fan referéncia
a tancats:
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Definicio 2.4. 1. x és un punt adherent a A si tot entorn de x talla A.

2. L'adheréncia (o clausura) de A és el conjunt de tots els punts adhe-
rents a A. Escriurem Cl(A).>

L'adheréncia d’'un conjunt compleix aquestes propietats elementals:

1. Cl(A) és tancat.
2. Cl(A) és la interseccio de tots els tancats que contenen A.

3. Cl(A) és el tancat més petit que conté A, és a dir, stAC T i T és
tancat, aleshores Cl(A) C T.

4. A és tancat si i només si A = Cl(A).

Aix0 es pot demostrar directament (recomanable com a practica) o es
pot deduir de les propietats de l'interior utilitzant aquest resultat:

Proposicié 2.5. Cl(A) = X — Int(X — A).
Dues definicions més:
Definicié 2.6. A C X és dens si Cl(A) = X.
Definicio 2.7. La frontera d’'un conjunt A C X es defineix com

0A := CL(A) N CL(X — A).
Acabem amb alguns exemples:

Exemples

1. A la topologia discreta tots els conjunts sén oberts. Per tant, també
tots els conjunts sén tancats i per tot A tenim A = CL(A) = Int(A).

2. A la topologia grollera només hi ha dos oberts i només hi ha dos
tancats: @ i X. Per tant, St A # @, X, aleshores Cl(A) = X i Int(A) =
J.

3. Considerem la topologia del limit inferior sobre R que hem estudiat
a l'exemple de la pagina 25. Es facil veure que

°Es freqiient designar l'adheréncia de A amb la notacié A. També és freqiient (perd

o
no tant) designar l'interior de A com A.
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(1,2) | [1.2) | (1.2] | [1.2]

Int | (1,2) | [1,2) | (1,2) [ [1,2)

cL{[1,2)|[(1,2) | 1,2] | [1,2]

2.5 Exercicis addicionals

2.1 Un espai topologic es diu que és metritzable si la seva topologia prové d'una es-
tructura d'espai métric. Demostreu que els espais topologics metritzables compleixen la
propietat de Hausdorff de la pagina 21. Demostreu que st un espai groller té més d’'un
punt, no és metritzable. Doneu exemples de topologies no metritzables sobre R.

2.2 Sigui X = {a,b,c,d}. Quins dels segiients subconjunts de P(X) defineixen una
topologia i quins no.

1. @, X{a}.{b}{a.c}, {a,b,c}, {a, b}
2. o X {a}.{b}, {b,d}.
3. @, X{a,c,d}, {b,c d}.

2.3 Determineu el nombre de topologies diferents que es poden donar en un conjunt de
tres elements.

24 Sigui X =R i T = {ACR|JA= o o A és infinit}. Defineix T una topologia a R?

2.5 Considerem la classe 7 = {RZ,Q} U {Gk; k € R} de subconjunts del pla R?, on
Ge={(x.y) | x>y + Kk}

Demostreu que 7 és una topologia a R?. Es T una topologia a R? si substituim “k € R”
per “k € Z"? | si substituim “k € R” per "k € Q"?

2.6 Comproveu que la topologia cofinita en un conjunt és una topologia. Sigui X un
conjunt. Comproveu que la familia 7 defineix una topologia:

T ={o}U{AC X: X —A és numerable o finit}

2.7 Sigui (X, 7) un espai topologic. Considereu Y = X U {a} i definiu
T ={g}u{UU{a}:UeT}

Comproveu que (Y,7’) és un espai topologic. Més en general, trobeu una topologia
adient a la unid disjunta de dos espais topologics X L Y.
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2.8 Demostreu que la topologia del limit inferior de l'exemple de la pagina 25 és més
fina que la topologia ordinaria.

2.9 Siguin A i B subconjunts d'un espai topologic X. Demostreu que:

1. Int(Int(A)) = Int(A), Int(AN B) = Int(A) N Int(B), Int(A U B) D Int(A) U Int(B).
2. ClCLA)) = Cl(A), CL{A U B) = CL(A) U C(B), CLUA N B) c CL(A) n CL(B).

3. Int(B — A) = Int(B) — Cl(A), d(AU B) C AU B, d(9(0A)) = d(9A) C dA.

i comproveu que aquests son els millors resultats possibles.

2.10 Sigui A un subconjunt d'un espat topologic X.

1. Tenen A i Cl(A) els mateixos interiors?
2. Tenen A i Int(A) les mateixes adheréncies?

3. (Problema de Kuratowski) Proveu:

Cl(Int(CL(Int(A)))) = CL(Int(A))
Int(CL(Int(CL(A)))) = Int(CL(A))

4. Quants conjunts diferents es poden obtenir a partir d'un conjunt A prenent ad-
heréncies i interiors? (és a dir, CL(A), Int(Int(A)), Cl(Int(A)), ...)

211 Sigui 7 la col-leccié de subconjunts de R formada per @, R i tots els intervals
(—o0, x), x € R. Demostreu que 7 és una topologia. En aquesta topologia, determineu
linterior de [0, 1], ladheréncia de (0,1) i la frontera de [0,1). Demostreu que Z és dens
aR.

2.12 Sigui E un subconjunt dens d'un espai topologic X. Demostreu que per a tot obert U
de X es compleix que U C C{UN E).

2.13 Sigui X un espai topologic. Demostreu que U C X és obert si i només si per tot
A C X es compleix que CL{U N CL(A)) = CL(U N A).

2.14 Sigui X un espai topologic amb una base numerable. Demostreu que aleshores
existeix un subconjunt C de X que és dens i numerable. Utilitzeu la topologia del limit
inferior de la pagina 25 per demostrar que el reciproc no és cert.
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Capitol 3

Aplicacions continues

a topologia, essencialment, és l'estudi de la continuitat i en
aquest capitol definirem el concepte d'aplicacié continua en-
tre espais. Per fer-ho, ens basarem en la caracteritzacié de
la continuitat en espais métrics a través d'oberts (teorema
1.2): Varem veure que, en els espais meétrics, les aplicacions continues
son aquelles per a les quals l'antiimatge de qualsevol obert del conjunt
d’arribada és un obert del conjunt d'origen. En un espati topologic general,
aquesta sera la definicié d'aplicacié continua.

3.1 Aplicacions obertes, tancades i continues

Suposem que f: X — Y és una aplicacié entre dos espais topologics. En
funcié de com es comporti f respecte dels oberts o dels tancats de X i de
Y, donarem a f diversos qualificatius.

Definicio 3.1. (a) Direm que f és oberta si per tot obert A de X es
compleix que f(A) és un obert de Y.

(b) Direm que f és tancada si per tot tancat A de X es compleix que
f(A) és un tancat de Y.

(c) Direm que f és continua si per tot obert B de Y es compleix que
f~1(B) és un obert de X.

Aparentment, faltaria una definicié (d) corresponent a les aplicacions
tals que, per tot tancat B de Y es compleix que f~'(B) és un tancat de X,

31
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perd les propietats de f~' ens diuen que aquesta condicié és equivalent a
la propietat (c) anterior.

Exemples i propietats elementals

1. St X' i Y son espais metrics, el teorema 1.2 ens diu que el concepte de
funcié continua que hem introduit aqui és el mateix que ja coneixiem.’

N

Si X és un espai discret, tota f : X — Y és continua.

w

Si Y és un espai groller, tota f : X — Y és continua.

s

L'aplicacié identitat /: X — X és continua, oberta i tancada.
5. Qualsevol aplicacié constant f : X — Y és continua.

6. La composicio d'aplicacions obertes (tancades, continues) és també
oberta (tancada, continua).

Cal tenir present que les tres propietats que hem definit —oberta,
tancada, continua— sdn independents, en el sentit que hi ha exemples
de funcions que compleixen algunes d'aquestes tres propietats i no com-
pleixen la resta. Com que, donades tres propietats, hi ha vuit possibles
situacions, donarem vuit exemples (que lestudiant haura de comprovar,
com a exercici).

Exemples

(000) La funcié f : R — R donada per

x+1, x>0

Flx) =
=10, X <0

no és ni oberta ni tancada ni continua.

(001) Sigui X un conjunt que tingui més d'un punt. Designem per Xy l'espai
X amb la topologia discreta i X, l'espai X amb la topologia grollera.
La identitat / : Xy — X, no és ni oberta ni tancada, pero és continua.

TAixo vol dir, en particular, que quan treballem amb espais topologics que provinguin
d'espais metrics, podem aplicar els coneixements sobre continuitat en espais metrics que
ja tenlem préviament a aquest curs de topologia. Posem un exemple: Ja sabem que la
funcié f : R — R donada per f(x) = 3x>+2x—1 és continua, no cal tornar-ho a demostrar.
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(010) La funcié f: R — R donada per

1, x>0

f —
=10 x<0

no és ni oberta ni continua, pero és tancada.

(011) La funcié f : R — R donada per f(x) = x? és tancada i continua, pero
no és oberta.

(100) Considerem la inclusié i : (0,1); — R on (0, 1), indica l'interval obert
(0,1 c R amb la topologia grollera. i és oberta, perdo no és ni
tancada ni continua.

(101) Considerem la funcié f : R> — R donada per f(x,y) = x. f és oberta
i continua, pero no és tancada.

110) Si X té més d'un punt, la identitat / : X, — X, és oberta i tancada,
g a
pero no és continua.

(111) Per tot espai X, la identitat / : X — X és oberta, tancada i continua.

Esperem que aquests exemples serveixin per retenir a la memoria que,
igual com passa amb els subconjunts, aplicacié oberta no és la negacio6
d'aplicacié tancada.

3.2 Homeomorfismes

Molt sovint, una teoria matematica que estudia uns determinats objectes
té un concepte de transformacié entre aquests objectes i un concepte d'e-
quivaléncia o isomorfisme.? Per exemple, en l'estudi dels espais vectorials,
les transformacions sén les aplicacions lineals i els isomorfismes sdn les
aplicacions lineals invertibles. En l'estudi dels grups, les transformacions
son els homomorfismes de grup i els isomorfismes sén els homomorfismes
de grup invertibles. En lUestudi dels espais topologics, les transformacions
son les aplicacions continues i els isomorfismes sén els que s'anomenen
homeomorfismes.

Definicié 3.2. Una aplicacio f : X — Y entre espais topologics diem que
és un homeomorfisme si compleix aquestes tres propietats:

2Aquesta idea es formalitza a la “teoria de categories”.
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1. f és continua.
2. f és bijectiva.

3. f1:Y — X és continua.
La condicié (3) es pot substituir per
(3') f és oberta’

Si existeix un homeomorfisme f : X — Y direm que els espais X i Y
sén homeomorfs i escriurem X = Y. En aquest cas, és clar que qualsevol
propietat topologica que puguem afirmar de X també sera automaticament
valida a Y. Els dos espais X i Y seran, essencialment, el mateix espai.*

Donem ara una serie d'exemples d’homeomorfismes entre espais topo-
logics, és a dir, de parelles d'espais aparentment diferents pero que, des
del punt de vista de la topologia sén, de fet, el mateix espai.

Exemples
e Dos intervals oberts de R sén homeomorfs: (a,b) = (da’,b’). Per
veure-ho, n’hi ha prou amb considerar laplicacié afi f : (a,b) —
(a’, b’) tal que f(a) = a’ i f(b) = b'.

e Un interval obert de R és homeomorf a R: (a,b) = R. Segons le-
xemple anterior, n'hi ha prou amb trobar un homeomorfisme entre R
L un interval obert concret, per exemple linterval (—1,1). Aquestes
dues funcions ens el donen:

f:R—(=1,1), f':(=1,1) >R

t r
r— ——

fro> —
14 |t 1—|r|

3En l'exemple dels espais vectorials, no exigiem res a f~' perqué si f és lineal i hi-
jectiva es pot demostrar facilment que f~! també és lineal. El mateix passa amb grups.
Aquest fet emmascara l'auténtic concepte d'isomorfisme que és aquest: f és un isomor-
fisme si és admissible (en cada cas, aixo tindra un cert significat concret), bijectiva i 7
també és admissible. En el cas dels espais topologics, una aplicacié pot ser continua i
bijectiva sense que la seva inversa sigui continua (vegeu l'exemple (001) anterior). Per
tant, en la definicié d’homeomorfisme cal exigir la condicié (3).

*Ara ja podem donar un sentit matematic concret a l'afirmacié que un topoleg és
aquella persona que no distingeix entre un donut i una tassa. Vol dir que un donut i una
tassa que, com a subconjunts de R? sén espais topoldgics, sén homeomorfs.



3.2. HOMEOMORFISMES 35

e De manera similar demostrariem que per tot a, b € R tenim homeo-

morfismes
(—o0,a) =R = (b, 00).

e L'esfera menys un punt és homeomorfa a l'espai euclidia:
Sn _ {*} ; Rn

Recordem que lesfera és el subconjunt de l'espai euclidia format pels
punts que estan a distancia 1 de l'origen de coordenades:

S"i={xeR"™ . ||x|| =1}

En primer lloc, observem que si a i b sén dos punts de l'esfera, hi ha
un homeomorfisme de lesfera en ella mateixa que transforma a en
b. Per exemple, una simple rotacié de l'esfera. Per tant, S” — {a} =
S"—{b} i lespai “l'esfera menys un punt” esta ben definit perqué no
depén de quin punt hem escollit. Sigui N = (0,...,0,1) el pol nord de
l'esfera. Demostrarem que S"—{N} = R" i, per fer-ho, utilitzarem la
construccié geomeétrica que es coneix com a projeccié estereografica
(figura 3.1). Imaginem R"” com el pla equatorial de S”. Donat un
punt p # N de lesfera, unim p amb N per una recta i considerem
el punt g en que aquesta recta talla el pla equatorial. La projeccié
estereografica és l'aplicacié p — ¢ i déna un homeomorfisme S" —
{N} = R". Per tal de comprovar-ho, utilitzem una mica de geometria
analitica elemental per escriure les aplicacions f i f~! i veure que
son continues:

fx.y,2)=3— (xy)

1

fYa,b)= ——-——
(a. D) 1+ a2+ b?

(2a,2b, a* + b* — 1)

e Com demostrariem que una tassa i un donut sén homeomorfs? Igual
que a l'exemple anterior, hauriem de donar funcions continues de la
tassa al donut i del donut a la tassa que siguin inverses una de l'altra.
Aix0 és complicat, pero no impossible. De fet, no ens resulta gens
dificil imaginar una pel-licula feta amb imatges generades per ordi-
nador en qué una tassa es deforma continuament fins convertir-se en
un donut. En aquest cas, l'ordinador fa aquesta transformacié com
a composicié d'un gran nombre d’homeomorfismes. A la practica, en
casos com aquest, admetrem que dos espais s6n homeomorfs sense
necessitat d’haver de mostrar un homeomorfisme explicit.
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Figura 3.1: Projeccié estereografica de S” — {N} a R".

Quan es tracta de demostrar que una certa aplicacié entre espais to-
pologics és un homeomorfisme, sovint la part més dificil de la demostracié
és comprovar que l'aplicacié inversa és continua. Hi ha un teorema que ens
pot ajudar en aquesta situacié perque afirma que, sota certes hipotesis,
una aplicacid continua i bijectiva és automaticament un homeomorfisme:

Teorema 3.3. Siguinf: X — Y ig:Y — Z aplicacions continues. Supo-
sem que es compleixen aquestes condicions:

1. f és exhaustiva i g és bijectiva.

2. Z compleix la propietat de Hausdorff

3. X és homeomortf a un subespai tancat de [0,1]" per algun n > 0.
Aleshores, g és un homeomorfisme.

La demostracié d'aquest resultat és forca senzilla, pero 'hem de deixar
per més endavant (vegeu el teorema 8.4).

3.3 Exercicis addicionals

3.1 Decidiu quins d’aquests subconjunts de R? (amb la topologia ordinaria) sén oberts,
quins sén tancats, quins son oberts i tancats i quins no sén ni oberts ni tancats:

(1) {(x.0)| Ix+y| <1} (v A{x.y)| x=y, x#0}

(i)  {y | Ix+yl <1} (v) {x,u) | x* +y* <1}
(i)  {(xu)| xy >0} V) {ey) | IxI> 1} u{(xy) | y =0}
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3.2 Siguin (X, 77) i (X, 72) dues topologies sobre un mateix conjunt X. Proveu que l'apli-
cacio identitat /: (X, 72) — (X, 74) és continua si i només si 7, és més fina que 77. Si T,
és estrictament més fina que 77 proveu que aleshores l'aplicacié identitat és una bijeccid
continua pero no un homeomorfisme.

3.3 Sigui f : X — Y una aplicacié entre espais topologics. Proveu que sén equivalents:

1. f és continua;
2. f~(Int(B)) C Int((f~"(B))) per tot BC Y;

3. f(CL(A)) C CL(f(A)) per tot A C X.

3.4 Sigui f : X — Y una aplicacié continua i A C X un subconjunt dens. Si f|4 és
constant i Y = R aleshores f és també constant. Trobeu un contraexemple si Y no és
la recta real. Doneu una condicié necessaria i suficient sobre Y per tal que l'enunciat
anterior sigut cert.

3.5 Sigui f : X — Y una aplicacié entre dos espais topologics i sigui U una base de la
topologia de Y. Suposem que f~'(U) és obert de X per tot obert basic U € U. Demostreu
que f és continua.

3.6 Sigui f : X — Y una aplicacié entre dos espais topologics i sigui U una base de la
topologia de X. Suposem que f(U) és obert de Y per tot obert basic U € U. Demostreu
que f és oberta.

3.7 Considereu una aplicacié f: X — Y entre dos espais topologics X i Y. Demostreu
que f és oberta si L només si per tot A C X es compleix que f(Int(A)) C Int(f(A)).

3.8 Considerem el conjunt X = RU {*}. Posem una topologia a X de la segiient manera.
Anomenem tancats de X aquests subconjunts: @ i X; els conjunts T U {*} on T és un
tancat de R; els conjunts T C R que sén tancats i acotats. Demostreu que hem definit
una topologia a X. Demostreu que X és homeomorf a la circumferéncia S'.

3.9 A la pagina 34 hem donat exemples per a totes les combinacions possibles d'apli-
cacions que siguin obertes/no obertes, tancades/no tancades, continues/no continues.
Suposeu que afegim la condicié que les aplicacions han de ser bijectives. Quines combi-
nacions son possibles en aquest cas?

3.10 Sigui X = R amb la topologia del complement numerable, és a dir, els oberts de X
son els subconjunts A C X tals que X — A és X, finit o numerable.

[N

Els punts de X son oberts? Sén tancats?

N

. Considereu Q C X. Es Q obert? Es Q tancat?
3. Calculeu l'interior i l'adheréncia de Q.

4. Sigui f : X — X laplicacié f(x) = x°. Es continua? Es tancada? Es oberta?
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5. Sigut g : X — X laplicacio

0, xe€Q
glx) = 1 x¢Q

Es continua? Es tancada? Es oberta?

6. Sigui B la familia dels A C X tal que X — A és numerable. Demostreu que B és
una base de la topologia de X.

7. Sigui B’ la familia dels A C X tal que X — A és finit. Demostreu que B’ no és una
base de la topologia de X.



Capitol 4

Subespais

i X és un espai topologic it A C X és un subconjunt de X,
aquest subconjunt A adquireix immediatament una topologia
“natural”.! En aquest capitol definirem aquesta topologia in-
L824y dutda sobre un subconjunt, estudiarem les seves propietats i
treballarem diversos exemples.

4.1 La topologia de subespai

Sigui X un espai topologic i sigui A C X un subconjunt de X.

Definicio 4.1. Direm que U C A és un obert de A si existeix un obert W
(de X) tal gue U =ANW.

Amb aquesta definicio, els oberts de A formen una topologia sobre
A. Direm que aquesta topologia sobre A és la topologia induida per la
inclusié A C X i direm que A és un subespai de X.2

Algunes propietats senzilles de la topologia induida sén aquestes:

1. T C A és un tancat de A st i només si existeix un tancat K de X tal
que T =ANK.

"Observem que, en contrast amb aixo, un subconjunt arbitrari d'un espai vectori-
al no és automaticament un espai vectorial i un subconjunt arbitrari d’'un grup no és
automaticament un grup.

2Quan tinguem la situacié A C X i parlem d'un obert caldra que quedi clar si estem
parlant d’'un obert de A o estem parlant d'un obert de X. Sén coses diferents.

39
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2. Si A és obert, aleshores U C A és obert a A si i només si és obert a
X.

3. Si A és tancat, aleshores T C A és tancat a A si i només si és tancat
a X.

4. L'aplicacié d'inclusié i : A — X és continua.

5. La topologia induida sobre A és la menys fina que fa que la inclusioé
i : A— X sigui continua.

6. St f : X = Y és una aplicacid continua, aleshores la restriccio a A
d'aquesta aplicacid, f|4: A — X, també és continua.

7. St X és un espai métric amb una distancia d it A C X, la restriccio
de d a A fa que A també sigui un espai métric. Tenim, per tant,
dues topologies sobre A. D'una banda, la topologia donada per la
distancia d. De l'altra, la topologia induida per la topologia de X.
Aquestes dues topologies coincideixen.

8. La mateixa idea de la topologia induida es pot generalitzar a la
situacid segiient. Sigui X un espai topologic, Aun conjuntif: A — X
una aplicacid. Aleshores, podem definir una topologia sobre A que
tingui per oberts els conjunts f~'(U) per a cada obert U de X. Si f
és una inclusio, recuperem la definicié de la topologia induida.

4.2 Alguns subespais de R"

Com que tot subconjunt d'un espai topologic és automaticament un espai
topologic, l'espai euclidia R” ens proporciona una quantitat il-limitada
d'exemples d'espais topologics.

e Considerem A =1[0,1) C R amb la topologia ordinaria a R i la topo-
logia induida a A. Veiem, per exemple, que [0,1/2) és un obert de A
i [1/2,1) és un tancat de A.

e Considerem A = (0,1) U (3,4) C R. En aquest exemple, tenim que
(0,1) és un obert de A i és també un tancat de A.

e Considerem Z C R. Es senzill adonar-se que la topologia induida
sobre Z és la topologia discreta: tots els subconjunts de Z sén oberts
i tancats a Z.
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Figura 4.1: Un Tor de revolucié a R3. (Imatge de DemonDelLuxe, Wikimedia
Commons.)

e Sigui A={1/n:n=1,2,3,...} CR. Até la topologia discreta i és
homeomorf a Z.

e Sigui A={0}u{1/n : n=1,23,...} CR. Ano té la topologia
discreta perqué {0} no és obert a A. Tot subconjunt de A que no
continguti el zero és obert. Un subconjunt de A que contingui el zero
és obert si i només si el seu complement és finit.

e Ja coneixem lesfera
S"={xeR"™ : ||x|| =1}.

Es un tancat de R+ i ho podem veure amb aquest argument senzill

(i molt util). Considerem l'aplicacié f : R™'" — R donada per f(x) =
l|x||, que és una aplicacié continua. Veiem que {1} C R és un tancat
i que S" = f~'(1). Per tant, S" és un tancat.

e El tor (figura 4.1) és la superficie de revolucié generada a R3 per una
circumferéncia que gira al voltant d’'un eix que esta en el seu mateix
pla i no la talla. Amb aquesta definiciéd i una mica de geometria
analitica, no és dificil donar una descripcié en coordenades del tor.
Per fer-ho, considerem la circumferéncia (x —2)?+2z%* = 1 al pla (x, z)
i fem-la girar al voltant de l'eix z. Obtenim

T={xyz eR: V2+yl—22+2=1}.

Un argument com el de l'esfera ens diu que T és un tancat de R>.



42 CAPITOL 4. SUBESPAIS

Figura 4.2: Una banda de Moebius. (Imatge de David Benbennick, Wiki-
media Commons.)

e La banda de Moebius (figura 4.2) es pot pensar com lobjecte de
R3 generat per un segment que gira 360 graus al voltant d'un eix
i, al mateix temps, gira 180 graus sobre ell mateix2 Amb aquesta
descripcid és senzill escriure equacions parametriques per als punts
de la banda de Moebius:

u
x(u,v) = (1 + vcosi) cos u

y(u,v) = (1 + vcos%) sinu

(u,v) . u
z(u,v) =vsin<
2

3Tots hem construit alguna vegada un model fisic de la banda de Moebius agafant un
rectangle de paper més llarg que ample (quant més llarg?) i enganxant els dos extrems
curts després de donar-los un gir de 180 graus. Aquest model fisic és homeomorf al
model analitic que donem aqui. De tota manera, és interessant observar que el model
fisic fet amb un paper no és pas isomeétric a la superficie parametritzada M que definim.
Per veure-ho, cal saber una mica de geometria diferencial de superficies i adonar-se que
la superficie M té curvatura de Gauss diferent de zero —no és desenvolupable— mentre
que la superficie que fem amb paper si que té curvatura zero a tots els seus punts. Ara
bé, fer una construccié amb un full de paper no és una demostracié matematica i aquest
raonament que acabem de fer ens planteja aquest problema: Existeix una banda de
Moebius a R? que sigui una superficie diferenciable amb curvatura nul-la? La resposta
és sl pero, curiosament, aquest problema no va ser reconegut i atacat fins molts anys
després que Moebius inventés la seva banda. Lestudiant interessat en el tema —un
tema que té moltes ramificacions, principalment a la matematica aplicada a la ciéncia de
materials— pot consultar l'article de divulgacié The Dark Side of the Moebius Strip, de
Gideon E. Schwarz a Amer. Math. Monthly 97, No. 10 (1990), p. 890-897.
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Aleshores, podem definir la banda de Moebius com
M = F([0, 2] x [=1/2,1/2])

on F és la funcié continua (u,v) — (x, y, z). Per veure que M és un
tancat de R> necessitariem saber que F és tancada. Més endavant
(capttol 8) aprendrem un métode molt Gtil per demostrar aquest tipus
de coses. De moment, ho deixem en suspens.

De vegades s'utilitza també la banda de Moebius sense vora M’ que
és F([0,2x] x (—=1/2,1/2)). Observem que M i M’ difereixen en una
circumferencia.

4.3 EL conjunt de Cantor

El conjunt de Cantor és un subconjunt de la recta R que té un interés
especial i tot estudiant de topologia ha de conéixer. En aquesta seccid
donarem la seva definicié i veurem algunes de les seves propietats. Hi ha
una manera molt senzilla de definir aquest conjunt:

Definicié 4.2. El conjunt de Cantor C és el subespai de [0,1] format per
tots els nombres reals que es poden escriure en base 3 sense utilitzar la
xifra 1.

