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FRACTIONAL SOBOLEV INEQUALITIES:

SYMMETRIZATION, ISOPERIMETRY

AND INTERPOLATION

Joaquim Martín, Mario Milman

Abstract. — We obtain new oscillation inequalities in metric spaces in terms of the

Peetre K−functional and the isoperimetric profile. Applications provided include a

detailed study of Fractional Sobolev inequalities and the Morrey-Sobolev embedding

theorems in different contexts. In particular we include a detailed study of Gaussian

measures as well as probability measures between Gaussian and exponential. We

show a kind of reverse Pólya-Szegö principle that allows us to obtain continuity as a

self improvement from boundedness, using symmetrization inequalities. Our methods

also allow for precise estimates of growth envelopes of generalized Sobolev and Besov

spaces on metric spaces. We also consider embeddings into BMO and their connection

to Sobolev embeddings.
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PREFACE

This paper is devoted to the study of fractional Sobolev inequalities and Morrey-
Sobolev type embedding theorems in metric spaces, using symmetrization. The con-
nection with isoperimetry plays a crucial role. The aim was to provide a unified
account and develop the theory in the general setting of metric measure spaces whose
isoperimetric profiles satisfy suitable assumptions. In particular, the use of new point-
wise inequalities for suitable defined moduli of continuity allow us to treat in a unified
way Euclidean and Gaussian measures as well as a large class of different geometries.
We also study the role of isoperimetry in the estimation of BMO oscillations. The
connection with Interpolation/Approximation theory also plays a crucial role in our
development and suggests further applications to optimization...

The authors are grateful to the institutions and agencies that supported their
research over the long course of time required to complete this work. In particular,
the second named author acknowledges a one semester sabbatical provided by FAU.





CHAPTER 1

INTRODUCTION

In this paper we establish general versions of fractional Sobolev embeddings, in-

cluding Morrey-Sobolev type embedding theorems, in the context of metric spaces,

using symmetrization methods. The connection of the underlying inequalities with

interpolation and isoperimetry plays a crucial role.

We shall consider connected, measure metric spaces (Ω, d, µ) equipped with a finite

Borel measure µ. For measurable functions u : Ω → R, the distribution function is

defined by

µu(t) = µ{x ∈ Ω : u(x) > t} (t ∈ R).

The signed decreasing rearrangement of u, which we denote by u∗µ, is the right-

continuous non-increasing function from [0, µ(Ω)) into R that is equimeasurable

with u; i.e., u∗µ satisfies

µu(t) = µ{x ∈ Ω : u(x) > t} = m
(
{s ∈ [0, µ(Ω)) : u∗µ(s) > t

}
) , t ∈ R

(where m denotes the Lebesgue measure on [0, µ(Ω)). The maximal average of u∗µ is

defined by

u∗∗µ (t) =
1

t

∫ t

0

u∗µ(s) ds, (t > 0).

For a Borel set A ⊂ Ω, the perimeter or Minkowski content of A is defined by

P (A; Ω) = lim inf
h→0

µ ({x ∈ Ω : d(x,A) < h})− µ (A)

h
.

The isoperimetric profile IΩ(t), t ∈ (0, µ(Ω)), is maximal with respect to the in-

equality

(1.1.1) IΩ(µ(A)) ≤ P (A; Ω).

From now on we only consider connected metric measure spaces whose isoperimetric

profile IΩ is zero at zero, continuous, concave and symmetric around µ(Ω)/2.
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The starting point of the discussion are the rearrangement inequalities (1) of [70]

and [71], where we showed that (2), under our current assumptions on the profile IΩ,

for all Lipschitz functions f on Ω (briefly f ∈ Lip(Ω)),

(1.1.2) |f |∗∗µ (t)− |f |∗µ (t) ≤
t

I(t)
|∇f |∗∗µ (t), 0 < t < µ(Ω),

where

|∇f(x)| = lim sup
d(x,y)→0

|f(x) − f(y)|
d(x, y)

.

In fact, in [70] we showed that (1.1.2) is equivalent to (1.1.1).

Since the integrability properties do not change by rearrangements (i.e., integra-

bility properties are “rearrangement invariant”), rearrangement inequalities are par-

ticularly useful to prove embeddings of Sobolev spaces into rearrangement invariant

spaces (3). On the other hand, the use of rearrangement inequalities to study smooth-

ness of functions is harder to implement. The main difficulty here is that while the

classical Pólya-Szegö principle (cf. [60], [15]) roughly states that symmetrizations are

smoothing, i.e., they preserve the (up to first order) smoothness of Sobolev/Besov

functions, the converse does not hold in general. In other words, it is not immediate

how to deduce smoothness properties of f from inequalities on f∗
µ. From this point

of view, one could describe some of the methods we develop in this paper as “suitable

converses to the Pólya-Szegö principle”.

As it turns out, related issues have been studied long ago, albeit in a less general

context, by A. Garsia and his collaborators. The original impetus of Garsia’s group

was to study the path continuity of certain stochastic processes (cf. [42], [41]); a clas-

sical topic in Probability theory. This task led Garsia et al. to obtain rearrangement

inequalities for general moduli of continuity, including Lp or even Orlicz moduli of

continuity. Moreover, in [40], [44], and elsewhere (cf. [43]), these symmetrization

inequalities were also applied to problems in Harmonic Analysis and, in particular, to

study the absolute convergence of Fourier series. From our point of view, a remarkable

aspect of the approach of Garsia et al. (cf. [44]) is precisely that the sought continuity

can be recovered using rearrangement inequalities. In other words, one can reinter-

pret this part of the Garsia-Rodemich analysis as an approach to the Morrey-Sobolev

embedding theorem using rearrangement inequalities.

It will be instructive to show how Garsia’s analysis can be combined with (1.1.2).

To fix ideas we consider the setting of Garsia-Rodemich: The metric measure space

1. For more detailed information we refer to Chapter 2 below.
2. See also the extensive list of references provided in [70].
3. Roughly speaking, a rearrangement invariant space is a Banach function space where the norm

of a function depends only on the µ-measure of its level sets.

ASTÉRISQUE



CHAPTER 1. INTRODUCTION 3

is ((0, 1)n, |·| , dx) (that is (0, 1)n provided with the Euclidean distance and Lebesgue

measure). For functions f ∈ Lip(0, 1)n the inequality (1.1.2) takes the following

form (4)

|f |∗∗ (t)− |f |∗ (t) ≤ cn
t

min(t, 1− t)1−1/n
|∇f |∗∗ (t), 0 < t < 1.

In fact (cf. Chapter 6), the previous inequality remains true for all functions f ∈
W 1

Lp(0, 1)n (where 1 ≤ p < ∞), and W 1
Lp(0, 1)n is the Sobolev space of real-valued

weakly differentiable functions on (0, 1)n whose first-order derivatives belong to Lp).

Moreover, as we shall see (cf. Chapter 4), the inequality also holds for (signed) rear-

rangements; i.e., for all f ∈ W 1
Lp(0, 1)n, we have that,

(1.1.3) f∗∗(t)− f∗(t) ≤ cn
t

min(t, 1− t)1−1/n
|∇f |∗∗ (t), 0 < t < 1.

Suppose that p > n. Integrating, and using the fundamental theorem of calculus (5),

we get

f∗∗(0)− f∗∗(1) =

∫ 1

0

(f∗∗(t)− f∗(t))
dt

t

≤ cn

∫ 1

0

|∇f |∗∗ (t) dt

min(t, 1− t)1−1/n

≤ cn,p ‖|∇f |‖Lp

∥
∥
∥
∥

1

min(t, 1− t)1−1/n

∥
∥
∥
∥
Lp′

(by Hölder’s inequality)

= Cn.p ‖|∇f |‖Lp ,

where the last inequality follows from the fact that for p > n,
∥
∥ 1
min(t,1−t)1−1/n

∥
∥
Lp′ <

∞. Summarizing our findings, we have

(1.1.4) ess sup
x∈(0,1)n

f −
∫ 1

0

f = f∗∗(0)− f∗∗(1) ≤ Cn.p ‖|∇f |‖Lp .

Applying (1.1.4) to −f yields

(1.1.5)

∫ 1

0

f − ess inf
x∈(0,1)n

f ≤ Cn.p ‖|∇f |‖Lp .

Therefore, adding (1.1.4) and (1.1.5) we obtain

(1.1.6) Osc(f ; (0, 1)n) := ess sup
x∈(0,1)n

f − ess inf
x∈(0,1)n

f ≤ 2Cn.p ‖|∇f |‖Lp .

4. The rearrangement of f with respect to the Lebesgue measure is simply denoted by f∗.

5. Recall that d
dt
(f∗∗(t)) =−

(f∗∗(t)−f∗(t))
t

.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



4 CHAPTER 1. INTRODUCTION

We have shown that (1.1.2) gives us good control of the oscillation of the original

function on the whole cube (0, 1)n. To control the oscillation on any cube Q ⊂ (0, 1)n,

we use a modification of an argument that originates (6) in the work of Garsia et al.

(cf. [40]). The idea is that if an inequality scales appropriately, one can re-scale.

Namely, given two fixed points x < y ∈ (0, 1), one can apply the inequality at hand

to the re-scaled function (7) f̃(t) = f(x+ t(y − x)), t ∈ [0, 1]. This type of “change of

scale argument”can be extended to the cube (0, 1)n, but for general domains becomes

unmanageable. Therefore, we needed to reformulate the idea somewhat. From our

point of view the idea is that if we control |∇f | on (0, 1)n then we ought to be able to

control its restrictions. The issue then becomes: How do our inequalities scale under

restrictions? Again for (0, 1)n all goes well. In fact, if f ∈ W 1
Lp((0, 1)n) then, for

any open cube Q ⊂ (0, 1)n, we have fχQ ∈ W 1
Lp(Q). Moreover, the fundamental

inequality (1.1.3) has the following scaling

(fχQ)
∗∗ (t)− (fχQ)

∗ (t) ≤ cn
t

min(t, |Q| − t)1−1/n
|∇ (fχQ)|∗∗ (t), 0 < t < |Q|.

Using the previous argument applied to fχQ we thus obtain

Osc(f ;Q) ≤ cn,p

∥
∥
∥
∥

t

min(t, |Q| − t)1−1/n

∥
∥
∥
∥
Lp′(0,|Q|)

‖|∇f |‖Lp(Q) .

By computation, and a classical argument, it is easy to see from here that

(cf. Remark 6 in Chapter 5)

|f(y)− f(z)| ≤ cn,p |y − z|(1−
n
p ) ‖|∇f |‖p , a.e. y, z.

When p = n this argument fails but, nevertheless, by a simple modification, it yields

a result due independently to Stein [90] and C. P. Calderón [23]: namely (8), if

‖|∇f |‖Ln,1 <∞, then f is essentially continuous (cf. Remark 6 in Chapter 5).

We will show that, with suitable technical adjustments, this method can be

extended to the metric setting (9). To understand the issues involved let us note

that, since our inequalities are formulated in terms of isoperimetric profiles, to achieve

6. In the original one dimensional argument (cf. [40], [44]), one controls the oscillation of f in

terms of an expression that involves the modulus of continuity, rather than the gradient.
7. For example, consider the case n = 1. Given 0 < x < y < 1, the inequality (1.1.6) applied to

f̃ yields

ess sup
[x,y]

f − ess inf
[x,y]

f ≤ cp |y − x|

(
∫ 1

0

∣

∣f ′(x+ t(y − x))
∣

∣

p
dt

)1/p

= cp |y − x|1−1/p

(
∫ 1

0

∣

∣f ′
∣

∣

p
)1/p

.

8. We refer to (7.1.3), (7.1.4) for the definition of Lorentz spaces.
9. For a different approach to the Morrey-Sobolev theorem on metric spaces we refer to the work

of Coulhon [28], [27].
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CHAPTER 1. INTRODUCTION 5

the local control or “the change of scales (in our situation through the restrictions)”we

need suitable control of the (relative) isoperimetric profiles on the (new) metric spaces

obtained by restriction. More precisely, if Q ⊂ Ω is an open set, we shall consider the

metric measure space
(
Q, d|Q, µ|Q

)
. Then the problem we face is that, in general, the

isoperimetric profile IQ of
(
Q, d|Q, µ|Q

)
is different from the isoperimetric profile IΩ

of (Ω, d, µ). What we needed is to control the “relative isoperimetric inequality”(10),

and make sure the corresponding inequalities scale appropriately. We say that an

isoperimetric inequality relative to G holds, if there exists a positive constant

CG such that

IG(s) ≥ CG min(IΩ(s), IΩ(µ(G)− s)).

We will say that a metric measure space (Ω, d, µ) has the relative uniform isoperi-

metric property if there is a constant C such that for any ball B in Ω, its relative

isoperimetric profile IB satisfies

IB(s) ≥ Cmin(IΩ(s), IΩ(µ(B)− s)), 0 < s < µ(B).

For metric spaces (Ω, d, µ) satisfying the relative uniform isoperimetric property we

have the scaling that we need to apply the previous analysis. This theme is developed

in detail in Chapter 4. The previous discussion implicitly shows that (0, 1)n has

the relative uniform isoperimetric property. We shall show in Chapter 5 that many

familiar metric measure spaces also have the relative uniform isoperimetric property.

We now turn to the main objective of this paper which is to develop the cor-

responding theory for fractional order Besov-Sobolev spaces. This is, indeed, the

original setting of Garsia’s work, and our aim in this paper is to extend it to the

metric setting. The first part of our program for Besov spaces was to formulate a

suitable replacement of (1.1.2) for the fractional setting. To explain the peculiar form

of the underlying inequalities that we need requires some preliminary background

information.

Let X = X(Rn) be a rearrangement invariant space (11) on Rn, and let ωX be the

modulus of continuity associated with X defined for g ∈ X by

ωX (t, g) = sup
|h|≤t

‖g(·+ h)− g(·)‖X .

10. Recall that given an open set G ⊂ Ω, and a set A ⊂ G, the perimeter of A relative to G

(cf. Chapter 2) is defined by

P (A;G) = lim inf
h→0

µ ({x ∈ G : d(x, A) < h})− µ (A)

h
.

The corresponding relative isoperimetric profile of G ⊂ Ω is given by

IG(s) = I(G,d,µ)(s) = inf {P (A;G) : A ⊂ G, µ(A) = s} .

11. See Section 2.2.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



6 CHAPTER 1. INTRODUCTION

It is known (for increasing levels of generality see [40], [55], [65], [63] and the

references therein), that there exists c = cn > 0 such that, for all functions

f ∈ X(Rn) + Ẇ 1
X(Rn),

(1.1.7) |f |∗∗ (t)− |f |∗ (t) ≤ cn
ωX

(
t1/n, f

)

φX(t)
, t > 0,

where Ẇ 1
X(Rn) is the homogeneous Sobolev space defined by means of the seminorm

‖u‖Ẇ 1
X (Rn) := ‖|∇u|‖X(Rn) , φX(t) is the fundamental function (12) of X, and |f |∗ is

the rearrangement of |f | with respect to the Lebesgue measure (13).

The inequalities we seek are extensions of (1.1.7) to the metric setting. Note that,

in some sense, one can consider (1.1.7) as an extension, by interpolation, of (1.1.2).

Therefore, it is natural to ask: How should (1.1.7) be reformulated in order to make

sense for metric spaces? Not only we need a suitable substitute for the modulus of

continuity ωX , but a suitable re-interpretation of the factor “t1/n” is required as well.

We now discuss these issues in detail.

There are several known alternative, although possibly non equivalent, definitions

of modulus of continuity in the general setting of metric measure spaces (Ω, d, µ)

(cf. [47] for the interpolation properties of Besov spaces on metric spaces). Given our

background on approximation theory, it was natural for us to choose the universal

object that is provided by interpolation/approximation theory, namely the Peetre

K−functional. Indeed on Rn, the Peetre K−functional is defined by:

K(t, f ;X(Rn), Ẇ 1
X(Rn)) := inf{‖f − g‖X + t ‖|∇g|‖X : g ∈ Ẇ 1

X(Rn)}.

Considering the K−functional is justified since it is well known that (14) (cf. [13,

Chapter 5, formula (4.41)])

K(t, f ;X(Rn), Ẇ 1
X(Rn)) ≃ ωX(t, f).

In the general case of metric measure spaces (Ω, d, µ) we shall consider:

K(t, f ;X(Ω), SX(Ω)) := inf{‖f − g‖X(Ω) + t ‖|∇g|‖X(Ω) : g ∈ SX(Ω)},

where X(Ω) is a r.i. space on Ω, and SX(Ω) = {f ∈ Lip(Ω) : ‖|∇f |‖X(Ω) < ∞}. We

shall thus think of K(t, f ;X(Ω), SX(Ω)) as “a modulus of continuity”.

12. For the definition, see (2.2.3) below.
13. In the background of inequalities of this type lies a form of the Pólya-Szegö principle that

states that symmetric rearrangements do not increase Besov norms (cf. [3], [65] and the references

therein).
14. Here the symbol f ≃ g indicates the existence of a universal constant c > 0 (independent of all

parameters involved) such that (1/c)f ≤ g ≤ c f . Likewise the symbol f � g will mean that there

exists a universal constant c > 0 (independent of all parameters involved) such that f ≤ c g.
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Now, given our experience with the inequality (1.1.2), we were led to conjecture

the following reformulation (15) of (1.1.7): There exists a universal constant c > 0,

such that for every r.i. space X(Ω), and for all f ∈ X(Ω) + SX(Ω), we have

(1.1.8) |f |∗∗µ (t)− |f |∗µ (t) ≤ c
K
(

t
IΩ(t) , f ;X(Ω), SX(Ω)

)

φX(t)
, 0 < t < µ(Ω).

We presented this conjectural inequality when lecturing on the topic. In particular,

we communicated the conjecture to M. Mastylo, who recently proved in [73] that

indeed (1.1.8) holds for t ∈ (0, µ(Ω)/4), and for all rearrangement invariant spaces X

that are “far away from L1 and from L∞”.

The result of [73], while in many respects satisfying, leaves some important ques-

tions open. Indeed, the restrictions placed on the range of t (i.e., the measure of

the sets), as well as those placed on the spaces, precludes the investigation of the

isoperimetric nature of (1.1.8). In particular, while the equivalence of (1.1.2) and the

isoperimetric inequality (1.1.1) is known to hold (cf. [70]), the possible equivalence

of (1.1.8) with the isoperimetric inequality (1.1.1) apparently cannot be answered

without involving the space L1.

One of our main results in Chapter 3 shows that (1.1.8) crucially holds for all

t ∈ (0, µ(Ω)/2) and without restrictions on the function spaces X (cf. Theorem 7,

Chapter 3 below). The possibility of includingX = L1 allows us to prove the following

fractional Sobolev version of the celebrated Maz’ya equivalence (16) (cf. [75]).

Theorem 1. — Let (Ω, d, µ) be a metric measure space that satisfies our standard

assumptions. Then (cf. Theorems 7 and 11),

(i) For all rearrangement invariant spaces X(Ω), and for all f ∈ X(Ω) + SX(Ω),

|f |∗∗µ (t)− |f |∗µ (t) ≤ 16
K
(

t
IΩ(t) , f ;X(Ω), SX(Ω)

)

φX(t)
, t ∈ (0, µ(Ω)/2),(1.1.9)

|f − fΩ|∗∗µ (t)− |f − fΩ|∗µ (t) ≤ 16
K
(

t
IΩ(t) , f ;X(Ω), SX(Ω)

)

φX(t)
, t ∈ (0, µ(Ω)),

(1.1.10)

where

(1.1.11) fΩ =
1

µ(Ω)

∫

Ω

f dµ.

15. At least for the metric measure spaces (Ω, d, µ) considered in [70] (for which, in particular,

(1.1.2) holds).
16. Which claims the equivalence between the Gagliardo-Nirenberg inequality and the isoperimetric

inequality.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



8 CHAPTER 1. INTRODUCTION

(ii) Conversely, suppose that G : (0, µ(Ω)) → R+, is a continuous function, which

is concave and symmetric around µ(Ω)/2, and there exists a constant c > 0 such

that (17) for all f ∈ X(Ω) + SX(Ω),

|f |∗∗µ (t)− |f |∗µ (t) ≤ c
K
(

t
G(t) , f ;X(Ω), SX(Ω)

)

t
, t ∈ (0, µ(Ω)/2).

Then, for all Borel sets with µ(A) ≤ µ(Ω)/2, we have the isoperimetric inequality

G(µ(A)) ≤ cP (A,Ω).

As a consequence, there exists a constant c > 0 such that for all t ∈ (0, µ(Ω)),

G(t) ≤ cIΩ(t).

Using (1.1.9) and (1.1.10) as a starting point we can study embeddings of Besov

spaces in metric spaces and, in particular, the corresponding Morrey-Sobolev-Besov

embedding.

We now focus the discussion on the fractional Morrey-Sobolev theorem. We start

by describing the inequalities of [44], [43], which for Lp spaces (18) on [0, 1] take the

following form

(1.1.12)
f∗(x) − f∗(1/2)

f∗(1/2)− f∗(1− x)

}

≤ c

∫ 1

x

ωLp(t, f)

t1/p
dt

t
, x ∈

(

0,
1

2

]

.

Letting x→ 0 in (1.1.12) and adding the two inequalities then yields

ess sup
[0,1]

f − ess inf
[0,1]

f ≤ c

∫ 1

0

ωLp(t, f)

t1/p
dt

t
.

Using the “change of scale argument” leads to

|f(x)− f(y)| ≤ 2c

∫ |x−y|

0

ωLp(t, f)

t1/p
dt

t
; x, y ∈ [0, 1],

from which the essential continuity (19) of f is apparent if we know that
∫ 1

0
ωLp(t,f)

t1/p
dt
t <

∞. To obtain the n−dimensional version of (1.1.12) for [0, 1]n, Garsia et al. had to

develop deep combinatorial techniques. The corresponding n−dimensional inequality

is given by (cf. [43, (3.6)] and the references therein)

f∗(x) − f∗(1/2)

f∗(1/2)− f∗(1− x)

}

≤ c

∫ 1

x

ωLp(t1/n, f)

t1/p
dt

t
, x ∈ x ∈

(

0,
1

2

]

,

17. In other words we assume that (1.1.9) holds for X = L1(Ω), and with t
G(t)

replacing t
IΩ(t)

.

18. Importantly, Garsia-Rodemich also can deal with X = Lp, or X = LA (Orlicz space), our

approach covers all r.i. spaces and works for a large class of metric spaces.
19. An application of Hölder’s inequality also yields Lip conditions.

ASTÉRISQUE



CHAPTER 1. INTRODUCTION 9

which by the now familiar argument yields

(1.1.13) |f(x)− f(y)| ≤ Cp,n

∫ |x−y|

0

ωLp(t, f)

tn/p
dt

t
; x, y ∈

[

0,
1

2

]n

.

However, as pointed out above, the change of scale technique is apparently not avail-

able for more general domains. Moreover, as witnessed by the difficulties already

encountered by Garsia et al. when proving inequalities on n−dimensional cubes, it

was not even clear at that time what form the rearrangement inequalities would take

in general. In particular, Garsia et al. do not use isoperimetry.

For more general function spaces we need to reformulate Theorem 1 above as follows

(cf. Chapter 3):

Theorem 2(cf. Theorem 10, Chapter 3). — Let (Ω, d, µ) be a metric measure space

that satisfies our standard assumptions, and let X be a r.i. space on Ω. Then, there

exists a constant c > 0 such that for all f ∈ X + SX(Ω),

(1.1.14) |f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ c
K (ψ(t), f ;X,SX(Ω))

φX(t)
, 0 < t < µ(Ω),

where

ψ(t) =
φX(t)

t

∥
∥
∥
∥

s

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
X̄′

,

and X̄
′

denotes the associated (20) space of X̄.

Remark 1. — Note that when X = L1 the inequalities (1.1.14) and (1.1.9) are equiv-

alent, modulo constants.

A second step of our program is the routine, but crucially important, reformulation

of rearrangement inequalities using signed rearrangements. Once this is done, our

generalized Morrey-Sobolev-Garsia-Rodemich theorem can be stated as follows

Theorem 3(cf. Theorem 13, Chapter 4). — Let (Ω, d, µ) be a metric measure space

that satisfies our standard assumptions and has the relative uniform isoperimetric

property. Let X be a r.i. space in Ω such that
∥
∥
∥
∥

1

IΩ(s)

∥
∥
∥
∥
X̄′

<∞.

If f ∈ X + SX(Ω) satisfies

∫ µ(Ω)

0

K
(

φX(t)
∥
∥
∥

1
IΩ(s)χ(0,t)(s)

∥
∥
∥
X̄′
, f ;X,SX(Ω)

)

φ
X
(t)

dt

t
<∞,

then f is essentially bounded and essentially continuous.

20. Cf. Chapter 2 for the definition.
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To see the connection (21) between our inequalities and those of Garsia et al. let

us fix ideas and set µ(Ω) = 1. Observe that on account of (1.1.9), and the fact that

K
(

t
I(t) , f ;X,SX

)
is increasing and φX(t) is concave, we have

f∗∗
µ (t)− f∗

µ(t) ≤ 16
K
(

t
IΩ(t) , f ;X,SX

)

φX(t)

≤ 16

ln 2
2

∫ 2t

t

K
(

s
IΩ(s) , f ;X,SX

)

φX(s)

ds

s
, t ∈ (0, 1/2].

Combining the last inequality with (cf. [9, (4.1), p. 1222])

(1.1.15) f∗
µ

(
t

2

)

− f∗
µ(t) ≤ 2

(
f∗∗
µ (t)− f∗

µ(t)
)
,

yields

f∗
µ

(
t

2

)

− f∗
µ(t) ≤

16

ln 2
2

∫ 2t

t

K
(

s
IΩ(s) , f ;X,SX

)

φX(s)

ds

s
, t ∈ (0, 1/2].

Therefore, for n = 2, . . .

f∗
µ

(
1

2n+1

)

−f∗
µ

(
1

2

)

=

n∑

j=1

f∗
µ

(
1

2j+1

)

−f∗
µ

(
1

2j

)

≤ 16

ln 2
2

∫ 1

0

K
(

s
IΩ(s) , f ;X,SX

)

φX(s)

ds

s
,

and letting n→ ∞, we find

ess sup
Ω
f − f∗

µ

(
1

2

)

≤ c

∫ 1

0

K
(

s
IΩ(s) , f ;X,SX

)

φX(s)

ds

s
.

Likewise, applying the previous inequality to −f and adding the two resulting in-

equalities, and then observing that (−f)∗µ(12 ) = −f∗
µ(

1
2 ), yields

ess sup
Ω
f − ess inf

Ω
f ≤ c

∫ 1

0

K
(

s
IΩ(s) , f ;X,SX

)

φX(s)

ds

s
.

From this point we can proceed to study the continuity or Lip properties of f using

the arguments (22) outlined above.

21. The full metric version of Garsia’s inequality is given in Chapter 10.
22. Interestingly the one dimensional case studied by Garsia et al somehow does not follow directly

since the isoperimetric profile for the unit interval (0, 1) is 1. Therefore in this case the isoperimetric

profile does not satisfy the assumptions of [70]. Nevertheless, our inequalities remain true and

provide an alternate approach to the Garsia inequalities. See Chapter 10 below for complete details.
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Next let us consider limiting cases of the Sobolev-Besov embeddings connected

with these inequalities and the role of BMO. Note that the inequality (1.1.13) can be

reformulated as the embedding ofB
n/p,1
p ([0, 1]n) into the space of continuous functions

C([0, 1]n)

(1.1.16) Bn/p,1
p ([0, 1]n) ⊂ C([0, 1]n), where n/p < 1.

Moreover, since

ωLp (t, f) ≤ cp,nt ‖f‖W 1
Lp
,

we also have

W 1
Lp ([0, 1]n) ⊂ Bn/p,1

p ([0, 1]n).

Therefore, (1.1.16) implies the (Morrey-Sobolev) continuity of Sobolev functions in

W 1
p when p > n. On the other hand, if we consider the Besov condition defined by

the right hand side of (1.1.7), when X = Lp, and n/p < 1, we find (23)

‖f‖
B

n/p,∞
p ([0,1]n)

= sup
t∈[0,1]

ωLp (t, f)

tn/p
.

Now, for functions in B
n/p,∞
p ([0, 1]n) we don’t expect boundedness, and in fact, ap-

parently the best we can say directly from our rearrangement inequalities, follows

from (1.1.7):

(1.1.17) sup
[0,1]

(f∗∗(t)− f∗(t)) ≤ c ‖f‖
B

n/p,∞
p ([0,1]n)

.

In view of the celebrated result of Bennett-DeVore-Sharpley [11] (cf. also [13])

that characterizes the rearrangement invariant hull of BMO via the left hand side

of (1.1.17), we see that (1.1.17) gives f ∈ B
n/p,∞
p ([0, 1]n) ⇒ f∗ ∈ BMO[0, 1]. In fact,

a stronger result is known and readily available

(1.1.18) Bn/p,∞
p ([0, 1]n) ⊂ BMO.

It turns out that our approach to the estimation of oscillations allows us to extend

(1.1.18) to other geometries. Our method reflects the remarkable connections between

oscillation, isoperimetry, interpolation, and rescalings. We briefly explain the ideas

behind our approach to (1.1.18). Given a metric measure space (Ω, d, µ) satisfying our

standard assumptions, we have the well known Poincaré inequality (cf. [70, p. 150]

and the references therein) given by

(1.1.19)

∫

Ω

|f(x)−m(f)| dµ ≤ µ(Ω)

2IΩ(µ(Ω)/2)

∫

Ω

|∇f(x)| dµ, for all f ∈ SL1(Ω),

23. Note that we have
‖f‖

B
n/p,∞
p ([0,1]n)

≤ cp,n ‖f‖
B

n/p,1
p ([0,1]n)

.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



12 CHAPTER 1. INTRODUCTION

where m(f) is a median (24) of f . Then given a r.i. space X on Ω we can extend

(1.1.19) by“by interpolation”and obtain a K−Poincaré inequality (25) (cf. Theorem 6,

Chapter 3)

1

µ(Ω)

∫

Ω

|f − fΩ| dµ ≤ c
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f ;X,SX

)

φX(µ(Ω))
.

Now, if Ω supports the isoperimetric rescalings described above, the previous inequal-

ity self improves to (cf. Theorem 24, Chapter 7])

‖f‖BMO(Ω) = sup
B balls

1

µ(B)

∫

B

|f − fB| dµ ≤ c sup
t<µ(Ω)

K
(

t
IΩ(t) , f ;X,SX

)

φX(t)
.

It is easy to see that for metric spaces with Euclidean type isoperimetric profiles, i.e.,

IΩ(t) � t1−1/n, on (0, 1/2), we recover (1.1.18) (cf. Corollary 1, Chapter 7). Indeed,

the result exhibits a new connection between the geometry of the ambient space and

the embedding of Besov and BMO spaces. For further examples we refer to (7.1.14)).

In the opposite direction, we can use the insights we gained “interpolating between

a r.i. space X and the corresponding space of Lip functions SX” to obtain analogous

results interpolating with BMO. This is not a coincidence; for recall the well known

Euclidean interpretation of BMO as a limiting Lip condition. This can be seen by

means of writing Lipα conditions on a fixed Euclidean cube Q as

‖f‖Lipα
≃ sup

Q′⊂Q
Q′ cub

1

|Q′|1−α/n

∫

Q′

|f − fQ′ | dx <∞.

In this fashion BMO appears as the limiting case of Lipα conditions when α → 0.

With this intuition at hand we were led to formulate the corresponding version of

Theorem 1 for BMO. It reads as follows (26)

Theorem 4(cf. Theorem 27, Chapter 7). — Suppose that (Ω, d, µ) is a metric measure

space that satisfies our usual assumptions and, moreover, is such that the Bennett-

DeVore-Sharpley inequality

(1.1.20) sup
t

(
f∗∗
µ (t)− f∗

µ(t)
)
≤ c ‖f‖BMO(Ω) ,

holds. Then,

f∗∗
µ (t)− f∗

µ(t) ≤ c
K(φX(t), f ;X(Ω),BMO(Ω))

φX(t)
, 0 < t < µ(Ω).

