Programacio de sistemes encastats

Un alire llibre sobre el mateix

Marius Montén, PhD

Aquesta pagina esta en blanc expressament, tot va bé.

Copyright © 2018, 2019 Marius Montén

Versio: 1.0
Data: 8 de novembre de 2020

Distribuit segons la llicencia Creative Commons Reconeixement-NoComercial-Compartirlgual
4.0 Internacional (CC BY-NC-SA 4.0) (link al text de la Ilicéncia)

HSE

BY NC SA

Compartir — copiar i redistribuir el material en qualsevol mitja i format
Adaptar — remesclar, transformar i crear a partir del material

Sou lliure de:

Amb els termes segiients:

Reconeixement — Heu de reconeixer I’autoria de manera apropiada, proporcionar un enllac a la
Ilicéncia i indicar si heu fet algun canvi. Podeu fer-ho de qualsevol manera raonable, perd no d’una
manera que suggereixi que el llicenciador us déna suport o patrocina I’ds que en feu.

NoComercial — No podeu utilitzar el material per a finalitats comercials.

Compartirlgual — Si remescleu, transformeu o creeu a partir del material, heu de difondre les
vostres creacions amb la mateixa llicéncia que I’obra original.

Latex Template based on The Legrand Orange Book by Mathias Legrand.

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://www.latextemplates.com/template/the-legrand-orange-book

Aquesta pagina esta en blanc expressament, tot va bé.

A tots els meus alumnes, que m’han ajudat a entendre i aprendre.

Marius

Vull agrair a Aitor Mejias, Borja Martinez, Lluis Gesa, Cristina Cano, Francisco Vazquez,
Pere Tuset, Xose Pérez, Jordi Binefa, Xavier Fit6 i Lluis Ribas pels comentaris i
correccions fetes al text. Com de costum tots els errors que encara hi hagi al text i al
codi son cosa meva i no pas seva.

Marius

Aquesta pagina esta en blanc expressament, tot va bé.

(index

NO 00 N O O A W

10
11

Nocions basiques
Infroduccio 13
Breu introducci6 als sistemesencastats 19
Programacié de periférics |
ConsoladeDebug 31
Fentservirprintf 33
Gestidderellotges 37
GPIO . .. 41
Controlador d’interrupcions 47
TIMerS . . . 51
RTC 57
PWIM 61

11
12
13
14
15
16
17
18
19
20
2]

A%
22
23
24
25
26
27
28
29

30
31

ADC e 75
DAC .. 79
UART ... 85
2C 89
] 93
DM A 95
FLASH ... 101
Moduls criptografics 105
Altres periferics 109
Unaaplicaciécompleta 117
~ FreeROS
Conceptes bdasicsde FreeRTOS 127
Primer exemple amb FreeRTOS 137
Controlant eltemps alestasques 139
Comunicacié entretasques 143
Exemple amb la UART i interrupcions 159
Una aplicacié completa amb FreeRTOS 163
Us del watchdog €N RTOS i 167
Driversen multi-tasca L. 169
~ Modelsdeprogramacié
Model d’interficie amb periférics 177

Modelsdecomputacié 179

32

Tractament deltemps 191

v [Temes avangats

33
34
35
36
37
38
39
40
41
42
43

Gestio d’excepcCions 199
Shadow Registers 203
Baix cosum 205
Documentantelcodi 211
CMSIS . e 215
Normes de codificacié 217
DSP . 221
CHH VS C 223
Relacié Esquematic iFW 231
Inicialitzacié del sistemai del llenguatge C 235
Treballant amb puntflotant 239

v Bonespractiques

44
45
46
47
48
49
50
51
52

Us de memoria dindmicaoooiiiiiii. .. 247
Usde volatile 249
Funcionsre-entrants 251
Deadlock 253
Inversid de prioritats 255
Assignacido de prioritats L. 257
Midadelescues 259
Debounce 263

Us eficient de printf i 267

53

Empaquetant estructures 269

Vit index,Bibliografia, Glossari

Enllacosdelsexemples 277
Bibliografia 279
GlOSSAN 287
ACIONIMS 291
indexdefigures 297
indexdellistats ... 299

index de funCionso oo 303

_ o — a

NN

Infroduccié 13
El que aquest llibre és

El que aquest llibre no és

Material per seguir el curs

Eines

Breu introduccio als sistemes encastats 19
Microcontroladors

ARM Cortex

Arqguitectura

Rapidesa d’un microcontrolador

Aquesta pagina esta en blanc expressament, tot va bé.

1.1

1.2

Els textos d’aquest llibre es basen en les publicacions de I’autor al blog publicat durant el 2017
12018 (https://sistemesencastats.wordpress.com). El llibre en si esta publicat
com a codi obert a ’adreca https://github.com/mariusmm/Llibreencastats ones
pot baixar tot el codi ISEX i generar el pdf un mateix.

Com es comenta en el propi blog, suposem que el lector té coneixements de programacié en
llenguatge C, coneixements basics d’arquitectura de computadors i nocions basiques d’electronica.

Tot el codi dels exemples esta publicat amb lliceéncia oberta (GNU GPLv3) [1] al repositori del curs
a GitHub (https://github.com/mariusmm/cursembedded).

L’estructura del curs sera una breu introduccid sobre 1’arquitectura del microcontrolador que usarem
durant el curs, seguirem amb una descripci6 dels periférics més habituals i un codi d’exemple per
cada un. A continuaci6 es detallara I’ds d’un Sistema Operatiu en temps real per el desenvolupament
d’aplicacions complexes, es continuara amb un capitol dedicat al test en sistemes encastats i per
dltim un capitol de conceptes avangats.

El que aquest llibre és

Aquest llibre és per tot aquell que amb coneixements de programacié en llenguatge C, coneixements
d’arquitectures de computadors, coneixements minims de HW i electronica vulgui endinsar-se en
la programacié de sistemes encastats basats en microcontroladors.

També va dirigit a aquelles persones que tenen experiéncia amb sistemes tipus Arduino i volen
entendre i poder afegir codi o crear noves biblioteques. Tot i que no parlarem especificament
d’Arduino a cap part del llibre, els coneixements generics serveixen per aquest sistema.

El que aquest llibre no és

Aquest llibre esta pensat per donar una introduccié a certs aspectes del disseny i programacié de
sistemes encastats basats en microcontroladors, des de I’ds de biblioteques de fabricants fins a

https://sistemesencastats.wordpress.com
https://github.com/mariusmm/Llibreencastats
https://github.com/mariusmm/cursembedded

1.3

1.3.1

1.3.2

14 Capitol 1. Introduccié

Sistemes Operatius en Temps Real.

El que no tracta aquest llibre és de plataformes existents com ara Arduino [2]. Aquesta plataforma,
tot i que molt valuosa i que ha popularitzat immensament la programacié i 1’ds de sistemes encastats
al gran public, gracies sobretot a la seva senzillesa d’ds i a la enorme quantitat de codi d’exemple
i biblioteques, creiem que no és adequada per donar un visi6 detallada de tots els temes que es
volen tractar en aquest llibre. Vist d’una altra manera, I’objectiu d’aquest curs és, entre d’altres,
habilitar al lector usuari d’ Arduino perque pugui desenvolupar per si mateix noves biblioteques de
baix nivell d’ Arduino i entendre com esta implementat.

Tampoc és un tractat especific sobre 1’interface amb sensors i el coneixement profund sobre el tema.
Per aquest cas concret, hi ha magnifics llibres amb una descripcié exhaustiva sobre el tema, com
per exemple aquest [3].

Material per seguir el curs

Tot seguit es presenta el material necessari per fer les parts practiques del curs, aixo inclou una
placa de prototipat i uns pocs components, tots ells de baix preu.

Placa de prototipat

La part practica del curs es basa en la placa de prototipat EFM32TG-STK3300 Starter Kit de
Silicon Labs. Aquesta placa porta un microcontrolador EFM32TG840F32 amb 32 KB de memoria
FLASH i 4 KB de memoria RAM! (veure el Reference Manual [4] i més endavant Seccié 2.2 -
ARM Cortex).

Aquesta PCB porta un parell de botons, un LED? i un connector on hi ha tot de pins amb diferents
funcions que podrem utilitzar quan ho necessitem.

Per treballar amb aquesta plataforma, cal instal-lar el conjunt d’aplicacions Simplicity Studio
versio 4 [5]. Hi ha versions per Linux, Mac i Windows.

Dispositius auxiliars

Per tenir dades variades i de diferent natura per les aplicacions d’exemple, farem servir els segiients
dispositius auxiliars:

* Potenciometre: aquest component, que €s una resisténcia variable, ens permetra probar un
ADC?

* Sensor de llum, color i moviment APDS-9960 [6]. Es pot adquirir a qualsevol botiga on-line
ja muntat a una PCB que incorpora uns connectors senzills per connectar-la a la PCB de
desenvolupament.

» Cables de connexi6 tipus Dupont amb connector femella als dos extrems (Figura 1.2).

'Random Access Memory
2Light Emission Diode
3 Analog to Digital Converter

1.3 Material per seguir el curs 15

o g

e :Dv
IN/OU
EFM32

T LIGHT SENSE

Figura 1.1: Fotografia de la placa de desenvolupament de SiliconLabs

Figura 1.2: Cables dupont

1.4

1.4.1

1.4.2

16 Capitol 1. Introduccié

Eines

Per treballar amb microcontroladors ens calen un conjunt d’eines especifiques i algunes de més
generiques. Anem a veure-les amb un cert detall.

Programadors i debuggers

Un microcontrolador (també dit MCU* o uC) es diferéncia d’un processador de proposit general en
moltes coses, pero una de les diferéncies més notables és que el propi microcontrolador generalment
incorpora la seva propia memoria (tanta RAM com ROM?) on s’emmagatzema el codi a executar i
les variables i1 dades a tractar. Quan el microcontrolador s’engega comenga a executar el codi que
troba a la ROM a certa posicio.

Per descarregar el fitxer binari a la ROM, cal un dispositiu extern al microcontrolador que emmagat-
zema el fitxer a la ROM del microcontrolador. Aquests dispositius poden ser totalment externs al
nostre circuit, i es coneixen com programadors o darrerament es veuen incorporats a la propia PCB
i s’hi accedeix via USB. Sigui com sigui, cal aquest programador per gravar la memoria FLASH
(que funciona com una ROM pel microcontrolador).

A més, aquest programador sol afegir caracteristiques de debug, de manera que podem controlar
I’execuci6 del microcontrolador, inspeccionar el valor de variables o posicions de memoria, accedir
a la consola de debug, etc.

En el cas de la nostra placa de prototipat, aquest programador i debugger esta integrat a la propia
PCB, de manera que no ens cal res més que la PCB i un cable USB per programar i debugger el
microcontrolador sense cap altre dispositiu auxiliar.

Toolchain

Com per tot processador, cal un seguit d’eines que ajudin a traduir el nostre codi (normalment C o
C++) en instruccions maquina que la CPU pugui processar. Aquestes eines son el compilador i el
linker. El compilador fa aquesta traduccié propiament dita i genera fitxers objecte i el linker recull
tot de fitxers objecte per crear un sol fitxer executable o biblioteca.

En el cas dels microcontroladors, hem d’acabar obtenint un fitxer executable que sera el que el
microcontrolador comengara a executar quan s’engegui. Aquest fitxer haura de tenir tot el conjunt
de biblioteques i funcions necessaries per la correcta execucié de 1’aplicacid, ja que en aquest
context no tenim cap mena de sistema operatiu que ens proporcioni cap ajuda ni biblioteques.

També és habitual disposar d’algun IDE® que ens agrupa totes les eines en un entorn amigable i
senzill (veure Figura 1.3).

L’IDE de Simplicity fa servir com a compilador el compilador per ARM de GNU [7]. Aquest
compilador és de codi obert i lliure i és ampliament utilitzant per la majoria de fabricants a les
seves eines. Aquest es un compilador creuat, és a dir, es pot executar en un processador diferent del
processador pel que esta compilant el codi.

4MicroController Unit
SRead-Only Memory
S Integrated development environment, Entorn integrat de desenvolupament

1.4 Eines

17

File Edi Source Refactor Navigate Search Projct Run Window Help

iNvE® BV i@V B R idivEve eV isw

& project ploer 3

> efasp

> [R startup_gec efm3ztg:s
> [system efm3zng.c
> &> Doc
> gf orivers
> et emiiv
e external copied fles
> [f FreeRTOSConfigh
> &} FreeRTOs
> & GNUARMY4.9.3 -Debug
~ gt
> i APDS9960.h
> Bseh
> B 12¢ Wrapper.h
> Bewmh

vetsc

P
z
£
£

12C Wrapperc
% low_pows

= 0 ||@mainc8 & Aroseo

< | #enaif N N N

5 Launcher [§) SmpictyIDE # Debug - Energy Profier

=0

/+ Init functions for our BSP */
BSP_Init();
/% Init libraries %/
APDS_0966_Init();
Tnit(7;

/* Set 0 % duty cycle by default */
PUM_Set(6);

/* Create queue to send data between two tasks *
sensor_data_queue = xQueueCreate(4, sizeof (struct hieue pkt));

/% Create read sensor task *
xTaskCreate (ReadSensor_task, (const char *) "ReadSensor”

configMINIMAL_STACK SIZE, NULL, READ_TASK_PRIORITY, NULL);

/% Create print & LED ctrl task */
XTaskCreate (MngData_task, char *) "MngDa

51 ta”,
configMINIMAL_STACK_STZE, NULL, MNG_TASK_PRIORITY, NULL);

/* Start FreeRT0S Scheduler */
vTaskstartScheduler();

saticn A2

X REBE #Bvmv -0

XE 237 - ¥: AL - el
1 NoAdap... 2| &= Outine 0 ||Rée: 23 - (7, 11, 11)

- X: 24: i - 2
tUBXxRLTE |Res: 24 - (8, 11, 11)

24: 8- ¥: 11 - 2211
2 S¥o 1l - zm
RGB: 24 - (8, 11, 11)
S YAl o7
RGB: 25 - (8, 11, 12)
- 22

RGB: 26 - (7, 12, 12)

Witable SmartInsert 131:56 ©2018 Sikcon Labs

Figura 1.3: Aspecte del IDE Simplicity Studio™de SiliconLabs

Aquesta pagina esta en blanc expressament, tot va bé.

2.1

(2. Breu infroduccié als sistemes encastats

Un sistema encastat és, basicament, un seguit de components hardware i software treballant
conjuntament per obtenir una aplicacié o funcionalitat determinada.

Els components hardware es poden dividir en tres grans blocs:

» procés de dades: dispositiu amb la capacitat de gestionar dades, entrada sortida, etc. Pot
ser un microcontrolador, un DSP!, una FPGAZ2, un ASIC? o un sistema hibrid que incorpori
varis dels anteriors dins el mateix hardware.

* sensors o introduccié de dades. Qualsevol dispositiu que rep estimuls del mon fisic i els con-
verteix en dades, ja siguin digitals o analogiques (termometre, pantalla tactil, accelerometre,
etc.).

* actuadors o presentaci6 de dades. Qualsevol dispositiu que rep una dada o série de dades i ho
converteix en una accio fisica (motor, pantalla, relé, etc.).

Microcontroladors

Un microcontrolador esta compost basicament d’una CPU, memoria RAM i ROM, i un seguit de
periferics tot integrat en un sol dispositiu. La varietat de microcontroladors diferents que es poden
trobar al mercat és ingent, fent impossible fer un llistat de totes les opcions disponibles.

Historicament cada fabricant de microcontroladors tenia les seves propies families de dispositius
(amb la seva propia arquitectura) amb les eines necessaries i, habitualment, cada conjunt era diferent
i incompatible amb els demes. Durant els dltims anys aquest panorama ha canviat forga, ja que
molts fabricants han acabat adoptant una sola arquitectura. Aquesta arquitectura és I’anomenada
Cortex de ’empresa ARM [8]. Els fabricants trien quin model de CPU volen incorporar al seu
dispositiu i hi afegeixen els periferics del seu cataleg que consideren que cal a cada dispositiu

I Digital Signal Processor (Processador Digital de Senyal)
2Field Programmable Gate Array
3 Application Specific Integrated Circtuit (circuit integrat d’aplicaci6 especifica)

2.2

2.2.1

20 Capitol 2. Breu introduccié als sistemes encastats

concret. D’aquesta manera, un sol fabricant té desenes o centeners de dispositius diferents basats
en una mateixa CPU i amb diferents combinacions i nombre de periferics i memoria.

Tot i que tenim diferents dispositius de diferents fabricants que poden tenir la mateixa CPU, un
executable no sera compatible entre aquests dispositius, ja que, segurament, el mapa de memoria o
els diferent periferics seran diferents i, per tant, incompatibles.

Alguns dels fabricants més reconeguts de microcontroladors actuals sén els segiients:

e Silicon Labs (SiLabs) [9]

¢ Texas Instruments (TI) [10]

¢ NXP Semiconductors (NXP) [11]
¢ STMicroelectronics (ST) [12]

* Microchip, antiga Atmel [13]

ARM Cortex

Com ja hem dit, I’arquitectura Cortex és actualment una de les més esteses en el camp dels
processadors 1 microcontroladors de 32 bits. Es presenten tres perfils diferents segons I’ambit
d’aplicacié:

* Cortex-A (d’Aplicacid) Processadors d’altes prestacions per usos en telefons mobils, servi-
dors, tablets, etc. [14].

* Cortex-R (de Temps Real) Dissenyats per aplicacions amb alts requeriments de seguretat
com dispositius medics, avionica o PLCs [15].

* Cortex-M (de Microcontrolador) CPUs dissenyats per microcontroladors i aplicacions de
baix consum [16].

En aquest llibre i curs ens centrarem exclusivament a parlar del Cortex-M i les seves versions.

Cortex-M

Aquesta arquitectura proposada per ARM és una arquitectura tipus RISC de 32 bits amb suport de
cache, punt flotant i dissenyada per ser de baix consum. Tot i que hi ha diferents versions d’aquesta
arquitectura, mantenen un conjunt d’instruccions comuns. Aqui llistem els més habituals [17,
pagina 7]:

« Cortex-M0+: Es la versié més basica d’aquesta arquitectura, orientat a dispositius molt
barats i senzills i de molt baix consum. Conté un pipeline de 2 etapes i no té cap mena de
cache. Es la versié més senzilla que es pot trobar als catalegs dels fabricants [18].

* Cortex-M3: Versi6 de millors prestacions, amb un pipeline més llarg (3 etapes) i prediccié
de salts, suport HW d’operacions amb punt fix, sistema de debug avancat i, opcionalment,
proteccié de memoria [19].

* Cortex-M4: Versi6 que afegeix capacitats de punt flotant en HW a un Cortex-M3 [20].

* Cortex-M7: Versi6 d’alt rendiment amb un pipeline de 6 etapes superescalar, prediccié de
salts i aritmetica de punt flotant de fins a 64 bits [21].

Taula 2.1: Rendiment de diferents families de Cortex-M [22, pagina 22]

MO+ M3 M4 M7
Dhrystone (DMIPX/MHz) 094 125 125 2.14
CoreMark/MHz 242 332 340 5.04

2.2 ARM Cortex 21

Raspberry Pi)Model B+ V1.2 Ry
= 1 ¥R4T

©Raspberry Pi;2014

D5 SR CAMERA
_EANEETANAAANAAN,

Figura 2.1: Raspberry Pi amb un processador Cortex-A
Raspberry Pi amb un processador Cortex-A. Per Lucasbosch [CC BY-SA 3.0], de la Wikimedia
Commons https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/
Raspberry_Pi_B%2B_top. jpg/512px-Raspberry_Pi_B%$2B_top. jpg

L}

LPC1114F
202" |
047,127

2SD11061BY

Figura 2.2: Diferents microcontrolador Cortex-MO i M3
Diferents microcontrolador Cortex-MO 1 M3. Per Viswesr [CC BY-SA 3.0], de la Wikimedia
Commons https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/
ARM_Cortex-MO_and_M3_ICs_in_SMD_Packages. jpg/512px—ARM_
Cortex-MO_and_M3_ICs_in_SMD_Packages. jpg

MEEEEEEEE
200000000
J1 GND@TP 1

125

[]
ITVI53397 2702

Figura 2.3: Placa Freescale FRDM-KL25Z amb un Cortex-M0+
Placa Freescale FRDM-KIL.257 amb un Cortex-M0+. Per Viswesr [CC BY-SA 3.0], de la
Wikimedia Commons https://commons.wikimedia.org/wiki/File:Freescale_
FRDM-KL25Z_board_with_KL25Z2128VLK_ (ARM_Cortex-M0%2B_MCU) .JPG

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Raspberry_Pi_B%2B_top.jpg/512px-Raspberry_Pi_B%2B_top.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Raspberry_Pi_B%2B_top.jpg/512px-Raspberry_Pi_B%2B_top.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/ARM_Cortex-M0_and_M3_ICs_in_SMD_Packages.jpg/512px-ARM_Cortex-M0_and_M3_ICs_in_SMD_Packages.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/ARM_Cortex-M0_and_M3_ICs_in_SMD_Packages.jpg/512px-ARM_Cortex-M0_and_M3_ICs_in_SMD_Packages.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/ARM_Cortex-M0_and_M3_ICs_in_SMD_Packages.jpg/512px-ARM_Cortex-M0_and_M3_ICs_in_SMD_Packages.jpg
https://commons.wikimedia.org/wiki/File:Freescale_FRDM-KL25Z_board_with_KL25Z128VLK_(ARM_Cortex-M0%2B_MCU).JPG
https://commons.wikimedia.org/wiki/File:Freescale_FRDM-KL25Z_board_with_KL25Z128VLK_(ARM_Cortex-M0%2B_MCU).JPG

2.3

2.3.1

22 Capitol 2. Breu introduccié als sistemes encastats

Arquitectura

Larquitectura dels processadors Cortex-M varia segons la familia que estudiem. La familia Corte-
MO+ té una arquitectura Von Newmann i la resta de families tenen arquitectura Harvard mixta, on
tot i que la CPU té busos separats per accedir a I’espai de dades o a I’espai de codi, estan tots dos
connectats a una sola matriu (Figura 2.4) [23, pagina 794].

A part de la CPU propiament dita, el que se’n diu core en els microcontroladors ARM inclou també
un controlador d’interrupcions (veure Capitol 7 - Controlador d’interrupcions), un timer simple
(Seccio 5.1 - Systick) i un modul opcional de proteccié de memoria (MPU) [23, pagina 230]. Al ser
dispositius comuns a tots els Cores, I’accés a ells és molt similar entre diferents fabricants (veure
Seccié 37.1 - CMSIS-Core).

Periférics mapats a memoria

A T’arquitectura Cortex els periférics estan mapats a memoria (memory mapped). Aixo fa que
tinguem accessibles els registres de cada periferic a una regié de memoria determinada. Aix{ doncs,
per accedir als registres d’un periféric per configurar-lo o accedir a les seves dades el que caldra
fer és accedir a una certa adre¢a de memoria de la forma habitual i llegir o escriure la dada que
pertoqui. Aquest mapa de memoria depen de cada fabricant i model.

Per exemple, en el Cortex-M3 de la nostra placa, el mapa de memoria és el segiient (resumit)
(Figura 2.4):

* de 0x0000_0000 fins a Ox1FFF_FFFF: Codi, aqui hi ha mapat la Flash del microprocessador,
incloent-hi la memoria de codi principal, i alguna zona tipus FLASH per I’usuari.
* de 0x2000_0000 fins 0x2000_3FFF la memoria RAM del microprocessador.
* de 0x4000_0000 fins 0x40FF_FFFF estan mapats tots els periferics que conformen el
microcontrolador. Per exemple:
— 0x4000_6000 fins 0x4000_6FFF hi ha el controlador de GPIO*
— 0x4000_2000 fins 0x4000_2FFF hi ha I’ADCO.
— 0x4000_6000 fins 0x4000_6FFF hi ha el controlador de GPIO
* etc.

Dins de la primera zona hi trobem la zona DI (Device Information) de I’adreca 0xOFEO_8000 fins a
0xOFE0_8400. Aquesta zona guarda certs valors unics per a cada dispositiu. En aquest espai, els
registres MEM_INFO_FLASH, MEM_INFO_RAM i PART_FAMILY els podem llegir facilment
[24, pagina 24] (Figura 2.5):

Al codi del Llistat 2.1 es defineixen les 3 adreces de memoria per ser accedides fent servir un punter.
Aixi, llegint el valor de les definicions FLASH_INFO, RAM_INFO o PART_INFO s’accedeix
a la posicié de memoria definida de forma directa. Per fer una escriptura es faria igual, perd en
I’exemple no es pot escriure a cap d’aquests registres. Debugant el codi linia a linia veurem que la
variable aux pren el valor corresponent a cada un dels registres mapats.

Enlloc d’accedir a cada registre per separat, com hem fet a I’exemple, es pot definir una estructura
que es correspongui amb cada un dels registres d’un perifeéric en concret i que aquesta apunti a
I’adreca base del periferic. Aixi, per accedir a un registre en concret només caldra accedir al camp
de I’estructura definida.

Un exemple d’aix0 el tenim a fitxer efm32g_devinfo.h, que defineix una estructura d’aquest estil,
com es veu al Llistat 2.2.

“4General Purpouse Input/Output

2.3 Arquitectura

23

Mapa de memoria d’un Cortex-M3 (EFM32TG Reference Manual [24] ©SiliconLabs)

\ BRITTITTIE
AES /\
0x400cc400 o \ 030100008
0x400cc000 o001 TTTT
o ond [/\ CM3 peripherals V
0x400c8400 920000000
_‘ =0 / \ OxGFTTTITT
©x400c6400 = \ N\ 0xe0100000
0x400c6000 544008008 CM3 ROM Table
400c4! BxASTITFTT
0x400¢2000 DMA \ — 0xe0041000
0x400c0400 =T Feripherals (bit-band) L u
4 9x42000000
0x4008¢400 T SxGLFFFFES System Control Space
) N
LE! 0331090000
0xag 1111 il 5
WOOG Peripherals V] LW (EOOHTRHG
PCNTO 648090000 ™
[TEGi
LEUARTO
0x22080000 i
0x10001000
LETHERD Dx2207TF 1T P *
: SRAM (4 kB)
i SRAM (bit-band) {code space)
022006060 0x10000000
TIMERL Bx21 11T
0x40010000 IHERD i
4 0x20001000
4000c4 DSARTL 020000711
8 USARTO SRAM (4.k8)
{data space) Lock bits
1220 5x20600600
BALFTFTT
0x30007000
SR User Data
DACT
ADCO Code
ACHPL Flash (32 k8)
ACHPO {main block]
VCHP 09600680

Figura 2.4: Mapa de memoria d’un Cortex-M3

0xOFE081F8 MEM_INFO_FLASH [15:0]: Flash size, kbyte count as unsigned integer (eg.
128).

0xOFEO081FA MEM_INFO_RAM [15:0]: Ram size, kbyte count as unsigned integer (eg. 16).

0xOFE081FC PART_NUMBER [15:0): EFM32 part number as unsigned integer (eg. 230).

0xOFEO081FE PART_FAMILY [7:0]: EFM32 part family number (Gecko = 71, Giant Gecko
=72, Tiny Gecko = 73, Leopard Gecko=74, Wonder
Gecko=75).

AvAEEno+CE boAn bEVv 7.1 EENDA Denniiabinm 1N

Figura 2.5: Registres de la DI a usar a I’exemple [24, pagina 24]

Llistat 2.1: Accedint a memoria en C

#define FLASH_INFO
#define RAM_INFO
#define PART_INFO

(* (unsigned char x)0xOFEQ081F8)
(x (unsigned char %)0x0FE081FA)
(x (unsigned char x)0xOFEO81FE)

volatile uint32_t aux;

int main (void) {
while (1) {

aux = FLASH INFO; /+ 32 kB */
aux = RAM_INFO; /* 4 kB */
aux = PART_INFO; /# 73 = Tiny Gecko */

2.3.2

24 Capitol 2. Breu introduccié als sistemes encastats

Llistat 2.2: Exemple de definici6 d’estructura per accedir a memoria

typedef struct
{

__IM uint32_t CAL; /#*< Calibration temperature and checksum #*/
_ IM uint32_t ADCOCALOQ; /*+< ADCO Calibration register 0 =*/

_ IM uint32_t ADCOCALI; /*+< ADCO Calibration register 1 =/

__IM uint32_t ADCOCALZ2; /#%< ADCO Calibration register 2 #*/

uint32_t RESERVEDO[2]; /*+< Reserved =/

_ IM uint32_t DACOCALO; /*+< DAC calibrartion register 0 =*/

__IM uint32_t DACOCALIL; /#%< DAC calibrartion register 1 #*/

_ IM uint32_t DACOCALZ; /*+< DAC calibrartion register 2 =*/

_ IM uint32_t AUXHFRCOCALO; /*+< AUXHFRCO calibration register 0 =/

_ IM uint32_t AUXHFRCOCALI; /#*#< AUXHFRCO calibration register 1 x/

_ IM uint32_t HFRCOCALO; /*+< HFRCO calibration register 0 =/

_ IM uint32_t HFRCOCALI; /*+< HFRCO calibration register 1 =/

_IM uint32_t MEMINFO; /#*%< Memory information #*/

uint32_t RESERVED2[2]; /*+< Reserved =/

_ IM uint32_t UNIQUEL; /*+< Low 32 bits of device unique number x/
_ IM uint32_t UNIQUEH; /#*#< High 32 bits of device unique number */
__IM uint32_t MSIZE; /*+< Flash and SRAM Memory size in KiloBytes x/
_ IM uint32_t PART; /*+< Part description #*/

} DEVINFO_TypeDef; /x*% @} */

Llistat 2.3: Declaracié d’una variable d’accés a la memoria estructurada

#define DEVINFO ((DEVINFO_TypeDef %) DEVINFO_BASE) /##< DEVINFO base ptr =/

Que es correspon amb els registres de la regi6 DI a la que hem accedit abans. Aquesta estructura es
fa servir al fitxer efm32tg840f32.h definint la referéncia mostrada al Llistat 2.3.