En aquesta definicié hem de tenir en compte que admetem infinites
xifres 2 sequides. Per exemple, 1/3 pertany al conjunt de Cantor perque,
encara que, en base 3, 1/3 s’escriu 0.1, també es pot escriure 0.022222- - -.

Si intentem fer-nos una idea de C, observarem que linterval (1/3,2/3)
no conté cap punt de C perqué tots els punts d'aquest interval s'escriuen
0.1---. Si ara ens fixem en linterval [0, 1/3], veurem també que el terc
central d'aquest interval, que és l'interval (1/9,2/9), tampoc no té cap punt
de C. Successivament, si dividim en tres parts iguals cada interval que
vagi apareixent, l'interval central no té cap punt de C. Aixo ens suggereix
una definicid inductiva del conjunt C que podem fer d'aquesta manera:

1. Posem Ip =[0,1], X4 = (1/3,2/3) i ) = Iy — Xi.

2. Definim inductivament

Xn+1 = Xn U U 3n+1 ' 3t

k=0

3 (1+3/< 2+3/<)
., o n>1

t /n+1 = IO - Xn+1-
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3. Definim C =(",50 /n-

Enunciem ara algunes propietats d'aquest espai topologic C:

1. C + @. En particular, 1 € C.

2. C és un tancat de R perqué cada /, en la definicid inductiva és un
tancat i C és la interseccio dels /,.

3. C no conté cap interval perqué a tot interval sempre podem trobar
algun nombre que no es pot escriure sense la xifra 1.

4. Int(C) = @ perqué si x € C fos un punt interior, hi hauria d’haver un
interval (x — e, x + €) C C.

5. C no té la topologia discreta. Per veure-ho n’hi ha prou amb adonar-
se que els punts de C no sén oberts de C. Si x € C fos obert a C,
aixo voldria dir que existeix € > 0 tal que (x — e, x + €) N C = {x}.
Pero aixo és impossible, perqué tot interval té infinits nombres reals
que es poden escriure sense la xifra 1.

6. C no és numerable. Podem utilitzar exactament la mateixa demos-
tracié que vam utilitzar per veure que R no és numerable (pagina 10).

Tornarem a parlar d'aquest espai més endavant.

4.4 Continuttat de funcions definides a trossos

Acabarem aquest capitol amb un teorema que és forca util. Suposem que
tenim una aplicacié f : X — Y entre espais topologics que volem saber
st és continua o no ho és. Suposem que X = AU B i que sabem que f
és continua quan la restringim a A i que també ho és quan la restringim
a B. Podem afirmar que f és continua? En general, no, de cap manera,
(doneu un contraexemple) pero st que ho podem afirmar en alguns casos
importants.

Teorema 4.3. Siguin X = AU B i Y espais topoldgics i sigui f : X — Y
una aplicacié. Suposem que f|5 i f|g sén continues. Aleshores:

(a) Si A i B sén oberts, f és continua.

(b) Si A i B sén tancats, f és continua.



45. EXERCICIS ADDICIONALS 45

Demostracié. Demostrarem només l'afirmacié (a) perqué l'altra es demos-
tra igual. Sigui U C Y un obert. Cal demostrar que f~'(U) és un obert.
Observem aixo:

f~1(U) = (FY(U)NA) U (F(U) N B)
=l (V) U fl5'(U)

Com que f|4 és continua, tenim que f|;'(U) és un obert de A. Perd A és
obert a X i, per tant, f|;'(U) és un obert de X. Pel mateix motiu, f|5' (V)
és un obert de X i deduim que f~'(U) és un obert de X. [

4.5 Exercicis addicionals

4.1 Sigui A un recobriment de X, és a dir, A = {A;}ic; amb A; C X tal que X = [J,, Ai-
Demostreu que en cadascun dels casos segiients una aplicacié f : X — Y és continua si
i només si ho és restringida a cada A; € A:

1. A és un recobriment per oberts (i.e. els A; son oberts).
2. A és un recobriment finit per tancats (i.e. els A; son tancats i / és finit).

3. A és un recobriment per tancats localment finit (tot punt de X té un entorn que
talla un nombre finit de A;).

4.2 Considerem R amb la topologia ordinaria i Z C R amb la topologia de subespai.
(a) Descriviu quins sén exactament els oberts de Z amb aquesta topologia. (b) Doneu
condicions necessaries i suficients per tal que una aplicacié f: Z — R sigui continua. (c)
Demostreu que l'aplicacié f: R — Z donada per la “part entera” no és continua.

4.3 Sigui X un espai topologic i A C X. Considerem la inclusi6 i : A — X. Considerem a
A la topologia induida 7. Demostreu: (a) f: Y — A és contlnua si i només st if : ¥ — X

,

és continua. (b) 7 és l'linica topologia a A que té la propietat de l'apartat anterior.

4.4 Sigut A=1{0,1,1/2,1/3,...,1/n,...} amb la topologia induida per la inclusié A C R.
Demostreu que tot subespai de A és obert o tancat.

4.5 Siqui F : [0,25] x [-1/2,1/2] — R3 l'aplicacié continua que hem utilitzat per definir
la banda de Moebius. Demostreu que F és injectiva.
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Capitol 5

La topologia producte

n aquest capitol volem definir i estudiar una topologia apro-
piada sobre el producte de dos espais topologics. Més en-
davant, generalitzarem aquesta construccid al producte de
. qualsevol familia arbitraria d'espais topologics, i acabarem
amb un exemple topoldgic important: la corba de Peano.

5.1 Topologia a X x Y

Suposem que X i Y son dos espais topologics i considerem el conjunt
producte X x Y. Quina topologia podriem considerar sobre X x Y que
sigui “apropiada”, és a dir, que tingui bones propietats?

La primera cosa que hem de tenir en compte és que, si prenem com
a oberts de X x Y els productes U x V on U és un obert de X i V és
un obert de Y, aquests oberts, en general, no compleixen els axiomes de
topologia.! Ho hem de fer millor. EL que si que és cert és que la familia

B:={UxV : Uobert de X, V obert de Y}

compleix les condicions de base d'una topologia que apareixen a la pro-
posicio 2.2.

Definicié 5.1. La topologia producte a X x Y és la topologia que té per
base els conjunts de la forma U x V on U és un obert de X i V és un obert
deY.

"Quins axiomes fallen? Doneu un contraexemple.
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D’aquests oberts Ux V en direm oberts basics de X x Y. Recordem que,
segons la proposicid 2.2, els oberts de X x Y seran les unions (arbitraries)
d'oberts basics. Dit d'una altra manera,

e AC X x Y és obert si i només si per tot a € A existeixen un obert
U, de X i un obert V, de Y tals que a € U, x V, C A.

Per aquest mateix métode, podem definir una topologia sobre qualsevol
producte finit d'espais topologics X; x --- x X,.

Estudiem ara les propietats més basiques de la topologia producte.

1. Les projeccions

son continues.

2. Una aplicacié f : Z — X x Y és continua si i només si els seus com-
ponents son continus, és a dir, si i només si sixf i 7ty f sén aplicacions
continues.

Demostrem-ho. En un sentit és molt senzill perqué la composicié
d'aplicacions continues és continua. En laltre sentit, suposem que
sixf U styf sén continues i demostrem que f també ho és. En primer
lloc, sobre un obert basic de X x Y tenim que

(U x V) = (naxf) " (U) N (zry ) (V)

és un obert de Z. Siara A C X x Y és un obert arbitrari i z € f~1(A)
amb f(z) = a € A, existira un obert basic Ux V talque a € Ux V C
A. Aleshores,

ze fa)c F(Ux V) FA).

Com que ja hem vist que f~'(U x V) és un obert de Z, deduim que,
efectivament, f~1(A) és un obert de Z.

3. Les projeccions 7y, 7y sén obertes.’

2Aixo és un regal inesperat. La topologia producte s’ha definit amb la intencié que
les projeccions siguin continues (propietat 1) i amb la intencié que una aplicacié a valor
en un producte sigui continua si it només si ho sdn els seus components (propietat 2) pero
ens trobem que aquesta topologia també fa que les projeccions siguin obertes.
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Demostrem-ho. Sigui A un obert de X x Y i mirem de veure que, per
exemple, mx(A) és un obert de X. Apliquem la condicid d'obert que
hem vist fa un moment. Sigui x = nx(a) € nx(A) amb a = (x,y) € A.
Com que A és obert, hi haura un obert basic U x V tal que a &
U x V C A. Aleshores, x € U = mix(U x V) C nix(A) t tx(A) és obert
de X.

En general, les projeccions no son tancades. Ho hem vist a l'exemple
(101) de l'apartat 3.1.

4. Sif;: X; = Y, i = 1,2, sén aplicacions continues, aleshores f; x f, :
X1 x X5 = Yy x Y, també és continua.

5. Si X1 ;le)ﬁ = Yz, aleshores X1 X Y1 ;XZX Yz.
6. X x {x} = X.
7.XxYZYxX

8. La topologia producte i la topologia induida en un subespai son
compatibles en el sentit segiient. Suposem que A C X i B C Y i
considerem Ax B C X x Y. En principi, sobre Ax B podem considerar
dues topologies

(a) La topologia induida sobre A x B com a subespai de l'espai
XxY.

(b) La topologia producte A x B, considerant que A i B sén espais
topologics.

Aquestes dues topologies coincideixen. La demostracié queda com a
exercici.

9. En principi, tenim dues topologies sobre R":

(a) La topologia d'espai meétric donada per la distancia euclidiana.
(b) La topologia producte R” =R x --- x R.
Aquestes dues topologies coincideixen. La demostraci6 —que també
es deixa com a exercici— es basa en la segiient observacié ge-

ométrica. Considerem una bola B := B(x,€) C R"” i un punt y =
(y1,...,y,) € B. Aleshores, existeix 0 > 0 tal que

(Y1 — 3, y1 +0) X - X (yn — 8, yn + ) C B.
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D’altra banda, si tenim un producte d’intervals oberts
P :=(ay,bi) x --- x (a,, b,) CR"

i un punt z € P, existeix € > 0 tal que B(z,€) C P.
Acabem aquesta seccié amb dos exemples interessants.

Exemples

e El tor com a producte de circumferéncies. Hi ha un homeomorfisme
T = S" x S'. Aixd es pot demostrar directament donant un homeo-
morfisme f: T — S" x ST i el seu invers g : S" x S' — T, d'aquesta
manera:

y r\/X2+y2_2yZ

X
Vit 2 /Xty
g(a,b,c,d) = (a(c+2),b(c+2),d)

flx,y,z)=

Tanmateix, cal comprovar que aquestes aplicacions estan ben defi-
nides, sén continues i so6n inversa una de l'altra.

e El cilindre. Hi ha un homeomorfisme R” — {0} = S"~' x R. Conside-
rem aquestes aplicacions

R" — {0} —> S"" x (0, 00) —> R" — {0}

o ()

(a,t)— ta

Sén continues i inverses una de l'altra. D’altra banda, ja sabem que
(0, 00) = R.

5.2 El producte infinit

Suposem ara que tenim una familia infinita d'espais topologics {X}ie
i volem definir una topologia apropiada sobre el seu producte cartesia
[]; Xi. Ho podem fer igual que ho hem fet en el cas finit, és a dir, prenent
la topologia que té per base els oberts basics

[ v

iel
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on cada U; és un obert de X;.. Aix0 ens ddéna una topologia sobre el
producte [ ], X

Aquesta topologia no té les propietats que voldriem, com es posa de
manifest en aquest exemple interessant. Considerem l'aplicacié diagonal

f:RalﬁlR
i=1

donada per f(x) = {x}ic;, on prenem la topologia ordinaria a R i la topo-
logia producte que acabem de definir a [, R. Lamentablement, aquesta
aplicacidé no és continua. Per veure-ho, considerem

que, en la topologia que estem considerant, és un obert basic. Es evident
que f~1(U) = {0}, que no és un obert de R.

Per tant, la topologia en el producte infinit que pren com a oberts
basics els productes d'oberts no té bones propietats i practicament no
s'utilitza mat.

Definicio 5.2. La topologia producte a [ ] X; és la topologia que té com a
base d'oberts els productes
Mu

iel

tals que

1. Cada U; és un obert de X,.

2. U; = X; excepte per a un nombre finit de i € I.

Es comprova facilment que aquests oberts compleixen les propietats
que exigeix la proposicio 2.2. Observem que, si el conjunt d'index / és
finit, recuperem la mateixa definicié de topologia producte que teniem
abans. Aquesta topologia producte si que compleix les propietats 1-8 que
hem vist a l'apartat 5.1.

Posem ara un exemple molt significatiu de producte infinit: el mateix
conjunt de Cantor C que hem estudiat a l'apartat 4.3.



52 CAPITOL 5. LA TOPOLOGIA PRODUCTE

Teorema 5.3. El conjunt de Cantor C és homeomorf al producte infinit

o

|_|{a,b}

i=1

on {a,b} és un espai discret amb dos punts.

Demostracié. Recordem que hem definit C com els punts de [0, 1] que es
poden escriure en base 3 sense utilitzar la xifra 1. Si pensem lespai {a, b}
com {0,2} C R, podem considerar l'aplicacié

P ﬁ{O,Z} — C
i=1

que envia cada successié de xifres 0, 2 al nombre real que té aquestes
xifres en la seva expressid en base 3. Es a dir:

p({ai}) = 3 %

i=1

Es tracta d'una funcié bijectiva. Per veure que és un homeomorfisme cal
demostrar que és continua i que la inversa és també continua. Sigui
c=) 7 a3" € Ciconsiderem una bola B(c, €)N C. Escollim un valor de
N tal que Y 2., 37" < €/2. Aleshores, es compleix que

p({a1} x - x{an} x{0,2} x {0,2} x---) C B(c,e)n C

i aixo demostra la continuitat de ¢.

Demostrem ara que ¢ és oberta. N'hi ha prou amb veure que la imatge
d'un obert basic del producte []{0,2} és un obert de C. Considerem un
obert basic

U={a1} x--x{an} x{0,2} x{0,2} x ---
isigui x =) " a;37" € ¢(U). Es compleix que
B(x,3NM) N C C (V).

En efecte, sigui
a1 aj an
SNi= =+ o5t o
N3 32 3N
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Aleshores, es compleix x € [sn, sy+37V] i, per tant, si y € B(x,37V), tenim

YE S TINONT IR

1 2)
Sn SNt =% -

Si ara recordem la construccié de C a partir de l'interval [0, 1], dividint-lo
en tres parts, eliminant el ter¢ central i repetint el procés, veurem que
5/\/—3—N,SN+3—N ﬂCC[SN,5N+3 ]

Per tant, si y € B(x,37™M)N C, tindrem que y = Y " b;37" amb b; = a; per
i=1,...,N1i en conclusid, y € ¢(U). ]

Aquest teorema ens ddéna també un exemple d'un producte d'espais
discrets que no és discret. De fet, un producte infinit d'espais discrets
gairebé mai no és discret.

5.3 La corba de Peano

La corba de Peano és un objecte matematic que sembla que vulneri la
nostra intuicio de l'espai i de la dimensid. Es tracta, simplement, d'una
corba continua que passa per tots els punts del quadrat unitat [0, 1]x[0, 1].3
La construccid d'aquesta corba utilitza el conjunt de Cantor C i la seva
expressié com a producte infinit. Construirem

¢ :[0,1]—[0,1] x [0,1]

en diversos passos.

3Aquesta corba va ser descoberta el 1890 pel matematic, logic i filosof italia Giuseppe
Peano. Cantor havia demostrat que els punts de R"” es podien posar en correspondéncia
bijectiva amb els punts de R. Dit d’'una altra manera, hi ha tants punt en un interval
[0,1] com en un quadrat [0,1] x [0,1], la qual cosa ens diu que la idea de dimensi6
no té sentit a la teoria de conjunts. Té sentit a la topologia? Podria passar que dos
espais euclidians de dimensions diferents R" i R” fossin el mateix espai? Una resposta
afirmativa —el descobriment d’'un homeomorfisme R” = R”— destruiria completament
la idea geomeétrica de dimensid. Peano, amb la seva corba, va donar un primer pas en la
construccié d'aquest homeomorfisme: va trobar una aplicacié [0, 1] — [0, 1] x [0, 1] que és
continua i exhaustiva. Pero no és injectiva. De fet, en aquest mateix curs demostrarem
que no hi pot haver cap aplicacié continua i bijectiva [0,1] — [0,1] x [0,1]. Sobre el
problema general de si R"” = R"” diguem que la resposta és negativa, perd la demostracié
s'escapa del contingut d'aquest curs.
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St observem que cada punt de [0, 1] es pot escriure en base 2 com
una suma infinita x =) b; 27" amb b; = 0,1, tenim que l'aplicacié

g :[ 0.2} = [0.1]
i=1
donada per Y({a;}) = Y (a:/2) 27" es exhaustiva. A més, un raona-

ment similar al del teorema 5.3 ens diu que ¢ és continua.

Si X és un producte infinit numerable,* aleshores X = X x X. En
efecte, st X =[] X;, podem considerar l'aplicacid bijectiva X — X x X
donada per

({CI[}), {bl}) g {CI1, b1, ay, bz, .. }

i comprovar que és continua i oberta. En particular, tenim un home-

omorfisme - " "
p:[ {02} = [ 0.2} <[ ]{0.2}.
i=1 i=1 i=1

Reunint la informacié dels apartats anteriors, tenim una aplicacio
h:C —[0,1] x [0, 1] definida com aquesta composicié d'aplicacions

c, ﬁ{o,z} 2, ﬁ{o,z} x ﬁ{o,z} P10,1] x [0,1]

que és continua i exhaustiva.

Ara ja gairebé hem acabat la construcci6. Només cal estendre l'a-
plicacié h: C —[0,1] x [0, 1] a tot l'interval [0, 1]. Aixo és senzill i es
fa aix(. Volem definir h sobre tots els punts de [0, 1], sabent que ja
esta definida sobre els punts del conjunt de Cantor C.

Si [a, b] és algun dels intervals centrals que hem anat eliminant per
construir C de manera inductiva, tindrem que a,b € Ci (a,b)NC =
@. Aleshores, definim h sobre [a, b] com el segment de recta de
[0,1] x [0,1] que uneix h(a) i h(b). No és dificil veure que, amb
aquesta definicid, tenim una aplicacié continua definida sobre tot
[0, 1] que és exhaustiva sobre [0,1] x [0, 1]. Es la corba de Peano que
buscavem.

*Encara que no sigui numerable, aixo també és cert.
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5.4 Exercicis addicionals

5.1 Sigui D? el disc unitat de R? i sigui f: S — S" un homeomorfisme. Demostreu que
existeix una extensié de f al disc, 7 : D? — D?, que és un homeomorfisme.

5.2 Demostreu que l'anell tancat {x € R2:1<x< 2} és homeomorf al cilindre

{(x1, x2, x3) ER32X12+X22:1, 0<x3< 1}

5.3 Diem que un subespai X C Y és un retracte de Y si existeix una aplicacié continua
r:Y — X tal que rot=1id, on t denota la inclusié de X en Y. Demostreu que:

1. [0, 1] és un retracte de R.
2. D" és un retracte de R".

3. $"71 és un retracte de R” — {0}.

5.4 Siguin A C X i B C Y subespais d'espais topologics X i Y.

1. Quina relacié hi ha entre Cl{A x B) i Cl(A) x Cl(B)?

2. | entre Int(A x B) i Int(A) x Int(B)?

5.5 Demostreu que []; A; és dens a []; Xi # @ si i només si ho és cada A; C X..

5.6 Siguin X, Y i Z espais topoldgics no buits tals que X x Y = X x Z. Implica aix6 que
YEZ7?

5.7 Trobeu condicions necessaries i suficients perqué un producte d'espais discrets sigui
discret.

5.8 Demostreu la “formula de Leibnitz": d(A x B) = (0A x Cl(B)) U (Cl(A) x 9B).
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Capitol 6

La topologia quocient

i tenim una aplicacié injectiva A — X i X és un espal to-
pologic, al capitol 4 vam estudiar la topologia induida sobre
A i vam veure que era la topologia natural que haviem de
posar a A. En aquest capltol estudiarem la situacié simetrica
quan tenim una aplicacié exhaustiva p : X — Y d'un espai topologic X en
un conjunt Y i trobarem una topologia apropiada per a Y, a partir de la
topologia de X i de l'aplicacié p.'

6.1 Definicio de la topologia quocient

Suposem que X és un espai topologic, Y és un conjuntip: X — Y és una
aplicacidé exhaustiva.

Definicio 6.1. La topologia quocient a Y és la topologia que té per oberts
els subconjunts U C Y que tenen la propietat que p~'(U) és un obert de
X. Si considerem Y com espai topologic amb aquesta topologia, direm
que “Y té la topologia quocient per p”.

La comprovacid que es tracta efectivament d'una topologia és molt sen-

"Ara si que ja entrem plenament en la topologia, perqué el que estudiarem en aquest
capitol no té paral-lelisme en la teoria d’'espais métrics. De fet, la topologia quocient és
una de les eines que justifiquen que abandonem els espais métrics i ens situem en el
marc més general dels espais topologics.

57
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zilla.? Fem un llistat de les seves propietats més basiques:?

1. p: X —= Y és continua.

2. La topologia quocient és la topologia més fina sobre Y que fa que
p : X — Y sigui continua.

3. T C Y és tancat si i només si p~'(T) és tancat de X.

4. Sigui f : Y — Z una aplicacié. Es compleix que f és continua si i
només si fp és continua.

Aquesta propietat és essencial i s'utilitza sovint. La demostracid és
senzilla.

Hi ha un cas particular? d'aixd que és especialment important. Supo-
sem que tenim un espai topologic X i una relacié d'equivaléncia ~ sobre
X. Considerem el conjunt quocient i l'aplicacié de projeccié 7 : X — X/~.
Aleshores, podem prendre a X/~ la topologia quocient per .

Un altre exemple important de topologia quocient és el que es coneix
com col-lapsar un subespai a un punt. Sigui X un espai topologic i sigui
A C X un subespai diferent del buit. Definim un conjunt

X/A = (X — A) U {*}

2No cal que p sigui exhaustiva, perd només ens interessara aquest cas i, per tant,
sempre que parlem de topologia quocient entendrem que va donada per una aplicacio
exhaustiva.

3Hi ha dues propietats importants de la topologia quocient que no sén certes, en
el cas general. Es tracta de la compatibilitat entre la topologia quocient, la topologia
producte i la topologia induida. Pel que fa al producte, podem trobar aplicacions ex-
haustives f : X — Y i ' : X’ = Y’ tals que Y i Y’ tenen la topologia quocient per
f i f, respectivament, i en canvi ¥ x Y’ no té la topologia quocient per f x f'. Com a
anécdota curiosa, podem fer esment del fet que a la primera edicié del llibre de topologia
de Bourbaki hi havia un teorema que afirmava el contrari. Sobre aquest assumpte, vegeu
R. Brown, “Topology and Groupoids” p. 111. Pel que fa a la compatibilitat entre topologia
quocient i subespais, és facil trobar exemples d'aplicacions f : X — Y i subespais AC Y
de manera que Y tingui la topologia quocient per f i en canvi A no tingui la topologia
quocient per f : f~'(A) — A. Als exercicis addicionals d’aquest capitol hi ha un exemple
d’aquests.

*De fet, no és un cas particular perqué tota aplicacié exhaustiva es equivalent al pas
al quocient per una relacié d'equivaléncia. En efecte, suposem que f : X — Y sigui una
aplicacié exhaustiva. Definim a X la relacid d'equivaléncia a ~ b si i només si f(a) = f(b).
Sigui 7t : X — X/~ el pas al quocient. Existeix una tnica aplicacio bijectiva h: X/~ — Y
tal que f = mh.

®Ja hem dit a 1.2 que podem “fer quocient” per qualsevol relacié, encara que no siqui
d’equivaléncia.
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on {*} és un punt. Tenim una aplicacié exhaustiva p : X — X/A que envia
tots els punts de A al punt x i és la identitat sobre els punts de X — A.
Posem a X/A la topologia quocient per p. Obtenim un espai topologic X/A
que direm que hem obtingut a partir de X col-lapsant A a un punt. Si ens
hi fixem, aixo és exactament el que hem fet. Hem deixat els punts de fora
de A “tal com estaven” i hem substituit tots els punts de A per un Unic
punt * .0

6.2 Exemples d'espais amb la topologia quocient

Proposicié 6.2. L'espai quocient [0,1]/{0 ~ 1} és homeomorf a la circum-
feréncia S'.

Demostracié. Estem prenent l'interval unitat de R, amb la topologia or-
dinaria, i fem quocient per la relacié 0 ~ 1 que identifica els dos extrems
de l'interval. Intuitivament, el que fem és unir els dos extrems d’un interval
i sembla logic que el resultat sigui una circumferéncia.” Per demostrar-ho
hem de construir un homeomorfisme f:[0,1]/{0 ~ 1} — S".

Considerem l'aplicacié continua ben coneguda h : [0,1] — S' donada
per h(t) = exp(2mit). Aquesta aplicacid té la propietat que h(0) = h(1)
i, per tant, factoritza a través d'una aplicacié f : [0,1]/{0 ~ 1} — S
que, per una propietat fonamental de la topologia quocient que hem vist
abans, també és continua. El calcul diferencial ens diu que l'aplicacié f és
bijectiva. Que f és un homeomorfisme resulta d'aplicar el teorema 3.3. [

La llibertat que tenim per identificar punts d'un espai topologic i obte-
nir un altre espai topologic és total. D'aquesta manera podem tenir noves
maneres de construir espais coneguts —com ara mateix, que hem cons-
truit la circumferencia identificant els dos extrems d'un segment— i també
podem construir nous espais abstractes.

Per exemple, prenem un quadrat /? :=[0, 1] x [0, 1] i identifiquem punts
de la vora, segons ens vingui de gust. Obtindrem nous espais que poden

®De tota manera, les coses poden ser molt més complicades del que aquesta idea
intuitiva suggereix, perque, encara que la topologia de X sigui “senzilla”, la topologia de
X/A pot ser molt salvatge. Com a exercici, podem pensar en l'espai topologic [0, 1]/(0, 1).