24. For the definition of median, see Definition 1, Chapter 3.
25. See (1.1.11) above.
26. In particular, we arrive, albeit through a very different route than the original, to an extension

of an inequality of Bennett-DeVore-Sharpley (cf. [13, combine Theorem 7.3 and Theorem 8.8]) for

the space L1.
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From this point of view the Bennett-DeVore-Sharpley inequality (1.1.20) takes

the role of our basic inequality (1.1.2). In this respect it is important to note that

(1.1.20) has been shown to hold in great generality, for example it holds for doubling

measures (cf. [86]). Finally, in connection with BMO, we considered the role of signed

rearrangements. Here the import of this notion is that signed rearrangements provide

a theoretical method to compute medians (cf. Theorem 25) and thus quickly lead to

a version of the limiting case of the John-Stromberg-Jawerth-Torchinsky inequality

(cf. (7.2.1)).

Our approach to the (Morrey-)Sobolev embedding theorem also leads to the con-

sideration of “Lorentz spaces with negative indices” (cf. Chapter 9), providing still a

very suggestive approach (27) to these results, at least in the Euclidean case.

In Chapter 5 and Chapter 6 we have considered explicit versions of our results

in different classical contexts. In particular, in Chapter 6, we obtain new fractional

Sobolev inequalities for Gaussian measures, as well as for probability measures that

are in between Gaussian and exponential. For example, for Gaussian measure on Rn,

we have for 1 ≤ q <∞, θ ∈ (0, 1)

{
∫ 1/2

0

|f |∗γn
(t)q

(

log
1

t

) qθ
2

dt

}1/q

≤ c ‖f‖Bθ,q
Lq (γn)

,

where c is independent of the dimension. Likewise, the same proof yields that for

probability measures on the real line of the form (28)

dµr(x) = Z−1
r exp (− |x|r) dx, r ∈ (1, 2]

and their tensor products

µr,n = µ⊗n
p ,

we have
{
∫ 1/2

0

|f |∗µr,n
(t)q

(

log
1

t

)qθ(1−1/r)

dt

}1/q

≤ c ‖f‖Bθ,q
Lq (µr,n)

.

We refer to Chapter 6 for the details, where the reader will also find a treatment of

the case q = ∞, which yields the corresponding improvements on the exponential

integrability:

sup
t∈(0, 12 )

(

|f |∗∗µr,n
(t)− |f |∗µr,n

(t)
)(

log
1

t

)

(1− 1
r )θ ≤ c ‖f‖Ḃθ,∞

L∞ (µr,n)
.

Applications to the computation of envelopes of function spaces in the sense of

Triebel-Haroske and their school are provided in Chapter 8.

27. Although in this paper we only concentrate on the role that these spaces play on the theory

of embeddings, one cannot but feel that a detailed study of these spaces could be useful for other

questions connected with interpolation/approximation.

28. Where Z−1
r is a normalizing constant.
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The table of contents will serve to show the organization of the paper. We have tried

to make the reading of the chapters in the second part of the paper as independent

of each other as possible.

Acknowledgement. — We are extremely grateful to the referees for their painstaking

review that gave us the opportunity to correct, and fill-in gaps in some arguments,

and thus contributed to substantially improve the quality of the paper.
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CHAPTER 2

PRELIMINARIES

2.1. Background

Our notation in the paper will be for the most part standard. In this paper we shall

only consider (1) connected measure metric spaces (Ω, d, µ) equipped with a finite Borel

measure µ, which we shall simply refer to, as“measure metric spaces”. For measurable

functions u : Ω → R, the distribution function of u is given by

µu(t) = µ{x ∈ Ω : u(x) > t} (t ∈ R).

The signed decreasing rearrangement (2) of a function u is the right-continuous

non-increasing function from [0, µ(Ω)) into R which is equimeasurable with u. It can

be defined by the formula

u∗µ(s) = inf{t ≥ 0 : µu(t) ≤ s}, s ∈ [0, µ(Ω)),

and satisfies

µu(t) = µ{x ∈ Ω : u(x) > t} = m
{
s ∈ [0, µ(Ω)) : u∗µ(s) > t

}
, t ∈ R

(where m denotes the Lebesgue measure on [0, µ(Ω)). It follows from the definition

that

(2.1.1) (u+ v)
∗
µ (s) ≤ u∗µ(s/2) + v∗µ(s/2).

Moreover,

u∗µ(0
+) = ess sup

Ω
u and u∗µ(µ(Ω)

−) = ess inf
Ω
u.

1. See also Condition 1 below.
2. Note that this notation is somewhat unconventional. In the literature it is common to de-

note the decreasing rearrangement of |u| by u∗

µ, while here it is denoted by |uµ|
∗ since we need to

distinguish between the rearrangements of u and |u|. In particular, the rearrangement of u can be

negative. We refer the reader to [85] and the references quoted therein for a complete treatment.
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The maximal average u∗∗µ (t) is defined by

u∗∗µ (t) =
1

t

∫ t

0

u∗µ(s) ds =
1

t
sup

{∫

E

u(s) dµ : µ(E) = t

}

, t > 0.

The operation u→ u∗∗µ is sub-additive, i.e.,

(2.1.2) (u+ v)∗∗µ (s) ≤ u∗∗µ (s) + v∗∗µ (s).

Moreover, since u∗µ is decreasing, u∗∗µ is also decreasing and u∗µ ≤ u∗∗µ .

The following lemma proved in [40, Lemma 2.1] will be useful in what follows.

Lemma 1. — Let f and fn, n = 1, .., be integrable on Ω. Suppose that

lim
n

∫

Ω

|fn(x)− f(x)| dµ = 0.

Then

(fn)
∗∗
µ (t) −→ f∗∗

µ (t), uniformly for t ∈ [0, µ(Ω)], and

(fn)
∗
µ (t) −→ f∗

µ(t) at all points of continuity of f∗
µ.

When the measure is clear from the context, or when we are dealing with Lebesgue

measure, we may simply write u∗ and u∗∗, etc.

For a Borel set A ⊂ Ω, the perimeter or Minkowski content of A is defined by

P (A; Ω) = lim inf
h→0

µ (Ah)− µ (A)

h
,

where Ah = {x ∈ Ω : d(x,A) < h} is the open h−neighborhood of A.

The isoperimetric profile is defined by

IΩ(s) = I(Ω,d,µ)(s) = inf {P (A; Ω) : µ(A) = s} ,
i.e., I(Ω,d,µ) : [0, µ(Ω)] → [0,∞) is the pointwise maximal function such that

(2.1.3) P (A; Ω) ≥ IΩ(µ(A)),

holds for all Borel sets A. A set A for which equality in (2.1.3) is attained will be

called an isoperimetric domain. Again when no confusion arises we shall drop the

subindex Ω and simply write I.

We will always assume that the metric measure spaces (Ω, d, µ) considered satisfy

the following condition

Condition 1. — We will assume throughout the paper that our metric measure spaces

(Ω, d, µ) are such that the isoperimetric profile I(Ω,d,µ) is a concave continuous func-

tion, increasing on (0, µ(Ω)/2), symmetric around the point µ(Ω)/2 that, moreover,

vanishes at zero. We remark that these assumptions are fulfilled for a large class of

metric measure spaces (3).

3. These assumptions are satisfied for the classical examples (cf. [18], [77], [10] and the references

therein).
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A continuous, concave function, J : [0, µ(Ω)] → [0,∞), increasing on (0, µ(Ω)/2),

symmetric around the point µ(Ω)/2, and such that

(2.1.4) IΩ ≥ J,

will be called an isoperimetric estimator for (Ω, d, µ). Note that (2.1.4) and the

fact that IΩ(0) = 0 implies that J(0) = 0.

For a Lipschitz function f on Ω (briefly f ∈ Lip(Ω)) we define the modulus of

the gradient by (4)

|∇f(x)| = lim sup
d(x,y)→0

|f(x) − f(y)|
d(x, y)

.

Let us recall some results that relate isoperimetry and rearrangements (see [70],

[65]).

Theorem 5. — The following statements hold

1. Isoperimetric inequality: ∀A ⊂ Ω, Borel set,

P (A; Ω) ≥ IΩ(µ(A)).

2. Oscillation inequality: ∀f ∈ Lip(Ω),

(2.1.5) (|f |∗∗µ (t)− |f |∗µ (t))
IΩ(t)

t
≤ 1

t

∫ t

0

|∇f |∗µ (s) ds, 0 < t < µ(Ω).

Lemma 2. — Let h be a bounded Lip function on Ω. Then there exists a sequence of

bounded functions (hn)n ⊂ Lip(Ω), such that

1. (2.1.6) |∇hn(x)| ≤ (1 +
1

n
) |∇h(x)| , x ∈ Ω.

2. (2.1.7) hn −→
n→∞

h in L1.

3. (2.1.8)

∫ t

0

∣
∣
∣
∣

(

− |hn|∗µ
)′

(·)IΩ(·)
∣
∣
∣
∣

∗

(s) ds ≤
∫ t

0

|∇hn|∗µ (s) ds, 0 < t < µ(Ω).

(The second rearrangement on the left hand side is with respect to the Lebesgue

measure on [0, µ(Ω)).)

2.2. Rearrangement invariant spaces

We recall briefly the basic definitions and conventions we use from the theory

of rearrangement-invariant (r.i.) spaces, and refer the reader to [13] and [58] for a

complete treatment.

4. In fact one can define |∇f | for functions f that are Lipschitz on every ball in (Ω, d)

(cf. [18, p. 2–3] for more details).
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LetX = X(Ω) be a Banach function space on (Ω, d, µ), with the Fatou property (5).

We shall say that X is a rearrangement-invariant (r.i.) space, if g ∈ X implies

that all µ−measurable functions f with |f |∗µ = |g|∗µ , also belong to X and moreover,

‖f‖X = ‖g‖X . The functional ‖ · ‖X will be called a rearrangement invariant norm.

Typical examples of r.i. spaces are the Lp-spaces, Orlicz spaces, Lorentz (6) spaces,

Marcinkiewicz spaces, etc.

On account of the fact that µ(Ω) <∞, for any r.i. space X(Ω) we have

L∞(Ω) ⊂ X(Ω) ⊂ L1(Ω),

with continuous embeddings.

For rearrangement invariant norms (or seminorms) ‖.‖X , we can compare the size

of elements by comparing their averages, as expressed by a majorization principle,

sometimes referred to as the Calderón-Hardy Lemma:

Suppose that

∫ t

0

|f |∗µ (s) ds ≤
∫ t

0

|g|∗µ (s) ds holds for all 0 < t < µ(Ω)(2.2.1)

=⇒ ‖f‖X ≤ ‖g‖X .

The associated space X ′(Ω) is defined using the r.i. norm given by

‖h‖X′(Ω) = sup
g 6=0

∫

Ω |g(x)h(x)| dµ
‖g‖X(Ω)

= sup
g 6=0

∫ µ(Ω)

0
|h|∗µ (s) |g|

∗
µ (s) ds

‖g‖X(Ω)

.

In particular, the following generalized Hölder’s inequality holds

(2.2.2)

∫

Ω

|g(x)h(x)| dµ ≤ ‖g‖X(Ω) ‖h‖X′(Ω) .

The fundamental function of X(Ω) is defined by

(2.2.3) φX(s) = ‖χE‖X , 0 ≤ s ≤ µ(Ω),

where E is any measurable subset of Ω with µ(E) = s. We can assume without loss

of generality that φX is concave (cf. [13]). Moreover,

(2.2.4) φX′(s)φX(s) = s.

For example, if X = Lp or X = Lp,q (a Lorentz space), then φLp(t) = φLp,q (t) = t1/p,

if 1 ≤ p < ∞, while for p = ∞, φL∞(t) ≡ 1. If N is a Young’s function, then the

fundamental function of the Orlicz space X = LN is given by φLN (t) = 1/N−1(1/t).

5. This means that if fn ≥ 0, and fn ↑ f, then ‖fn‖X ↑ ‖f‖X (i.e., the monotone convergence

theorem holds in the X norm). The nomenclature is somewhat justified by the fact that this property

is equivalent to the validity of the usual Fatou Lemma in the X norm (cf. [13]).
6. See (7.1.3), (7.1.4), for the definition of Lorentz spaces.
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The Lorentz Λ(X) space and the Marcinkiewicz space M(X) associated with X

are defined by the quasi-norms

(2.2.5) ‖f‖M(X) = sup
t
f∗
µ(t)φX(t), ‖f‖Λ(X) =

∫ µ(Ω)

0

f∗
µ(t) dφX(t).

Notice that

φM(X)(t) = φΛ(X)(t) = φX(t),

and, moreover,

(2.2.6) Λ(X) ⊂ X ⊂M(X).

Let X(Ω) be a r.i. space, then there exists a unique r.i. space X̄ = X̄(0, µ(Ω)) on

((0, µ(Ω)),m), (m denotes the Lebesgue measure on the interval (0, µ(Ω))) such that

(2.2.7) ‖f‖X(Ω) = ‖ |f |∗µ ‖X̄(0,µ(Ω)).

X̄ is called the representation space of X(Ω). The explicit norm of X̄(0, µ(Ω)) is

given by (see [13, Theorem 4.10 and subsequent remarks])

(2.2.8) ‖h‖X̄(0,µ(Ω)) = sup

{
∫ µ(Ω)

0

|h|∗ (s) |g|∗µ (s) ds : ‖g‖X′(Ω) ≤ 1

}

(the first rearrangement is with respect to the Lebesgue measure on [0, µ(Ω))).

Classically conditions on r.i. spaces can be formulated in terms of the boundedness

of the Hardy operators defined by

Pf(t) =
1

t

∫ t

0

f(s) ds; Qf(t) =

∫ µ(Ω)

t

f(s)
ds

s
.

The boundedness of these operators on r.i. spaces can be best described in terms of

the so called Boyd indices (7) defined by

ᾱX = inf
s>1

lnhX(s)

ln s
and αX = sup

s<1

lnhX(s)

ln s
,

where hX(s) = sup‖f‖X̄≤1 ‖Esf‖X̄ denotes the norm of the compression/dilation

operator Es on X̄, defined for s > 0, by

Esf(t) =

{
f∗( ts ) 0 < t < s,

0 s < t < µ(Ω).

7. Introduced by D.W. Boyd in [21].
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The operator Es is bounded on X̄ on every r.i. space X(Ω), and moreover,

(2.2.9) hX(s) ≤ max(1, s), for all s > 0.

For example, if X = Lp, then αLp = αLp = 1
p . It is well known that

(2.2.10)
P is bounded on X̄ ⇔ αX < 1,

Q is bounded on X̄ ⇔ αX > 0.

We shall also need to consider the restriction of functions of the r.i. space X(Ω)

to measurable subsets G ⊂ Ω with µ(G) 6= 0. We can then consider G as a metric

measure space (G, d|G, µ|G) where the corresponding distance and the measure are

obtained by the restrictions of the distance d and the measure µ to G. We shall

denote the r.i. space X(G, d|G, µ|G) by Xr(G). Given u : G → R, u ∈ Xr(G), we let

ũ : Ω → R, be its extension to Ω defined by

(2.2.11) ũ(x) =

{
u(x) x ∈ G,

0 x ∈ Ω \G.

Then,

‖u‖Xr(G) = ‖ũ‖X(Ω) .

Proposition 1. — Let X(Ω) be a r.i. space on Ω, and let G be a measurable subset of Ω

with µ(G) 6= 0. Then,

1. If u ∈ X(Ω), then uχG ∈ Xr(G) and

‖uχG‖Xr(G) ≤ ‖u‖X(Ω) .

2. Let X̄r be the representation space of Xr (G) and let X̄ be the representation

space of X (Ω). Let u ∈ Xr (G). Then

‖u‖Xr(G) =

∥
∥
∥
∥
∥

˜(|u|∗µ|G

)
∥
∥
∥
∥
∥
X̄

,

where given h : (0, µ(G)) → (0,∞), h̃ denotes its continuation by 0 outside

(0, µ(G)). Thus by the uniqueness of the representation space, if h ∈ X̄r, then

‖h‖X̄r
=
∥
∥
∥h̃
∥
∥
∥
X̄
.

3. The fundamental function of Xr (G) is given by

(2.2.12) φXr(G)(s) = φX(Ω)(s) (0 ≤ s ≤ µ(G)).

4. Let (Xr (G))
′ be the associated space of Xr (G). Then

(2.2.13) (Xr (G))
′
= (X(Ω)′)r (G).
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Proof. — Part 1 and 4 are elementary. For Part 2, note that if u ∈ Xr(G), then

‖u‖Xr(G) = ‖ũ‖X(Ω)

=
∥
∥
∥(|ũ|)∗µ

∥
∥
∥
X̄

(by (2.2.7)).

Since µ|G = µ on G, it follows from the definition of ũ that

(|ũ|)∗µ =

{

(|u|)∗µ|G
(s) s ∈ (0, µ(G)),

0 s ∈ (µ(G), µ(Ω)).

Thus
∥
∥
∥(|ũ|)∗µ

∥
∥
∥
X̄

=
∥
∥
∥(|u|)∗µ|G

χ(0,µ(G))

∥
∥
∥
X̄

=

∥
∥
∥
∥
∥

˜(|u|∗µ|G

)
∥
∥
∥
∥
∥
X̄

.

Now Part 3 follows from Part 2 taking in account that

φX(Ω)(s) = φX̄(s).

In what follows, when G ⊂ Ω is clear from the context, and u is a function defined

on G, we shall use the notation ũ to denote its extension (by zero) defined by (2.2.11)

above.

2.3. Some remarks about Sobolev spaces

Let (Ω, d, µ) be a connected metric measure space with finite measure, and let X

be a r.i. space on Ω. We let SX = SX(Ω) = {f ∈ Lip(Ω) : |∇f | ∈ X(Ω)}, equipped
with the seminorm

‖f‖SX
= ‖|∇f |‖X .

At some point in our development we also need to consider restrictions of Sobolev

functions. Let G ⊂ Ω be an open subset, then if f ∈ SX(Ω) we have fχG ∈ SXr (G),

and

‖fχG‖SXr (G) ≤ ‖|∇f |χG‖X(Ω)

≤ ‖|∇f |‖X(Ω)

= ‖f‖SX(Ω) .

K−functionals play an important role in this paper. The K−functional for the

pair (X(Ω), SX(Ω)) for is defined by

(2.3.1) K(t, f ;X(Ω), SX(Ω)) = inf
g∈SX(Ω)

{‖f − g‖X(Ω) + t ‖|∇g|‖X(Ω)}.

If G is an open subset of Ω, each competing decomposition for the calculation of the

K−functional of f , K(t, f ;X(Ω), SX(Ω)), produces by restriction a decomposition for

the calculation of the K−functional of fχG, and we have

K(t, fχG;Xr(G), SXr (G)) ≤ K(t, f ;X(Ω), SX(Ω)).
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Notice that from our definition of SX(Ω) it does not follow that h ∈ SX implies that

h ∈ X . However, under mild conditions on X, one can guarantee that h ∈ X . Indeed,

using the isoperimetric profile I = I(Ω,d,µ), let us define the associated isoperimetric

Hardy operator by

QIf(t) =

∫ µ(Ω)

t

f(s)
ds

I(s)
(f ≥ 0).

Suppose that there exists an absolute constant c > 0 such that, for all f ∈ X̄, such

that f ≥ 0, and with supp(f) ⊂ (0, µ(Ω)/2), we have

(2.3.2) ‖QIf‖X̄ ≤ c ‖f‖X̄ .

Then, it was shown in [70] that for all h ∈ SX ,
∥
∥
∥
∥
h− 1

µ(Ω)

∫

Ω

h

∥
∥
∥
∥
X

� ‖|∇h|‖X .

Therefore, since constant functions belong to X we can then conclude that indeed

h ∈ X . It is easy to see that if αX > 0, condition (2.3.2) is satisfied. Indeed, from

the concavity of I, it follows that I(s)
s is decreasing, therefore

I(µ(Ω)/2)

µ(Ω)/2
≤ I(s)

s
, s ∈ (0, µ(Ω)/2).

It follows that if s ∈ (0, µ(Ω)/2), then

s ≤ µ(Ω)/2

I(µ(Ω)/2)
I(s) = cI(s).

Consequently, for all f ≥ 0, with supp(f) ⊂ (0, µ(Ω)/2),

QIf(t) =

∫ µ(Ω)/2

t

f(s)
ds

I(s)
≤ c

∫ µ(Ω)/2

t

f(s)
ds

s
= Qf(t).

Therefore,

‖QIf‖X̄ ≤ c ‖Qf‖X̄ ≤ cX ‖f‖X̄ ,

where the last inequality follows from the fact that αX > 0. We can avoid placing

restrictions on X if instead we impose more conditions on the isoperimetric profile.

For example, suppose that the following condition (8) on I holds:

(2.3.3)

∫ µ(Ω)/2

0

ds

I(s)
= c <∞.

8. A typical example is I(t) ≃ t1−1/n, near zero.
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Then, for f ∈ L∞ we have

QIf(t) ≤ ‖f‖L∞

∫ µ(Ω)

t

ds

I(s)

≤ c ‖f‖L∞ .

Consequently, QI is bounded on L∞. Since, as we have already seen QI ≤ Q, it

follows that QI is also bounded on L1, and therefore, by Calderón’s interpolation

theorem, QI is bounded on any r.i. space X . In particular, (2.3.2) is satisfied.
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CHAPTER 3

OSCILLATIONS, K-FUNCTIONALS

AND ISOPERIMETRY

3.1. Summary

Let (Ω, d, µ) be a metric measure space satisfying the usual assumptions, and let

X be a r.i. space on Ω. In this chapter we show (cf. Theorem 7 in Section 3.2) that

for all f ∈ X + SX ,

(3.1.1) |f |∗∗µ (t)− |f |∗µ (t) ≤ 16
K
(

t
IΩ(t) , f ;X,SX

)

φX(t)
, 0 < t ≤ µ(Ω)/2.

Moreover, if fΩ = 1
µ(Ω)

∫

Ω
f dµ, then

(3.1.2) |f − fΩ|∗∗µ (t)− |f − fΩ|∗µ (t) ≤ 16
K
(

t
IΩ(t) , f ;X,SX

)

φX(t)
, 0 < t ≤ µ(Ω).

This extends one of the main results of [73]. In Section 3.3 we prove a variant of

inequality (3.1.1) that will play an important role in Chapter 5, where embeddings

into the space of continuous functions will be analyzed. In this variant we replace t
IΩ(t)

by a smaller function that depends on the space X, more specifically we show that

|f |∗∗µ (t)− |f |∗µ (t) ≤ 4
K (ψ(t), f ;X,SX)

φX(t)
, 0 < t ≤ µ(Ω)/2,

where

ψ(t) =
φX(t)

t

∥
∥
∥
∥

s

IΩ(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄

′

.

In Section 3.4 we show that (3.1.1) for X = L1 implies an isoperimetric inequality.

Underlying these results is the following estimation of the oscillation (without re-

arrangements): there exists a constant c > 0 such that

1

µ(Ω)

∫

Ω

|f − fΩ| dµ ≤ c
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f ;X,SX

)

φX(µ(Ω))
.

3.2. Estimation of the oscillation in terms of K−functionals

The leitmotif of this chapter are the remarkable connections between oscillations,

optimization and isoperimetry.
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Definition 1. — Let f : Ω → R be an integrable function. We say that m(f) is a

median of f if

µ{f > m(f)} ≥ µ(Ω)/2; and µ{f < m(f)} ≥ µ(Ω)/2.

Recall the following basic property of medians (cf. [93], [70, p. 134], etc.)

1

2

(
1

µ(Ω)

∫

Ω

|f − fΩ| dµ
)

≤ inf
c

1

µ(Ω)

∫

Ω

|f − c| dµ

≤ 1

µ(Ω)

∫

Ω

|f −m(f)| dµ(3.2.1)

≤ 3

(
1

µ(Ω)

∫

Ω

|f − fΩ| dµ
)

.

The starting point of our analysis is the well known Poincaré inequality (cf. [18],

[70, p. 150]):

(3.2.2)

∫

Ω

|f −m(f)| dµ ≤ µ(Ω)

2IΩ(µ(Ω)/2)

∫

Ω

|∇f | dµ, for all f ∈ SL1(Ω).

Our next result is an extension of the Poincaré type inequality (3.2.2) by interpo-

lation (i.e., using K−functionals).

Theorem 6. — Let X be a r.i space on Ω. Then for all f ∈ X,

(3.2.3)
1

µ(Ω)

∫

Ω

|f − fΩ| dµ ≤ 2
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f ;X,SX

)

φX(µ(Ω))
.

Proof. — For an arbitrary decomposition f = (f − h) + h, with h ∈ SX , we have

1

µ(Ω)

∫

Ω

|f −m(h)| dµ =
1

µ(Ω)

∫

Ω

|f − h+ (h−m(h))| dµ

≤ 1

µ(Ω)

∫

Ω

|f − h| dµ+
1

µ(Ω)

∫

Ω

|h−m(h)| dµ

≤ 1

µ(Ω)
‖f − h‖L1 +

1

2IΩ(µ(Ω)/2)
‖|∇h|‖L1 (by (3.2.2))

≤ 1

µ(Ω)
‖f − h‖X φX′(µ(Ω)) +

1

2IΩ(µ(Ω)/2)
‖|∇h|‖X φX′(µ(Ω)) (by Hölder’s inequality)

=
1

µ(Ω)
φX′(µ(Ω))

(

‖f − h‖X +
µ(Ω)/2

IΩ(µ(Ω)/2)
‖|∇h|‖X

)

=
1

φX(µ(Ω))

(

‖f − h‖X +
µ(Ω)/2

IΩ(µ(Ω)/2)
‖|∇h|‖X

)

.
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Combining the last inequality with (3.2.1), we obtain that for all decompositions

f = (f − h) + h, with h ∈ SX ,

1

µ(Ω)

∫

Ω

|f − fΩ| dµ ≤ 2

φX(µ(Ω))

(

‖f − h‖X +
µ(Ω)/2

IΩ(µ(Ω)/2)
‖|∇h|‖X

)

.

Consequently,

1

µ(Ω)

∫

Ω

|f − fΩ| dµ ≤ 2

φX(µ(Ω))
inf

h∈SX

(

‖f − h‖X +
µ(Ω)/2

IΩ(µ(Ω)/2)
‖|∇h|‖X

)

=
2

φX(µ(Ω))
K

(
µ(Ω)/2

IΩ(µ(Ω)/2)
, f ;X,SX

)

,

as we wished to show.

The main result of this section is the following

Theorem 7. — Let X be a r.i. space on Ω. Then (3.1.1) and (3.1.2) hold for all

f ∈ X + SX .

Proof. — It will be useful to note for future use that if ‖·‖ denotes either ‖·‖X
or ‖·‖SX

, we have

(3.2.4) ‖|f |‖ ≤ ‖f‖ .

Let ε > 0, and consider any decomposition f = f − h+ h with h ∈ SX , such that

(3.2.5) ‖f − h‖X + t ‖|∇h|‖X ≤ K (t, f ;X,SX) + ε.

Since by (3.2.4), h ∈ SX implies that |h| ∈ SX , this decomposition of f produces the

following decomposition of |f | :

|f | = |f | − |h|+ |h| .

Therefore, by (3.2.4) and (3.2.5) we have

‖|f | − |h|‖X + t ‖|∇ |h||‖X ≤ ‖f − h‖X + t ‖|∇h|‖X
≤ K (t, f ;X,SX) + ε.

Consequently,

(3.2.6) inf
0≤h∈SX

{‖|f | − h‖X + t ‖|∇h|‖X} ≤ K (t, f ;X,SX) .

In what follows we shall use the following notation:

K (t, f) := K (t, f ;X,SX) .

We shall start by proving (3.1.1). The proof will be divided in two parts.
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Part 1: t ∈ (0, µ(Ω)/4]. — Given 0 ≤ h ∈ SX consider the decomposition

|f | = (|f | − h) + h.

By (2.1.2) we have

|f |∗∗µ (t) ≤ ||f | − h|∗∗µ (t) + |h|∗∗µ (t),

and by (2.1.1) we get

|h|∗µ (2t)− ||f | − h|∗µ (t) ≤ |f |∗µ (t).

Combining the previous estimates we can write

|f |∗∗µ (t)− |f |∗µ (t) ≤ ||f | − h|∗∗µ (t) + |h|∗∗µ (t)− (|h|∗µ (2t)− ||f | − h|∗µ (t))
(3.2.7)

= ||f | − h|∗∗µ (t) + ||f | − h|∗µ (t) + |h|∗∗µ (t)− |h|∗µ (2t)

≤ 2 ||f | − h|∗∗µ (t) +
(

|h|∗∗µ (t)− |h|∗µ (2t)
)

= 2 ||f | − h|∗∗µ (t) +
(

|h|∗∗µ (t)− |h|∗∗µ (2t)
)

+
(

|h|∗∗µ (2t)− |h|∗µ (2t)
)

= (I) + (II) + (III).

We first show that (II) ≤ (III). Recall that d
dt(− |g|∗∗µ (t)) =

|g|∗∗µ (t)−|g|∗µ(t)

t ,

then using the fundamental theorem of Calculus, and then the fact that

t
(
|g|∗∗µ (t)− |g|∗µ (t)

)
=
∫∞

|g|∗µ(t)
µ|g|(s) ds is increasing, to estimate (II) as follows:

(II) = |h|∗∗µ (t)− |h|∗∗µ (2t)

=

∫ 2t

t

(

|h|∗∗µ (s)− |h|∗µ (s)
) ds

s

≤ 2t
(

|h|∗∗µ (2t)− |h|∗µ (2t)
)∫ 2t

t

ds

s2

=
(

|h|∗∗µ (2t)− |h|∗µ (2t)
)

= (III).

Inserting this information in (3.2.7), applying (2.1.5), and using the fact that IΩ(s)

is increasing on (0, µ(Ω)/2), yields,

|f |∗∗µ (t)− |f |∗µ (t) ≤ 2

(

||f | − h|∗∗µ (t) +
2t

IΩ(2t)
|∇h|∗∗ (2t)

)

≤ 4

(

||f | − h|∗∗µ (t) +
t

IΩ(t)
|∇h|∗∗ (t)

)

(3.2.8)

= 4 (A(t) +B(t)) .

ASTÉRISQUE



3.2. ESTIMATION OF THE OSCILLATION IN TERMS OF K−FUNCTIONALS 29

We now estimate the two terms on the right hand side of (3.2.8). For the term A(t) :

Note that for any g ∈ X,

|g|∗∗µ (t) =
1

t

∫ t

0

|g|∗µ (s) ds =
1

t

∫ 1

0

|g|∗µ (s)χ(0,t)(s) ds.

Therefore, by Hölder’s inequality (cf. (2.2.2) and (2.2.4)) we have

||f | − h|∗∗µ (t) =
1

t

∫ 1

0

||f | − h|∗µ (s)χ(0,t)(s) ds

≤ ‖(|f | − h)‖X
φX′(t)

t
(3.2.9)

= ‖(|f | − h)‖X
1

φX(t)
.

Similarly, for B(t) we get

(3.2.10) B(t) =
t

I(t)
|∇h|∗∗µ (t) ≤ t

IΩ(t)

‖|∇h|‖X
φX(t)

.

Inserting (3.2.9) and (3.2.10) back in (3.2.8) we find that,

|f |∗∗µ (t)− |f |∗µ (t) ≤
4

φX(t)

(

‖|f | − h‖X +
t

IΩ(t)
‖|∇h|‖X

)

.

Therefore, by (3.2.6),

|f |∗∗µ (t)− |f |∗µ (t) ≤
4

φX(t)
inf

0≤h∈SX

(

‖|f | − h‖X +
t

IΩ(t)
‖|∇h|‖X

)

≤ 4
K
(

t
IΩ(t) , f

)

φX(t)
.