De manera que es pot accedir als mateixos registres com s’indica al Llistat 2.4. Que és una forma
bastant més comoda de treballar.

Per sort, la majoria de fabricants proporcionen llibreries de baix nivell que ens estalvien tant
coneixer tots els detalls de cada un dels periferics com d’haver de manegar els registres un a un:
pel cas de SiliconLabs aquestes llibreries s’agrupen sota la EMLIB [25]; en el cas de I’empresa
ST ens proporciona la biblioteca STM32 Standard Peripheral Libraries [26] o la més moderna
STM32Cube hardware abstraction layer (HAL) [27].

El codi d’aquests exemples esta al repositori del curs

Mida del codi i seccions de memoria

Quan compilem el nostre codi, com ja sabem, el compilador trasllada el codi C i assemblador a codi
maquina, generant un fitxer per cada modul que formi I’aplicacié (anomenats fitxers objecte amb

Llistat 2.4: Us de I’estructura d’accés

aux = DEVINFO->MSIZE;
DEVINFO->PART;

aux

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/MemoryMap

23.3

24

2.4 Rapidesa d'un microcontrolador 25

extensi6 .0). A continuacié el linker agafa tots els fitxers objecte i crea el fitxer binari tipus ELF.

En aquest fitxer hi ha tota la informacié necessaria per programar el microcontrolador, i aixo inclou
el codi maquina que cal executar, les definicions de les variables i la seva inicialitzacid, el codi
d’inicialitzacié (veure Subsecci6 2.3.3 - Procés de boot), etc. Aquest fitxer sera el que després el
programador o debugger llegira per tal de programar el microcontrolador.

D’aquest fitxer podem extreure informacié valuosa, com és la quantitat de memoria FLASH o
RAM que necessita el nostre programa. Aix0 ens ho diu la comanda size (en el cas del compilador
GCC per ARM la comanda és arm-none-eabi-size) quan s’executa sobre el fitxer binari creat. La
sortida d’aquest programa té el segiient aspecte:

text data bss dec hex filename
4976 112 48 5136 1410 SpeedTest_1.axf

El que esta mostrant és la mida (en bytes) de cada un dels segments en que es divideix la nostra
aplicaci6:

* text: aquest sector és el corresponent al codi executable i les constants definides; també
s’inclouen aqui els vectors d’interrupcié (veure Capitol 7 - Controlador d’interrupcions).
El debugger s’encarregara de gravar a la FLASH aquesta seccio.

* data: s’emmagatzemem les dades inicialitzades, com s6n variables han d’anar a RAM, pero
també cal guardar el seu valor a la FLASH, per tant, ocupen espai a totes dues memories. El
procés de boot (Veure Subsecci6 2.3.3 - Procés de boot) copiara els valors d’inicialitzaci
de la FLASH cap a la variable a la RAM.

* bss: conté totes les variables no inicialitzades. Aquesta seccié va ala RAM. Al procés de
boot (Veure Subseccio 2.3.3 - Procés de boot) aquesta seccio s’inicialitza amb zeros.

* dec: és la suma dels 3 camps anteriors

* hex: és el mateix valor que dec perd expressat en hexadecimal.

Procés de boot

El procés de boot és tota la seqliencia de passes que fa un microcontrolador des de que s’engega
fins que comenca a executar la nostra funcié principal main().

Quan el microcontrolador surt de I’estat de reset després d’un power-up, d’un reset extern, d’un
reset pel Watchdog (veure Capitol 11 - Watchdog), etc. cal que s’inicialitzin un seguit de moduls i
peces abans no es pugui comengar a executar el nostre codi.

A la posicié de memoria 0x0000_0000 el que hi ha és el vector d’interrupcié corresponent al reset
que normalment crida la funcié SystemInit() que inicialitza, si cal, parts critiques del microcontro-
lador, com el rellotge principal. A continuacié es copien les variables inicialitzades de la FLASH
ala RAM (secci6 data), s’inicialitza a O la seccié coneguda com bss i per tltim crida a la funcié
_start() que acabara cridant a la nostra funcié main() [28]. Tot aixd ho maneguen les eines de
forma automatica i no cal que nosaltres en tinguem cura, pero va bé saber que esta passant dins el
microcontrolador en tot moment.

Rapidesa d’un microcontrolador

Molts cops no ens fem a la idea de com de rapid és la CPU d’un microcontrolador. Estem acostumats
a llegir i escoltar freqiiencies de funcionament dels microprocessadors d’escriptori o de servidor,
que actualment sén de Gigahertz i els nostres pobres microcontroladors van, en el millor dels casos,
a uns quants pocs Megahertz. Aixo ens pot fer pensar que els nostres microcontroladors sén lents i
que no poden fer gaire coses.

24.1

26 Capitol 2. Breu introduccié als sistemes encastats

Llistat 2.5: Codi velocitat d’un microcontrolador

void main () {

/+ while button 0 is pressed, CPU is counting */

while (GPIO_PinInGet (gpioPortD, 8) == 0) {
i++;

}

if (1 !'= 0) {
printf (, 1); 1 = 0;

}

Taula 2.2: Mesures de temps i sumes per segon

Count | Ticks (del Timer) | Temps (segons) | Count/Tick | Count/Segon
16629 1688 0,12 9,85 134.677
10955 1112 0,08 9,85 134.681
81813 8309 0,61 9,85 134.609
17985 1826 0,13 9,85 134.651
12054 1224 0,09 9,85 134.653

269785 27400 2,00 9,85 134.607

Podem comprovar-ho empiricament.

A I’exemple SpeedTest_1 hi ha un codi molt simple que simplement incrementa un comptador
mentre es té premut el bot6 O i tot seguit imprimeix per la consola el valor al que ha arribat el
comptador.

Aix0 ens hauria de donar una idea de com de rapid és capac la nostra CPU de fer operacions
aritmetiques simples.

Pitjant el boté molt rapidament el comptador arriba a 8.000 1 9.000. Aix{i que sembla que compta
molt rapid!

Millor mesura de temps

El segon exemple és una mica més complicat. Per tal de mesurar el temps que es pitja el boto,
farem servir un Timer, que ja ho veurem més endavant (veure Capitol 8 - Timers). El que es fa a
I’exemple és mesurar acuradament el temps que esta el botd pitjat i calcular el nombre d’operacions
que s’ha fet en aquell temps.

Com podem veure a la Taula 2.2 el nombre d’operacions per segon es manté constant indepen-
dentment del temps que estiguem pitjant el bot6 i és un nimero forga alt, 134.000 sumes per
segon!!!

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/SpeedTest_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/SpeedTest_2

10.1
10.2

11
1.1

ConsoladeDebug

Fent servirprintf
Problemes d’usar printf

Gestio derellotges
Systick

GPIO

Un exemple senzill
BSP
Manipulant bits individuals

Controlador d’interrupcions

Escrivint ISRs en C
Fent servir ISRs

Tinersoiii i

Exemple senzill amb un Timer
Exemple més complex amb el Timer

RTC .

RTC externs

PWM ...

Generar PWM
Controlant un servomotor

Waichdog
Exemple

Aquesta pagina esta en blanc expressament, tot va bé.

29

En aquest capitol s’aniran introduint i explicant els perifeérics mes habituals que trobem en els
microcontroladors actuals. Cada capitol constara d’una petita introducci6 al periferic en qiiestio i
un petit exemple amb el codi corresponent i els comentaris adients.

R) Eltipus de codi que es veura als exemples es coneix com Baremetal que vol dir que no es
fa servir cap Sistema Operatiu, que es veura a la Part IV - FreeRTOS. Aquests sistemes
es basen en les inicialitzacions necessaries i un bucle sense fi al main() on es realitzen
les operacions desitjades. S’acostuma a usar aquest metode en aplicacions senzilles o en
aplicacions que corren en microcontroladors poc potents o sense prou memoria com per
executar comodament un RTOS?.

SReal-Time Operating System, Sistema Operatiu de Temps Real

Aquesta pagina esta en blanc expressament, tot va bé.

(3. Consola elﬂbué:_:, s .

Un de les principals diferéncies quan treballem amb sistemes encastats és que no tenim una consola
on executem el nostre binari i podem veure quins resultats ha obtingut.

Una millora d’ ARM respecte arquitectures anteriors va ser la d’incorporar ja fa temps un mecanisme
de debug, a través d’un pin d’output anomenat SWO que permet enviar dades cap a una consola al
nostre PC de desenvolupament.

Aquest pin SWO forma part del sistema de Debug dels Cortex anomenat ITM (Instrumentation
Trace Macrocell) [29]. Aix0 vol dir que la majoria de microcontroladors basats en Cortex que ens
trobem, siguin del fabricant que sigui portaran aquesta funcionalitat.'

Per poder fer servir aquesta funcionalitat, cal primer configurar el pin SWO per a que funcioni com
a tal (es pot fer servir també com un GPIO normal). Tot seguit es configura el dispositiu de trace i
el modul ITM d’aquest. La configuracié es fa a la funcié setupSWOForPrint().

Un cop configurat el modul ITM, la funcié ITM_SendChar() permet enviar caracter a caracter el
que vulguem presentar a la consola a 1’altre costat.

En el cas de Simplicity, els caracters rebuts es presenten directament a la consola de la part d’abaix
del IDE (Figura 3.1).

ILa majoria de Cortex-MO+ no porten aquest periferic.

Capitol 3. Consola de Debug

~int maini(void)
{
/* Chip errata */
CHIP Init();

setupSWOForPrint();
/* Infinite loop */

while (1) {
printf("hello worldyn");
}

¥

- |

Bl console 22 | @ Memory {J) Executables

Program Qutput Console
hello world
hello world
hello world
hello world
hello world
hello world
hello world
hello world

- ___|

Figura 3.1: Captura de pantalla de la Consola del Simplicity Studio

-
i
-

(4. Fent servir printff

Tot i que aixo és forga ttil, podem fer servir una funcio6 for¢ca coneguda i molt util com €s printf()
per fer-nos-ho tot més senzill (a canvi d’alguna cosa, com veurem).

La funci6 printf() és una vella coneguda per qualsevol programador de C (o C++, 0 PHP,0...).
Aixi que seria genial poder fer servir aquesta funci6 en el nostre sistema encastat i que la cadena
aparegui a la consola del nostre PC. Aixo ho podem fer de la segiient manera. Primer de tot cal
saber que la funcié printf() fa servir la funcié de sistema _write() per imprimir la cadena. Per tant,
caldra que implementem aquesta funcio per tenir el nostre desitjat printf().

Com podem veure al Llistat 4.1, el que fa aquesta funci6 és anar enviant un a un tots els caracters
de la cadena passada via el parametre ptr i de longitud len.

També cal configurar el modul I'TM (modul de debug) perque activi la sortida SWO cridant a la
funci6 setupSWOForPrint(). Un cop fet aix0, ja podem fer servir la funcié printf() tal com hem
fet sempre.

Aquesta explicacié la podeu trobar al forum de Silicon Labs (no cal registre) i el codi el teniu en el
directori d’instal-laci6 del Simplicity/developer/sdks/exx32/v4.4.1/kits/common/drivers/ als fitxers:

* retargetio.c

Llistat 4.1: Funcié _write()

int _write(int file, const char xptr, int len) {
int x;
for (x = 0; x < len; x++) {
ITM_SendChar (xptr++);
}

return (len);

http://community.silabs.com/t5/Simplicity-Studio-and-Software/how-to-enable-printf-output/td-p/133981

4.1

34 Capitol 4. Fent servir printf

* retargetswo.c

Problemes d’usar printf

Com deiem, poder fer servir el nostre estimat printf() al nostre sistema encastat no ens sortira
gratis. Com que aquesta funci6 és forca complexa i permet moltes possibilitats, incloure-la en un
projecte afegira una bona quantitat de memoria de programa.

En I’exemple que tenim al repositori, les mides sén les que es veuen a la Taula 4.1. Per tant, podem
estimar que afegir printf() al nostre projecte afegira uns 3800 Bytes (3.7 KB) de codi de programa.

Taula 4.1: Mida de I’executable segons printf()

Opcid Bytes seccio .text
Sense printf() 956
Amb printf() 4,748
Amb printf() i punt flotant 13.644

Potser no és gaire important aquesta quantitat, perd segur que caldra tenir-la en compte si estem
treballant amb microcontroladors que tenen poca memoria FLASH de programa (hi ha Cortex-MO+
amb només 4 KB de FLASH!).

També cal tenir en compte que algunes versions de la funcié printf() no suporten valors en punt
flotant. Segons I’eina, caldra activar aquesta opci6 en cas que la vulguem fer servir (Figura 4.1. Cal
tenir en compte que aixo incrementara encara més la quantitat de memoria que necessitara aquesta
funcié com es veu a la Taula 4.1.

Una forma forga habitual de disposar dels avantatges del printf mentre es desenvolupa i treure’l de
forma rapida quan es genera el binari definitiu es redefinir el printf amb un nom nostre, i establir
una variable condicional de compilacié per activar o no el printf real, tal i com es veu en el llistat
Llistat 4.2, llavors en el nostre codi, enlloc de cridar printf per mostrar un missatge, haurem de fer
servir PRINTF.

Llistat 4.2: Redefenir printf()

#ifdef USE_PRINTF

#define PRINTF(...) printf(__ VA_ARGS_)
#else

#define PRINTF (...)
#endif

4.1 Problemes dusar printf

35

a Settings B v ow
> Resource
Builders Configuration: A GNU ARM v4.9.3 - Debug [Active] ~ | [Manage Configurations...
~ C/C++ Build
Board / Part/SDK

Build Variables

Environment ﬁ#[}ebug Settings

EMemory Layout

v & GNU ARM C Compiler
EDialect
2 Preprocessor
2 symbols
EIncludes
(2 Optimization
#Debugging
#warnings
& Miscellaneous

v & GNU ARM Assembler
& aGeneral
22symbols
& Miscellaneous

~ & GNU ARM C Linker
ELibraries
& Miscellaneous
2 shared Library Settings
2 0Ordering

Logging
Project Modules
2 C/C+H General
Git
Run/Debug Settings

8 Tool Settings | # Build Steps| Build Artifact [Binary Parsers @ Error Parsers

|_| Do not use standard start files (-nostartfiles)
I:I Do not use default libraries (-nodefaultlibs)

|| No startup or default libs (-nostdlib)

[| omit all symbol information (-s)

Iil Remove unused sections (-xlinker —gc-sections)
M| Generate map file (-Xlinker -Map=)

Ij Use library file circular dependency

C Library Nano C Library (—-specs=nano.specs) 3
[| Printf float
[5canf float
Apply
OK | Cancel

Figura 4.1: Opci6 a Simplicity per activar el punt flotant al printf()

Aquesta pagina esta en blanc expressament, tot va bé.

En la majoria de microcontroladors moderns la gestié dels rellotges és una qliesti6 delicada i molt
important. Per tal de millorar el consum del dispositiu, €s habitual tenir un control i poder decidir
si cert periferic rep el senyal de rellotge o no (més detalls a Capitol 35 - Baix cosum). En cas
que no el rebi, el periferic romandra totalment desconnectat i no consumira energia. En cas que
el vulguem fer servir, una de les primeres coses que haurem de fer és activar i proporcionar-li el
senyal de rellotge adequat.

Per aquesta tasca de controlar els rellotges, acostuma a existir un periferic concret que fa tota la
gestid, tant de manegar I’entrada de diferents senyals de rellotge com de preparar i enviar aquests
senyals als diferents periferics. En els microcontroladors tant de SiliconLabs com de ST tenim
diferents branques de rellotge per diferents periferics i la CPU. En termes generals podem dir
que els periferics considerats lents (RTC, LEUART, etc.) reben un senyal de rellotge de baixa
freqiiencia, els periferics considerats rapids (USART, SPI, DAC, ADC, Timers, etc.) un senyal de
rellotge d’alta freqiiencia i la CPU i els periferics més relacionats (DMA, Interrupcions, etc.) un
altre rellotge [24, pagina 94][30, pagina 152].

Al llarg dels diferents exemples s’anira veient com es gestionen els rellotges. En els casos més sen-
zills, tant sols cal activar el rellotge pel periferic desitjat cridant a la funcié CMU_ClockEnable().
Aquesta funcio rep com a parametre el periferic al que se li vol enviar o desactivar el rellotge.

Altres funcions permeten decidir quin senyal rellotge concret es connecta amb quina branca (funcié
CMU_ClockSelectSet()); dividir un rellotge abans d’entrar a cert periferic (CMU_ClockDivSet())
(Llistat 5.1).

5.1

38 Capitol 5. Gestié de rellotges

Llistat 5.1: Exemple de configuracio del rellotge pel RTC

CMU_ClockSelectSet (cmuClock_LFA, cmuSelect_LFXO); // El1 rellotge "Low
Frequency Crystal Oscillator" entra al bus LFA

CMU_ClockDivSet (cmuClock_RTC, cmuClkDiv_32768); // El rellotge es divideix
per 32768 abans d’alimentar el RTC

CMU_ClockEnable (cmuClock_RTC, true); // S’activa el rellotge pel periferic
RTC

CMU_ClockEnable (cmuClock_HFLE, true); // S’activa el rellotge "Low energy
clock"

Systick

Com ja s’ha mencionat breument a Seccié 2.3 - Arquitectura, dins els cores ARM-M hi ha un
timer simple sense cap relacié amb els Timers periferics que veurem més endavant a Capitol 8 -
Timers. Aquest timer es coneix pel nom de Systick i consta tan sols d’un comptador decreixent
de 24 bits i un generador d’interrupcié en quant arriba a zero [23, pagina 312]. El timer Systick
funciona amb el rellotge de la CPU dividit per algun factor configurable. Aixo caldra tenir-ho
en compte alhora de fer implementacions de baix consum, on en ocasions s’atura aquest rellotge
(veure Capitol 35 - Baix cosum).

Aquest timer esta pensat perque els S.O. el puguin fer servir, i com que esta integrat dins el core
Cortex, la portabilitat dels S.O. entre diferents fabricants sera molt senzilla (seria més complicat
haver de fer un port per cada timer diferent de cada fabricant).

L’exemple al repositori implementa una funcié de Delay(). El que es fa és configurar el Systick per-
que generi una interrupcié cada 1 mil-lisegon (Llistat 5.2). Com que la funcié CMU_ClockFreqGet
(ecmuClock_CORE) retorna la freqiencia de funcionament del rellotge del sistema, al dividir-la
per 1000 i configurar el Systick amb aquest valor, generara una interrupcié cada mil-lisegon.

A la ISR corresponent s’incrementa una variable global per tenir un comptatge dels mil-lisegons
transcorreguts (veure Llistat 5.3). La variable msTicks s’ha definit com a volatile pel que s’expli-
cara a Subseccié 7.2.1 - Us de variables globals.

Per 1ltim, la funci6 Delay() rep com a parametre els mil-lisegons a aturar-se i s’espera aquest temps
comptant el temps fent servir la variable global que incrementa la ISR (Llistat 5.4).

Llistat 5.2: Configuracié del Systick

main () {

SysTick_Config (CMU_ClockFregGet (cmuClock_CORE) / 1000);

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Systick

5.1 Systick 39

Llistat 5.3: ISR del Systick

void SysTick_Handler (void)
{

msTicks++; /+ increment counter necessary in Delay () */

Llistat 5.4: Funcié delay() amb Systick

void Delay (uint32_t dlyTicks)
{

uint32_t curTicks;

curTicks = msTicks;
while ((msTicks - curTicks) < dlyTicks) ;

Aquesta pagina esta en blanc expressament, tot va bé.

Diem GPIO! al periféric encarregat de la gesti6 de ’entrada i sortida de proposit general. Fent servir
aquest periferic podrem configurar 1’entrada o la sortida d’un pin concret del microcontrolador i
posar-hi el valor desitjat ("0’ o *1”) o llegir quin valor hi ha posat algun altre dispositiu.

De forma general, un pin en concret el podrem configurar perque treballi com a entrada o com a
sortida. Si un pin esta configurat com a entrada, el valor de voltatge electric que tingui a I’entrada
del pin, es podra llegir per part del codi del microcontrolador. De forma inversa, un pin configurat
com a sortida posara el valor eléctric equivalent al valor que el codi escrigui.

Aixi, si estem treballant a 3.3 Volts d’alimentaci6 i d’entrada i sortida, si a un pin configurat com
d’entrada algun altre dispositiu hi posa un valor proper a 3.3 volts, des de el nostre software o
comunament anomenat Firmware (FW) en la seva forma anglesa, llegirem que aquest pin té un
valor d”1’. En canvi, si el pin esta configurat com a sortida, quan posem un 1’ des del FW, el pin
corresponent forcara un valor de 3.3 volts (com a la Figura 6.1).

® Quan diem que I’alimentaci6 és de 3.3 Volts estem suposant aquesta tensié d’alimentacid, perd
el rang acceptable va de 1.8 fins a 3.8 Volts i llavors les sortides tindrien el valor d’alimentaci6
[31, pagina 9]. Aixi, si alimentem el microcontrolador a, posem per cas, 2.8 Volts, un ’1’
logic de sortida d’un pin forgara 2.8 Volts a aquell pin.

Existeixen diferents formes de configurar un pin segons el fabricant i la tecnologia, la més comuna
és el mode push-pull que permet forgar un valor °1° 0’0’ segons convingui. Una altra opcié que de
vegades cal fer servir és el mode open-drain, que la sortida només pot forcar el valor ’0’ pero no el
valor ’1°.

En aquest cas, per forcar el valor ’1° es fa servir una resisténcia connectada a 3.3 volts; aquesta
mena de resisténcia s’anomena un pull-up. Aquesta mena de resistencies (o el seu complementari,

General Purpouse Input/Output

6.1

42 Capitol 6. GPIO

R190

UIF_LEDO > L1

2K

LED100
W vELLOW

X
/ AW
TOP GND

Figura 6.1: Esquematic mostrant un LED connectat a un pin de GPIO

VMCU

SW100 R100
R101 R102 100R
1™ ™ 1 _E'_ 3 —
[.} 4

UIF_PBO
UIF_PB1 2> GND
c1o0 | ciot swiot
-— — R103
N N 1 i 3 100R
N
GND GND GND

Figura 6.2: Esquematic amb resisteéncies de pull-ups (etiquetades com R101 i R102)

un pull-down) també s’utilitza en la connexié de polsadors o botons, de manera que quan el botd
no esta polsat, la resistencia de pull-up (o de pull-down) forga el valor corresponent.

Com es veu al esquematic de la Figura 6.2, quan no es prem el bot6 les resisteéncies etiquetades
R101 i R102 fan que la linia estigui a ‘1’ 10gic (pull-up). En quan es prem el botd, aquest connecta
GND a la linia i per tant passa a tenir el valor logic ‘0’.

Cal saber també que la quantitat de corrent que un pin individual pot proporcionar esta limitada i,
en alguns casos, es pot seleccionar la quantitat maxima de corrent que pot donar un pin concret.

Un exemple senzill

Farem un codi que llegeixi I’estat dels botons de la placa, i en cas que estiguin pitjats, s’encén o
apaga el LED. Veiem el codi el llistat 6.1.

El primer que es fa amb la sentencia CMU_ClockEnable() és alimentar amb un rellotge al periferic
GPIO. En la arquitectura Cortex-M de Silicon Labs cal fer aix0o per cada perifeéric que fem servir.
D’aquesta manera, un periferic que no necessitem no rep cap rellotge i el seu consum és disminueix
drasticament.

Tot seguit es configuren els 3 pins que utilitzarem:

6.2

6.2 BSP 43

Llistat 6.1: Codi d’exemple de GPIO

CMU_ClockEnable (cmuClock_GPIO, true);

GPIO_PinModeSet (gpioPortD, 7, gpioModePushPullDrive, 0); /# LED */
GPIO_PinModeSet (gpioPortD, 8, gpioModeInput, 0); /# Boto 0 =/
GPIO_PinModeSet (gpioPortB, 11, gpioModeInput, 0); /# Boto 1 =/

/+ Infinite loop */
while (1) {
if (GPIO_PinInGet (gpioPortD, 8) == 0) {
GPIO_PinOutClear (gpioPortD, 7);
}
if (GPIO_PinInGet (gpioPortB, 11) == 0) {
GPIO_PinOutSet (gpioPortD, 7);
}

* PD7 com sortida per controlar el LED,
e PD81PB11 com entrades connectades als botons 01 1.

Un cop configurats els pins, dins el bucle infinit es va mirant tota 1’estona per polling el valor dels
dos pins d’entrada i canviant el valor de sortida cap al LED segons toqui.

BSP

Podem comencar a introduir el concepte de BSP? que no sén més que funcions especifiques per la
nostra PCB de manera que ens aillen la implementacié de la funcionalitat.

Anem a suposar que canviem de PCB (o de versid) i el LED que volem encendre ja no esta connectat
al pin D7 si no que esta, posem per cas, al E2. Caldria canviar totes les crides que tinguéssim al
nostre codi de I’estil vist al Llistat 6.2 per la del Llistat 6.3 amb tots els errors que aixo provocar.

Una forma molt habitual de treballar és escriure funcions amb les funcionalitats més comunes i que
ens amaguin aquests detalls. Aixi, pel nostre exemple podriem definir les funcions del Llistat 6.4.

Fent servir aquestes funcions enlloc de les crides directes al GPIO ens permetran introduir canvis a
la PCB sense haver de canviar gaire el nostre codi.

Habitualment en el BSP s’inclouen les inicialitzacions dels diversos rellotges (veure Capitol 5 -
Gestié de rellotges), les funcions per accedir a recursos propis de la placa com LEDs o botons,
configuracié de les opcions de Debug (Veure Capitol 3 - Consola de Debug), etc.

2Board Support Package

Llistat 6.2: Codi de configuracié d’un pin

GPIO_PinOutSet (gpioPortD, 7);

6.3

6.3.1

6.3.2

6.3.3

44 Capitol 6. GPIO

Llistat 6.3: Codi amb la nova configuracié del pin

GPIO_PinOutSet (gpioPortE, 2);

Llistat 6.4: Exemple de BSP senzill

LedInit () |
GPIO_PinModeSet (gpioPortD, 7, gpioModePushPullDrive, 0); /+* LED */
}

LedOn () {
GPIO_PinOutSet (gpioPortD, 7);
}

LedOff () {
GPIO_PinOutClear (gpioPortD, 7);
}

Manipulant bits individuals

Tot i que no és especific dels GPIOs, veurem aqui com manipular bits individuals en C. Sovint ens
caldra posar a valor ’0’ o ’1” un bit individual d’una variable sense canviar el valor de la resta dels
bits, veiem aqui les receptes per fer-ho.

R) Lanumeracié de bits en C comenga pel 0, aixi el bit menys significatiu d’una variable sera
sempre el 0 i el més significatiu N — 1, amb N el nombre de bits de la variable. Per situar un 1
a un bit determinat, en C es fa servir ’operador <<, que desplaga cap a 1’esquerra el valor de
I’esquerra tants bits com indiqui el valor de la dreta.

L’exemple per aquesta seccid es troba al repositori en el projecte Bit_1.

Posar a 1 un bit

Per posar un bit concret a 1’ d’una variable tant sols cal fer una OR logica (simbol |) tal com es
veu al Llistat 6.5.

En aquest cas, primer es posa a 1’ el bit 4 de la variable my_variable.

Posar a 0 un bit
Per posar a zero un bit individual, la feina a fer és una mica més estranya, ja que cal fer una AND
logica amb tots els bits a ’1’ menys el desitjat que haura d’estar a ’0’. Aix0 es pot fer amb la

mateixa construccié d’abans i fent I’operacié NOT bit a bit (amb el simbol 7) abans de fer la AND
(simbol &).

En el mateix exemple es veu com, després de posar a 1 el bit 4, es posa a 0 el bit 3 amb la operacié
AND comentada.