’Aqui tenim un exemple del que déiem que no ens hem d'obsessionar amb les relacions
d’'equivaléncia. La relacié 0 ~ 1 no és d'equivaléncia. Fer quocient per aquesta relacid
significa fer quocient per la relacié d'equivaléncia més petita que la conté. Aquesta
relacid és la que es defineix aix(: x =~ y si i nomessi x =y o x,y € {0,1}.



60

CAPITOL 6. LA TOPOLOGIA QUOCIENT

Figura 6.2: El tor com a quocient del quadrat /%,

ser interessants i el que potser és més important és que els obtenim amb
molt poc esforg.

(0,t) ~ (1, t) per tot t € [0,1]. Un raonament com el de la proposicid
anterior ens demostra que /*/~ = S' x [0,1]. Es un cilindre (figura
6.1).

0,t) ~ (1,t) i (5,0) ~ (s,1) per tot s, t € [0,1] Aqui estem identi-
ficant dos costats oposats del quadrat /> —obtenim un cilindre— i
a continuacid identifiquem els altres dos costats. Intuitivament, ob-

tenim un tor i el metode anterior ens demostraria que efectivament
>/~ = T2 (figura 6.2).

(0,t) ~ (1,1—1t) per tot t € [0, 1]. Aqui estem identificant dos costats
oposats d'un quadrat, pero identifiquem el punt d'ordenada t amb el
punt d'ordenada 1 — t. El resultat és una banda de Moebius (figura

6.3).

Considerem ara el disc D? := {x € R* : ||x|| < 1} i fem quocient
per la relacié (x, y) ~ (x, —y) per tot (x,y) € S'. El conjunt quocient



6.2. EXEMPLES D’ESPAIS AMB LA TOPOLOGIA QUOCIENT 61

—

Figura 6.3: La banda de Moebius com a quocient del quadrat /2.

N———

a

Figura 6.4: L'esfera com a quocient del disc D?.

és lesfera S? (figura 6.4).
g

e Tornem a considerar el quadrat /> i fem les identificacions (0, t) ~
(1,t) i (s,0) ~ (1 —s,1) per tot s,t € [0,1] (figura 6.5). St intentem
construir fisicament l'espai quocient com hem fet abans, no ho acon-
seqguirem perqué resulta que hi ha un teorema® que diu que lespai
quocient no és homeomorf a cap subespai de R3. D'aquest espai
quocient s'en diu 'ampolla de Klein® i s'acostuma a representar pel
dibuix de la figura 6.6, que ens mostra un cert objecte de R? que,
segons hem dit, no pot ser homeomorf a 'ampolla de Klein, pero st
que, en certa manera, la representa.’”

8En aquest curs no tenim prou eines topologiques per demostrar aquest teorema.

9Hi ha una teoria —descrita per Francis Bonahon— que afirma que el fet d'anomenar
“ampolla” a aquest espai procedeix d'una mala traduccid de l'alemany o d'un simple joc
de paraules entre la superficie (Fléche) de Klein i 'ampolla (Flasche) de Klein.

OPer entendre el significat d’aquest dibuix, imaginem que un dibuix com ©Q vulgui
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oA /

Figura 6.5: L'ampolla de Klein com a quocient del quadrat /2.

Figura 6.6: La representacié classica de 'ampolla de Klein a R3. (Dibuix
de Tttrung, Wikimedia Commons.)
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e Tornem a considerar el disc D? i fem ara quocient per les identifi-
cacions (x,y) ~ (—x,—y) per tot (x,y) € S'. Es a dir, cada punt
de la vora del disc esta identificat amb el seu diametralment oposat.
Novament, si intentem fer aquestes identificacions amb un objecte
fisic de R3 no ho aconsequirem i el motiu és que hi ha un teorema®
que diu que aquest espai topologic quocient no és homeomorf a cap
subespai de R3. Pero és un espai topoldgic ben definit i, de fet, és un
objecte matematic molt important que es coneix com el pla projectiu
RP?. L'estudiarem a l'apartat segiient.

6.3 L'espai projectiu

La perspectiva —que ja existia al segle v aC i es va comencar a estudiar
matematicament al segle xiv— va acostumar els geometres a la idea de
punt ideal o punt a linfinit en el qual conflueixen les rectes paral-leles
que van en una certa direccid. Aquests punts no existeixen a la geometria
d’Euclides —que avui dirlem que és la geometria de l'espai aft— pero la
visio d'un observador els introdueix automaticament. A partir del segle
xvll, els geometres —comencant amb Girard Desargues— s’adonen gra-
dualment que si afegim a lUespai aquests punts de l'infinit on es tallen les
rectes paral-leles, la geometria esdevé més senzilla. Molts teoremes ad-
meten formulacions més generals, algunes demostracions poden ser més
simples i —el que és més important— apareixen nous teoremes i fins i
tot nous principis —com el principi de dualitat— que sén propis d'aques-
ta nova manera d'entendre la geometria. A partir del segle xix s'arriba
al convenciment que l'ambit natural de la geometria és l'espai projectiu
entes com la completacié de l'espai afl amb l'addicid dels punts de l'infinit.

representar una circumferéncia (). ©Q no és una circumferéncia perqué el punt central
on es tallen els dos “bracos” és un Unic punt, mentre que a la circumferéncia haurien
de ser dos punts diferents. Podem imaginar-nos que OQ realment “representa” una
circumferéncia si pensem que el punt central sén realment dos punts, és a dir, si imaginem
que un ésser unidimensional que caminés cap el punt central per un dels bracos mati no
xocaria amb un altre ésser que caminés també cap el punt central anant per laltre brac.
Si apliquem aquest mateix métode al dibuix classic de 'ampolla de Klein, podem tenir una
bona idea mental d'aquest espai. Observem que, en el dibuix, la superficie es talla a ella
mateixa en una circumferéncia. Hem de pensar, doncs, que els punts de la circumferencia
son “dobles” i que la superficie, realment, no es talla a ella mateixa. En qualsevol cas,
la definicié de l'ampolla de Klein com l'espai topologic que s'obté com a quocient de /2
per unes certes identificacions, és totalment precisa i formal i no requereix cap mena
d’intuicié geomeétrica.
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La manera d'afegir d'un manera absolutament rigorosa aquests punts
de l'infinit —que no soén pas punts especials sind punts com qualsevol
altre punt de la geometria— és relativament senzilla si utilitzem la idea
basica de la perspectiva. Per simplificar, imaginem que volem fer geome-
tria plana. Considerem, a l'espai R?, el pla z = —1 i pensem en aquest
pla P com el pla de la geometria plana d'Euclides. P és un espai afl de
dimensié dos on hi ha rectes paral-leles i rectes que no sén paral-leles.
Imaginem ara un observador O situat al punt (0,0,0) € R3 i imaginem que
aquest observador mira la geometria afi del pla P. Cada punt del pla P
es correspon univocament amb una recta no horitzontal que passa per O.
D’altra banda, si considerem dues rectes paral-leles del pla P, l'observa-
dor O veura que aquestes dues rectes es tallen en un punt que ell veu
perfectament clar quan dirigeix la mirada en una direccié horitzontal.

Es a dir, hi ha una correspondencia bijectiva entre els punts del pla
afl P i les rectes de R3 que passen per l'origen i no sén horitzontals. Les
rectes horitzontals, en canvi, es corresponen a punts a l'infinit del pla
af(, punts on es tallen les rectes paral-leles. Aixd ens porta a aquesta
definicio:

Definicié 6.3. L'espai projectiu de dimensio n és el conjunt de rectes de
R™" que passen per l'origen de coordenades. El denotarem per RP".

Pero estem fent un curs de topologia i no podem estudiar ni que sigui
de manera superficial la geometria projectiva, que és la geometria de
l'espai projectiu.’’

En aquest curs, l'espai projectiu ens interessa com a exemple d'espai
topologic. Quina topologia hem de posar a RP"? Si pensem RP"” com el
conjunt de rectes per lorigen de R""', no es veu cap topologia evident i
natural. Fem aquesta observacio: Per determinar una recta per lorigen
de R"*" n’hi ha prou amb donar un vector unitari de Rt Ara bé, si
v € R™ és un vector unitari, v i —v determinen la mateixa recta. Per
tant, els punts de l'espai projectiu RP" es poden posar en correspondéncia
bijectiva amb els vectors unitaris de R"*', sempre que identifiquem cada
vector unitari v amb el seu oposat —v. Com que els vectors unitaris de
R sén els punts de l'esfera unitat S”, aixo ens duu a una nova definicié
de l'espal projectiu:

RP" = S"[{—v ~ v}.

"Es molt probable —i molt lamentable— que l'estudiant que arriba a aquest curs de
topologia no hagi estudiat mai la geometria projectiva. L'inica cosa que puc dir és que,
en la meva opinid, aquesta mancanca en els plans d'estudi actuals és un greu error.
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Aquesta nova definicié té l'avantatge que dota RP” d'una topologia na-
tural. Prenem la topologia ordinaria a lUesfera S” i prenem la topologia
quocient per les identificacions —v ~ v. Tenim que RP" és un espai
topologic.

Estudiem RP' —la recta projectiva— i RP? —el pla projectiu.

RP' = S'/{—v ~ v}.

Pensem S' com els nombres complexos de norma 1 i considerem l'aplicacié
f:S"— S'" donada per f(z) = Z%. Es una aplicacié continua que factoritza
per

f:RP' > S,
Aquesta aplicacio f és continua i bijectiva. Pel teorema 3.3, és un homeo-
morfisme. Per tant, la recta projectiva és el mateix que la circumferéncia.'?

Proposicié 6.4. Hi ha un homeomorfisme entre el pla projectiu RP? i l'espai
quocient D?| ~ on D? és el disc unitat de R? i ~ és la relacié

(x,y) ~ (=x, —y) per tot (x,y) € S" c D°.

Demostracid. L'aplicacié

f:D?>— S?
(. y) = (x gy, V1= x> —y?)

(que consisteix en posar el disc D? com 'hemisferi superior de l'esfera S?)
factoritza aixt:

DZ _f> 52

|
D~ —Ls S2{—v ~ v}

L'aplicacid f és continua i bijectiva i, novament, el teoreme 3.3 ens demos-
tra que és un homeomorfisme, si abans demostrem que el pla projectiu
compleix la propietat de Hausdorff, cosa que és senzilla de fer. 0

Ja hem dit que aquest espai no existeix com a subespai de R pero
ens podem preguntar si existeix una representacié de RP? a R3 similar
a la que tenlem per a l'ampolla de Klein, és a dir, una representacié de
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Figura 6.7: Una representacié del pla projectiu a R3. Si al disc de la figura
A identifiquem els dos costats indicats amb la lletra a, sequint el sentit de
les fletxes, obtenim un pla projectiu. Es clar que aixo és el mateix que B i
que C. Els dibuixos D i E ens mostren que és possible identificar els dos
segments indicats x, obtenint la figura F. Ara caldria identificar els dos
segments marcats y, perd aixd no és possible fer-ho a R® perqué caldria
que la figura es travessés a ella mateixa. L'objecte de G no és, doncs,
el pla projectiu RP?, perd n'és una “representacié” en la qual hauriem
d'entendre que cada punt del “séc” central representa dos punts de RP2.
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Figura 6.8: La superficie de Boy, des de dos punts de vista diferents.

RP3 com a una superficie de R® amb autointerseccions. La manera més
senzilla d'aconsequir aixo és fer el procés que esta indicat a la figura 6.7

El resultat no és gaire bonic —no es pot comparar amb la representacié
de l'ampolla de Klein. Una representacié més bonica és la que es coneix
com a superficie de Steiner.”> Hi ha un tercer exemple molt més bonic
pero també més dificil de visualitzar que es coneix com a a superficie
de Boy."> Respecte als dos exemples anteriors, la superficie de Boy té la
particularitat que no té cap “punt singular”.'* De fet, no és dificil construir
una superficie de Boy amb cartro, tal com a la figura 6.8.

Per acabar aquesta seccid, relacionarem el pla projectiu amb la banda
de Moebius. Demostrarem que si fem un forat a un pla projectiu obtenim
una banda de Moebius o, equivalentment, que si adjuntem a una banda de
Moebius un disc al llarg de tota la vora de la banda de Moebius, obtenim
un pla projectiu. Diguem aixd mateix amb més precisié. Una banda de
Moebius és un quocient del quadrat després d'identificar dos dels quatre
costats:

M = ([0,1] x [0,1])) /{(0, t) ~ (1,1 — t) per tot t € [0, 1]}.

Els altres dos costats queden “lliures” i formen el que anomenarem la “vo-
ra” de M que denotarem dM."> Observem que aquesta vora és homeomorfa

2Intuitivament, la recta projectiva ha de ser la recta afi R a la que hem afegit un tnic
punt de linfinit. Es d’esperar, doncs, que el resultat sigui la circumferéncia.

3A Internet hi ha una gran quantitat d’imatges i videos d’'aquesta superficie.

"Per entendre qué volem dir quan parlem de “punt singular” cal tenir alguns conei-
xements de geometria diferencial que no podem discutir aqut.

>No hem de confondre aixd6 amb el concepte topoldgic de “frontera” que hem definit
a7
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a una circumferéncia
oM = ([0,1] x {0} U0, 1] x {1}) /{(0,0) ~ (1,1), (0,1) ~ (1,0)}
=s"
Ara ja podem enunciar amb precisid el que estem dient.

Proposicié 6.5. (M U D?)/~ = RP?, on ~ és la identificacié natural entre
StcD?iS"=oMm.

Demostracié. L’homeomorfisme entre els dos espais es pot visualitzar amb
la série de dibuixos de la figura 6.9.7° [

6.4 Accidé d’'un grup sobre un espai

El concepte de grup

El concepte de grup és potser el més important i fonamental de les
matematiques —i de la ciéncia. L'estudiant ja coneix qué és un grup.
Recordem-ho.

Definicié 6.6. Un grup és un conjunt'” G amb una operacié'® x x y que

compleix aquestes tres propietats:

1. Per tot x,y,z € G, es compleix que (x * y) * z = x * (y * z) (propietat
associativa).

2. Existeix un element e € G tal que xxe = exx = x per tot x € G
(existencia d'element neutre).

1®Alguns estudiants, acostumats a demostracions algebraiques o analitiques, poden
pensar que aquests dibuixos no donen cap auténtica demostracié formal de la proposicié.
Aquests escrlipols no estan justificats i en els capitols posteriors utilitzarem més d'una
vegada dibuixos com aquests per demostrar alguns teoremes. Es tracta de demostrar
que hi ha un homeomorfisme entre dos espais. Cada pas de la successié de dibuixos és
la representacid grafica d'un determinat homeomorfisme que, si calgués, podria donar-se
explicitament per una funcié continua. L’homeomorfisme que busquem és la composicio
de tots aquests homeomorfismes successius.

7Com tantes altres vegades, si volguéssim ser totalment precisos, hauriem de dir que
“un grup és una parella (G, )"

8Una operacié a G no és altra cosa que una aplicacié G x G — G.
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Figura 6.9: Si fem un forat a un pla projectiu obtenim una banda de
Moebius.

3. Per tot x € G existeix y € G tal que x x y = y x x = e (existencia
d’inversos).

Si G compleix també la propietat commutativa (x x y = y % x per tot
x,y € G) es diu que G és un grup abelia.

A la practica, gairebé mai no s'utilitza el simbol * per denotar l'operacié
d’'un grup, siné que s'utilitza una d'aquestes dues notacions:

e Notacio multiplicativa. L'operacié de x i y es denota xy, l'element

neutre es denota 1 i l'invers de x es denota x .
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e Notacio additiva. Loperaciéo de x i y es denota x + y, lelement
neutre es denota 0 i l'invers de x es denota —x. Aquesta és la
notacié preferida en el cas de grups abelians.

Aquesta definicid de grup té l'inconvenient que no déna cap idea so-
bre per qué els grups son objectes importants ni per que s'han escollit
precisament aquestes tres propietats i no d'altres. Per entendre el pa-
per absolutament central de l'estructura de grup a la ciéncia en general,
necessitem aquesta segona definicié de grup, més conceptual.

Meta-definicié de grup. Un grup és el conjunt de simetries
d’un objecte X.

N’hi hem dit “meta-definicid” perqué hi apareixen dues paraules —ob-
jecte i simetria— a les que no hem donat un significat precis. La paraula
objecte pot fer referéncia a moltes coses, dintre i fora de la matematica.
Per exemple, X pot ser un conjunt, un espai vectorial, un espai topologic,
l'esfera, l'icosaedre, un polinomi, el cub de Rubik, un graf, etc, etc. En
cada cas, aquest objecte X té un concepte propi de simetria. Per exemple,
les simetries d'un conjunt X serien les aplicacions bijectives de X en X; les
simetries d'un espai vectorial serien els seus automorfismes; les simetries
d’'un espai topologic serien els seus auto-homeomorfismes; les simetries
de l'icosaedre sén ..les simetries de l'icosaedre, és a dir, les isometries
de lUespai que deixen fix 'icosaedre; les simetries d'un polinomi serien les
permutacions de les seves arrels que son al “grup de Galois” del polinomi;
les simetries del cub de Rubik serien les configuracions del cub que es
poden assolir fent moviments acceptables, etc.

Vist aix(, ens adonem que “ht ha grups arreu” i que realment el concepte
de grup és un dels més fonamentals que hi pugui haver."

Recordem alguns exemples de grups que lestudiant ja coneix:

e ELl grup ciclic infinit Z.

"Caldria veure que aquesta meta-defincié de grup és “equivalent” a la definicié for-
mal. Depén de qué entenguem per “equivalent”. ELl que sl que és cert és que les sime-
tries d'un objecte es poden “composar” entre elles i formen, doncs, un grup abstracte.
Reciprocament, si G és un grup, hi ha un objecte X del qual G siguin exactament les
simetries? La resposta és si{ i una demostracid la va donar Johannes de Groot el 1959.
Recordem que un graf és un conjunt de vértex it un conjunt d'arestes entre parelles d'a-
quests vertex. A partir d'un grup abstracte arbitrari G, de Groot va construir un graf X(G)
—la idea d'aquest graf procedeix d’'uns treballs d’Arthur Cayley del 1878— tal que els
seus automorfismes —les seves “simetries”— son exactament els elements del grup G.
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e Els grups ciclics finits Z/nZ.
e El grup simetric ¥, és el grup de les aplicacions bijectives d'un con-
junt de n elements en ell mateix (el grup de les permutacions de n

elements). Aquest grup conté el grup alternat A, que esta format
per les permutacions “parelles”. ¥, té n! elements i A, en té n!/2.

e Elgrup diédric D5, és el grup de les simetries d'un poligon reqular de
n costats. Esta format, doncs, per les rotacions d'angle un multiple
de 27t/n i les reflexions respecte dels n eixos de simetria. D,, té 2n
elements.

e El grup de simetria de l'icosaedre és un grup finit amb 120 elements.

e La multiplicacié dels nombres complexos ens ddna una multiplicacid
a S' que compleix els axiomes de grup abelia.

e Els nombres racionals Q, reals R o complexos C amb la suma.
e Q— {0}, R— {0}, C— {0} amb el producte.

e El producte cartesia de grups.

Accioé d’'un grup sobre un espai

Suposem que X és un espai topologic i G és un grup (escrit multiplica-
tivament). Direm que G actua sobre X si els elements de G ens donen
transformacions de X, de manera coherent amb la multiplicacié de G i la
topologia de X. La definicié formal és aquesta.

Definicié 6.7. Una accié d’un grup G sobre un espai topologic X consisteix
en tenir, per cada g € G, una aplicacio continua

Oy: X — X
de manera que

(a) 6; és la identitat [ : X — X.

(b) 6,6, = 64y per tot g, h € G.
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Si tenim una acci6é de G sobre X, definim gx := 6,(x) per tot g € G,
x € X. De vegades, per fer més clara la notacid, escriurem g - x en lloc de
gx.

Observem que, en una acci6 de G sobre X, les aplicacions 6, son
necessariament homeomorfismes perque 6,1 és l'aplicacié inversa de 6.

Direm que x és un punt fix de l'accio si gx = x per tot g € G.

Quan tenim una acci6 de G sobre X, és important el concepte de regid
fonamental. Una regié fonamental —també, domini fonamental— és un
subespai D C X tal que, per tot x € X existeix g € G i xp € D Unic tal
que x = gxp. Sovint ens interessa trobar una regié fonamental D que sigui
topologicament “senzilla” i que la seva clausura també ho sigui.

Alguns exemples

e Hi ha una acci6 de Z sobre R donada per k - x := k + x. Un domint
fonamental és D =[0,1).

e Hi ha una accidé de Z" sobre R” donada per
(k). o kn) - (1, xn) = (ke + xq, ...k + Xn)-
Un domini fonamental és el cub D =10, 1)".

e Hi ha una accio de Z/2Z sobre lesfera S" definida per laplicacid
antipodal A: S" —» 5", A(x) = —x. Es a dir, si, en notacié multipli-
cativa, Z/2Z = {1, €}, aleshores € - x := —x. L'hemisferi nord és la
clausura d'un domini fonamental.

e Podem considerar aquestes aplicacions afins del pla R?:
Sx,y)=(x,y+1), Txy=(Kx+1-y)

i podem considerar el grup G = (S, T) generat per aquestes dues
aplicacions. G actua sobre R? i el quadrat [0,1]x[0, 1] és la clausura
d’'un domini fonamental.

Quocient d’'un espai per l'acciéo d'un grup

Si G és un grup que actua sobre un espai topologic X, podem considerar
aquesta relacid d'equivalencia sobre X:

X ~ y st i només si existeix g € G tal que gx = y.
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Aixd ens permet definir l'espai quocient X/~ que denotarem X/G.?° Tin-
drem també una aplicacidé de pas al quocient

T: X — X/G
que té una propietat especial.

Proposicié 6.8. La projeccié w és oberta.

Demostracié. Sigui U un obert de X. Volem demostrar que w(U) és un
obert de X/G. Com que X/G té la topologia quocient per l'aplicacio s,
caldra comprovar que 777 '(r(U)) és un obert de X. Observem aixo:

a ' (x(U) ={x € X : n(x) € n(U)}
={xe X : x=gy peralguns y € U, g € G}

=Jou=U o)

geG geC

Com que cada 6, és un homeomorfisme, tenim que els subespais 6,(U)
sén oberts i, per tant, 771 (st(U)) és un obert.! O

Els quocients d'espais per accions de grups ens donen exemples d'es-
pais topologics interessants. Mirem si podem identificar els espais quoci-
ents en els exemples anteriors:

e El quocient R/Z amb l'accié k- x := k + x és homeomorf a la circum-
feréncia S'. Aixo es pot demostrar de manera totalment idéntica a
la demostracio de la proposicid 6.2.

e De manera similar, el quocient R"/Z" amb l'accié producte és el tor
de dimensié n, 7" = S' x --. x S".

e El quocient de lesfera S" per l'accio antipodal és, evidentment, l'es-
pai projectiu RP".

200bservem que aquesta notacié és enganyosa perqué l'espai X/G no depén només
de l'espai X i del grup G, sino que depén de quina sigui l'accid de G sobre X. Es clar que
un mateix grup G podria actuar de maneres diferents sobre un espai X —com veurem
ara mateix— i els espais quocients podrien ser diferents.

210bservem que, si el grup G és finit, aquesta mateixa demostracié, canviant la paraula
“obert” per la paraula “tancat”, ens demostra que la projeccid 71 es tancada.
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e El quocient R?/(S, T) amb l'accié
Sig)=ky+1), Txy)=Kx+1-y)
és l'ampolla de Klein K perque

RZ/(S, T) = RZ/{(X, y)~n+x,m+(=1"y) : n,m ez}
=10,1]x[0,1]/{(0,¢t) ~ (1,1 — 1), (s,0) ~ (s,1)}
=K.

e També és possible obtenir l'ampolla de Klein com a quocient d'un
tor per l'acciéo del grup de dos elements. En efecte, considerem T
com el quocient del quadrat unitat per les identificacions habituals
(x,0) ~ (x,1) 1 (0,y) ~ (1, y). Considerem aquesta aplicacié continua
del tor en ell mateix:

e:[x, yl—[—x,y+1/2].

Es clar que € és la identitat i, per tant, € déna una accié del grup
G := 727 sobre T. Si considerem el quocient T/G, veiem facilment
que el podem identificar al quocient

[0,1] % [0,1/2] ~
{(x,0)~(1=x,1/2), (0,y) ~(1,y): x,y €[0,1]}

Observem que hem obtingut el tor 72 i l'ampolla de Klein K com a quoci-
ents del pla R? per l'accié d'un grup i tambhé hem obtingut el pla projectiu
RP? com a quocient de l'esfera S? per l'accié un altre grup.?>?

6.5 Exercicis addicionals

6.1 Sigui X un espai topologic i sigui A C X un subconjunt dens. Demostreu que tots
els oberts no buits de X/A tenen un punt comu.

22Podem obtenir el pla projectiu o l'esfera com a quocient del pla R? per l'accié d'un
grup? Si l'accid és prou “bona” (com les dels exemples anteriors) la resposta és no pero
en aquest curs no tindrem instruments per demostrar-ho.

2A la vista del que hem dit a la nota 3, els arguments d’aquests exemples, encara
que semblin plausibles, no estan totalment justificats. De tota manera, es poden donar
demostracions valides de tots aquests exemples utilitzant el teorema 3.3.
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6.2 Sigui f : X — Y una aplicacié continua. Suposem que f té una seccid, és a dir,
existeix una aplicacid continua s : Y — X tal que fs és la identitat. Demostreu que Y té
la topologia quocient per f.

6.3 Considereu els espais quocient X = R/(0,1) i Y = R/[0,1]. Demostreu que Y = R.
Demostreu que X i Y no sén homeomorfs.

6.4 Demostreu que si A és obert o tancat a X, aleshores X — A = X/A — {x}. Comproveu
que aix0 no és necessariament cert per a un conjunt A qualsevol.

6.5 Sigui A= {(x,y) €ER?>: x >0 0 y = 0} i sigui g: A — R la projeccié sobre la primera
coordenada. Demostreu que R té la topologia quocient per g perd g no és oberta ni
tancada.

6.6 Sigui X un espai i ~ una relacié d’equivaléncia a X. Per cada A C X, definim
A= {x € X : existeix a € A tal que x ~ a}

Demostreu que soén equivalents: (a) La projeccié p : X — X/ ~ és oberta; (b) A obert
implica A obert.