Part II: t ∈ (µ(Ω)/4, µ(Ω)/2]. — Using that the function t(|f |∗∗µ (t) − |f |∗µ (t)) is

increasing, we get,

t(|f |∗∗µ (t)− |f |∗µ (t)) ≤ µ(Ω)/2(|f |∗∗µ (µ(Ω)/2)− |f |∗µ (µ(Ω)/2))

=

∫ µ(Ω)
2

0

(

|f |∗µ (s)− |f |∗µ (µ(Ω)/2)
)

ds

= I.

Now we use the following elementary inequality to estimate the difference |f |∗µ (s) −
|f |∗µ (µ(Ω)/2) (cf. [40, p. 94], [55, (2.5)]): For any σ ∈ R, 0 < r ≤ τ < µ(Ω), we have

(3.2.11) |f |∗µ (r) − |f |∗µ (τ) ≤ |f − σ|∗µ (r) + |f − σ|∗µ (µ(Ω)− τ).
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Consequently, if 0 < s < µ(Ω)/2 and we let r = s, τ = µ(Ω)/2, then (3.2.11) yields

|f |∗µ (s)− |f |∗µ (µ(Ω)/2) ≤ |f − σ|∗µ (s) + |f − σ|∗µ (µ(Ω)/2).

The term I above can be now be estimated as follows. For any σ ∈ R, we have

I ≤
∫ µ(Ω)

2

0

|f − σ|∗µ (s) + |f − σ|∗µ (µ(Ω)/2) ds

≤ 2

∫ µ(Ω)
2

0

|f − σ|∗µ (s) ds

≤ 2

∫ µ(Ω)

0

|f − σ|∗µ (s) ds.

Selecting σ = fΩ, yields

I ≤ 2

∫ µ(Ω)

0

|f − fΩ|∗µ (s) ds

= 2

∫

Ω

|f − fΩ| dµ.

At this point we can apply (3.2.3) to obtain

I ≤ 2µ(Ω)
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f

)

φX(µ(Ω))
.

A well known elementary fact about K−functionals is that they are concave functions

(cf. [13]), in particular K(t,f)
t is a decreasing function. Thus, since IΩ(t) is increasing

on (0, µ(Ω)/2), we see that

K

(
µ(Ω)/2

IΩ(µ(Ω)/2)
, f

)

≤ µ(Ω)/2

IΩ(µ(Ω)/2)

IΩ(t)

t
K

(
t

IΩ(t)
, f

)

≤ µ(Ω)/2

IΩ(µ(Ω)/2)

IΩ(µ(Ω)/2)

t
K

(
t

IΩ(t)
, f

)

≤ 2K

(
t

IΩ(t)
, f

)

(since t > µ(Ω)/4).

Therefore,

|f |∗∗µ (t)− |f |∗µ (t)≤ 4
µ(Ω)

t

K
(

t
IΩ(t) , f

)

φX(µ(Ω))

≤ 16
K
(

t
IΩ(t) , f

)

φX(µ(Ω))
(since t > µ(Ω)/4)

≤ 16
K
(

t
IΩ(t) , f

)

φX(t)

(

since
1

φX
decreases

)

.
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Let us now to prove (3.1.2). Once again we divide the proof in two cases. For t ∈
(0, µ(Ω)/2) we claim that (3.1.2) is a consequence of (3.1.1). Indeed, if we apply (3.1.1)

to the function f − fΩ and then use the fact that the K−functional is subadditive

and zero on constant functions, we obtain

|f − fΩ|∗∗µ (t)− |f − fΩ|∗µ (t) ≤ 16K

(
t

IΩ(t)
, f − fΩ

)

≤ 16K

(
t

IΩ(t)
, f

)

+K

(
t

IΩ(t)
, fΩ

)

= 16K

(
t

IΩ(t)
, f

)

.

Suppose now that t ∈ (µ(Ω)/2, µ(Ω)). We have

|f − fΩ|∗∗µ (t)− |f − fΩ|∗µ (t) ≤ |f − fΩ|∗∗µ (t)

≤ 1

t

∫ t

0

|f − fΩ|∗µ (s) ds

≤ 2

µ(Ω)

∫ µ(Ω)

0

|f − fΩ|∗µ (s) ds

=
2

µ(Ω)

∫

Ω

|f − fΩ| dµ

≤ 4
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f

)

φX(µ(Ω))
(by (3.2.3)).

Recalling that t
IΩ(t) is increasing and 1

φX (t) is decreasing, we can continue with

4
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f

)

φX(µ(Ω))
≤ 4

K
(

t
IΩ(t) , f

)

φX(µ(Ω))

≤ 4
K
(

t
IΩ(t) , f

)

φX(t)
,

an the desired result follows.

A useful variant of the previous result can be stated as follows (cf. [73] for a

somewhat weaker result).

Theorem 8. — Let X = X(Ω) be a r.i. space with αX > 0. Then, there exists a

constant c = c(X) > 0 such that for all f ∈ X,

(3.2.12)
∥
∥
∥

(

|f |∗µ (·) − |f |∗µ (t/2)
)

χ(0,t/2)(·)
∥
∥
∥
X̄

≤ cK

(
t

IΩ(t)
, f ;X,SX

)

, 0 < t ≤ µ(Ω).
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Proof. — Fix t ∈ (0, µ(Ω)]. We will first suppose that f is bounded. We claim that

in the computation of K (t, f ;X,SX) we can restrict ourselves to consider decompo-

sitions with bounded h. In fact, we have

(3.2.13)

inf
0≤h≤‖f‖∞,h∈SX

{‖|f | − h‖X + t ‖|∇h|‖X} ≤ 2 inf
0≤h∈SX

{‖|f | − h‖X + t ‖|∇h|‖X} .

To see this consider any competing decomposition with 0 ≤ h ∈ SX . Let

g = min(h, ‖f‖∞) ∈ SX .

Then,

|∇g| ≤ |∇h| ,

and, moreover, we have

‖|f | − g‖X + t ‖|∇g|‖X ≤
∥
∥
∥(|f | − h)χ{h≤‖f‖∞}

∥
∥
∥
X
+

∥
∥
∥(|f | − ‖f‖∞)χ{h>‖f‖∞}

∥
∥
∥
X
+ t ‖|∇h|‖X

≤ ‖|f | − h‖X +
∥
∥
∥(|f | − ‖f‖∞)χ{h>‖f‖∞}

∥
∥
∥
X
+ t ‖|∇h|‖X .

Now, since

∣
∣
∣(|f | − ‖f‖∞)χ{h>‖f‖∞}

∣
∣
∣ = (‖f‖∞ − |f |)χ{h>‖f‖∞} ≤ (h− |f |)χ{h>‖f‖∞},

we see that
∥
∥
∥(|f | − ‖f‖∞)χ{h>‖f‖∞}

∥
∥
∥
X

=
∥
∥
∥(h− |f |)χ{h>‖f‖∞}

∥
∥
∥
X

≤ ‖|f | − h‖X .

Consequently

‖|f | − g‖X + t ‖|∇g|‖X ≤ 2 ‖|f | − h‖X + t ‖|∇h|‖X ,

and (3.2.13) follows.

Let 0 ≤ h be a bounded Lip(Ω) function, and fix g ∈ X̄ ′ with ‖g‖X̄′ = 1. Recall

that X̄ ′ is a r.i. space on ([0, µ(Ω)],m), where m denotes Lebesgue measure. We let

|g|∗ := |g|∗m. Consider the decomposition

|f | = (|f | − h) + h.

Writing h = |f |+ (− (|f | − h)), we see that |h|∗µ (t) ≤ |f |∗µ (t/2)+ ||f | − h|∗µ (t/2). We

use this inequality to provide a lower bound for |f |∗µ (t/2), namely

|h|∗µ (t)− ||f | − h|∗µ (t/2) ≤ |f |∗µ (t/2).
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Then we have

∫ t/2

0

(|f |∗µ (s)− |f |∗µ (t/2))χ(0,t/2)(s) |g|∗ (s) ds

=

∫ t/2

0

|f |∗µ (s) |g|
∗ (s) ds− |f |∗µ (t/2)

∫ t/2

0

|g|∗ (s) ds(3.2.14)

≤
∫ t/2

0

|f |∗µ (s) |g|
∗
(s) ds−

(

|h|∗µ (t)− ||f | − h|∗µ (t/2)
)∫ t/2

0

|g|∗ (s) ds.

To estimate the first integral on the right hand side without sacrificing precision on

the range of the variable ∗t∗ requires an argument. We shall use the majorization

principle (2.2.1) as follows. Since the operation f → f∗∗ is sub-additive, for any r > 0

we have

∫ r

0

|f |∗µ (s)χ(0, t2 )
(s) ds =

∫ min{r, t2}

0

|f |∗µ (s) ds

≤
∫ min{r, t2}

0

||f | − h|∗µ (s) ds+
∫ min{r, t2}

0

|h|∗µ (s) ds

=

∫ min{r, t2}

0

(

||f | − h|∗µ (s) + |h|∗µ (s)
)

ds

≤
∫ r

0

(

||f | − h|∗µ (s) + |h|∗µ (s)
)

χ(0, t2 )
(s) ds.

Now, since for each fixed t the functions H1 = |f |∗µ(·)χ(0, t2 )
(·) and H2 =(||f |−h|∗µ(·)+

|h|∗µ(·))χ(0, t2 )
(·) are decreasing, we can apply the Calderón-Hardy Lemma to the

(Lorentz) function seminorm defined by (cf. [62, Theorem 1])

‖H‖Λg =

∫ µ(Ω)

0

|H |∗ (s) |g|∗ (s) ds.

We obtain

‖H1‖Λg ≤ ‖H2‖Λg .

It follows that

∫ t/2

0

|f |∗µ (s) |g|
∗
(s) ds =

∫ µ(Ω)

0

|f |∗µ (s)χ(0, t2 )
(s) |g|∗ (s) ds

≤
∫ µ(Ω)

0

(

||f | − h|∗µ (s) + |h|∗µ (s)
)

χ(0, t2 )
(s) |g|∗ (s) ds

=

∫ t/2

0

(

||f | − h|∗µ (s) + |h|∗µ (s)
)

|g|∗ (s) ds.
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Inserting this estimate back in (3.2.14) we have,
∫ t/2

0

(|f |∗µ(s)− |f |∗µ(t/2))χ(0,t/2)(s)|g|∗(s) ds

≤
∫ t/2

0

(

||f | − h|∗µ (s) + |h|∗µ(s)
)

|g|∗(s) ds−
(

|h|∗µ(t)− ||f | − h|∗µ (t/2)
)∫ t/2

0

|g|∗ (s) ds

=

∫ t/2

0

||f | − h|∗µ(s)|g|∗(s) ds+
∫ t/2

0

|h|∗µ(s)|g|∗(s) ds+
(

||f | − h|∗µ (t/2)− |h|∗µ(t)
) ∫ t/2

0

|g|∗(s) ds

=

∫ t/2

0

(

||f | − h|∗µ (s) + ||f | − h|∗µ (t/2)
)

|g|∗(s) ds+
∫ t/2

0

(

|h|∗µ (s)− |h|∗µ (t)
)

|g|∗(s) ds

≤ 2

∫ µ(Ω)

0

||f | − h|∗µ (s)χ(0,t/2)(s) |g|∗ (s) ds+
∫ µ(Ω)

0

(

|h|∗µ (s)− |h|∗µ (t)
)

χ(0,t/2)(s) |g|∗ (s) ds

≤ 2 ‖|f | − h‖X̄ +
∥
∥
∥(|h|∗µ (·)− |h|∗µ (t))χ(0,t/2)

∥
∥
∥
X̄

(by (2.2.8)).

Now, let {hn}n∈N be the sequence provided by Lemma 2, Chapter 2. Then,

(

|hn|∗µ (s)− |hn|∗µ (t)
)

χ(0,t/2)(s) =

∫ t

s

(

− |hn|∗µ
)′

(r)drχ(0,t/2)(s)

≤
∫ t

s

(

− |hn|∗µ
)′

(r)IΩ(r)
dr

IΩ(r)

≤ t

IΩ(t)

∫ t

s

(

− |hn|∗µ
)′

(r)IΩ(r)
dr

r

≤ t

IΩ(t)

∫ µ(Ω)

s

(

− |hn|∗µ
)′

(r)IΩ(r)
dr

r

=
t

IΩ(t)
Q(
(

− |hn|∗µ
)′

IΩ)(s).

Applying ‖·‖X̄ (in the variable s) and using the fact that αX > 0, we see that
∥
∥
∥

(

|hn|∗µ (·)− |hn|∗µ (t)
)

χ(0,t/2)(·)
∥
∥
∥
X̄

≤ c
t

IΩ(t)

∥
∥
∥
∥

(

− |hn|∗µ
)′

(·)IΩ(·)
∥
∥
∥
∥
X̄

≤ c
t

IΩ(t)
‖|∇hn|‖X (by (2.1.8))

≤ c
t

IΩ(t)

(

1 +
1

n

)

‖|∇hn|‖X (by (2.1.6)).
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On the other hand, by (2.1.7), hn →
n→∞

h in L1, and by Lemma 1 we get |hn|∗µ (s) →
|h|∗µ (s), thus applying Fatou’s Lemma in the X norm (cf. Section 2.2), we find that

∥
∥
∥

(

|h|∗µ (·)− |h|∗µ (t)
)

χ(0,t)(·)
∥
∥
∥
X̄

= lim
n→∞

inf
∥
∥
∥

(

|hn|∗µ (·)− |hn|∗µ (t)
)

χ(0,t)(s)
∥
∥
∥
X̄

(3.2.15)

≤ c
t

IΩ(t)
‖|∇h|‖X .

Combining (3.2.14) and (3.2.15) we get

(3.2.16)
∫ µ(Ω)

0

(|f |∗µ (s)− |f |∗µ (t/2))χ(0,t/2)(s) |g|∗ (s) ds ≤ c(‖|f | − h‖X +
t

IΩ(t)
‖|∇h|‖X).

Since
(
|f |∗µ (s)− |f |∗µ (t/2)

)
χ(0,t/2)(s) is a decreasing function of s, we can write

(

|f |∗µ (s)− |f |∗µ (t/2)
)

χ(0,t/2)(s) =
((

|f |∗µ (·)− |f |∗µ (t/2)
)

χ(0,t/2)(·)
)∗

(s).

Combining successively duality, the last formula and (3.2.16), we get

∥
∥
∥

(

|f |∗µ (·)− |f |∗µ (t/2)
)

χ(0,t/2)(s)
∥
∥
∥
X̄

= sup
‖g‖X̄′≤1

∫ µ(Ω)

0

[(

|f |∗µ (·)− |f |∗µ (t/2)
)

χ(0,t/2)(·)
]∗

(s) |g|∗ (s) ds

= sup
‖g‖X̄′≤1

∫ µ(Ω)

0

(

|f |∗µ (s)− |f |∗µ (t/2)
)

χ(0,t/2)(s) |g|∗ (s) ds

≤ 2c

(

‖|f | − h‖X +
t

IΩ(t)
‖|∇h|‖X

)

,

where c is an absolute constant that depends only onX . Consequently, if f is bounded

there exists an absolute constant c > 0 such that

∥
∥
∥

(

|f |∗µ (·)− |f |∗µ (t/2)
)

χ(0,t/2)(·)
∥
∥
∥
X̄

≤ c inf
0≤h∈SX

{

‖|f | − h‖X +
t

IΩ(t)
‖|∇h|‖X

}

≤ cK

(
t

IΩ(t)
, f ;X,SX

)

(by (3.2.6)).

Suppose now that f is not bounded. Let fn = min(|f | , n) ր |f |. By the first part of

the proof we have,

|fn|∗∗µ (t)− |fn|∗µ (t) ≤ cK

(
t

IΩ(t)
, fn;X,SX

)

.
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Fix n. For any 0 ≤ h ∈ SX , let h̃n = min (h, n). Then,

K

(
t

I(t)
, fn;X,SX

)

≤
∥
∥
∥|fn| − h̃n

∥
∥
∥
X
+

t

IΩ(t)

∥
∥
∥

∣
∣
∣∇h̃n

∣
∣
∣

∥
∥
∥
X

≤ ‖|f | − h‖X +
t

IΩ(t)
‖|∇h|‖X .

Taking infimum it follows that, for all n ∈ N,

K

(
t

IΩ(t)
, fn;X,SX

)

≤ K

(
t

IΩ(t)
, f ;X,SX

)

.

Since fn = min(|f | , n) ր |f |, then by the Fatou property of the norm we have
∥
∥
∥

(

|f |∗µ (·)− |f |∗µ (t/2)
)

χ(0,t/2)(·)
∥
∥
∥
X̄

= lim
n

∥
∥
∥

(

|fn|∗µ (·)− |fn|∗µ (t/2)
)

χ(0,t/2)(·)
∥
∥
∥
X

≤ c lim
n
K

(
t

IΩ(t)
, fn;X,SX

)

≤ cK

(
t

IΩ(t)
, f ;X,SX

)

,

as we wished to show.

Remark 2. — For perspective we now show that, under the extra assumption that the

r.i. space satisfies αX > 0, (3.2.12) can be used to give a direct proof of (3.1.1).

Proof. — We have,

|f |∗∗µ (t/2)− |f |∗µ (t/2) =
2

t

∫ µ(Ω)

0

(

|f |∗µ (s)− |f |∗µ (t/2)
)

χ(0,t/2)(s) ds

≤
∥
∥
∥

(

|f |∗µ (·)− |f |∗µ (t/2)
)

χ(0,t/2)(·)
∥
∥
∥
X̄

2φX′(t/2)

t
(by Hölder’s inequality)

≤ 2cK

(
t

IΩ(t)
, f ;X,SX

)
φX′(t)

t
(by (3.2.12))

= 2c
K
(

t
IΩ(t) , f ;X,SX

)

φX(t)
.

Example 1. — For familiar spaces (3.2.12) takes a more concrete form. For example,

if X = Lp, 1 ≤ p <∞, then αLp > 0, and (3.2.12) becomes

(3.2.17)

∫ t/2

0

(

|f |∗µ (s)− |f |∗µ (t/2)
)p

ds ≤ cp

(

K

(
t

IΩ(t)
, f ;Lp, SLp

))p

.

In particular, when p = 1, the left hand side of (3.2.17) becomes

t

2
(|f |∗∗µ (t/2)− |f |∗µ(t/2)) =

∫ t/2

0

(
f∗
µ(s)− f∗

µ(t/2)
)
ds.
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As a consequence, when X = L1 and 0 < t < µ(Ω)/4, (3.2.12) and (3.1.1) represent

the same inequality, modulo constants.

The next easy variant of Theorem 7 gives more flexibility for some applications.

Theorem 9. — Let X and Y be a r.i. spaces on Ω. Then, for each f ∈ X + SY we

have

(3.2.18) |f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ c
K
(

t
IΩ(t)

φX(t)
φY (t) , f ;X,SY

)

φX(t)
, 0 < t ≤ µ(Ω).

Proof. — Since the proof is almost the same as the proof of Theorem 7 we shall only

briefly indicate the necessary changes. Let f = f0 + f1 be a decomposition of f , then

using estimate (3.2.10), with Y instead of X, we get

|∇f1|∗∗µ (t) ≤ ‖|∇f1|‖Y
φY (t)

.

Therefore,

(3.2.19)
t

IΩ(t)
|∇f1|∗∗µ (t) ≤ φX(t)

φX(t)

t

IΩ(t)

‖|∇f1|‖Y
φY (t)

.

Inserting (3.2.9) and (3.2.19) back in (3.2.8) we find that, for 0 < t < µ(Ω),

|f |∗∗µ (t/2)− |f |∗µ (t/2) ≤
‖f0‖X
φX(t)

+
φX(t)

φX(t)

t

IΩ(t)

‖|∇f1|‖Y
φY (t)

≤ 1

φX(t)

(

‖f0‖X + φX(t)
t

IΩ(t)

‖|∇f1|‖Y
φY (t)

)

.

The desired result follows taking infimum over all decompositions of f.

Remark 3. — Obviously if there exists a constant c > 0 such that for all t

(3.2.20) φX(t) ≤ cφY (t),

then for each f ∈ X + SY ,

|f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ 2
K
(

ct
IΩ(t) , f ;X,SY

)

φX(t)
, 0 < t ≤ µ(Ω).

Note that Y ⊂ X implies that (3.2.20) holds.

3.3. A variant of Theorem 7

This section is devoted to the proof of an improvement of Theorem 7 that will

play an important role in Chapter 4. In this variant we shall replace the variable

inside the K−functional, namely t
IΩ(t) , by a smaller function that depends on the

space X. The relevant functions are defined next.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



38 CHAPTER 3. OSCILLATIONS, K-FUNCTIONALS AND ISOPERIMETRY

Definition 2. — Let X be a r.i. space on Ω. For t ∈ (0, µ(Ω)) we let

ψX,Ω(t) =
φX(t)

t

∥
∥
∥
∥

s

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
X̄′

,(3.3.1)

ΨX,Ω(t) = φX(t)

∥
∥
∥
∥

1

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
X̄′

.(3.3.2)

If either X and/or Ω are clear from the context we shall drop the corresponding

sub-index. In the next Lemma we collect a few elementary remarks connected with

these functions.

Lemma 3

(i) The function ψX(t) is always finite, and in fact

ψX(t) ≤ t

IΩ(t)
, t ∈ (0, µ(Ω)).

(ii) In the isoperimetric case there is no improvement: When X = L1,

ψL1(t) =
t

IΩ(t)
.

(iii) We always have

ψX ≤ ΨX .

(iv) The function ΨX is increasing

(v) A necessary and sufficient condition for ΨX(t) to take only finite values is

(3.3.3)

∥
∥
∥
∥

1

IΩ(s)

∥
∥
∥
∥
X̄′

<∞.

Proof

(i) Since s
IΩ(s) is increasing,

φX(t)

t

∥
∥
∥
∥

s

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
X̄

′

≤ φX(t)

t

t

IΩ(t)

∥
∥χ(0,t)(s)

∥
∥
X̄′

=
φX(t)

t

t

IΩ(t)
φX′(t)

=
t

IΩ(t)
.

(ii) For X = L1,

ψL1(t) =
φL1(t)

t

∥
∥
∥
∥

s

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
L∞

=
t

t
sup
s<t

{
s

IΩ(s)

}

=
t

IΩ(t)
.
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(iii) Since s ↑

ψX(t) =
φX(t)

t

∥
∥
∥
∥

s

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
X̄′

≤ φX(t)

∥
∥
∥
∥

1

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
X̄′

= ΨX(t).

(iv) By inspection
∥
∥
∥

1
IΩ(s)χ(0,t)(s)

∥
∥
∥
X̄′

increases in the variable t.

(v) By (iv) for t ∈ (0, µ(Ω)),

ΨX(t) ≤ ΨX(µ(Ω)) = φX(µ(Ω))

∥
∥
∥
∥

1

IΩ(s)

∥
∥
∥
∥
X̄′

.

On the other hand, by the triangle inequality

ΨX(µ(Ω)/2) ≥ φX(µ(Ω)/2)

∥
∥
∥
∥

1

IΩ(s)

∥
∥
∥
∥
X̄′

− φX(µ(Ω)/2)

∥
∥
∥
∥

χ(µ(Ω)/2,µ(Ω))(s)

IΩ(s)

∥
∥
∥
∥
X̄′

It follows that

φX(µ(Ω)/2)

∥
∥
∥
∥

1

IΩ(s)

∥
∥
∥
∥
X̄′

≤ 2ΨX(µ(Ω)/2).

Remark 4. — Unless mention to the contrary, we shall always assume that (3.3.3)

holds when dealing with the functions introduced in Definition 2.

Theorem 10. — Let X be a r.i. space on Ω. Then, for all f ∈ X + SX ,

(3.3.4) |f |∗∗µ (t)− |f |∗µ (t) ≤ 8
K (ψX(2t), f ;X,SX)

φX(t)
, 0 < t ≤ µ(Ω)/2.

Remark 5. — Lemma 3 (i) implies that (3.3.4) is stronger than (3.1.1).

Proof of Theorem 10. — Let f ∈ X + SX , be bounded. Proceeding as in the proof

of Theorem 7 we can show that for any h ∈ SX , with 0 ≤ h ≤ ‖f‖L∞ ,

|f |∗∗µ (t)− |f |∗µ (t) ≤ 4 ||f | − h|∗∗µ (t) + 2(|h|∗∗µ (2t)− |h|∗µ (2t)), 0 < t < µ(Ω)/2.

The first term on the right hand side was estimated in (3.2.9)

4 ||f | − h|∗∗µ (t) ≤ 4 ‖(|f | − h)‖X
1

φX(t)
.
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To estimate |h|∗∗µ (2t) − |h|∗µ (2t), consider {hn}n∈N , the sequence of Lip functions

associated to h that is provided by Lemma 2. Then

|hn|∗∗µ (2t)− |hn|∗µ (2t) =
1

2t

∫ 2t

0

s
(

− |hn|∗µ
)′

(s) ds (integration by parts)

=
1

2t

∫ 2t

0

s
(

− |hn|∗µ
)′

(s)IΩ(s)
ds

I(s)

≤ 1

2t

∥
∥
∥
∥

s

IΩ(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

∥
∥
∥
∥

(

− |hn|∗µ
)′

(s)IΩ(s)

∥
∥
∥
∥
X̄

(by Hölder’s inequality)

≤ 1

2t

∥
∥
∥
∥

s

IΩ(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

‖|∇hn|‖X (by (2.1.8))

≤ 1

2t

∥
∥
∥
∥

s

IΩ(s)
χ(0,2t)(z)

∥
∥
∥
∥
X̄

′

(1 +
1

n
) ‖|∇h|‖X

(by (2.1.6)).

On the other hand, from (2.1.7) and Lemma 1, we have |hn|∗µ (s) → |h|∗µ (s), and
|hn|∗∗µ (s) → |h|∗∗µ (s). Consequently,

|h|∗∗µ (2t)− |h|∗µ (2t) ≤
1

2t

∥
∥
∥
∥

s

IΩ(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

‖|∇h|‖X .

Summarizing,

|f |∗∗µ (t)− |f |∗µ (t) ≤ 4
‖|f | − h‖X
φX(t)

+
1

2t

∥
∥
∥
∥

s

IΩ(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

‖|∇h|‖X

=
4

φX(t)

(

‖|f | − h‖X +
φX(t)

2t

∥
∥
∥
∥

s

IΩ(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

‖|∇h|‖
)

X

≤ 4

φX(t)
(‖|f | − h‖X + ψX(2t) ‖|∇h|‖)X .

Thus,

|f |∗∗µ (t)− |f |∗µ (t) ≤
4

φX(t)
inf

0≤h≤‖f‖∞,h∈SX

{‖|f | − h‖X + ψ(2t) ‖|∇h|‖}

≤ 8

φX(t)

K (ψX(2t), f ;X,SX)

φX(t)
(by (3.2.13)).

When f is not bounded we consider the sequence fn = min(|f | , n) ր |f |, and we

proceed as in the proof of Theorem 8.

3.4. Isoperimetry

In this section we show the connection of (3.1.1) and (3.3.4) with isoperimetry.

Observe that (3.1.1) holds for all r.i. spaces. In particular, it holds for X = L1.
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Theorem 11. — Let G be a continuous function on (0, µ(Ω)) which is zero at zero and

symmetric around µ(Ω)/2. Then the following are equivalent

i) Isoperimetric inequality: There exists an absolute constant c > 0, such that

(3.4.1) G(t) ≤ cIΩ(t), 0 < t ≤ µ(Ω).

ii) There exists an absolute constant c > 0 such that for each f ∈ L1,

(3.4.2) |f |∗∗µ (t)− |f |∗µ (t) ≤ c
K
(

t
G(t) , f ;L

1, SL1

)

t
, 0 < t ≤ µ(Ω)/2.

Proof

(i) ⇒(ii). Since

|f |∗∗µ (t)− |f |∗µ (t) ≤ c
K
(

t
IΩ(t) , f ;L

1, SL1

)

t
, 0 < t ≤ µ(Ω)/2.

it follows that (3.4.1) implies (3.4.2).

(ii) ⇒ (i). Suppose that A is a Borel set with 0 < µ(A) < µ(Ω)/2. We may

assume, without loss, that P (A; Ω) <∞. By [18, Lemma 3.7] we can select a sequence

{fn}n∈N of Lip functions such that fn →
L1
χA, and

P (A; Ω) ≥ lim sup
n→∞

‖|∇fn|‖L1 .

Going through a subsequence, if necessary, we can actually assume that for all n we

have

P (A; Ω) ≥ ‖|∇fn|‖L1 .

From (3.4.2) we know that there exists a constant c > 0 such that for all 0 < t ≤
µ(Ω)/2,

|fn|∗∗µ (t)− |fn|∗µ (t) ≤ c
K
(

t
G(t) , fn;L

1, SL1

)

t
.

We take limits when n→ ∞ on both sides of this inequality. To compute on the left

hand side we observe that, since, fn →
L1
χA, Lemma 1 implies that:

|fn|∗∗µ (t) → |χA|∗∗µ (t), uniformly for t ∈ [0, 1], and

|fn|∗µ (t) → |χA|∗µ (t) for t ∈ (0, 1) .

Fix 1/2 > r > µ(A). We have

lim
n→∞

(

|fn|∗∗µ (r)− |fn|∗µ (r)
)

= (χA)
∗∗
µ (r) − (χA)

∗
µ (r)

= (χA)
∗∗
µ (r) (since (χA)

∗
µ (r) = χ(0,µ(A))(r) = 0)

=
µ(A)

r
.
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Now, to estimate the right hand side we observe that, for each n, fn ∈ L1 ∩ SL1 .

Consequently, by the definition of K-functional, we have

K( t
G(t) , fn;L

1, SL1)

t
≤ min

{‖fn‖L1

t
,

1

G(t)
‖|∇fn|‖L1

}

≤ min

{‖fn‖L1

t
,

1

G(t)
P (A; Ω)

}

.

Thus,

lim
n→∞

K( t
G(t) , fn;L

1, SL1)

t
≤ min

{
µ(A)

t
,

1

G(t)
P (A; Ω)

}

.

Combining these estimates we find that for all 1/2 > r > µ(A),

µ(A)

r
≤ c

1

G(r)
P (A; Ω).

Let r → µ(A) then, by the continuity of G, we find

1 ≤ c
1

G(µ(A))
P (A; Ω),

or

G(µ(A)) ≤ cP (A; Ω).

Thus,

G(µ(A)) ≤ c inf{P (B; Ω) : µ(B) = µ(A)}
= cIΩ(µ(A)).

Suppose now that t ∈ (µ(Ω)/2, µ(Ω)). Then 1− t ∈ (0, µ(Ω)) and by symmetry,

G(t) = G(1− t) ≤ cI(1 − t) = cI(t),

and we are done.
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CHAPTER 4

EMBEDDING INTO CONTINUOUS FUNCTIONS

4.1. Introduction and Summary

In this chapter we obtain a general version of the Morrey-Sobolev theorem on

metric measure spaces (Ω, d, µ) satisfying the usual assumptions.

4.1.1. Inequalities for signed rearrangements. — Let (Ω, d, µ) be a metric

measure space satisfying the usual assumptions. We collect a few more facts about

signed rearrangements. First let us note that for c ∈ R,

(4.1.1) (f + c)∗µ (t) = f∗
µ(t) + c.

Moreover, if X(Ω) is a r.i. space, we have

‖ |f |∗µ ‖X̄(0,µ(Ω)) = ‖|f |‖X(Ω) = ‖f‖X(Ω) = ‖f∗
µ‖X̄(0,µ(Ω)),

where X̄(0, µ(Ω)) is the representation space of X (Ω) .

The results of the previous chapter can be easily formulated in terms of signed

rearrangements. In particular, we shall now discuss in detail the following extension

(variant) of Theorem 10.

Theorem 12. — Let X be a r.i. space on Ω. Then, for all f ∈ X + SX , we have,

(4.1.2) f∗∗
µ (t)− f∗

µ(t) ≤ 8
K (ψ(2t), f ;X,SX)

φX(t)
, 0 < t ≤ µ(Ω)/2,

where ψ(t) := ψX,Ω(t) =
φX (t)

s

∥
∥ s
IΩ(s)χ(0,t)(s)

∥
∥
X̄′ is the function introduced in (3.3.1)).