Toggle un bit

Per a fer un roggle d’un bit individual, el que cal fer és la operacié logica XOR (simbol *) amb el
bit desitjat al valor ’1°.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Bit_1

6.3.4

6.3 Manipulant bits individuals 45

Llistat 6.5: Manipulant un bit concret d’una variable

void main (void) {
uint8_t my_variable;

my_variable = 5;

// Set to 71’ bit 4

my_variable |= (1 << 4);

printf (, my_variable); // should be 0x15
// Now set to 70’ bit 2

my_variable &= ~(1 << 2);

printf (, my_variable); // should be 0x11

// Now we toggle bit 0 twice
my_variable "= (1 << 0);

printf (, my_variable); // should be 0x10
my_variable *= (1 << 0);

printf (, my_variable); // should be 0x11
if ((my_variable & 0x10) !'= 0) {

/% the variable my_variable has the 4th bit set x*/
}

A I’exemple es fa toggle dues vegades al bit 0 de la variable.

Comparar si un bit esta a cert valor

Laltre necessitat que apareix sovint és la de comprovar el valor d’un bit determinat d’una variable.

L’opcié més habitual és fer una AND logica entre la variable i el bit interessant i comprovar que el
resultat és diferent de *0’. Si la comparacié dona cert vol dir que el bit en qiiestié estaa ’1’, en
cas contrari, el bit d’interes té el valor *0’. Es pot veure al final de I’exemple al Llistat 6.5, on es
comprova que el bit 4 de la variable sigui valgui ’1°.

R) Aquesta mena d’operacions son forga propicies per introduir bugs complicats de detectar.
Operar per error un bit que no pertany a aquella mida de variable pot portar a errors molt
dificils de detectar i el compilador no donara cap mena de error o avis.

Aquesta pagina esta en blanc expressament, tot va bé.

(7. Controlador d’int

Una interrupcié (IRQ') és un succés que interromp 1’execucié normal del processador i passa a
executar un codi de programa especial pel succés concret. La ISR? és el codi que es crida per a
cada succés o interrupcio.

Cada interrupci6 té assignada una ISR propia. Aquesta informacié s’acostuma a guardar en una
zona de memoria especial, anomenada memoria de vectors d’interrupcio.

Les IRQs estan enumerades i tenen prioritats, aixi habitualment, un valor menor vol dir major
prioritat. Aquest valor de IRQ també es fa servir per saber quina posicié dels vectors d’interrupci6
es troba la ISR corresponent.

El controlador d’interrupcions gestiona quines interrupcions rebudes arriben al processador, segons
les prioritats i si la interrupcié concreta esta activada o no.

Veurem un cas amb els GPIO, el codi esta disponible al repositori. En aquest cas, el que es fa
primer €s configurar els pins perque generin una interrupcié HW al flanc de baixada (recordem el
pull-up ala PCB, Figura 6.2). Tot seguit s’activen les interrupcions corresponents.

En el cas dels Cortex-M de SiliconLabs, els pins de GPIO poden generar només 2 interrupcions, els

Unterrupt request, Peticié d’interrupcié
2 Interrupt Service Routine, Rutina de servei d’interrupcié

/% Set Interrupt configuration for both buttons =/
GPIO_IntConfig(gpioPortD, 8, false, true, true);
GPIO_IntConfig(gpioPortB, 11, false, true, true);

/% Enable interrupts */
NVIC_EnableIRQ (GPIO_EVEN_IRQn) ;
NVIC_EnableIRQ (GPIO_ODD_IRQn) ;

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/GPIO_2

7.1

48 Capitol 7. Controlador d’interrupcions

Llistat 7.1: Exemple d’ISR per GPIO

void GPIO_EVEN_IRQHandler (void) {
uint32_t aux;

aux = GPIO_IntGet ();

/* clear flags #*/
GPIO_IntClear (aux);

/* Set LED off #*/
GPIO_PinOutClear (gpioPortD, 7);

pins parells la interrupcié GPIO_EVEN_IRQ i els pins senars la GPIO_ODD_IRQ [24, pagina 405].
En els microcontroladors de ST, hi ha una arquitectura diferent i cada pin d’entrada pot generar una
IRQ segons el seu index de manera que el pin PA2, el PB2, el PC2 etc. generen la IRQ EXTI2,
perod només un d’aquests pins pot generar la IRQ [30, pagina 384].

En el cos de I’exemple, com que els botons estan connectats al pin D8 i B11 cada un d’ells activara
una de les dues interrupcions.

La ISR per la interrupci6 parell la veiem al Llistat 7.1.

A D’arquitectura Cortex-M el nom de les ISR esta fixat en un fitxer de I’entorn de programacio,
de manera que només cal escriure una funcié amb el nom correcte i ja tenim definida la ISR. El
fitxer que defineix les ISR depén de cada model de microcontrolador, en el nostre cas és el fitxer
startup_efm32tg.S.

En el cas de I’arquitectura Cortex, la propia ISR ha de netejar el flag d’interrupcié que 1’ha cridat.
Aix0 es fa al principi de tot de la ISR, llegint quins flags estan actius (funcié GPIO_IntGet()) i tot
seguit netejant aquests mateixos flags (GPIO_IntClear()).

A continuaci6, s’encén o s’apaga el LED segons correspongui (a una ISR s’apaga, a I’altre s’encén).

L altre cosa a destacar d’aquest exemple €s el que hi ha dins el bucle infinit, que esta buit. I esta buit
perque, en aquest exemple, el microcontrolador no té res a fer fins que no hi hagi una interrupcié
provinent d’un boté.

En una aplicacid real, en aquest bucle es podra posar codi que si s’hagi d’executar continuament, o
instruccions que posin “a dormir” el microcontrolador tot esperant una interrupcio, etc. Tot aixo ho
anirem veient més endavant.

Escrivint ISRs en C

Com ja sabem, les ISR sén les funcions especials que s’executen tant bon punt es dispara una
interrupcié determinada.

Tradicionalment les adreces a aquestes ISRs (anomenats de vegades vectors d’interrupcid) s’em-
magatzemaven a una zona especial de la memoria del processador. Quan el processador rebia una
IRQ, com que aquestes van numerades simplement calcula I’ offset de la IRQ a la taula de ISRs i
executa aquella funcié determinada.

En els ARM Cortex amb els que treballem aixo es fa tal qual acabem d’explicar. En el cas dels

7.1 Escrivint ISRs en C

49

.section .vectors
.align 2
.globl __Vectors
! Vectors:
i .long __StackTop /* Top of Stack */
i .long Reset Handler /¥ Reset Handler */
; .Long MMI_Handler /¥ NMI Handler */
i .Long HardFault_Handler /* Hard Fault Handler */
: .Long MemManage Handler /* MPU Fault Handler */
i .long BusFault_ Handler ¥ Bus Fault Handler */
i .long UsageFault Handler /¥ Usage Fault Handler #*/
i .long Default Handler /% Reserved */
i .long Default Handler /* Reserved */
i .Llong Default Handler /¥ Reserved */
i .Long Cefault Handler /¥ Reserved */
i .long SVC _Handler /% 8sycall Handler */
: .long DebugMon_Handler /#* Debug Monitor Handler */
: .long Default_Handler /* Reserved */
i .Llong Pendsy_Handler /* Pendsy Handler */
E .long SysTick Handler /% SysTick Handler */
i /¥ External interrupts */
i .long DMA TRGHandler f% D = DMA %/
i .long GPIO_EVEMN IRQHandler Pyl GPIO EVEN */
H .long TIMERD_IRQHandler f* 2 - TIMERD *f
: .Long USARTO _RX_IRQHandler /%3 - USARTO RX */
i .Llong USARTO _TX_IRQHandler /* 4 - USARTO TX #/
i .long ACMPO_TRQHandler [* 5 - ACMPO */
i .long ADCO IRQHandler /¥ B - ADCO #/
i .Llong DACO_IRQHandler /¥ 7 - DACD */
i .Long I2C0_IRQHandler /¥ 8 - 12C0 */
: .long GPIO_ODD_IRQHandler /* 9 - GPIO ODD */
: .long TIMERL IRQHandler /% 10 - TIMERL */
i .long USART1 RX IRGHandler [% 11 - USART1 RX */

Figura 7.1: Vectors d’interrupci6

Cortex (i la majoria de microcontroladors i processadors) la taula de vectors d’interrupcions es
col-loca a partir de la posicié 0 de memoria.

El que cal, doncs, és que les nostres eines de compilacié posin aquests vectors com toca a cada un
dels binaris que generem. En el cas de les eines per Cortex (tant Simplicity com les eines de ST
ho fan aixi), aprofiten un codi d’inicialitzaci6 proporcionat per ARM anomenat, en el nostre cas
startup_efm32tg.S. Aquest fitxer esta escrit en assemblador i, entre d’altres coses, té el codi que es
veu a la Figura 7.1:

Com es pot veure, aquest codi declara el nom de les ISRs corresponents a cada una de les IRQs
possibles al microcontrolador. Més endavant en el mateix fitxer, es posa una funcid per defecte
per a cada una de les ISR que és només un bucle sense fi. Com que aquesta funcié es declara com
weak, nosaltres podrem sobreescriure—la en cas que ho vulguem fer.

En el cas de Cortex, les funcions de ISR no han de ser definides de cap forma especial, més enlla
de posar el nom que li correspongui.

En altres arquitectures, com ara AVR d’Atmel, les ISR han de retornar d’una manera diferent a les
funcions normals donat que durant la crida a una ISR no es guarden tots els registres com es fa a
una crida a una funcié normal. Si escrivim la funcié en assemblador, enlloc d’una instruccié RET
ens caldra escriure una instruccié RETL

Si estem treballant en llenguatge C, com que el compilador posa una instruccié RET quan acaba la
funcid, caldra indicar-li d’alguna forma que la funcié en qiiestié és una ISR i que ha d’acabar-la

7.2

7.2.1

50 Capitol 7. Controlador d’interrupcions

Llistat 7.2: Exemple d’ISR per AVR

#pragma vector=TIMERO_OVF_vect
__interrupt wvoid MotorPWMBottom () {
// codi

Llistat 7.3: Exemple d’ISR per AVR

ISR(PCINT1_vect) {
//codi
}

amb una instruccié RETIL.

Aix0, en el cas d’AVR es fa com es veu al Llistat 7.2 o 7.3 depenent del tipus de compilador que
estiguem fent servir.

Fent servir ISRs

Com ja hem comentat, una ISR s’executa quan es dispara una IRQ. Durant I’execuci6 de la ISR el
microcontrolador esta en un mode d’execucié especial, amb les demés IRQs desactivades (depen
de I’arquitectura aix0 pot no ser aixi).

Donat que la resta d’IRQs poden estar desactivades, és important que el temps que el processador
estigui executant una ISR sigui el minim possible i que el codi, per tant, sigui el més senzill possible.

Si el que hem de fer, a part de tasques molt simples a la ISR, és engegar o controlar un procés més
complicat, aquest procés no el farem dins la ISR, si no en un procés a part i comunicarem via flags,
cues, semafors o mecanismes similars la ISR amb el procés. Aixi minimitzem el temps que el
processador esta en mode ISR.

Us de variables globals

Com ja hem vist breument a Subsecci6 2.3.1 - Periférics mapats a memoria hi ha una paraula
reservada que es fa servir quan es fan accessos a memoria i altres usos d’una variable on el
compilador no ha d’actuar amb cap optimitzacié. La paraula reservada volatile davant la declaraci6
d’una variable indica al compilador que la variable s’hi ha d’accedir tal com diu el codi i no efectuar
cap optimitzacio.

En el cas de modificar el valor d’una variable global des d’una ISR, cal declar-la com a
volatile.

(8. Timers

Un Timer (temporitzador) és un dels periferics més habituals de trobar en un microcontrolador.
Basicament consisteix en un comptador que pot generar alguna interrupci6 quan arriba a un cert
llindar o al seu valor limit. Com sempre, cada fabricant el fa segons el seu criteri i, per tant, cada
un té caracteristiques diferents.

Normalment els timers es poden connectar a diferents rellotges disponibles dins el microcontrolador.
A més, forga sovint els timers poden dividir préviament la freqiiencia del rellotge que 1’alimenta
per reduir-la encara més. Aixi, podem tenir un rellotge d’1 MHz alimentant un timer que abans de
que hi entri es divideixi per 8 per tenir un rellotge efectiu de 125 kHz. Amb aixo0, si configurem el
timer perque compti fins al valor 125000, tindrem que el timer generara una interrupcié cada segon.

En el cas de Silicon Labs, els Timers tenen mdltiples opcions [24, pagina 249]:

» comptador de 16 bits

* pre-escalatge del rellotge: el rellotge d’entrada es pot pre-escalar (dividir) per diversos factors
(de 2 fins a 1024).

* diverses fonts de rellotge

* diverses formes de comptatge (cap a munt, cap avall, amunt i avall, etc.)

* 3 canals per Timer, per generar diverses interrupcions (per overflow, per arribar a un llindar,
underflow, etc.)

Tot plegat fa que sigui forca complicat de configurar, i com ve sent costum, el fabricant ens dona
una biblioteca per simplificar-nos una mica la vida.

Els controls que tenim habitualment per un Timer, un cop configurat, sén [25]:

* engegar i parar el Timer (TIMER_Enable() a EMLIB).

¢ llegir o configurar el maxim valor pel timer (TIMER_TopGet() / TIMER_TopSet() a
EMLIB).

* llegir o configurar el valor pel compare (TIMER_CompareGet() / TIMER_CompareSet()
a EMLIB).

8.1

52 Capitol 8. Timers

Els usos que li podem donar a aquest periferic sén variats, els més habituals sén els segiients::

* Comptar el temps: es configura per a que generi una interrupcié cada segon i ja tenim un
rellotge de temps real. Hi ha periferics especifics per aquesta tasca (RTCs') com es veura a
Capitol 9 - RTC.

* Fer delays acurats: de vegades cal que un senyal o una acci6 passi després d’un cert temps.
Amb un Timer ben configurat podem comptar temps petits de 1’ordre de microsegons.

» Comptar polsos externes: segons quins Timers poden comptar segons una entrada externa,
i aquesta no cal que sigui un rellotge. Pot ser, per exemple, les pulsacions d’un boté o les
transicions d’un senyal.

* Generar senyals PWM: tipus de senyal digital per controlar motors o d’altres dispositius
(Veure Capitol 10 - PWM).

Exemple senzill amb un Timer

El primer exemple fa servir un Timer per esperar-se 1 segon a canviar d’estat el LED (fer un toggle)
després que es premi el Bot6 0.

El que es fa en primer lloc és configurar el Timer() amb un seguit d’opcions. Les més importants de
cara a I’exemple soén:

 .prescale = timerPrescale1024 que configura el divisor de rellotge a 1024.
* .mode = timerModeUp aixi el Timer només compta cap amunt.
 .oneShot = true en aquest cas, un cop arribi al maxim valor el Timer es parara.

Un cop configurat el Timer, s’entra en el bucle infinit. Dins el bucle infinit, si es polsa el bot6 0, es
posa el comptador del Timer a 0 i s’engega el comptador (Llistat 8.1).

Tot seguit, es comprova si el comptador ha arribat al valor TOP_VALUE usant la funcié TI-
MER_CounterGet(), si €s aixi es fa foggle del LED (s’encén si estava apagat o el contrari), s’atura
el Timer i es posa el seu comptador a O (Llistat 8.2).

Com hem calculat el valor TOP_VALUE (13671)?

Rellotge d’entrada al Timer: 14.000.000 Hz (14 MHz)
Prescaler: 1024 (Seleccionat al inicialitzar el timer)

Freqliéncia de treball del Timer = 14.000.000 / 1024 = 13.671,875 Hz

Per tant, en un segon el comptador del Timer haura comptat fins a 13.671 (o 13.672, no ve d’un
tick!).

'Real Time Clocks

Llistat 8.1: Codi d’exemple d’ds d’un Timer

void main (void) {

if (GPIO_PinInGet (gpioPortD, 8) == 0) {
TIMER_CounterSet (TIMERO, O0);
TIMER_Enable (TIMERO, true);

}

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Timer_1

8.2

8.2 Exemple més complex amb el Timer 53

Llistat 8.2: Codi per comprovar si el Timer ha arribat a cert valor

void main (void) {

/+ If timer count gets to TOP_VALUE, toggle LED and stop Timer x/
if (TIMER_CounterGet (TIMERO) >= TOP_VALUE) {

GPIO_PinOutToggle (gpioPortD, 7);

TIMER_Enable (TIMERO, false);

TIMER_CounterSet (TIMERO, O0);

En aquest exemple hem fet servir el Timer d’una forma for¢a rudimentaria, ja que no és gaire
habitual fer polling d’un Timer per transcorre un temps determinat. Es fa servir aquest metode per
implementar funcions tipus Delay() simples. A continuacié veurem un exemple més complicat
basat en interrupcions.

Exemple més complex amb el Timer

Al segon exemple fem servir interrupcions per obtenir informacié del Timer i aix{ alliberar la CPU.

Primer de tot, cal saber per quines condicions pot generar interrupcions el nostre Timer. En el cas
de la familia EFM32, cada Timer t€ només una interrupcié (anomenada TIMERn_IRQn) pero tenen
els segilients esdeveniments que poden generar una interrupcié [24]:

* QOverflow: quan el comptador arriba a TOP

* Underflow: quan el comptador arriba a 0

* Compare Match: quan el comptador arriba a un valor determinat. N’hi ha un per cada canal
del Timer.

Aixi doncs, quan estiguem a la ISR del Timer si hem activat més d’un esdeveniments a que generi
la interrupci6 haurem de mirar quin esdeveniments ha estat.

El Timer es configura igual que a I’exemple anterior, i a més s’activen les interrupcions per aquest
periféric amb el codi que es veu a 8.3.

Amb aix0, un cop s’engegui el Timer i quan arribi el comptador a TOP llencara la interrupcio
TIMERO_IRQn, que executara la ISR TIMERO_IRQHandler() que es veu al Llistat 8.4 on
simplement es netegen els flags d’interrupcio i es fa roggle del LED.

La configuracié i la posada en marxa del Timer es fa a la ISR del boté 0, de manera similar a com
ja haviem fet anteriorment a d’altres exemples: primer es netegen els flags de la IRQ, tot seguit es

Llistat 8.3: Codi corresponent a I’activacid de les IRQs del Timer

/+* Enable overflow interrupt */
TIMER_IntEnable (TIMERO, TIMER_IF_OF);

/+ Enable IRQ for Timer 0x*/
NVIC_EnableIRQ (TIMERO_IRQn) ;

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Timer_2

54 Capitol 8. Timers

Llistat 8.4: ISR del Timer

void TIMERO_IRQHandler (void) {
uint32_t flags;

/+ Clear flag for TIMERO #*/
flags = TIMER_IntGet (TIMERO);
TIMER_IntClear (TIMERO, flags);

/* Toggle LED ON/OFF %/
GPIO_PinOutToggle (gpioPortD, 7);

Llistat 8.5: ISR del GPIO per I’exemple del Timer

void GPIO_EVEN_IRQHandler (void) {
uint32_t flags;

/+ clear flags =/
flags = GPIO_IntGet ();
GPIO_IntClear (flags);

/% Set counter to 0 #*/
TIMER_CounterSet (TIMERO, O0);

/+ Set TIMER Top value x/
TIMER_ TopSet (TIMERO, TOP_VALUE);

/% Start Timer */
TIMER_Enable (TIMERO, true);

posa el comptador del Timer a 0, es posa el valor maxim i per dltim s’engega el Timer (Llistat 8.5).

Per ultim, fer notar que al bucle infinit final del main() no hi ha cap codi, ja que la CPU no té res
a fer mentre espera la pulsaci6 del bot6 o que s’exhaureixi el temps, En el tema de baix consum
(Capitol 35 - Baix cosum) es veura com aprofitar aquest fet per reduir el consum del sistema amb
un exemple a Seccié 35.4 - Timers de baix consum.

Al diagrama de seqiieéncia de la Figura 8.1 explica I’exemple.

8.2 Exemple més complex amb el Timer

55

Usuari

Figura 8.1: Diagrama de seqii¢ncia de I’exemple Timer_2

Aquesta pagina esta en blanc expressament, tot va bé.

Un altre periferic que acostumem a trobar als microcontroladors actuals és una mena de Timer una
mica especial. Habitualment aquests periférics serveixen per tenir un control de temps en segons
i/0 un calendari, enlloc de temps molts més curts de mil-lisegons o microsegons com els Timers
que ja hem vist.

Aquest tipus de periferics acostumen a fer servir una entrada de rellotge propia de 32,768 kHz
(32.768 Hz), que és una freqiiencia de rellotge molt habitual per aquestes feines. Algunes families
de microcontroladors poden funcionar amb altres freqii€ncies o generar-la internament per fer el
sistema més senzill.

Els RTC varien forca de fabricant a fabricant, aixi els STM32 tenen un RTC complet, on podem
guardar dia, mes i any, hora minut i segons i el dispositiu mateix manté la data (dies del mes,
anys de traspas, etc.), fent molt senzill mantenir una data dins el dispositiu (veure Figura 9.1) [30,
pagina 799].

Per contra, els RTCs de EFM32 sén forca més senzills, i és, de fet, un Timer de 24 bits de molt baix

12h or 24h format

AM
PM

RTC-DR RTC_TR RTC_SSR

Figura 9.1: Registres del RTC de STM32 [32]

9.1

58 Capitol 9. RTC

Llistat 9.1: Inicialitzacié del RTC

void main (void) {

CMU_ClockSelectSet (cmuClock_LFA, cmuSelect_LFXO);
CMU_ClockDivSet (cmuClock_RTC, cmuClkDiv_32768);

RTC_CompareSet (0, 2);

/* Enabling Interrupt from RTC #*/
RTC_IntEnable (RTC_IFC_COMPO) ;
NVIC_ClearPendingIRQ (RTC_IRQn) ;
NVIC_EnableIRQ (RTC_IRQn) ;

Llistat 9.2: ISR del RTC

void RTC_IRQHandler (void) {
/* Clear interrupt source */
RTC_IntClear (RTC_IFC_COMPO) ;

GPIO_PinOutToggle (gpioPortD, 7);
}

consum amb una entrada de rellotge propia i que es pot triar cada quan generen una interrupcio [24,
pagina 285]. Si triem fer una interrupcié cada segon, podem manegar per SW la gestié de I’hora i
el calendari.

A I’exemple per EFM32 tant sols se selecciona el rellotge de 32 kHz extern (LFXO), el divisor
a 32768 per tenir un tic cada segon i es configura per a que generi una interrupcié cada 2 segons
(veure Llistat 9.1). En aquest exemple, a la ISR només es canvia el LED (s’apaga o encén segons el
seu estat actual) (veure Llistat 9.2).

Si volguéssim mantenir un rellotge fent servir aquest periferic podriem configurar-lo perque generi
una interrupcié cada segon, i dins la ISR mantenir un comptador de segons i actualitzar la data
segons aixo.

RTC externs

Quan la majoria de microcontroladors no incloien un RTC intern com els que hem vist, era habitual
fer servir un dispositiu RTC extern. D’aquests dispositius n’hi ha de tota mena perd la majoria
tenen les segiients caracteristiques:

» Interface I2C! (veure Capitol 15 - 12C) amb el microcontrolador.

» Necessita un cristall de 32.768 Hz.

* Un error d’aproximadament un segon a I’any.

* Actualitza data i hora, calculant anys de traspas.

 Capacitat de generar interrupcions segons una alarma programable.

Inter-Integrated Circuit

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/RTC

9.1 RTC externs 59

* Molt baix consum i alimentacié separada amb bateria (pila boto).
* Molts d’ells tenen una petita memoria RAM adrecable per guardar-hi dades persistents.

Amb aquesta mena de dispositiu, el microcontrolador es descarrega de gestionar el calendari i
només cal accedir als registres del RTC extern per saber 1’hora o data del sistema. A la majoria dels
casos també és possible programar alguna mena d’alarma, de forma que quan arriba cert temps
o data una linia dedicada pot generar una interrupcié al microcontrolador. Alguns models també
tenen la possibilitat de generar un senyal de forma periodica per tenir, per exemple, un senyal a 128
Hz.

Habitualment 1’alimentacié d’aquests dispositius es pot fer per un canal separat de 1’alimentacid
principal i usant una bateria o pila tipus botd. Aixo permet que el RTC sempre estigui alimentat
encara que es perdi I’alimentacié principal (per avaria, tall de corrent, canvi de bateries, etc.).
Aprofitant que sempre tenen alimentacid, forca RTCs tenen una zona de memoria RAM per a que
el microcontrolador pugui guardar-hi dades persistents. L’accés a aquesta zona de memoria també
es fa mitjancant el bus 12C, sent molt senzill emmagatzemar-hi dades.

Per ultim, cal dir que s6n dispositius forca barats (entre 0.5 € i 3 € per unitat en volums petits),
sent una bona opcié en cas que el nostre microcontrolador no disposi d’aquesta funcionalitat
[33][34][35].

Aquesta pagina esta en blanc expressament, tot va bé.

10.1

El PWM és una teécnica per aconseguir controlar la poténcia subministrada a un dispositiu mitjancant
un senyal digital. Simplificant, fent que un senyal digital (‘1’ o ‘0’) estigui més o menys estona a
‘1’ aconseguim controlar la poténcia que rep el dispositiu a la sortida.

Aquest tipus de modulacid es fa servir per controlar motors simples (motors DC) on enlloc d’enviar
un voltatge variable per controlar la velocitat enviem un senyal PWM. Aixi, si enviem polsos més
llargs el motor girara més rapid i si enviem polsos més curts el motor girard més a poc a poc. Com
que el voltatge que se li envia sempre es el maxim, la poténcia del motor €s sempre la maxima.

Els dos parametres principals d’un senyal PWM s6n la seva freqiiencia i el seu duty cycle (la durada
del pols a ‘1’ respecte la durada del pols a ‘0).

A I’exemple es fa servir el LED de la placa enlloc d’un motor. Posarem una freqiiencia molt petita,
aixi la podrem veure amb els nostres ulls, i anirem canviant el duty cycle amb els dos botons, de
manera que podem veure que esta passant.

Primer veiem que passa i després veiem com ho fa el codi.

Només programar la placa veiem el LED fent pampallugues forga rapid tota 1’estona. Si polsem el
bot6 1 veurem que el LED va més rapid, si tornem a polsar el bot6 1 encara va més rapid aixi fins
que al cinque cop que el polsem el LED es queda ences tota I’estona.

El que estem veient és que el LED va rebent un senyal PWM on el duty cycle cada cop és més
gran (més estona ences que apagat) fins que al final és del 100% (sempre ences). El ritme al que
fa pampallugues el LED és (més o menys) la freqiiencia del PWM, que en aquest exemple és de
13.5 Hz.

Generar PWM

La majoria de microcontroladors actuals tenen algun dispositiu HW que permet generar PWM. En
el cas dels micros de Silicon Labs, el dispositiu que ens permet generar-ne sén els Timers.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/PWM_1

62 Capitol 10. PWM

TIMERn_TOP
TIMERn_CCx_CCV

0

TIMn_CCx I !I | |_| |

Figura 10.1: Generaci6 de PWM amb un timer [24, pagina 262]

Llistat 10.1: Configuracié del Timer per I’exemple PWM

/% Set Timer +/
TIMER_InitCC(TIMER1, 1, &timerCCInit);
TIMER1->ROUTE |= (TIMER_ROUTE_CCI1PEN | TIMER_ROUTE_LOCATION_LOC4);

Un Timer (veure la seccié Capitol 8 - Timers) no és més que un comptador HW que genera
interrupcions o sortides quan el comptador arriba a uns certs valors.

Per generar PWM, el Timer es configura el seu registre TOP per a que ens doni la freqiiencia de
funcionament del PWM desitjada. El que fara el Timer és comptar sempre fins a TOP i re-iniciar-
se en quan hi arribi. Per generar el duty cycle el que es fa es posar el valor desitjat al registre
COMPARE (CC). El que fara el Timer és treure un ‘1’ mentre el comptador no arribi a CC,
Ilavors posara un ‘0’ a la sortida fins que el comptador arribi a TOP, on tornara a comengar el cicle
(Figura 10.1)..

En el codi d’exemple (Llistat 10.1), el que es fa és configurar el TIMER1 en mode PWM i connectar
la sortida del Timer al Pin D7 que és on esta el LED connectat.

A continuaci6 és configuren els dos registres importants per generar PWM (Llistat 10.2). Com que
volem una freqiiencia baixa pel PWM per poder veure’l amb els nostres ulls, al registre TOP hi
posem PWM_FREQ (4000), que el calculem de la segiient manera [24].

Freq Clk _14.000.000 Hz

= =13.67TH
prescaler x valor TOP 256% (4000+ 1) g

Freq. de PWM =

La resta del codi és senzill: es preparen les dues interrupcions per cada un dels botons, i quan algun
dels dos es prem, la ISR modifica el valor del registre CC del Timer (un bot6 augmenta el duty
cycle, I’altre el disminueix).

Si veiem el senyal generat amb un oscil-loscopi veiem el que es mostra a la Figura 10.2 (estat per
defecte).

Veiem que la freqiiencia real del senyal és de 13.57 Hz (73.70 ms de periode) i que el senyal esta a
‘1’1230 msia ‘0’ a 61.40 ms.