6.7 El grup additiu de Q opera sobre la recta real com g - x = g + x. Demostreu que la
projeccié m: R — R/Q no és tancada.

6.8 Sigui G un grup que actua sobre els espais X i Y isigut f : X — Y una aplicacié
conttnua. Direm que f és equivariant si es compleix que f(gx) = gf(x) per tot x € X i tot
g € G. Demostreu que si f és equivariant i és un homeomorfisme, aleshores f indueix
un homeomorfisme X/G = Y/G.

6.9 Considerem un quadrat Q = [0,1] x [0,1] € R? amb la topologia ordinaria. Sigui
p:Q — T la projeccid canodnica sobre el tor 7. Demostreu que p no és oberta.

6.10 Considerem l'accié del grup G := Z/2Z sobre lesfera S? donada per (x,y,z)
(x,y, —z). Demostreu que l'espai quocient és homeomorf al disc D?.
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Capitol 7

Espais compactes

n l'estudi dels espais meétrics o en l'estudi de la topologia de
R", és gairebé sequr que l'estudiant ja ha vist el concepte
d’'espai compacte. En aquest capitol estudiarem el concepte
de compacitat en espais topologics generals.

7.1 Recobriments

La compacitat és una certa propietat de finitud extraordinariament impor-
tant que poden tenir els espais topologics. Té a veure amb la quantitat
d'oberts necessaria per recobrir un espai. Comencem parlant de recobri-
ments d'un espai.

Definicio 7.1. e Un recobriment d'un espai X és una familia {U;}c
de subespais de X tals que X = {J,.,U.. Si | és finit, direm que
el recobriment és finit. Si | és infinit, direm que el recobriment és
infinit.

e Si els subespais U, i € | sén oberts (a X, sentén), direm que X =
Uie, Ui és un recobriment obert de X.

e Si X = Uiel U; és un recobriment de X, un subrecobriment és un

recobriment X = |J,c, U; format per una subfamilia de la familia
inicial {U;};e;, J C 1.

Posem alguns exemples.

77
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e X =X1iX=XUXUXUX son dos recobriments oberts de X amb

un obert i amb quatre oberts, respectivament. X = XU X U--- és un
recobriment obert infinit de X.

R = (=00, 1) U (0,00) és un recobriment obert de la recta real R.
Aquest recobriment obert no té cap subrecobriment propi (és a dir,
diferent d'ell mateix).

El recobriment

R =

s

Il
N

(=i, 0)

L
és un recobriment obert infinit de la recta real R. Aquest recobriment
té molts subrecobriments. Per exemple,

R = G (—2i, 2i)
i=1

és un subrecobriment del recobriment anterior, també amb infinits
oberts. Observem, en canvi, que aquest recobriment obert no té cap
subrecobriment que sigui finit.

El recobriment "
[0,1]=(1/3,1Ju [0, 1/i)
i=2
és un recobriment obert infinit de linterval [0, 1]. Aquest recobriment
st que té subrecobriments finits. Per exemple:

R = (1/3,1]U[0,1/2).

En canvi, el recobriment obert
(0.1 ={J /i1
i=2

no admet cap subrecobriment finit.

El recobriment obert de la recta R donat per
(o]
R= ] (i.i+2)
i=—00
no admet cap subrecobriment propi. En efecte, si suprimim lobert
(i, i + 2) ja no tenim un recobriment de R perque lobert (i, i+ 2) és
l'dnic obert del recobriment que conté el punt i + 1.
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e El recobriment

R=J 4

xeR

és un recobriment tancat de R que no admet cap subrecobriment
propi. Aquest exemple il-lustra el fet que els recobriments tancats
no ens interessen gaire.

Es a dir, tenir recobriments oberts finits o infinits no té cap merit:
tots els espais en tenen. El que ja és més problematic, com hem vist
als exemples anteriors, és que un cert recobriment tingui subrecobriments
propis o no en tingui —i que en tingui de finits o no en tingui de finits.

7.2 El concepte de compacitat

A l'apartat anterior hem posat exemples de recobriments oberts que tenen
subrecobriments finits i exemples de recobriments oberts que no tenen
subrecobriments finits. Aixo ens permet fer aquesta definicid:

Definicio 7.2. Un espai topologic X direm que és compacte si tot recobri-
ment obert de X té algun subrecobriment finit.

Comentaris i exemples

e La propietat de ser compacte o no ser-ho és una propietat intrinseca
de lespai topologic X i no depen de que X el considerem com a
subespai de Y o de Z.

e La propietat de ser compacte és una propietat topologica i, per aixo
mateix, si X és compacte i X = Y, tambhé Y sera compacte.

e Per demostrar que un espai no és compacte, n'hi ha prou amb tro-
bar un recobriment obert que no tingui cap subrecobriment finit. En
canvi, demostrar que un espai si que és compacte requereix demos-
trar que tot recobriment obert té algun subrecobriment finit. Aixo,
normalment, és més dificil.

"Comparem, per exemple, amb ser “obert”, que no té significat intrinsec, siné que
només té sentit en relacié a un altre espai. X sempre és obert (i tancat) a X, pero pot
ser obert o no ser-ho a Y. En canvi, un espai X és compacte o no ho és, sense que calgui
dir res del tipus “compacte a tal espat”.
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Si un espai només té un nombre finit d'oberts, és evident que qual-
sevol recobriment obert tindra un subrecobriment finit i l'espai haura
de ser compacte. En conseqtiencia, qualsevol espai amb la topologia
grollera és compacte i qualsevol espai amb un nombre finit de punts
també és compacte.

Un espat discret és compacte si i només si és finit.

A l'apartat anterior hem vist un exemple d'un recobriment obert de R
que no tenia cap subrecobriment finit. Aixo ens demostra que R no
és compacte. Com que R = (a, b), qualsevol interval obert de R és
no compacte. També hem trobat un recobriment obert de (0, 1] sense
cap subrecobriment finit. Per tant, (0, 1] tampoc no és compacte.

Si en un espat métric X la funcié distancia d és no acotada —és a
dir, hi ha punts a distancia tan gran com es vulgui— aleshores X
no pot ser compacte. N'hi ha prou amb prendre un punt xop € X i
considerar el recobriment obert de X format per les boles B(xp, n),
n > 0. En particular, R” no és compacte.

St tenim un recobriment obert de X

X:U Ul'

iel

i prenem complementaris a X, tenim una igualtat

Qzﬂ C[

iel

on els C; := X — U; son tancats. Aixo ens porta a una caracteritzacid
de la compacitat per tancats: X és compacte si i només si tota
familia de tancats amb interseccio buida té alguna subfamilia finita
amb interseccié buida. Aquesta caracteritzacié per tancats pot ser
util en algun cas.

Suposem que A C X. Aleshores, és facil veure que la compacitat de
A es pot caracteritzar d'aquesta manera lleugerament diferent a la
definicio d'espai compacte.

A és compacte si i només si per tota familia {U,},c; d'oberts
de X tals que A C Uie, U;, existeix una subfamilia finita
{U}jes, 1 C 1, tal que A C U, U



7.3. TRES PROPIETATS IMPORTANTS DELS ESPAIS COMPACTES 81

7.3 Tres propietats importants dels espais
compactes

Teorema 7.3. La imatge d'un compacte per una aplicacid continua és un
compacte

Demostracié. Sigui f : X — Y una aplicacié continua entre espais to-
pologics i sigui S C X un espai compacte. Estem dient que f(S) és també
un espai compacte. La demostracié és molt senzilla. Sigui

f(S)c | Ju
iel

un recobriment obert de f(S) (per oberts de Y). Aleshores, considerant les
antitmatges tenim que
sclJr'u
iel
és un recobriment de S per oberts de X. Com que S és compacte, aquest
recobriment tindra un subrecobriment finit

Scf'y,u---uf'y,.
Aplicant f als dos costats d'aquesta inclusid, tenim que
f(S)ycu,u---uy,.
O

En particular, aquest teorema ens diu que un quocient d'un espai com-
pacte és compacte.

Teorema 7.4. Un subespai tancat d’un espai compacte és compacte

Demostracié. Suposem que X és compacte i S C X un subespai tancat.
Volem demostrar que S també és compacte. Sigui

SCU U,

un recobriment de S per oberts de X. Aleshores,

U u

iel

X = UX—29)
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és un recobriment obert de X. Com que X és compacte, tindrem
X=U,U---ulU, U(X-Y9)
i, en consequiencia, S C U, U---U U,,. O

Teorema 7.5. El producte d'una familia d'espais compactes no buits és
compacte si i només si cada espai ho és.

Demostracié. La demostracié d'aquest resultat —que es coneix com a te-
orema de Tychonoff— és complicada i només la farem en el cas d'un pro-
ducte de dos espais —que implicara que el teorema és cert per a qualsevol
producte d'un nombre finit d'espais.

Suposem que X x Y # @& és un espai compacte. La projeccid sy
X x Y — X és continua. Pel teorema 7.3, X és compacte. El mateix és
cert per a Y.

La part dificil és, doncs, veure que si X i Y son espais compactes, també
X x Y és un espai compacte. Sigui

Xxy=Jw
icl
un recobriment obert de X x Y. Per cada punt (x,y) € X x Y, escollim un

obert del recobriment W, que contingui (x, ). Com que l'index d'aquest
obert dependra del punt (x, y), escrivim aquest index com i(x, y).

Per la definicié de la topologia producte, existira un obert basic tal
que
(X, y) S Ux,g X Vx,g C Vvi(x,g)~

Observem ara que, si fixem un punt x € X, podem escriure

V=1 Vay

yey

que és un recobriment obert de l'espai compacte Y. Per tant, tindrem un
subrecobriment finit

Y = VX,U‘I(X) U e U VX:UH(X)(X)'
Observem que el nombre d'oberts dependra de x i, per aixd, hem escrit

n(x). També, el segon subindex de cada obert dependra de x i, per aixo,
hem escrit y;(x).
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Ara definim
Ux:= Usgrpg N0 Vg

que, com que és una intersecci6 finita d'oberts, és un obert. Tenim x € U,.
Ara observem que
xX=J u

xeX
és un recobriment obert de X, que és un espai compacte. Tindrem un
subrecobriment finit
X=U,U---Ul,,.

Ara, si hi posem una mica d'atencio, veurem que aquesta igualtat compli-
cada és certa:

n(x,)
XxY={JJ Uex Vi)
r=1 j=1

i, en conseqliéncia,

m n(xr)

Xx Y= JJ Wiy

r=1 j=1

és un subrecobriment finit del recobriment obert inicial. ]

La topologia compacte-obert

Quina topologia podem considerar en el conjunt de les aplicacions conti-
nues entre dos espais? Hi ha diversos candidats, pero la topologia que
més s'utilitza és l'anomenada topologia compacte-obert que introduirem
en aquest apartat.

Siguin X, Y espais topologics i definim
map(X,Y):={f: X - Y : f és continua}.

Per cada A C X i B C Y, podem considerar aquest subconjunt de l'espai
d'aplicacions continues map(X, Y):

Fap ={f€FX,Y) : f(A c B}
Considerem ara totes les interseccions finites
U = f(A1rB1) m T m F(Aann)

amb n >0, A; C X compacte i B; C Y obert de Y. Es compleix que aquests
subconjunts U C F(X, Y) compleixen les condicions del teorema 2.2 i sén,
per tant, base d'una topologia ben definida sobre el conjunt map(X, Y).
Se'n diu la topologia compacte-obert.
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7.4 Compactes de R”

Molt probablement, l'estudiant ja coneix aquest teorema important? que
es coneix amb el nom de teorema de Heine-Borel.

Teorema 7.6. Un subespai de R" —amb la topologia ordindria— és com-
pacte si i només si és tancat i acotat.

Demostracié. L'Gnic pas dificil de la demostracié consisteix en veure que
l'interval [0, 1] és un espai compacte. Suposem-ho vist. Com que qualsevol
interval tancat és homeomorf a [0, 1], ja tenim que tot interval tancat és
compacte. Com que el producte de compactes és compacte (teorema 7.5),
ja tenim que tot cub [a, b]” C R" és compacte. Suposem ara que A C R”
és tancat i acotat. Per ser acotat, estara inclos a algun cub A C [a, b]".
Pel teorema 7.4, A sera compacte.

Reciprocament, ja hem dit abans que un espai métric amb distancia no
acotada no pot ser compacte. Faltaria demostrar que tot compacte de R”
és tancat a R". Aix0 es deduira d'una proposicié senzilla que veurem més
endavant (proposicid 8.2).

Per tant, tot es redueix a demostrar que [0, 1] és un espai compacte.
Aix0 s'ha de fer, necessariament, pel mateix métode —basat en la propietat
del suprem dels nombres reals— que l'alumne ja deu haver estudiat en
algun curs anterior. No reproduirem aquesta demostracié aqut. O]

Aquest teorema ens permet donar molts exemples d'espais compactes.
Per exemple, entre els espais que han anat apareixent en aquest curs,
tenim que les esferes S”, els tors 7", el conjunt de Cantor i la banda de
Moebius sén compactes per aplicacio directa del teorema de Heine-Borel.
D’altra banda, el teorema 7.3 ens diu que qualsevol quocient d'un compacte
és un compacte. Per tant, l'espai projectiu RP" —que és un quocient de
lesfera— i l'ampolla de Klein —que és un quocient del quadrat [0, 1>—
son espais compactes.

’Fins i tot, molts estudiants coneixen massa bé aquest teorema! Prenen com una
mena de mantra que “compacte és tancat i acotat” i aixo0 els pot dur a error en el cas
d'espais topologics generals. En efecte, en un espai topologic X hi pot haver subespais
no tancats que siguin compactes. D'altra banda, el concepte d'acotat no té cap sentit en
un espai topologic que no sigui un espai métric. Cal tenir-ho present.

3Per exemple, podem prendre un homeomorfisme afi f : [a, b] — [0, 1] per tot a, b € R.
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Compacitat i successions
La majoria d'estudiants que arriben a aquest curs de topologia saben que

e Els compactes sdn els tancats i acotats.

e Compacte és equivalent a que tota successid té una parcial conver-
gent.

Sobre el primer punt, ja hem dit quina és la situacié: és cert a R"” (amb
la topologia ordinaria!) i simplement no té sentit en un espai topologic
general.*

Qué passa amb la segona afirmacié que caracteritza els compactes
com aquells espais on tota successié té una parcial convergent? Resulta
que les successions son molt utils en els espais métrics i, principalment,
a R", pero no es comporten gaire bé en un espai topologic general. Per
exemple:

e EL concepte de limit d'una successié es pot definir a un espai to-
pologic sense cap problema, pero pot passar que el limit d'una suc-
cessid no sigui unic.

e Larelacid que hi ha a R” entre limit de successions i punts adherents
deixa de ser valida a un espai topologic general. Es a dir, podem
tenir un espai topologic X it un puny x € Cl(A) C X tal que no hi
hagi cap successié de punts de A que convergeixi a y. Sirepassem la
demostracié d'aquest teorema en el cas de R” veurem que utilitza un
argument amb les boles B(x, 1/n) pern =1,2,3, ... Aquest argument
no es pot generalitzar a un espai topologic general.

e Escert que en un espai compacte de Hausdorff (recordem la propietat
de Hausdorff que hem mencionat a la pagina 21) tota successio té
algun punt d’acumulacid, pero hi ha espais compactes de Hausdorff
amb successions sense cap parcial convergent.

e Hiha espais de Hausdorff que no sén compactes i on tota successio té
una parcial convergent. Aqui el problema és que la propietat que tota

*En un espai métric general, el teorema si que té sentit, pero és fals perqué, encara
que sl que és cert que un compacte dintre d'un espai métric ha de ser tancat i acotat,
en canvi hi pot haver subespais tancats i acotats dintre d'un espai métric que no soén
compactes. Un exemple trivial d’aixo seria un espai discret infinit on tots els punts estan
a distancia 1 un de laltre. Es tancat (en ell mateix) i acotat, pero no és compacte.
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successid tingui una parcial convergent implica que tot recobriment
numerable té un subrecobriment finit. Pero aixo és més fluix que ser
compacte —se’'n diu compacitat numerable.

En resum, quan treballem amb subespais de R"” podem utilitzar les
dues caracteritzacions d'espai compacte —subespais tancats i acotats o
bé subespais on tota successié té una parcial convergent—, pero no hem
d'utilitzar aquestes caracteritzacions en un espai topologic general.

7.5 La compactificacié per un punt

Hi ha diverses maneres d'incloure un espai topologic X arbitrari en un es-
pai compacte X. La més senzilla és la que es coneix com a compactificacio
per un punt, que es diu aixt perquée X s'obté afegint a X un Unic punt.

Sigui X un espai topologic i definim X = X L {x}. Es a dir, X s'obté
afegint un nou punt a X. Tenim una inclusié natural X C X. Ara definirem
una topologia apropiada sobre el conjunt X.

Direm que U C X és un obert si es compleix una d'aquestes dues
condicions

1. U C X t U és un obert de X.

2. U= U U{x}, U és un obert de X it X — U’ és compacte.

Deixem com a exercici la demostracid d'aquest resultat:

Proposicié 7.7. Aquesta definicié dota X d'una topologia. L'espai X té la
topologia induida per la inclusié X C X. L'espai X és compacte. [

Si prenem X = R” —que no és compacte— i el compactifiquem per
aquest métode, quin espai compacte obtenim? Obtenim lesfera.

Proposicié 7.8. La compactificacio per un punt de R" és un espai home-
omorf a S".

°Si lespai X inicial ja és compacte, la compactificacié X és poc interessant. Es
simplement X LI {«x} amb el que es coneix com la topologia de la uniéd disconnexa (vegeu
Uinici del capitol 9).
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Demostracié. Sigui xp un punt fixat a lesfera S”. Definim f : R"U{x} — S”
aix:

Xo X = %

onp:R" — S"—{xp} és la projeccid estereografica —o, millor dit, la seva
inversa— respecte del punt xo. Demostrarem que f és un homeomorfisme.
Es evident que f és bijectiva. Estudiem-ne la continuitat.

Sigui U un obert de S". Si xo ¢ U, aleshores f~'(U) = p~'(U) és un
obert de R" U {*}. Si xo € U, aleshores f~"(U) = p~"(U — {xo}) U {*} i tot
es redueix a demostrar que K := R" — p~"(U — {xo}) és un compacte de
R". Es clar que és tancat. Cal només veure que és acotat, és a dir que
existeix r tal que

R" — p~ (U — {x}) C B(0, r).

Considerem xp € U. Com que U és un obert de S”, existira un € > 0 tal
que B(xp,€) C U C S". Per projeccié estereografica, la bola B(xp, €) C
S" es transforma en el complement d'una bola B(0,r) Cc R". Per tant,
R" —p~" (U —{x0}) € B(0, r) i hem acabat la demostracié de la continuitat
de f. Ens faltaria veure que f~' també és continua. Aixd es pot demostrar
directament, utilitzant un argument similar al de la continuitat de f, o bé
es pot deduir immediatament com a consequiéncia del teorema 8.4. [

7.6 Exercicis addicionals

7.1 Considerem lel-lipsoide

2 2
{(x,g,z)ER3 } %4—%4—22:1}

i U'hiperboloide
{(x.y,2) eR? | zzzxz—yz}

amb la topologia de subespai de R3. Raoneu si sén o no sén compactes.

7.2 Demostreu que la grafica d'una funcié f: [0,1] —» R és compacta si i només si f és
continua. Doneu un exemple d'una funcié discontinua g: [0, 1] — R amb grafica tancada
pero no compacta.
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7.3 Demostreu que tota interseccié de compactes tancats és compacta i tancada. En
canvi, en general, una interseccid de compactes pot no ser compacta. Per veure-ho, sigui
X = NU{-1,-2} i sigui T definit per: M € T si i només si M C No bé N Cc M.
Proveu que T és una topologia sobre X, que X és compacte amb aquesta topologia i que
existeixen subconjunts compactes X; i X3 de X tals que Xj N X3 no és compacte.

7.4 Sigui X un espai topologic i sigui / = [0,1]. Considerem X x [ amb la topologia
producte. Fixem xo € X i sigut U C X x I un obert que conté {xo} x /. Proveu que hi ha
un obert V C X tal que {x} x/ CcVx/IlcU.

7.5 Siguin X; i X, dos espais topologics i siguin K; C X, i = 1,2, subespais compactes.
Demostreu que tot entorn U de Kj x K; a X7 x X3 conté un entorn de la forma Uy x U,
amb K Cc U;, i=1,2.

7.6 Proveu que si X és compacte, la projeccié p; : X x Y — Y és tancada.

7.7 Sigui X =J;2; G, on

n=

1\? 1
C, = (x,_L/)ERZ:(X—n) +_L/2=ﬁ

(aquest espai s'anomena les arracades hawaianes), amb la topologia de subespai. Sigui
Y = R/Z amb la topologia quocient. Proveu que X i Y no sén espais homeomorfs.

7.8 Sigui X =[—1,1] amb la segtient topologia: U C [—1,1] és obert si (—1,1) C U o bé
0 ¢ U. Es X compacte?

7.9 Direm que una aplicacié f : X — Y és propia si la antiimatge de tot compacte és
compacte. Demostreu que si f és continua i tancada i f~'(y) és compacte per tot y € Y,
aleshores f és propia.

7.10 Siguin X, Y espais i considerem la topologia compacte-obert al conjunt d’aplicacions
continues map(X, Y). Sigui xg € X. Demostreu que l'aplicacié d’avaluacié

e:map(X,Y)—-Y
donada per e(f) = f(xg), és continua.

711 Si x1,x2,... és una successid infinita de punts d'un espai topologic X, diem que
a € X és un quasilimit de (x,) si tot entorn de a conté infinits termes de la successi6
(xn). Demostreu que si X és compacte, aleshores tota successio de punts de X té algun
quasilimit.



Capitol 8

Espais de Hausdorff

8.1 Ll'axioma de Hausdorff

‘axiomatica dels espais topologics tal com la coneixem avui es
deu al matematic Felix Hausdorff (1868-1942) que la va esta-
blir a la seva obra fonamental Grundziige der Mengenlehre'
publicada el 1914. Hausdorff no axiomatitza el concepte d'o-
bert —com hem fet nosaltres— sin6 el concepte d'entorn d’'un punt. En
tot cas, els seus primers tres axiomes d'entorn son equivalents als nostres
axiomes d'espai topologic. A més d'aquests tres axiomes,?> Hausdorff impo-
sa també un quart axioma que, traspassat a la nostra axiomatica d'oberts,
diu aixo:

Axioma de Hausdorff. Donats x # y, existeixen oberts disjunts
U Vtalsquexe U yeV.

TAquesta obra de 476 pagines comenca amb la teoria de conjunts i acaba amb l'estudi
dels espais topologics. En aquells moments inicials, la topologia era indestriable de la
teoria de conjunts. Per fer-nos una idea de la importancia de l'obra de Hausdorff, podem
llegir el primer paragraf del comentari que es va publicar sobre aquest llibre el 1920
al Bull. Amer. Math. Soc.: “If there are still mathematicians who hold the theory of
aggregates [la teoria de conjunts] under general suspicion, and are reluctant to grant
it full recognition as a rigorous, mathematical discipline, they will find it hard to retain
their doubts under fire of the logic of Hausdorffs treatise. It would be difficult to name
a volume in any field of mathematics, even in the unclouded domain of number theory,
that surpasses the Grundziige in clearness and precision.

2Aquests axiomes diuen aixd: (A) Cada punt té algun entorn i tot entorn d’un punt
conté el punt; (B) la interseccié de dos entorns d'un punt x conté un entorn del punt x;
(C) St un punt y és a un entorn U de x, aleshores existeix un entorn V de y tal que
Vcu.

89
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Aquest axioma €és una propietat de separacid i té una gran importancia.
Ja n'haviem parlat a la pagina 21. De tota manera, els nostres espais to-
pologics no compleixen, en general, aquest axioma. Pensem, per exemple,
en un espai groller de dos punts. Els espais que st que el compleixen els
anomenarem espais de Hausdorff o —utilitzant la paraula Hausdorff com
a adjectiu— espais Hausdorff:

Definiciéo 8.1. Un espai topologic X direm que és Hausdorff si compleix
laxioma de Hausdorff.

Vegem algunes propietats elementals dels espais Hausdorff:

e La propietat de Hausdorff és una propietat topologica intrinseca de
lespai. Per tant, si X és Hausdorff i X = Y, també Y ha de ser
Hausdorff.

e Un espai metric és sempre Hausdorff. En efecte, si d(x,y) =r > 0,
podem prendre U := B(x,r/2), V := B(y, r/2) i comprovar facilment
que aquestes dues boles son disjuntes.

e Un espai groller amb més d'un punt no és Hausdorff.

e En un espai Hausdorff els punts sén subespais tancats.?> La demos-
tracié és immediata.

e La propietat de Hausdorff s’hereta per subespais. Si X és Hausdorff
it AC X, aleshores A també és Hausdorff.

e En canvi, la propietat de Hausdorff no s’hereta per pas al quocient.
Es a dir, un quocient d'un espai Hausdorff pot ser que no sigui Haus-
dorff. Considerem per exemple el quocient [0, 1]/(0, 1] que és un espai
amb dos punts que no és Hausdorff.

Hi ha altres axiomes de separacié, més febles o més forts que 'axioma
de Hausdorff. Per exemple, tenim aquests axiomes escrits per ordre del
més feble al més fort:

e Espais Ty o espais de Kolmogorov. Donats dos punts diferents, hi ha
un obert que conté un d'ells i no l'altre.

3Convé recordar que en un espai topoldgic general els subespais amb un tnic punt
poden no ser tancats.
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e Espais T; o espais de Fréchet. Donats x # y, hi ha oberts U, V tals
que x € U—V, y € V— U. Aquest axioma és equivalent a que els
punts siguin tancats.

e Els espais T, sén els espais Hausdorff.

e Espais 75 o espais regulars. Es compleix 'axioma T4 i a més donats
un tancat £ tun punt x & F, existeixen oberts disjunts U, V tals que
xelU FcV.

e Espais 74 o espais normals. Es compleix l'axioma 7; i a més donats
tancats disjunts A, B, existeixen oberts disjunts U, V tals que A C U,
BcV.

8.2 Algunes propietats dels espais Hausdorff

Proposiciéo 8.2. Si X és un espai de Hausdorff i A C X és compacte,
aleshores A és tancat a X.!