Proof. — Let us first further assume that f is bounded below, and let c = infΩ f . We

can then apply Theorem 10 to the positive function f − c, and we obtain

(4.1.3) (f − c)
∗∗
µ (t)− (f − c)

∗
µ (t) ≤ 8

K (ψ(2t), f − c;X,SX)

φX(t)
.
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We can simplify the left hand side of (4.1.3) using (4.1.1)

(f − c)
∗∗
µ (t)− (f − c)

∗
µ (t) = f∗∗

µ (t)− f∗
µ(t).

On the other hand, the sub-additivity of the K−functional, and the fact that it is zero

on constant functions, allows us to estimate the right hand side of (4.1.3) as follows

K (ψ(t), f − c;X,SX) ≤ K (ψ(t), f ;X,SX) +K (ψ(t), c;X,SX)

= K (ψ(t), f ;X,SX) .

Combining these observations we see that,

f∗∗
µ (t)− f∗

µ(t) ≤ 8
K (ψ(2t), f ;X,SX)

φX(t)
.

If f is not bounded from below, we use an approximation argument. Let

fn = max(f,−n), n = 1, 2, . . .

Then by the previous discussion we have

(fn)
∗∗
µ (t)− (fn)

∗
µ(t) ≤ 8

K (ψ(2t), fn;X,SX)

φX(t)
.

Now fn(x) → f(x) µ−a.e., with |fn| ≤ |f | , therefore, L1 convergence follows by

dominated convergence, and we can then apply Lemma 1 to conclude that

f∗∗
µ (t)− f∗

µ(t) ≤ 8
K (ψ(2t), fn;X,SX)

φX(t)
.

We estimate the right hand side as follows. Given ε > 0, select hε ∈ SX such that

(4.1.4) ‖f − hε‖X + ψ(t) ‖|∇hε|‖X ≤ K (ψ(t), f ;X,SX) + ε.

For each n ∈ N let us define hεn = max(hε,−n). Then

(4.1.5) hεn ∈ SX with |∇hεn| ≤ |∇hε| .

By a straightforward analysis of all possible cases we see that

(4.1.6) ‖fn − hεn‖X ≤ ‖f − hε‖X .

Therefore, combining (4.1.4), (4.1.5) and (4.1.6), we obtain

K (ψ(t), fn;X,SX) ≤ K (ψ(t), f ;X,SX) ,

thus

f∗∗
µ (t)− f∗

µ(t) ≤ 8
K (ψ(2t), f ;X,SX)

φX(t)
, 0 < t ≤ µ(Ω)/2.

and (4.1.2) follows.
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4.2. Continuity via rearrangement inequalities

In this section we consider the following problems: Characterize, in terms of

K−functional conditions, the functions in f ∈ X(Ω) + SX(Ω) that are bounded,

or essentially continuous. One can rephrase these questions as suitable embedding

theorems for Besov type spaces.

We consider boundedness first.

Lemma 4. — Let (Ω, d, µ) be a metric measure space, and let X(Ω) be a r.i. space.

Then if f ∈ X + SX is such that
∫ µ(Ω)

0

K (Ψ(t), f ;X,SX)

φX(t/2)

dt

t
<∞,

then f is essentially bounded, where Ψ(t) := ΨX,Ω(t) = φX(t)
∥
∥ 1
IΩ(s)χ(0,t)(s)

∥
∥
X̄′ is the

function introduced in (3.3.2).

Proof. — To simplify the notation we shall let K(t, f) := K (t, f ;X,SX). By

Lemma 3 (i) and Theorem 10, we have

(4.2.1) |f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ 8
K (Ψ(t), f)

φX(t/2)
, 0 < t ≤ µ(Ω).

Fix 0 < r < µ(Ω)
2 ; then integrating both sides of (4.2.1) from r to µ(Ω), we find

∫ µ(Ω)

r

(

|f |∗∗µ (t/2)− |f |∗µ (t/2)
) dt

t
≤ 8

∫ µ(Ω)

r

K (Ψ(t), f)

φX(t/2)

dt

t
.

We can compute the left hand side using the fundamental theorem of calculus

∫ µ(Ω)
2

r

(

|f |∗∗µ (u)− |f |∗µ (u)
) du

u
= f∗∗(r) − f∗∗

(
µ(Ω)

2

)

,

thus,

f∗∗(r)− f∗∗

(
µ(Ω)

2

)

≤ 8

∫ µ(Ω)

r

K (Ψ(t), f)

φX(t/2)

dt

t
.

Therefore,

f∗∗(r) ≤ 2

µ(Ω)

∫ µ(Ω)
2

0

|f |∗µ (s) ds+ 8

∫ µ(Ω)

r

K (Ψ(t), f ;X,SX)

φX(t/2)

dt

t
.

Thus, letting r → 0,

‖f‖L∞ ≤ 2

µ(Ω)

∫ µ(Ω)
2

0

|f |∗µ (s) ds+ 8

∫ µ(Ω)

0

K (Ψ(t), f ;X,SX)

φX(t/2)

dt

t
,

and the result follows.

To study essential continuity it will be useful to introduce some notation. Let

G be an open subset of Ω. Recall (cf. Section 2.2) that Xr(G) = X(G, d|G, µ|G).

When the open set G is understood from the context, we shall simply write Xr and
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SXr . We shall denote by X̄r = X̄r(0, µ(G)) the representation space of Xr, and we

let X ′
r denote the corresponding associated space of Xr (For more information see

Section 2.2, (2.2.13).)

If f ∈ X(Ω) + SX(Ω), then we obviously have that fχG ∈ Xr(G) + SXr (G).

However, we can not apply our fundamental inequalities (3.1.1), (3.3.2) since we are

now working in the metric space (G, d|G, µ|G) and therefore the isoperimetric profile

has changed.

Given G ⊂ Ω an open subset, and let A ⊂ G. The perimeter of A relative to G

is defined by

P (A;G) = lim inf
h→0

µ (Ah)− µ (A)

h
,

where Ah = {x ∈ G : d(x,A) < h}. Obviously

P (A;G) ≤ P (A; Ω).

The relative isoperimetric profile of G ⊂ Ω is defined by (see for example [4]

and the references quoted therein)

IG(s) = I(G,d,µ)(s) = inf {P (A;G) : A ⊂ G, µ(A) = s} , 0 < s < µ(G).

We say that an isoperimetric inequality relative to G holds true if there exists a

positive constant CG such that

IG(s) ≥ CG min(IΩ(s), IΩ(µ(G) − s)) = JG(t), 0 < s < µ(G),

where IΩ is the isoperimetric profile of (Ω, d, µ). Notice that, if µ(G) ≤ µ(Ω)/2, then

JG : [0, µ(G)] → [0,∞) is increasing on (0, µ(G)/2), symmetric around the point

µ(G)/2, and such that

IG ≥ JG,

i.e., JG is an isoperimetric estimator for the metric space (G, d|G, µ|G).

Definition 3. — We will say that a metric measure space (Ω, d, µ) has the relative

uniform isoperimetric property if there is a constant C such that for any ball

B in Ω, its relative isoperimetric profile IB satisfies:

IB(s) ≥ Cmin(IΩ(s), IΩ(µ(B)− s)), 0 < s < µ(B).

The following proposition will be useful in what follows

Proposition 2. — Let J be an isoperimetric estimator of (Ω, d, µ). Let G ⊂ Ω be an

open set with µ(G) ≤ µ(Ω)/2, and let Z = Z([0, µ(G)]) be a r.i. space on [0, µ(G)].

Then

R(t) :=

∥
∥
∥
∥

1

min(J(s), J(µ(G) − s))
χ(0,t)(s)

∥
∥
∥
∥
Z

≤ 2

∥
∥
∥
∥

1

J(s)
χ(0,t)(s)

∥
∥
∥
∥
Z

, 0 < t ≤ µ(G).
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Proof. — Since min(IΩ(s), IΩ(µ(G)−s)) is an isoperimetric estimator for (G, d|G, µ|G),

we have

R(t) ≤
∥
∥
∥
∥

1

min(IΩ(s), IΩ(µ(G) − s))
χ(0,µ(G)/2)(s)

∥
∥
∥
∥
Z

+

∥
∥
∥
∥

1

min(IΩ(s), IΩ(µ(G) − s))
χ(µ(G)/2,t)(s)

∥
∥
∥
∥
Z

=

∥
∥
∥
∥

1

IΩ(s)
χ(0,µ(G)/2)(s)

∥
∥
∥
∥
Z

+

∥
∥
∥
∥

1

IΩ(µ(G) − s)
χ(µ(G)/2,t)(s)

∥
∥
∥
∥
Z

≤
∥
∥
∥
∥

1

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
Z

+

∥
∥
∥
∥

1

IΩ(µ(G) − s)
χ(µ(G)/2,t)(s)

∥
∥
∥
∥
Z

.

To estimate the second term on the right hand side, notice that, by the properties

of IΩ(s), the functions

1

IΩ(µ(G)− s)
χ(µ(G)/2,t)(s) and

1

IΩ(s)
χ(µ(G)−t,µ(G)/2)(s)

are equimeasurable (with respect to the Lebesgue measure), consequently
∥
∥
∥
∥

1

IΩ(µ(G) − s)
χ(µ(G)/2,t)(s)

∥
∥
∥
∥
Z

=

∥
∥
∥
∥

1

IΩ(s)
χ(µ(G)−t,µ(G)/2)(s)

∥
∥
∥
∥
Z

=

∥
∥
∥
∥

(
1

IΩ(s)
χ(µ(G)−t,µ(G)/2)

)∗

(s)

∥
∥
∥
∥
Z

.

Since 1/IΩ(s) is decreasing on (0, µ(G)/2),
∥
∥
∥
∥

(
1

IΩ(s)
χ(µ(G)−t,µ(G)/2)

)∗

(s)

∥
∥
∥
∥
Z

≤
∥
∥
∥
∥

1

IΩ(s)
χ(0,t−µ(G)/2)(s)

∥
∥
∥
∥
Z

≤
∥
∥
∥
∥

1

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
Z

.

Consequently,

R(t) ≤ 2

∥
∥
∥
∥

1

IΩ(s)
χ(0,t)(s)

∥
∥
∥
∥
Z

.

Theorem 13. — Let (Ω, d, µ) be a metric measure space with the relative uniform

isoperimetric property and let X be a r.i. space on Ω. Then all the functions in

f ∈ X + SX that satisfy the condition

(4.2.2)

∫ µ(Ω)

0

K (ΨX,Ω(t), f ;X,SX)

φX(t)

dt

t
<∞,

are essentially continuous.

Proof. — We will show that there exists a universal constant c > 0 such that for any

function that satisfies (4.2.2) we have: For all balls B µ(B) < µ(Ω)/2,

|f(x)− f(y)| ≤ c

∫ 2µ(B)

0

K (ΨX,Ω(t), f ;X,SX)

φX(t)

dt

t
,

for µ−almost every x, y ∈ B.
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We shall use the following notation: X = X(Ω), SX = SX(Ω), Xr = Xr(B),

SXr = SXr (B), ψB(t) = ψB,Xr (t), and ψB = ψXr ,B,ΨB(t) = ΨXr ,B,ΨX = ΨX,Ω

Given f ∈ X + SX , then fχB ∈ Xr + SXr . By Theorem 12

(fχB)
∗∗
µ (t)− (fχB)

∗
µ (t) = (fχB)

∗∗
µ|B

(t)− (fχB)
∗
µ|B

(t)(4.2.3)

≤ 8
K (ψB(2t), fχB;Xr, SXr )

φXr (t)
, 0 ≤ t ≤ µ(B)/2.

By (2.2.12),

K (ψB(2t), fχB;Xr, SXr )

φXr (t)
≤ K (ψB(2t), f ;X,SX)

φX(t)
, 0 ≤ t ≤ µ(B)/2.

On the other hand, for 0 ≤ t ≤ µ(B)/2,

ψB(2t) =
φXr (2t)

2t

∥
∥
∥
∥

s

IB(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

r

(4.2.4)

≤ φXr (2t)

∥
∥
∥
∥

1

IB(s)
χ(02,t)(s)

∥
∥
∥
∥
X̄′

r

= φX(2t)

∥
∥
∥
∥

1

IB(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

≤ cφX(2t)

∥
∥
∥
∥

1

min(IΩ(B), IΩ(µ(B)− s))
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

≤ cφX(2t)

∥
∥
∥
∥

1

IΩ(s)
χ(0,2t)(s)

∥
∥
∥
∥
X̄′

(by Proposition 2)

= cΨX(2t).

Consequently for 0 < t ≤ µ(B)/2, we have

(fχB)
∗∗
µ (t)− (fχB)

∗
µ (t) ≤ 8

K (cΨX(2t), f ;X,SX)

φX(t)

≤ 8C
K (ΨX(2t), f ;X,SX)

φX(t)
(4.2.5)

= A(2t).

Change variables: Let t = zr, with r = µ(B)
2µ(Ω) , 0 < z ≤ µ(Ω). Then,

(fχB)
∗∗
µ (zr)− (fχB)

∗
µ (zr) ≤ A(2zr), 0 < z ≤ µ(Ω).

Integrating the previous inequality we obtain
∫ µ(Ω)

0

[

(fχB)
∗∗
µ (zr)− (fχB)

∗
µ (zr)

] dz

z
≤
∫ µ(Ω)

0

A(2zr)
dz

z

=

∫ µ(B)

0

A(u)
du

u
.
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Using the formula

d

dz

{

− (fχB)
∗∗
µ (zr)

}

=
(fχB)

∗∗
µ (zr)− (fχB)

∗
µ (zr)

z
,

we get

ess sup(fχB)− (fχB)
∗∗
µ (µ(B)/2) = (fχB)

∗∗
µ (0)− (fχB)

∗∗
µ (µ(B)/2)

=

∫ µ(Ω)

0

[

(fχB)
∗∗
µ (zr)− (fχB)

∗
µ (zr)

] dz

z

≤
∫ µ(B)

0

A(z)
dz

z
.

Similarly, considering −fχB, instead of fχB, we obtain

ess sup(−fχB)− (−fχB)
∗∗
µ (µ(B)/2) ≤

∫ µ(B)

0

A(z)
dz

z
.

Adding both inequalities

ess sup(fχB)− ess inf(fχB) ≤(4.2.6)

2

∫ µ(B)

0

A(z)
dz

z
+
[

(fχB)
∗∗
µ (µ(B)/2) + (−fχB)

∗∗
µ (µ(B)/2)

]

To estimate the last term on the right hand side we let t = µ(B)/2 in (4.2.3),

[

(fχB)
∗∗
µ (µ(B)/2) + (−fχB)

∗∗
µ (µ(B)/2)

]

≤ 8
K (ψB(µ(B)), fχB ;Xr, SXr )

φXr (µ(B)/2)
,

and we do the same thing for the corresponding estimate for −f,
[

(−fχB)
∗∗
µ (µ(B)/2) + (−fχB)

∗∗
µ (µ(B)/2)

]

≤ 8
K (ψB(µ(B)), fχB ;Xr, SXr )

φXr (µ(B)/2)
.

Adding these inequalities, and recalling that, since (−fχB)
∗
µ(t) = (−fχB)

∗
µ|B

(t) =

−(fχB)
∗
µ|B

(µ(B) − t) = −(fχB)
∗
µ(µ(B) − t), we have

(−fχB)
∗
µ(µ(B)/2) = −(fχB)

∗
µ(µ(B)/2),

we see that

(fχB)
∗∗
µ (µ(B)/2) + (−fχB)

∗∗
µ (µ(B)/2) ≤ 16

K (ψB(µ(B)), fχB ;Xr, SXr )

φXr (µ(B)/2)
.
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Inserting this information back in (4.2.6) we obtain

ess sup(fχB)− ess inf(fχB)

≤ 2

∫ µ(B)

0

A(z)
dz

z
+ 16

K (ψB(µ(B)), fχB ;Xr, SXr )

φXr (µ(B)/2)

≤ C

(
∫ µ(B)

0

K (ΨX(t), f ;X,SX)

φX(t/2)

dz

z
+ 16

K (ΨX(µ(B)), f ;X,SX)

φX(µ(B)/2)

)

≤ C

(
∫ µ(B)

0

K (ΨX(t), f ;X,SX)

φX(t)

dz

z
+
K (ΨX(µ(B)), f ;X,SX)

φX(µ(B))

)

.

Elementary considerations show that the second term on the right hand side can

be controlled by the first term. Indeed, we use that K(t, f) increases and ΨX(t)

increases (cf. Lemma 3 (iv) above) to derive that K (ΨX(t), f ;X,SX) increases, which

we combine with the fact that φX′(t) increases, and φX′(t)φX (t) = t, then we obtain

∫ 2µ(B)

0

K (ΨX(t), f ;X,SX)

φX(t)

dt

t
=

∫ 2µ(B)

0

φX′(t)K (ΨX(t), f ;X,SX)

t

dt

t

≥
∫ 2µ(B)

µ(B)

φX′(t)K (ΨX(t), f ;X,SX)

t

dt

t

≥ φX′(µ(B))K (ΨX(µ(B)), f ;X,SX)

∫ 2µ(B)

µ(B)

1

t

dt

t

= K (ΨX(µ(B)), f ;X,SX)
φX′(µ(B))

2µ(B)

=
1

2

K (ΨX(µ(B)), f ;X,SX)

φX(µ(B))

Thus,

ess sup(fχB)− ess inf(fχB) ≤ c

∫ 2µ(B)

0

K (ΨX(t), f ;X,SX)

φX(t)

dt

t
.

It follows that for µ−almost every x, y ∈ B,

|f(x)− f(y)| ≤ c

∫ 2µ(B)

0

K (ΨX(t), f ;X,SX)

φX(t)

dt

t
,

and the essential continuity of f follows.
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CHAPTER 5

EXAMPLES AND APPLICATIONS

5.1. Summary

We verify the relative uniform isoperimetric property for a number of concrete

examples. As a consequence we shall show in detail how our methods provide a

unified treatment of embeddings of Sobolev and Besov spaces into spaces of continuous

functions in different contexts.

5.2. Euclidean domains

Let Ω ⊂ Rn be a bounded domain (i.e., a bounded, open and connected set). For

a measurable function u : Ω → R, let

u+ = max(u, 0) and u− = min(u, 0).

Let X = X(Ω) be a r.i. space on Ω. The Sobolev spaceW 1
X(Ω) :=W 1

X is the space of

real-valued weakly differentiable functions on Ω that, together with their first order

derivatives, belong to X.

In this setting the basic rearrangement inequality holds for all f ∈ W 1
L1

(5.2.1) |f |∗∗ (t)− |f |∗ (t) ≤ t

IΩ(t)

1

t

∫ t

0

|∇f |∗ (s) ds, 0 < t < |Ω| ,

(rearrangements are taken with respect to the Lebesgue measure). We indicate briefly

the proof using the method of [70].

It is well known (see for example [5], [97, Theorem 2.1.4]) that if u ∈W 1
L1 (=W 1

1 )

then u+, u− ∈W 1
1 and

∇u+ = ∇uχ{u>0} and ∇u− = ∇uχ{u<0}.
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For given a measurable function g and 0 < t1 < t2, the truncation gt2t1 of g is defined

by

gt2t1 = min{max{0, g − t1}, t2 − t2}}.

It follows that if g ∈ W 1
1 , then g

t2
t1 ∈W 1

1 and, in fact,

∇gt2t1 = ∇gχ{t1<g<t2}.

In other words, W 1
1 is invariant by truncation. On the other hand, given g ∈W 1

1 , the

Federer-Fleming-Rishel co-area formula (cf. [37]) states that
∫

Ω

|∇g(x)| dx =

∫ ∞

−∞

PΩ(g > s) ds.

Applying this result to |g|t2t1 , we get

∫

{t1<|g|<t2}

|∇ |g| (x)| dx =

∫ ∞

0

PΩ(|g|t2t1 > s) ds(5.2.2)

≥
∫ ∞

0

IΩ(µ|g|
t2
t1

(s)) ds (isoperimetric inequality)

=

∫ t2−t1

0

IΩ(µ|g|
t2
t1

(s)) ds.

Observe that, for 0 < s < t2 − t1,

|{|f | ≥ t2}| ≤ µ|f |
t2
t1

(s) ≤ |{|f | > t1}| .

Consequently, by the properties of IΩ, we have

∫ t2−t1

0

I(µ|g|
t2
t1

(s)) ds ≥ (t2 − t1)min (IΩ(|{|g| ≥ t1}|), IΩ(|{|g| ≥ t2}|)).

For s > 0 and h > 0, pick t1 = |g|∗ (s+ h), t2 = |g|∗ (s), then

(5.2.3) s ≤
∣
∣
{
|g| ≥ |g|∗ (s)

}∣
∣ ≤ µ|g|

t2
t1

(s) ≤
∣
∣
{
|g(x)| > |g|∗ (s+ h)

}∣
∣ ≤ s+ h.

Combining (5.2.2) and (5.2.3) we have,

(
|g|∗ (s)− |g|∗ (s+ h)

)
min(IΩ(s+ h), IΩ(s)) ≤

∫

{|g|∗(s+h)<|g|<|g|∗(s)}

|∇ |g| (x)| dx.

At this stage we can continue as in [70], and we obtain that if f ∈ W 1
1 , then (5.2.1)

holds. Moreover, |f |∗ is locally absolutely continuous, and

(5.2.4)

∫ t

0

∣
∣(− |f |∗)′(·)IΩ(·)

∣
∣
∗
(s) ≤

∫ t

0

|∇f |∗ (s) ds.
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From here, using the same approximation method provided in the proof of Theorem 12

Chapter 4 we find that, if f ∈ W 1
1 , then for 0 < t < |Ω| ,

(5.2.5) f∗∗(t)− f∗(t) ≤ t

IΩ(t)

1

t

∫ t

0

|∇f |∗ (s) ds.

Indeed, first assume that f is bounded from below, and let c = infΩ f, then, since

f − c ≥ 0, we can apply (5.2.1) to f − c, and we obtain

|f − c|∗∗ (t)− |f − c|∗ (t) ≤ t

IΩ(t)

1

t

∫ t

0

|∇ (f − c)|∗ (s) ds.

Since |f − c|∗ (t) = (f − c)
∗
(t) and f∗∗(t)−f∗(t) = (f − c)

∗∗
(t)− (f − c)

∗
(t), we get

f∗∗(t)− f∗(t) ≤ t

IΩ(t)

1

t

∫ t

0

|∇f |∗ (s) ds.

If f is not bounded from below, let fn = max(f,−n), n = 1, 2, . . . The previous

discussion gives

(fn)
∗∗(t)− (fn)

∗(t) ≤ t

IΩ(t)

1

t

∫ t

0

|∇fn|∗ (s) ds

≤ t

IΩ(t)

1

t

∫ t

0

|∇f |∗ (s) ds.

We now take limits. To compute the left hand side we observe that fn(x) → f(x)

µ−a.e., and |fn| ≤ |f | , then by dominated convergence fn →L1 f . Consequently, by

Lemma 1, we have the pointwise convergence (fn)
∗∗(t)− (fn)

∗(t) →
n→∞

f∗∗(t)− f∗(t),

(0 < t < µ(Ω)), concluding the proof.

Let X = X(Ω) be a r.i. space on Ω. The homogeneous Sobolev space Ẇ 1
X is defined

by means of the seminorm

‖u‖Ẇ 1
X
:= ‖|∇u|‖X .

We consider the corresponding K−functional

K(t, f ;X, Ẇ 1
X) = inf{‖f − g‖X + t ‖g‖Ẇ 1

X
}.

The previous discussion shows that all the results of Chapters 3 and ?? remain valid

for functions in Ẇ 1
X or X + Ẇ 1

X .

5.2.1. Sobolev spaces defined on Lipschitz domains of Rn. — We now discuss

assumptions on the domain that translate into good estimates for the corresponding

isoperimetric profiles.

In this section we consider Sobolev spaces defined on Lipschitz domains of Rn.
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Let Ω ⊂ Rn be a bounded Lipschitz domain. Then the isoperimetric profile, satisfies

(see for example [75])

(5.2.6) IΩ(t) = c(n) (min(t, |Ω| − t))
n−1
n .

For any open ball that Bα ⊂ Ω with |Bα| = α, we know that (see for example [75]

or [97])

IBα(t) ≥ q(n) (min(t, α− t))
n−1
n , 0 < t < α,

where q(n) is a constant that only depends on n. Moreover, since

c(n) (min(t, α− t))
n−1
n = min(IΩ(t), IΩ(α− t)) 0 < t < α,

we see that there is a constant C = C(n) such that

IBα(t) ≥ Cmin(IΩ(t), IΩ(α− t)) 0 < t < α.

In particular the metric space (Ω, |·| , dm) has the relative uniform isoperimetric prop-

erty.

Theorem 14. — Let X = X(Ω) be a r.i. space on Ω, then

Ẇ 1
X(Ω) ⊂ L∞ ⇔

∥
∥
∥t1/n−1χ(0,|Ω|/2)

∥
∥
∥
X̄′

<∞ ⇐⇒ Ẇ 1
X(Ω) ⊂ Cb(Ω).

(Here Cb(Ω) denotes the space of real valued continuous bounded functions defined

on Ω.)

Proof. — Let us first observe that the condition of the Theorem can be reformulated

in terms of the isoperimetric profile of Ω as follows,

(5.2.7)
∥
∥
∥t1/n−1χ(0,|Ω|/2)

∥
∥
∥
X̄′

≃
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄′

<∞.

Indeed, since IΩ is symmetric around the point |Ω| /2, it follows that
∥
∥
∥
∥

1

IΩ(s)

∥
∥
∥
∥
X̄′

≤
∥
∥
∥
∥

1

IΩ(s)
χ(0,|Ω|/2)

∥
∥
∥
∥
X̄′

+

∥
∥
∥
∥

1

IΩ(s)
χ(|Ω|/2,|Ω|)

∥
∥
∥
∥
X̄′

= 2

∥
∥
∥
∥

1

IΩ(s)
χ(0,|Ω|/2)

∥
∥
∥
∥
X̄′

≤ 2

∥
∥
∥
∥

1

IΩ(s)

∥
∥
∥
∥
X̄′

.

Now (5.2.7) follows since, in view of (5.2.6), we have
∥
∥
∥
∥

1

IΩ(s)
χ(0,|Ω|/2)

∥
∥
∥
∥
X̄′

≃
∥
∥
∥t1/n−1χ(0,|Ω|/2)

∥
∥
∥
X̄′
.
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Suppose that
∥
∥ 1
IΩ(t)

∥
∥
X̄′ ≃

∥
∥t1/n−1χ(0,|Ω|/2)

∥
∥
X̄′ < ∞. Let f ∈ Ẇ 1

X(Ω). Since we

have shown in the previous section that |f |∗ is locally absolutely continuous (cf. [60]

and [70]) we can write

‖f‖L∞ − |f |∗ (|Ω|) = |f |∗ (0)− |f |∗ (|Ω|) =
∫ |Ω|

0

(− |f∗|)′(s) ds

(5.2.8)

=

∫ |Ω|

0

(− |f∗|)′(s)IΩ(s)
ds

IΩ(s)

≤ ‖(− |f∗|)′(s)IΩ(s)‖X̄
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄′

(by Hölder’s inequality)

≤ ‖|∇f |‖X
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄

′

(by (5.2.4)).

We have thus obtained

‖f‖L∞ ≤ ‖f‖L1 + ‖|∇f |‖X
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄′

,

which applied to f −
∫

Ω
f yields

∥
∥
∥
∥
f −

∫

Ω

f

∥
∥
∥
∥
L∞

≤
∥
∥
∥
∥
f −

∫

Ω

f

∥
∥
∥
∥
L1

+ ‖|∇f |‖X
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄′

≤ c(|Ω|) ‖|∇f |‖L1 + ‖|∇f |‖X
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄′

(by Poincaré’s inequality)

≤ c(|Ω|)φX′(|Ω|) ‖|∇f |‖X + ‖|∇f |‖X
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄′

(by Hölder’s inequality)

= C(|Ω|)
∥
∥
∥
∥

1

IΩ(t)

∥
∥
∥
∥
X̄′

‖|∇f |‖X ,

where C(|Ω|) is a constant that depends on X and the measure of Ω.

Conversely, suppose that Ẇ 1
X(Ω) ⊂ L∞, then

∥
∥
∥
∥
f −

∫

Ω

f

∥
∥
∥
∥
L∞

≤ c ‖|∇f |‖X .

Since Ω has bounded Lipschitz boundary, this is equivalent (cf. [70] and [68,

Theorem 2]) to the existence of an absolute constant C > 0 such that for all g ∈ X̄,

g ≥ 0
∥
∥
∥
∥
∥

∫ |Ω|/2

t

g(s)

IΩ(s)
ds

∥
∥
∥
∥
∥
L∞

≤ C ‖g‖X̄ .
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Thus,

sup
‖g‖X̄≤1

∫ |Ω|/2

0

|g| (s)
IΩ(s)

ds = sup
‖g‖X̄≤1

∫ |Ω|

0

|g| (s)χ(0,|Ω|/2)(s)

IΩ(s)
ds < C,

which, by duality, implies that
∥
∥
∥
∥

1

IΩ(s)
χ(0,|Ω|/2)

∥
∥
∥
∥
X̄′

<∞.

To conclude the proof we show that (5.2.7) and the relative uniform isoperimetric

property imply that

Ẇ 1
X(Ω) ⊂ Cb(Ω).

Let f ∈ Ẇ 1
X(Ω). Consider any open ball Bα contained in Ω with |Bα| = α. An easy

computation shows that
∥
∥
∥
∥
∥

1

min(t, α− t)
n−1
n

∥
∥
∥
∥
∥
X̄

′

≃
∥
∥
∥t1/n−1χ(0,α/2)

∥
∥
∥
X̄′
.

Applying the inequality (5.2.5) to fχBα and integrating, we get

ess sup (fχBα)−
1

α

∫

fχBα(x) dx =

∫ α

0

(
(fχBα)

∗∗
(t)− (fχBα)

∗
(t)
) dt

t

≤
∫ α

0

(
t

IBα(t)

1

t

∫ t

0

|∇fχBα |∗ (s) ds
)
dt

t

≤
∥
∥
∥
∥

1

t

∫ t

0

|∇fχBα |∗ (s) ds
∥
∥
∥
∥
X̄

∥
∥
∥
∥

1

IBα(t)

∥
∥
∥
∥
X̄

′

≤ c(n,X) ‖|∇fχBα |‖X
∥
∥
∥t1/n−1χ(0,α/2)

∥
∥
∥
X̄′
.

Similarly, considering −fχBα , we get

−ess inf f (fχBα) +
1

α

∫

fχBα(x) dx ≤ c(n,X) ‖|∇fχBα |‖X
∥
∥
∥t1/n−1χ(0,α/2)

∥
∥
∥
X̄′
.

Adding these inequalities we see that

ess inf (fχBα)− ess inf (fχBα) ≤ c ‖|∇fχBα |‖X
∥
∥
∥t1/n−1χ(0,α/2)

∥
∥
∥
X̄′
.

Thus, for almost every x, y ∈ Bα,

|f(x)− f(y)| ≤ c(n) ‖|∇fχBα |‖X
∥
∥
∥t1/n−1χ(0,α/2)

∥
∥
∥
X̄′
.

The essential continuity of f follows.

Remark 6. — Let us consider the case when X = Lp, with p > n. An elementary

computation shows that
∥
∥
∥t1/n−1χ(0,α/2)

∥
∥
∥
p′

≤ c(n,p)α
1
n (1−n

p ).
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Let Bα be a ball with |Bα| = α, then α1/n is cn times the radius of the ball, thus, for

almost every y, z ∈ Bα such that |y − z| = cnα
1/n, we get

|f(y)− f(z)| ≤ c(n, p) |y − z|(1−
n
p ) ‖|∇f |‖p .

The method of proof fails if p = n. However, if we consider the smaller Lorentz (1)

space X = Ln,1 ⊂ Ln, then X ′ = L
n

n−1 ,∞, and
∥
∥
∥t1/n−1χ(0,α/2)

∥
∥
∥
L

n
n−1

,∞
= sup

0<s<α/2

s
1
n−1s1−

1
n = 1.