Llistat 10.2: Configuracié del Timer per I’exemple PWM

TIMER_TopSet (TIMER1, PWM_FREQ) ;
TIMER_CompareBufSet (TIMER1, 1, pwm_value);

10.1 Generar PWM 63

Trig'd M Pos: 0,000s MEDIDAS

CHA
Mimguria

ZHA
Periodo

b b] o TR
rarlmss

Ancho Neg
1.40ms 7

CHT 1.00%

Figura 10.2: PWM amb Duty Cycle al 16%

Segons anem pitjant el botd 1 i anem augmentant el duty cycle anem veient com esta més estona a
’1” el senyal (Figures 10.3, 10.4 1 10.5). Cal fixar-se que la freqiiencia no varia, sempre és 13.5 Hz i
el que va variant és I’estona que esta a ‘0’ o a ‘1’ el senyal.

Per acabar, es pot provar de canviar la freqiiencia del PWM per a que no es vegi el LED fent
pampallugues. Cal augmentar la freqiiencia a un valor que superi els 100Hz i enlloc de veure el
LED encendre’s i apagar-se, es veura com varia la intensitat amb la que llueix.

o4

Capitol 10. PWM

CH1 1.00%

CH1 1.00

b Pos: 00005

M 25.0rms
g—dJul-17 1853

RAEDICS

CHA
Minguna
CH1
Frecuencia
13.57Hz 7
CH1
Perfodo
fa.70ms?
CH1
dncho Pos
A680ms?
CH1
Ancho Neg
; A6.30ms?
[
13.56534Hz

Figura 10.3: PWM amb Duty Cycle al 50%

M Pos: 00005

b 25.0ms
a—Jul-17 13:00

MEDIDAS

CHA
Mimguria
CHA
Frecuencia
13.57H:z 7
CH1
Perfodo
3.7 0ms?
CH1
dncho Pos
BT.47ms?

13.5637FHz

Figura 10.4: PWM amb Duty Cycle al 83.3%

10.2 Controlant un servomotor 65
s MEDIDAS

CHA
Mimguria

CH1
Frec il

CH1

||||E||||E||||E||||E|||| F'E![TI:II:II:I

CH1
dncho Pos

CH1
Anch s Meq

CH1 1.00% v 25 CH1 o 8d2mby
=10Hz

Figura 10.5: PWM amb Duty Cycle al 100%

10.2 Controlant un servomotor

Un servomotor €s un dispositiu electromecanic de control senzill. La majoria d’ells son rotatius
i permeten controlar I’angle d’actuacié del motor amb un senyal digital, normalment un senyal
PWM. Aixi, el que se sol necessitar €s un senyal PWM a una freqiiéncia determinada i un temps
actiu entre certs valors que provocaran un moviment proporcional al motor. En el cas del servo
que tinc entre mans, un Parallax Standard Servo (#900-00005) (veure Figura 10.6) (enllac al seu
DataSheet), cal un PWM a 50 Hz i uns temps minims de 0.75 ms i maxim de 2.25 ms. Aquests
temps faran que el servo es mogui entre els 0° i els 180° de rotacid.

Cal aplicar la segiient férmula per saber el valor TOP del nostre TIMER:

fCPU

TOP = -1
fpwm * PRESCALER

Com que la freqiiencia d’entrada és 14.000.000 Hz, la freqiiencia del PWM ha de ser 50 Hz i TOP
no pot ser més gran de 65.536 (16 bits) cal que triem el prescaler acuradament. De fet, podriem
triar un prescaler de 1024 i ens donaria un valor per TOP de 272. Perd amb aquest valor perdem
molta resolucié per generar el PWM, ja que el timer només podra arribar fins a aquest valor. Si
triem un valor més petit pel prescaler, augmentem la resoluci6 i la qualitat del senyal del PWM.
Aixi, si triem un valor de pre-escalat de 8 ens resulta que TOP ha de valor 34999. Aquest valor és el
més gran que podem generar d’aquesta forma i que capiga en 16 bits, ja que el segiient pre-escalat
ens dona un valor massa gran.

Aix{ doncs, tenim que per generar un PWM 50 HZ calen 34999 ticks del timer. Com que la fulla
d’especificacions del servomotor ens diu que el temps de pols positiu ha d’anar dels 0.75 ms fins
els 2.25 ms, cal saber quants ticks els corresponent.

https://www.parallax.com/sites/default/files/downloads/900-00005-Standard-Servo-Product-Documentation-v2.2.pdf
https://www.parallax.com/sites/default/files/downloads/900-00005-Standard-Servo-Product-Documentation-v2.2.pdf

66 Capitol 10. PWM

PARALLAX

www.parallax.com

Figura 10.6: Fotografia del servomotor Parallax usat

Si fem una simple regla de tres tenim:

00— LI5S 24 999 — 1312, 4625 ~ 1312
20 ms
i
180° — 22275, 34,999 — 39373875 ~ 3937
20 ms

I ja tenim els dos valors maxims i minims per controlar correctament el servomotor en qiiestio i ens
podem muntar una funcié que ens passi de graus de rotacid a counts del PWM per simplificar el
codi (Llistat 10.3).

A les figures 10.7 i 10.8 es veu el senyal PWM generat pels casos de 0°1 180°. Es veu que les
mesures de 1’oscil-loscopi donen 50 Hz i un temps del pols positiu de 0.5 ms i 2.25 ms.

I posem un codi a les ISR dels dos botons perque incrementi (decrementi) el valor en graus on
volem situar el servo: La resta del codi esta al repositori en aquest enllac.

R) Enelmeu casiamb el servomotor que tinc, s’observa que quan esta en repos de tant en tant se
sent com el servo fa algun moviment o “crec”. No n’estic segur, pero pot ser que sigui perque
la freqiiencia del PWM no sigui prou estable i s’escurci un pel i se surti d’especificacions.
En aquest cas millora si s’allarga el periode del PWM augmentant una mica el valor de
PWM_FREQ.

R) També veig que si el minim el poso a 0.75 ms el servo no arriba a fer 180° de rotacio i puc
baixar el minim fins a 0.5ms i que tot segueixi funcionat. En aquest cas el valor de PWM_0
és 875.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/PWM_2

10.2 Controlant un servomotor

Llistat 10.3: Funcié que calcula els counts donat els graus que es vol del servomotor

#define PWM_FREQ (34999)
#define PWM_0 (1312)
#define PWM_180 (3937)

uint32_t degrees_to_pwm(uint32_t degrees) {
uint32_t ret_value = 0;

if (degrees < 180) {

ret_value = (degree * (PWM_180 - PWM_0) / 180) + PWM_O0;
} else {

ret_value = PWM_180;
}

return ret_value;

kM Pos: 10.00ms MEDIDAS

ancho Pos

430, us?
CH1
Anc

CH1
Minguna

CH1 2004 M 2.50ms
14-Mar-20 19

Figura 10.7: PWM per situar el servomotor a 0 °

68

Capitol 10.

PWM

CH1 E,I:I.I:I W

M 2.50ms

b Pos: 10000ms MEDIOAS

Ancho Neg
17.65ms?
CH1
Minguna

CH1 .7

Pulse un botdn de pantalla para cambiar la medida

Figura 10.8: PWM per situar el servomotor a 180 °

Llistat 10.4: ISR del bot6 que incrementa la rotaci6 del servomotor

void GPIO_EVEN_IRQHandler (void) {

uint32_t aux;
aux = GPIO_IntGet ();

/% clear flags =/
GPIO_IntClear (aux);

degree += 30;

if (degree > 180) {
degree = 180;

}

pwm_value = degrees_to_pwm(degree) ;

TIMER_CompareBufSet (TIMER1, 1,

pwm_value) ;

(1 1. Watchdog

En els microcontroladors actuals tenim un periféric amb un funcionament for¢a peculiar. Quan
s’activa el watchdog, aquest comenca a comptar un cert periode de temps, i si no “s’alimenta”,
reiniciara tot el sistema [24, pagina 123][30, pagina 709].

I per que volem un periféric que ens reinici el nostre sistema? Doncs per si el nostre FW té algun
error i es queda penjat (esta en un Dead-lock, en un bucle sense sortida, etc.), sempre sera millor
que el sistema s’inicii de nou. Imaginem el cas d’un marcapassos (un sistema encastat forga critic);
que és millor? Que es quedi penjat per un error del FW que passa molt poc (si passés sovint s hauria
detectat) o que quan passi aquest error el sistema es reinici i torni a funcionar en menys de, posem,
un segon?

I com evitem que si tot va be el watchdog no ens reinicii el sistema? Doncs “alimentant-1o” de tant
en tant de manera que el comptador intern del Watchdog torni a zero (Figura 11.1).

La majoria de fabricants ens donen unes poques funcions per treballar amb el Watchdog (en el
cas de Silicon Labs a la biblioteca EMLIB tenim el modul em_wdog). Habitualment hi ha alguna
funci6 per configurar-lo, una per engegar-lo i una per alimentar-lo. Hi ha fabricants que no permeten
deshabilitar el Watchdog un cop s’ha engegat per assegurar-se que cap error de FW provocara que
deixi de funcionar.

Habitualment es pot triar quina és la freqiiencia de funcionament del Watchdog, per tenir més o
menys temps abans no reinicii el sistema; normalment de pocs mil-lisegons fins a algunes desenes
de segons.

WDOG_Feed() ;

70 Capitol 11. Watchdog

Counter value

A Watchdog System reset

is cleared

Timeout
period
Y
¥y
P Time
Figura 11.1: Funcionament del em Watchdog [36]
Exemple

En I’exemple que hi ha al repositori es configura el Watchdog perque treballi amb un rellotge intern
de 1 kHz i que compti fins a 4097, de manera que si ningud alimenta el Watchdog en 4 segons, aquest
reiniciara el sistema. L’exemple conté un bucle que va fent blinkar el LED de la placa i una ISR
que quan es prem el bot6 0 alimenta el Warchdog (Llistat 11.1).

Si no premem el boté abans no passin 4 segons, el sistema es reiniciara. I com ho veurem a
I’exemple? Doncs perque el codi el primer que fa és esbrinar per que s’esta reiniciant el sistema
(Llistat 11.2). Si ha estat perque ha entrat el Watchdog, el LED no blinkara.

Cal tenir en compte que aquest dispositiu serveix per solucionar possibles fallades totals del sistema,
aixi que cal ser curosos amb el seu ds. Aixi, si tenim un bucle for que pot generar algun problema,
no te sentit posar la comanda de rouch al watchdog dins del for, si no que segurament te sentit
fer-ho abans i després del bucle.

Llistat 11.1: ISR del bot6 que alimenta el Watchdog

void GPIO_EVEN_IRQHandler (void) {
uint32_t aux;

aux = GPIO_IntGet ();
/% clear flags =/
GPIO_IntClear (aux);

/% Feed watchdog =/
WDOG_Feed() ;

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Watchdog

11.1 Exemple

71

Llistat 11.2: Codi per detectar la causa del reinici

if (resetCause & RMU_RSTCAUSE_WDOGRST)
resetbyWatchdog = true;

} else {
resetbyWatchdog = false;

{

Aquesta pagina esta en blanc expressament, tot va bé.

12
12.1

13

13.1
13.2

14

14.1
14.2
14.3

15
15.1

16

17

17.1
17.2

18

18.1
18.2

19
19.1

20
20.1

21

21.1
21.2
213

ADC
Exemple d’ADC

DAC ...

Exemple senzill amb el DAC
Exemple més complicat amb el DAC

Fent servir una USART
Exemple d’us d’una UART
Un exemple amb la UART més complicat

I2C ...
Exemple d’12C

Exemple
Un exemple amb DMA més complicat

FLASH

Un exemple senzill
Bootloaders

Moduls criptografics
Xifrant dades amb AES-128

Altres periférics
Peripheral Reflex System

Una aplicacié completa
Biblioteques

Funcid principal

Afegint-hi interrupcions

Aquesta pagina esta en blanc expressament, tot va bé.

Un periferic forca habitual en els microcontroladors actuals és I’ ADC.

Aquesta periferic el que fa és llegir un senyal analogic (un voltatge) i convertir-lo a un valor digital
(un ndmero). Hi ha diversos models d’ADC amb caracteristiques diferents, perd basicament les
caracteristiques principals d’un ADC sén:

* Resoluci6: fa referéncia a quants bits dona la conversié de I’ADC. Un ADC de 16 bits, en
principi, dona més detall del senyal d’entrada que un ADC de 8 bits. Actualment el més
habitual és trobar ADCs d’entre 8 i 16 bits de resolucid.

» Sampling rate: és la cadéncia amb la que I’ADC agafa una nova mostra del senyal i la
converteix a digital. Els microcontroladors actuals incorporen ADCs que poden arribar al
milié de mostres per segon.

» Referencia: pot ser que es compari el senyal segons una referencia determinada i el ADC ens
doni el valor respecte a aquesta referéncia.

En els microcontroladors moderns, és habitual que davant de I’ ADC hi hagi un multiplexor analogic,
de manera que es pugui convertir diverses senyals connectades a diferents pins amb un mateix
periferic.

A T’hora de fer servir un ADC, caldra configurar-lo en els parametres de funcionament que
necessitem per la nostra senyal.

Com la majoria de periferics, I’ADC pot generar una o varies IRQs segons certes condicions,
habitualment quan s’ha acabat la conversié. D’aquesta manera la CPU no cal que faci polling del
registre d’estat per saber si la conversi6 ha finalitzat.

L’ ADC acaba per donar-nos un valor dins el seu rang de treball proporcional al valor de voltatge
d’entrada, aquest valor s’acostuma a anomenar counts. Per convertir aquest valor en counts al valor
de voltatge corresponent, cal aplicar la férmula Equaci6 12.1 - ADC:

counts * Viax

N (12.1)

Vapc =

12.1

76 Capitol 12. ADC

On V., és el voltatge maxim de I’entrada i N el nombre de bits (resolucid) de la conversi6 de
I’ADC.!

Exemple d’ADC

Per aquest exemple ens cal per primer cop un petit HW addicional. Farem servir un potenciometre
que ens donara una tensié entre Vdd i 0 volts segons el seu recorregut. La sortida d’aquest
potenciometre la connectarem al pin 16 del connector de Debug de 1la PCB. Els altres dos pins
aniran a 19 i 20 del mateix connector (veure esquematic a la Figura 12.1 i fotografia del sistema a
Figura 12.2).

Connectat aix{ el potenciometre, quan estigui a un extrem del recorregut tindrem OV a I’entrada de
I’ADC i quan estigui a Ialtre extrem hi tindrem Vdd?.

A I’exemple trobem un codi molt senzill, on simplement s’inicia I’ADC amb els parametres per
defecte i només es canvia el canal d’entrada (el 6) i la tensié de referéncia (en aquest cas Vdd).

D’aquesta manera, els 12 bits de resolucié del ADC serviran per comparar la tensié d’entrada amb
els 3.3 V amb els que esta alimentat el microcontrolador a la placa.

R) Els 3.3 Volts és el voltatge de funcionament de la placa d’avaluacid. Els ADC normalment
poden mesurar tensions fins a la seva tensié d’alimentacid i és per aixd que en aquest cas
podem mesurar fins a 3.3 Volts. Si I’alimentaci6 fos menor, el rang de treball de I’ADC
també ho seria. En el cas particular de I’ADC dels EFM32, poden tenir voltatges fixes com a
referéncia [24, pagina 378].

El codi, un cop inicialitzat el ADC, realitza les accions que es veuen al Llistat 12.1.

El que fan aquests 4 linies és:

* Engegar I’ADC i que comenci una conversié

* Esperar a que la conversi6 finalitzi consultant el registre STATUS de I’ ADC.
* Llegir el valor de la conversié feta per I’ADC.

* Imprimir per la consola de Debug el valor de la conversio6.

Per tant, el que veurem un cop engeguem |’exemple sera com es van imprimint els valors llegits per
I’ADC. Si anem movent el potenciometre veurem que els valors van canviant des de O fins a 4095.

T Aixd és valid per configuracions tipus single-ended
2Voltatge d’alimentacié

Llistat 12.1: Codi de lectura de I’ ADC

while (1) {
ADC_Start (ADCO, adcStartSingle);
while (ADCO->STATUS & ADC_STATUS_SINGLEACT) ;
ADCvalue = ADC_DataSingleGet (ADCO) ;
printf(, ADCvalue) ;

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/ADC_1s

12.1 Exemple d’ADC

Vvdd MCU
Ul

R1

- ADC_Ché

Figura 12.1: Esquematic de la connexi6 del Potenciometre al canal d’ADC

L TG SeNE

TINY GECKO ~

Figura 12.2: Fotografia del sistema amb el connexitat correcte

Aquesta pagina esta en blanc expressament, tot va bé.

13.1

Un DAC! és un dispositiu que es pot veure com I’invers d’un ADC, ja que a partir d’unes dades
digitals genera un senyal analogic equivalent. Els parametres de funcionament d’un DAC sén,
doncs, molt similars als del seu periferic germa I’ADC.

Al datasheet de 1a familia amb la que treballem [24, pagina 421] hi ha la descripcid, bastant breu, de
les caracteristiques principals d’aquest periferic. Basicament, té un registre anomenat CHxDATA
on s ha d’escriure el valor que volem que es converteixi a voltatge segons la férmula segiient?:

CHxDATA

4096 (13D

Vour = VRer X

On Vig.r és el voltatge de referencia, que en aquest cas pot ser 2.5 o 1.25 Volts o la tensié d’alimen-
taci6é Vdd.

Exemple senzill amb el DAC

Al repositori hi ha un exemple senzill usant el DAC per generar una tensié continua segons
un valor donat. Primer s’inicialitzara el DAC i la resta de periférics (en aquest cas els GPIO
i poc més). Es configuren els botons com sempre, amb les dues interrupcions ja conegudes
(GPIO_ODD_IRQHandler() i GPIO_EVEN_IRQHandler()).

La part important de I’exemple és la inicialitzaci6é del DAC, tal com es veu al Llistat 13.1.

En aquest codi, primer es posen els valors per defecte que ens ofereix el fabricant i tant sols es
modifiquen alguns parametres. Primer s’activa el clock del sistema cap al periferic, tot seguit es
tria el prescaler segons la freqiiencia de funcionament desitjada. Després es selecciona que la
referéncia per crear el senyal de sortida es basi en el voltatge d’entrada (dacRefVDD). Per tltim es
configura el DAC i el canal (en aquest el 1 per la sortida que hem triat).

I Digital to Analog Converter
2Pel cas single-ended, pel cas diferencial veure [24, pagina 424]

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/DAC_1

80 Capitol 13. DAC

Llistat 13.1: Inicialitzacié del DAC

static void DACConfig(void) {
/+ Use default settings =*/
DAC_Init_TypeDef init = DAC_INIT_DEFAULT;
DAC_InitChannel_TypeDef initChannel = DAC_INITCHANNEL_DEFAULT;

/+ Enable the DAC clock */
CMU_ClockEnable (cmuClock_DACO, true);

/* Set prescale for 500 KHz #*/
init.prescale = DAC_PrescaleCalc (500000, O0);

/+ Set reference voltage to vdd #*/
init.reference = dacRefVDD;

/+ Initialize the DAC and DAC channel #1 x/
DAC_Init (DACO, &init);
DAC_InitChannel (DACO, &initChannel, 1);

Llistat 13.2: Bucle infinit del DAC

void main (void) {

while (1) {
DAC_ChannelOutputSet (DACO, 1, DACvalue);
printf (, (uint32_t) DACvalue, (uint32_t)
DACvalue) ;
while (signal == false);
signal = false;

Les ISR dels dos botons el que fan es incrementar o decrementar una variable global que sera
el valor que s’enviara al DAC per a que generi el senyal. Aquest increment o decrement es fa
en passos de DAC_STEP unitats. D’aquesta manera pitjant els botons podrem seleccionar quin
voltatge es genera a la sortida del DAC.

Dins el bucle infinit de la funcié main() (Llistat 13.2) s’envia el valor de la variable global cap al
DAC amb la funcié DAC_ChannelOQutputSet(), es treu el valor per la consola de debug i s’espera
a que un flag indiqui que hi ha hagut un canvi en el valor de la variable global.

Si mesurem el voltatge de sortida amb un multimetre, oscil-loscopi o analitzador logic (que tingui
entrada analogica) podem veure com els valors de la variable provoquen el canvi en voltatge esperat
segons la Férmula 13.1 tal com es veu a la Taula 13.1. El pin de sortida del DAC esta connectat al
pin PB12, connectat al pin 13 del connector d’expansié. La Taula 13.1 es registren tots els valors
possible de la variable DACvalue, el valor teoric que hauria de generar el DAC (segona columna)
i el voltatge mesurat amb un multimetre digital (tercera columna); la quarta columna presenta la
diferéncia entre el voltatge de la fila i I’anterior, com es pot veure cada pas corresponent a poc més
de 200 mV, tal com surt a la férmula 13.1. A I’dltima fila es calcula la mitjana aritmetica de totes
aquestes diferencies.

L’exemple presentat és forca basic 1 serveix per introduir la llibreria emlib i el periferic. A

13.1 Exemple senzill amb el DAC

Taula 13.1: Taula resum dels valors mesurats del DAC

Variable | Voltatge teoric (mV) | Voltatge mesurat (mV) | Pas
0 0 0 -
256 206 204 204
512 413 410 206
768 619 614 204
1024 825 824 210
1280 1031 1032 208
1536 1237 1238 206
1792 1444 1442 204
2048 1650 1651 209
2304 1856 1855 204
2560 2063 2060 205
2816 2269 2260 200
3072 2475 2470 210
3328 2681 2670 200
3584 2888 2880 210
3840 3094 3090 210
4096 3300 3290 200

Mitjana de Pas 205,5

continuacié veurem un exemple més complicat.

13.2

82 Capitol 13. DAC

Exemple més complicat amb el DAC

En aquest exemple es fara servir el DAC per generar un senyal periodic tipus triangular (en angles
Triangle wave).

Es fa servir un timer per tenir una base de temps. El timer es configura a 1 kHz, dividint el rellotge
d’entrada (14 MHz) entre 16 amb el pre-escaler i configurant el valor d’overflow a 875 perque
generi un senyal cada 1 mil-lisegon. Aixi, tindrem un nou valor cada 1 mil-lisegon i el senyal es
repeteix cada 33 mostres, per tant tindrem un senyal periodic de 30,30 Hz aproximadament (veure
Equacié 13.2).

1000
Fsenyal = ? =30,30Hz (13.2)

El DAC es configura de la mateixa manera que a I’exemple anterior, en mode continu, amb
referéncia al voltatge d’alimentacié Vdd. El timer es configura de manera molt similar a I’exemple
vist a Seccio 8.2 - Exemple més complex amb el Timer, activant les interrupcions per tenir la
ISR executant-se cada 1 mil-lisegon.

A 1a ISR del timer es calcula el nou valor pel DAC i s’escriu el nou valor calculat (veure Llistat 13.3).

A I’hora d’executar el codi, si es connecta un oscil-loscopi o analitzador logic al pin 13 del connector
d’expansi6 de la placa de desenvolupament, que es correspon al pin PB12 del microcontrolador es
veura el senyal com es mostra a la Figura 13.1. Es pot observar com cada esglaé dura 1 mil-lisegon
i els increments s6n de 200 mV aproximadament (Figura 13.2).

En aquest exemple s’ha presentat com generar un senyal periodic mitjangant el DAC i un Timer,
aquesta combinaci6 de periferics és forca habitual per generar senyals d’aquesta mena donada la
seva senzillesa i facilitat d’us.

En cas que els valors del senyal estiguessin pre-calculats i emmagatzemats en una taula, la ISR del
Timer només caldria agafar el segiient valor de la taula.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/DAC_2

13.2 Exemple més complicat amb el DAC

Llistat 13.3: Part de la ISR del Timer per generar la dada pel DAC

void TIMERO_IRQHandler (void) {

if (direction_up == true) {
DACvalue += DAC_STEP;

if (DACvalue >= 0x1000) {
DACvalue = 0xOFFF;

direction_up = false;
}
} else {
DACvalue -= DAC_STEP;

if (DACvalue < 0) {
DACvalue = 0;
direction_up = true;
}
}
DAC_ChannelOutputSet (DACO,

}

1, DACvalue);

ns: —4,000ms MEDIDAS
: CHA _

CH1 1ﬂhw

Figura 13.1: Senyal capturat per I’ oscil-loscopi.

84 Capitol 13. DAC

fncho Pos

CHi
Anch 0 Meg

CH1 1 ,I:I-I:I W

Figura 13.2: Detall del senyal capturat per 1’oscil-loscopi
Detall del senyal capturat per I’oscil-loscopi, es pot veure que la unitat de temps és d’1 mil-lisegon.

14.1

(14. UART

El port serie és encara un dels ports d’entrada i sortida més comuns de trobar en un microcontrolador
i en un sistema encastat. Encara avui multitud de dispositius fan servir aquest port per rebre o
enviar dades i, per tant, els microcontroladors acostumen a incloure uns quants d’aquests ports.

Aquest port série en els microcontroladors el gestiona un periferic anomenat USART! (o UART?).
El port serie habitual, basat en I’estandard RS-232 només té dos fils, un per rebre dades (RX) i
un per enviar-ne (TX). La velocitat i les caracteristiques de la transmissié es poden configurar i
habitualment s’envien 8 bits per caracter amb 1 bit d’stop i sense paritat (tot i que es pot canviar).
Les velocitats de transmissié més habituals sén: 9600 bps?, 19200 bps, 56700 bps i 115200 bps. El
que cal, com és obvi, és configurar el port serie del microcontrolador amb els mateixos parametres
que el dispositiu extern que estiguem usant.

L altre aplicaci6 practica del port serie és poder connectar el microcontrolador a un ordinador
personal per poder interactuar amb ell, ja sigui per enviar dades, informacié d’estatus o rebre
comandes o parametres de configuracié. Com que actualment la majoria d’ordinadors no tenen un
port série, s’han popularitzat molt uns petits dispositius que converteixen el port série en un USB*
de tipus serie. D’aquest dispositiu conegut com CP2102 en parlarem més endavant.

Fent servir una USART

Com que la configuracié d’un port série és una mica complicada, sobretot perque segons la velocitat
de funcionament del rellotge del sistema caldra dividir i multiplicar aquest senyal fins a tenir una
velocitat adequada per la velocitat seleccionada pel port série, els fabricants acostumen a donar-nos
biblioteques que ens ajuden.

Dins la biblioteca acostumen a oferir una funcié per enviar dades (USART_Tx()) i una per rebre’n

YWUniversal Synchronous and Synchronous Receiver-Transmitter
2 Universal Asynchronous Receiver-Transmitter

3Bits per segon

4Universal Serial Bus

14.2

86 Capitol 14. UART

Llistat 14.1: ISRs de TX i RX de la UART

void USART1_TX IRQHandler (void) {
USART_IntClear (USART1, USART_IEN_TXC);
USART_Send (USART1) ;

}

void USART1 RX_TIRQHandler (void) {
char data;

if (USART1->IF & LEUART_IF_RXDATAV) {
data = USART_Rx (USART1);
PushData (data, &RX_SerialBuffer);
USART_IntClear (USART1, USART_IEN_RXDATAV) ;

(USART_RX()). Aquestes funcions sén molt senzilles, i permeten enviar un sol byte o rebre’n
un, o espera-se indefinidament fins que n’arribi un. Aixo0 pot ser que no sigui I’ideal per la nostra
aplicacio i les USART permeten generar interrupcions segons certs esdeveniments. Normalment
els més usats son el de byte rebut i el de byte enviat. D’aquesta manera, ens podem muntar una
biblioteca que ens permeti rebre dades pel port serie fent servir exclusivament interrupcions i a la
nostra aplicaci6 agafem el que s’hagi rebut quan vagi bé.

La manera més habitual d’implementar aquest mecanisme asincron de enviar o rebre dades pel port
seérie és mitjancant un buffer circular. D’aquesta manera, la ISR de recepcié (USART1_RX_IRQ
Handler()) insereix la nova dada rebuda al buffer de recepcié cada cop que la criden. Només cal
escriure una funcié a la nostra biblioteca que extregui un caracter del buffer cada cop que la cridin i
escriure una funcié que retorni el nombre de caracters disponibles al buffer (veure Llistat 14.1).

La ISR de transmissié (USART1_TX_IRQHandler()) es crida cada cop que s’acaba d’enviar un
caracter, per tant la ISR pot enviar un caracter del buffer circular de transmissié cada cop que la
cridin (quan s’ha acabat d’enviar el caracter anterior) i ens cal una funcié que copii les dades a
enviar cap al buffer circular de transmissié i engegui el procés.

Exemple d’Gs d’una UART

Per fer les proves caldra tenir a ma un dispositiu CP2102. Aquest dispositiu conté un xip, el CP2102
que per un costat té un port serie i per 1’altre un port USB de tipus Virtual COM Port Device que
qualsevol ordinador, ja sigui Windows, GNU/Linux o Mac reconeixen com un port serie. D’aquesta
manera, fent servir aquest dispositiu podem connectar un microcontrolador amb un port série a un
ordinador de sobretaula o portatil que tingui un port USB lliure.