Demostracié. Podem suposar que A # @, X. Sigui x ¢ A. Volem trobar un
obert U tal que x € Uit UNA = @. Procedim d'aquesta manera. Per cada
a € A, aplicant la propietat de Hausdorff a x, a, tindrem oberts disjunts
Uy, Vy tals que x € U,, a € V,. Prenent tots els oberts V, per a € A,
tindrem un recobriment obert de A.

AC U V,.

acA
Com que A és compacte, aquest recobriment tindra un subrecobriment finit
AC Ve U---UV,.

Aleshores, l'obert
U=U,Nn---NnU,

compleix el que voltem.” O

n

*Recordem que la propietat de ser compacte és una propietat intrinseca d’un espai,
mentre que la de ser tancat és una propietat relativa a un altre espai. Malgrat aixo,
aquest teorema ens diu que, en els espais Hausdorff, els espais compactes sdn el que en
podriem dir “intrinsecament tancats”, és a dir, son tancats en qualsevol espai Hausdorff
que els contingui.

5Aquest tipus d’argument l'utilitzarem diverses vegades. Es important que lestudiant
el conequi i el sapiga usar.
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Aquesta proposicié ens permet completar l'argument del teorema 7.6
que havia quedat inacabat.

Proposicié 8.3. Un producte d'espais no buits és Hausdorff si i només si
ho sén cada un dels factors.

Demostracié. Ho farem amb un producte de dos espais perqué el cas ge-
neral es fa igual. St X x Y és Hausdorff, aleshores podem prendre y € Y
i observar que X = X x {y} € X x Y ha de ser Hausdorff. Podem fer el
mateix amb Y.

Reciprocament, suposem que X, Y sén espais Hausdorff i siguin (x1, y1),
(x2, y2) dos punts diferents del producte X x Y. Sense pérdua de gene-
ralitat, podem suposar x; # x,. Com que X és Hausdorff, existiran oberts
disjunts U;, U, de X tals que x4 € U;, x, € U,. Aleshores, Uy x Y i
U, x Y son dos oberts disjunts de X x Y que separem els dos punts

(x1, Y1), (x2, y2). O

Fins ara hem utilitzat diverses vegades un resultat que no hem de-
mostrat. Es tracta del teorema 3.3 que ens doéna un criteri per concloure
que una aplicacidé continua i bijectiva és un homeomorfisme, sense neces-
sitat de demostrar que la seva inversa és continua. Ara podem demostrar
facilment aquell teorema, que és un corol-lari immediat d'aquest resultat:

Proposicioé 8.4. Sigui f : X — Y una aplicacié continua i bijectiva. Supo-
sem que X és un espai compacte i Y és un espai Hausdorff. Aleshores, f
és un homeomorfisme.

Demostracié. La demostracié és molt senzilla. Per tal que f sigui un ho-
meomorfisme només caldria comprovar que és una aplicacid tancada. Sigui
A C X un tancat. Com que X és compacte, per la proposicié 7.4, A és com-
pacte. Aleshores, la proposicié 7.3 ens diu que f(A) C Y és un compacte.
Finalment, la proposicié 8.2 ens diu que f(A) és un tancat de Y. O]

El seglient resultat ens demostra que, en el cas compacte, la propietat
de Hausdorff implica una propietat de separacié molt més forta com és la
dels espais T4 o normals.

Proposicié 8.5. Tot espai compacte Hausdorff és normal.

Demostracié. Tornarem a utilitzar un argument que ja hem usat abans.
Suposem que A i B son dos tancats disjunts d’'un espai compacte Hausdorff
X. Volem trobar oberts disjunts que els separin. Fixem un punt a € A.
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Per cada punt b € B existiran oberts disjunt U, p, Vi tals que a € Uy,
b € V,,. Observem ara que els oberts V,,, variant b € B, formen un
recobriment obert de B:

BC U Va,b-

beB

Pero B és un tancat de l'espai compacte X. Per la proposicio 7.4, B és
compacte i podem trobar un subrecobriment finit

B C Vapia) U~ U Vabga);
Considerem ara

Ua : = Uapya) N - N Ug,byea)
Vo= Va,b1(0) U--—u Vc’rb”(ﬂ)(a)

Tenim que U, i V, sén oberts disjunts i es compleix a € U,, B C V,. Fem
ara variar a € A. Tenim un recobriment obert

Ac U.

aeA

Novament, com que A és compacte, podrem extreure un subrecobriment
finit
AC U, U---UU,

m*

Definim ara

c

= Um U"’UUCI,,,
Viz=V, n--nV,

Tenim que U i V son oberts disjunts amb A C U, B C V, com voliem
demostrar. O

Hem vist que un quocient d'un espai Hausdorff pot deixar de ser Haus-
dorff. La proposicio segiient ens presenta un cas important en que aquest
problema no apareix.

Proposicio 8.6. Sigui X un espai compacte Hausdorff i sigui A C X un
subespai tancat. El quocient X /A és compacte Hausdorff

Demostracié. Ja hem vist que un quocient d'un compacte és compacte (teo-
rema 7.3). Es tracta de provar que X/A compleix la propietat de Hausdorff.
Designem per 77 : X — X/A la projeccié canonica. Siguin x,y € X dos
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punts que representin punts diferents a l'espai quocient X/A. Si x,y ¢ A,
com que X és Hausdorff podem trobar oberts disjunts U,V C X — A tals
que x € U, y € V. Aleshores, w(U) it ;t(V) sén oberts disjunts de X/A que
separen 7(x) i 7(y).

El cas interessant és quan un dels dos punts x,y que volem separar
és a A. Suposem y € A. Per la proposicid 8.5, X és un espai normal i A,
{x} sén tancats de X. Per tant, existiran oberts disjunts U, V tals que
x € U, A C V. Aleshores, it(U) i 71(V) sbén oberts disjunts que separen
7(x) i 7(y). O]

Proposicioé 8.7. Sigui X un espai compacte Hausdorffi sigui G un grup finit
que actua sobre X. Aleshores, el quocient X|/G és compacte Hausdorff.

Demostracié. La demostracié és similar a la de la proposicié anterior i la
deixem com a exercici. [

Ja tenim instruments per decidir si son Hausdorff o no ho soén els di-
versos exemples d'espais que hem anat trobant al llarg d’'aquest curs. En
primer lloc, els espais que sén subespais de R"” sén automaticament Haus-
dorff. D’altra banda, l'espai projectiu i l'ampolla de Klein sén Hausdorft
per aplicacio de la proposicié anterior perqué hem de recordar que l'espat
projectiu és un quocient de l'esfera per una accié del grup de dos elements
i lampolla de Klein és un quocient del tor per una accid del grup de dos
elements (pagina 74).

8.3 La topologia de Zariski

Com és que no exigim l'axioma de Hausdorff a la nostra axiomatica dels
espais topologics? Hi ha dos motius. En primer lloc, sabem que en els
espais Hausdorff no podem, en general, fer quocients. El segon motiu és
que, en contrast amb el que passava quan Hausdorff va introduir la seva
axiomatitzacio, ara tenim exemples importants d'espais topologics que no
compleixen l'axioma de Hausdorff. Potser l'exemple més interessant el
proporciona la topologia de Zariski, que és una topologia que juga un
paper fonamental a la geometria algebraica.

Sigui k un cos arbitrari —per exemple el cos des complexos C— i con-
siderem l'espai aft X := k". Hi ha una manera de dotar X d'una topologia
que reflecteix la geometria de X. Definirem aquesta topologia utilitzant
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els subconjunts tancats. Els subconjunts tancats de X seran les solucions
de families d'equacions polinomiques. Es a dir, si

f(Z,....Z,), i€l

és una familia de polinomis en n variables amb coeficients al cos k, definim
un subconjunt de X aix(:

V{fi:iel})={=z.....z,) € X : fi(z1,...,2,) =0 per tot i € [}.

Aleshores, aquests subconjunts V({f; : i € I}) C X compleixen els axiomes
de tancats d'una topologia.

1. @ =V(1) i X := V(0) son tancats.

2. Es clar que
(\ V{fl -ie ) =V{f iel, jel}.
jel
Per tant, la interseccid arbitraria de tancats és un tancat.

3. La unié de dos tancats és un tancat. En efecte, considerem dos
tancats V({f; : i € 1}), V({g; : j € J}). Considerem ara la familia
formada per tots els polinomis h tals que h es pot escriure

h = Z a;f;

iel

h=) bg;

jel

on a; i bj sén polinomis en n variables amb coeficients al cos k (i,
evidentment, son tots zero excepte un nombre finit, per tal que les su-
mes anteriors tinguin sentit). Aleshores, es pot comprovar facilment
que

V{{fi:ie ) U V({g;:jeJ}) = V{h}).

Aquestes son algunes de les propietats més elementals d'aquesta to-
pologia:

1. Els punts sén tancats, és a dir, la topologia de Zariski és T;.
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2. St el cos k és infinit, la topologia de Zariski a X := k" no és
Hausdorff. En efecte, siguin x,y € X dos punts diferents i siguin
A, B oberts disjunts que els separen. Aleshores, A = X — V({f;}),
B=X—-V({g;}) i es complira que

X =V({f})uV{g;})

Escollim ara un polinomi f € {f;} i un polinomi g € {g;} i considerem
el polinomi h := fg. Tindrem que aquest polinomi h s’ha d'anul-lar
a tots els punts de k". Ara bé, un resultat senzill de la teoria de
polinomis ens diu que l'tinic polinomi que s'anul-la a tots els punts
de k" (amb k infinit) és el polinomi zero. Per tant, A= 2 0o B =g,
una contradiccid.

3. També es pot demostrar que k", amb la topologia de Zariski, és un
espai compacte i, de fet, tots els seus subespais son també com-
pactes. Per demostrar aixo cal tenir alguns coneixements de teoria
d'anells commutatius, perque el resultat es dedueix de 'anomenat
teorema de la base de Hilbert. No en parlarem aqut.

4. En particular, podem considerar la topologia de Zariski a l'espai
aft R” que ens ddéna un exemple d'una topologia a R” que és ma-
tematicament significativa i molt diferent de la topologia ordinaria.

8.4 Exercicis addicionals

8.1 Sigui X =[-1,1] amb la segtient topologia: U C [—1,1] és obert si (—=1,1) C U o bé
0 ¢ U. Es X Hausdorff?

8.2 Sigui X un espai Hausdorff i x € X. Demostreu que la interseccié de tots els oberts
que contenen x és {x}. Doneu un contraexemple si X no és Hausdorff.

8.3 Sigui A C X un subespai dens d'un espai topologic X. Demostreu que X/A no és
Hausdorff.

8.4 Siguin f,g: X — Y aplicacions continues entre espais topologics, amb Y Hausdorff.
Sigut A un subconjunt dens de X tal que f(a) = g(a) per tot a € A. Proveu que f = g.

8.5 Siguin X un espai topologic Hausdorff i Aq,..., A, subespais compactes tals que
Ni; A = @. Proveu que existeixen oberts Uy, ..., U, de X amb A; C U; per tot i =
1,...,nitals que Ni_, U = @.
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8.6 Sigui f: X — Y continua i exhaustiva, amb X compacte i Y Hausdorff. Demostreu
que Y té la topologia quocient determinada per f.

8.7 Sigui X compacte Hausdorff i sigui f: X — Y una aplicacié exhaustiva tal que Y té
la topologia quocient per f. Proveu que les seglients afirmacions sén equivalents: (1) Y
és Hausdorff. (2) f és tancada. (3) Ar és tancat a X x X, on Ay = {(x1,x2) € X x X :
f(x1) = f(x2)}.

8.8 Sigui X # @ un espal topologic compacte Hausdorff i f : X — X una aplicacié
cont{nua. Considereu el subespai A = (2, f{(X). Proveu les segiients afirmacions: (a) A
és compacte i tancat; (b) A no és buit; (c) f(A) = A.

8.9 Sigui f : D" — D" una aplicacié continua tal que d(f(x), f(y)) < d(x, y) per tot x # y,
on d és la métrica euclidiana. Proveu que f té un Gnic punt fix. (Aqui D" := {x € R" :
x|l < 1})

8.10 Demostreu que la condicié T; és equivalent a que els punts siguin tancats.

8.11 Sigui X un conjunt i siguin 7" & 7 & T” topologies sobre X. Suposem que X,
amb la topologia T, és compacte Hausdorff. Demostreu que X, amb la topologia 7", no
és compacte. Demostreu que X, amb la topologia 7', no és Hausdorff. (Aquest curiés
resultat es pot interpretar dient que els espais compactes Hausdorff es troben en un cert
punt d'equilibri, en el sentit que si els traiem algun obert, deixen de ser Hausdorff, i si
els afegim algun obert, deixen de ser compactes.)

8.12 Si X és un espai i x € X, diem que x és un punt d'acumulacid si tot entorn de x
té punts de X diferents de x. Sigui X un espai Hausdorff amb dos punts d’acumulacié
diferents. Demostreu que X té un subespai que no és ni obert ni tancat.
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Capitol 9

Connexio

—

. . i X 1Y son dos espais topologics, és molt senzill posar una

QUKD . AR ) ’
\ § topologia a la unié disjunta X LU Y prenent com a oberts les
unions U LUV on U és un obert de X i V és un obert de
Y. Direm que X U Y, amb aquesta topologia, és la unid
cllsconnexa de X i Y. Observem que, amb aquesta topologia, X i Y sdn
oberts i tancats a XLIY. En aquest capitol estudiarem la situacid contraria:
espais que no es poden posar com a unié disconnexa d'altres espais (no
buits!).’

Com que la frase espai topologic no buit es repetira moltes vegades en
aquest capltol, utilitzarem aquest conveni: un espai-p (“espai ple”) sera
un espai topologic no buit. També parlarem d'obert-p, tancat-p, etc.

9.1 Espais connexos

Proposicié 9.1. Sigui Z un espai topologic. Aquestes condicions son equi-
valents:

1. Z no és (homeomorf a una) unié disconnexa de dos espais-p.

2. Z no és unié de dos oberts-p disjunts.

"Observem que no és el mateix una wnié disjunta que una unié disconnexa. Unié
disjunta és un terme de teoria de conjunts i vol dir que X = AUB amb AN B = &, mentre
que unié disconnexa és un concepte de topologia i vol dir que X és unié disjunta de A
i Bi, a més, la topologia de X és tal que els seus oberts son les unions d'un obert de
A i un obert de B. Per exemple, [0,2] és unié disjunta de [0,1] i (1,2], perd no és unid
disconnexa de [0,1] i (1, 2].

99
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3. Z no és unié de dos tancats-p disjunts.

4. Si A C Z és obert i tancat, aleshores A =&, /.

La demostracié d'aquesta proposicié és molt senzilla i no l'escrivim
aqui.

Definicié 9.2. Un espai topologic diem que és connex si compleix les con-
dicions de la proposicio anterior.

A la practica, quan volem demostrar que un cert espai és connex o
no ho és, hem de triar, entre les condicions equivalents de la proposicid
anterior, la que sigui més senzilla de comprovar.

Exemples

e Tot espai groller és connex.
e Un espai discret amb més d'un punt no és connex.
e La recta real menys un punt no és connexa. En efecte:
R —{a} = (—o0,a)U (a, o)
és una descomposicié de R — {a} com unié de dos oberts-p.

e Q, amb la topologia de subespai de R, no és connex perque podem
escriure

Q= (QN(—00,V2)) U (QN (V2 00)).

De fet, Q és un exemple del que es coneix com a espai totalment dis-
connex. Un espai X diem que és totalment disconnex si té més d'un
punt i tot subespai de X amb més d'un punt és no connex. Observem
que un espat discret amb més d'un punt és totalment disconnex, pero
Q ens déna un exemple d'espai totalment disconnex no discret.?

e Igual que en el cas de Q, és facil veure que el conjunt de Cantor C
és totalment disconnex.

2Observem que els punts de @ no sén oberts, mentre que en un espai discret els
punts son oberts.
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e Tot interval tancat de la recta real és connex. En efecte, suposem
que tenim una descomposicié [a,b] = AU B amb A, B tancats-p a
[a, b] (i, per tant, tancats-p a R) disjunts. Suposem, sense pérdua de
generalitat, que a € A. Sigui

ap:=sup{t € A:t <s pertotse B}

Aleshores, és facil comprovar que tot entorn de ag conté punts de A
i punts de B i, per tant, agp € AN B = &, una contradiccio.

9.2 Algunes propietats dels espais connexos

En primer lloc, si enganxem espais connexos amb interseccié no buida, el
resultat és connex. Dit amb més precisig,

Proposiciéo 9.3. Siguin Y; C X, i € |, subespais connexos d'un espai X,
tals que N;Y; # @. Aleshores, U;Y; és un espai connex.

Demostracid. Utilitzarem que els espais connexos son aquells en que l'Gnic
subespai-p obert i tancat és l'espai total. Sigui A C U;Y; un subespai-p
obert i tancat. Existira iy € | tal que AN Y;, és un subespai-p obert i
tancat de Y;,. Com que Y;, és connex, tindrem AN Y, =Y, i Y, C A Per
tot j es compleix que Y, NY; # &. Per tant, AN Y; és també un subespai-p
obert i tancat de Y; i deduim, igual que abans, que Y; C A. En conclusio,
A=U;Y. ]

Corollari 9.4. Siguin Y; C X, i=0,1,2,..., subespais connexos d’un espai
X, tals que, per tot i, Y; N Y1 # . Aleshores, U;Y; és un espai connex.

Demostracié. Ni ha prou amb considerar
J
Z=Jv., j=01.2...
i=0

i aplicar la proposicié anterior dues vegades. 0

Corollari 9.5. R és connex. Qualsevol interval de R (acotat o no, obert,
tancat o semi-obert) és connex. Reciprocament, si A C R és connex, ales-
hores A és un interval. O

St apliquem una funcié continua a un espai connex, seguira essent-ho.
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Proposicié 9.6. Si f : X — Y és continua i A C X és connex, aleshores
f(A) és connex.

Demostracié. Considerem la restriccio f : A — f(A) que també és continua.
Si Z C f(A) és un subespai-p que és obert i tancat, aleshores f~'(Z) sera

un subespai-p obert i tancat a A. Com que A és connex, necessariament
f~1(Z) = A\, per tant, Z = f(A). O

En particular, la connexid es manté per pas al quocient. També es
manté per producte:

Proposicié 9.7. Un producte d'espais-p és connex si i només si ho és cada
factor.

Demostracié. Només considerarem el cas de dos espais. Si X x Y és
connex, aleshores X i Y ho son per la proposiciéo 9.6. Reciprocament,
suposem que X i Y son connexos. Escollim y € Y i escrivim

XxY =[] [(Xx{yhu({x}x V)

xeX

Per la proposicid 9.3, X x Y és connex. O]

Ja sabem, doncs, que R” és connex. Com que el tor T" és un quocient
del pla, també sabem que el tor és connex. El mateix podem dir de l'am-
polla de Klein o la banda de Moebius. Pel que fa a lesfera S”, n > 0,
observem que l'esfera es pot posar com a unid

S"=(S"—{(1,0,...,0}) U (S" = {(0,...,0,1)}).

Observem ara que cada un dels dos subespais de la descomposicid anterior
és connex perque és homeomorfa R” per projeccié estereografica. Per tant,
per la proposicid 9.3 l'esfera S” és connexa si n > 0. Finalment, U'espai
projectiu RP" que és un quocient de l'esfera també sera un espai connex.

Un altre resultat util és el que diu que l'adherencia d'un subespat
connex és connex. De fet, aixo es pot generalitzar una mica:

Proposicié 9.8. Sigui A ¢ B c Cl(A) C X i suposem que A és connex.
Aleshores B també ho és.

Demostracié. Sigut Y C B obertitancata B. Aixo vol dir que existeixen un
obert U de X i un tancat T de X tals que UNB =Y = T N B. Considerem
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Z := Y N A que sera un obert i tancat de A. Com que A és connex, només
hi ha dues possibilitats: /=@ o Z = A.

Si Z = A, aix0 implica que A C T. Per tant, CLLA) C T i Y = B.

Si Z = g, aixo implica que UNA = @. Per tant, UN ClA) = @ 1
Y =0. O

9.3 Connexid per camins

Si X és un espai topologic, un cami a X és una aplicacié continva w: I — X
on / és l'interval tancat [0, 1] € R. Els punts w(0) i w(1) s6n els punt origen
i final del cam{ w, respectivament. Si w(0) = w(1), direm que el cam{ w és
un Uag.

Definicié 9.9. Un espai X és connex per camins —també en direm arc-
connex— si per tota parella de punts x,y € X existeix un cami{ w que té
origen a x i final a y.

Sembla que aquesta condicid de connexid per camins ha de tenir alguna
relacié amb la connexié. Efectivament:

Proposicié 9.10. Tot espai connex per camins és connex.

Demostracié. En primer lloc, observem que, com que linterval / és connex
(corol-lari 9.5), la imatge de qualsevol cami w(/) és un espai connex, per la
proposicio 9.6.

Suposem que X # & és un espai connex per camins i sigui xo € X. Per
cada punt x € X sigui w, un cam{ de X amb origen xp i final x. Aleshores

X=J wdl)

i, aplicant la proposicié 9.3, X és connex. [

En canvi, un espai pot ser connex sense ser arc-connex. Un exem-
ple interessant d'aquest fenomen és el seglient. Considerem la grafica
(figura 9.1) de la funcid

1
f(x) = sin —
X
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0.5 ‘ f
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Figura 9.1: La funcié y = sin(1/x) (en escala logaritmica perque es vegi
millor).

per x € (0,1] i unim a aquesta grafica el segment vertical entre (0, —1)
i (0,1). Anomenem X el subespai de R? que resulta, amb la topologia
induida per la topologia ordinaria de R?:

A:={0,y): 1<y <1}

B:={(x,y):y=sin(1/x), 0 < x <1}

X:=AUB

Aleshores,

e X no és connex per camins. Suposem que hi ha un cam{ w amb inici
a (0,0) i final a (1,sin1). Tindrem, per cada t € I,

w(t) = (wi(t), wa(t)) € X C R2.

ELl conjunt {t : wq(t) = 0} és un tancat de [0, 1] i, per tant, tindra un
element maxim ty. Aleshores, si t > t; es compleix que w(t) € B i

wy(t) = sin ()

mentre que ws(ty) € [—1,1]. Aixo és absurd perqué

lim sin
t—to w1(t)

no existeix.
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e X és connex. En efecte, B és connex perque és la imatge del connex
(0, 1] per l'aplicacié continua w. Com que X = Cl(B) a R?, aplicant la
proposicié 9.8, tenim que X és connex.

Algunes de les propietats dels espais connexos sén també valides per
als espais connexos per camins. Per exemple, un producte (d'espais-p) és
connex per camins si i només si ho és cada factor; la imatge d'un espai
connex per camins per una aplicacid continua és connexa per camins; un
quocient d'un espai connex per camins és connex per camins. La connexio
per camins és també una propietat topologica. Com que dos punts qual-
sevol de R"” es poden unir amb un segment, R"” és connex per camins. Els
cercles maxims de S” (n > 0) ens demostren que l'esfera S” amb n > 0 és
connexa per camins. També ho sdn el tor, 'ampolla de Klein i els espais
projectius.

9.4 Components connexos d’'un espai

Sigui X un espal i considerem aquesta relacié d'equivaléencia:
X ~ y st i només si existeix C C X connex tal que x,y € C.

Les propietats reflexiva i simétrica son evidents i la propietat transitiva
resulta de la proposicid 9.3. Les classes d'equivaléncia respecte d'aquesta
relacié s'anomenen components connexos® de X.

Fem una llista d'algunes de les propietats basiques dels components
connexos d'un espai.

e Si x € X, el component connex que conté x és

cx=J A

xeA
A connex

3Component connex o component connexa? Hi havia una certa tradicié d'utilitzar la
paraula component en femen{ —per exemple en el cas de “les components d’'un vector”—
que es va estendre al cas de “les components connexes” d'un espai. Tanmateix, la primera
edicié del DLC només admetia el génere masculi, en tots els casos. Es més, en aquesta
primera edicio hi consta l'exemple concret “els components d'un vector”. Per tant, és
evident que cal parlar de “els components connexos d’un espai”. Curiosament, la segona
edicié del DLC diu que la paraula “component” es pot usar en masculi o femeni en el cas
dels vectors. No sabem quina és la justificacié d’aquest canvi de criteri entre les dues
edicions del DLC. En conclusié, encara que potser es podria usar “component” en fement
per referir-se a les parts connexes d'un espai topologic, ens sembla que és més apropiat
utilitzar aquesta paraula en mascull.
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e ((x) és maximal entre els subespais connexos de X que contenen x.

e Cada component connex C(x) és connex. Aixo resulta de la proposicid
9.3.

e Els components connexos d'un espais son disjunts.

e Cada component connex de X és un tancat de X. En efecte, si C
és un component connex de X, hem vist que C és connex. Per la
proposicio 9.8, Cl(C) també és connex. Per la maximalitat de C,
tenim C = C|(C).

e En canvi, els components connexos poden no ser oberts. Pensem, per
exemple, en l'espai Q amb la topologia ordinaria. Hem vist que és un
espai totalment disconnex. Per tant, els seus components connexos
son els punts, que no son oberts.

e Si X té un nombre finit de components connexos (i, ..., C,, aleshores
cada component connex és obert i tancat i X és homeomorf a la unid
disconnexa C; U --- U G,.

De manera similar a com hem definit els components connexos d'un
espai, podem definir els components arc-connexos d'un espat X. Consi-
derem la relacido d'equivaléncia

X ~ U st i només si existeix un cam( de X que uneix x i y.

i definim els components arc-connexos de X com les classes d'equivaléncia
respecte d'aquesta relacido. Evidentment, st dos punts sén al mateix com-
ponent arc-connex, tambhé sén al mateix component connex, pero l'exemple
anterior d'un espai connex que no és arc-connex ens demostra que, en ge-
neral, els components connexos i els components arc-connexos d'un espai
poden ser diferents.

El concepte de connexié que estudiem en aquest capitol ens permet
distingir entre espais que, fins ara, no podiem saber si eren homeomorfs
o no. Per exemple:

Proposicié 9.11. R no és homeomorf a R", n > 1.4

*Aquest no és el teorema que ens agradaria. El que realment voldriem és demostrar
que si n # m, aleshores R"” i R™ no sén homeomorfs. L'argument de connexié que acabem
d'utilitzar no és util en aquesta situacié més general. La demostracié d'aquest teorema
necessita eines de topologia algebraica que introdueixen conceptes de connexié dordre
superior.
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Demostracié. Suposem que f : R — R? fos un homeomorfisme. Aleshores,
restringint f a R — {0} tindriem un homeomorfisme

R — {0} Z R" — {£(0)}.