Thus, for almost every y, z ∈ Bα such that |y − z| = cnα
1/n, we have that

|f(y)− f(z)| ≤ c(n) ‖|∇fχBα |‖Ln,1 = c(n)

∫ |y−z|n

0

s1/n |∇f |∗ (s)ds
s
.

The essential continuity of f follows. Thus we recover the classical result indepen-

dently due to Stein [90] and C. P. Calderón [23].

Remark 7. — See [25] for a related result, using a different method and involving

Orlicz norms.

5.2.2. Spaces defined in terms of the modulus of continuity on Lipschitz

domains of Rn. — For Euclidean domains Ω with Lipschitz boundary it is known

that (cf. [54, Theorem 1], [13, Chapter 5, exercise 13, p. 430]),

K(t, g;X (Ω) , Ẇ 1
X(Ω)) ≃ ωX(g, t), 0 < t < |Ω| ,

where

ωX(f, t) = sup
0<|h|≤t

∥
∥(f(·+ h)− f(·))χΩ(h)

∥
∥
Lp(Ω)

,

with Ω(h) = {x ∈ Ω : x+ ρh ∈ Ω, 0 ≤ ρ ≤ 1} and h ∈ Rn.

Moreover, as we have seen, (Ω, |·| , dm) has the relative uniform isoperimetric prop-

erty. Consequently, by Theorem 13, we have

Theorem 15. — Let X be a r.i. space on Ω. If f ∈ X + Ẇ 1
X satisfies

∫ µ(Ω)

0

ωX

(

f, φX(t)

∥
∥
∥
∥

1

(min(t,|Ω|−t))
n−1
n

χ(0,t)(s)

∥
∥
∥
∥
X̄′

)

φ
X
(t)

dt

t
<∞,

then, f is essentially bounded and essentially continuous.

1. See (7.1.3), (7.1.4).
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In particular, when X = Lp, we obtain

Theorem 16. — If n/p < 1, then there exists a constant c > 0, such that

|f(y)− f(z)| ≤ C

∫ |y−z|

0

ωp(f, t)

tn/p
dt

t
.

Proof. — Let Bα an open ball contained in Ω of measure α ≤ |Ω| /2. Since p > n an

elementary computation shows that
∥
∥
∥
∥

1

IBα(s)
χ(0,t)(s)

∥
∥
∥
∥
Lp′(Bα)

≤ c(n,p)t
1
n− 1

p .

Thus, Theorem 13 ensures for almost every y, z ∈ Bα,

|f(y)− f(z)| ≤ c

∫ 2α

0

K
(

t1/n, f ;Lp(Ω), Ẇ 1
p (Ω)

)

t1/p
dt

t

≃ c

∫ 2α

0

ωp(f, t
1/n)

t1/p
dt

t

= c

∫ (2α)1/n

0

ωp(f, t)

tn/p
dt

t
.

Since |Bα| = α, α1/n is a constant times the radius of the ball, therefore, for almost

every y, z ∈ Bα such that |y − z| = cα1/n,

|f(y)− f(z)| �
∫ |y−z|

0

ωp(f, t)

tn/p
dt

t
.

The essential continuity of f follows.

Remark 8. — In Chapter 10 we shall discuss the connection with A. Garsia’s

work.

Theorem 17. — Let X be a r.i. space such that αΛ(X′) <
1
n . If f satisfies

∫ |Ω|

0

ωX(f, t)

φX(t1/n)

dt

t
<∞,

then, f is essentially continuous.

Proof. — It is enough to prove

R(t) =

∥
∥
∥
∥
∥

1

(min(s, (|Ω| − s)))
n−1
n

χ(0,t)(s)

∥
∥
∥
∥
∥
X̄′

≤ c(n,X)t
1
nφX̄ , (t), 0 < t < |Ω| .

Recall that if αΛ(X′) > 0, the fundamental function of X
′

satisfies (see [88,

Theorem 2.4])

dφX′ (s) ≃ φX′ (s)

s
,
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and, moreover, for every 0 < γ < αΛ(X′) the function φX′ (s)/sγ is almost increasing

(i.e., ∃c > 0 s.t. φX′ (s)/sγ ≤ cφX′ (t)/tγ whenever t ≥ s). Pick 0 < β such that

(notice that αΛ(X) <
1
n implies that αΛ(X′) > 1− 1

n )

1− 1

n
+ β < αΛ(X′).

Since IΩ is symmetric around the point |Ω| /2, we get

R(t) ≃
∥
∥
∥
∥

1

s
n−1
n

χ(0,t)(s)

∥
∥
∥
∥
X̄′

,

and

R(t) ≤
∫ t

0

s
1
n−1dφX′ (s)

≃
∫ t

0

s
1
n−1φX′ (s)

s
ds

=

∫ t

0

φX′ (s)

s1−
1
n+β

ds

s1−β

� φX′ (t)

t1−
1
n+β

∫ t

0

ds

s1−β

≃ φX′ (t)

t1−
1
n

= t
1
nφX̄(t).

5.3. Domains of Maz’ya’s class Jα (1− 1/n ≤ α < 1)

Definition 4 (See[74], [75]). — A domain Ω ⊂ Rn (with finite measure) belongs to the

class Jα (1− 1/n ≤ α < 1) if there exists a constant M ∈ (0, |Ω|) such that

Uα(M) = sup
|S|α
PΩ(S)

<∞,

where the sup is taken over all S open bounded subsets of Ω such that Ω ∩ ∂S is a

manifold of class C∞ and |S| ≤M, (in which case we will say that S is an admissible

subset) and where for a measurable set E ⊂ Ω, PΩ(E) is the De Giorgi perimeter of E

in Ω defined by

PΩ(E) = sup

{∫

E

divϕ dx : ϕ ∈ [C1
0 (Ω)]

n, ‖ϕ‖L∞(Ω) ≤ 1

}

.

By an approximation process it follows that if Ω is a bounded domain in Jα, then there

exists a constant cΩ > 0 such that, for all measurable set E ⊂ Ω with |E| ≤ |Ω| /2, we
have

PΩ(E) ≥ cΩ |E|α .
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Since E and Ω\E have the same boundary measure, we obtain the following isoperi-

metric inequality

IΩ(t) ≥ cΩ (min(t, |Ω| − t))
α
:= JΩ(t), 0 < t < |Ω| .

Example 2. — If Ω is a bounded domain, star shaped with respect to a ball, then Ω

belongs to the class J1−1/n; if Ω is a bounded domain with the cone property then Ω

belongs to the class J1−1/n; if Ω is a bounded Lipschitz domain, then Ω belongs to the

class J1−1/n; if Ω is a s−John domain, then Ω ∈ J(n−1)s/n; if Ω is a domain with

one β−cusp (β ≥ 1), then it belongs to the Maz’ya class J β(n−1)
β(n−1)+1

.

Theorem 18. — Let Ω be a domain in the Maz’ya classJα, and let X a r.i. space

on Ω. Suppose that

(5.3.1)

∥
∥
∥
∥

1

JΩ(t)

∥
∥
∥
∥
X′

<∞.

Then,

1. Ẇ 1
X(Ω) ⊂ Cb(Ω).

2. If f ∈ X + Ẇ 1
X satisfies

∫ µ(Ω)

0

K
(

φX(t)
∥
∥
∥

1
JΩ(t)χ(0,t)(s)

∥
∥
∥
X̄′
, f ;X, Ẇ 1

X

)

φ
X
(t)

dt

t
<∞,

then f is essentially bounded and essentially continuous.

Proof

Part 1. — The inclusion Ẇ 1
X(Ω) ⊂ L∞ follows in the same way as the correspond-

ing part of Theorem 14 (cf. inequality (5.2.8)). To prove the essential continuity we

proceed as follows. Let B be any open ball contained in Ω with |B| ≤ min(1, |Ω| /2).
Notice that if f ∈ Ẇ 1

X(Ω), then fχB ∈ Ẇ 1
X(B). Now, since B is a Lip domain, by

Theorem 14 we just need to verify that
∥
∥
∥t1/n−1χ(0,|B|/2)

∥
∥
∥
X̄′

<∞.

Since 1− 1/n ≤ α < 1, and 0 < t < |B| /2 < 1, we have

sup
0<t<|B|/2

tα+1/n−1 =

( |B|
2

)α+1/n−1

.

Thus,

∥
∥
∥t1/n−1χ(0,|B|/2)

∥
∥
∥
X̄′

=

∥
∥
∥
∥

tα+1/n−1

tα
χ(0,|B|/2)

∥
∥
∥
∥
X̄′

≤
( |B|

2

)α+1/n−1 ∥
∥
∥
∥

1

tα
χ(0,|B|/2)

∥
∥
∥
∥
X̄′

<∞ (by (5.3.1)).
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Part 2. — Let B be an open ball contained in Ω with |B| ≤ min(1, |Ω| /2). Then

K
(

t, fχB;X(B), Ẇ 1
X(B)

)

≤ K
(

t, f ;X, Ẇ 1
X

)

.

Using the same argument given in the first part of the proof, we obtain
∥
∥
∥
∥
∥

χ(0,t)(s)

(min(t, |B| − t))
n−1
n

∥
∥
∥
∥
∥
X̄

′

≤ 2

∥
∥
∥
∥

χ(0,t)(s)

t
n−1
n

∥
∥
∥
∥
X̄′

�
∥
∥
∥
∥

1

JΩ(t)
χ(0,t)(s)

∥
∥
∥
∥
X̄′

, 0 < t < |B| .

Therefore,

∫ |B|

0

K

(

φX(t)

∥
∥
∥
∥

χ(0,t)(s)

(min(t,|B|−t))
n−1
n

∥
∥
∥
∥
X̄′

, fχB;X(B), Ẇ 1
X(B)

)

φ
X
(t)

dt

t
<∞,

and Theorem 15 applies.

5.4. Ahlfors Regular Metric Measure Spaces

Let (Ω, d, µ) be a complete connected metric Borel measure space and let k > 1.

We shall say that (Ω, d, µ) is Ahlfors k−regular if there exist absolute constants cΩ, CΩ

such that

(5.4.1) cΩr
k ≤ µ (B(x, r)) ≤ CΩr

k, ∀x ∈ Ω, r ∈ (0, diam (Ω)).

We will consider Ahlfors k−regular spaces (Ω, d, µ) that support a weak

(1, 1)−Poincaré inequality. In other words we shall assume the existence of constants

C > 0 and λ ≥ 1 such that for all u ∈ Lip (Ω),

(5.4.2)

∫

B(x,r)

∣
∣u(y)− uBx,r

∣
∣ dµ(y) ≤ Cr

∫

B(x,λr)

|∇u(y)| dµ(y),

where uBx,r denotes the mean value of u in B, i.e., uBx,r = 1
µ(B(x,r))

∫

B(x,r) u(y) dµ(y).

Examples of spaces supporting a (weak) (1, 1)−Poincaré inequality include

Riemannian manifolds with nonnegative Ricci curvature, Carnot-Carathéodory

groups, and more generally (in the case of doubling spaces) Carnot-Carathéodory

spaces associated to smooth (or locally Lipschitz) vector fields satisfying Hörmander’s

condition (see for example [4], [48] and the references quoted therein).

By a well known result of Hajlasz and Koskela (cf. [48]), (5.4.1) and (5.4.2) imply

(
∫

B(x,r)

∣
∣u(y)− uBx,r

∣
∣
k/(k−1)

dµ(y)

)(k−1)/k

≤ D

∫

B(x,2λr)

|∇u(y)| dµ(y),

with C = (2C)
(k−1)/k

.
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According to [79] (see also the references quoted therein), given a Borel set E ⊂ Ω,

and A ⊂ Ω open, the relative perimeter of E in A, denoted by P (E,A), is defined by

P (E,A) = inf

{

lim inf
h→∞

∫

A

|∇uh| dµ : uh ∈ Liploc(A), uh → χE in L1
loc(A)

}

.

Lemma 5. — The following relative isoperimetric inequality holds:

(5.4.3) min (µ(E ∩B(x, r)), µ(Ec ∩B(x, r))) ≤ D (P (E,B(x, r)))k/(k−1) .

Proof. — The proof of this result is contained in the proof of [4, Theorem 4.3].

Theorem 19. — Let k > 1 be the exponent satisfying (5.4.1), and let B := B(x, r) be

a ball. The following statements are equivalent.

1. For every set of finite perimeter E in Ω,

c(k, C) (min(µ(E ∩B), µ(Ec ∩B)))
k

k−1 ≤ P (E,B),

where the constant c(k, C) does not depend on B.

2. ∀u ∈ Lip(Ω), the function |uχB|∗µ is locally absolutely continuous and, for 0 <

t < µ(B),

c(k, C)

∫ t

0

∣
∣
∣
∣

(

(− |uχB|)∗µ
)′

(·) (min(·, µ(B)− ·))
k−1
k

∣
∣
∣
∣

∗

(s) ds ≤
∫ t

0

|∇uχB|∗µ (s) ds.

3. Oscillation inequality: ∀u ∈ Lip(Ω) and, for 0 < t < µ(B),

(|uχB|∗∗µ (t)− |uχB|∗µ (t)) ≤
t

c(k, C) (min(t, µ(B)− t))
k−1
k

|∇uχB|∗∗µ (t).

Proof. — Consider the metric space
(
B, d|B, µ|B

)
, then the Theorem is a particular

case of Theorem 1 of [70].

The local version of Theorem 12 is

Theorem 20. — Let X be a r.i. space on Ω and let B ⊂ Ω be an open ball. Then, for

each f ∈ X + SX ,

(fχB)
∗∗
µ (t/2)− (fχB)

∗
µ (t/2) ≤ 4

K (ψ(t), fχB ;X,SX)

φX(t)
, 0 < t < µ(B),

where

ψ(t) =
φX(t)

t

∥
∥
∥
∥
∥

s

c(k, C) (min(s, µ(B) − s))
k−1
k

χ(0,t)(s)

∥
∥
∥
∥
∥
X̄′

.

Proof. — Let f ∈ X+SX , then fχB ∈ Xr(B)+SXr (B), where B is the metric space
(
B, d|B, µ|B

)
. By Lemma 5 we know that

c(k, C) (min(µ(E ∩B), µ(Ec ∩B)))
k

k−1 ≤ P (E,B).
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Thus, for any Borel set E ⊆ B,

c(k, C) (min(µ(E), µ(B) − µ(E)))
k

k−1 ≤ PB(E).

Consequently, JB(t) = c(k, C) (min(t, µ(B)− t))
k

k−1 (0 < t < µ(B)) is an isoperi-

metric estimator of
(
B, d|B, µ|B

)
, and now we finish the proof in the same way as in

Theorem 12.

Theorem 21. — Let f ∈ X + SX and let B be an open ball, if

∫ µ(B)

0

K
(

φX(t)
∥
∥
∥(min(s, µ(B)− s))

1−1/k
χ(0,t)(s)

∥
∥
∥
X̄′
, fχB;X,SX

)

φ
X
(t)

dt

t
<∞

then, fχB is essentially bounded and essentially continuous.

Proof. — By the proof of the previous Theorem we know that

JB(t) = c(k, C) (min (t, µ(B)− t))
k

k−1

is an isoperimetric estimator of
(
B, d|B, µ|B

)
. For any open ball B(x, r) ⊂ B, it

follows from Lemma 5 that, for 0 < s < µ(QB(x,r)),

c(k, C) (min (t, µ(B(x, r)) − t))
k

k−1 � c(k, C)min(JB(t), JB(µ(QB(x,r))− t))

≤ PB(x,r)(s).

Therefore
(
B, d|B, µ|B

)
has the relative isoperimetric property and Theorem 13

applies.

Remark 9. — In the particular case X = Lp, we can thus use the same argument

given in Theorem 16 to obtain that for k/p < 1, there exists an absolute constant such

that

|f(y)− f(z)| �
∫ |y−z|

0

K (t, fχB;X,SX)

tk/p
dt

t
, y, z ∈ B.
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CHAPTER 6

FRACTIONAL SOBOLEV INEQUALITIES

IN GAUSSIAN MEASURES

6.1. Introduction and Summary

As another application of our theory, in this chapter we consider in detail fractional

logarithmic Sobolev inequalities. We will deal not only with Gaussian measures but

also with measures that interpolate between Gaussian and exponential.

In the context of classical Gaussian measures a typical result in this chapter is given

by the following fractional logarithmic Sobolev inequality. Let dγn be the Gaussian

measure on Rn, let 1 ≤ q < ∞, θ ∈ (0, 1); then, there exists an absolute constant

c > 0, independent of the dimension, such that (cf. Theorem 23 below)

(6.1.1)

{
∫ 1/2

0

|f |∗γn
(t)q

(

log
1

t

) qθ
2

dt

}1/q

≤ c ‖f‖Bθ,q
Lq (γn)

,

where Bθ,q
Lq (γn) is the Gaussian Besov space, see (6.3.1) below. Note that if q = 2,

(6.1.1) interpolates between the embedding that follows from the classical logarithmic

Sobolev inequality (which corresponds to the case θ = 1) and the trivial embedding

L2 ⊂ L2 (the case θ = 0). For related inequalities using semigroups see [6] and

also [39].

More generally, we will also prove fractional Sobolev inequalities for tensor products

of measures that, on the real line are defined as follows. Let α ≥ 0, r ∈ [1, 2] and

γ = exp(2α/(2− r)), (α = 0 if r = 2) and let

dµr,α(x) = Z−1
r,α exp (− |x|r (log(γ + |x|)α)) dx,

µr,α,n = µ⊗n
p,α,

where Z−1
r,α is chosen to ensure that µr,α(R) =1. The corresponding results are ap-

parently new and give fractional Sobolev inequalities, that just like the logarithmic

Sobolev inequalities of [70], exhibit logarithmic gains of integrability that are directly

related to the corresponding isoperimetric profiles. For example, if α = 0, then the

corresponding fractional Sobolev inequalities take the following form. Let 1 ≤ q <∞,
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θ ∈ (0, 1), then there exists an absolute constant c > 0, independent of the dimension,

such that (cf. Theorem 23 below)
(
∫ 1/4

0

|f |∗µr,0,n
(t)q

(

log
1

t

)qθ(1−1/r)

dt

)1/q

≤ c ‖f‖Bθ,q
Lq (µr,0,n)

.

Likewise, for q = ∞ (cf. (6.3.4) below)

sup
t∈(0, 14 )

(

|f |∗∗µr,0,n
(t)− |f |∗µr,0,n

(t)
)(

log
1

t

)(1− 1
r )θ

≤ c ‖f‖Ḃθ,∞
L∞ (µr,0,n)

.

We also explore the scaling of fractional inequalities for Gaussian Besov spaces

based on exponential Orlicz spaces. We show that in this context the gain of integra-

bility can be measured directly in the power of the exponential.

We start by considering the corresponding embeddings of Gaussian-Sobolev spaces

into L∞.

6.2. Boundedness of functions in Gaussian-Sobolev spaces

Let α ≥ 0, r ∈ [1, 2] and γ = exp(2α/(2− r)) (α = 0 if r = 2), and let µr,α be the

probability measure on R defined by

dµr,α(x) = Z−1
r,α exp (− |x|r (log(γ + |x|)α) dx = ϕr,α(x) dx, x ∈ R,

where Z−1
r,α is chosen to ensure that µr,α(R) =1. Then we let

ϕn
α,r(x) = ϕr,α(x1) · · ·ϕr,α(xn), x ∈ Rn,

and µr,α,n = µ⊗n
r,α. In other words

dµr,α,n(x) = ϕn
r,α(x) dx.

In particular, µ2,0,n = γn (Gaussian measure).

It is known that the isoperimetric problem for µr,α is solved by half-lines (cf. [19]

and [16]) and the isoperimetric profile is given by

Iµr,α(t) = ϕ
(
H−1(min(t, 1− t))

)
= ϕ

(
H−1(t)

)
, t ∈ [0, 1],

where H : R → (0, 1) is the increasing function given by

H(r) =

∫ r

−∞

ϕ(x) dx.

Moreover (cf. [7] and [8]), there exist constants c1, c2 such that, for all t ∈ [0, 1],

(6.2.1) c1Lµr,α(t) ≤ Iµr,α(t) ≤ c2Lµr,α(t),

where

Lµr,α(t) = min(t, 1− t)

(

log
1

min(t, 1− t)

)1− 1
r
(

log log

(

e+
1

min(t, 1− t)

))α
r

.
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Moreover, we have

(6.2.2) Iµr,α,n(t) ≃ t

(

log
1

t

)1− 1
r
(

log log

(

e+
1

t

))α/r

, for t ∈
(

0,
1

2

)

.

For the rest of the section we shall let µ denote the measure µr,α,n on Rn. For

a given r.i. space X := X (Rn, µ) , let W 1
X (Rn, µ) be the classical Sobolev space

endowed with the norm ‖u‖W 1
X (Rn,µ) = ‖u‖X + ‖|∇u|‖X . The homogeneous Sobolev

space Ẇ 1
X(Rn, µ) is defined by means of the quasi norm ‖u‖Ẇ 1

X
:= ‖|∇u|‖X .

The discussion of Section 5.2 applies and therefore we see that W 1
L1
(Rn, µ) is in-

variant under truncation. Moreover, if u ∈ W 1
L1
(Rn, µ) then the following co-area

formula holds:
∫

Rn

|∇u(x)| dµ(x) =
∫

Rn

|∇u(x)|ϕn
α,p(x) dx =

∫ ∞

−∞

Pµ(u > s) ds.

From here we see that inequalities (5.2.1), (5.2.4) and (5.2.5) hold for all W 1
L1
(Rn, µ)

functions (of course, the rearrangements are now with respect to the measure µ).

Finally, if we consider

K(t, f ;X, Ẇ 1
X) = inf

{

‖f − g‖X + t ‖g‖Ẇ 1
X (Rn,µ)

}

,

all the results that we have obtained in Chapter 3, remain true.

Theorem 22. — If µ = µr,α,n then

Ẇ 1
X(Rn, µ) * L∞.

Proof. — By [70, Theorem 6] the embedding Ẇ 1
X(Rn, µ) ⊂ L∞ is equivalent to the

existence of a positive constant c > 0, such that for all f ∈ X̄, supported on (0, 12 ) we

have

sup
t≥0

∫ 1/2

t

|f(s)|
Lµr,α,n(s)

ds ≤ c ‖f‖X̄ .

In particular this implies that

∫ 1/2

0

ds

Lµr,α,n(s)
≤ c.

But this is not possible since 1/Lµr,α,n(s) /∈ L1.

It follows that the results of Chapter 5 cannot be applied directly to obtain the

continuity of functions in the space Ẇ 1
X .

Remark 10. — Let us remark that since continuity is a local property, a weak ver-

sion of the Morrey-Sobolev theorem (that depends on the dimension) is available.
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Let µ = µr,α,n, and let X = X (Rn, µ) be a r.i space on (Rn, µ) such that
∥
∥
∥
∥

1

min(1, 1− t)1−1/n

∥
∥
∥
∥
X̄′

<∞.

Then every function in Ẇ 1
X(Rn, µ) is essentially continuous.

Proof. — Let f ∈ Ẇ 1
X(Rn, µ) and let B ⊂ Rn be an arbitrary ball with Lebesgue

measure equal to 1. To prove that f is continuous on B let us note that fχB ∈
Ẇ 1

X(B, µ), i.e.,

‖|∇fχB|‖X <∞.

Let m be the Lebesgue measure on Rn, it is plain that for all t > 0,

cBm {x ∈ B : |∇f | > t} ≤ µ {x ∈ B : |∇f | > t} ≤ CBm {x ∈ B : |∇f | > t} ,

where cB = infx∈B ϕ
n
α,p(x) and CB = maxx∈B ϕ

n
α,p(x). Therefore,

cQ ‖|∇fχB|‖X(B,m) ≤ ‖|∇fχB|‖X(Rn,µ) ≤ CQ ‖|∇fχB|‖X(B,m) .

Consequently, fχB ∈ Ẇ 1
X(B,m), and by Theorem 14, fχB ∈ C(B).

6.3. Embeddings of Gaussian Besov spaces

In what follows unless it is necessary to be more specific we shall let µ := µr,α,n.

We consider the Besov spaces Ḃθ,q
X (µ), Bθ,q

X (µ) can be defined using real interpolation

(cf. [14], [94]). In other words for 1 ≤ q ≤ ∞, θ ∈ (0, 1), and let

Ḃθ,q
X (µ) = {f : ‖f‖Ḃθ,q

X (µ) <∞},

Bθ,q
X (µ) = {f : ‖f‖Bθ,q

X (µ) = ‖f‖Ḃθ,q
X (µ) + ‖f‖X <∞},(6.3.1)

where

‖f‖Ḃθ,q
X (µ) =







(∫ 1

0

(

K
(

s, f ;X(µ), Ẇ 1
X(µ)

)

s−θ
)q

ds
s

)1/q

if q <∞
sups

(

K
(

s, f ;X(µ), Ẇ 1
X(µ)

)

s−θ
)

if q = ∞.

The embeddings we prove in this section will follow from

(6.3.2)

|f |∗∗µ (t)− |f |∗µ (t) ≤ c
K
(

t
Iµ(t)

, f ;X(µ), Ẇ 1
X(µ)

)

φX(t)
, 0 < t ≤ 1/2,

(
f ∈ X + Ẇ 1

X

)
.

To simplify the presentation we shall state and prove our results only for the

Gaussian measures µr,0,n, r ∈ (1, 2], which include the most important examples:

Gaussian measures and the so called interpolation measures between exponential and

Gaussian.

ASTÉRISQUE



6.3. EMBEDDINGS OF GAUSSIAN BESOV SPACES 69

Theorem 23. — Let 1 ≤ q < ∞, θ ∈ (0, 1), r ∈ (1, 2]. Then there exists an absolute

constant c = c(q, θ, r) > 0 such that,

(6.3.3)

{
∫ 1/2

0

|f |∗µr,0,n
(t)q

(

log
1

t

)qθ(1−1/r)

dt

}1/q

≤ c ‖f‖Bθ,q
Lq (µr,0,n)

.

Let q = ∞, then there exists an absolute constant c = c(θ, r) > 0 such that

(6.3.4) sup
t∈(0, 12 )

(

|f |∗∗µr,0,n
(t)− |f |∗µr,0,n

(t)
)(

log
1

t

)(1− 1
r )θ

≤ c ‖f‖Ḃθ,∞
L∞ (µr,0,n)

.

Proof. — We shall let µ =: µr,0,n, K (s, f) := K
(
s, f ;Lq(µ), Ẇ 1

Lq (µ)
)
. Suppose that

1 ≤ q <∞. We start by rewriting the term we want to estimate
{
∫ 1/2

0

|f |∗µ (t)q
(

log
1

t

)qθ(1−1/r)

dt

}1/q

�
{
∫ 1/2

0

|f |∗µ (t)q
(
∫ 1/2

t

(

log
1

s

)qθ(1−1/r)−1
ds

s
+ (log 2)

qθ(1−1/r)

)

dt

}1/q

�
{
∫ 1/2

0

(

log
1

s

)qθ(1−1/r)−1
1

s

∫ s

0

|f |∗µ (t)qdtds
}1/q

+

{
∫ 1/2

0

|f |∗µ (t)qdt
}1/q

= (I) + (II)

The term (II) is under control since

(II) ≤ ‖f‖Lq ≤ ‖f‖Bθ,q
Lq (µ) .

To estimate (I) we first note that the elementary inequality (1): |x|q ≤ 2q−1(|x− y|q+
|y|q), yields

1

s

∫ s

0

|f |∗µ (t)qdt �
1

s

∫ s

0

(
f∗
µ(t)− f∗

µ(s)
)q
dt+ f∗

µ(s)
q.

Consequently,

(I) �
{
∫ 1/2

0

(

log
1

s

)qθ(1−1/r)−1(
1

s

∫ s

0

(

|f |∗µ (t)− |f |∗µ (s)
)q

dt

)

ds

}1/q

+

{
∫ 1/2

0

(

log
1

s

)qθ(1−1/r)−1

|f |∗µ (s)qds
}1/q

= (I1) + (I2), say.

1. Which follows readily by Jensen’s inequality.
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To control (I1) we first use Example 1 in Chapter 3 and (6.2.2) to estimate the inner

integral as follows

1

s

∫ s

0

(

|f |∗µ (t)− |f |∗µ (s)
)q

dt � 1

s

(

K

((

log
1

s

)1/r−1

, f

))q

, 0 < s ≤ 1/2.

Thus,

(I1) �
{
∫ 1/2

0

((

log
1

s

)θ(1−1/r)
(

K

((

log
1

s

)1/r−1

, f

)))q
ds

s log 1
s

}1/q

The change of variables u = (log 1
s )

1/r−1 then yields

(I1) � ‖f‖Bθ,q
Lq (µ) .

It remains to estimate (I2). We write

(I2) ≤
{
∫ 1/2

0

(

log
1

s

)qθ(1−1/r)−1

|f |∗∗µ (s)qds

}1/q

,

then, using the fundamental theorem of calculus, we have

(I2) ≤
{
∫ 1/2

0

(

log
1

s

)qθ(1−1/r)−1
(
∫ 1/2

s

(

|f |∗∗µ (z)− |f |∗µ (z)
) dz

z
+ |f |∗∗µ (1/2)

)q

ds

}1/q

≤
{
∫ 1/2

0

((

log
1

s

)θ(1−1/r)−1/q ∫ 1/2

s

(

|f |∗∗µ (z)− |f |∗µ (z)
) dz

z

)q

ds

}1/q

+

|f |∗∗µ (1/2)

{
∫ 1/2

0

(

log
1

t

)qθ(1−1/r)

dt

}1/q

= (A) + (B), say.

To use the Hardy logarithmic inequality of [12, (6.7)] we first write

(A) =

{
∫ 1/2

0

((

log
1

s

)θ(1−1/r)−1/q

s1/q
∫ 1/2

s

(

|f |∗∗µ (z)− |f |∗µ (z)
) dz

z

)q
ds

s

}1/q

and then find that

(A) �
{
∫ 1/2

0

(
(

|f |∗∗µ (s)− |f |∗µ (s)
)

s1/q
(

log
1

s

)θ(1−1/r)−1/q
)q

ds

s

}1/q

.
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Now we use the fact that in the region of integration s1/q ≤ 1, combined with (6.3.2)

and (6.2.2), to conclude that

{
∫ 1/2

0

(
(

|f |∗∗µ (s)− |f |∗µ (s)
)

s1/q
(

log
1

s

)θ(1−1/r)−1/q
)q

ds

s

}1/q

�
{
∫ 1/2

0

(

K

((

log
1

s

) 1
r−1

, f

))q (

log
1

s

)qθ(1−1/r)
ds

s
(
log 1

s

)

}1/q

≃







∫ (log 2)
1
r
−1

0

(K(u, f))
q
u−θq du

u







1/q
(

change of variables u =

(

log
1

s

) 1
r−1 )

≤ ‖f‖Bθ,q
Lq (µ) .

Finally it remains to estimate (B):

(B) =
1

2

(

2 |f |∗∗µ (1/2)
)
{
∫ 1/2

0

t1/2
(

log
1

t

)qθ(1−1/r)−1
dt

t1/2

}1/q

≤ 4 ‖f‖L1

(

sup
t∈(0,1/2]

t1/2
(

log
1

t

)qθ(1−1/r)−1
){

∫ 1/2

0

dt

t1/2

}

� ‖f‖L1 ≤ ‖f‖Lq

≤ ‖f‖Bθ,q
Lq (µ) .

We consider now the case q = ∞. We apply (6.3.2), observing that for X = L∞,

we have φL∞(t) = 1, and obtain that for t ∈
(
0, 12

]
,

|f |∗∗µ (t)− |f |∗µ (t) � K

((

log
1

t

) 1
r−1

, f

)

= K

((

log
1

t

) 1
r−1

, f

)(

log
1

t

)−( 1
r−1)θ (

log
1

t

)( 1
r−1)θ

≤
(

log
1

t

)( 1
r−1)θ (

sup
u

(
K(u, f)u−θ

)
)

=

(

log
1

t

)( 1
r−1)θ

‖f‖Ḃθ,∞
L∞ (µr)

,

as we wished to show.
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Remark 11. — Gaussian measure corresponds to r = 2, in this case, for q = 2, (6.3.3)

yields the logarithmic Sobolev inequality
{
∫ 1/2

0

|f |∗γn
(t)2

(

log
1

t

)θ

dt

}1/2

≤ c ‖f‖Bθ,2

L2 (γn)
, θ ∈ (0, 1).