Ara el que cal és preparar-ho tot: preparar el codi, connectar el modul CP2102 a la nostra placa de
prototipat i connectar-la per USB a un ordinador.

El codi que hi ha al repositori primer configura la USART1 del microcontrolador perque funcioni a
115200 bps, 8 bits per caracter, sense paritat i 1 bit d’stop, que ve a ser la configuracié estandard
d’un port serie. També en el mateix bloc configura els dos pins del port (TX i RX). També configura
com s’ha d’enrutar la USART1, en aquest cas cap la localitzacié 1 que es correspon als pins
PDO i PD1 del microcontrolador, que estan connectats al connector d’expansié, als pins 4 i 6
respectivament (veure Figura 14.1). Tot seguit s’envia un caracter ‘A’ pel port serie.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/UART_1

14.3

14.3 Un exemple amb la UART més complicat 87

BeaassseRE TR
N oo

Figura 14.1: Connexié del CP2102 a la placa de prototipat

A continuaci6 es configuren els dos botons perquée generin una IRQ. A les ISRs tant sols es canvia
el LED (un bot6 I’encén i I’altre 1’apaga) i un bot6 envia una ‘A’ i I’altre bot6 envia un ‘B’.

Per veure aquests caracters al nostre ordinador, primer cal connectar el modul CP2102 a la nostra
placa pel connector d’expansi6 tal com es veu a la foto. Un cop connectem el CP2102 al nostre
ordinador, cal engegar algun programa de terminal pel port serie, tipus putty [37], minicom, Tera
Term [38], etc.

® També es pot instal-lar un terminal dins del Simplicity Studio. Cal anar a I’ Eclipse Market-
place, buscar el TM Terminal i instal-lar-lo [39]. Aix{ tindrem el terminal integrat dins el
IDE.

Un exemple amb la UART més complicat

Un cop vist un exemple senzill de com es configura una USART, anem a fer un exemple més
complex, rebent i enviant dades del microcontrolador cap al PC i a I'inrevés. El codi esta al
repositori.

En aquest cas farem servir buffer circulars per guardar les dades rebudes o a enviar. Es una
implementaci6 senzilla d’un buffer circular sense gaire secrets, ’hem posat a la biblioteca Circu-
larBuffer. Aquesta biblioteca ofereix unes funcions molt senzilles per gestionar el buffer circular:

* PushData() que permet inserir un caracter al buffer
* PopData() que retorna el segiient caracter del buffer
* AvailableData() que indica la quantitat de caracters disponibles al buffer

En aquest exemple es fan servir les interrupcions de la USART per controlar-la, de manera que
al rebre un caracter, la ISR corresponent I’insereix al buffer corresponent (hi ha dos buffer, un de

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/UART_2

88

Capitol 14. UART

Llistat 14.2: Exemple ISR avancada

void USART1_RX_IRQHandler (void) {
char data;

if (USART1->IF & LEUART_IF_RXDATAV) {
data = USART_Rx (USART1) ;
PushData (data, &RX_SerialBuffer);
USART_IntClear (USART1, USART_IEN_RXDATAV);

Llistat 14.3: Exemple ISR avangada

void USART1 TX_ IRQHandler (void) {
USART_IntClear (USART1, USART_IEN_TXC);
USART_Send (USART1) ;

recepcid i un d’enviament), veure Llistat 14.2 1 14.3.

D’aquesta manera, en qualsevol moment que es rebi un caracter per la UART, la ISR el guardara el

buffer RX_SerialBuffer i seguira 1’execuci6 el nostre programa.

Quan calgui, podrem cridar a la funcié AvailableData() per saber si hem rebut alguna cosa i

processar-la si cal.

Per enviar dades, cal que primer omplim el buffer circular corresponent (TX_SerialBuffer) amb
el que vulguem enviar i després cridar la funci6 USART_Send(). D’aquesta manera, i gracies a
que hem configurat la USART perque llenci una IRQ cada cop que acabi d’enviar un caracter, la
USART enviara un primer caracter i es cridara la ISR, que tornara a cridar la funcié d’enviar un

caracter fins que no en quedi cap més al buffer.

Fent servir les interrupcions alliberem el processador d’esperar a que la USART vagi enviant els

caracters un a un i ens podem dedicar a fer altres coses (Llistat 14.4).

Llistat 14.4: Funcié main

while (1) {

if (AvailableData (&RX_SerialBuffer) != 0) {
character = PopData (&RX_SerialBuffer);
/+ Prepare the buffer with the data to be sent #*/
PushData (character, &TX_SerialBuffer);
PushData (character + 1, &TX_SerialBuffer);
PushData (character + 2, &TX_SerialBuffer);
/+ Start send process #*/
USART_Send (USART1) ;

Quan parlem de busos per comunicar dispositius i sensors amb un microcontrolador, el bus I12C és
un dels primers que venen al cap (I’altre és el bus SPI!, veure Capitol 16 - SPI).

Presentat per Philips fa una pila d’anys, ha acabat sent un dels dos busos estandard de facto per
comunicacié interPCBs (I’altre, com ja hem dit, és 1I’SPI). Es un bus multi-master i multi-slave, que
vol dir que poden haver més d’un dispositiu esclau i varis dispositius mestres funcionat al bus (tot
i que només es pot comunicar un master amb un slave alhora). El bus I2C funciona amb només
dues linies: una transporta el rellotge del bus (SCL?) i Ialtra les dades entre tots els dispositius
(SDA3). Totes dues linies sén de tipus open-drain i per tant necessita de resistencies de pull-up pel
seu correcte funcionament. La freqiiencia de funcionament pot ser com a maxim de 100 kHz (o de
400 kHz en mode fast) tot i que pot normalment pot funcionar a qualsevol freqiiencia inferior.

Cada un dels dispositius té una adreca de 7 bits que ha de ser unica al bus i que serveix per
adrecar-s’hi per part d’altres dispositius. Una transferéncia tipica consisteix en un Master que posa
al bus I’adreca del dispositiu Slave que vol accedir amb el bit menys significatiu a 0 o 1 segons
vulgui accedir-hi per llegir (’1°) o per escriure (’0’), a continuacié posa I’adreca del registre (o
adreca de memoria) que vol llegir o escriure i a continuacié la dada a escriure o la dada de resposta.
La unitat de treball del bus és de 8 bits (1 byte) aixi que si cal transmetre més dades caldra enviar
les dades byte a byte*.

Tenim multitud de dispositius de tota mena que tenen aquest bus com sistema de comunicacié
amb el microcontrolador i és forga comu en sensors digitals, memories EEPROM, expansi6 d’1/O,
ADCs, DACs, etc. i la majoria de microcontroladors inclouen un periferic tipus Master.

I'Serial Peripheral Interface

2Serial Clock Line (12C)

3Serial Data (I12C)

“Hi ha un mode d’I2C que amplia la longitud de I’adreca de 7 a 10 bits

15.1

90

Capitol 15. 12C

[}[llﬂp

Vdd
SDA

]

r— 5CL

e
Master

ADC
Slave

DAC
Slave

UC
Slave

Figura 15.1: Esquema d’un bus I12C tipic
Esquema d’un bus I2C tipic. Font: user:Cburnett (Own work made with Inkscape) [GFDL o
CC-BY-SA-3.0], via la Wikimedia Commons

Exemple d’12C

Per aquest exemple farem servir el sensor de gestos, de llum i de proximitat APDS-9960 de
Broadcom [6]. Es pot adquirir una placa de prototipat a la web Sparkfun per poder provar-lo
rapidament. La placa té un connector forga estandard amb els pins d’alimentacid, massa, les dues
linies del I2C SCL i SDA, i un pin d’interrupcio.

Per connectar aquesta PCB a la nostra placa de prototipat, farem servir 4 cables i els connectarem
seguint la Taula 15.1.

Amb aix0 estem connectant directament els pins del microcontrolador que poden fer de master 12C
als pins sensor que fa d’slave I2C. Les resistencies de pull-up que calen per tot bus 12C estan a la
PCB d’sparkfun (veure a I’esquematic aqui les resistencies R2 i R3).

Un cop tenim el Hardware preparat, cal posar-se amb el Firmware. Per fer servir el controlador
Master del nostre microcontrolador podem fer sevir les llibreries de SiliconLabs emlib. Aqui esta
el projecte sencer per EFM32.

El primer que cal fer és activar el rellotge per aquest periféric i configurar els pins corresponents.
En aquest cas, els pins 15 o 16 del connector corresponent als pins PD7 i PD6 respectivament, que
son la localization #1 del 12C d’aquest microcontrolador (Llistat 15.1).

A continuacié cal configurar el periféric master, podem deixar-ho tot amb les opcions per defecte
(Llistat 15.2).

Un cop fet aix0, ja podem fer servir el controlador I2C per accedir als dispositius que hi hagin al
bus.

Per comoditat, s’acostuma a munta una funci6 per llegir registres i una funcio per escriure’n. Veiem
la funcié I2C_ReadRegister() (Llistat 15.3).

Taula 15.1: Connexionat de la placa APDS-9960 i la placa de prototipat

SiliconLabs (Expansion header) | APDS-9960 PCB Board
15 SCL
16 SDA
19 GND
20 VDD

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/I2C_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/I2C_1

15.1 Exemple d’I12C 91

Llistat 15.1: Initialitzaci6 dels pins per I'I2C

CMU_ClockEnable (cmuClock_TI2CO, true);
GPIO_PinModeSet (gpioPortD, 7, gpioModeWiredAnd, 1);
GPIO_PinModeSet (gpioPortD, 6, gpioModeWiredAnd, 1);

I2CO0->ROUTE = I2C_ROUTE_SDAPEN | I2C_ROUTE_SCLPEN |
I2C_ROUTE_LOCATION_LOC1;

Llistat 15.2: Inicialitzaci6 del periferic 12C

I2C_Init_TypeDef i2cInit = I2C_INIT_DEFAULT;
I2C_Init (I2C0O, &i2cInit);

Llistat 15.3: Funcié I2C_ReadRegister

static bool I2C_ReadRegister (uint8_t reg, uint8_t =*val) {
I2C_TransferReturn_TypeDef I2C_Status;
I2C_TransferSeq_TypeDef seqg;
uint8_t datal2];

seq.addr = DEVICE_ADDR;
seq.flags = I2C_FLAG_WRITE_READ;

seq.buf[0] .data = ®
seqg.buf[0].len = 1;
seqg.buf[l] .data = data;
seqg.buf[l].len = 1;

I2C_Status = I2C_TransferInit (I2C0, &seq);

while (I2C_Status == i2cTransferInProgress) {
I2C_Status = I2C_Transfer (I2CO0);

}

if (I2C_Status != i2cTransferDone) {
return false;

}

*val = datal[0];

return true;

92 Capitol 15. 12C

Llistat 15.4: Funci6 testI2C()

void testI2C(void) {
uint8_t ret_value;

I2C_ReadRegister (0x92, &ret_value);

if (ret_value == 0xAB) {

printf () ;
} else {

printf ()
t

El primer que fem és definir les variables que ens caldran. La variable més estranya que veiem aqui
és la variable seq de tipus I2C_TransferSeq_TypeDef. En aquesta estructura és on es guarda tota
la informaci6 necessaria per engegar una transaccio per part del controlador dins el microcontrolador.
Per tant, a I’estructura cal posar-hi I’adreca I2C del dispositiu, quina mena de transacci6 es vol fer
(lectura, escriptura, etc.), en aquest cas 2C_FLAG_WRITE_READ, que vol dir que volem llegir
d’un registre; també cal omplir una array d’estructures (buff]) on es guarda les dades a enviar o
arebre. En aquest cas, com que només volem llegir un registre (un sol byte) al buf[0] només hi
posem I’adreca del registre a llegir i la longitud a 1 i a buf{1] li posem un buffer per emmagatzemar
el valor llegit i de longitud 1 sol byte per llegir.

Un cop omplerta aquesta estructura s’engega la transaccié amb la crida I2C_TransferInit(), que
retorna un I2C_Status. Després, tal com ens demana la biblioteca EMLIB, cal anar cridant la
funcié I2C_Transfer() mentre la variable I2C_Status valgui i2cTransferInProgress. Aixo indica
que la transferéncia pel bus s’ha acabat i cal veure com ha anat 1’operacid. Si tot ha anat bé la
variable I2C_Status valdra i2cTransferDone. Aixi, el que tenim és una funcié que li passem
I’adreca del registre que volem llegir i ens retorna el valor que ens retorna el dispositiu.

Ara tornem al nostre sensor de gestos. Quasi tots els dispositius I2C tenen un registre de tipus
identificacid, que ens permet validar que la comunicaci6 es fa realment amb ell. En el cas del
APDS-9960 t€ un registre anomenat ‘ID’ a I’adreca 0x92 i que el valor que retorna al llegir-lo és
0xAB (pagina 25 del Datasheet [6]). Ara toca, doncs, muntar una funcié que comprovi que s’esta
correctament a aquest dispositiu com es veu al Llistat 15.4.

Ara només cal ajuntar-ho tot en el nostre main i ja podem comprovar que tenim la PCB ben
connectada i funcionant. Farem servir aquest bus i el mateix dispositiu a 1’exemple tractat a
Capitol 21 - Una aplicacié completa.

El bus SPI és un altre dels busos més populars usats en sistemes encastats. Aquest sistema de
comunicacié no és un bus propiament dit, donat que ens permet connectar un Master amb un Slave
i només de forma indirecta connectar més Slaves. Aquest bus es basa en dues linies per enviar o
rebre dades, batejades MOSI' i MISO? segons la dada vagi del Master cap a1’Slave o a 1’inrevés.
Com és un bus sincron, hi ha una tercera linia que porta el rellotge (SCLK?) i que el genera el
master. Per ultim, hi ha una quarta linia de control, normalment anomenada Ss4 que indica a un
slave concret que la transmissio és per ell. Controlant correctament un conjunt d’aquestes linies
SS és possible tenir més dispositius slaves al connectats al bus (Figura 16.1). Aquesta linia pot no
usar-se, i llavors es parla d’un SPI de 3 fils enlloc d’un SPI de 4 fils.

Aquest bus acostuma a poder treballar a forca més velocitat que el bus 12C, i és habitual configurar-
lo per freqiiencies de rellotge d’uns pocs MHz (és habitual treballar amb freqiiencies d’1, 10 o fins
i tot 24 MHz). En tot cas, cal consultar sempre les especificacions dels dispositius slave per saber
la velocitat maxima de treball.

Precisament per aquesta caracteristica, que fa que es puguin enviar moltes més dades per segon, els
dispositius que incorporen un bus SPI acostumen a ser sensor i dispositius que generen un gran
volum de dades de forma continua, com ara: ADCs, memories RAM i FLASH, LCDs, targetes SD,
alguns sensors concrets, etc.

Com que aquest bus no esta pensat per tenir més d’un slave connectat simultaniament, no incorpora
el concepte d’adreca de dispositiu. A diferéncia del 12C, que el propi bus especifica com és el
protocol per accedir a un registre, en el SPI aquesta definici6 és propia de cada fabricant. Tot i aixo,
habitualment el primer camp de la transmissi6 €és 1’adreca del registre a accedir o la comanda a
executar.

"Master Output Slave Input, Sortida del Master Entrada a I’Esclau
2Master Input Slave Output, Entrada al Master Sortida de 1’Esclau
3Serial Clock, Relloge Master

4Slave Select, Seleccié d’Esclau

94 Capitol 16. SPI

SCLK » SOK

MOSI » MOSI SPt
SPi MISO '« MISO Slave
Master S51 » S5

SS2 —

8§53 —

I_rl v 'rl
“g38 | %3R8

Figura 16.1: Bus SPI tipic
Bus SPI tipic. Per en:User:Cburnett [GFDL (http://www.gnu.org/copyleft/fdl.html) o
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], de la Wikimedia Commons

En alguns microcontroladors el control d’aquest bus el fa el periferic USART (veure Capitol 14 -
UART) configurat pertinentment, com és el cas de les families de microcontroladors de Silicon
Labs [24, pagina 207], i d’altres families incorporen periférics dedicats en exclusiva a aquest bus,
com els de ST [30, pagina 873].

17.1

El DMA! és un dispositiu present a la majoria de microprocessadors. Aquest dispositiu s’encarrega
de fer transferéncies de dades entre dispositius o memoria sense que la CPU intervingui.

Per que es fa servir? Doncs perque sovint cal transferir quantitats importants de dades entre dues
parts de la memoria, o anar transferint dades d’un dispositiu cap a un buffer a la memoria i no cal
que la CPU estigui entretinguda fent aixo quan podria fer alguna cosa més interessant o en un mode
de baix consum (veure Capitol 35 - Baix cosum).

Els DMA acostumen a tenir diferents canals que poden fer transferéncies per separat i en paral-lel,
de manera que podem tenir un canal preparat per moure regions de memoria, un altre per enviar
dades cap a un DAC, un tercer transferint les dades rebudes per la UART, etc. Aquest diferents
canals acostumen a estar prioritzats, de manera que 1’arbitre del bus pot decidir quin canal ha de
poder accedir abans que un altre.

Normalment el dispositiu DMA es configura mitjangant descriptors, que sén unes estructures on
es guarda el tipus de transferéncia, I’adreca d’origen, 1’adreca de desti, etc. Un cop s’engega la
transferencia, el DMA anira movent les dades d’una adreca a I’altra segons s’hagi configurat. A la
majoria de DMAs moderns, a més, es pot configurar el DMA de manera que copii una dada d’un
determinada adreca (que correspon a un registre de dades d’un periferic) cada cop que el periferic
llenga una notificacid, de manera que el DMA fa una copia d’una dada cada cop que el dispositiu
en genera una. Tot aixo es veura millor amb dos exemples.

Exemple

Posar un exemple de DMA sovint és complicat, ja que involucra forca periferics diferents i
configuracions, aixi que intentarem fer algun de simple per comencar. Per aquest primer exemple
hem optat per fer una transferéncia entre dues regions de memoria amb el DMA. Per aixo, tindrem

IDirect Memory Access

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/DMA_1

96 Capitol 17. DMA

Llistat 17.1: Inicialitzacié del DMA

dma_init.hprot = 0;
dma_init.controlBlock = dmaControlBlock;
DMA_Init (&dma_init);

Llistat 17.2: Definici6 de la variable dmaControlBlock

DMA_DESCRIPTOR_TypeDef dmaControlBlock [DMACTRL_CH_CNT % 2] SL_ATTRIBUTE_ALIGN (
DMACTRL_ALIGNMENT) ;

un buffer d’origen i un de desti, en aquest cas de 256 elements de 32 bits cadascun (uint32_t
src_buffer[BUFFER_SIZE]).

El primer que es fa és inicialitzar el DMA amb les funcions d’emlib corresponents.

La variable dmaControlBlock és un array on es guarden els descriptors de cada un dels canals
disponibles del DMA (Llistat 17.2).

A continuacié configurem un canal del DMA (Llistat 17.3) i li assignem una funcié de callback
perque ens notifiqui quan ha acabat la transferéncia (Llistat 17.4):

També s’activen les interrupcions (necessaries per tenir callbacks) i es selecciona com sera la
transferéncia (en aquest cas un O per indicar que sera de memoria a memoria).

Per ultim es configura el descriptor de la transferencia (Llistat 17.5).

En aquest cas es tria com ha de manegar les adreces (tant a la font com al desti) i quants bytes es
transfereixen a cada accés. Com que estem movent un array de 32 bits de paraula, triem incrementar
de 4 en 4 I’adreca i moure 4 bytes a cada accés.

Per ultim activem la transferéncia DMA com es veu al Llistat 17.6.

Aqui la dnica particularitat és que cal especificar-li el nombre d’accessos a fer per completar la
transferéncia, perd restant-li un? i altres biblioteques poden necessitar parametres lleugerament
diferents.

A I’exemple es fa servir una variable global (volatile!) de nom dma_end que la callback posa a

2 Aix0 és una particularitat de la biblioteca EMLIB de Silicon Labs

Llistat 17.3: Configuraci6 del canal DMA

dma_cb.cbFunc = DmaComplete;
dma_cb.userPtr = NULL;

dma_chn.enableInt = true;
dma_chn.highPri = false;
dma_chn.select = 0; /# set to 0 because 1is a memory-to-memory transfer #*/

dma_chn.cb = &dma_cb;
DMA_CfgChannel (0, &dma_chn);

17.1 Exemple 97

Llistat 17.4: Callback del DMA DmaComplete()

void DmaComplete (unsigned int channel, bool primary, wvoid =*user) ({
dma_end = true;

Llistat 17.5: Parametres de configuracié del DMA

dma_descr.arbRate = dmaArbitratel;
dma_descr.dstInc = dmaDatalnc4;
dma_descr.hprot = 0;
dma_descr.size = dmaDataSize4;
dma_descr.srcInc = dmaDatalInc4;

DMA_CfgDescr (0, true, &dma_descr);

true per notificar a la funcié main() que la transferéncia s’ha acabat. Quan aix0 passa, es comprova
que els dos buffers so6n iguals (Llistat 17.7) i es presenta per la consola.

Llistat 17.6: Activacié de la transferencia DMA

DMA_ActivateAuto (0, true, dst_buffer, src_buffer, BUFFER_SIZE - 1);

17.2

98 Capitol 17. DMA

Llistat 17.7: Comparaci6 dels dos buffers de I’exemple DMA

bool check_buffers_copy () {
int i;

for (i=0; i<BUFFER_SIZE; i++) {
if (dst_buffer[i] != src_buffer[i]) {
return false;
}
}

return true;

Un exemple amb DMA més complicat

Una altra aplicaci6é del DMA és transferir dades cap o des de un periferic cap a memoria sense que
el processador ho hagi de fer. Un exemple és fer servir el DMA per rebre o transferir dades cap
al port serie. Aixi, enlloc d’anar llencant una IRQ cada cop que el microcontrolador pot enviar la
segiient dada, es pot configurar el DMA per a que ho faci ell mateix de forma automatica Anem a
veure com es fa aixd modificant el segon exemple sobre la UART (comentat a la Secci6 14.3 - Un
exemple amb la UART més complicat).

Aixi, el que farem en aquest exemple és deixar el buffer circular i el mateix mecanisme per rebre
dades de la USART (RX) pero canviarem la manera en que enviem les dades (TX). L’exemple és
aqui.

El que farem és preparar el DMA per a que transfereixi dades des d’un buffer a la memoria
cap al registre d’enviament de la USART (registre TXDATA de la USART1). En aquest cas,
cal configurar-lo que no incrementi I’adreca de desti, que incrementi la font byte a byte i que
transfereixi bytes (els caracters d’una UART son bytes). També cal especificar quin dispositiu fa de
trigger, és a dir, quin dispositiu notifica que té una dada disponible per ser transferida (parametre
dma_chn.select = DMAREQ_USART1_TXBL). En aquest exemple no ens cal saber quan el DMA
ha acabat la transferéncia, aixi que no registrem cal callback ni activem les interrupcions del DMA.
Tot aix0 ho hem encapsulat a la funcié my_DMA _Init() (Llistat 17.8).

Ens cal també una funcié que engegui la transferéncia del DMA cap a la UART. Li hem dit
sendUARTbyDMA() i rep com a parametres el buffer a enviar i la seva longitud (en bytes).
Aquesta funci6 tan sols espera que el DMA no estigui ocupat i tot seguit engega la transferéncia
(veure Llistat 17.9).

Llistat 17.8: Diferencies a la inicialitzacié del DMA

void my_DMA_TInit (void) {
dma_chn.select = DMAREQ_USARTI1_TXBL;
dma_descr.dstInc = dmaDatalIncNone;

dma_descr.size = dmaDataSizel;
dma_descr.srcInc = dmaDatalncl;

https://sistemesencastats.wordpress.com/2018/03/08/serie-i-usb-cp2102/
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/UART_DMA

17.2 Un exemple amb DMA més complicat 99

Llistat 17.9: Funcié sendUARTbyDMA()

void sendUARTbyDMA (void xbuffer, int size) {
/+ wait for other DMA transfer to complete */
while (DMA_ChannelEnabled (DMA_USART_TX_CHANNEL)) ;

/% Activate DMA x/
DMA_ActivateBasic (DMA_USART_TX_ CHANNEL, true, false, (void x) & (USART1->

TXDATA), buffer, size - 1);

Llistat 17.10: Funcié main() de I’exemple

void main () {

while (1) {

if (AvailableData (&RX_SerialBuffer) != 0) {
character = PopData (&RX_SerialBuffer);
sprintf (TXbuffer, , character);

sendUARTbyDMA (TXbuffer, strlen(TXbuffer));

La resta del codi és prou auto-explicatiu (o ho hauria de ser!): no s’activa la IRQ de TX de la
USART i hem tret la ISR corresponent. Tampoc es crea un buffer circular per enviar per la UART.

Dins el bucle infinit del main() s’espera a rebre un caracter, es munta una cadena relativament
Ilarga (17 bytes) amb el caracter rebut i per acabar s’envia usant la nova funcio.

Per veure com connectar i fer servir el port serie per comunicar-se amb un ordinador, mireu el
Capitol 14 - UART.

Aquesta pagina esta en blanc expressament, tot va bé.

18.1

(18. FLASH

La memoria FLASH que actua com a ROM pel nostre microcontrolador també es pot fer servir per
emmagatzemar dades d’usuari i ser escrita i llegida per codi de programa. Com que aquesta mena
de memoria és no volatil, les dades que hi guardem romandran entre reinici o pérdues d’alimentacio.

Cal tenir en compte que les memories FLASH tenen certes particularitats que les fan diferents a
d’altre tipus de memories:

* Niimero finit de cicles d’escriptura i lectura: les memories FLASH tenen un limit de vegades
que es poden esborrar i escriure. Aquest nombre pot estar entre 10.000 i 100.000 cicles, cosa
que les pot fer poc adequades per emmagatzemar dades que variin molt sovint.

* Paginacid: les memories FLASH estan organitzades en pagines que cal esborrar sencera per
escriure una dada.

* No es pot llegir mentre s’escriu la memoria FLASH del microcontrolador, per tant caldra
tenir una cura especial en que no hi hagi cap lectura ni execucié de codi (compte amb les
ISRs) mentre s’esta escrivint dades a la FLASH.

En el cas dels microcontroladors de Silicon Labs, el nombre maxim d’escriptures a la FLASH
és de 20.000 cicles, un cop passada aquesta xifra la FLASH pot comencar a donar problemes
[40, pagina 28] (en els microcontroladors d’ST, el nombre de cicles garantits és de 10.000 [41,
pagina 110]). Aixo fa que, per exemple, si volem emmagatzemar les dades d’un sensor que es
llegeixen cada 10 segons a la FLASH, estariem superant les 20.000 escriptures al cap de 55 dies
de funcionament. Caldra buscar metodes alternatius d’emmagatzemar les dades per tal de no fer
malbé la FLASH tant aviat.

Un exemple senzill

A continuacié veurem un exemple senzill on guardarem un conjunt de dades que han de ser
persistents entre reinicis o perdues d’alimentaci6 del nostre dispositiu. L’exemple esta al repositori
amb el nom de FLASH_1.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FLASH_1

102 Capitol 18. FLASH

Llistat 18.1: Estructura per guardar-se a la FLASH

typedef struct {
uint32_t fieldl;
uint8_t field2;
uint32_t field3;
bool field4;

} persistent_data_t;

Llistat 18.2: Funcions per accedir a la FLASH

void Flash_Write () {
MSC_ErasePage (userDataPage) ;
MSC_WriteWord (userDataPage, &my_persistent_data, sizeof (my_persistent_data));
printf () ;

}

void Flash_Read() {
memcpy (&my_persistent_data, userDataPage, sizeof (my_persistent_data));

}

Primer es defineix una estructura en C per agrupar les dades que es volen emmagatzemar a la
FLASH tal com es veu al Llistat 18.1. Tots els camps d’aquesta estructura seran les dades persistents
que guardarem a la FLASH i que es podran llegir de nou a cada reinici.

Tot seguit es defineixen dues funcions per llegir i escriure a la FLASH (Llistat 18.2). Com es pot
veure, cal cridar a funcions especials per escriure a la FLASH: la primera (MSC_ErasePage())
esborra una pagina de la FLASH i la segona (MSC_WriteWord()) escriu a la FLASH les dades
que se li passin. Aquesta funcié d’escriptura necessita que la mida de les dades sigui divisible per 4
(en el cas de la nostra estructura, la seva mida és de 16 bytes) [42][43].

Com es pot veure al mateix codi (Llistat 18.2), per llegir de la memoria FLASH (funcié Flash_Read())
només cal fer un accés a memoria normal i corrent, i en aquest cas el que es fa és copiar el contingut
de la FLASH cap a la estructura amb les dades persistents amb un memcpy().

La resta de I’exemple és prou senzill: quan es prem el boté O de la placa d’avaluaci6 s’escriu a la
FLASH I’estructura i al pitjar el bot6 1 es canvien els valors de dita estructura. D’aquesta manera,
al iniciar la sessi6 de debug es pot observar com els valors que hi han guardat a la FLASH i1 que es
copien a I’estructura son els valors que s’han guardat préviament a I’anterior execucio.