Pero aixd és impossible perqué R — {0} no és connex i R” — {f(0)} és
connex per camins i, per tant, és connex.’ [

9.5 EI teorema de la corba de Jordan

Imaginem un llag al pla, és a dir, una aplicacié continua w : [0,1] — R?
tal que w(0) = w(1). Observem que aixo és essencialment el mateix que
dir que tenim una aplicacié continua S' — R?. Imaginem que aquesta
aplicacid és injectiva. Tradicionalment, dirlem que w és una corba tancada
simple o també una corba de Jordan, en honor al matematic francés Camille
Jordan (1838-1922).

El teorema de la corba de Jordan fa una afirmacié que sembla evident
i que, en canvi, és relativament dificil de demostrar:

Teorema 9.12. Una corba tancada simple al pla R? divideix el pla en dos
components connexos. Un d'aquests components és acotat i s‘anomena
Uinterior de la corba; l'altre component és no acotat i s‘anomena l'exterior
de la corba. La frontera de cada component és la corba.

Es a dir, el teorema diu que R? — w(/) té dos components connexos, un
és acotat i l'altre no. La historia d'aquest teorema és interessant perque
es va donar com a evident fins que alguns matematics es van adonar que
no ho era gens. Finalment, Jordan va donar una demostracié del teorema
el 1887, que no era gens trivial. Per tal d'adonar-nos que aquest teorema
és més profund del que sembla, fem aquests comentaris:

e Tinguem present l'existéencia de la corba de Peano, que és una corba
continua al pla que passa per tots els punts del quadrat unitat. El
teorema de la corba de Jordan no s’aplica a la corba de Peano, perqué
no és injectiva, pero aquest exemple ens ha de fer recordar que una
corba continua pot ser un objecte forca complex.

SEl mateix argument ens demostraria que, si n > 1, ST i S" no sén homeomorfs i
I =10,1] i /", no sén homeomorfs. Com a conseqliéncia, obtenim que no pot existir una
corba de Peano injectiva, és a dir, una aplicacié continua exhaustiva | — I? no pot ser
injectiva. Si ho fos, pel teorema 8.4 hauria de ser un homeomorfisme.
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e El teorema de la corba de Jordan es pot generalitzar a dimensions

superiors. La idea és la seglient. Una corba de Jordan és una aplica-
cié continua injectiva S — R?, per tant, l'objecte analeg en dimensié
n seria una aplicacié continua injectiva w : S"~' — R”". Aleshores,
el teorema (que es coneix com a teorema de separacio de Jordan-
Brouwer) diria que, en aquestes circumstancies, R” — w(S"~") té dos
components connexos, un d'acotat i l'altre que no ho és.

Intuitivament, sembla que el teorema de la corba de Jordan es podria
completar amb una conclusié suplementaria, consistent en afirmar
que linterior de la corba és homeomorf a l'interior d'un disc D? i
'exterior de la corba és homeomorf al complement del disc. Efec-
tivament, aixo és cert i es coneix com a teorema de Schonflies (i
tampoc no és senzill de demostrar). Curiosament, aquest teorema
que també sembla “evident” és fals en dimensions superiors. En
particular, podem posar una esfera S? de manera continua i injectiva
a R de manera que l'interior no sigui homeomorf a linterior de la
bola D3.°

Com ja hem dit, la demostracid del teorema de la corba de Jordan per
metodes més o menys elementals no és senzilla. En canvi, les eines
basiques de la topologia algebraica permeten donar una demostracid
senzillissima del teorema en dimensié arbitraria.

9.6 Exercicis addicionals

9.1 Siguin 77 i 7, dues topologies en el mateix conjunt X, de manera que 7, sigui més
fina que 77. Si X és connex amb la topologia 74, és cert que també ho sera amb la
topologia 7,7

9.2 Demostreu que aquests dos subconjunts del pla R? (amb les topologies usuals) no sén
homeomorfs: X = {x :d(x,po) =1od(x,p1) =1}, Y = {x:d(x,p2) =1} on po = (0, —1),
p1=(0,1) i p2 =(0,5).

®|’exemple més conequt és l'esfera amb banyes d’Alexander, descoberta el 1924 per

James Alexander, quan intentava generalitzar el teorema de Schénflies a dimensions
superiors. L'estudiant podra trobar a Internet moltes imatges d'aquest objecte, si hi esta
interessat.
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9.3 Sigui X un espai topologic amb la topologia discreta que conté com a minim dos
punts. Proveu que un espai topologic Y és connex si i només si tota aplicacié continua
f:Y — X és constant.

9.4 Sigui X un conjunt infinit amb la topologia cofinita. Proveu que X és connex.

9.5 Direm que dos subconjunts A i B d'un espati topologic X estan separats si CL{A)N B =
@ = Cl(B) N A. Proveu les afirmacions segtients:

1. X és connex si it només si X no és la uni6 de dos subconjunts-p separats.
2. Sigui Y un subespai connex de X. Per tota parella de subespais separats A i B
de X tals que Y C AU B, es compleix que Y CAo Y C B.
9.6 Siguin A i B dos subespais connexos de X tals que AN Cl(B) # @. Demostreu que

AU B és connex.

9.7 Demostreu que aquest subespai de R? és connex:
{x,y):12<x<1, y=0}U{(x,y):0<x <1, y=x/nneZ}

9.8 Siguin {C,},>0 subconjunts connexos i compactes d'un espai Hausdorff tals que
Chi1 C G, per tot n > 0. Demostreu que ﬂ‘,’fz1 C, és connex.

Doneu un exemple d'una familia de subconjunts connexos tancats C, C R? tals que
Cii1 C G, per a tot n € N, pero ﬂ?f; C, no sigui connex.

9.9 Sigui A # &, X un subespai de X, on X és connex. Proveu que 0A # @.
9.10 Proveu les seglients afirmacions:

1. Sigui X un espai topologic i C un subespai connex de X. Si per a un subespai E
de X es compleix CNE #£#@ 1 CN (X —E)+ @, aleshores CNIJE # @.

2. Siguin X un espai topologic, A C X, x € Int(A), y ¢ A. Aleshores tot cami que

uneix x amb y talla la frontera de A.

9.11 Sigui f : S' — R una aplicacié continua. Proveu que existeix x € S' tal que
f(x) = f(—x). [Aix0 es pot expressar dient que, en cada instant de temps, hi ha dos punts
de lequador de la Terra, antipoda un de l'altre, amb la mateixa temperatura.]

9.12 A R?, considereu la familia de subconjunts B = {la,b) x[c,d):a,b,c deR}

1. Proveu que B és bhase d'oberts d’'una topologia S de R? i que S és més fina que la
topologia usual de R?.

2. Proveu que el conjunt
A={(xy) eR*: x>+ y?> <1}U{(1,0)} U{(x,y) € R?: (x —2)* + y?> < 1}

és connex amb la topologia usual perd no ho és amb la topologia S.
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9.13 Siqui d la distancia ordinaria de R? i considereu aquests tres subespais:
A={x:d(x, (1,0) <1}U{x:d(x, (=1,0) < 1}
B:=AuU{(0,0)}, C:=ClA)
Demostreu que A, B, C no s6n homeomorfs.

9.14 Un espati es diu que és localment arc-connex si hi ha una base de la seva topologia
que esta formada per espais connexos per camins. Demostreu que si X és un espai
connex i localment arc-connex, aleshores X és connex per camins.



Capitol 10

Varietats topologiques

i comparem espais com puguin ser l'esfera, el tor o l'espai pro-
jectiu amb espais com el conjunt de Cantor, un espat groller o
l'espai Q, veiem que els primers tenen en comu que, a petita
: escala, son indistingibles de l'espai euclidia R". Els espais
que tenen aquesta propietat d'assemblar-se “localment” a l'espai euclidia
tenen una enorme importancia. Reben el nom de varietats’ —o, si volem
evitar la confusié amb altres tipus de varietats, varietats topologiques.

10.1 El concepte de varietat

Definicio 10.1. Un espai topologic X + @ és una varietat de dimensio n
si tot punt x € X té un entorn que és homeomorf a R" (i X compleix dues
propietats técniques que discutirem més endavant).?

Observem que res no canviaria si haguéssim definit una varietat com
un espai on tot punt té un entorn que és homeomorf a un obert de R".*

"En anglés, aquests objectes que estudiarem ara s'anomenen manifolds. En aquest
punt tenim un petit déficit de léxic respecte de l'anglés perqueé les dues paraules angleses
variety i manifold corresponen a una Unica paraula en catala.

2En aquest curs només estudiarem varietats topoldgiques i, per tant, no tindrem cap
problema si les anomenem simplement “varietats”. La idea dels altres tipus de varietats
—per exemple, les varietats diferenciables— és la mateixa: espais que s'assemblen,
localment, a lespai euclidia. ELl que canvia, pero és el significat de “"assemblar-se”. En
el nostre cas, el que volem és que la topologia s'assembli a la de R".

3Sovint, direm que una varietat és un espai localment homeomorf a R".

“Cal utilitzar el fet que una bola oberta B(0, €) és homeomorfa a R”. Un homeomor-
fisme ve donat per l'aplicacié x — x/(e — ||x]|).

111
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Si X és una varietat de dimensio 2, direm que X és una superficie.

Per exemple, la Terra no és plana —l'esfera S? no és homeomorfa al
pla R2— perd a cada punt de la Terra podem dibuixar un “mapa” —en
direm una carta local— que ens doni un homeomorfisme entre un entorn
d’'aquest punt i un obert de R?. De fet, podem construir un atles, que sera
un conjunt de cartes locals que cobreixin tota la Terra. Aquests conceptes
tenen sentit en una varietat qualsevol M. Una varietat admet un atles

U={U:iel}

que és un conjunt de cartes locals U; que sén oberts de M amb homeo-
morfismes N
(/),' : U[ — R"

de manera que U;U; = M. En els llocs on dues cartes locals es tallin,
tindrem uns canvis de coordenades que seran homeomorfismes

R" D (/)j(U,‘ N Uj) £> Ul' N U] ﬂ) (/),‘(U,‘ N Uj) c R".

Aquests homeomorfismes s'anomenen funcions de transicio.

Exemples

e No cal dir que la propietat de ser una varietat és topologica.

e Tot espai discret és una varietat de dimensio zero. (Vegeu, pero, més
avall.)

e R” és una varietat de dimensié n.?

e Un obert de R" és una varietat de dimensié n. Més en general, un
obert d'una varietat de dimensid n és també una varietat de dimensio
n.

e Si N és una varietat de dimensié n i M és una varietat de dimensio
m, aleshores N x M és una varietat de dimensié n + m.

o L'esfera S” és una varietat de dimensié n. La projeccid estereografica
ens demostra que el complement d'un punt a S” és homeomorf a R".
Per tant, tot punt de S” té un entorn homeomorf a R".

®Perd encara no som capacos de demostrar que R” no sigui una varietat de dimensié
m per algun m # n.
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e Eltor 7" =S" x --- x ST és una varietat de dimensid n.

e L'espai projectiu RP" és una varietat de dimensié n. La demostracid
és senzilla. Recordem que

RP" = S"[{—v ~ v}.

Donat [x] € RP", sigui U := B(x, €) una bola de S” de radi prou petit
perqué no hi hagi dos punts de U que siguin diametralment oposats.
Recordem (proposicié 6.8) que la projeccié 77 : S” — RP" és oberta
i tancada. Aleshores, la imatge de U a RP" és un obert homeomorf
a Ui, per tant, a R".

e L'ampolla de Klein és una varietat de dimensié 2. Recordem que
lampolla de Klein es pot obtenir com un quocient del tor per una
certa accid del grup de dos elements (pagina 74) i podem aplicar el
mateix argument del punt anterior.

10.2 Dues condicions técniques

A la definicid de varietat hem dit que, a banda de la caracteristica essen-
cial d’'una varietat de ser localment homeomorfa a un espai euclidia, una
varietat també ha de complir dues condicions més que haviem de discutir
més endavant. Ho farem ara.

La primera condicié que cal exigir a la definicid de varietat és que sigui
Hausdorff. A primera vista, podria semblar que, com que R" és Hausdorff,
qualsevol espai localment homeomorf a R” també ho hauria de ser, pero
hi ha exemples senzills que demostren que aixo no és aix(. Sigui X la unié
disconnexa de dues copies de la recta R

X =R UR,

it ara fem un quocient de X consistent en identificar cada punt de la primera
recta amb el mateix punt de la segona recta x; ~ x, —excepte l'origen.
Sigui M l'espai quocient.

Podem imaginar M com una recta real amb “dos origens” 04, 0,. La
topologia de M és tal que cada punt té un entorn homeomorf a R, és a
dir, M podria ser una varietat. Pero M no és Hausdorff perqué tot entorn
de 04 talla tot entorn de 0,.



114 CAPITOL 10. VARIETATS TOPOLOGIQUES

Per tal d’explicar quina és la segona condicié convé fer aquesta obser-
vacid. Considerem aquesta familia d'oberts de R".

{B(x,l) x € Q", /7:1,2,3,...}.
n

Aquesta familia és numerable i és una base d'oberts de R". Es a dir, lespal
topologic R” té una base d'oberts numerable. També diem que compleix
el segon axioma de numerabilitat.® Un exemple trivial d'un espai que no
compleix aquest segon axioma seria un espai discret no numerable. En
principi, un espai Hausdorff localment homeomorf a R” podria no complir
aquest segon axioma de numerabilitat. Per tant, a partir d'ara exigim que
una varietat compleixi aquest segon axioma de numerabilitat.” Aquesta
condicid és important perqué el segon axioma es necessita per demostrar
diverses propietats de les varietats.

Com que hem posat dues noves restriccions al concepte de varietat,
ara ens cal veure que en els exemples de varietat que hem considerat
a l'apartat anterior es compleixen aquestes dues condicions. Només cal
corregir el que hem dit abans sobre els espais discrets. Tot espai discret
numerable és una varietat, pero un espati discret no numerable no compleix
el segon axioma de numerabilitat i no és una varietat.

En principi, no insistirem en aquestes quiestions.

10.3 Varietats connexes

Evidentment, una varietat pot ser connexa o no ser-ho. Si M i N soén
varietats, és clar que la uni6 disconnexa M LI N és també una varietat i
no és connexa.

°El primer axioma de numerabilitat afirma que per tot punt de l'espai hi ha una familia
numerable B d'entorns d’aquest punt tal que tot entorn del punt conté un entorn de la
familia B.

"L'exemple classic de varietat connexa que no compleix el segon axioma de numera-
bilitat —i que, per tant, no considerarem que sigui una varietat— és l'espai topologic
que es coneix com la recta llarga. Com que no lutilitzarem en aquest curs, n'hi haura
prou amb donar una idea aproximada de com es construeix aquest espai. En primer lloc,
observem que la recta ordinaria R es pot construir com la unié d'una familia numerable
d'intervals [0, 1) amb una topologia que fa que l'extrem superior de cada interval estigui
“adherit” a l'extrem inferior del segiient interval. De manera similar, la recta llarga es
construeix a partir d'una familia no numerable d'intervals [0, 1) amb una topologia que
fa que l'extrem superior de cada interval estigui adherit a U'extrem inferior del “segiient”
interval. Per tal de donar sentit a l'expressid “seglient” cal utilitzar la teoria d'ordinals.
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El teorema seglient ens diu que si coneixem les varietats connexes, ja
coneixem totes les varietats.®

Teorema 10.2. Sigui M una varietat de dimensio n i siqguin M;, i € | els
seus components connexos.

1. Els M; son oberts de M.
2. | és numerable. Si M és compacta, aleshores | és finit.
3. Cada M; és una varietat de dimensio n.

4. M és unié disconnexa dels seus components connexos: M = | |,c, M..

Demostracié. Cada punt de M té un entorn homeomorf a R”. Per tant,
cada punt de M té un entorn connex. Aixo implica immediatament que
cada M, és obert. Com que un obert d'una varietat és una varietat, tenim
que cada M; és una varietat. La condicié (4) és certa per a tot espai en
que els components connexos siguin oberts. Si / no fos numerable, M no
podria tenir una base numerable d'oberts. Si / és infinit, és evident que
M no pot ser compacta. O]

En conclusid, tota varietat és unidé disconnexa numerable de varietats
connexes. A partir d'ara, doncs, només ens preocuparem per les varietats
connexes.

10.4 Poliedres amb cares identificades

Hem vist diversos exemples de superficies obtingudes fent quocient d'un
quadrat /% per unes certes identificacions entre els punts dels costats. El
tor, l'esfera, el pla projectiu i l'ampolla de Klein els hem obtingut d'aques-
ta manera —encara que també hem vist construccions alternatives. Po-
dem fer coses similars amb un poligon (“ple”). Podem prendre un poligon
P c R? i fer quocient per algunes identificacions entre els seus cos-
tats. Normalment, aquestes identificacions es representen graficament

8Per entendre millor el teorema que ve a continuacié, recordem que tot espai és unié
disjunta dels seus components connexos, pero no tot espai és unid disconnexa dels seus
components connexos. Per exemple, els components connexos de Q sén els punts, pero
una unid disconnexa de punts és un espai discret i Q no ho és. Aquest fenomen també es
pot donar en espais compactes: els components connexos del conjunt de Cantor C —que
és compacte— son els punts, pero C no és discret. ELl que diu el teorema és que aquesta
situacié no es pot donar a les varietats.
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orientant els costats i anomenant amb una mateixa lletra els costats que
identifiquem, com a la figura 10.1.

Figura 10.1: Un octdogon amb els costats identificats.

En cada cas, l'espai quocient esta perfectament ben definit, pero pot
ser que no sigui una superficie. En una superficie, cada punt ha de tenir
un entorn homeomorf a un disc D?. Per als punts de U'interior del poligon
P, aixo és evident, pero per als punts dels costats de P, dependra de com
siguin les identificacions i en cada cas, cal comprovar amb paciéncia si
els punts interiors de les arestes tenen entorns homeomorfs a D? i si aixo
també és cert per als véertex. Per exemple, si volem que el quocient sigui
una superficie, és clar que una condicidé necessaria és que els costats
estiguin identificats dos a dos, és a dir, que cada costat de P estigui
identificat a un unic costat de P —en particular, el nombre de costats de
P ha de ser parell.” També és cert —encara que no sigui evident— que
aquesta condicio és suficient.

Per exemple, en el cas de l'octogon P de la figura 10.1, es pot com-
provar que el quocient és una superficie que es pot representar com un
subespai de R? (figura 10.2) que s'anomena el “doble tor”. Perd hi pot
haver exemples en que s’obtinguin superficies que, com el pla projectiu o
'ampolla de Klein, no siguin subespais de R>.

Aquestes construccions també es poden fer en dimensions superiors.
Per exemple, si agafem un poliedre (“ple”) de R? i identifiquem les seves

9Sembla evident que si hi ha tres arestes identificades, el quocient no pot ser una
superficie, pero la demostracié no és del tot trivial i utilitza el teorema de la corba de
Jordan.
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Figura 10.2: El doble tor a partir d'un octdogon amb els costats identificats.

cares d'alguna manera, l'espai quocient podria resultar que és una varietat
de dimensié 3. Un exemple facil consisteix en prendre un cub I i identificar
els seus costats de manera que l'espai quocient sigui el tor de dimensié 3
T3 =5S"x S"x S'. Un exemple més sofisticat i molt més interessant és el

de lesfera de Poincaré."®

OAquesta varietat de dimensié 3 la va descobrir Henri Poincaré el 1904 com a con-
traexemple a la primera versi6 de la famosa conjectura de Poincaré. A la vista d'aquest
contraexemple, el mateix Poincaré va modificar la seva conjectura i la nova versid va ser
un dels problemes fonamentals de les matematiques fins l'any 2002 en que Grigori Perel-
man va demostrar que la conjectura és correcta. Si llegim l'obra original de Poincaré,
observarem que no va mai presentar el seu problema com una conjectura, siné com una
pregunta. “Est-il possible que le groupe fondamental de V' se réduise & la substitution
identique, et que pourtant V ne soit pas simplement connexe? [..] Mais cette question
nous entrainerait trop loin.” | tant! Han calgut cent anys d'avencos de la topologia i la
geometria per respondre aquesta pregunta!l
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Podem construir l'esfera de Poincaré a partir d'un dodecaedre (solid)
identificant les seves cares de la segiient manera. Cada cara és un
pentagon. ldentifiquem cada cara amb la seva diametralment oposada
fent un gir de /5 en el sentit de les aqgulles del rellotge (figura 10.3).

Figura 10.3: Un dodecaedre amb les cares identificades de manera que
'espai quocient és l'esfera de Poincaré.

No és evident que l'espai quocient del dodecaedre per aquestes iden-
tificacions sigui una varietat: cal comprovar amb paciéncia que els vertex
i els punts de les arestes del dodecaedre tenen entorns homeomorfs a D>,
Hi ha una altra construccié més conceptual d'aquesta varietat de dimen-
si6 3 com a quocient d'una esfera S* per l'accié d'un cert grup finit G que
actua lliurement sobre S3.

"La situacié és aquesta. Existeix un poliedre reqular a R*, inscrit a lesfera unitat
S3 c R*, que té 120 cares que sén dodecaedres solids. Hi ha un grup de 120 simetries
d’aquest poliedre que té per regié fonamental un qualsevol d'aquests dodecaedres i de
manera que l'espal quocient per l'accié d’aquest grup és una varietat de dimensié 3 que
és l'esfera de Poincaré. A Internet hi podem trobar visualitzacions molt interessants —i
boniques— de tot aixo.
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10.5 Orientacions

Orientar un segment és posar-se d'acord en qué significa, a cada punt,
“endavant” i “endarrere”. Orientar una superficie és posar-se d'acord en
quin ha de ser el sentit de les agulles del rellotge a cada punt. Orientar
una varietat de dimensid tres és posar-se d'acord en com han de girar els
tirabuixons a cada punt de la varietat. Aixo de vegades es pot fer i de
vegades és impossible. Per exemple, si dibuixem un rellotge sobre una
banda de Moebius i fem que es mogui per la banda, quan torni al punt
inicial les seves busques podrien girar en sentit contrari —en funcié de
quin cam{ hagi sequit.

Aquesta és la idea intuitiva d'orientabilitat. Si volem formalitzar ma-
tematicament aquesta idea, de sequida topem amb dificultats importants.
A continuacid, intentarem donar un tractament correcte d'aquest concepte,
pero cal avisar que no és possible tractar el tema de lorientabilitat de les
varietats (topologiques) sense utilitzar eines de topologia algebraica. Per
aixo mateix, al llarg d'aquesta seccid donarem arguments que no podrem
justificar completament.

Comencem amb els espais vectorials sobre R.' Per exemple, una recta
—eés a dir, un espai vectorial V' de dimensié 1 sobre el cos R. Tindrem V
orientat tan bon punt hagim escollit un vector v € V, v # 0. Aleshores,
qualsevol vector Av amb A > 0 donara la mateixa orientacid i qualsevol
vector Av amb A < 0 donara l'orientacié contraria. Per orientar un espai
vectorial de dimensid 2 cal escollir una base ordenada vq, vo. Aixd també
ens determinara un sentit de gir positiu que sera el que passa de v,
a v, pel caml més curt. Una segona base ordenada wj, w, donara la
mateixa orientacio si el determinant del canvi de base és positiu i donara
Uorientacid contraria si el determinant del canvi de base és negatiu.

En general, orientar un espai vectorial és escollir una base ordenada,
de manera que dues bases ordenades donen la mateixa orientacid si el
determinant del canvi de base és positiu. Un espai vectorial té, doncs, dues
orientacions possibles. L'espai vectorial R” el podem considerar sempre
orientat per la seva base canodnica.

Si f: V. — V' és un isomorfisme lineal entre dos espais vectorials

12Que el cos base siqui el cos del nombres reals és essencial en el concepte d'orientabi-
litat. En el fons, el “problema” de l'orientabilitat prové del fet que l'espai d’automorfismes
lineals de R” té dos components connexos: el dels automorfismes de determinant positiu
i el dels automorfismes de determinant negatiu. Sobre el cos dels nombres complexos,
per exemple— podriem dir que no hi ha problema d'orientabilitat.
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orientats, direm que f conserva (inverteix) l'orientacié si el determinant de
f —respecte de les bases que donen les orientacions— és positiu (nega-
tiu).13

Suposem ara que f : R” — R” és un homeomorfisme. Resulta que,
encara que f no sigui una aplicacio lineal té sentit dir si f conserva l'o-
rientacid. Per exemple, si f és una aplicacio diferenciable, direm que f
conserva l'orientacid si el determinant de la seva matriu jacobiana és po-
sitiu. St f és simplement una aplicacié continua, no podem utilitzar les
eines del calcul diferencial —com el jacobia— i és aqui on ens calen unes
eines de topologia algebraica que no caben en aquest curs. Acceptem,
doncs, que aquest concepte esta ben definit. Amb aquestes mateixes ei-
nes, no és pas més dificil donar sentit a la frase f conserva l'orientacio si
f: U — U és un homeomorfisme entre dos oberts de R".™

Ara ja podem definir qué entenem per varietat orientable. Suposem
que tenim una varietat M. Recordem que M tindra un atles format per
cartes locals homeomorfes a R” i que a les interseccions de parelles de
cartes locals tindrem unes funcions de transicié ¢;; que sén homeomor-
fismes entre oberts de R". Per tant, aquestes funcions de transicié poden
conservar l'orientacié o no.

Definicio 10.3. Direm que una varietat M és orientable si admet un atles
on totes les funcions de transicié conserven lorientacio.

Vegem alguns exemples de varietats orientables i varietats no orien-
tables.

e R” —i, més en general, qualsevol obert de R"— és orientable.

o |'esfera S” és orientable.

Hem vist que la projeccid estereografica ens doéna un atles de S”
amb dues Uniques cartes locals

u=s"-{0,...,0,1)}, v=5"-{0,...,0,—1)}.
Per tant, hi ha una Unica funcid de transicio.

®:R"—-{0} - R" - {0}.

3Per exemple, una rotacié conserva l'orientacié i una reflexié respecte d'un hiperpla
inverteix l'orientacio.