Formally the case θ = 1 corresponds to an L2 Logarithmic Sobolev inequality, while

the case θ = 0, corresponds to the trivial L2 ⊂ L2 embedding. One could formally

approach such inequalities by complex interpolation (cf. [6] as well as the calculations

provided in [76])

[L2, Ẇ 1
L2 ]θ ⊂ [L2, L2LogL]θ = L2(LogL)θ.

The case r = 2, q = 1, corresponds to a fractional version of Ledoux’s inequality

(cf. [59]). Besides providing a unifying approach our method can be applied to deal

with more general domains and measures.

Remark 12. — When q = ∞ the inequality (6.3.4) reflects a refined estimate of the

exponential integrability of f . In particular, note that the case θ = 1, formally gives

the following inequality (cf. [17] and the references therein)

‖f‖L[∞,∞] ≃ sup
t∈(0, 12 ]

(

|f |∗∗γn
(t)− |f |∗γn

(t)
)

≤ c ‖f‖Ẇ 1

eL
2 (γn)

(cf. (7.1.4) below for the definition of the L[p,q] spaces). The previous inequality can

be proved readily using

|f |∗∗γn
(t)− |f |∗γn

(t) ≤ c
1

(log 1
t )

1/2
|∇f |∗∗γn

(t), t ∈ (0, 1/2].

Remark 13. — Using the transference principle of [70] the Gaussian results can be

applied to derive results related to the dimensionless Sobolev inequalities on Euclidean

cubes studied by Krbec-Schmeisser (cf. [56], [57]) and Triebel [95].

6.4. Exponential Classes

There is a natural connection between Gaussian measure and the exponential

class eL
2

. Likewise, this is also true with more general exponential measures and

other exponential spaces. Although there are many nice inequalities associated with

this topic that follow from our theory, we will not develop the matter in great detail

here. Instead, we shall only give a flavor of possible results by considering Besov

embeddings connected with the Sobolev space Ẇ 1
eL2 := Ẇ 1

eL2 (Rn, γn).

In this setting (6.3.2) takes the form

|f |∗∗γn
(t)− |f |∗γn

(t) ≤ c
K
((

log 1
t

)− 1
2 , f ; eL

2

, Ẇ 1
eL2

)

φeL2 (t)
, t ∈

(

0,
1

2

]

.
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Now, since φeL2 (t) =
(
log 1

t

)− 1
2 , t ∈ (0, 12 ) we formally have

(

|f |∗∗γn
(t)− |f |∗γn

(t)
)

≤ cK

((

log
1

t

)− 1
2

, f ; eL
2

, Ẇ 1
eL2

)(

log
1

t

) 1
2

≤ c ‖f‖Ḃ1

eL
2
,∞

(γn)
,

or

(6.4.1) ‖f‖L[∞,∞](γn)
≤ c ‖f‖Ḃ1

eL
2
,∞

(γn)
.

More generally,

(

|f |∗∗γn
(t)− |f |∗γn

(t)
)(

log
1

t

)− 1
2+

θ
2

≤ cK

((

log
1

t

)− 1
2

, f ; eL
2

, Ẇ 1
eL2

)(

log
1

t

) θ
2

≤ c ‖f‖Ḃθ

eL
2
,∞

,

which shows directly the improvement on the exponential integrability in the Ḃθ
eL2 ,∞

scale.
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CHAPTER 7

ON LIMITING SOBOLEV EMBEDDINGS

AND BMO

7.1. Introduction and Summary

The discussion in this chapter is connected with the role of BMO in some limiting

Sobolev inequalities. We start by reviewing some definitions, and then proceed to de-

scribe Sobolev inequalities which follow readily from our symmetrization inequalities,

and will be relevant for our discussion.

Let (Ω, d, µ) be a metric measure space satisfying the usual assumptions, including

the relative uniform isoperimetric property. The space BMO (Ω) = BMO, introduced

by John-Nirenberg, is the space of integrable functions f : Ω → R, such that

‖f‖BMO = sup
B

{

inf
c

(
1

µ(B)

∫

B

|f − c| dµ
)

: B ball in Ω

}

<∞.

In fact, it is enough to consider averages fB = 1
µ(B)

∫

B
f dµ, or a median m(f) of f

(cf. [Definition 1, Chapter 3]),

‖f‖BMO ≃ sup
B

{
1

µ(B)

∫

B

|f − fB| dµ : B ball in Ω

}

<∞.

To obtain a norm we may set

‖f‖BMO∗
= ‖f‖BMO + ‖f‖L1 .

Remark 14. — One can also control ‖f‖∗ through the use of maximal operators

(cf. [38], [26], [1]). Let

f#(x) = sup
B�x

1

µ(B)

∫

B

|f − fB| dµ,

where the sup is taken over all open balls containing x. Then we have

‖f‖BMO ≃
∥
∥f#

∥
∥
∞
.
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Let θ ∈ (0, 1), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. Consider the Besov spaces ḃθ,qp (Ω)

(resp. bθ,qp (Ω)), defined by

‖f‖ḃθ,qp (Ω) =

(
∫ µ(Ω)

0

(
t−θK(t, f ;Lp(Ω), SLp(Ω))

)q dt

t

)1/q

(7.1.1)

‖f‖bθ,qp (Ω) = ‖f‖ḃθp,q(Ω) + ‖f‖Lp .

For ready comparison with classical embedding theorems, from now on in this

section, unless explicitly stated to the contrary, we shall consider metric measure

spaces (Ω, d, µ) such that the corresponding isoperimetric profiles satisfy

(7.1.2) t1−1/n � IΩ(t), t ∈ (0, µ(Ω)/2).

We now recall the definition of the Lp,q spaces. Moreover, in order to incorporate in a

meaningful way the limiting cases that correspond to the index p = ∞, we also recall

the definition of the modified L[p,q] spaces (1). Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ (cf. [11],

[9]), and let (2)

(7.1.3) Lp,q(Ω) =






f : ‖f‖Lp,q =

(
∫ µ(Ω)

0

(

|f |∗µ (s)s1/p
)q ds

s

)1/q

<∞






.

For 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, we let

(7.1.4)

L[p,q](Ω) =






f : ‖f‖L[p,q] =

(
∫ µ(Ω)

0

(

(|f |∗∗µ (s)− |f |∗µ (s))s1/p
)q ds

s

)1/q

<∞






.

It is known that (cf. [71] and the references therein)

Lp,q(Ω) = L[p,q](Ω), for 1 ≤ p <∞, 1 ≤ q ≤ ∞.

Then, under our current assumptions on the isoperimetric profile of Ω, Theorem 7

states that

(7.1.5) |f |∗∗µ (t)− |f |∗µ (t) ≤ c
K(t1/n, f ;Lp(Ω), SLp(Ω))

t1/p
, t ∈ (0, µ(Ω)/2).

The following basic version of the Sobolev embedding follows readily

Proposition 3

(7.1.6) bθ,qp (Ω) ⊂ Lp̄,q(Ω), where
1

p̄
=

1

p
− θ

n
, θ ∈ (0, 1), 1 ≤ q ≤ ∞, θp ≤ n.

1. The Lp,q and L[p,q] spaces are equivalent for p < ∞.
2. With the usual modifications when q = ∞.

ASTÉRISQUE



7.1. INTRODUCTION AND SUMMARY 77

Proof. — Indeed, from the relationship between the indices and (7.1.5), we can write
(

|f |∗∗µ (t)− |f |∗µ (t)
)

t1/p̄ � t−
θ
nK(t1/n, f ;Lp(Ω), SLp(Ω)), t ∈ (0, µ(Ω)/2).

If q = ∞, (7.1.6) follows taking supremum on both sides of the inequality above.

Likewise, if q < ∞, then the desired result follows raising both sides to the power q

and integrating from 0 to µ(Ω)/2. In reference to the role of the L[∞,q] spaces here

let us remark that, in the limiting case θp = n, we have p̄ = ∞.

We consider the limiting case, θ = n
p , p > n, in more detail. In this case (7.1.6)

reads (cf. [65])

bn/p,qp (Ω) ⊂ L[∞,q](Ω), p > n, 1 ≤ q ≤ ∞.

Note that when q = 1, L[∞,1](Ω) = L∞(Ω), and we recover the well known result (for

Euclidean domains),

(7.1.7) bn/p,1p (Ω) ⊂ L∞(Ω).

On the other hand, when q = ∞, from (7.1.6) we only get

(7.1.8) ḃn/p,∞p (Ω) ⊂ L[∞,∞](Ω).

In the Euclidean world better results are known. Recall that given a domain

Ω ⊂ Rn the Besov spaces Ḃθ,q
p (Ω) (resp. Bθ,q

p (Ω)), are defined by

‖f‖Ḃθ,q
p (Ω) =

(
∫ |Ω|

0

(

t−θK(t, f ;Lp(Ω), Ẇ 1
Lp(Ω))

)q dt

t

)1/q

(7.1.9)

‖f‖Bθ,q
p (Ω) = ‖f‖Ḃθ,q

p (Ω + ‖f‖Lp .

Indeed, for smooth domains, we have a better result than (7.1.7), namely

(7.1.10) Bn/p,1
p (Ω) ⊂ C(Ω),

and, moreover, it is well known that (cf. [20])

(7.1.11) Ḃn/p,∞
p ([Ω) ⊂ BMO (Ω).

We note that since we have (3) BMO ([0, 1]n) ⊂ L[∞,∞] : i.e.,

sup
t

(
|f |∗∗ (t)− |f |∗ (t)

)
≤ C ‖f‖BMO ,

then (7.1.11) is stronger than (7.1.8).

In Chapter 4 we have shown that for Sobolev and Besov spaces that are based

on metric probability spaces with the relative uniform isoperimetric property,

3. This is an easy consequence of (7.1.15) below.
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the rearrangement inequality (7.1.7) self-improves to (7.1.10). Let X be a r.i. space

on Ω, we will show that the K−Poincaré inequality (cf. Theorem 6, Chapter 3)

(7.1.12)
1

µ(Ω)

∫

Ω

|f − fΩ| dµ ≤ c
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f ;X,SX

)

φX(µ(Ω))
, f ∈ X + SX ,

combined with the relative uniform isoperimetric property self improves to (7.1.11).

In fact, the self improve result reads

(7.1.13) ‖f‖BMO(Ω) ≤ C sup
0<t<µ(Ω)

K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f ;X,SX

)

φX(µ(Ω))
,

and is valid for our the general class of isoperimetric profiles considered in this paper.

Indeed, the result exhibits a new connection between the geometry of the ambient

space and the embedding of Besov and BMO spaces. For example, for an Ahlfors

k−regular space (Ω, d, µ) (cf. Section 5.4) given a ball B, consider the metric space
(
B, d|B, µ|B

)
then

(7.1.14) ‖f‖BMO(B) ≤ c ‖f‖
ḃ
k/p,∞
p (B)

, p > k.

We shall also discuss a connection between our development in this paper and a

characterization of BMO provided by John [53] and Stromberg [91].

Finally, re-interpreting BMO as a limiting Lip space we were lead to an analog

of (3.1.1) which we now describe. We argue that in Rn the natural replacement

of (1.1.2) involving the spaceBMO is given by the Bennett-DeVore-Sharpley inequality

(cf. [11], [13], [1], [2])

(7.1.15) |f |∗∗ (t)− |f |∗ (t) ≤ c(f#)∗(t), 0 < t <
|B|
6
, where B is a ball on Rn.

Variants of this inequality are known to hold in more general contexts. For our

purposes here the following inequality will suffice

(7.1.16) |f |∗∗µ (t)− |f |∗µ (t) ≤ C ‖f‖BMO , 0 < t < µ(Ω).

We shall therefore assume for this particular discussion that our metric measure space

(Ω, d, µ) also satisfies the following condition: There exists a constant C > 0 such that

(7.1.16) holds for all f ∈ BMO. For example, in [86, see (3.8)] it is shown that (7.1.16)

holds for doubling measures on Euclidean domains. More general results can be found

in [1].

Assuming the validity of (7.1.16), and using the method of the proof of Theorem 7,

we will show below (cf. Theorem 27) that if X(Ω) is a r.i. space, then we have (4)

(7.1.17) |f |∗∗ (t)− |f |∗ (t) ≤ c
K(φX(t), f ;X(Ω),BMO(Ω))

φX(t)
, 0 < t < µ(Ω)/2.

4. On Rn (7.1.17) is known and can be obtained by combining (7.1.15) with [13, theorem 8.8].
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This result should be compared with Theorem 7 above. For perspective, we now show

a different road to a special case of (7.1.17). Recall that for Euclidean domains it is

shown in [13, (8.11)] that

K(t, f ;L1,BMO)

t
≃ (f#)∗(t).

Combining this inequality with (7.1.15), we obtain a different approach to (7.1.17) in

the special case X = L1, at least when t is close to zero.

7.1.1. Self Improving inequalities and BMO. — We show that (7.1.12) com-

bined with the relative uniform isoperimetric property yields the following embedding

Theorem 24. — Let (Ω, d, µ) be a metric space satisfying the standard assumptions

and with the relative uniform isoperimetric property. Let X be a r.i. space on Ω,

then, there exists an absolute constant C > 0 such that,

‖f‖BMO(Ω) ≤ C sup
0<t<µ(Ω)

K
(

t/2
IΩ(t/2) , f ;X,SX

)

φX(t)
.

Proof. — Given an integrable function f and a ball B in Ω, consider fχB. By The-

orem 6, applied to the metric space (B, d|B, µ|B), we have

1

µ(B)

∫

B

|f − fB| dµ ≤ c
K
(

µ(B)/2
IB(µ(B)/2) , fχB;Xr(B), SXr (B)

)

φXr (µ(B))
.

.

Since (Ω, d, µ) has the relative uniform isoperimetric property, we have

K
(

µ(B)/2
IB(µ(B)/2) , fχB;Xr(B), SXr (B)

)

φXr (µ(B))
≤ C

K
(

µ(B)/2
IΩ(µ(B)/2) , fχB;X,SX

)

φX(µ(B))

≤ C sup
0<t<µ(Ω)

K
(

t/2
IΩ(t/2) , f ;X,SX

)

φX(t)
.

Consequently,

sup
B

1

µ(B)

∫

B

|f − fB| dµ ≤ C sup
0<t<µ(Ω)

K
(

t/2
IΩ(t/2) , f ;X,SX

)

φX(t)
.

We now give a concrete application of the previous result.

Corollary 1. — Let Ω ⊂ Rn be a bounded domain that belongs to the Maz’ya’s class

J1−1/n (cf. Section 5.3). Suppose that p > n, then

Ḃn/p,∞
p (Ω) ⊂ BMO(Ω).
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Proof. — Since Ω belongs to the Maz’ya’s class J1−1/n the following isoperimetric

estimate holds.

t1−1/n � IΩ(t), t ∈ (0, |Ω| /2).
On the other hand, for any ball B in Ω, we have

IB(t) ≥ c(n)min(s, (|B| − s))
n−1
n , 0 < s < |B| .

Since Ω ⊂ Rn, using the same argument we provided in Section 5.2, it follows readily

that the inequality (3.2.3) remains valid for all functions in f ∈ X + Ẇ 1
X , i.e.,

(7.1.18)
1

µ(Ω)

∫

Ω

|f − fΩ| dµ ≤ c
K
(

µ(Ω)/2
IΩ(µ(Ω)/2) , f ;X, Ẇ

1
X

)

φX(µ(Ω))
.

Thus, by the argument given in the previous Theorem, we see that

1

µ(B)

∫

B

|f − fB| dµ ≤ C(n) sup
0<t<(|Ω|/2)1/n

K
(

(t/2)
1/n

, f ;Lp, Ẇ 1
Lp

)

t1/p

≤ C(n) sup
0<t<|Ω|

t−n/pK
(

t, f ;Lp, Ẇ 1
Lp

)

= C(n) ‖f‖
Ḃ

n/p,∞
p (Ω)

.

7.2. On the John-Stromberg characterization of BMO

Our discussion in this chapter is closely connected with a characterization

of BMO([0, 1]n) using rearrangements due to John [53] and Stromberg [91]. Let

λ ∈ (0, 12 ], then

‖f‖BMO∗
≃ sup

Q⊂[0,1]n
inf
c∈R

((f − c)χQ)
∗
(λ |Q|).

See also Jawerth-Torchinsky [52], Lerner [61], [30], and the references therein.

Theorem 25. — Let (Ω, d, µ) be a measure metric space satisfying our standard as-

sumptions, let f : Ω → R be an integrable function. For a measurable set Q ⊂ Ω,

(fχQ)
∗
µ (µ(Q)/2) is a median of f on Q.

Proof. — It is easy to convince oneself that Definition 1 of median in is equivalent to

µ{f > m(f)} ≤ µ(Q); and µ{f < m(f)} ≤ µ(Q).

Now

µ{fχQ < (fχQ)
∗
µ(µ(Q)/2)} = µ{−fχQ > −(fχQ)

∗
µ(µ(Q)/2)}

But since

(−fχQ)
∗
µ (t) = −(fχQ)

∗
µ(µ(Q)− t)

it follows that

(−fχQ)
∗
µ (µ(Q)/2) = −(fχQ)

∗
µ(µ(Q)/2).
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Consequently

µ{fχQ < (fχQ)
∗
µ(µ(Q)/2)} = µ{−fχQ > −(fχQ)

∗
µ(µ(Q)/2)}

= µ{−fχQ > (−fχQ)
∗
µ (µ(Q)/2)}

≤ µ(Q)/2 (by definition).

Therefore (fχQ)
∗
µ(µ(Q)/2) is a median as we wished to show.

As a consequence we have the following John-Stromberg inequality: for any ball B,

(7.2.1)
(
(fχB)

∗∗
µ (µ(B)/2)− (fχB)

∗
µ(µ(B)/2)

)
≤ 1

2
‖f‖BMO .

Theorem 26. — Let (Ω, d, µ) be a metric space satisfying the standard assumptions.

Then there exists a constant C > 0 such that for all f, it holds

‖f‖BMO(Ω) ≤ C sup
B ball in Ω

{
(fχB)

∗∗
µ (µ(B)) − (fχB)

∗
µ(µ(B))

}
.

Proof. — For t ∈ (0, µ(Ω)) let us write

t(f∗∗
µ (t)− f∗

µ(t)) =

∫ t

0

(f∗
µ(x)− f∗

µ(t)) dµ

=

∫ µ(Ω)

0

max
(
0, f∗

µ(x)− f∗
µ(t)

)
dµ

=

∫

{s:f(s)>f∗
µ(t)}

max
(
0, f(x)− f∗

µ(t)
)
dµ.

Fix a ball B and apply the preceding equality to fχB and t = µ(B) :

µ(B)
(
(fχB)

∗∗
µ (µ(B)) − (fχB)

∗
µ(µ(B))

)

=

∫

{s∈B:f(s)>(fχB)∗µ(µ(B))}

max(0, fχB(s)− (fχB)
∗
µ(µ(B))) dµ.

To estimate the right hand side from below we observe that

fB :=
1

µ(B)

∫

B

f(x) dµ =
1

µ(B)

∫ µ(B)

0

(fχB)
∗
µ(s) ds ≥ (fχB)

∗
µ(µ(B)),

therefore

f(s)− (fχQ)
∗
µ(µ(B)) ≥ f(s)− fB.

Consequently,
∫

{s∈B:f(s)>(fχB)∗µ(µ(B))}

max(0, fχB(s)− (fχB)
∗
µ(µ(B))) dµ.

≥
∫

{s∈B: f(s)>fB}

max(0, fχB(s)− (fχB)
∗
µ(µ(B))) dµ

≥
∫

{x∈B: f(s)>fB}

[f(s)− fB] dµ.
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We will verify in a moment that

1

µ(B)

∫

{x∈B: f(s)>fB}

[f(s)− fB] dµ =
1

2

1

µ(B)

∫

B

|f(s)− fB| dµ(7.2.2)

Combining (7.2.2) with the previous estimates we see that

(
(fχB)

∗∗
µ (µ(B)) − (fχB)

∗
µ(µ(B))

)
≥ 1

2

1

µ(B)

∫

B

|f(s)− fB| dµ.

Hence

‖f‖BMO = sup
B

1

µ(B)

∫

B

|f(s)− fB| dµ

≤ 2 sup
B

(
(fχB)

∗∗
µ (µ(B))− (fχB)

∗
µ(µ(B))

)
,

as we wished to show.

It remains to see (7.2.2). Since
∫

{x∈B: f(s)>fB}

[f(s)− fB] dµ+

∫

{x∈B: f(s)<fB}

[f(s)− fB] dµ = 0,

we have that
∫

{x∈B: f(s)>fB}

[f(s)− fB] dµ =

∫

{x∈B: f(s)<fB}

[fB − f(s)] dµ.

Consequently,
∫

B

|f(s)− fB| dµ =

∫

{x∈B: f(s)>fB}

[f(s)− fB] dµ+

∫

{x∈B: f(s)<fB}

[fB − f(s)] dµ

= 2

∫

{x∈B: f(s)>fB}

[f(s)− fB] dµ.

7.3. Oscillation, BMO and K−functionals

As is well known in the Euclidean world or even for fairly general metric spaces

(cf. [26]) one can realize BMO as a limiting Lip space. The easiest way to see this is

through the equivalence

‖f‖Lipα
≃ sup

Q

1

|Q|1−α/n

∫

Q

|f − fQ| dx <∞.

From this point of view BMO corresponds to a Lip space of order α = 0.

This observation leads naturally to consider the analogs of the results of Chapter 4

in the context of BMO.

Theorem 27. — Suppose that (Ω, d, µ) is a metric space with finite measure and such

that there exists an absolute constant C > 0 such that for all f ∈ L1(Ω) we have

(7.3.1) |f |∗∗µ (t)− |f |∗µ (t) ≤ C ‖f‖BMO , 0 < t < µ(Ω).
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Then, for every r.i. space X(Ω) there exists a constant c > 0 such that

(7.3.2) |f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ c
K(φX(t), f ;X(Ω),BMO(Ω))

φX(t)
, 0 < t < µ(Ω),

where

K(t, f ;X(Ω),BMO(Ω)) = inf
h∈BMO

{‖f − h‖X + t ‖h‖BMO}.

Proof. — The proof follows exactly the same lines as the proof of Theorem 7, so we

shall be brief. We start by noting three important properties that functional ‖f‖BMO

shares with ‖|∇f |‖ :

(i) for any constant c, ‖f + c‖BMO = ‖f‖BMO,

(ii) ‖|f |‖BMO ≤ ‖f‖BMO , and more generally

(iii) for any Lip 1 function Ψ, ‖Ψ(f)‖BMO ≤ ‖f‖BMO .

Let t > 0, then using the corresponding arguments in Theorem 7 shows that we have

(7.3.3) inf
0≤h∈BMO

{‖|f | − h‖X + φX(t) ‖h‖BMO} ≤ K(φX(t), f ;X(Ω),BMO(Ω)),

To prove (7.3.2) we proceed as in the proof of Theorem 7 until we arrive to

|f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ ||f | − h|∗∗µ (t) + ||f | − h|∗µ (t) + |h|∗∗µ (t)− |h|∗µ (2t)

which we now estimate as

|f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ 2 ||f | − h|∗∗µ (t) +
(

|h|∗∗µ (t)− |h|∗µ (t)
)

+
(

|h|∗µ (t)− |h|∗µ (2t)
)

Note that

(|f | − h)
∗∗
µ (t/2) =

2

t

∫ t

0

(|f | − h)
∗
µ (s) ds

≤ 2
‖|f | − h‖X φX′(t)

t
(Hölder’s inequality)

= 2
‖|f | − h‖X
φX(t)

(since φX′(t)φX(t) = t).

On the other hand, by (7.3.1)

|h|∗∗µ (t)− |h|∗µ (t) ≤ C ‖h‖BMO .

While by (1.1.15)

|h|∗µ (t)− |h|∗µ (2t) ≤ 2
(

|h|∗∗µ (2t)− |h|∗µ (2t)
)

≤ C ‖h‖BMO (again by (7.3.1)).
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Therefore, combining our findings we see that

|f |∗∗µ (t/2)− |f |∗µ (t/2) ≤ C inf
0≤h∈BMO

{‖|f | − h‖X
φX(t)

+ ‖h‖BMO

}

=
C

φX(t)
inf

0≤h∈BMO
{‖|f | − h‖X + φX(t) ‖h‖BMO}

≤ C

φX(t)
K(φX(t), f ;X(Ω),BMO(Ω)) (by (7.3.3)).
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CHAPTER 8

ESTIMATION OF GROWTH “ENVELOPES”

8.1. Summary

Triebel and his school, in particular we should mention here the extensive work

of Haroske, have studied the concept of “envelopes” (cf. [49], a book mainly devoted

to the computation of growth and continuity envelopes of function spaces defined

on Rn). On the other hand, as far as we are aware, the problem of estimating growth

envelopes for Sobolev or Besov spaces based on general measure spaces has not been

treated systematically in the literature. For a function space Z(Ω), which we should

think as measuring smoothness, one attempts to find precise estimates of (“the growth

envelope”)

EZ(t) = sup
‖f‖Z(Ω)≤1

|f |∗ (t).

A related problem is the estimation of “continuity envelopes” (cf. [49]). For example,

suppose that Z := Z(Rn) ⊂ C(Rn), then we let

EZ
C (t) = sup

‖f‖Z≤1

ωL∞(t, f)

t
,

and the problem at hand is to obtain precise estimates of EZ
C (t).

In this chapter we estimate growth envelopes of function spaces based on met-

ric probability spaces using our symmetrization inequalities. Most of the results we

shall obtain, including those for Gaussian function spaces, are apparently new. Our

method, moreover, gives a unified approach.

In a somewhat unrelated earlier work [64], we proposed some abstract ideas on

how to study certain convergence and compactness properties in the context of inter-

polation scales. In Section 8.6 we shall briefly show a connection with the estimation

of envelopes.
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8.2. Spaces defined on measure spaces with Euclidean type profile

To fix ideas, and for easier comparison, in this section we consider metric proba-

bility (1) spaces (Ω, d, µ) satisfying the standard assumptions and such that the cor-

responding profiles satisfy

(8.2.1) t1−1/n � IΩ(t), t ∈ (0, 1/2).

Particular examples are the J1− 1
n
−Maz’ya domains on Rn. By the Lévy-Gromov

isoperimetric inequality, Riemannian manifolds with positive Ricci curvature also

satisfy (8.2.1).

In this context the basic rearrangement inequalities (cf. (1.1.2), (1.1.9)) take the

following form, if f ∈ Lip(Ω), then

(8.2.2) |f |∗∗µ (t)− |f |∗µ (t) � t1/n |∇f |∗∗µ (t), t ∈ (0, 1/2),

and, if f ∈ X + SX , then

(8.2.3) |f |∗∗µ (t)− |f |∗µ (t) �
K(t1/n, f,X, SX)

φX(t)
, t ∈ (0, 1/2).

Theorem 28. — Let X = X(Ω) be a r.i. space on Ω, and let S̄X(Ω) be defined by

S̄X(Ω) =
{

f ∈ Lip(Ω) : ‖f‖S̄X(Ω) = ‖|∇f |‖X + ‖f‖X <∞
}

.

Then,

(8.2.4) ES̄X(Ω)(t) �
∫ 1

t

s1/n−1φX̄′(s)
ds

s
, t ∈ (0, 1/2).

In particular, if X = Lp, 1 ≤ p < n, then (compare with [49] and see also Remark 15

below)

(8.2.5) ES̄Lp (Ω)(t) � t1/n−1/p, t ∈ (0, 1/2).

1. Note that, when we are dealing with domains Ω with finite measure, we can usually assume

without loss that we are dealing with functions such that |f |∗∗(∞) = 0. Indeed, we have

|f |∗∗ (t) ≤
1

t
‖f‖L1(Ω) .

For the usual function spaces on Rn, we can usually work with functions in C0(Rn), which again

obviously satisfy |f |∗∗(∞) = 0.
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Proof. — Let f be such that ‖f‖S̄X(Ω) ≤ 1. Using the fundamental theorem of

Calculus we can write

(8.2.6) |f |∗∗µ (t)− |f |∗∗µ (1/2) =

∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
) ds

s
.

This representation combined with (8.2.2) and Hölder’s inequality (2), yields

|f |∗∗µ (t) ≤ cn

∫ 1/2

t

s1/n |∇f |∗∗µ (s)
ds

s
+ |f |∗∗µ (1/2)

≤ cn

∫ 1

t

s1/n−1
∥
∥|∇f |χ(0,s)

∥
∥
X̄
φX̄′(s)

ds

s
+ 2 ‖f‖L1

≤ ‖f‖S̄X
cn

∫ 1

t

s1/n−1φX̄′(s)
ds

s
+ 2 ‖f‖L1

≤ cn

∫ 1

t

s1/n−1φX̄′(s)
ds

s
+ 2c,

where in the last step we used the fact that ‖f‖S̄X(Ω) ≤ 1, and ‖f‖L1 ≤ c ‖f‖X .

Therefore,

ES̄X(Ω)(t) = sup
‖f‖S̄X (Ω)≤1

|f |∗µ (t)

≤ sup
‖f‖S̄X (Ω)≤1

|f |∗∗µ (t)

≤ c

(∫ 1

t

s1/n−1φX̄′(s)
ds

s
+ 1

)

, t ∈ (0, 1/2).

The second part of the result follows readily by computation since, if X = Lp,

1 ≤ p < n, then
∫ 1

t

s1/n−1φX̄′(s)
ds

s
=

∫ 1

t

s1/n−1s1−1/p ds

s

≤
∫ ∞

t

s1/n−1s1−1/p ds

s

≃ t1/n−1/p,

and

1 ≤ ct1/n−1/p, for t ∈ (0, 1/2).

2. Write

s |∇f |∗∗ (s) =

∫ s

0
|∇f |∗ (u) du

≤
∥

∥|∇f |χ(0,s)

∥

∥

X̄

∥

∥χ(0,s)

∥

∥

X̄′

=
∥

∥|∇f |χ(0,s)

∥

∥

X̄
φX̄′(s).
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Remark 15. — We can also deal in the same fashion with infinite measures. For

comparison with [49] let us consider the case of Rn provided with Lebesgue measure.

In this case IRn(t) = cnt
1−1/n, for t > 0, and (8.2.2) is known to hold for all t > 0,

and for all functions in C0(Rn) (cf. [69]). For functions in C0(Rn) we can replace

(8.2.6) by

|f |∗∗ (t) =
∫ ∞

t

(
|f |∗∗ (s)− |f |∗ (s)

) ds

s
.

Suppose further that X is such that
∫ ∞

t

s1/n−1φX̄′(s)
ds

s
<∞.

Then, proceeding with the argument given in the proof above, we see that there is no

need to restrict the range of t′s for the validity of (8.2.4), (8.2.5), etc. Therefore, for

1 ≤ p < n, we have (compare with [49, Proposition 3.25])

(8.2.7) ES1
X(Rn)(t) ≤ c

(∫ ∞

t

s1/n−1φX̄′(s)
ds

s
+ 1

)

, t > 0.

The use of Hölder’s inequality as effected in the previous theorem does not give

the sharp result at the end point p = n. Indeed, following the previous method for

p = n, we only obtain

EW 1
Ln (Ω)(t) �

∫ 1

t

s1/n−1s1−1/n ds

s

� ln
1

t
, t ∈ (0, 1/2).

Our next result shows that using (8.2.2) in a slightly different form (applying Hölder’s

inequality on the left hand side) we can obtain the sharp estimate in the limiting cases

(compare with [49, Proposition 3.27]).

Theorem 29. — ES̄Ln(Ω)(t) �
(
ln 1

t

)1/n′

, for t ∈ (0, 1/2).