Per ultim, cal fer notar que la macro USERDATA_BASE esta definida pel fabricant i apunta a la
zona de la FLASH reservada per I’usuari d’una pagina (en aquest cas 512 bytes) de longitud.

18.2 Bootloaders

Un cas especial per accedir a la FLASH és el dels bootloaders. Un bootloader és un petit codi que
s’executa cada cop que s’inicia el microcontrolador i acostuma a poder gestionar la reprogramacio
del microcontrolador d’una forma més amigable que no pas usant el programador.

El més habitual en bootloaders per sistemes encastats és que puguin rebre una nova imatge de

18.2 Bootloaders 103

I’executable de 1’aplicaci6 a través d’un dels ports serie del sistema . Per realitzar aquest tasca, el
bootloader ha de poder accedir i escriure a tota la memoria FLASH del microcontrolador [44].

ITambé hi ha bootloaders que poden rebre la imatge per USB, via radio, per un port Ethernet, llegir-la d’una tarja
SD, etc.

Aquesta pagina esta en blanc expressament, tot va bé.

(19. Moduls

Molts dels microcontroladors actuals incorporen periferics per accelerar els calculs de xifratge i
desxifrage de dades. La majoria suporten directament el xifratge i desxifratge dels metodes més
habituals (AES, DES, 3DES, etc.) i proporcionen acceleraci6 a d’altres metodes més inusuals. A
més, acostumen anar acompanyats de biblioteques que ajudes a un Us senzill d’aquests processos
que, en ocasions, son for¢a complexos.

Pel cas de la familia EFM32 es te un modul criptografic compatible amb AES en les versions
més antigues dels microcontroladors i un modul millorat anomenat CRYPTO a les families més
modernes [4, pagina 453]. Pel microcontroladors d’ST hi ha un periferic anomenat processador
criptografic (Cryptographic processor) i el Hash processor per realitzar tasques relacionades amb
el xifratge de dades [30, pagina 720].

En el cas de SiliconLabs i el microcontrolador que tenim a la nostra placa de prototipat (Tiny
Gecko), el modul AES suporta, com el seu propi nom indica, el metode de xifratge AES, en les
versions de clau de 128, 192 i 256 bits i treballant en blocs de 128 bits de dades. Xifrar un missatge
de 128 bits li porta 54 cicles de rellotge en el cas d’una clau de 128 bits i de 75 cicles amb la clau
de 256 bits. Es per tant, una implementacié forca rapida i eficient de 1’algorisme i, no cal dir-ho,
millor i més robusta que la que puguem fer nosaltres amb codi.

La versié del modul per microcontroladors més moders, anomenada CRYPTO, accelera també fun-
cions de hash (SHA-1, SHA-224 i SHA-256). parts de xifratge el-liptic (ECC) i porta acompanyant
una biblioteca SW que suporta d’altres algorismes (DES, 3DES, MDS5, RC4) accelerats en part pel
modul HW.

L’ds d’aquesta mena de moduls acostuma a ser forga senzill, ja que només cal configurar la clau de
xifratge i el metode a usar i a partir d’aqui emplenar el buffer i donar 1’ordre de xifrar (o desxifrar).
Un cop acabat el xifratge, es pot llegir el buffer amb les dades xifrades i fer-les servir com calgui.

19.1

106 Capitol 19. Moduls criptografics

Llistat 19.1: Clau i text a xifrar

uint8_t myKey[16] = {0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, O0x2A, 0x2B, 0x2C
, 0x2D, O0x2E, O0x2F, 0x30, 0x31, 0x32};
char my_message[] =

’

uint8_t my_buffer[64];

Llistat 19.2: Operaci6 de xifratge

AES_ECB128 (my_buffer, (uint8_t*) my_message, my_message_len, myKey, true);

Xifrant dades amb AES-128

Al repositori hi ha un exemple que xifra una cadena de text amb AES-128 i el metode conegut com
ECB (Electronic Codebook), el me¢tode més senzill de xifratge. Primer cal generar una clau de
xifratge i un text a xifrar (Llistat 19.1).

Donat que la biblioteca emlib suporta el periferic, només cal una crida a la funcié especifica per
obtenir el xifrat del buffer, tal com es veu al Llistat 19.3.

Un cop retorna la funcid, a my_buffer ja hi tindrem el missatge xifrat. A I’exemple, agafem aquest
buffer xifrat i el desxifrem per comprovar que, efectivament, el procés ha estat correcte:

Aqui cal fer notar que primer hem de generar la clau de desxifratge a partir de la clau de xifratge.
Aquest procés també es fa via HW amb el periferic AES.

A la consola es van treien els valors que es van obtenint a cada pas, tal com es veu a la Figura 19.1.

El resultat també el podem comprovar a una eina externa per corroborar que el procés és valid i
compatible amb algun altre SW de xifratge/desxifratge AES-128. Podem fer servir la web aes
online domain tools per comprovar-ho (link, veure Figura 19.2).

Llistat 19.3: Operaci6 de xifratge

/+ Generate decrypt key from original key */
AES_DecryptKeyl28 (decryptionKey, myKey);

/% Decrypt message #*/
AES_ECB128 ((uint8_t) my_buffer_ decrypt, my_buffer, my_message_len,
decryptionKey, false);

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/AES_1
http://aes.online-domain-tools.com/

19.1 Xifrant dades amlb AES-128 107

P printf("Decrypted message: %s\r\n", my buffer_decrypt);

[R Praplem |47 earch ‘Econsolen‘@'s:--a ‘3‘:3 Hierarchy ‘s@" min ‘ X EBE mEvmy
Program Output Console

Original message: This is a plain message to be encrypted with the AES module.

Message length: 64

key: 232425262728292A2B2C2D2E2F303132

Encrypted message: B6876B99DF2FD42C131534D781C974EE549DA9E59252172518F0D3A125D0269DCAE1C515A577D34AE729851850A74A007D26 FAC6F6B8IA25427F16C508400024
Decrypted message: This is a plain message to be encrypted with the AES module.

Figura 19.1: Consola de I’exemple AES_1

AES - Symmetric Ciphers Online

Input type: | Text E ‘
Inputtext: B6876B99DF2FD42C131534D781C974EE549DAIES9252172518FOD3A125D0269DC4ELIC515A577D
{hex) 34AE729851850A74A000B31B814A2656BD198860A78DFITA367
4
" Plaintext '* Hex Autodetect: ON | OFF
Function: | AES ¥ ‘
Mode: | ECB (electronic codebook) v |

------------ | 232425262728292A2B2C2D2E2F303132

" Plaintext ® Hex

e o

Decrypted text:

0Beeeeas| sS4 68 69 73 28 69 73 20 61 20 70 6c 61 €9 Be 20 This is a plain

eeeeeelR| o6d 65 73 73 61 67 65 20 74 6f 20 62 65 20 65 6e messadqg to be en
000eeE20| 63 72 79 70 74 65 64 20 77 69 74 68 20 74 6B 65 crypted with the
0B0BAR38 | 20 41 45 53 20 6d 6f 64 75 6c 65 B0 58 0O B8 68 AES medule . X. F
[Cownload as a binary file] [?7] Inactive

o

Figura 19.2: Web per desxifrar el text xifrat de I’exemple AES_1

Aquesta pagina esta en blanc expressament, tot va bé.

(20. Alitres periférics

Fins ara s’han introduit els periferics més habituals i que es poden trobar a als microcontroladors
actuals. Tot 1 aix0, hi ha altres periférics més especifics d’algun ambit d’aplicacié que no s’han
presentat. En podem enumerar uns quants sense poder ser exhaustius:

* DMA avangats, que permeten fer transferéncies complexes, no tant sols d’un buffer d’una
sola dimensi6 (com els arrays) si no de dues dimensions per moure imatges o matrius de 2
dimensions [30, pagina 339].

Drivers LCD! que poden controlar directament pantalles [30, pagina 480][4, pagina 490].
Segons el model i el fabricant aquest modul podra controlar diferents tipus de pantalla (LCD
o TFT), amb color o blanc i negre, diferents resolucions i profunditat de color, etc.

Modul controlador de USB que permet connectar i controlar el microcontrolador al bus USB
[30, pagina 965][45, pagina 1446].

Modul Ethernet per poder connectar el nostre sistema encastat a una xarxa cablejada amb
Ethernet. Aquests tipus de periférics necessiten un xip extern que es controla per un bus forca
estandarditzat anomenat MII? (o el més modern RMII) [30, pagina 1121][45, pagina 1729]
[46].

Controlador SDIO? per accedir a dispositius SDIO, majoritariament targetes de memoria SD
[30, pagina 1019][45, pagina 1670].

Controlador de bus CAN* que permet connectar el dispositiu al bus CAN [30, pagina 1076][45,
pagina 1899] [47].

Treballar amb aquests periferics, tot i que no ho veurem en aquest llibre, és forca similar a la resta
de periferics que hem vist: estan mapats a memoria i tenen un conjunt de registres que permet
controlar el periferic a través de llegir i escriure aquests registres. Els fabricants proporcionen
llibreries per facilitar-ne 1’ds com amb la resta de periférics que hem vist.

' Liquid Crystal Display Pantalla de Cristall Liquid
2Media-independent interface

3Secure Digital Input Output

4Controller area network

20.1

20.1.1

20.1.2

110 Capitol 20. Altres periférics

Els periferics més complexos (per exemple USB o Ethernet) acostumen a portar associats una
Ilibreria proporcionada pel fabricant o per tercers per poder controlar el periferic i simplificar-ne
I'tis. Aixi, per exemple, és habitual fer servir la llibreria LwIP per tenir funcionalitat de xarxa
(sockets, TCP, UDP, IP, etc.) [48][49] i que els fabricants proporcionin documentacié o codi per
enllagar aquesta llibreria amb el seu periferic.

Peripheral Reflex System

Un periferic que proporciona el fabricant Silicon Labs per la seva linia EFM32 és el Peripheral
Reflex System (PRS®). Aquest sistema és una mena de xarxa que permet a diferents periferics
comunicar-se entre si sense involucrar la CPU, de manera que uns envien senyals que d’altres
recullen per engegar alguna tasca [4, pagina 135].

D’aquesta manera, és possible que un Timer envii un senyal a la UART perque inici una transmissio,
o un GPIO engegui un Timer i permeti comptar quant de temps ha estat pitjat un botd. Tot aixo
es fa sense que la CPU intervingui per a res, estalviant energia i simplificant el codi. Els senyals
que es generen i es reben estan dins de canals, de manera que poden funcionar diferents canals
simultaniament i connectar-hi diferents periferics sense que s’interfereixin. Aquest periféric només
es troba als dispositius de Silicon Labs i, fins al moment, cap altre fabricant inclou res de similar en
els seus microcontroladors [50].

Un exemple amb PRS senzill

En aquest exemple d’ds del PRS el farem servir per comptar el temps que es polsa un dels botons
de la placa de prototipat. Per fer-ho, configurarem el port GPIO per a que generi un senyal PRS per
nivell i aquest alimenti a un dels canals del Timer 0. Quan es detecti el flanc de baixada del GPIO
(es pitja el botd), el Timer comengara a comptar i quan es detecti el flanc de pujada (es deixa anar
el botd) el Timer s’aturara i llencara una interrupcié de tipus Input Capture. Al final, el que tindrem
al registre Capture 0 del Timer sera el nombre de ticks que ha estat pitjat el bot6 0.

La configuraci6 del Timer és la que es veu al Llistat 20.1. Al codi es veu que es tria el canal 2 del
PRS per activar ’input capture i es configura el Timer per a que s’engegui quan es rebi un flanc de
baixada i s’aturi amb el flanc de pujada. També es pre-escala el rellotge per 1024, deixant-lo en
14.000.000/1024 = 13.617,875Hz.

La configuracié del pin és més senzilla, tal com es veu al Llistat 20.2. Simplement es configura que
els GPIO generaran senyals PRS i es configura el canal niimero 2 per que rebi el valor del pin 8.

Per dltim, el Timer esta configurat per generar una IRQ en quan capturi el valor del comptador
el CC1. Per tant, cal escriure la ISR corresponent i tractar les dades com toca. En aquest cas
només es treu per la consola el valor llegit en ticks del Timer. A la funcié main() tant sols hi ha
la configuraci6 dels periferics, ja que un cop configurats, la CPU no cal que faci res fins que no
es crida la ISR; és per aixo que dins el bucle principal es posa la CPU en el mode EM1 de baix
consum amb la crida a la funci6 EMU_EnterEM1().

Exemple amb PRS, DMA, DAC i ADC

Anem a veure un exemple for¢a complex, on intervindran el DMA, I’ADC, el DAC i un parell de
Timers. El que fara I’exemple sera enregistrar els valors durant 2 segons d’una entrada analogica
per replicar-la després per una sortida també analogica. Per aixo, es configurara I’ADC per que
faci les lectures i es vagin guardant a un buffer fent servir el DMA i després es faci I’operaci6 a la
inversa cap el DAC.

3 Peripheral Reflex System

20.1 Peripheral Reflex System

111

Llistat 20.1: Configuraci6 del Timer i I’input capture

static void TimerConfig(void) {
TIMER_InitCC_TypeDef timerCCInit = ({

.eventCtrl = timerEventFalling,
.edge = timerEdgeFalling,
.prsSel = timerPRSSELChZ2,
.cufoa = timerOutputActionNone,
.cofoa = timerOutputActionNone,
.cmoa = timerOutputActionNone,
.mode = timerCCModeCapture,
.filter = false,
.prsInput = true,
.coist = false,
.outInvert = false

bi
TIMER_InitCC(TIMERO, 0, &timerCCInit);

TIMER _Init_TypeDef timerInit = {
.enable = false,
.debugRun = false,
.prescale = timerPrescalel024,
.clkSel = timerClkSelHFPerClk,
.fallAction = timerInputActionReloadStart,
.riseAction = timerInputActionStop,
.mode = timerModeUp,
.dmaClrAct = false,
.quadModeX4 = false,
.oneShot = false,
.sync = false

}i

TIMER_Init (TIMERO, &timerInit);
TIMER_IntEnable (TIMERO, TIMER_IF_CCO);
NVIC_EnableIRQ (TIMERO_IRQn) ;

Llistat 20.2: Configuracié del GPIO per generar un senyal PRS

static void GPIOConfig(void) {
GPIO_PinModeSet (gpioPortD, 7, gpioModePushPullDrive, 0); /+* LED */

GPIO_PinModeSet (gpioPortD, 8, gpioModelInput, O0); /* Boto 0 */

GPIO_PinModeSet (gpioPortB, 11, gpioModeInput, O0); /* Boto 1
/+ Set Interrupt configuration for both buttons x/
GPIO_IntConfig(gpioPortD, 8, false, true, true);
GPIO_IntConfig(gpioPortB, 11, false, true, true);

GPIO_InputSenseSet (GPIO_INSENSE_PRS, _GPIO_INSENSE_RESETVALUE) ;

PRS_SourceSignalSet (2, PRS_CH_CTRL_SOURCESEL_GPIOH,
PRS_CH_CTRL_SIGSEL_GPIOPIN8, prsEdgeOff);

*/

112 Capitol 20. Altres periférics

Llistat 20.3: ISR del Timer

void TIMERO_IRQHandler (void) {
volatile uint32_t time_value = 0;

uint32_t aux;
aux = TIMER_IntGet (TIMERO) ;

TIMER_IntClear (TIMERO, aux);

time_value = TIMER_ CaptureGet (TIMERO, O0);
printf (, time_value); // 13672 ticks / second

Llistat 20.4: Configuracié de I’ADC perque funcioni amb el PRS

static void ADCConfig(wvoid) {

singleInit.reference = adcRefVDD;
singleInit.input = adcSingleInpCh6;

/+ Use PRS channel 0 */
singleInit.prsEnable = true;
singleInit.prsSel = adcPRSSELChO;
ADC_InitSingle (ADCO, &singleInit);

Per marcar el ritme de captura de I’ADC i de conversi6 del DAC es fara servir un senyal PRS
proporcionat per Timers. D’aquesta manera, es configurara un Timer per a que generi un senyal
PRS cada cop que fa overflow i aquest senyal engegui el procés de conversié de I’ADC i un altre
Timer per generar un senyal similar pel DAC.

A I’exemple es configurara I’ADC perque prengui mostres del canal 6 amb referencia de tota
I’escala, tot seguit es configura perque el seu trigger sigui el canal 0 del PRS (veure Llistat 20.4).

A continuaci6 es configura el canal PRS perque sigui el Timer 0 qui generi el senyal i es configura
també el Timer O perque generi un pols a la freqiiencia desitjada (Llistat 20.5).

Amb aixo tindrem que quan s’engegui el Timer 0, aquest anira generant senyals pel PRS que faran
que I’ADC faci una conversi6 de senyal. Ara cal configurar el DMA perque reculli aquesta dada i
I’emmagatzemi on pertoca. Aixo es fara de forma molt similar a I’exemple anterior, configurant el
canal de manera que la font del senyal sera I’ADC (parametre DMAREQ_ADCO_SINGLE) i que
I’origen de dades no s’ha de canviar i el desti s’ha d’incrementar de 2 en 2 (ja que llegirem dades
de I’ADC de tipus uint16_t que son de 2 bytes) (Llistat 20.6).

Per dltim, per engegar aquest procés ho farem a través del bot6 0 de la placa i per tant hem de posar
el codi que engega el Timer O i que activa el DMA a la ISR corresponent (Llistat 20.7).

Un procés molt similar és el que cal fer per realitzar I’operacié inversa, €s a dir, fer que el DMA
transfereixi les dades obtingudes cap al DAC perque aquest generi el senyal analogic corresponent.
Primer es configura el DAC indicant que cal que faci una conversié cada cop que rebi un senyal del
canal PRS niimero 3 (Llistat 20.8).

20.1 Peripheral Reflex System 113

Llistat 20.5: Configuraci6 del TimerO perque funcioni amb el PRS

static void ADCConfig(void) {

PRS_SourceSignalSet (0, PRS_CH_CTRL_SOURCESEL_TIMERO,
PRS_CH_CTRL_SIGSEL_TIMEROOF, prsEdgeOff);

TIMER_Init_TypeDef timerInit = TIMER_INIT_DEFAULT;

timerInit.enable = false;

TIMER_Init (TIMERO, &timerInit);

TIMER_TopBufSet (TIMERO, CMU_ClockFreqGet (cmuClock_TIMERO)/SAMPLING_FREQ) ;

Llistat 20.6: Configuraci6é del DMA per obtenir dades de I’ ADC

static void DMAConfig(void) ({

/+ configure DMA for ADC reads #*/
dma_cb_adc.cbFunc = dmaTransferCompleteADC;
dma_cb_adc.userPtr = NULL;

chnlCfg.highPri = false;

chnlCfg.enablelInt = true;

chnlCfg.select = DMAREQ_ADCO_SINGLE;
chnlCfg.cb = &dma_cb_adc;

DMA_CfgChannel (DMA_CHANNEL_ADC, &chnlCfgqg);

descrCfg.srcInc = dmaDatalIncNone;
descrCfg.dstInc = dmaDatalnc2;

descrCfg.size = dmaDataSize2;

descrCfg.arbRate = dmaArbitratel;
descrCfg.hprot = 0;

DMA_CfgDescr (DMA_CHANNEL_ADC, true, &descrCfgqg);

114 Capitol 20. Altres periférics

Llistat 20.7: Configuracié del DMA per obtenir dades de I’ADC

void GPIO_EVEN_IRQHandler (void) {
uint32_t aux;

/% clear flags =/
aux = GPIO_IntGet ();
GPIO_IntClear (aux);

LedOn () ;

/% Activate DMA transfer =/
DMA_ActivateBasic (DMA_CHANNEL_ADC, true, false, (voidx*)DMAbufferADC, (wvoidx)
& (ADCO->SINGLEDATA), SAMPLES-1);

/% Activate TIMER 0 #*/
TIMER_CounterSet (TIMERO, O0);
TIMER_Enable (TIMERO, true);

Llistat 20.8: Configuraci6 del DAC perque funcioni amb el PRS

static void DACConfig(void) ({

/* Use PRS channel 3 #*/
initChannel.prsEnable = true;
initChannel.prsSel = dacPRSSELCh3;
DAC_InitChannel (DACO, &initChannel, 1);

20.1 Peripheral Reflex System 115

Llistat 20.9: Configuracié del PRS i el Timer

static void DACConfig(void) {

/+ Configure PRS channel 3 trigger to be TIMERI*/
PRS_SourceSignalSet (3, PRS_CH_CTRL_SOURCESEL_TIMERI1,
PRS_CH_CTRL_SIGSEL_TIMERLOF, prsEdgeOff);

TIMER_Init_TypeDef timerInit = TIMER_INIT_DEFAULT;

timerInit.enable = false;

TIMER_Init (TIMER1, &timerInit);

TIMER_TopBufSet (TIMER1, CMU_ClockFreqGet (cmuClock_ TIMER1)/SAMPLING_FREQ) ;

Llistat 20.10: Configuraci6 del PRS i el Timer

static void DMAConfig(void) {

chnlCfg.highPri = false;

chnlCfg.enableInt = true;

chnlCfg.select = DMAREQ_DACO_CHI1;
chnlCfg.cb = &dma_cb_dac;

DMA_CfgChannel (DMA_CHANNEL_DAC, &chnlCfgqg);

descrCfg.srcInc = dmaDatalnc2;

descrCfg.dstInc = dmaDataIncNone;

descrCfg.size = dmaDataSize2;

descrCfg.arbRate = dmaArbitratel;
descrCfg.hprot = 0;

DMA_CfgDescr (DMA_CHANNEL_DAC, true, &descrCfgqg);

A continuacié es configura el canal nimero 3 del PRS perque obtingui el senyal del Timer 1
(Llistat 20.9). I per ultim es configura el DMA perque el seu trigger sigui el canal 1 del DAC
(Llistat 20.10).

La ISR del bot6 1, haura d’engegar el DMA i el Timer 1 per engegar el procés de generar el senyal
préviament mostrejat (Llistat 20.11).

116 Capitol 20. Altres periférics

Llistat 20.11: ISR del boto6 1

void GPIO_ODD_IRQHandler (void) {
uint32_t aux;

/% clear flags =/
aux = GPIO_IntGet ();
GPIO_IntClear (aux);

/% Activate DMA transfer x/
DMA_ActivateBasic (DMA_CHANNEL_DAC, true, false, (voidx) & (DACO->CHIDATA), (
voidx) DMAbufferADC, SAMPLES-1);

/+ Activate TIMER 1 =/
TIMER_CounterSet (TIMER1, O0);
TIMER_Enable (TIMER1, true);

21.1

21.1.1

Ja va sent hora de fer una aplicacié completa (senzilla) per il-lustrar tot el que hem anat aprenent
durant el curs.

Anem a veure una aplicaci6 sencera on ajuntarem unes quantes coses de les que hem vist fins ara.
Farem una aplicacié que segons la proximitat de la ma al sensor (o del sensor a una taula o un
obstacle), faci pampallugues més rapid o més lent el LED de la PCB. Farem servir el sensor de
proximitat APDS-9960 connectat a la nostra placa de prototipat com ja varem fer a I’exemple d’12C.
Per tant, caldra anar llegint ciclicament el sensor de proximitat i canviar el valor de PWM del LED
segons el valor llegit.

Com que aquest projecte fa servir diferents periferics del microcontrolador i les seves llibreries,
cal organitzar el codi perque tot sigui entenedor i amb un manteniment senzill. Aixi, tindrem
un conjunt de moduls (se li diu modul a una parella de fitxers .c i .h) per manegar les diferents
funcionalitats, sensors i periférics. Per tultim, tindrem el fitxer main.c on hi ha la funcionalitat
principal de I’aplicacié.

Biblioteques

Aquesta aplicaci6 fa servir quatre biblioteques per organitzar el codi, anem a descriure-les amb
detall.

BSP

Habitualment en aquest modul s hi posen les configuracions i inicialitzacions de diferents periferics
o dispositius comuns a tot el sistema.

En aquest cas es gestiona algun dels rellotges del sistema, el pin corresponent al LED i es configura
la sortida de la consola pel printf.

D’aquesta biblioteca es fa servir la funcié setupSWOForPrint() i la funcié BSP_Init(). Aquesta
segona funci6 tant sols crida la primera i inicialitza el LED de la placa.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Barebone_App_1

21.1.2

21.1.3

21.14

118 Capitol 21. Una aplicacié completa

Llistat 21.1: Part de la funcié I2C_WriteRegister

bool I2C_WriteRegister (uint8_t addr, uint8_t reg, uint8_t data) {
I2C_Status = I2C_TransferInit (I2C0, &seq);
while (I2C_Status == i2cTransferInProgress) {

I2C_Status = I2C_Transfer (I2CO);
}

Llistat 21.2: Funcié PWM_Set()

void PWM_Set (uint8_t percentage) {
uint32_t pwm_value;

/+ convert to percentage (0 to 100) to range 0 — PWM_FREQ #*/
pwm_value = percentage x PWM_FREQ / 100;

TIMER_CompareBufSet (TIMER1, 1, pwm_value);
}

12C_Wrapper

Hem escrit una biblioteca senzilla per accedir al bus I2C fent servir la llibreria emlib. D’aquesta
manera encapsulem tota la funcionalitat en dues funcions senzilles de fer servir per llegir o escriure
un registre d’un dispositiu 12C (I2C_WriteRegister i I2C_ReadRegister) com ja es va fer a
Seccié 15.1 - Exemple d’12C.

PWM

Es una biblioteca molt senzilla per controlar el canal PWM que correspon al LED de la nostra
placa. Només suporta aquest canal i només proporciona una funcié per controlar el PWM, amb
un parametre amb el percentatge de duty cycle del PWM (100% equival al LED sempre ences i
0% correspon al LED apagat). La funci6 PWM_Init() configura el Timerl perque funcioni com a
generador de PWM, de manera molt similar a I’exemple Seccié 10.1 - Generar PWM.

L’altra funci6 de la biblioteca és PWM_Set(), que rep el percentatge del duty cycle que ha d’estar
a 11 configura el Timer d’acord a aquest percentatge. Com que el Timer esta configurat perque
compti fins a PWM_FREQ (que val 4096), cal passar del rang 0 — 100 a 0 — 4096. Un cop calculat
el valor correcte, s’usa com a valor al comparador del timer.

APDS-9960

Aquesta biblioteca controla el sensor APDS-9960 via el bus I2C. Només gestiona la funcionalitat
de sensor de proximitat (que pot fer forca més coses).

La funcié APDS_9960_InitProximity() (Llistat 21.3) inicialitza el sensor per a qué funcioni com
a sensor de proximitat. Cal consultar el Datasheet per veure els registres que s’escriuen i quins
valors es posen [6].

La funcié APDS_9960_ReadProximity() (Llistat 21.4) llegeix el registre d’estatus i si hi ha una

21.1 Biblioteques

119

Llistat 21.3: Funcié APDS_9960_InitProximity()

void APDS_9960_InitProximity () {
// Enable Proximity detection
// ENABLE <- 5 & 2 & 0 bits
I2C_WriteRegister (DEVICE_ADDR, APDS_ENABLE_REG, 0x25);

/+ LED Strength to 100mA, Proximity Gain control to 8x */
I2C_WriteRegister (DEVICE_ADDR, APDS_CTRL_1_REG, 0x0C);

/# LED_BOOST 300% 0111_0001x/
I2C_WriteRegister (DEVICE_ADDR, APDS_CTRL_2_REG, 0x71);

Llistat 21.4: Funci6 APDS_9960_ReadProximity()

bool APDS_9960_ReadProximity (uint8_t *p_data) {
uint8_t status;
bool ret = false;

I2C_ReadRegister (DEVICE_ADDR, APDS_STATUS_REG, &status);

if ((status & 0x02) != 0x00) {
I2C_ReadRegister (DEVICE_ADDR, APDS_PDATA_REG, p_data);
ret = true;

return ret;

21.2

120 Capitol 21. Una aplicacié completa

dada disponible la llegeix, la retorna a traves del parametre per referéncia i el retorn de la funcié
valdra True; si no hi ha una dada disponible retorna False.

La biblioteca es basa en polling per saber si la dada a llegir és bona, comprovant el registre status i
retornant fals si no s’ha pogut llegir. Es podria millorar la biblioteca fent que el sensor llenci una
interrupci6 cada cop que tingui una dada nova (es veura més endavant a Seccié 21.3 - Afegint-hi
interrupcions).

Funcié principal

La funci6 principal de I’aplicaci6 esta en el propi main() i consta basicament d’un bucle sense fi on
es va llegint el valor de proximitat del sensor (si esta disponible) i s’ajusta el duty cycle del PWM
segons aquest valor, de manera que el LED pampalluguegi més sovint quan més a prop estigui
I’ obstacle.

Com que hem escrit la funcié APDS_9960_ReadProximity() de manera que retorni true o false
segons si s’ha pogut llegir o no una dada, el codi ens queda molt senzill i llegible. Si s’ha pogut
llegir, es treu per la consola de debug la dada i es converteix al rang adequat el valor llegit.