145 els oberts s6n connexos, només hi ha dues possibilitats: f conserva l'orientacid o
f inverteix l'orientacid. Si els oberts no fossin connexos, aleshores podria passar que f
conservés l'orientacid en uns components connexos i l'invertis en uns altres components
connexos.
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Figura 10.4: “Moebius Battle” (xkcd.com, Creative Commons License).

Si calculem aquesta funcié de transicié i veiem que conserva lori-
entaci6 ja haurem demostrat que S” és orientable. De fet, si n > 1
no cal fer cap calcul. En efecte, com que ® esta definida sobre un
espai connex, només hi ha dues possibilitats: conserva l'orientacid o
bé inverteix l'orientacid. Si conserva l'orientacid, ja tenim que S” és
orientable. Si inverteix l'orientacio, aleshores n’hi ha prou amb can-
viar una de les dues projeccions estereografiques —composant, per
exemple, amb una reflexié a R"— i tindrem que la funcié de transicié
conserva l'orientacio. En el cas n =1, aquest argument no és valid,
perque la funcié de transicié esta definida sobre l'espai no connex
R — {0} i podria, per exemple, conservar l'orientacidé en els negatius
i invertir-la en els positius. Si calculem aquesta funcié de transicio,
veiem que és la funcié ®(x) = 1/x que té derivada negativa arreu i,
per tant, inverteix l'orientacié arreu.

e La banda de Moebius no és orientable (figura 10.4)."

Sovint es diu que la banda de Moebius és una superficie d'una sola cara, com
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D’entrada, la banda de Moebius tal com 'hem definida al llarg d'a-
quests apunts no és una superficie,'® pero si hi fem una petita mo-
dificacié consistent en eliminar els punts de la vora, és a dir, si
considerem

M’ :=1[0,1] x (0,1)/{(0, t)~(1,1—1t):te(0,1)}

aleshores si que tenim una superficie. Aquesta superficie no és ori-
entable. Donem una idea de la demostracié. Considerem M’ C R3
de la manera habitual i suposem que tenim una orientacié a M’. Al
voltant de cada punt x € M’ hi podem dibuixar una petita circum-
feréncia ¢, i, utilitzant l'orientacid, podem marcar un sentit de gir en
aquesta circumferéencia “de manera coherent” a tota la superficie. Si
ara prenem la recta normal a la superficie a cada punt, en aquesta
recta normal hi ha dos vectors unitaris que apunten en direccions
contraries. D’aquests dos vectors, definim v, que sigui el que, res-
pecte del sentit de gir de c,, sequeix la regla del tirabuixd.

Sigui ara M” := (0,1) x (0,1) ¢ M. Orientem M” i fem amb M" el
mateix que hem fet amb M’: obtenim, per a cada punt x € M” un
vector normal w,. Evidentment, per a cada punt x € M” es complira
que vy = £w,. Invertint, si cal, l'orientacié de M”, podem aconseguir
que hi hagi com a minim un punt x € M” tal que v, = w,. Considerem
ara aquesta funcié continua ((—, —) és el producte escalar de R3)

M" — {+1, -1}

X = (Vy, Wy)

Com que M” és un espai connex, aquesta funcié ha de ser constant.
Per tant, v, = w, per tot x € M"”. Aix0 és impossible. En efecte,
considerem el punt[0,1/2] = [1,1/2] € M'—=M" i el vector w12 € S
D’'una banda, la funcié w12 és continua. D'altra banda, w12 =
Vieap) st t # 0,1, Finalment,

lim v, = —limy,
o0 (1/2) 1 (01/2)

si aixo fos sinonim de no orientabilitat. El cas és que sén conceptes molt diferents.
Lorientabilitat d'una superficie és una propietat intrinseca de la superficie, mentre que
tenir una cara o dues cares és un concepte que depén de la inclusié de la superficie en
un espai de dimensié tres, com puqui ser R3. Per exemple, com que 'ampolla de Klein
no es pot incloure a R3, no té sentit preguntar-se si té una cara o dues cares.

8De fet, la banda de Moebius que hem estudiat és un exemple de varietat amb vora.
Aquest concepte de varietat amb vora —que no volem tractar en aquest curs— generalitza
el concepte de varietat. La banda de Moebius, el disc D", el cilindre S' x [0, 1], etc. sén
exemples de varietats amb vora que no sdn varietats.
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i aixo és impossible.

e Si una superficie conté una banda de Moebius, no pot ser orientable.
Aixod és “evident”"” perqué una orientacié a la superficie donaria
immediatament una orientacié a la banda de Moebius, que sabem
que no en té cap. Com que hem vist que el pla projectiu i l'ampolla
de Klein contenen una banda de Moebius, obtenim que ni el pla
projectiu ni 'ampolla de Klein son orientables.

e El producte de dues varietats orientables és orientable. Per tant, el
tor és orientable.

e L'espai projectiu RP" és orientable si i només si n és senar. L'ex-
plicacié d'aixo es basa en el fet que l'aplicacié antipodal v — —v
conserva l'orientacié a R?" (té determinant 1) i inverteix l'orientacié
a R?™*1 (té determinant —1).

10.6 Varietats de dimensio 1

Essencialment, només hi ha dues varietats connexes de dimensid 1: la
recta i la circumferéncia —que sén diferents, perqué una és compacta i
l'altra no ho és.

Teorema 10.4. Si M és una varietat connexa de dimensié 1, aleshores
MZRoMZES",

Demostracié. La farem en diverses etapes.

e Evidentment, si M es pot recobrir amb una Unica carta local, ales-
hores M Z R i hem acabat.

e El pas clau de la demostracid és entendre que passa si M es pot
recobrir amb dues cartes locals.

7Si entenem que la banda de Moebius és la superficie sense vora M’ de l'apartat
anterior i st suposem que M’ és un obert d’'una superficie S, aleshores si que és evident
que S no pot ser orientable, perqué si {U;} és un atles orientable a S, tindriem que
{U;n M’} seria un atles orientable a M’, que sabem que no pot existir. La condicié que
M’ sigui un obert de S és una conseqliéncia del teorema d’invaridncia del domini, que
no podem demostrar en aquest curs.
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Suposem que M = U U V on U,V C M sén oberts de M, cadascun
d’ells homeomorf a R a través d’homeomorfismes

p:USR, ¢:VSR.

Com que M és connexa, aquests dos oberts no poden ser disjunts.
Considerem

A=¢pUNnV)CR
que és un obert de R i, per tant, és una varietat de dimensi6 1. Pel
teorema 10.2, els seus components connexos son oberts connexos de
R, és a dir, intervals oberts (corol-lari 9.5). El pas segtient consisteix
en veure que aquests intervals no poden ser acotats.

Suposem que, per exemple, A tingués un component connex de la
forma (a, b), amb a, b € R. Considerem

¢ a,b)cUNnV cCV.

En primer lloc, ¢~ '(a, b) és un obert de V. Perd també és tancat a
V, perque

¢ '(a,b) = (¢ [a,b]) NV
i ¢ '[a, b] és tancat de M perqué és compacte (proposicié 8.2). Com
que ¢~ '(a, b) és un obert i tancat de V = R, tenim que ¢~'(a,b) = V
t aixo implica V C U it U = M, contradiccio.

Hem vist que els components connexos de A sdn intervals no acotats
(diferents de tota la recta R). Com que els components connexos han
de ser disjunts, aixo només és possible en dos casos:

— A és connex de la forma (—oo, a) o (a, o), per algun a € R.

— A és de la forma (—oo, a) U (b, o) per uns certs a < b.

Com que B:= ¢(UN V)= ¢p(UN V) =A, el mateix podem dir de B.

Ara, és relativament senzill en el primer cas construir un homeomor-
fisme M = R i en el segon cas construir un homeomorfisme M = S
Deixem aquests detalls com exercici.

Suposem ara que M es pot recobrir amb un nombre finit de cartes
locals Uy, ..., U,. Demostrem el teorema per induccié sobre n. Si
n =1,2, ja hem vist que el teorema és cert. Apliquem el teorema a
M = UyU---UU,_1. SiM' =R, tenim que M’ és una carta local de
M i M es pot recobrir per dues cartes locals. Si M’ = S', aleshores
M’ és compacte, per tant, és tancat a M i com que és també obert,
tindrem M = M’ = S' i hem acabat.
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e Ens falta el cas general en que M no es pot recobrir amb un nombre

finit de cartes locals. En primer lloc, és facil adonar-se que el segon
axioma de numerabilitat implica que M es pot recobrir amb una
quantitat numerable de cartes locals

M=UUulU,uUsU---
Pel raonament del punt anterior, per tot n > 1 tenim
V,:=UU---UulU,ER=(0,1)

i és senzill “enganxar” tots tots aquests homeomorfismes per obtenir
un homeomorfisme M = R.

10.7 Exercicis addicionals

10.1 Demostreu que l'espai M := {(x,y) € R? : xy = 0} no és una varietat.

10.2 Demostreu que lespai M := {(x,y,z) € R*: xy = 0, z > 0} no és una superficie.

10.3 Doneu un exemple d’'un espai que no sigui unié disconnexa dels seus components
connexos. Doneu un exemple d'un espai compacte Hausdorff que no sigui unié disconnexa
dels seus components connexos.

10.4 Sigui n > k i definim G(k, n) com el conjunt dels subespais vectorials de dimensié
k de R". Trobeu una topologia natural a G(k, n) que fact que sigui un espai compacte.
Feu-ho sequint aquests passos:

1.

Considereu laplicacié ¢ : G(k,n) — M,«,(R) que assigna a cada subespai la

projeccié ortogonal sobre ell. Demostreu que ¢ és injectiva i, per tant, G(k, n) és
. ~ 2

un subespati de M, (R) = R™.

Demostreu que la imatge de ¢ consisteix en les matrius idempotents, simétriques
i de traca k.

Demostreu que G(k, n) és un espai compacte.

10.5 Demostreu que l'espai topologic G(k, n) de l'exercici anterior és una varietat dife-
renciable. Sequiu aquests passos:
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1. Sigui L € G(k, n) i sigui A € M« (R) la matriu que té per columnes els vectors
d’'una base de L. Aleshores, la projeccié ortogonal sobre L ve donada per la matriu
P =AAA)TAL

2. Fixem Ly € G(k, n) i considerem laplicacié W : L(Ly, Lg) — G(k, n) que assigna a
cada aplicacid lineal ¢ el subespai W(¢p) := {v+ ¢(v): v € Ly}. Demostreu que W
és continua.

3. Sigui U és el subespai de G(k, n) format per les matrius tals que el seu primer
menor principal k x k té determinant diferent de zero. Demostreu que U és un
obert de G(k, n) i que la imatge de W és U.

4. Demostreu que W : L(Lo, Lg) — U és un homeomorfisme i que G(k, n) és una
varietat topologica.

10.6 Considereu un triangle equilater ple i identifiqueu els seus costats en la forma
aaa~". Considereu l'espai quocient M (coneqgut com a dunce hat). Demostreu que M no
és una superficie.

10.7 Utilitzeu la “recta amb dos origens” per donar un exemple d'una familia de subcon-
junts connexos compactes tancats C,, n > 0, tals que C,41 C G, per a tot n, pero (-, C,
no sigui connex.

10.8 Demostreu que l'esfera de Poincaré és una varietat de dimensié 3.
10.9 Considereu l'aplicacié F : [0, 7] x [0, 277] — R? donada per
F(u,v) = (cos 2u cos v, sin 2u cos v, cos u sin v, sin u sin v).

Demostreu que la imatge de F és un subespai de R* homeomorf a 'ampolla de Klein.
10.10 Considereu l'aplicacié F : S — R* donada per F(x,y,z) = (xy, xz, y?> — 7%, 2yz).
Demostreu que la imatge de F és un subespai de R* homeomorf al pla projectiu.

10.11 Considereu S® C R?*. Escrivim els punts de R? en la forma (x,y) amb x,y € R2.
Tenim: S =A, UA_on A, = {(x,y) € S>: x| < |y|} LA_ == {(x,y) € S : |x] > |y|}.
Demostreu que A, £ A_ = S"xD? i ALNA_ = T2 Es a dir, lesfera S3 es pot representar
com dos tors solids amb les vores identificades.



Capitol 11

Superficies compactes

-4 L final del capitol anterior hem classificat, sense fer gaire
4{, esforg, les varietats de dimensié 1, pero la classificacio de
3% les varietats de dimensié arbitraria és un problema irresolu-
() X7 ble.! En canvi, s{ que és possible classificar les superficies
compactes, és a dir, fer una llista completa i sense repeticions de totes
les superficies compactes (llevat d’homeomorfisme) i trobar un criteri per
decidir si dues superficies compactes son homeomorfes o no. En aquest
capttol discutirem aquest teorema de classificacié. Enunciarem el teorema
i donarem una idea precisa de com es demostra, perd no entrarem en els
detalls de la demostracié.

Al llarg del curs hem anat trobant algunes superficies compactes. Per
exemple, coneixem l'esfera S?, el tor T, l'ampolla de Klein K, el pla pro-
jectiu RP? i també hem vist el doble tor. Algunes d'aquestes superficies
son orientables i algunes altres no ho sén. El teorema de classificacié ens
dira que les superficies compactes s'obtenen a partir d'aquestes per unid
disconnexa i per una nova operacié que s'anomena suma connexd.

En aquest capitol, la paraula “superficie” voldra dir “superficie com-
pacta i connexa”.

11.1  La suma connexa de superficies

La idea és geomeétricament ben senzilla. Suposem que tenim dues su-
perficies. La seva suma connexa és la superficie que s'obté fent un petit

"’'any 1960, Andrey Markov va demostrar que el problema de la classificacié de les
varietats de dimensié > 4 és indecidible.

127
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forat circular a cada superficie i enganxant les dues superficies per aquest
forat (figura 11.1).

Figura 11.1: Suma connexa de dues superficies.

Siguem una mica més precisos. Sigui S una superficie i x € S un punt
qualsevol. Sigui U una carta local al punt x. Es a dir, x € U i hi ha un
homeomorfisme ¢ : U = R2 No és restrictiu suposar que ¢(x) = 0 € R2.
Sigui D C U lobert que, en aquest homeomorfisme, es correspon amb la
bola oberta B(0,1) C R? Direm que S’ := S — D és “la superficie S amb
un forat”. La vora del forat és

S :=¢ '(S"Yc U
on S' és la circumferéncia unitat de R?. Es compleix, per tant, que 95’ =
S
Sigui ara R una altra superficie. Li fem un forat i obtenim R’. També

tenim que R’ = S'. Ara definim la suma connexa de les superficies S i
R com el quocient?

S+R:=S UR'/{0S ~ dR'}

on la identificacid consisteix en identificar cada punt de la circumferéncia
dS’ amb el punt de la circumferéncia dR’ que li correspon per l'homeo-
morfisme dS' = S" = 9R’.

Ja veiem que hi ha diverses coses que cal demostrar si volem que
aquesta operacid tingui sentit.

Proposicio 11.1. Si R i S son superficies, l'espai topoldgic S + R esta ben
definit i és una superficie O

%Indicarem la suma connexa amb el simhol +. Molts autors utilitzen el simbol #, perd
no sembla que calgui introduir un simbol nou.

3En canvi, la suma connexa no esta ben definida en el cas d'espais topologics generals.
Hi ha problemes fins i tot en el cas de varietats de dimensié més gran que dos.
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Observem que, a priori, l'espai S+ R depén de diverses eleccions. Hem
escollit un punt a cada superficie i una carta local a cadascun d'aquests
punts. La proposicié ens diu que el resultat final és independent d'aques-
tes eleccions. No demostrarem aquest resultat.

Proposiciéo 11.2. La suma connexa de superficies compleix aquestes pro-
pietats:

1. Es commutativa* S+ R=Z R+ S.
2. Es associativa: S + (R+M)ZE(S+R)+M.
3. L'esfera actua com a element neutre: S+ S2 = S.

4. S+ R és orientable si i només si S i R son orientables. ]

Aquesta operacido ens permet, en principi, construir una infinitat de
superficies. Per exemple, aquestes:

e La superficie orientable de génere g es defineix, per cada enter
g > 0, com la superficie

Sg=S2+T+-1 4T

Geomeétricament, és molt facil visualitzar aquestes superficies perquée
es poden representar a R>. La superficie orientable de génere zero
és l'esfera, la de génere 1 és el tor, la de génere dos és el doble tor
i aixt successivament (figura 11.2).

e La superficie no orientable de génere h es defineix, per cada enter
h > 0, com la superficie

N, =RP?+.". + RP?.

Aquestes superficies no es poden representar a R? (aix6 no ho podem
demostrar ara). Com que un pla projectiu amb un forat és una banda
de Moebius, la superficie N, ens la podem imaginar com una esfera
amb h forats a la que hem enganxat una banda de Moebius a cada
forat.

4De fet, la suma connexa no és ni commutativa ni associativa ni té element neutre.
El que succeeix és que aquestes propietats es compleixen “llevat d"homeomorfisme”.
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Figura 11.2: Les superficies orientables S, per g = 0,1, 2, 3,4.

Evidentment, també podem fer sumes connexes “mixtes” de superficies
orientables i no orientables, per exemple

T+ T+RP*+ K +RP?

pero veurem més endavant (proposicié 11.6) que aquestes sumes mixtes
no ens donen exemples nous.

Una altra operacid que podem fer a una superficie és la que es coneix
com adjuntar una nansa. Suposem que S és una superficie i fem dos forats
(disjunts!) a S. Obtenim una superficie amb dos forats S’. Considerem
ara un cilindre M = S" x [0, 1] (que és el mateix que una esfera amb dos
forats) i considerem l'espai que s'obté de S’ LU M identificant cada extrem
del cilindre amb un dels forats que hem fet a S.
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Figura 11.3: Adjuntar una nansa es el mateix que fer suma connexa amb
un tor.

Direm que hem adjuntat una nansa a S (figura 11.3). Tanmateix, aques-
ta operacié no déna res nou, perqué

Proposicio 11.3. Si adjuntem una nansa a una superficie S la superficie
que obtenim és homeomorfa a S + T (figura 11.3). [

Per tant, la superficie S, també s'acostuma a anomenar l'esfera amb g
nanses.

11.2 Poligons amb costats identificats

Recordem que un métode que haviem utilitzat a l'apartat 10.4 per construir
superficies era el de comencar amb un poligon (ple) amb un nombre parell
de costats i identificar els costats dos a dos. Per indicar com es fan
aquestes identificacions, cada costat té una lletra i un sentit, de manera
que dos costats s'identifiquen si tenen la mateixa lletra i la identificacid
es fa en el sentit indicat. L'espai que obtenim és una superficie.

Hi ha una manera natural de codificar aquesta construccié que con-
sisteix en comencar a recérrer la vora del poligon en un cert sentit i anar
anotant les lletres de cada costat, amb l'exponent —1 si el costat esta
orientat en sentit contrari a com recorrem el poligon. Per exemple:

e L'esfera es pot representar per aa™".

e El tor es pot representar per aba='b".
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e El pla projectiu es pot representar per aa.

e L'ampolla de Klein es pot representar per aba™'h.

e El doble tor es pot representar per aba™'b~"cdc™'d".

Aquestes representacions no son uniques: dues “paraules” diferents
ay---d, iby---by

poden donar superficies homeomorfes. Aquestes representacions es poden
relacionar facilment amb la suma connexa.

Proposicio 11.4. Sigui S una superficie representada per la paraula
ap---dp

i sigui S’ una superficie representada per la paraula
by---b,,.

Aleshores, la superficie S + S’ estd representada per la paraula

ay---dpyby---by. O

Aix0 és evident si ens adonem que fer un forat a una superficie que
hem obtingut com un poligon amb els costats identificats és el mateix
que afegir un nou costat al poligon, que no esta identificat a cap altre.
D'aquesta manera, veiem (figura 11.4) que les superficies S, i N, que hem
definit abans es poden obtenir com a poligons amb els costats identificats:

e S, es pot representar com un poligon de 4g costats, identificats
segons

arbia;'byt - agbgajb;1

e N, es pot representar com un poligon de 2h costats, identificats
segons
aqdq ---dpdp

Donem ara un exemple interessant de dues representacions diferents
d’'una mateixa superficie.

>Sempre que els vértex del poligon estiguin tot identificats a un tnic vértex, com és
el cas dels poligons que donen S; i Nj.
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Figura 11.4: Suma connexa de dos poligons amb costats identificats.

Proposicié 11.5. K = RP? + RP?.

Demostracié. Estem dient que les paraules aba™'b i xxyy representen
la mateixa superficie. La demostraciéo es fa per un métode que sovint
’ iy - * ” . . .

s'anomena “tisores i cola” que ve indicat a la figura 11.5. O

A l'apartat anterior ens hem plantejat si sumant tors i plans projectius
podem obtenir superficies noves. La resposta és no perqué tenim aquest
resultat:

Proposicié 11.6. T + RP? = RP? + RP?> + RP% Per tant, S, + N, = Ni
amb k = h + 2g.

Demostracié. Podriem demostrar aquest resultat amb tisores i cola® perd
és més divertit utilitzar un argument de tipus geometric. Segons la pro-

®Vegeu L. Ch. Kinsey, Topology of Surfaces p. 85.
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Figura 11.5: L'ampolla de Klein com a suma connexa de dos plans projec-
tius.

posicié anterior, n'hi ha prou amb demostrar que
T +RP?*Z K +RP?.

Per poder visualitzar aquest homeomorfisme, fem un forat a RP? i recordem
que obtenim una banda de Moebius M, que si que podem dibuixar a R3.
Si demostrem que M+ T = M + K, després tornarem a adjuntar el disc
que hem tret a cada costat i tindrem 'homeomorfisme que voliem.

= -

Figura 11.6: Adjuncié d'una nansa a una banda de Moebius, de dues
maneres equivalents.

M + T és el mateix que una banda de Moebius amb una nansa. La
figura 11.6 representa una banda de Moebius amb una nansa i ens mostra
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com podem fer un homeomorfisme de manera que la nansa quedi adjuntada
com en el segon dibuix de la mateixa figura.

11

Figura 11.7: Una ampolla de Klein amb un forat.

Una ampolla de Klein amb un forat també es pot representar a R:
n'hi ha prou amb prendre el dibuix ordinari de 'ampolla de Klein a R3
—que no és “correcte” perque hi ha una circumferéencia de punts dobles—
i fer-1i el forat precisament de manera que la “trompa” pugui entrar dintre
de l'ampolla. Si ho fem aix(, els dibuixos de la figura 11.7 ens mostren
que el resultat és homeomorf a un rectangle amb una nansa adjuntada de
manera que el resultat no és orientable. Si ara fem un forat rectangular
a una banda de Moebius i en aquest forat hi adjuntem l'ampolla de Klein
amb forat, obtenim la banda de Moebius amb nansa de la figura 11.6. [

11.3 Superficies triangulades

Una triangulacio d’una superficie és una descomposicid de la superficie en
triangles (plens) de manera que els triangles que es toquin comparteixin
una aresta o un vertex. Per exemple, la superficie d'un tetraedre reqular
és una triangulacié de l'esfera amb quatre triangles i la superficie de
l'icosaedre regular és una triangulacié de Uesfera amb vint triangles.

La paraula “triangle” s'acostuma a reservar per indicar un poligon de
tres costats sense l'interior. Per al triangle “ple” s'acostuma a utilitzar la
paraula “simplex” o, si volem fer emfasi en que és una figura de dimensio
2, parlarem del 2-simplex. Exactament, el 2-simplex estandard es defineix
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com aquest triangle equilater ple:
Ny ={(x,y,2) €R3:x+y+Z: 1, x,y,z 20}.7
Els vertex del simplex sén els punts (0,0,1), (0,1,0) i (1,0,0) i les arestes

son les interseccions amb els plans x =0, y =0, z = 0.

Si S és una superficie, una triangulacié de S és una descomposicié
S=DyU---uUb,

on cada D; = A; i a més es compleix que st D;ND; # @ amb i # j,
aleshores D; N D; és una aresta de D; i de D; o bé és un vertex de D; i de
D;.

Totes les superficies que hem vist fins ara admeten alguna triangulacié.
En el cas de l'esfera, ja ho sabem. La figura 11.8 ens mostra un exemple
de triangulacio del tor i la figura 11.9 ens mostra una triangulacié del pla
projectiu.

Figura 11.8: Una triangulacid del tor amb 18 triangles.

Si tenim una triangulacié de S i una triangulacié de S’, és molt facil
obtenir una triangulacié de la suma connexa S + S’. N'hi ha prou amb fer

’Aquesta definicié és interessant perqué ens permet definir molt facilment els analegs
del triangle equilater (que és el 2-simplex estandard) i el tetraedre regular (que és el
3-simplex estandard) en dimensid arbitraria. Definim

Npi={(x0, -, X)) ER™ ixg 4+ +x,=1,x>0,i=0,...,n}.
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a

Figura 11.9: Una triangulacié del pla projectiu amb 10 triangles.

que el forat que fem a cada superficie abans d'enganxar-les sigui preci-
sament l'interior d'un 2-simplex. Per tant, totes les superficies Sy, g > 0
t N, h > 0, son triangulables. Pot haver-hi superficies que no siguin
triangulables? La resposta és no, pero la demostracié és relativament
complicada i l'ometrem.

Teorema 11.7. Tota superficie és triangulable.® [

11.4 La caracteristica d’'Euler

El tetraedre té 4 vértex, 6 arestes i 4 cares. El cub té 8 vértex, 12 arestes
i 6 cares. L'octaedre té 6 vértex, 12 arestes i 8 cares. El dodecaedre té
20 vertex, 30 arestes i 12 cares. L'icosaedre té 12 vértex, 30 arestes i 20

8Que podem dir de les varietats de dimensié > 2? La pregunta si totes les varietats
son triangulables es va plantejar des dels inicis de la teoria de varietats. EL 1920,
el matematic hongarés Tibor Radd va demostrar que les superficies son triangulables
(teorema 11.7) i trenta anys més tard Edwin E. Moise i R.H. Bing van demostrar que
les varietats de dimensid tres també ho sén. En un article publicat el 1982, Michael
Freedman va construir una varietat de dimensié 4 que no es pot triangular. Freedman
va rebre la medalla Fields el 1986. En el moment d'escriure aquests apunts (juliol de
2013) fa pocs mesos que s’ha penjat a Internet un treball del matematic romanés Ciprian
Manolescu que demostra que en qualsevol dimensid > 5 hi ha varietats que no es poden
triangular.
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cares. Observem aixo:

4-6+4=2
8-12+6="2
6—12+8="2

20-304+12=2
12-30+20=2

Va ser Euler qui va adonar-se que si fem aquesta suma alternada per a
qualsevol poliedre —reqgular o no— sempre surt 2. El 1752, en una de
les obres que es consideren fundacionals de la topologia,’ Euler publica
el Teorema d’Euler sobre els poliedres que afirma que, en un poliedre
qualsevol, si sumem el nombre de cares amb el nombre de vertex obtenim
un nombre que supera en dues unitats el nombre d'arestes. La demostracid
d'aquesta insigne propietat es fa per induccié i no és dificil imaginar un
argument heuristic que fa que el resultat sigui plausible. Considerem un
poliedre i eliminem-li un vertex. Imaginem que en aquest vertex que hem
eliminat hi confluien n arestes. Aixo fa que el nombre de vertex decreixi en
una unitat, el nombre d'arestes decreix en n unitats i el nombre de cares
decreixi en n — 1 unitats. Per tant, la suma alternada de vertex, arestes i
cares no ha canviat.