Proof. — Suppose that ‖f‖S̄Ln(Ω) ≤ 1. First we rewrite (8.2.2) as
(

|f |∗∗µ (s)− |f |∗µ (s)
s1/n

)n

≤ cn

(

|∇f |∗∗µ (s)
)n

, s ∈ (0, 1/2).

Integrating, we thus find,
∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
)n ds

s
=

∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
s1/n

)n

ds

≤ cn

∫ 1

t

(

|∇f |∗∗µ (s)
)n

ds

≤ Cn ‖|∇f |‖nLn (by Hardy’s inequality)

≤ Cn.
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Now, for t ∈ (0, 1/2),

|f |∗∗µ (t)− |f |∗∗µ (1/2) =

∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
) ds

s

≤
(
∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
)n ds

s

)1/n(∫ 1

t

ds

s

)1/n′

(Hölder’s inequality)

≤ C1/n
n

(

ln
1

t

)1/n′

.

Therefore,

|f |∗∗µ (t) ≤ C1/n
n

(

ln
1

t

)1/n′

+ ‖f‖L1

≤ C1/n
n

(

ln
1

t

)1/n′

+ ‖f‖Ln

≤ C1/n
n

(

ln
1

t

)1/n′

, for t ∈ (0, 1/2).

Consequently,

(8.2.8) ES̄Ln(Ω)(t) �
(

ln
1

t

)1/n′

, for t ∈ (0, 1/2).

The case p > n, is somewhat less interesting for the computation of growth en-

velopes since we should have ES̄Lp(Ω)(t) ≤ c. We now give a direct proof of this fact

just to show that our method unifies all the cases.

Proposition 4. — Let p > n, then there exists a constant c = c(n, p) such that

ES̄Lp(Ω)(t) ≤ c, t ∈ (0, 1/2).

Proof. — Suppose that ‖f‖S̄Lp(Ω) ≤ 1, and let s ∈ (0, 1/2). We estimate as follows

|f |∗∗µ (t)− |f |∗µ (t) ≤ ct1/n−1

∫ t

0

|∇f |∗µ (s) ds

≤ ct1/n−1

(∫ 1

0

|∇f |∗µ (s)pds
)1/p

t1/p
′

≤ ct1/n−1/p.

Thus, using a familiar argument, we see that for t ∈ (0, 1/2),

|f |∗∗µ (t)− |f |∗∗µ (1/2) ≤ c

∫ 1

t

s1/n−1/p−1ds

≤ c
1− t1/n−1/p

(1/n− 1/p)

≤ c

(1/n− 1/p)
.
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It follows that

|f |∗µ (t) ≤ |f |∗∗µ (t) ≤ c

(1/n− 1/p)
+ |f |∗∗µ (1/2)

≤ c

(1/n− 1/p)
,

and we obtain

ES̄Lp(Ω)(t) ≤ c, t ∈ (0, 1/2).

The methods discussed above apply to Sobolev spaces based on general r.i. spaces.

As another illustration we now consider in detail the case of the Sobolev spaces based

on the Lorentz spaces Ln,q (Ω) , where Ω ⊂ Rn is a bounded Lip domain of measure 1.

The interest here lies in the fact that in the critical case p = n, the second index q plays

an important role. Indeed, for q = 1, as is well known, we have W 1
Ln,1 ⊂ L∞, while

this is no longer true for W 1
Ln,q if q > 1. In particular, for the space W 1

Ln,n = W 1
Ln .

The next result thus extends Theorem 29 and provides an explanation of the situation

we have just described through the use of growth envelopes.

Theorem 30. — Let 1 ≤ q ≤ ∞, then EW 1
Ln,q (Ω)(t) �

(
ln 1

t

)1/q′

, for t ∈ (0, 1/2).

Proof. — Consider first the case 1 ≤ q < ∞. Suppose that ‖f‖W 1
Ln,q (Ω) ≤ 1.

From (8.2.2) we get

(
|f |∗∗ (s)− |f |∗ (s)

)q ≤ cn

(

|∇f |∗∗ (s)s1/n
)q

, s ∈ (0, 1/2).

Then,

|f |∗∗µ (t)− |f |∗∗µ (1/2) =

∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
) ds

s

≤
(
∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
)q ds

s

)1/q (∫ 1/2

t

ds

s

)1/q′

≤ c

(
∫ 1/2

t

(

|∇f |∗∗µ (s)s1/n
)q ds

s

)1/q (∫ 1/2

t

ds

s

)1/q′

≤ c ‖|∇f |‖Ln,q

(

ln
1

t

)1/q′

.

Therefore, as before

|f |∗∗µ (t) ≤ c ‖|∇f |‖Ln,q

(

ln
1

t

)1/q′

+ |f |∗∗µ (1/2)

≤ c

(

ln
1

t

)1/q′

, t ∈ (0, 1/2),

and the desired estimate for EW 1
Ln,q (Ω)(t) follows.
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When q = ∞, and ‖f‖W 1
Ln,∞(Ω) ≤ 1, we estimate

|f |∗∗µ (s)− |f |∗µ (s) ≤ cn |∇f |∗∗ (s)s1/n

≤ cn ‖|∇f |‖Ln,∞

≤ cn.

Consequently,

|f |∗∗µ (t)− |f |∗∗µ (1/2) ≤ cn

∫ 1

t

ds

s

and we readily get

EW 1
Ln,∞ (Ω)(t) ≤ c

(

ln
1

t

)

, t ∈ (0, 1/2).

Remark 16. — Note that, in particular,

EW 1
Ln,1 (Ω)(t) ≤ c,

which again reflects the fact that W 1
Ln,1(Ω) ⊂ L∞(Ω).

Remark 17. — As before, all the previous results hold for the W 1
Lp,q (Rn) spaces.

We now show that a similar method, replacing the use of (8.2.2) by (8.2.3), allow

us to obtain sharp estimates for growth envelopes of Besov spaces (see (7.1.9)).

Theorem 31. — Let p > n > 1, 1 ≤ q ≤ ∞. Then

EBn/p,q
p ([0,1]n)(t) �

(

log
1

t

)1/q′

, t ∈ (0, 1/2).

Proof. — The starting point is

|f |∗∗µ (t)− |f |∗µ (t) ≤ c
ωLp(t1/n, f)

t1/p
, t ∈ (0, 1/2).

Then,

|f |∗∗µ (t)− |f |∗∗µ (1/2) =

∫ 1/2

t

(

|f |∗∗µ (s)− |f |∗µ (s)
) ds

s

≤ c

∫ 1/2

t

ωLp(s1/n, f)

s1/p
ds

s

≤ c

(
∫ 1

t

(
ωLp(s1/n, f)

s1/p

)q
ds

s

)1/q (∫ 1

t

ds

s

)1/q′

(Hölder’s inequality)

≤ c ‖f‖
B

n/p,q
p ([0,1]n)

(

log
1

t

)1/q′

.
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Thus, a familiar argument now gives (compare with [49, (1.9)])

EBn/p,q
p ([0,1]n)(t) �

(

log
1

t

)1/q′

, t ∈ (0, 1/2).

8.3. Continuity Envelopes

Suppose that Z := Z(Rn) ⊂ C(Rn), then (cf. [49] and the references therein) one

defines the continuity envelope by

EZ
C (t) = sup

‖f‖Z(Rn)≤1

ωL∞(t, f)

t
.

At this point it is instructive to recall some known interpolation inequalities. Let

‖f‖Ẇ 1
Ln,1

=
∫∞

0 |∇f |∗ (s)s1/n ds
s . We interpolate the following known embeddings

(cf. [89]): for f ∈ C∞
0 (Rn), we have

‖f‖L∞(Rn) � ‖f‖Ẇ 1
Ln,1(Rn)

.

Consequently,

(8.3.1) K(t, f ;L∞(Rn), Ẇ 1
L∞(Rn)) � K(t, f, Ẇ 1

Ln,1(Rn), Ẇ 1
L∞(Rn)).

It is well-known that for continuous functions we have (cf. [13])

K(t, f ;L∞(Rn), Ẇ 1
L∞(Rn)) = ωL∞(t, f) ≃ sup

|h|≤t

‖f(·+ h)− f(·)‖L∞ .

On the other hand using [67, Theorem 2] and Holmstedt’s Lemma (see [14,

Theorem 3.6.1]) we find

K(t, f, Ẇ 1
Ln,1(Rn), Ẇ 1

L∞(Rn)) ≃
∫ tn

0

|∇f |∗ (s)s1/n ds
s
.

Inserting this information back to (8.3.1) we find

ωL∞(t, f) �
∫ tn

0

|∇f |∗ (s)s1/n ds
s
.

Therefore,

ωL∞(t, f)

t
� 1

t

∫ tn

0

|∇f |∗ (s)s1/n ds
s

� 1

t
‖|∇f |‖Lp,q

(
∫ tn

0

s(1/n−1/p)q′ ds

s

)1/q′

� 1

t
‖|∇f |‖Lp,q t

1−n/p.

Thus, we have (compare with [49, (1.15)]) that for 1 ≤ q <∞,

(8.3.2) E
W 1

Lp,q (Rn)
C (t) � t−n/p.
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Remark 18. — It is actually fairly straightforward at this point to derive a general

relation between EZ and EZ
C . In [65] we have shown for f ∈ C∞

0 (Rn) we have

(8.3.3) |f |∗∗ (t)− |f |∗ (t) ≤ cnωL∞(t1/n, f), t > 0.

We now proceed formally, although the details can be easily filled-in by the interested

reader. From (8.3.3) we find

|f |∗∗ (t)− |f |∗ (t)
t

≤ cn
ωL∞(t1/n, f)

t
, t > 0.

Then

|f |∗ (t) ≤ |f |∗∗ (t)

=

∫ ∞

t

|f |∗∗ (s)− |f |∗ (s)
s

ds (since f∗∗(∞) = 0)

≤ cn

∫ ∞

t

ωL∞(s1/n, f)

s
ds.

Taking supremum over the unit ball of Z(Rn) we obtain

EZ(Rn)(t) �
∫ ∞

t1/n
E

Z(Rn)
C (s) ds.

Thus, for example, from (8.3.2) we find that for p < n

EW 1
Lp,q (Rn)(t) �

∫ ∞

t1/n
s−n/p ds

≃ t1/n−1/p,

which should be compared with (8.2.5).

8.4. General isoperimetric profiles

In the previous sections we have focused mainly on function spaces on domains with

isoperimetric profiles of Euclidean type; but our inequalities also provide a unified

setting to study estimates for general profiles. For a metric measure space (Ω, d, µ)

of finite measure we consider r.i. spaces X (Ω). Let 0 < θ < 1 and 1 ≤ q ≤ ∞, the

homogeneous Besov space ḃθX,q(Ω) is defined by

ḃθ,qX (Ω) =






f ∈ X + SX : ‖f‖ḃθ,qX (Ω) =

(
∫ µ(Ω)

0

(
K (s, f ;X,SX) s−θ

)q ds

s

)1/q

<∞






,

with the usual modifications when q = ∞. The Besov space bθX,q(Ω, µ) is defined by

‖f‖bθ,qX (Ω,µ) = ‖f‖X + ‖f‖ḃθ,qX (Ω) .

Notice that if X = Lp, then ḃθ,qLp (Ω) = ḃθ,qp (Ω) (resp. bθ,qLp (Ω) = bθ,qp (Ω)) (see (7.1.1)).
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Theorem 32. — Let X be a r.i. space on Ω. Let g(s) = s
IΩ(s) where IΩ denotes the

isoperimetric profile of (Ω, d, µ). Let bθ,qX (Ω) be a Besov space ( 0< θ < 1, 1< q <∞),

then for t ∈ (0, µ(Ω)/2) we have that

Ebθ,qX (Ω)(t) ≤ c



1 +





∫ µ(Ω)/2

t

(

g(s)θ
(
g(s)

g′(s)

)1/q
)q′

ds

(sφX(s))
q′







 ,

where, as usual 1/q′ + 1/q = 1.

Proof. — Let f ∈ X+SX , and let us write K (t, f ;X,SX) := K (t, f). By Theorem 7

we know that

|f |∗∗µ (t)− |f |∗µ (t) ≤ c
K (g(t), f)

φX(t)
, 0 < t < µ(Ω).

Taking in account that,
(
− |f |∗∗µ

)′
(t) =

(
|f |∗∗µ (t)− |f |∗µ (t)

)
/t, we get

|f |∗∗µ (t)− |f |∗∗µ (µ(Ω)/2) =

∫ µ(Ω)/2

t

(

− |f |∗∗µ
)′

(s) ds ≤ c

∫ µ(Ω)/2

t

K (g(s), f)

φX(s)

ds

s
.

Since IΩ(s) is a concave continuous increasing function on (0, µ(Ω)/2), g(s) is differ-

entiable on (0, µ(Ω)/2). Then, by Hölder’s inequality we have

R(t) =

∫ µ(Ω)/2

t

K (g(s), f)

φX(s)

ds

s

=

∫ µ(Ω)/2

t

K (g(s), f)

(
g(s)

g(s)

)θ (
g′(s)

g(s)

)1/q (
g(s)

g′(s)

)1/q
ds

sφX(s)

≤ R1(t)R2(t),

where

R1(t) =

(
∫ µ(Ω)/2

t

(
K (g(s), f) g(s)−θ

)q
(
g′(s)

g(s)

)

ds

)1/q

,

and

(8.4.1) R2(t) =





∫ µ(Ω)/2

t

(

g(s)θ
(
g(s)

g′(s)

)1/q
)q′

ds

(sφX(s))
q′





1/q′

.

By a change of variables

(8.4.2) R1(t) =

(
∫ g−1(µ(Ω)/2)

g−1(t)

(
K (z, f) z−θ

)q dz

z

)1/q

≤ ‖f‖ḃθX,q(Ω)
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Combining (8.4.1) and (8.4.2) we obtain

|f |∗∗µ (t) ≤ c ‖f‖ḃθX,q(Ω)R2(t) + 2 ‖f‖X
≤ 2c (1 +R2(t)) ‖f‖bθX,q(Ω) .

Therefore, taking sup over all f such that ‖f‖bθX,q(Ω) ≤ 1 we see that

Ebθ,qX (Ω)(t) ≤ 2c (1 +R2(t)) , t ∈ (0, µ(Ω)/2).

Example 3. — Consider the Gaussian measure (Rn, γn). Then (cf. [16]) we can take

as isoperimetric estimator

Iγn(t) = t

(

log
1

t

)1/2

, t ∈ (0, 1/2).

Thus,

g(t) =
1

(
log 1

t

)1/2
and g′(s) =

1

2
(
log 1

s

) 3
2 s
,

and



1 +





∫ 1/2

t

(

g(s)θ
(
g(s)

g′(s)

)1/q
)q′

ds

(sφX(s))
q′





1/q′





=

(
∫ 1/2

t

(

log
1

s

)q′(1− θ
2 )−1

ds

s (φX(s))
q′

)1/q′

≤ 1

φX(t)

(
∫ 1/2

t

(

log
1

s

)q′(1− θ
2 )−1

ds

s

)1/q′

� 1

φX(t)

(

log
1

t

)(1− θ
2 )
.

Therefore we find that

EBθ,q
X (Rn,γn)(t) � 1

φX(t)

(

log
1

t

)(1− θ
2 )
, t ∈ (0, 1/2).

8.5. Envelopes for higher order spaces

In general it is not clear how to define higher order Sobolev and Besov spaces

in metric spaces. On the other hand for classical domains (Euclidean, Riemannian

manifolds, etc.) there is a well developed theory of embeddings that one can use to

estimate growth envelopes. The underlying general principle is very simple. Suppose

that the function space Z = Z (Ω) is continuously embedded in Y = Y (Ω) and Y is

a rearrangement invariant space, then, since (cf. (2.2.6)) Y ⊂ M (Y ), where M(Y )
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is the Marcinkiewicz space associated with Y (cf. Section 2.2), we have (cf. (2.2.5))

for all f ∈ Z,

sup
t

|f |∗ (t)φY (t) ≤ ‖f‖Y ≤ c ‖f‖Z ,

where φY (t) is the fundamental function of Y, and c is the norm of the embedding

Z ⊂ Y . Consequently, for all f ∈ Z, with ‖f‖Z ≤ 1, for all t > 0,

|f |∗ (t) ≤ c

φY (t)
.

Therefore,

EZ(t) � 1

φY (t)
.

For example, suppose that p < n
k , then from

W k
p (R

n) ⊂ Lq,p, with
1

q
=

1

p
− k

n

and

φLq,p(t) = t1/q = t1/p−k/n

we get (compare with (8.2.5) above and [49, (1.7)])

EWk
p (Rn)(t) � tk/n−1/p.

In the limiting case we have (cf. [9], [78])

W k
n
k
(Rn) ⊂ L[∞,nk ].

For comparison consider W k
n
k
(Ω), where Ω is a domain on Rn, with |Ω| = 1. One can

readily estimate the decay of functions in L[∞,nk ] as follows:

|f |∗∗ (t)− |f |∗∗ (1) =
∫ 1

t

(
|f |∗∗ (s)− |f |∗ (s)

) ds

s

≤
(∫ 1

t

(
|f |∗∗ (s)− |f |∗ (s)

)n
k
ds

s

)1/(n
k )(∫ 1

t

ds

s

)1/(n
k )′

≤ ‖f‖
L[∞,n

k
]

(

log
1

t

)1− k
n

.

Combining these observations we see that for functions in the unit ball of W k
n
k
(Ω) we

have

|f |∗∗ (t) � c

(

log
1

t

)1− k
n

, for t ∈ (0, 1/2).

Consequently

E
Wk

n
k
(Ω)

(t) �
(

log
1

t

)1− k
n

.

In particular, when k = 1 then 1− k
n = 1

n′ , and the result coincides with Theorem 29

above.
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Likewise we can deal with the case of general isoperimetric profiles but we shall

leave the discussion for another occasion.

8.6. K and E functionals for families

It is of interest to point out a connection between the different“envelopes”discussed

above and a more general concept introduced somewhat earlier in [64], but in a

different context. One of the tools introduced in [64] was to consider the K and E

functionals for families, rather than single elements.

Given a compatible pair of spaces (X,Y ) (cf. [14]), and a family of elements,

F ⊂ X + Y, we can define the K−functional and E−functional (3) of the family F by

(cf. [64])

K(t, F ;X,Y ) = sup
f∈F

K(t, f ;X,Y ).

E(t, F ;X,Y ) = sup
f∈F

E(t, f ;X,Y ).

The connection with the Triebel-Haroske envelopes can be seen from the following

known computations. If we let ‖f‖L0 = µ{suppf}, then
|f |∗ (t) = E(t, f ;L0, L∞).

Therefore,

EZ(Ω)(t) = E(t, unit ball of Z(Ω);L0(Ω), L∞(Ω)).

Moreover, since on Euclidean space we have

ωL∞(t, f) ≃ K(t, f ;L∞(Rn), Ẇ 1
L∞(Rn))

we therefore see that

E
Z(Rn)
C (t) = K(t, f ; unit ball of Z(Rn);L∞(Rn), Ẇ 1

L∞(Rn)).

This suggests the general definition for metric spaces

E
Z(Ω)
C (t) = K(t, f ; unit ball of Z(Ω);L∞(Ω), SL∞(Ω)).

This provides a method to expand the known results to the metric setting using the

methods discussed in this paper. Another interesting aspect of the connection we

have established here lies in the fact, established in [64], that one can reformulate

classical convergence and compactness criteria for function spaces (e.g., Kolmogorov’s

compactness criteria for sets contained in Lp) in terms of conditions on these (new)

3. Recall that (cf. [14], [64]),

K(t, f ;X, Y ) = inf{‖f − g‖X + t ‖g‖Y : g ∈ Y }

E(t, f ;X, Y ) = inf{‖f − g‖Y : ‖g‖X ≤ t}.
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functionals. For example, according to the Kolmogorov criteria, for a set of functions

F to be compact on Lp(Rn) one needs the uniform continuity on F at zero of ωLp(t, F ).

In our formulation we replace this condition by demanding the continuity at zero of

K(t, F ;Lp,W 1
Lp).

Again, to develop this material in detail is a long paper on its own, however, let us note

in passing that the failure of compactness of the embedding W 1
Lp (Ω) ⊂ Lp̄ (Ω) , for

p = n, is consistent with the blow up at zero predicted by the fact that the converse

of (8.2.8) also holds. One should compare this with the estimate (8.2.7) which is

consistent with the Relich compactness criteria for Sobolev embeddings on bounded

domains, when p < n.
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CHAPTER 9

LORENTZ SPACES WITH NEGATIVE INDICES

9.1. Introduction and Summary

As we have shown elsewhere (cf. [9], [66]), the basic Euclidean inequality

f∗∗(t)− f∗(t) ≤ cnt
1/n |∇f |∗∗ (t)

leads to the optimal Sobolev inequality

(9.1.1) ‖f‖L[p̄,p] =

{∫ ∞

0

((
|f |∗∗ (t)− |f |∗ (t)

)
t1/p̄

)p dt

t

}1/p

≤ cn ‖|∇f |‖Lp ,

where 1 < p ≤ n, 1
p̄ = 1

p − 1
n . The use of the L[p̄,p] conditions makes it possible to

consider the limiting case p = n in a unified way. Now (9.1.1) is also meaningful when

p > n, albeit the only reason for the restriction p ≤ n, is that, if we don’t impose it,

then p̄ < 0, and thus the condition defined by ‖f‖L[p̄,p] < ∞ is not well understood.

It is was shown in [78] that these conditions are meaningful. In this chapter we show

a connection between the Lorentz L[p̄,p] spaces with negative indices and Morrey’s

theorem.

9.1.1. Lorentz conditions. — Let (Ω, d, µ) be a metric measure space. Let 0 <

q ≤ ∞, s ∈ R. We define

L[s,q] = L[s,q] (0, µ (Ω))

=






f ∈ L1 (Ω) :

{
∫ µ(Ω)

0

((

|f |∗∗µ (t)− |f |∗µ (t)
)

t1/s
)q dt

t

}1/q

<∞






.
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For 0 < q ≤ ∞, s ∈ [1,∞], these spaces were defined in Chapter 7. They coincide

with the usual Ls,q spaces when 0 < q ≤ ∞, s ∈ [1,∞) (cf. [71]).

Our first observation is that L[s,q] 6= ∅. Indeed, for s < 0, we have

0 < ‖χA‖L[s,q] =
µ(A)

(q − q/s)
1/q

[µ(A)q/s−q − 1]1/q

≤ µ(A)1/s

(q − q/s)
1/q

.

It is important to remark that the cancellation at zero afforded by |f |∗∗µ (t)− |f |∗µ (t)
is crucial here. Indeed, if we attempt to extend the usual definition of Lorentz spaces

by letting s < 0, then we find that ‖χA‖L(s,q) =
∫ µ(A)

0
tq/s dt

t <∞ iff µ(A) = 0.

9.2. The role of the L[p̄,p] spaces in Morrey’s theorem

For definiteness we work on Rn with Lebesgue measure m. We show that many

arguments we have discussed in this paper are available in the context of Lorentz

spaces with negative index.

Let f ∈ L[p̄,p] where 1
p̄ = 1

p − 1
n < 0. Then, for 0 < t1 < t2, we can write

f∗∗(t1)− f∗∗(t2) =

∫ t2

t1

(f∗∗(t)− f∗(t)) t1/p̄t−1/p̄ dt

t

≤
(∫ t2

t1

(

(f∗∗(t)− f∗(t)) t1/p̄
)p dt

t

)1/p(∫ t2

t1

t−p′/p̄ dt

t

)1/p′

= ‖f‖L[p̄,p]

(∫ t2

t1

t−p′/p̄ dt

t

)1/p′

.

Note that since −p′

p̄ − 1 = p
p−1 (

n−p
np ) − 1 = 1

p−1 [
n−p−n

n ] < 0, the function t−p′/p̄−1 is

decreasing and therefore,

∫ t2

t1

t−p′/p̄ dt

t
≤
∫ t2−t1

0

t−p′/p̄ dt

t
=

−p̄
p′

|t2 − t1|
−p′

p̄ .

Thus,

(9.2.1) f∗∗(t1)− f∗∗(t2) ≤
(−p̄
p′

)1/p′

‖f‖L[p̄,p] |t2 − t1|
−1
p̄ .

The localization property in this context takes the following form. Suppose that

f ∈ L[p̄,p] is such that there exists a constant C > 0, such that ∀B open ball, it
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follows that fχB ∈ L[p̄,p](0,m(B)), with ‖fχB‖L[p̄,p] ≤ C ‖f‖L[p̄,p] . Then, from (9.2.1)

we get

(fχB)
∗∗

(t1)− (fχB)
∗∗

(t2) ≤ C

(−p̄
p′

)1/p′

‖f‖L[p̄,p] |t2 − t1|
α
n ,

where α = 1− n
p . Applying this inequality replacing ti by tim(B), i = 1, 2; we get

(fχB)
∗∗

(t1m(B))− (fχB)
∗∗

(t2m(B)) ≤ C

(−p̄
p′

)1/p′

‖f‖L[p̄,p] |t2 − t1|
α
n m(B)

α
n .

Letting t1 → 0, t2 → 1, we then find

ess sup
B

(f)− 1

m(B)

∫

B

f ≤ C

(−p̄
p′

)1/p′

‖f‖L[p̄,p] m(B)a/n.

Applying this inequality to −f and adding we arrive at

ess sup
B

(f)− ess inf
B
f ≤ 2C

(−p̄
p′

)1/p′

‖f‖L[p̄,p] m(B)a/n.

Let x, y ∈ Rn, and consider B = B(x, 3 |x− y|) (i.e., the ball centered at x, with

radius 3 |x− y|), then

|f(x)− f(y)| ≤ ess sup
B
f − ess inf

B
f

≤ cn2

(−p̄
p′

)1/p′

C ‖f‖L[p̄,p] |x− y|α .

At this point we could appeal to (9.1.1) to conclude that

|f(x)− f(y)| ≤ cn2

(−p̄
p′

)1/p′

C ‖|∇f |‖p |x− y|α .

Similar arguments apply when dealing with Besov spaces. In this case the point of

departure is the corresponding replacement for (9.1.1) that is provided by the Besov

embedding
∫ [(

|f |∗∗µ (t)− |f |∗µ (t)
)

t
1
p−

θ
n

]q dt

t
≤ c

∫ [

t−
θ
nK(t1/n, f ;Lp, Ẇ 1

Lp)
]q dt

t
,

where 1
p̄ = 1

p − θ
n . θ ∈ (0, 1), 1 ≤ q ≤ ∞. Notice that we don’t assume anymore

that θp ≤ n.

Remark 19. — In the usual argument the use of the Lorentz spaces with nega-

tive indices was implicit. The idea being that we can estimate
( ∫ t2

t1

(
(f∗∗(t) −

f∗(t)) t1/p̄
)p dt

t

)
1/p through the use of

f∗∗(t)− f∗(t) ≤ cnt
1/n |∇f |∗∗ (t).
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Namely,

f∗∗(t1)− f∗∗(t2) =

∫ t2

t1

(f∗∗(t)− f∗(t))
dt

t

≤
∫ t2

t1

t1/n−1 |∇f |∗∗ (t) dt (basic inequality)

≤
(∫ t2

t1

|∇f |∗∗ (t)p dt
)1/p(∫ t2

t1

tp
′(1/n−1) dt

)1/p′

(Hölder’s inequality)

≤ cp ‖|∇f |‖p
(∫ t2

t1

tp
′(1/n−1) dt

)1/p′

(Hardy’s inequality)

≤ cp ‖|∇f |‖p

(
∫ |t2−t1|

0

tp
′(1/n−1) dt

)1/p′

(since tp
′(1/n−1) decreases)

= cp,n ‖|∇f |‖p |t2 − t1|1/n−1/p

= cp,n ‖|∇f |‖p |t2 − t1|α/n .

At this point it is not difficult to reformulate many of the results in this paper

using the notion of Lorentz spaces with negative index. As an example we simply

state the following result and safely leave the details to the reader.

Theorem 33. — Let (Ω, d, µ) be a probability metric space that satisfies the relative

isoperimetric property and such that

t1−1/n � IΩ(t), t ∈ (0, 1/2).

Then, if p > n

bn/p,1p (Ω) ⊂ Lp̄,1

where 1
p̄ = 1

p − 1
n . Moreover, if f ∈ b

n/p,1
p (Ω) , then ∀B ⊂ Ω, fχB ∈ Lp̄,1,

and ‖fχB‖Lp̄,1 � ‖f‖
b
n/p,1
p (Ω)

, with constants independent of B. In particular, it

follows that f ∈ C(Ω).

9.3. An interpolation inequality

In this section we formulate the basic argument of this chapter as in interpolation

inequality.

Lemma 6. — Suppose that (Ω, d, µ) is a probability measure. Let s < 0, 1 ≤ q ≤ ∞,

and suppose that −q′ > s. Then for all f ∈ L1 (Ω) we have,

‖f‖L∞ ≤
(−s
q′

)1/q′

‖f‖L[s,q] + ‖f‖L1 .
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Proof. — We use the argument of the previous section verbatim. Let 0 < t1 < t2 < 1.

By the fundamental theorem of calculus, we have

∣
∣f∗∗

µ

∣
∣ (t1)− |f |∗∗µ (t2) =

∫ t2

t1

(

|f |∗∗µ (t)− |f |∗µ (t)
) dt

t

=

∫ t2

t1

(

|f |∗∗µ (t)− |f |∗µ (t)
)

t1/st−1/s dt

t

≤
{∫ t2

t1

{(

|f |∗∗µ (t)− |f |∗µ (t)
)

t1/s
}q dt

t

}1/q {∫ t2

t1

t−q′/s dt

t

}1/q′

≤
(−s
q′

)1/q′

‖f‖L[s,q] |t1 − t2|−q′/s
.

Therefore letting t1 → 0+, t2 → 1−, we find

‖f‖L∞ − ‖f‖L1 ≤
(−s
q′

)1/q′

‖f‖L[s,q] .

9.4. Further remarks

Good portions of the preceding discussion can be extended to the context of real

interpolation spaces. In this framework one can consider spaces that are defined in

terms of conditions on K(t,f ;X̄)
t −K ′(t, f ; X̄), where X̄ is a compatible pair of Banach

spaces. An example of such construction are the modified Lions-Peetre spaces defined,

for example, in [50], [51] and the references therein. The usual conditions defining

these spaces are of the form

‖f‖[X0,X1]θ,q
=

{∫ ∞

0

(
t−θ(K(t, f ;X0, X1)− tK ′(t, f ;X0, X1))

)q dt

t

}1/q

<∞,

where θ ∈ (0, 1), q ∈ (0,∞]. Adding the end points θ = 0, 1, produces conditions

that still make sense and are useful in analysis (cf. [66] and the references therein).

Observe that when X̄ = (L1, L∞), we have

K(t, f ; X̄)

t
−K ′(t, f ; X̄) = |f |∗∗ (t)− |f |∗ (t),

and therefore

[X0, X1]θ,q = L[ 1
1−θ ,q].

Therefore the discussion in this chapter suggests that it is of interest to consider, more

generally, the spaces [X0, X1]θ,q, for θ ∈ R. In particular this may allow, in some

cases, to treat Lp and Lip conditions in a unified manner. For example, in [29] and [71]
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results are given that imply that for certain operators T, that include gradients, an

inequality of the form

‖f‖[Y0,Y1]θ0,q0
≤ c ‖Tf‖[X0,X1]θ1,q1

can be extrapolated to a family of inequalities that involve the [Y0, Y1]θ0,q0 spaces

defined here. In particular

‖f‖Ln′ ≤ c ‖∇f‖L1 , f ∈ C1
0 (R

n)

implies

K(t, f ;L1, L∞)− tK ′(t, f ;L1, L∞) ≤ ct1/nK(t,∇f ;L1, L∞).