R) Fixem-nos que la conversi6 de rang es fa for¢ant primer la multiplicacié per 100 abans de la
divisié per 256 per tal de no perdre precisi6 en la conversi6. Com que treballem amb nombres
enters, la divisio és entera i si ho féssim a I’inrevés obtindriem sempre valors 0, ja que <valor
de 8 bits>/256 sempre dona 0 en una divisi6 entera i després encara que ho multipliquéssim
per 100 seguiria donant O..

Llistat 21.5: Funci6 principal

while (pdTrue) {
ret = APDS_9960_ReadProximity (&p_data) ;

if (ret == true) {
printf (, p_data);

/+ Convert from range 0 - 256 to 0 - 100 =/
PWM_Set ((p_data * 100) / 256);
}

21.3

21.3.1

21.3.2

21.33

21.3 Afegint-hi interrupcions 121

Afegint-hi interrupcions

En els exemples que hem vist fins ara, tant de periferics integrats com de dispositius externs la
comunicacid es feia via polling, aixo és, preguntant tota 1’estona si el dispositiu o periferic té alguna
dada disponible. L’altre manera de comunicar-se és mitjancant interrupcions, fent que el dispositiu
o perifeéric llenci una IRQ cada cop que té una dada disponible.

Per aixo, ens calen almenys, fer els segiients canvis al nostre sistema:

* Connectar el pin d’IRQ del sensor a la nostra placa de desenvolupament

* Configurar el sensor APDS-9960, de manera que generi un senyal d’IRQ cada cop que tingui
una nova dada disponible

* Habilitar les interrupcions al nostre microcontrolador perque cridi la ISR corresponent.

Connexioé del pin INT

Per aconseguir connectar el pin INT del sensor APDS-9960 només cal fer servir un cinque cable
Dupont entre la placa de prototipat del sensor i la nostra placa de desenvolupament. Si mirem
el manual de la placa de Silicon Labs, veurem que el pin PB12 es pot fer servir com a un GPIO
normal i que generi una interrupcié cada cop que tinguem un flanc.

Segons el datasheet [6, pagina 3] del APDS-9960 el pin d’interrupci6 és de tipus Open drain. Aixo
vol dir que aquest pin només pot for¢ar un valor *0’ i 1i cal que el valor *1° estigui forgat per un
pull-up. En el cas de la placa que tenim, ja incorpora aquesta resisténcia de pull-up, per tant, el pin
de GPIO del microcontrolador no cal configurar-lo com entrada amb pull-up.

Si la PCB no tingues la resistencia de pull-up, caldria configurar el pin com a pull-up ja que si no
ens trobariem que sempre estaria a ’0’, ja que cap dels dos dispositius el posariaa ’1’.

Configurar el dispositiu APDS9960

Ara cal que el sensor generi un senyal d’IRQ cada cop que tingui una nova dada disponible. Veiem
al datasheet [6, pagina 11 i 20] que cal activar les interrupcions per proximitat (bit PIEN del registre
Status) i si configurem el valor del camp PPERS del registre Persistence al valor O generara una
interrupcié cada cop que hi hagi una dada nova.

Amb aquesta configuracié segons el datasheet el sensor posara una interrupcié cada cop que hi
hagi una dada nova disponible de proximitat.

Habilitar la interrupcié corresponent

Liltim pas és habilitar la interrupcié corresponent al pin d’entrada que hem triat. Es una operacié
molt similar al que ja s’ha vist a ’apartat dels GPIOs (Capitol 6 - GPIO).

Un cop tenim tot preparat, cal també modificar la nostra funcid principal perque no faci polling,
que és el que volem evitar. Com que ara tenim una ISR que s’executara cada cop que que hi hagi
una dada nova al sensor, tenim varies opcions, en destaquem dues:

* Fer la lectura del registre del sensor des de la propia ISR
 Activar un flag que ens indiqui que podem fer la lectura des de la funci6 principal.

GPIO_PinModeSet (gpioPortB, 12, gpioModeInput, 1); /* IRQ from APDS 9960 x/

122 Capitol 21. Una aplicacié completa

Llistat 21.6: Nova funci6 d’initialitzacié del APDS_9960

void APDS_9960_InitProximity_TIRQ() {
//Enable Proximity detection
// ENABLE <- 5 & 2 & 0 bits
I2C_WriteRegister (DEVICE_ADDR, APDS_ENABLE_REG, 0x25);

/+ LED Strength to 100mA, Proximity Gain control to 8x #*/
I2C_WriteRegister (DEVICE_ADDR, APDS_CTRL_1_REG, 0x0C);

/% LED_BOOST 300% 0111_0001x/
I2C_WriteRegister (DEVICE_ADDR, APDS_CTRL_2_REG, 0x71);

/* Generate IRQ every data valid =/
I2C_WriteRegister (DEVICE_ADDR, APDS_PERSISTENCE_REG, O0);

Llistat 21.7: Habilitar I’interrupcié del pin corresponent

GPIO_IntConfig(gpioPortD, 8, false, true, true);
NVIC_EnableIRQ (GPIO_EVEN_IRQn) ;

Com ja s’ha comenta anteriorment (Capitol 7 - Controlador d’interrupcions) posar gaire codi
dins una ISR no és aconsellable, aixi que per aquest exemple farem servir la segona opcid proposada.
Per tant, afegirem una variable de tipus bool al projecte que farem servir com a flag. Aquest flag el
posarem a true dins la ISR i la funci6 principal 1’esborrara cada cop que el faci servir (Llistats 21.8
121.9).

El que veiem a la funci6é main() és que el microcontrolador estara la major part del temps esperant
a que el flag es posi a true per tal de continuar i poder fer I’operacié de lectura del sensor i canviar
el duty cycle del PWM del LED. Tota aquesta estona que el microcontrolador esta esperant-se
sense poder fer res, es podra aprofitar per posar-lo en algun mode de baix consum tal com veurem
al Capitol 35 - Baix cosum.

Llistat 21.8: ISR amb el flag

void GPIO_EVEN_IRQHandler (void) {
/+ clear flags =/
aux = GPIO_IntGet ();
GPIO_IntClear (aux);

signal = true;

21.3 Afegint-hi interrupcions

123

Llistat 21.9: Funcié principal amb suport d’interrupcions

main () {

while (signal ==
signal = false;

ret = APDS_9960

false);

_ReadProximity (&p_data) ;

Aquesta pagina esta en blanc expressament, tot va bé.

22

22.1
22.2
22.3
22.4

23

24
24.1

25

25.1
25.2
25.3
25.4
25.5
25.6
25.7

26
27

27.1
27.2
27.3

28
29

Conceptes badsics de FreeRTOS 127
Temps Redal

Tasques

El femps en un RTOS

Interrupcions a FreeRTOS

Primer exemple amb FreeRTOS 137

Controlant el temps a les tasques ... 139
Un exemple amb viaskDelayUntil()

Comunicacioé entretasques 143
Semafors

Cues

Mutex

Event Groups

Conjunt de cues Queue Sefs

Notificacions a tasques

Comparant tfemps de resposta

Exemple amb la UART i interrupcions 159

Una aplicacié completa amb FreeRTOS
163

Tasques

Modificant el wrapper d’12C

Analitzant les diferencies

Us del watchdog enRTOS 167

Driversen multi-tasca 169

Aquesta pagina esta en blanc expressament, tot va bé.

(22. Conceptes ﬁsicé‘de;f_r’ee TOS

En el Firmware per sistemes encastats que hem vist fins ara es basen en un bucle infinit on es van
executant les tasques a fer. Aixo acostuma a ser prou bo per sistemes senzills, com ara llegir d’un
ADC i decidir alguna cosa, o actuar sobre una sortida segons el valor d’un sensor, etc.

Per sistemes més complexos o amb requeriments critics, s’acostuma a fer servir un Sistema Operatiu
per gestionar diferents tasques.

Un sistema €s de Temps Real quan el temps de resposta del sistema a un event extern esta
fitada. Es a dir, es pot saber i esta garantit el temps total entre que succeeix un esdeveniment i
el sistema genera una sortida.

Un exemple tipic és el d’un airbag. El temps maxim, sigui el que sigui que el sistema estigui
fent entre que es detecta 1’accident i es dispara 1’airbag esta garantit i limitat.

Un Sistema Operatiu de Temps Real (RTOS en anglés) és un Sistema Operatiu que esta
dissenyat per garantir aquesta fita de temps.

En aquest llibre farem servir FreeRTOS [51], un RTOS! de codi obert ampliament utilitzat. En
el cas de EFM32 i STM32 els fabricants ens proporcionen el porting de FreeRTOS a les seves
plataformes.

® Se’n diu porting al fet d’adaptar un codi a una plataforma especifica. Per exemple, en el cas
del FreeRTOS, cal adaptar una serie de funcions per a que tot el sistema funcioni, com ara la
gesti6 dels rellotges, la gesti6 de tasques, etc.

En tot OS? (i RTOS) les feines a fer per part del sistema es reparteixen en diferents tasques (tasks
en angles). Aquestes tasques s’executen “‘simultaniament” i, per tant, cal repensar bé tot el sistema

! Real-Time Operating System, Sistema Operatiu de Temps Real
2Operating System, Sistema Operatiu

22.1

22.2

128 Capitol 22. Conceptes basics de FreeRTOS

abans de comencar a escriure el codi.

En sistemes encastats, un SO (o RTOS) no ofereix totes les funcionalitats a les que estem acostumats
quan sentim parlar d’un SO. Aix{i, normalment el que ens ofereix un RTOS és:

* Gesti6 de tasques: Creacid, execucid, estat de les tasques, prioritats de tasques, etc.
» Comunicaci6 entre tasques: semafors, cues, etc.
* Gesti6 de temps: Timers, timeouts, delays, etc.

Les tasques son les unitats basiques de funcionament i és on s’implementen les funcionalitats del
sistema.

Temps Real

Com ja s’ha dit, FreeRTOS és un Sistema Operatiu de Temps Real, que vol dir que totes les seves
operacions tenen un temps d’execucio fitat de manera que permet construir aplicacions de Temps
Real. Aquest temps fita ve donat perque tot les funcions del Sistema Operatiu son deterministes,
aixo és, es pot saber a priori quin temps tardaran a executar-se i, en principi, no han de dependre de
factors externs. Aixi, per exemple, desbloquejar una tasca que esta depenent d’un semafor sempre
tardara el mateix temps per una plataforma donada, fer un context switch entre tasques el mateix,
encara que hi hagi dues o cinquanta tasques preparades, etc.

Aix0 és especialment important quant la nostra aplicacié ha de reaccionar rapidament a algun
esdeveniment extern, ja que podrem mesurar i/o calcular la fita maxima de la operacié critica i
podrem confiar en que el sistema sempre estara fitat per aquest valor siguin les condicions que
siguin.

Quan es parla de temps real, usualment se’n fa una classificacié en dos tipus: soft real-time i hard
real-time. S’entén per soft real-time aquella aplicaci6 en que existeix alguna restriccié de temps
en algun moment, perd aquesta restriccié es pot incomplir sense que 1’aplicaci6 falli. Un exemple
podria ser una aplicacié on cal mostrar video per una pantalla; aquesta aplicaci6 tindra una fita
tal que permeti mostra rel video de forma prou suau, pero si mai es per un frame 1’aplicacié no
falla, si no que ’usuari veura un artefacte estany a la pantalla. En canvi, un sistema que es defineixi
com hard real-time no pot incomplir en cap moment aquesta restriccié temporal. Un exemple tipic
és I’airbag d’un cotxe, que cal que es dispari en el moment adequat i que, en canvi, pot provocar
danys si es dispara més tard.

Cal fer notar que precisament per la condici6 de cricitat i de determinisme, hem d’escriure les
funcions d’ISR el més curt possibles ja que, a la majoria de les plataformes, quan s’esta executant
una ISR estan desactivades les IRQs i el RTOS esta “venut”, en el sentit que no pot interrompre ni
controlar el temps que es gasta en la ISR.

Tasques

Una tasca és el que es coneix com a procés en els Sistemes Operatius de proposit general. Per tant,
una tasca sera 1’estructura minima de codi en que es divideix una aplicacié. Aquestes tasques seran
les que el planificador o scheduler del Sistema Operatiu anira executant i retirant d’execucid segons
certes condicions que veurem a continuacio.

Basicament una tasca pot estar en 1’estat Running (executant-se), Ready (disponible per ser executa-
da) o Blocked (no preparada perque esti esperant a algun esdeveniment)®. A la Figura 22.1 es pot
veure quins estats pot tenir una tasca en FreeRTOS [52, pagina 92].

3També hi ha I’estat Suspended on la propia tasca demana sortir de la llista de Ready

22.2 Tasques 190

Suspended

vTaskSuspend()

vTaskSuspend() called

called

vTaskResumae()
called

vTaskSuspend()

called Event

Blocking API
function called

Blocked

Figura 22.1: Estats possibles d’una tasca
Estats possibles d’una tasca. © FreeRTOS

22.2.1

22.2.2

130 Capitol 22. Conceptes basics de FreeRTOS

Llistat 22.1: Esquelet d’una tasca

static void OneTask (void xpParameter) ({
(void) pParameter;
/% Init #*/

while (1) {
/% bucle infinit =*/
}

Les tasques sén funcions amb un bucle infinit i una inicialitzacié preévia i en cap cas la funcié
pot retornar. Si una tasca ja no és necessaria, es pot eliminar per part el RTOS, perd no pot
acabar retornant la funci6 per si mateixa. Pel cas de FreeRTOS, tenen I’aspecte que es mostra al
Llistat 22.1.

Una aplicacié basada en un RTOS és un conjunt de tasques funcionant concurrentment i comunica-
des entre elles. E1 RTOS ens dona diferents funcions que ens permeten: comunicar tasques entre
elles o bloquejar-se per un cert temps.

Prioritats

Quan es creen les tasques, a cada una se li assigna una certa prioritat. Aquesta prioritat marcara
quina de les tasques de I’estat Ready passara a executar-se Running a cada moment. A FreeRTOS
les tasques amb una prioritat d’un valor més baix tenen menor prioritat (0 és el valor més baix i
menys prioritari). Diferents tasques poden tenir la mateixa prioritat.

Existeix una tasca Idle que s’executa cada cop que cap altra tasca esta a I’estat Ready. Aquesta
tasca té la prioritat més baixa, de valor 0 i per tant només s’executa quan cap tasca esta llesta. La
tasca Idle sempre esta disponible per executar-se a qualsevol moment.

Per saber més sobre prioritats i com assignar-les a les tasques, veieu Capitol 49 - Assignacio de
prioritats.

L’Gs de I'stack en un S.O.

Per crear una tasca, un dels parametres que es passa a la funcié xTaskCreate és la mida de 1’stack
per la tasca que s’esta creant.

Se’n diu stack a la regié de memoria assignada a una tasca que s’utilitza basicament per dues coses:

* guardar els valors dels parametres de les diferents crides a funcions que faci la tasca
* emmagatzemar el seu context quan el SO retira la tasca d’execuci6.

Aquest stack normalment es gestiona com una pila (amb els metodes push i pop) 1 acostuma a
situar-se al final de la memoria i “créixer cap avall”.

A priori, és molt dificil saber quant stack fara servir una tasca, aixi que el més habitual és donar un
valor per defecte prou gran i després, durant el funcionament normal, observar quanta se’n fa servir
realment.

Per saber el nivell maxim a on s’ha arribat a 1’stack de cada tasca, FreeRTOS fa servir un meétode
una pel peculiar: a I’inicialitzar la tasca (i el seu stack) omple I’ stack amb un valor predeterminat i
conegut. Després, quan ja esta funcionant el nostre sistema, només cal comptar quantes posicions

22.3

22.3.1

22.3 El temps en un RTOS 131

de I'stack mantenen el valor conegut. Si s’acosta a 0 voldra dir que la tasca esta fent servir la
majoria de I’espai de I’ stack.

Per activar aquesta funcionalitat cal editar el fitxer FreeRTOSConfig.h i definir la macro con-
figCHECK_FOR_STACK_OVERFLOW amb el valor 2 i la macro uxTaskGetStackHighWa-
terMark a 1.

Activant la primera de les macros, el sistema operatiu també controla que no s’intenti accedir fora de
I’stack. D’aquesta manera podem saber si cal més stack, per0 no si ens en sobra ni quanta. En activar
aquesta opci6 cal definir una funcié de hook que s’anomeni vApplicationStackOverflowHook() i
que es cridara cada cop que es detecti un error en accedir 1’ stack.

El temps en un RTOS

Habitualment un RTOS ha de portar un control del temps per decidir quina tasca s’ha d’executar,
saber quan desbloquejar una tasca, etc.

Normalment es basen en el concepte de tick. Un tick es genera de forma periodica (normalment
fent servir algun Timer) i la freqiiencia d’aquest tick ens marca el temps minim que pot manegar el
RTOS.

En el cas de FreeRTOS, a cada tick es deixa d’executar la tasca que esta running i s’executa el
planificador del RTOS. Si aquest planificador detecta que una tasca més prioritaria esta a punt per
ser executada (estat ready), la posara a executar (running) enlloc de la que hi havia fins feia un
moment.

La freqiiencia d’aquest tick pot variar molt segons el sistema que tinguem, perd acostuma a anar
entre els 1000 Hz i els 5S0Hz. Segons la freqiiencia del fick tindrem un sistema més rapid de resposta
en segons quins casos a canvi d’alentir lleugerament 1’execucié general del sistema i de tenir menys
resolucié en les funcions de control de temps.

Funcions per controlar el temps

Tot OS proporciona una serie de funcions per gestionar el temps, aixo és:

* bloquejar una tasca durant un cert temps determinat.
* controlar el timetout a certes crides del mateix.

Delays
Les funcions vTaskDelay() i vTaskDelayUntil() son les dues funcions que ens permeten bloquejar
la tasca que la crida durant el temps que s’especifica com a parametre.

Aquestes dues funcions faran que la tasca entri immediatament a 1’estat blocked i restara en aquest
estat durant tota I’estona que s’especifiqui. Un cop hagi passat aquest temps la tasca passara a
I’estat Ready.

El parametre que rep la funcié vTaskDelay() és el nombre de ticks que es vol que la tasca estigui
blocked. Com més precis sigui el tick del sistema (més freqiiencia) més acurat podra ser aquest
delay.

Cal veure que segons la prioritat de la tasca en qliesti6 i de la prioritat de la tasca que s’estigui
executant, aquesta tasca pot romandre en I’estat Ready un temps indefinit.

Timeout
A les funcions d’accedir a un recurs compartit, com un semafor o una cua, apareix un parametre
que és el temps (en Ticks) que la tasca que accedix espera a poder realitzar 1’operacid. Aixi, si

22.4

132 Capitol 22. Conceptes basics de FreeRTOS

s’especifica un temps de 100 mil-lisegons per llegir d’una cua, la funcié retornara passat aquest
temps si la cua esta buida i ningud hi ha escrit res o retornara tant bon punt algd hi escrigui alguna
dada.

Interrupcions a FreeRTOS

FreeRTOS deixa el maneig de les interrupcions a mans del desenvolupador, demanant unes certes
condicions.

Cal tenir en compte que les interrupcions son esdeveniments totalment asincrons i imprevisibles i
que prenen el control de forma automatica. Aixo fa que mentre esta funcionant una ISR el kernel
del Sistema Operatiu no es pot executar i que, quan acabi d’executar la ISR, si no fem res, tornara
el control cap a la tasca que s’estava executant. Aix0 pot provocar que una ISR alliberi un recurs o
posi disponible una dada i que una tasca d’alta prioritat passi a 1’estat Ready pero el kernel, com
que no s’executa, no pugui passar-li I’execucio i se segueixi amb la taca menys prioritaria que
s’estava executant.

Per aixo les funcions per accedir a recursos com semafors o cues des d’una ISR tenen un parametre
extra, que informa si s’ha despertat una tasca més prioritaria. Si és el cas, cal que el codi de la ISR
faci un portYIELD_FROM_ISR() per cridar al kernel del Sistema Operatiu (veure Llistat 22.2.

A la Figura 22.2 hi ha un diagrama de seqii¢ncia d’un exemple amb dues tasques: la Tasca 1 és
la més prioritaria i es bloqueja esperant rebre una dada per una cua. Quan es bloqueja s’executa
la Tasca 2. Mentre s’esta executant arriba una IRQ que posa una dada a la cua de la Tascal
1 retorna. Com que el kernel no pot obté el control, es segueix executant la Tasca 2, menys
prioritaria. Al diagrama de la Figura 22.3 succeeix el mateix que abans, pero ara la ISR crida a
portYIELD _FROM_ISR() en acabar i llavor es passa a executar el kernel i aquest dona 1’execucié
a la Tasca 1. Aquest és el funcionament correcte que s’espera del sistema.

Aquesta funcié de yield retorna de la ISR i executa el kernel si la variable passada té un valor
diferent a pdFALSE.

Sempre es diu que les ISRs han de ser el més curtes possibles, aixo és pels segiients motius:

* Mentre s’esta executant una ISR no es pot executar cap tasca, per molt prioritaria que sigui.

* Depenent de I’arquitectura, mentre s’esta executant una ISR la resta d’IRQs estan desactiva-
des.

* Algunes arquitectures poden permetre anidar interrupcions, cosa que augmenta la complexitat
i la incertesa de tot el sistema. Quan més curta sigui la ISR més improbable que aixo passi.

Llistat 22.2: Codi ISR d’exemple

void any_IRQHandler (void) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

/+ Toggle semaphore */
xSemaphoreGiveFromISR (semaphore_button_0, &xHigherPriorityTaskWoken);

portYIELD_FROM_ISR(xHigherPriorityTaskWoken) ;
}

22.4 Interrupcions a FreeRTOS 133

QueueReteivel)

I
LE: blocked '

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| okt
x[}ueueSendmelSRHr
|
|

dTRUE
._._._._._._._._._._._._._._.___._._}

Return from ISR

i el R L S i L

Figura 22.2: Diagrama de seqiiencia de dues tasques

134 Capitol 22. Conceptes basics de FreeRTOS

QueueReceivel()

I
LE: blocked :

‘dTRUE
...................................}.

taskYIELD_FROM_ISR(

Figura 22.3: Diagrama de seqiiéncia de dues tasques correcte

I
|
|
:
|
|
|
:
|
| |
| I
[I
| |
| P
| xQueueSendFromiSR()
I
2 |
|
|
[
|

22.4 Interrupcions a FreeRTOS 135

Es per aixo que les bones practiques diuen que el codi dins una ISR hi hagi poc codi i es facin servir
semafors o cues per notificar tasques on s’executin les operacions pertinents amb les prioritats
adequades.

Aquesta pagina esta en blanc expressament, tot va bé.

(23.

El primer exemple és el nostre vell conegut ‘Hello World’ per embedded, és a dir, blinkar un LED.

L’exemple consisteix en una sola tasca que s’encarrega de blinkar el LED. Com totes les tasques,
consisteix en un bucle infinit on s’inclou tota la funcionalitat de la tasca (Llistat 23.1).

Aquesta tasca fa servir una funci6 del RTOS (vTaskDelay()) que bloqueja la tasca per un determinat
temps. Aixi doncs, aquesta tasca tant sols fara Toggle al LED cada mig segon. Cal fixar-se que
aquesta funci6 rep com a parametre el nombre de ticks a esperar-se. Aquest nimero es calcula amb
la macro pdMS_TO_TICKS(), que passa de mil-lisegons a ticks.

Al main() el que veiem és que, després de la inicialitzacié habitual hem de crear les tasques que
tingui el nostre sistema i tot seguit engegar el FreeRTOS (Llistat 23.2).

La funci6 xTaskCreate() rep diferents parametres:

1. Punter a la funcié que implementa la tasca

2. Nom que li posem a la tasca (per debug)

3. stack reservat per la tasca (veure Subseccié 22.2.2 - 1’1is de I’stack en un S.0)
4. Punter a parametres per la tasca

Llistat 23.1: Tasca TaskLedToggle per FreeRTOS

static void TaskLedToggle (void *pParameter) {
(void) pParameter;

for (;;) {
LedToggle();
vTaskDelay (pdMS_TO_TICKS (500));
}
}

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Blink

138 Capitol 23. Primer exemple amb FreeRTOS

Llistat 23.2: Main HelloWorld per FreeRTOS

main () {

/% Create our first task */
xTaskCreate (TaskLedToggle, (const char x) ,
configMINIMAL_STACK_SIZE, NULL, TOGGLE_TASK_PRIORITY, NULL);

/% Start FreeRTOS Scheduler =*/
vTaskStartScheduler () ;

5. Prioritat de la tasca
6. Handle a la tasca creada

Aquesta funcié retorna pdPASS si s’ha creat la tasca o un error en cas contrari.

La funci6 vTaskStartScheduler(), que en condicions normals no retorna mai, comenga I’execucié
del FreeRTOS i aquest, al seu torn, executara la nostra tasca.

(24. Control

Habitualment les tasques dins d’un sistema amb un Sistema Operatiu s’executen peridodicament, de
manera que la tasca fa la seva feina i després demana suspendre’s per un temps determinat. Les
tasques, doncs poden cridar a la funcié vTaskDelay() per demanar al kernel que la suspengui un
determinat temps passat com a parametre. Per exemple, al codi FreeRTOS_Blink la tasca principal
te I’estructura del Llistat 24.1. En aquest cas senzill, la tasca anira canviant el LED d’ences a apagat
cada 500 mil-lisegons

Perd que passaria si el temps d’execuci6 de la tasca fos variable? Si tenim un codi més complicat
que segons les condicions tardi més o menys temps, es tindra que la tasca tarda un cert temps
variable a executar-se i després es suspen durant 500 mil-lisegons. Aix0 fara que la seva periodicitat
varii a cada execuci6 de la tasca, cosa que pot ser inacceptable segons els casos.

Per aix0 FreeRTOS proporciona la funcié vTaskDelayUntil() que te en compte el tems utilitzat per
la tasca abans de suspendre-la, de manera que es torni a cridar exactament en el periode de temps
desitjat.

Llistat 24.1: Tasca de I’exemple FreeRTOS_BlinkTask

static void TaskLedToggle (void *pParameter) {
for (;;) {
LedToggle();
vTaskDelay (pdMS_TO_TICKS (500));
}

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Blink

24.1

24.1.1

140 Capitol 24. Controlant el temps a les tasques

Un exemple amb vTaskDelayUntil()

A I'exemple FreeRTOS_Delay es fa servir la funcié vTaskDelayUntil() dins una tasca que cada cop
que s’executa un cicle te un temps diferent d’execucié. Aixo és fa amb una crida a vTaskDelay()
amb un retard aleatori amb valors entre 0 i 300 mil-lisegons. Després d’aquesta execucio es crida la
funcié vTaskDelayUntil() per suspendre de manera que la seva periodicitat sigui sempre de 500
mil-lisegons (veure Llistat 24.2).

Per comprova el correcte funcionament es treu per la consola de debug el tick en que s’esta executant
i el temps aleatori que es gasta per la tasca (veure Figura 24.1). Es pot veure com, a la primera
columna, el tick on s’executa la tasca és sempre multiple de 64 i que el temps que esta executant-se
la tasca va variant (segona columna).

Comprovacié amb l'oscil-loscopi

Es pot aprofitar que 1’exemple fa toggle del LED el GPIO també esta connectat a un pin del
connector d’expansi6 de la placa de desenvolupament (al pin 15 del Expansion header). A més,
s’ha reduit el temps del periode a 100 mil-lisegons i un delay aleatori d’entre 01 75 mil-lisegons. Aixi
es pot comprovar amb 1’oscil-loscopi que el senyal generat és prou bo i estable (veure Figura 24.2).

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Delay

24.1 Un exemple amb viaskDelayUntil) 141

T
[PF.QEJ_@“" Output Console
Tick Delay

W 2 e e o o o e o ofe ofe ofe ofe e o
] 233

b4 243
128 b2

192 29

256 0

320 108
384 52

448 156
512 56

576 19

640 111
704 251
768 243
832 5

896 108
960 293
1024 30
1088 66
1152 269

Figura 24.1: Consola amb la sortida de I’exemple FreeRTOS_Delay

142 Capitol 24. Controlant el temps a les tasques

Llistat 24.2: Tasca de I’exemple FreeRTOS_Delay

static void TaskLedToggle (void *pParameter) {

for (;;) |
LedToggle () ;
printf (, xTaskGetTickCount ());

/+ Random delay from o to 300 ms. x/
random_time = rand() % 300;

printf (, random_time) ;
delay_time = pdMS_TO_TICKS (random_time) ;
vTaskDelay (delay_time);

/+ We want the task exactly every 500 milliseconds independently
x from the (different) execution time x/
vTaskDelayUntil (&previous_tick_time, pdMS_TO_TICKS (500));

[EENEYNEN

e 1,|:|-|:| v H : : r1 1|I||:|-rns
E—Mar—13 00:07

Figura 24.2: Captura de I’oscil-loscopi de I’exemple vTaskDelayUntil()

25.1

25.1.1

En aquest capitol es detallen diferents mecanismes de sincronitzacié i comunicacid entre tasques
en un Sistema Operatiu encastat.