De fet, la demostracié d'Euler no és del tot correcta i el teorema només
és cert per a poliedres que, en el nostre llenguatge, siguin homeomorfs a
l'esfera. Per exemple, si acceptéssim com a valid el poliedre homeomorf al
tor de la figura 11.10, veurlem que la suma alternada de vertex, arestes
L cares no ddéna 2 sind que ddéna 0. El cas és que el teorema d'Euler és
realment un teorema sobre les descomposicions de l'esfera en poligons.
El que és més important és que el teorema d'Euler es pot generalitzar a
qualsevol superficie, substituint 2 per un nombre que depén Unicament del
tipus topologic de la superficie.

Una descomposicié simplicial d'una superficie S és el mateix que una
triangulacid, pero admetent que cada peca de la triangulacié, en lloc de
ser un triangle és un poligon arbitrari. Aleshores:

Teorema 11.8. Per cada superficie S existeix un nombre enter x(S), ano-
menat la caracteristica d’Euler de S, que compleix que si tenim una des-

9S6n dos treballs d'Euler a la revista Novi commentarii academiae scientiarum Pe-
tropolitanae que es titulen Elementa doctrinae solidorum i Demonstratio nonnullarum
insignium proprieatatum, quibus solida hedris planis inclusa sunt praedita. Laltre tre-
ball que es considera que marca el naixement de la topologia és el d'Euler del 1736
sobre el problema dels ponts de Koenigsberg.
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Figura 11.10: Un polledre toric que té 16 cares (que sén quadrilaters), 16
vertex i 32 arestes.

composicié simplicial qualsevol de S i aquesta descomposicié simplicial
té v vertex, a arestes i c¢ cares, aleshores

v—a+c=x(5).

No tenim prou instruments per demostrar aquest teorema. Si l'accep-
tem com a valid, podem calcular facilment la caracteristica d'Euler de les
superficies que coneixem. N’'hi ha prou amb trobar una descomposicid
simplicial de la superficie —per exemple una triangulacié.

e Ja hem vist que la caracteristica d'Euler de l'esfera S? és 2.

e El poliedre toric de la figura anterior ens diu que el tor té carac-
teristica igual a 0.

e Sicalculem el nombre de vertex, arestes i cares de la triangulacié del
pla projectiu que hem vist a la seccié 11.3, obtindrem que x(RP?) = 1.

e Es senzill trobar quin és el comportament de la caracteristica d'Euler
respecte de la suma connexa de superficies. Quan fem els dos forats,
eliminem dues cares i quan enganxem les dues superficies eliminem
3 arestes i 3 vertex. Per tant:

X(S+S5) = x(5)+ x(5) -2
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Per induccid, la caracteristica de les superficies S, i Nj és

X(S)) =2-2g
X(Np) =2—h.

Del teorema 11.8 es desprén que dues superficies homeomorfes han
de tenir la mateixa caracteristica d’'Euler. Per6 dues superficies di-
ferents poden tenir la mateixa caracteristica. Per exemple, el tor i
N, tenen caracteristica zero, perdo no son superficies homeomorfes,
perqué el tor és orientable i N, no ho és.

Hem enunciat el teorema 11.8 de manera molt més general que l'o-
riginal d'Euler, perd encara no és l'enunciat més general possible.
Fixem-nos en aquest cas extrem. Considerem un punt a l'esfera i pen-
sem aixo com una mena de pseudo-descomposiciéo amb un vertex, cap
aresta i una cara. Curiosament, també es compleix que 1—0+1 = 2.1

11.5 EIl teorema de classificacio

A la seccié 10.6 vam classificar les varietats de dimensié 1: només n’hi
ha dues de connexes, una de compacta que és la circumferéncia i una
de no compacta que és la recta. També hi ha un fantastic teorema de
classificacio de les superficies:

Teorema 11.9. Tota superficie compacta i connexa és homeomorfa a una i
només una d'aquestes superficies: Sy, g >0, N, h > 0.

Demostrar ara aquest resultat fonamental no seria gens complicat per-
que els tres punts dificils ja els hem acceptat sense demostracid. Soén
aquests:

e Tota superficie és triangulable (teorema 11.7).

e El concepte d'orientabilitat esta ben fonamentat (seccié 10.5).

e El teorema d’'Euler per a les superficies compactes (teorema 11.8).

"OEl teorema encara es pot generalitzar molt més, perqué no és només un teorema
de superficies ni de varietats, sind que és valid per a qualsevol espai que admeti alguna
descomposicid simplicial amb simplex de dimensid arbitraria. Es un dels primers teoremes
de la teoria d’homologia.
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La demostracid del teorema de classificacio aniria aixi.

En primer lloc, entre les superficies S, i N, no n’hi pot haver dues d'-
homeomorfes perqué no n’'hi ha dues que tinguin la mateixa caracteristica
d’Euler i la mateixa orientabilitat.

Si tenim una superficie arbitraria S, en primer lloc la triangulem i a
continuacié utilitzem aquesta triangulacié per convertir-la en un poligon
amb els costats identificats. Finalment, agafem aquest poligon i apliquem
sistematicament técniques de “tisores i cola” i els teoremes 11.51 11.6 fins
que el convertim en un dels poligons estandard de S; o Nj. Tot aixo és
relativament senzill i no ho farem perqué, des d'un punt de vista didactic, té
un interes limitat. Les idees realment importants ja les hem anat discutint
al llarg d'aquests dos ultims capitols del curs.

Corollari 11.10. Dues superficies (compactes, connexes) S i S’ son home-
omorfes si i només si x(S) = x(S') i les dues tenen la mateixa orientabi-
litat. [

Després d'aquests dos teoremes tan bonics, és un bon moment per
donar el curs per acabat.

11.6 Exercicis addicionals

11.1 Sigui X # @ un graf finit connex. Es a dir, X és un subespai de R? format per
un nombre finit de punts (anomenats vértex), units per un nombre finit de corbes lineals
a trossos (anomenades arestes) que només es tallen en els vértex. Es pot demostrar
que existeix un € > 0 tal que els punts de R? a distancia € de X formen una superficie
compacta connexa orientable S(X). Calculeu el génere de S(X) en funcié del nombre de
vertex v i el nombre d'arestes a del graf X.

11.2 La vora d'una banda de Moebius és una circumferéncia. Considereu dues bandes
de Moebius i identifiqueu les seves vores. Demostreu que s'obté una ampolla de Klein.

11.3 Sigui S una superficie compacta connexa i sigui x la seva caracteristica d'Euler.
Si ¢ és el nombre de cares, a és el nombre d'arestes i v el nombre de vertexs d'una
triangulacié de S, proveu que 3¢ =20, a =3(v—x)iv > %(7 + /49 — 24x).

11.4 Demostreu que els Unics poliedres regulars possibles sén els cinc solids platonics.

11.5 Un habitant d'un mén bidimensional vol saber la forma global del seu mén. Per
aixo el divideix en pentagons de manera que cada aresta és comu a dos pentagons i
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cada vertex és coml a quatre pentagons. Observa, a més, que tothom sempre porta el
rellotge a la ma dreta. Cada vegada que compta les cares s’equivoca, perd sempre obté
un nimero entre vint i trenta. Quantes cares hi ha realment? Com és el seu mén?

11.6 Suposem que tenim una superficie compacta S subdividida en pentagons, de manera
que (a) dos pentagons sén o bé disjunts o bé tenen un Unic vertex en comu o bé tenen una
Unica aresta en comy; (b) a cada veértex hi conflueixen el mateix nombre de pentagons.
Demostreu que S no pot ser el tor.

11.7 Demostreu que tota superficie compacta connexa és homeomorfa a una, i només una
de les segiients superficies: SZ4+nT, P+nT obé K+ nT on n és un nombre enter
positiu o zero, T és un tor, P és un pla projectiu i K és una ampolla de Klein.

11.8 Sigui S una superficie compacta connexa que resulta d'identificar dos a dos els
costats d’'un octdogon. Demostreu que x(S) > —2. Demostreu que qualsevol superficie X
tal que x(X) > —2 es pot aconsequir identificant dos a dos els costats d'un octogon.

11.9 Una superficie esta triangulada amb 54 triangles i 26 veértex. Classifiqueu-la.

11.10 Considerem la superficie S, i la superficie Nj,. Fem dos petits forats disjunts
D1, D; a Sy i dos petits forats disjunts Dy, D5 a Nj. Identifiquem dD; = dD; per i =1, 2.
Classifiqueu la superficie que s'obté.

11.11 Designem per Q, les funcions polinomiques reals de grau < 2 en n variables i
identifiquem Q,, amb un espai euclidia. Per exemple, @, ZR%i Q1 = R3. Sigui D el disc
unitat de R? i considerem

M:={feQ: [,f=0, [, =1}

amb la topologia induida. (Aquest espat apareix en uns certs treballs de percepcid visual.
Vegeu, per exemple, G. Carlsson, Topology and data, Bull. Amer. Math. Soc. 46-2 (2009)
255-308.) Definim My com el subespai de M format per les funcions f € M que es
poden expressar com

f(x.y) = q(Ax + py)

per uns certs g € Q1 i (A, y) € S'. Es tracta de demostrar que l'espai topoldgic Mg és
homeomorf a lampolla de Klein. Feu-ho sequint aquests passos:

1. Sigui A:={qg = a + bt —4at’ € Q; : f_11 g> = 1}. Demostreu que A= S'.
2.Sige Ai(Aup) €S, considereu la funcié f € Q, donada per
f(x,y) == q(Ax + py).
Demostreu que [,f =01 [,f*#0.

3. Considereu l'aplicacié F : A x S' — M definida

F(q, A )%, 0) == ([, a0x + 1y)?) 7 qAx + py).

Demostreu que F és exhaustiva.
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4. Si F(qg, A, u) = f, demostreu que
F() = {(q. A ), (@ —A, 1)}
on hem utilitzat la notacié q(t) = g(—t).

5. Demostreu que Mg és homeomorf a 'ampolla de Klein.
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Capitol 12

Epileg

‘'estudiant que ha sequit aquest curs haura adquirit un llen-
guatge i uns fonaments minims que li han de permetre intuir
la grandesa i la profunditat d’aquest univers anomenat to-
pologia. Es probable que tingui ganes de saber-ne més, de
caminar una mica més per aquestes regions immenses. En aquest epileg
donarem alguns indicis d'algunes comarques i serralades que anira tro-
bant si emprén aquest cami. Tanmateix, haurem de ser forca superficials
en les nostres descripcions.

Teoria d’homologia

La teoria d’homologia va néixer de la ment de Poincaré a l'hora que naixia
el segle xx i es va anar desenvolupant i consolidant al llarg de la primera
meitat del segle passat. Aquesta teoria permet associar a cada espai
topologic X una familia d'invariants algebraics que s'anomenen els grups
d’homologia de X.

X Hi(X), i=012,...

L'homologia permet resoldre alguns dels problemes que han aparequt al
llarg d’aquest curs, la solucid dels quals ha quedat fora del nostre abast.
Per exemple, la teoria d’homologia és l'eina que permet demostrar que, si
n # m, aleshores S" i S” son espais diferents i també que R” i R” soén
espais diferents st n # m. Permet fonamentar rigorosament el concepte
d'orientabilitat. Serveix per demostrar el teorema de la corba de Jordan
i el teorema de la caracteristica d’'Euler—en dimensié arbitraria. Es una
eina molt poderosa.

145
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Topologia algebraica

La teoria d’homologia va molt més enlla de ser una eina per demostrar els
teoremes que hem mencionat abans. Es la porta d'entrada a la topolo-
gia algebraica, una de les branques més importants de les matematiques.
Dit d'una manera molt general, la topologia algebraica associa invariants
algebraics —grups, anells, etc— als espais topologics. Aquests invari-
ants ens permeten distingir els espais entre ells i estudiar-ne les seves
propietats.

Un exemple elemental podria ser la caracteristica d’Euler, que és un
nombre enter que és un invariant topologic dels espais. Un altre exemple
serien els grups d’homologia H.(X). El desenvolupament de la topolo-
gia algebraica des dels treballs de Poincaré ha conduit a la introduccioé
d'invariants algebraics més i més sofisticats: l'anell de cohomologia, les
operacions de Steenrod, la teoria K, la teoria de cobordisme, la cohomo-
logia el-liptica,...

Si, per exemple, h és un d’'aquests invariants i som capacos de calcular-
lo per a dos espais X i Y i veiem que h(X) 2 h(Y), aleshores deduim que
X 2 Y. Si, en canvi, obtenim h(X) = h(Y) i sospitem que X 2 Y, aleshores
en caldra inventar un invariant més sofisticat, més fi, que distingeixi l'espai
X de l'espai Y.

El grup fonamental

La famosa conjectura de Poincaré afirma que l'Ginica varietat compacta de
dimensid 3 que és simplement connexa és l'esfera. Aquest concepte de
“simplement connexa” va ser introduit pel mateix Poincaré i fa referéncia
a que tot llac es pot contraure a un punt. Més en general, considerem un
espai topologic X, escollim un punt xo € X i considerem tots els llacos
de X amb origen i final a xp. Aleshores, identifiquem dos llacos wy ~
w1 st es pot passar d'un a l'altre per una familia continua de llacos wy,
t € [0,1]. Resulta que el conjunt que obtenim és un grup amb l'operacid
de concatenar un lla¢ després d'un altre. Aquest grup és un invariant
topologic de lUespai X i s'anomena el grup fonamental de X:

71(X)

El grup fonamental d'un espai ens déna informacié important sobre l'es-
pai, pero també ens ddna un pont entre la teoria de grups i la topologia.
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En efecte, si G és un grup arbitrari, podem construir un cert espai to-
pologic, anomenat BG, canonicament associat al grup G, que té per grup
fonamental el grup G.

(BG) = G

Aix0 ens permet, en alguns casos, estudiar propietats dels grups a partir
d’estudiar la topologia dels espais BG. Per exemple, qualsevol dels ins-
truments de la topologia algebraica que hem comentat abans, quan els
apliquem a un espai BG d'aquests, ens donara algun invariant del grup
abstracte G.

Varietats diferenciables i fibrats vectorials

Hem dit que les varietats son uns dels espais topologics més importants
que hi ha. Dintre de les varietats, les més importants son les varietats
diferenciables. Una varietat és un espat que, localment, té la topologia de
R". Pero R" té molta més estructura, més enlla de la seva topologia. Per
exemple, hi ha una estructura diferencial que ens permet parlar de funcions
diferenciables, derivades parcials, formes diferencials, camps vectorials,
integracio, etc. Una varietat diferenciable és una varietat topologica que, a
més, esta localment modelada sobre R"”, amb la seva estructura diferencial.

Tot estudiant de matematiques hauria de coneixer la teoria elemental
de les varietats diferenciables i les seves subvarietats, els conceptes de
camp tangent, forma diferencial, integracid, derivada covariant, etc.

Dins de la topologia, les varietats diferenciables també hi juguen un
paper molt important perquée son les varietats que tenen un millor com-
portament i sobre les que és possible desenvolupar una teoria més satis-
factoria.

L'estudi de les varietats diferenciables ens dura a la teoria de fibrats
vectorials i classes caracteristiques, que son les eines basiques per atacar
preguntes com aquestes, que ja hem trobat en aquests apunts:

e Es possible incloure una varietat N a R"?
e Es possible incloure una varietat N a la varietat M?

e Si N és una varietat compacta, existira una varietat compacta M que
tingui N com a vora?
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Teoria d’homotopia

A la topologia ens agradaria poder decidir si dos espais s6n homeomorfs
0 no i ens agradaria poder conéixer quines son les aplicacions continues
entre ells. Com que aixo és monstruosament dificil (de fet, és impossible
en general), la teoria d’homotopia proposa una relacié més feble que la
de ser homeomorfs, que és la de ser homotopicament equivalents.

Dues aplicacions continues fy, f; : X — Y es diu que sén homotopiques
si pertanyen a una familia continua d'aplicacions f;, t € [0, 1]. Aleshores,
dos espais X, Y sdn homotopicament equivalents si existeixen aplicacions
f:X—>Yig:Y — X tals que fg i gf siguin aplicacions homotopiques a
les aplicacions identitat corresponents.

El pas a la categoria homotopica és una simplificacid drastica. Per
exemple, les aplicacions continues de S” a S” formen un espai topologic
que sembla molt dificil de descriure pero, llevat d’homotopia, les aplica-
cions de S” a S" es coneixen perfectament i n’hi ha exactament una per
cada nombre enter. Tanmateix, aquesta simplificacié drastica ens manté
encara en un mon d'una riquesa i una complexitat impressionants.

La pregunta central de la teoria d’homotopia és la de determinar quines
son, llevat d’homotopia, les aplicacions d’'una esfera S™ en una altra esfera
S". La teoria neix el 1931 quan Heinz Hopf va donar la idea clau per
classificar les aplicacions

S35 s°

llevat d’homotopia —n’hi ha exactament una per cada nombre enter. Des
d’aleshores, la tecnologia que s’ha anat desenvolupant per atacar aquest
problema —que no s'ha resolt— és impressionant.

La teoria d’homotopia esta (ntimament relacionada amb la topologia
algebraica i va molt més enlla d'atacar el problema de les aplicacions
S™ — S", per dos motius:

1. Hi ha molts problemes de topologia que a primera vista no sembla
que siguin problemes de teoria d’homotopia, fins que es demostra que
la solucid del problema és equivalent a la solucié d'un determinat
problema homotopic.

2. S'ha vist que les idees abstractes que sén a la base de la teoria
d’homotopia es poden aplicar a molts altres ambits fora de la topo-
logia.
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Topologia geométrica

Normalment, s'anomena topologia geométrica l'estudi topologic de les va-
rietats, amb totes les eines que hem discutit fins ara i també amb unes
eines especifiques, d’'un caire més geométric, com la teoria de la cirur-
gia. En el cas de les varietats diferenciables, també s'ha utilitzat el nom
topologia diferencial.

Normalment, es distingeix entre la topologia de dimensié baixa, que
és la de les varietats de dimensié 3 i 4 i la topologia de les varietats de
dimensié > 5, que tenen un comportament molt diferent i, curiosament,
més senzill que el de les varietats de dimensions inferiors. Pensem, per
exemple, en la conjectura de Poincaré, que pot generalitzar-se a qualsevol
dimensié. Poincaré la va plantejar l'any 1900. EL 1961 Stephen Smale va
demostrar que és certa en qualsevol dimensié > 5. Vint-i-un anys més
tard, Michael Freedman va demostrar que és certa en dimensié 4. El cas de
dimensié 3 —el més dificil— no es va resoldre fins l'any 2003. L'explicacid
d’aquesta dificultat especial de les dimensions 3 i 4 és que en dimensions
grans hi ha “prou espai” per utilitzar una técnica de transformacié d'unes
varietats en unes altres que va inventar John Milnor el 1961 i es coneix
amb el nom de cirurgia.

La conjectura de Poincaré ha estat esperonant l'estudi de les —difi-
cilissimes— varietats de dimensié tres durant més d'un segle i ara la
teoria matematica d'aquestes varietats és una area riquissima dins de la
geometria.

A l'ambit de la topologia geométrica també hi podem incloure la teoria
de nusos, que és una branca ben activa de la topologia. Matematicament,
un nus és una aplicacid injectiva i diferenciable de la circumferéncia a
R3 i dos nusos sén equivalents —sén el mateix nus— si hi ha un home-
omorfisme de R? que conserva l'orientacié i transforma un en laltre. El
concepte és molt senzill, pero la teoria de nusos és molt rica en proble-
mes oberts. Quins nusos hi ha? Com podem decidir si dos nusos son
iguals? Els avencos més importants s’han produit quan s’han pogut des-
cobrir invariants dels nusos, és a dir, objectes matematics —per exemple,
un polinomi— associats a qualsevol nus, que es puguin calcular i tals que
dos nusos equivalents tinguin sempre el mateix invariant.

Pensem que comptar i fer nusos deuen haver estat les primeres ac-
tivitats matematiques dels éssers humans. Curiosament, l'aritmética i la
teoria de nusos estan plenes de problemes no resolts, amb enunciats ele-
mentals.
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Topologia i teoria de grups

Ja hem indicat que, formalment, podriem mirar la teoria de grups com una
branca de la topologia perquée hi ha una manera canonica d'associar a
cada grup G un espai BG i a cada homomorfisme de grups ¢ : G — H una
aplicacié continua B¢ : BG — BH. De fet, aquestes construccions es fan
dintre de la teoria d’homotopia.

El cas és que la relacid entre la teoria de grups i la topologia ha estat
constant des de l'época de Poincaré. Per exemple, s'ha utilitzat topologia
per demostrar teoremes sobre grups —principalment a partir de la idea
de les accions d'un grup sobre un espai— i s’han utilitzat els invariants
de la topologia algebraica per obtenir invariants significatius del grups
abstractes.

Un cas especialment interessant és el dels grups de Lie, que sén objec-
tes que son, simultaniament, grups i varietats diferenciables. L'estudi de
la topologia dels grups de Lie G i dels espais BG ha suscitat alguns dels
avencos més significatius de la historia de la teoria d’homotopia. Recent-
ment, s'ha encunyat el terme teoria homotopica de grups per incloure tota
una seérie de desenvolupaments en els que les tecniques de la topologia
—més exactament, de la teoria d’homotopia— s'usen per estudiar diverses
families importants de grups, com poden ser els grups finits, els grups de
Lie i algunes generalitzacions.

Topologia i medalles Fields

Repassant la llista de matematics guardonats amb les medalles Fields
—52 fins l'any 2013— podem fer-nos una idea del pes que ha tingut la
topologia en la matematica dels ultims vuitanta anys. Els casos més no-
tables s6n aquests:

1954 Jean-Pierre Serre havia fet una serie d'avencos que practicament
inauguraven la topologia algebraica moderna.

1958 René Thom rep la medalla pels seus treballs sobre cobordisme, que
utilitzen les técniques més avancades de topologia algebraica de
l'época per classificar les varietats respecte de la relacidé de ser co-
bordants.

1962 John Milnor acabava de demostrar una serie de resultat revoluci-
onaris en topologia. Per exemple, lexisténcia d'esferes exotiques
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—espais homeomorfs a lesfera perdo que com a varietats diferen-
ciables no son equivalents a l'esfera—, o la demostracié que una
conjectura fonamental sobre triangulacions que havia rebut el nom
de Hauptvermutung és falsa.

Michael Atiyah havia descobert la teoria K i, juntament amb Isado-
re Singer, havia demostrat el gran teorema de l'index que relaciona
el comportament dels operadors pseudo-diferencials en una varietat
amb la topologia de la varietat. Stephen Smale, ja ho hem dit abans,
va demostrar la conjectura de Poincaré en totes les dimensions > 5 i
va demostrar el famos teorema del h—cobordisme, que és la base per
comencar a estudiar la topologia de les varietats de dimensi6 gran.
Aquest mateix any també es va concedir la medalla Fields a Alexan-
der Grothendieck que, en tant que gent universal, també ha tingut
una influéncia molt gran en el desenvolupament de la topologia.

Sergei Novikov era un dels grans topolegs de l'época. En topologia
algebraica havia treballat en cobordisme i havia inventat la succes-
sio espectral d’Adams-Novikov, perd també va jugar un paper molt
important a la topologia geometrica. Es lautor de la conjectura de
Novikov, un dels problemes oberts més importants de la topologia.

La teoria K algebraica va relacionar, de manera sorprenent, la teoria
d’homotopia i la teoria d'anells. Va ser inventada per Daniel Quillen,
que també és el creador de l'axiomatica abstracta de la teoria d’ho-
motopia. A banda d'aquests dos resultats fonamentals, la influencia
de Quillen en el desenvolupament de la topologia algebraica i en les
relacions amb l'algebra i la teoria de grups, ha estat molt gran.

William Thurston ha estat definit com el més gran dels geometres
del segle xx i ha inspirat una gran part dels desenvolupaments al
voltant de la conjectura de Poincaré. En particular, ell va intuir i
formular el que es va conéixer com a conjectura de geometritzacio
—ara és un teorema— que explica quina és l'estructura de totes les
varietats de dimensid 3.

Simon Donaldson i Michael Freedman van rebre la medalla Fields
pels seus treballs fonamentals sobre varietats de dimensid 4.

Vaughan Jones havia descobert el polinomi que du el seu nom, que
és un invariant dels nusos que, curiosament, va néixer a partir dels
estudis de Jones sobre algebres d'operadors. També va rebre una
medalla Fields el polifacetic Edward Witten que, encara que se'l
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consideri principalment com a fisic teoric, l'impacte de les seves idees
a la topologia és immens.

Maxim Kontsevich ha treballat en les relacions entre la teoria de
nusos i la fisica.

Vladimir Voevodsky va demostrar la conjectura de Milnor i ho va
fer inventant técniques noves de topologia algebraica. Gracies a la
seva obra, la teoria d’homotopia ha anat trobant significat en camps
com la geometria algebraica o, més recentment, els fonaments de les
matematiques.

Aquest any es concedeix la medalla Fields al famés Grigori Perel-
man —que la va rebutjar— per haver trobat, després de més de cent
anys, una demostracié de la conjectura de Poincaré. De fet, Perel-
man ha demostrat molt més que la conjectura de Poincaré, perque
ha resolt la conjectura de geometritzacié de Thurston.

Setze sobre 52: més del 30% de les medalles Fields fins el 2006 han
premiat contribucions rellevants en el camp de la topologia.
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