Thus from one inequality we can extrapolate “all” the classical Sobolev inequalities

through the use of the [Y0, Y1]θ,q spaces with θ possibly negative. To pursue this point

further would take us too far away from our main concerns in this paper, so we must

leave more details and applications for another occasion.
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CHAPTER 10

CONNECTION WITH THE WORK OF GARSIA

AND HIS COLLABORATORS

In this section we shall discuss the connection of our results with the work of Garsia

and his collaborators (cf. [41], [40], [42], [44], [43], [81], [31]...). We argue that our

results can be seen as an extension the work by Garsia [43], [44], and some (1) of the

work by Garsia-Rodemich [40], to the metric setting. Indeed, [44], [43] were one of

the original motivations behind [65] and some of our earlier writings.

In [44] it is shown that for functions on [0, 1], if (2) p ≥ 1,

(10.1.1)
f∗(x)− f∗(1/2)

f∗(1/2)− f∗(1− x)

}

≤ 41/p

log 3
2

∫ 1

x

Qp(δ, f)
dδ

δ1+1/p
,

(see Section 4.1.1 above), and where

Qp(δ, f) =

{

1

δ

∫ ∫

|x−y|<δ

|f(x)− f(y)|p dx dy
}1/p

.

In particular, if
∫ 1

0 Qp(δ, f)
dδ

δ1+1/p < ∞, then f is essentially continuous, and in fact,

a.e. x, y ∈ [0, 1]

(10.1.2) |f(x)− f(y)| ≤ 2
41/p

log 3
2

∫ |x−y|

0

Qp(δ, f)
dδ

δ1+1/p
.

Moreover, in [44] more general moduli of continuity based on Orlicz spaces are con-

sidered: for a Young’s function A, normalized so that A(1) = 1, let

QA(δ, f) = inf

{

λ > 0 :
1

δ

∫ ∫

|x−y|<δ

A

( |f(x)− f(y)|
λ

)

dx dy ≤ 1

}

.

1. The results of [40], while very similar, are formulated in terms of moduli of continuity that in

some cases cannot be readily identified with the ones we consider in this paper.
2. The case p = 1 is also trivially true since

∫ 1

0
Q1(δ, f)

dδ

δ2
< ∞,

readily implies that f is constant.
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In [44] and Deland [31, (1.1), (1.3)] the following analogues of (10.1.1) and (10.1.2)

are shown to hold:

(10.1.3)
f∗(x) − f∗(1/2)

f∗(1/2)− f∗(1− x)

}

≤ 2

log 3
2

∫ 1

x

QA(δ, f)A
−1(

4

δ
)
dδ

δ

and

(10.1.4) |f(x)− f(y)| ≤ c

∫ |x−y|

0

QA(δ, f)A
−1(

4

δ
)
dδ

δ
.

We will show in a moment that our inequalities readily give the following version

of (10.1.3) for all r.i. spaces X [0, 1] :

(10.1.5)
f∗(x) − f∗(1/2)

f∗(1/2)− f∗(1− x)

}

≤ c

∫ 1

x

K(δ, f ;X, Ẇ 1
X)

φX(δ)

dδ

δ
.

To relate this inequality to Garsia’s results we compare the modulus of continuity

to K−functionals. Thus, we let

ωA(δ, f) = inf

{

λ > 0 : sup
h≤δ

∫ 1−δ

0

A

( |f(x+ h)− f(x)|
λ

)

dx ≤ 1

}

, δ ∈ (0, 1).

Then, as is well known (cf. [13], [65]),

(10.1.6) K(δ, f ;LA, Ẇ
1
LA

) ≃ ωA(δ, f),

and we have

Lemma 7. — sup0<σ<δ QA(σ, f) � K(δ, f ;LA, Ẇ
1
LA

).

Proof. — To see this note that, for all λ > 0, δ ∈ (0, 1), we have

1

δ

∫ ∫

{(x,y)∈[0,1]2:|x−y|<δ}

A

( |f(x)− f(y)|
2λ

)

dx dy

≤ 1

δ

∫ δ

0

∫ 1−δ

0

A

( |f(x+ h)− f(x)|
λ

)

dx dh

≤ sup
h≤δ

∫ 1−δ

0

A

( |f(x+ h)− f(x)|
λ

)

dx.

Therefore, if we let λ = ωA(δ, f), by the definitions,

1

δ

∫ ∫

{(x,y)∈[0,1]2:|x−y|<δ}

A

( |f(x) − f(y)|
2λ

)

dx dy ≤ 1,

and consequently

QA(δ, f) ≤ 2ωA(δ, f)

� K(δ, f ;LA, Ẇ
1
LA

).
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To complete the picture let us also note that

φLA(t) =
1

A−1(1t )
.

We now show in detail (10.1.5). One technical problem we have to overcome

is that the results of this paper do not apply directly for functions on [0, 1], since

the isoperimetric profile of [0, 1] is I(t) ≡ 1, and therefore I does not satisfy the

required hypotheses to apply our general machinery (cf. Condition 1 in Chapter 2,

and [70], [71]). Therefore while the inequalities (1.1.8), and their corresponding

signed rearrangement variants are valid (cf. Chapter 4), our results cannot be applied

directly. However, we will now show that our methods can be readily adapted to yield

the one dimensional result as well.

To prove (1.1.8) for n = 1, we need to establish the following inequality (compare

with (1.1.2), letting formally I(t) = 1)

f∗∗(t)− f∗(t) ≤ t (|f ′|)∗∗ (t), t ∈ (0, 1).

While [70] formally does not cover this case, it turns out that we can easily prove this

inequality directly using the method of “truncation by symmetrization”, which was

apparently introduced in [72]. Indeed, a known elementary result of Duff [35] states

that

‖(f∗)′‖Lp[0,1] ≤ ‖f ′‖Lp[0,1] .

The truncation method of [72] (cf. also [36, discussion before Corollaire 2.4]), as it is

developed in detail in [60], when applied to the case p = 1, yields the corresponding

Pólya-Szegö inequality (as formulated in [72])

t ((f∗)′)
∗∗

(t) ≤ t (|f ′|)∗∗ (t), t ∈ (0, 1).

We can (and will) assume without loss that f is bounded, then (cf. [60]),

t ((f∗)′)
∗∗

(t) =

∫ t

0

|(f∗)′| ds = f∗(0)− f∗(t) <∞.

Now, since f∗∗(0) = f∗(0), and f∗∗ is decreasing, we have

f∗∗(t)− f∗(t) ≤ f∗∗(0)− f∗(t) = f∗(0)− f∗(t).

Therefore, combining these estimates we arrive at

f∗∗(t)− f∗(t) ≤ t (|f ′|)∗∗ (t), t ∈ (0, 1),

as required. At this point the proof of Theorem 7 applies without changes to yield

for 0 < t ≤ 1/2,

f∗∗(t)− f∗(t) ≤ c
K(t, f ;X, Ẇ 1

X)

φX(t)
.

Moreover, using [9, (4.1)] we have

f∗ (t/2)− f∗(t) ≤ 2 (f∗∗(t)− f∗(t)) .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



108 CHAPTER 10. CONNECTION WITH THE WORK OF GARSIA

Thus,

f∗ (t/2)− f∗(t)≤ c
K(t, f ;X, Ẇ 1

X)

φX(t)

≤ 2c
K( t2 , f ;X, Ẇ

1
X)

φX(t)

(

since
K(t, f ;X, Ẇ 1

X)

t
and

1

φX(t)
decrease

)

≤ 2c

ln 2

∫ t

t
2

K(s, f ;X, Ẇ 1
X)

φX(s)

ds

s
.(10.1.7)

Given t ∈ (0, 1/2), let N = N(t) be such that t
2 ≤ 2−(N+1) < t < 2−N ≤ 1

2 , then

f∗(t)− f∗(1/2) ≤ f∗(2−(N+1))− f∗(1/2)

=

N∑

j=1

(

f∗(2−(j+1))− f∗(2−j)
)

≤ C

N∑

j=1

∫ 2−j

2−(j+1)

K(s, f ;X, Ẇ 1
X)

φX(s)

ds

s

≤ C

∫ 1/2

2−(N+1)

K(s, f ;X, Ẇ 1
X)

φX(s)

ds

s

= C

∫ 2−N

2−(N+1)

K(s, f ;X, Ẇ 1
X)

φX(s)

ds

s
+ C

∫ 1/2

2−N

K(s, f ;X, Ẇ 1
X)

φX(s)

ds

s
.

Now,

∫ 1/2

2−N

K(s, f ;X, Ẇ 1
X)

φX(s)

ds

s
≤
∫ 1/2

t

K(s, f ;X, Ẇ 1
X)

φX(s)

ds

s
.

Moreover, we will show in a moment that

(10.1.8)
∫ 2−N

2−(N+1)

K(s, f ;X, Ẇ 1
X)

s

1

φX(s)
ds ≤ 4

ln(1/2)

∫ 1/2

t

K(s, f ;X, Ẇ 1
X)

1

φX(s)

ds

s
.

Collecting these results we see that there exists a universal constant c > 0 such that,

f∗(t)− f∗(1/2) ≤ c

∫ 1/2

t

K(s, f ;X, Ẇ 1
X)

1

φX(s)

ds

s
, t ∈ (0, 1/2).

The previous inequality applied to −f yields the second half of Garsia’s inequality

f∗(1/2)− f∗(1− t) ≤ c

∫ 1/2

t

K(s, f ;X, Ẇ 1
X)

1

φX(s)

ds

s
, t ∈ (0, 1/2).
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We complete the details of the proof of (10.1.8) using various monotonicity properties

of the functions involved and the position of t in the interval:

∫ 2−N

2−(N+1)

K(s, f ;X, Ẇ 1
X)

s

1

φX(s)
ds

≤ K(2−(N+1), f ;X, Ẇ 1
X)

2−(N+1)

1

φX(2−(N+1))
2−(N+1)

(K(r)

r
↓, 1

φX(r)
↓
)

= K(2−(N+1), f ;X, Ẇ 1
X)

1

φX(2−(N+1))

1

ln(2−N/t)

∫ 2−N

t

ds

s

≤ 4

ln(1/2)

∫ 2−N

t

K(s, f ;X, Ẇ 1
X)

1

φX(s)

ds

s

(

K ↑, r

φX(r)
↑
)

≤ 4

ln(1/2)

∫ 1/2

t

K(s, f ;X, Ẇ 1
X)

1

φX(s)

ds

s
.

In particular, our results thus give versions of (10.1.1), (10.1.2), (10.1.3), but re-

placing QA(δ, f) with the usual modulus of continuityK(δ, f ;LA, Ẇ
1
LA

). We also note

that Deland [31] found the following improvement to (10.1.3)

f∗(x)− f∗(1/2)

f∗(1/2)− f∗(1 − x)

}

�
∫ 1

x

QA(δ, f) dA
−1(

c

δ
), 0 < x < 1/2.

This is of particular interest when dealing with the space X = eL
2

. Indeed, in this

case A(t) = et
2 − 1, and therefore

φX(t) =
1

(
ln e

t

)1/2
.

Consequently, from (10.1.4) (or (10.1.5)) one finds that a sufficient condition for con-

tinuity can be formulated as: there exists 0 < a < 1, c > 0, such that

(10.1.9)

∫ a

0

QA(δ, f)
(

ln
c

δ

)1/2 dδ

δ
<∞.

On the other hand, Deland’s improved condition for continuity replaces (10.1.9) by

(10.1.10)

∫ a

0

QA(δ, f)
dδ

(
ln c

δ

)1/2
δ
<∞.

In our formulation (10.1.10) corresponds to a condition of the form

∫ a

0

K(δ, f ;LA, Ẇ
1
LA

) d

(
1

φA(t)

)

<∞.
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While we don’t have any new insight to add to Deland’s improvement we should point

out here that Deland’s improvement is automatic for spaces far away from L∞, in the

sense that αΛ(X) > 0. Indeed, we have

Lemma 8. — Suppose that X = X [0, 1] is a r.i. space such that αΛ(X) > 0. Then

there exists a re-norming of X, that we shall call X̄, such that

(10.1.11)

∫ 1

0

K(δ, f ; X̄, Ẇ 1
X̄) d

(
1

φX̄(δ)

)

<∞ ⇐⇒
∫ 1

0

K(δ, f ;X, Ẇ 1
X)

φX(δ)

dδ

δ
<∞.

Proof. — Let φ̄(t) =
∫ t

0 φX(s)dss , then, since
φX(s)

s decreases, we have φ̄(t) ≥ φX(t),

and

([−φ̄(t)]−1)′ =
1

φ̄(t)2
φX(t)

t
≤ 1

φ̄(t)t
≤ 1

tφX(t)
.

Moreover, since αΛ(X) > 0, we have (cf. [88, Lemma 2.1])

φ̄(t) � φX(t).

Therefore there exists an equivalent re-norming of X , which we shall call X̄, such that

φX(t) ≃ φX̄(t) = φ̄(t).

Moreover, we clearly have

K(δ, f ;X, Ẇ 1
X) ≃ K(δ, f ; X̄, Ẇ 1

X̄).

We can also see that,
(

[φX̄(t)]
−1
)′

= ([−φ̄(t)]−1)′

= φ̄(t)−2φX(t)

t

≃ 1

(φX(t))
2

φX(t)

t

≃ 1

φX(t)t
.

Consequently (10.1.11) holds when αΛ(X) > 0.

On the other hand Deland’s improvement does not follow from the previous Lemma,

since from the point of view of the theory of indices αΛ(eL2 ) = 0.For more details on

how to overcome this difficulty for spaces close to L∞ we must refer to Deland’s

thesis [31].

For applications to Fourier series, the appropriate moduli of continuity defined for

periodic functions on, say, [0, 2π], are defined by (cf. [44], [31, (1.1), (1.3)])

WA(h, f) = inf

{

λ > 0 :

∫ 2π

0

A

( |f(x+ h)− f(x)|
λ

)

dx ≤ 1

}

.
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Then, we also have

sup
σ<δ

QA(σ, f) � K(δ, f ;LA[0, 2π], Ẇ
1
LA

[0, 2π])

≃ sup
h≤δ

WA(h, f).

It follows from our work that the results of [44] can be now extended to r.i. spaces.

In this connection we note that (just like in [44] for Lp spaces) one could also use the

boundedness of the Hilbert transform on r.i. spaces where one has control of the Boyd

indices (cf. [21], [13]). However, to continue with this topic will take us too far away

from our main concerns here so we must leave the discussion for another occasion.

For further applications to: the path continuity of stochastic processes, Fourier

series, random Fourier series and embeddings we refer to [40], [44], [43], [31] and the

references therein. Moreover, under suitable assumptions on the connection between

the isoperimetric profile and the measure of balls (cf. [92]) one can also formulate the

Besov conditions as entropy conditions as it is customarily done in probability (cf. the

discussion in Pisier [84, Remarque, p. 14]).
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APPENDIX A

SOME REMARKS ON THE CALCULATION

OF K−FUNCTIONALS

A.1. Introduction

It seemed to us useful to collect for our reader some known computations of

K−functionals of the form K(t, f ;X(Ω), Ẇ 1
X(Ω)), where X is a r.i. space. We don’t

claim any originality, but we provide detailed proofs when we could not find suitable

references.

In the Euclidean case, for smooth (Lip) domains, these estimates are well known

for Lp spaces (cf. [13], [54], [94]), and can be readily extended to r.i. spaces (cf. [65]):

K(t, f ;X(Ω), Ẇ 1
X(Ω)) ≃ ωX(t, f)

= sup
|h|≤t

∥
∥(f(.+ h)− f(.))χΩ(h)

∥
∥
X

where

Ω(h) = {x ∈ Ω : x+ th ∈ Ω, 0 ≤ t ≤ 1}.

Consider (Rn, |·| , dγn), i.e., Rn with Gaussian measure. The fact that this measure

is not translation invariant makes the computation of the K-functional somewhat

more complicated. We discuss the necessary modifications in some detail for n = 1.

We consider spaces on (R, |·| , dγ1). Let p ∈ [1,∞], and let

Kγ(t, f, L
p, Ẇ 1

p ) = inf
{

‖f − g‖Lp(R,dγ1)
+ t ‖g′‖Lp(dγ1)

}

.

This functional was studied by the approximation theory community (cf. Ditzian-

Totik [34], Ditzian-Lubinsky [33] and the references therein). For example, from [34,

p. 183], we have

Kγ(t, f, L
p, Ẇ 1

p ) ≃ sup
0<h≤t

‖f(.+ h)− f(.)‖Lp((− 1
2h , 1

2h ),dγ1) +(A.1.1)

inf
c
‖f − c‖Lp(( 1

2t ,∞),dγ1) + inf
c
‖f − c‖Lp((−∞,−1

2t ),dγ1)
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The main part of the right hand side of (A.1.1) is the modulus

Ωγ(t, f) = sup
0<h≤t

‖f(.+ h)− f(.)‖Lp((− 1
2h , 1

2h ),dγ1) .

Indeed, Ωγ(t, f) controls the characterization of the corresponding interpolation

spaces. For example, it follows (cf. [34, Theorem 11.2.5]) that for θ ∈ (0, 1),

(A.1.2) Kγ(t, f, L
p, Ẇ 1

p ) = O(tθ) ⇐⇒ Ωγ(t, f) = O(tθ).

More generally, a similar result holds for (R, dγλ), where for λ > 1, dγλ(x) = e−xλ

dx.

Indeed, in this case (A.1.1) holds replacing 1
2h throughout by 1

λh1/(1−λ) :

Kγλ
(t, f, Lp, Ẇ 1

p ) ≃ sup
0<h≤t

‖f(.+ h)− f(.)‖
Lp

(

(− 1

λh1/(1−λ) ,
1

λh1/(1−λ) ),dγλ

) +(A.1.3)

inf
c
‖f − c‖

Lp
(

( 1

λt1/(1−λ) ,∞),dγλ

) +

inf
c
‖f − c‖

Lp
(

(−∞, −1

λt1/(1−λ)
),dγλ

) .

Again the main part of the right hand side is the modulus of continuity

Ωγλ
(t, f) = sup

0<h≤t
‖f(.+ h)− f(.)‖Lp((− 1

λh1/(1−λ) ,
1

λh1/(1−λ) ),dγλ)
.

Likewise the analogue of (A.1.2) holds.

More generally, the estimates above have been extended to the class of the so called

“Freud weights” of the form w(x) = eQ(x). Here we assume that Q is a given function

in C1(R) such that Q is even, limx→∞Q′(x) = ∞, and such that there exists A > 0,

such that Q′(x + 1) ≤ AQ′(x), for all x > 0. For complete details we refer again

to [34].

Although one would expect that the n−dimensional extensions of theK−functional

estimates above should not be very difficult, we have not been able find references, even

after consultation with many experts. On the other hand, as is well known, one can

avoid this difficulty through the use of an alternate characterization of K−functionals

for Gaussian measure using appropriate semigroups. We provide some details in the

next sections.

For the last section of this chapter, connecting semigroups and Gaussian Besov

spaces, we are grateful to Stefan Geiss and Alessandra Lunardi for precious infor-

mation, in particular, for pointing out the relevant literature. In this last regard

we also refer to the recent paper by Geiss-Toivola [46]. In connection with this last

section we should mention the recent formulation of fractional Poincaré inequalities

in [80].
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A.2. Semigroups and Interpolation

A family {G(t)}t>0 of operators on a Banach space A is called an equibounded,

strongly continuous semigroup if the following conditions are satisfied:

G(t+ s) = G(t)G(s)(i)

There exists M > 0 such that sup
t>0

‖G(t)‖A→A ≤M(ii)

lim
t→0

‖G(t) a− a‖A = 0, for a ∈ A.(iii)

The infinitesimal generator Λ is defined on

D(Λ) =

{

a ∈ A : lim
t→0

G(t) a− a

t
exists

}

by

Λa = lim
t→0

G(t) a− a

t
.

We consider

K(t, a;A,D(Λ)) = inf {‖a0‖A + t ‖Λa1‖A : a = a0 + a1} .

For equibounded strongly continuous semigroups we have the well known estimate,

apparently going back to Peetre [82] (cf. [14], [32], [83])

(A.2.1) K(t, a;A,D(Λ)) ≃ sup
0<s≤t

‖(G(s)− I) a‖A ,

where I =identity operator on A. The proof can be accomplished using the decom-

position

a =

(

a− 1

t

∫ t

0

G(s) a ds

)

︸ ︷︷ ︸

a0ǫA

+
1

t

∫ t

0

G(s) a ds

︸ ︷︷ ︸

a1ǫD(Λ)

.

Note that the right hand side of (A.2.1) should be thought as a generalized modulus

of continuity which in the classical case corresponds to the semigroup of translations

G(s)f = f(s+ ·).
In [32, Corollary 7.2] the following alternate estimates were pointed out

K(t, a;A,D(Λ)) ≃ 1

t

∫ t

0

‖(G(s)− I) a‖A ds

≃ 1

t

∥
∥
∥
∥

∫ t

0

(G(s) − I) a ds

∥
∥
∥
∥
A

≃ 1

t

∥
∥
∥
∥
∥

∫ t

t/2

(G(s)− I) a ds

∥
∥
∥
∥
∥
A

≃ 1

t

∫ t

t/2

‖(G(s)− I) a ds‖A .
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The preceding estimates can be further improved under more restrictions on the

semigroups. Recall that a semigroup is said to be holomorphic if:

(i) G(t)a ∈ D(Λ) for all a ∈ A,

and

(ii) There exists a constant C > 0 such that ‖ΛG(t)a‖A ≤ C
‖a‖A
t

, ∀a ∈ A, t > 0.

In [32] it is shown that for holomorphic semigroups we have the following improvement

of (A.2.1)

(A.2.2) K(t, a;A,D(Λ)) ≈ ‖(G(t) − I)a‖A .

Peetre [83, p. 33] pointed out, without proof, that for holomorphic semigroups we

also have

K(t, a;A,D(Λ)) ≃ sup
s≤t

‖ΛG(s)a‖A .

However, we can only prove a somewhat weaker result here.

Lemma 9. — Suppose that {G(t)}t>0 is an holomorphic semigroup on a Banach space

A. Let c1 > 1, be such that for all t > 0, and for all a ∈ A (cf. (A.2.2) above),

1

c1
‖(G(t) − I)a‖A ≤ K(t, a;A,D(Λ)) ≤ c1 ‖(G(t)− I)a‖A .

Then, there exist absolute constants c2(m), c3(m) such that for all t > 0, for all a ∈ A,

for all m ≥ 2,

K(t, a;A,D(Λ))− c21K

(
t

m
, a;A,D(Λ)

)

(A.2.3)

≤ c2(m) sup
s≤t

‖ΛG(s)a‖A ≤ c3(m)K(t, a;A,D(Λ)).

Proof. — It is easy to show that there exists an absolute constant C > 0 such that

(A.2.4) sup
s≤t

‖ΛG(s)a‖A ≤ CK(t, a;A,D(Λ)).

Indeed, let a = a0 + a1, be any decomposition with a0 ∈ A, a1 ∈ D(Λ). Then, using

the properties of holomorphic semigroups, we have

sup
s≤t

s ‖ΛG(s)a‖A ≤ sup
s≤t

s ‖G(s)Λa0‖A + sup
s≤t

s ‖G(s)Λa1‖A

≤ C (‖a0‖A + t ‖Λa1‖A) .

Consequently, (A.2.4) follows by taking infimum over all such decompositions.
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We now prove the left hand side of (A.2.3). Observe that, for t > 0 we have

G(t)a ∈ D(Λ), therefore we can write d
dt(G(t)a) = ΛG(t)a. Consequently, for

all m ≥ 2,

K(t, a;A,D(Λ)) ≤ c1 ‖(G(t) − I)a‖A

≤ c1

∥
∥
∥
∥
∥

∫ t/m

0

ΛG(s)a ds

∥
∥
∥
∥
∥
A

+ c1

∥
∥
∥
∥
∥

∫ t

t/m

ΛG(s)a ds

∥
∥
∥
∥
∥
A

= c1 ‖(G(t/m)− I)a‖A + c1

∥
∥
∥
∥
∥

∫ t

t/m

s

s
ΛG(s)a ds

∥
∥
∥
∥
∥
A

≤ c1 ‖(G(t/m)− I)a‖A + c1

∫ t

t/m

1

s
‖sΛG(s)a‖A ds

≤ c1 ‖(G(t/m)− I)a‖A + c1
m

t
sup
s≤t

‖sΛG(s)a‖A
(m− 1)

m
t

≤ c21K(
t

m
, a;A,D(Λ)) + c1(m− 1) sup

s≤t
‖sΛG(s)a‖A ,

as we wished to show.

Recall the definition of real interpolation spaces. Let θ ∈ (0, 1), q ∈ (0,∞),

(A,D(Λ))θ,q =

{

a ∈ A : ‖a‖q(A,D(Λ))θ,q
=

∫ ∞

0

(
t−θK(s, a;A,D(Λ))

)q dt

t
<∞

}

,

and

(A,D(Λ))θ,∞ =

{

a ∈ A : ‖a‖(A,D(Λ))θ,∞
= sup

t>0

{
t−θK(s, a;A,D(Λ))

}
<∞

}

.

From the previous Lemma we see that

Proposition 5. — Suppose that {G(t)}t>0 is an holomorphic semigroup on a Banach

space A. Then (A,D(Λ))θ,q can be equivalently described by

(A,D(Λ))θ,q =

{

a :

{∫ ∞

0

(

t−θ sup
s≤t

‖ΛG(s)a‖A
)q

dt

t

}1/q

<∞
}

,

with the obvious modification if q = ∞, and where the constants of the underlying

norm equivalences depend only on θ.

Proof. — One part follows readily from (A.2.4). For the less trivial inclusion we

proceed as follows. Given θ ∈ (0, 1), select m such that m−θc21 < 1. Then from

Lemma 9, there exists an absolute c2(m) > 0 such that

K(t, a;A,D(Λ)) ≤ c2(m) sup
s≤t

‖ΛG(s)a‖A + c21K(
t

m
, a;A,D(Λ)).
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Thus

(∫ ∞

0

(
t−θK(t, a;A,D(Λ))

)q dt

t

)1/q

≤ c2(m)

(∫ ∞

0

(

t−θ sup
s≤t

‖ΛG(s)a‖A
)q

dt

t

)1/q

+

c21

(∫ ∞

0

(t−θK(
t

m
, a;A,D(Λ)))q

dt

t

)1/q

= c2(m)

(∫ ∞

0

(

t−θ sup
s≤t

‖ΛG(s)a‖A
)q

dt

t

)1/q

+

c21m
−θ

(∫ ∞

0

(
t−θK(t, a;A,D(Λ))

)q dt

t

)1/q

.

Hence,

(∫ ∞

0

(
t−θK(t, a;A,D(Λ))

)q dt

t

)1/q

≤ (1− c21m
−θ)−1c2(m)

(∫ ∞

0

(

t−θ sup
s≤t

‖ΛG(s)a‖A
)q

dt

t

)1/q

.

We have the following well known result (cf. [22], [14])

Theorem 34. — Let {G(t)}t>0 be an equibounded, strongly continuous semigroup on

the Banach space A. Let θ ∈ (0, 1), q ∈ (0,∞]; then (with the usual modifications

when q = ∞)

(i) (A,D(Λ))θ,q =

{

a :

{∫ ∞

0

(

t−θ sup
0<s≤t

‖G(s)a− a‖A
)q

dt

t

}1/q

<∞
}

.

(ii) Moreover, if the semigroup is analytic then we also have the following character-

izations (with the usual modifications when q = ∞)

(A,D(Λ))θ,q =

{

a :

{∫ ∞

0

(
t−θ ‖G(t)a− a‖A

)q dt

t

}1/q

<∞
}

,(ii1)

(A,D(Λ))θ,q =

{

a ∈ A :

∫ ∞

0

(

t−θ sup
s≤t

s ‖ΛG(s)a‖A
)q

dt

t
<∞

}

,(ii2)

(A,D(Λ))θ,q =

{

a ∈ A :

∫ ∞

0

(
t1−θ ‖ΛG(t)a‖A

)q dt

t
<∞

}

.(ii3)

Proof. — The characterizations (i), (ii1 ) and (ii2 ) follow (respectively) from (A.2.1),

(A.2.2) and Proposition 5. To prove (ii3 ) we remark that, on the one hand,

∫ ∞

0

(
t1−θ ‖ΛG(t)a‖A

)q dt

t
≤
∫ ∞

0

(

t−θ sup
s≤t

s ‖ΛG(s)a‖A
)q

dt

t
.
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On the other hand, since d
dt (G(t)a) = ΛG(t)a,

∫ ∞

0

(
t−θ ‖G(t)a− a‖A

)q dt

t
=

∫ ∞

0

(

t−θ

∥
∥
∥
∥

∫ t

0

ΛG(s)a ds

∥
∥
∥
∥
A

)q
dt

t

≤
∫ ∞

0

(

t−θ

∫ t

0

‖ΛG(s)a ds‖A
)q

dt

t

≤ cθ,q

∫ ∞

0

(
t1−θ ‖ΛG(t)a‖A

)q dt

t
,

where the last step follows from Hardy’s inequality.

Remark 20. — Related interpolation spaces (obtained by the “complex method”) can

be characterized, under suitable conditions, using functional calculus. By the known

relations between these different interpolation methods one can obtain further char-

acterizations and embedding theorems for the real method (cf. [96]). In this setting

fractional powers of the infinitesimal generator Λ, play the role of fractional deriva-

tives. We must refer to [94] and [83] for a complete treatment.

A.3. Specific Semigroups

Two basic examples of semigroups on Lp((Rn), dγn), which are relevant for this

paper are given by

1. Ornstein-Uhlenbeck semigroup, defined by

G(t)f(x) = (1− e−2t)−n/2

∫

e
− e−2t(|x|2+|y|2−2〈x,y〉)

1−e−2t f(y) dγn(y),

with generator

Λ =
1

2
∆x − 〈x,∇x〉.

2. Poisson-Hermite semigroup

Ptf(x) =
1√
π

∫ ∞

0

e−s

√
s
G

(
t2

4s

)

f(x) ds,

with generator

Λ1/2 = −(−Λ)1/2.

For example, Pt on L
∞(Rn) is analytic although not strongly continuous. Restricting

Pt to ˜L∞(Rn), the subspace of elements of L∞(Rn) such that lim ‖Ptf − f‖∞ = 0,

remedies this deficiency and we have (cf. [94])

(L∞((Rn), dγn), D(Λ1/2))θ,∞ = ( ˜L∞((Rn), dγn), D(Λ1/2))θ,∞ = Lipθ (R
n).

In particular, it follows from Theorem 34 that f ∈ Lipθ (R
n), iff

‖Ptf − f‖∞ = 0(tθ).
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For other characterizations of Besov spaces we must refer to [83], [94] and the refer-

ences therein. For a treatment of fractional derivatives in Gaussian Lipschitz spaces

using semigroups and classical analysis we refer to [45].
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145 (2000), no. 688, p. x+101.

[49] D. D. Haroske – Envelopes and sharp embeddings of function spaces, Chapman
& Hall, 2007.

[50] T. Holmstedt – “Equivalence of two methods of interpolation”, Math. Scand.
18 (1966), p. 45–52.

[51] B. Jawerth & M. Milman – “Interpolation of weak type spaces”, Math. Z. 201
(1989), no. 4, p. 509–519.

[52] B. Jawerth & A. Torchinsky – “Local sharp maximal functions”, J. Approx.
Theory 43 (1985), no. 3, p. 231–270.

[53] F. John – “Quasi-isometric mappings”, in Seminari 1962/63 Anal. Alg. Geom.
e Topol., vol. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, p. 462–473.
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We obtain new oscillation inequalities in metric spaces in terms

of the Peetre K−functional and the isoperimetric profile. Ap-

plications provided include a detailed study of Fractional Sobolev

inequalities and the Morrey-Sobolev embedding theorems in differ-

ent contexts. In particular we include a detailed study of Gaussian

measures as well as probability measures between Gaussian and ex-

ponential. We show a kind of reverse Pólya-Szegö principle that

allows us to obtain continuity as a self improvement from bounded-

ness, using symmetrization inequalities. Our methods also allow

for precise estimates of growth envelopes of generalized Sobolev

and Besov spaces on metric spaces. We also consider embeddings

into BMO and their connection to Sobolev embeddings.