Qualsevol RTOS que porti aquest nom ens oferira una série de mecanismes per a comunicar tasques
entre elles. Els mecanismes més habituals son:

» Semafors: Una tasca no pot agafar un semafor fins que una altre no I’allibera.

¢ Cues: Permeten enviar informacié d’una tasca a una altra.

* Mutex: Permet protegir un recurs compartit de manera que només una tasca el faci servir en
un moment donat.

N’hi ha d’altres, com esperar i enviar esdeveniments o grups d’esdeveniments, mailboxes, senyals,
etc. que acostumen a ser propies de cada OS concret.

Semafors

Un semafor és un dels mecanismes de comunicaci6 entre tasques mes habituals dels que ofereix
un OS. En esséncia el funcionament d’un semafor €s tal que una tasca prova d’agafar el semafor i
es quedara esperant que una altra tasca doni el semafor o ho tornara a provar més endavant [53,
pagina 244] [54, pagina 187].

Habitualment es fan servir per sincronitzar almenys dues tasques que comparteixen el semafor o
per protegir una secci6 critica.

Semadfors a FreeRTOS

A FreeRTOS tenim diferents tipus de semafors:

* Binary: pot tenir només I’estat ‘agafat’ o ‘donat’. Es fan servir per sincronitzar tasques.

* Counting: s’emmagatzema un nimero, que s’incrementa en ‘donar’ el semafor i es redueix
en ‘agafar’ el semafor. Sempre que tingui un valor positiu es podra ‘agafar’ el semafor.
Serveix per portar un compte del nombre de recursos disponibles.

144 Capitol 25. Comunicacié entre tasques

Llistat 25.1: Tasca amb semafor d’exemple

static void TaskLedToggle (void *pParameter) {
(void) pParameter;

for (;;) {
xSemaphoreTake (semaphore_button_0, portMAX DELAY) ;
LedToggle () ;
}
}

— Semapﬁnre

SemaphoreTake()

>

xSemaphoreGiveFromisR()

-
-
i &

.F{._.“._.n“._.“._.n._.“.

Figura 25.1: Diagrama de seqiiéncia de I’exemple amb semafors

* Mutex: s6n una variant dels semafors binaris que inclouen mecanismes d’heréncia de pri-
oritats. Es fan servir per implementar 1’exclusié muitua. En parlarem més endavant, a
Seccié 25.3 - Mutex.

25.1.2 Exemple amb semadfors

A I’exemple hi ha una tasca que es queda esperant a agafar un semafor i quan 1’aconsegueix fa un
toggle del LED (veure Llistat 25.1 i el diagrama de seqiiencia 25.1).

La funcié main() crida la funcié BSP_Init() que configura els GPIOs corresponents als botons i
es registra una ISR (GPIO_EVEN_IRQHandler()) pel bot6 0, que ‘déna’ el semafor en quan es
prem el corresponent bot6 a la PCB (Llistat 25.2).

Després es crea el semafor que compartiran la tasca i la ISR i tot seguit es crea la tasca com ja hem
vist a I’exemple anterior.. Per ultim s’engega el kernel del RTOS.

Cal notar que les funcions per agafar o donar un semafor sén diferents segons estiguem a una tasca
o auna ISR. En el cas de la ISR, la funcié de donar al semafor ens indica si hi ha alguna tasca que
cal desbloquejar perque 1’esta esperant. En cas que sigui cert, cal fer un yield des de la ISR per a
que el planificador (scheduler) del RTOS pugui actuar immediatament.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Semaphore

25.2

25.2 Cues 145

Llistat 25.2: ISR del bot6 0

ISR() {

/+ Toggle semaphore */
xSemaphoreGiveFromISR (semaphore_button_1, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken) ;

}

Tant en aquest exemple com en els segiients el timeout de les crides és portMAX_DELAY. Aquesta
macro serveix per indicar a la funci6 que es vol esperar un temps infinit a que 1’operacié es pugui
realitzar. En aquest cas, la funci6 cridada no retornara fins que pugui executar I’acci6 i bloquejant
la tasca el temps necessari. D’aquesta mena de crides a funcions se’n diu crides bloquejants.

Exercici 25.1 Es pot provar d’implementar un codi que blinki el LED tantes vegades com
vegades s’ha premut el bot6 0. Es pot fer amb un semafor tipus counting semaphore. "

Cues

Hem vist que els semafors sén utils per sincronitzar tasques i per protegir zones d’exclusié mitua,
perd no ens donen cap solucié senzilla per enviar informacié o dades d’una tasca a una altra.
Aquesta comunicacio és per les cues [52, pagina 102].

Ens podem imaginar una cua com un recurs compartit entre dues o més tasques, on unes poden
escriure-hi i d’altres hi poden llegir dades. Habitualment (en FreeRTOS és aixi), les cues s’imple-
menten amb una estructura tipus FIFO (First-In First-Out) protegida de tal manera que no hi hagi
cap race condition durant el seu funcionament'.

A més, per tal de poder implementar sistemes d’una forma senzilla, els accessos a les cues poden
ser bloquejants: la tasca que fa 1’accés es quedara bloquejada fins que pugui fer I’accés (esperar a
poder escriure una dada, donat que no podia perque la cua era plena) o esperar fins que hi hagi una
dada (perque s’ha intentat llegir de la cua quan aquesta era buida).

Les operacions habituals a una cua son:

 Crear una cua (create): normalment cal especificar quin tipus de dades ha d’emmagatzemar
la cua i quants espais o llocs cal preparar.

* Inserir una dada (send): afegir (si hi ha lloc) una dada nova a la cua.

* Llegir dada (receive): treure una dada (si n’hi ha) de la cua.

Altres operacions poden ser:

* Mirar si hi ha una dada disponible (sense llegir-la) (peek).
 Esborrar tot el contingut de la cua (reser).
* Inserir una dada al principi de la cua (sense complir que la cua és una FIFO).

Les cues sén recursos que poden ser compartits per varies tasques, podent-hi escriure diferents
tasques o ISRs i poder llegir-la també diferents tasques, tot i que aixo de tenir multiples tasques
llegint d’una cua no és gaire habitual.

Per saber quina mida han de tenir les cues, veieu Capitol 50 - Mida de les cues.

1S’ anomena race condition al malfuncionament d’un codi donat que estd executant-se en un entorn multitasca.
Aquesta mena d’errors poden ser molt dificils de detectar i arreglar

25.2.1

146 Capitol 25. Comunicacié entre tasques

Llistat 25.3: Part del codi d’una de les ISRs

/* Send the data to the Queue */
xQueueSendFromISR (queue_buttons, (voidx) &new_delay,
&xHigherPriorityTaskWoken) ;

/* Awake a task ? */
portYIELD_FROM_ISR (xHigherPriorityTaskWoken) ;

2w |
1 Queue 4 1
l(QueueReceive{} =

IRQ_ODD

_ xQueueSendFromISR()

-

__ xQueueSendFromISA()

Figura 25.2: Diagrama de seqiiencia de I’exemple de cues

Exemple amb cues

A I’exemple de cues hi ha una sola tasca que fa blinkar el LED segons una variable. Aquesta
variable s’obté de llegir (o intentar-ho) una cua. Aquesta cua (anomenada queue_buttons) I’ escriuen
les dues ISR associades als dos botons. Una envia el valor corresponent a 250 ms i I’altre ISR envia
el valor que correspon a 1000 ms (Llistat 25.3 i diagrama de seqii¢ncia 25.2).

En aquest cas, la tasca fa servir la funcié xQueueReceive() amb un valor de 0 a I’dltim parametre,
que és el temps en ticks que ha d’esperar-se a rebre un valor en el cas que la cua estigui buida (veure
Llistat 25.4).

En aquest exemple volem que encara que no hi hagi dada a la cua, la tasca segueixi executant-se.
Per saber si la funcié de rebre dades ha obtingut una dada nova, cal comprovar si ha retornat
pdTRUE?. Si retorna pdFALSE? és que ha acabat el temps d’espera (en el nostre cas 0 ticks) i no
ha pogut extreure un nou valor de la cua. Aquest és un exemple d’accés no bloquejant a una cua.

Les cues cal crear-les abans d’utilitzar-les cridant a la funcié xQueueCreate(). Aquesta funcié
crea la cua amb la longitud desitjada i amb la capacitat indicada (Llistat 25.5). Usualment aixo0 es
crea a la funcié main() o, en tot cas, abans d’engegar el Sistema Operatiu.

2Valor logic “Cert” definit a FreeRTOS
3Valor logic “Fals” definit a FreeRTOS

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Queue

25.2.2

25.2 Cues 147

Llistat 25.4: Part principal de la tasca TaskLedToggle

for (;;) {
/* try to get new delay time from queue */
if (xQueueReceive (queue_buttons, &recv_delay, (TickType_t) 0)) {

my_delay = recv_delay;

}

/+ wait for m _delay & toggle the LED x/
vTaskDelay (my_delay) ;
LedToggle () ;

Llistat 25.5: Creaci6 d’una cua

/* Create Queue */
queue_buttons = xQueueCreate (QUEUE_LENGTH, sizeof (uint32_t));

Enviant multiples dades per una cua

Quan ens cal enviar diverses dades d’una tasca a una altra (o d’'una ISR a una tasca, o d’una tasca a
una ISR, etc.) la forma més senzilla de fer-ho és fent servir una estructura per fer un paquet.

Suposem que tenim una tasca que llegeix dades d’un accelerometre, que treu dades de 16 bits
(uint16_t) per cada un dels eixos (X, Y, Z). Aquestes dades les volem enviar a una segona tasca que
fa els calculs pertinents per I’aplicacié i, per tant, posem una cua entre les dues tasques.

Per enviar el triplet de dades d’una tasca a I’altra, podriem muntar una cua on enviéssim les dades
per ordre (primer X, després Y, després Z, altre cop X, després Y, etc.). Aix0 ens podria portar
problemes si la tasca que rep les dades perd una dada, ja que llavors estariem confonent una dada
per una altra.

L’ altra opcid podria ser posar tres cues, una per cada coordenada i la tasca consumidora anar llegint
de cada una. Aix0 per0, sembla que és una mica massa complexitat per un problema senzill.

La millor solucié consisteix a preparar una estructura de dades i que sigui aquesta estructura la que
s’envia per la cua. Aixi, les tres dades viatgen juntes i cada una associada al seu camp corresponent.
La definici6 de I’estructura haura de ser comu a totes les tasques i cues que la facin servir; en un
projecte gran caldra definir-la en un header comu per la resta de moduls del projecte.

Aix{i, podriem definir una estructura tal com es veu al llistat 25.6.

I es crea la cua tal com es veu al Llistat 25.7.

Llistat 25.6: Paquet dins d’estructura

struct queue_pkt {
uintl6_t eixX;
uintl6_t eixY;
uintl6_t eixZ;

}i

25.3

148 Capitol 25. Comunicacié entre tasques

Llistat 25.7: Creaci6 de la cua amb un paquet de dades

queue_handle = xQueueCreate (QUEUE_LENGTH, sizeof (struct queue_pkt));

Llistat 25.8: Rebre un paquet de dades de la cua

if (xQueueReceive (queue_buttons, &pkt, (TickType_t) 0)) {
eixX = pkt.eixX;
}

Aixi, la informaci6 que es moura per la cua sera ’estructura i caldra agafar cada dada de la mateixa
de la forma habitual, tal com es veu al Llistat 25.8.

Al repositori I’exemple FreeRTOS_Queue_2 es fa servir una estructura per passar dades mitjancant
una cua.

Mutex

Quan tenim un recurs, driver, memoria compartida, secci6 critica o qualsevol altre recurs que
només es pot fer servir per una sola tasca a cada moment, cal muntar un mecanisme d’exclusi6
mutua que ens asseguri que no tindrem cap problema [52, pagina 244].

Aquest mecanisme és molt similar a un semafor binari pero cal incloure algun mecanisme per
prevenir la inversi6 de prioritats. Aquest mecanisme és el Mutex (d’aqui els ve el nom: Mutual
Exclusion). Els Mutex implementen un mecanisme d’herencia de prioritats de tal manera que si una
tasca d’alta prioritat esta esperant un Mutex que té una tasca de baixa prioritat, aquesta ultima veu
augmentada la seva prioritat a la mateixa prioritat que la tasca d’alta prioritat mentre té el Mutex
per tal que tingui més oportunitat d’alliberar-lo ja que altres tasques amb prioritats entre mig poden
bloquejar la tasca de baixa prioritat * (veure Capitol 48 - Inversi6 de prioritats més endavant).

Per I’Gs correcte d’un Mutex, el que es fa és provar d’agafar el Mutex abans d’entrar a la seccid
critica, si es té exit s’executa el que calgui dins la seccid critica i a continuaci6 s’allibera el Mutex.
Com ens podem imaginar, cal que el temps que estem dins una secci6 critica sigui el més curt
possible. Com la resta de crides d’aquesta mena, el parametre timeout ens permet seleccionar el
temps que la tasca ha d’estar esperant auge el Mutex estigui disponible (des de O fins a temps
infinit).

En el cas de FreeRTOS cal primer crear el Mutex i a partir de llavors ja es pot fer servir per part de
les tasques. Les tasques poden agafar o donar un Mutex amb les mateixes funcions de manegar
semafors que ja coneixem.

Exemple amb Mdutex
Al repositori del curs tenim un exemple on dues tasques fan s d’un recurs compartit com pot ser la
consola de debug (amb el printf) i es comparteix amb un Mutex.

A I’exemple tal com esta ara, no esta definit la macro USE_MUTEX i el codi no en fa ds. Si
executem el codi tal qual esta, veurem que la sortida de les dues tasques es barreja ja que no hi ha

4Aquest problema és el conegut inversid de prioritats que pot donar molts mal de caps si no es detecta a temps

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Queue_2
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Mutex

L N O R S

25.3 Mutex 149

Llistat 25.9: Exemple d’ds de macros en C

#ifdef USE_MUTEX

if (xSemaphoreTake (example_mutex, portMAX DELAY)) {
#telse

{
#endif

Llistat 25.10: Sortida de la consola sense Mutex

from Taskl
Other text Some text from Task 2
from Taskl
Other text Some text from Task 2
from Taskl
Other text Some text from Task 2
from Taskl

cap control de qui escriu i quan (Llistat 25.10).

Un exemple d’ds de macros en C es veu al llistat 25.9. En aquest codi, si la macro
USE_MUTEX no esta definida no s’executa la linia 2 i no es t€ en compte el Mutex.

Si traiem el comentari i activem la macro USE_MUTEX llavors el codi de manegar el Mutex
s’activa i llavors veurem que la sortida per la consola ja és la correcta (Llistat 25.11).

Que passa en aquest cas? Doncs que abans de treure el text per la consola, es demana el Mutex i
queda protegida la secci6 critica i tot funciona com ha de ser.

A I’exemple es fa servir la comanda task YIELD() entre mig dels dos printf per simular que la tasca
en aquell punt perd I’execucié. Com segur que saps, les condicions de carrera (race conditions) sén
molt complicades de trobar i provocar perqué sén infreqiients i només passen de tant en tant; i €s
per aixo que provoquem el canvi de tasca amb la comanda taskYIELD().

En aquest exemple i per fer-ho senzill, la crida per demanar el Mutex porta com a segon parametre
portMAX_DELAY, que fa que la tasca quedi bloquejada fins que s’alliberi el Mutex. També es
pot afegir un temps d’espera (timeout) i llavors la funcié retorna quan s’ha agafat el Mutex (i retorna
pdTRUE) o quan ha passat el temps d’espera (i retorna pdFALSE).

L’ds de Mutex és necessari per controlar I’accés a qualsevol seccid critica que tinguem al nostre

Llistat 25.11: Sortida de la consola amb Mutex

Some text from Taskl
Other text from Task 2
Some text from Taskl
Other text from Task 2
Some text from Taskl
Other text from Task 2

25.4

254.1

150 Capitol 25. Comunicacié entre tasques

projecte. Habitualment en tindrem per cada s o crida a un driver que pugui portar-nos problemes
d’aquesta mena. Per exemple, si dues tasques han d’accedir al bus 12C per accedir a diferents
sensors caldra protegir amb un Mutex les crides a les llibreries del sistema.

Exercici 25.2 La prioritat de les dues tasques a I’exemple és la mateixa. Com exercici es pot
provar de canviar les prioritats i treure els Mutex, a veure que passa i intentar entendre el perque.

Event Groups

A més dels mecanismes ja explicats, i que son els més tipics en la comunicaci6 i sincronitzacié
entre tasques, FreeRTOS ens proporciona un mecanisme que permet bloquejar o desbloquejar una
0 varies tasques segons succeeixi un o varis esdeveniments [52, pagina 266]. Aquest mecanisme es
diu Event Groups i permet que una o varies tasques defineixen a quins esdeveniments son sensibles
i el kernel gestiona tot el necessari. Aquest mecanisme permet:

* Que una tasca o més tasques estiguin bloquejades esperant diversos esdeveniments
* Que un esdeveniment desbloquegi varies tasques de forma simultania.

Aquest mecanisme es basa en declarar flags per cada esdeveniment per tot seguit definir un grup
de flags anomenat Event Groups. Aquests flags individuals s’emmagatzemen com un sol bit, de
manera que només poden tenir el valor 0 o 1, on el 0 vol dir que I’esdeveniment no ha succeitil’1
que I’esdeveniment si que ha succeit. Tots aquests bits es guardaran en una variable de 8 o 24 bits
depenent com estigui definida la constant configUSE_16_BIT_TICKS al fitxer FreeRTOSConfig.h
(si la constant val 1 el grup conté només 8 bits, si val 0 (valor per defecte) el grup conté 24 bits).

Les tasques que han d’estar pendents d’aquest grup notifiquen al kernel de quins esdeveniments
particulars volen dependre (bits individuals de la paraula), si s’ha de complir tots o0 només un
(operacié “AND” o “OR”), si s’han de netejar els flags que han desbloquejat la tasca i el temps que
es pot esperar a que aixo succeeixi (timeout).

Aixi, i de forma general, tindrem que qui manegui els esdeveniments (tipicament ISRs, perd poden
ser altres tasques) posaran els flags individuals a 1’ quan aquests succeeixin mentre que una o
més tasques estaran bloquejades esperant que una serie de bits del grup s’activin (només un o tots
depenent de la configuraci6 particular).

Exemple de event groups

El codi d’aquest exemple es troba al repositori i conté una sola tasca esperant per que es compleixin
dos esdeveniments, que sera la pulsacié dels dos botons de la placa de prototipat. Per tant, I’exemple
fara toggle del LED quan s’hagin pres els dos botons (no cal que sigui simultaniament).

Al Llistat 25.12 es presenta la tasca, que simplement es queda bloquejada esperant pels dos bits
del grup préviament definits. Els dos parametres segiients (tots dos pdTRUE) indiquen que cal
netejar els esdeveniments i cal esperar a tots els esdeveniments s’hagin activat. Per dltim, també
es configura un timeout infinit perque la tasca es quedi bloquejada per sempre esperant als dos
esdeveniments.

El codi de la ISR (veure Llistat 25.13) conté el codi ja conegut per netejar els flags del modul
GPIO i tot seguit es notifica I’esdeveniment corresponent al grup amb la funcié xEventGroupSet-
BitsFromISR. En aquest cas els parametres son: el grup a notificar, el bit del grup a notificar i
I’dltim parametre serveix per rebre la informacié de si cal notificar al kernel que una tasca s’ha
desbloquejat.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_EventGroups

25.4 Event Groups

Llistat 25.12: Tasca esperant per un grup d’esdeveniments

#define FIRST BUTTON_BIT
#define SECOND_BUTTON_BIT

(1 << 0)
(1 << 1)

static void TaskLedToggle (void *pParameter) {
(void) pParameter;
while (true) {
xEventGroupWaitBits (event_group,
pdTRUE, pdTRUE,
LedToggle () ;

(FIRST_BUTTON_BIT |
portMAX_DELAY) ;

SECOND_BUTTON_BIT),

Llistat 25.13: ISR notificant un esdeveniment a un grup

void GPIO_ODD_IRQHandler (void) {
uint32_t aux;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
/+ clear flags =/
aux = GPIO_IntGet ();
GPIO_IntClear (aux);

xEventGroupSetBitsFromISR (event_group,
xHigherPriorityTaskWoken) ;

SECOND_BUTTON_BIT, &

/% Awake a task ? */
portYIELD_FROM_ISR (xHigherPriorityTaskWoken) ;

25.4.2

25.5

152 Capitol 25. Comunicacié entre tasques

Llistat 25.14: Tasca esperant un grup d’esdeveniments (OR)

static void TaskLedToggle (void *pParameter) {
(void) pParameter;

while (true) {
xEventGroupWaitBits (event_group, (FIRST_BUTTON_BIT | SECOND_BUTTON_BIT),
pdTRUE, pdFALSE, portMAX_DELAY) ;
LedToggle();
}

Si a la tasca es canviés la crida per la del Llistat 25.14 llavors la tasca es desbloquejara qua passi
qualsevol dels dos esdeveniments (es fara una “OR” entre els tots els bits del grup enlloc d’una
6‘AND”).

Sobre el determinisme dels grups d’esdeveniments

La implementaci6é d’aquests Event Groups a FreeRTOS es fan mitjangant una tasca auxiliar del
modul de Timers software ja que la resolucié d’un grup d’esdeveniments no és determinista
(ja que no es pot saber per avangat quantes tasques o quants esdeveniments estan involucrats
a cada moment). La tasca auxiliar es crea automaticament el primer cop que es crea un grup
d’esdeveniments amb la prioritat per defecte d’aquest tasca.

A més, la comunicacié entre les funcions de I’ API (xEventGroupSetBitsFromISR(), etc.) i la tasca
auxiliar es fa mitjancant una cua, de manera que no és possible el determinisme de tot el mecanisme
pel cas general.

Per tot aix0, cal ser curds en quins casos fer servir aquest mecanisme, per senzill que pugui semblar
i depenent de la criticitat de I’aplicacié i del cas particular.

Conjunt de cues Queue Sets

Hi ha casos on una tasca pot voler rebre dades de cues diferents on, potser, per cada cua es reben
dades de tipus diferents. FreeRTOS ens proporciona un mecanisme per poder rebre de varies cues
d’una forma senzilla.

El mecanisme és el Queue set (conjunt de cues) que permet agrupar tot de cues i semafors i després
consultar per part d’una tasca si hi ha alguna dada disponible a alguna de les cues o semafor.

El que cal fer és crear un conjunt, afegir-hi els mecanismes de sincronitzacié que es vulguin incloure
ija només cal consultar la disponibilitat a través del conjunt enlloc de cada mecanisme per separat.

Anem a veure-ho en un exemple, que com sempre esta al repositori. A I’exemple es modifica
I’exemple de cues anterior perque cada ISR envii la seva dada per una cua diferent (queue_buttons_1,
queue_buttons_2).

El primer que cal fer és crear el conjunt de cues (Queue Sets) tal com es veu al Llistat 25.15.
Cal veure que quan és crea el conjunt cal especificar la longitud de totes les cues i semafors que
s’agrupen. Per les cues cal sumar el nombre d’elements, pels semafors binaris la longitud és 1 i
pels semafors comptadors la longitud és el valor maxim que poden tenir.

A la tasca s’ha canviat com es rep les dades de cada ISR i ara es consulta el conjunt de cues
(Llistat 25.16). Aquesta funci6 retorna el handler al mecanisme que té una dada disponible, de

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_QueueSets
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Queue

25.6

25.6 Notificacions a tasques 153

Llistat 25.15: Creaci6 del conjunt de cues

#define QUEUE_LENGTH (10)

QueueSetHandle_t queue_set;
QueueHandle_t queue_buttons_1;
QueueHandle_t queue_buttons_2;

void main () {
queue_set = xQueueCreateSet (QUEUE_LENGTH + QUEUE_LENGTH);

queue_buttons_1 = xQueueCreate (QUEUE_LENGTH, sizeof (uint32_t));
queue_buttons_2 = xQueueCreate (QUEUE_LENGTH, sizeof (uint32_t));

Llistat 25.16: Tasca que fa servir el conjunt de cues

static void TaskLedToggle (void *pParameter) {

for (;;) {
selected_qgueue = xQueueSelectFromSet (queue_set, 0);
if (selected_queue == queue_buttons_1) {
xQueueReceive (queue_buttons_1, &my_delay, (TickType_t) 0);
} else if (selected_qgueue == queue_buttons_2) {
xQueueReceive (queue_buttons_2, &my_delay, (TickType_t) 0);
}
vTaskDelay (my_delay) ;
LedToggle () ;

manera que a continuacid es consulta al mecanisme i s’adquireix la dada rebuda. La resta del
mecanisme €s forga similar a I’exemple anterior.

Cal fer notar que I’exemple es fa amb només dues cues, pero els Queue Sets, malgrat el nom, també
poden incloure semafors de la mateixa manera i consultar-los de la mateixa forma.

Notificacions a tasques

Les notificacions a tasques (en angles Direct to Task Notifications) son un mecanisme propi de
FreeRTOS similar a les cues, semafors i mitex perd més simple i, en alguns casos, més eficient
(aquest mecanisme pot ser fins a un 45% més rapid que un mecanisme basat en un semafor binari).

Si bé els mecanismes introduits fins ara eren objectes que existien entre les tasques que comunicaven,
les notificacions es fan de forma directe entre ISR i tasques o entre dues tasques sense cap objecte
addicional. Aixo0 te I’avantatge que s’estalvia memoria, ja que no cal mantenir tanta informacié i
que el mecanisme és més rapid, perd comporta certes limitacions:

* No es pot enviar una notificacié cap a una ISR, tot i que si que es pot a I’inversa.
* Només es pot notificar a una sola tasca, ja que es notifica directament la tasca, no cap
mecanisme intermig.

25.6.1

154 Capitol 25. Comunicacié entre tasques

Taula 25.1: Crides de notificacions de tasques i els mecanismes equivalents

Semafor binari xTaskNotifyGive() / ulTaskNotifyTake()

Semafor comptador xTaskNotifyGive() / ulTaskNotifyTake()
Grup d’esdeveniments xTaskNotify() / xTaskNotify Wait()
Cua (d’un sol element) xTaskNotify() / xTaskNotify Wait()

Llistat 25.17: Tasca que espera la notificacio

static void TaskLedToggle (void *pParameter) {
(void) pParameter;

while (true) {
ulTaskNotifyTake (pdTRUE, portMAX_DELAY) ;
TriggerToggle () ;
LedToggle();

}

» No es pot emmagatzemar dades, ja que el mecanisme de notificacié pot manegar una i només
una dada.

Les funcions de notificacié a tasques necessiten congixer el handler de la tasca a enviar, cosa que
s’acostuma a fer mitjancant variables globals.

A la Taula 25.1 es resumeixen les crides a les notificacions i a quins mecanismes poden substituir 3.

Exemple de notificacié directa a tasques

Al repositori hi ha I’exemple més senzill on es notifica una tasca que es suspén esperant un
esdeveniment. Aquest esdeveniment ve donat per la pulsacié d’un dels botons i la notificacié per
part de la ISR.

El Llistat 25.17 mostra la tasca, que simplement espera agafar la notificacié amb la funcié ulTask-
NotifyTake() per tot seguit fer roggle del LED. Els parametres de la crida fan que es netegi el flag
un cop s’ha rebut i s’esperi indefinidament.

Cada una de les ISR tant sols notifica la tasca amb la crida corresponent, tal com es veu al
Llistat 25.18. En aquest cas s’ha de fer servir la variable taskhandle que emmagatzema el handle a
la tasca que esta esperant la notificacié. Aquesta variable és global a tot el codi i esta definida al
principi del fitxer main.c.

STambé hi ha les funcions per ISRs vTaskNotifyGiveFromISR() i xTaskNotifyFromISR()

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_TaskNotify

25.7 Comparant temps de resposta 155

Llistat 25.18: Tasca que espera la notificacio

void GPIO_ODD_IRQHandler (void) {
uint32_t aux;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

/% clear flags =/
aux = GPIO_IntGet ();
GPIO_IntClear (aux);

vTaskNotifyGiveFromISR (taskhandle, &xHigherPriorityTaskWoken);

/% Awake a task ? x/
POrtYIELD_FROM_ISR (xHigherPriorityTaskWoken) ;

25.7 Comparant temps de resposta

En aquesta secci6 valorarem els temps de resposta mesurats en els tres mecanismes de comunicacié
entre esdeveniments i tasques, que son els semafors, els grups d’esdeveniments i les notificacions
directes.

A la Taula 25.2 es resumeixen aquestes mesures i a les Figures 25.3,25.4 1 25.5 es veuen les mesures
fetes amb 1’oscil-loscopi. Com es pot comprovar, el mecanisme més senzill i rapid és el de la
notificacié directa, el semafor afegeix una mica més de complexitat i per tant de temps de resposta
i, per ultim, el mecanisme més complex del grup d’esdeveniments és el mecanisme més lent amb
diferéncia.

Cal fer notar també que la resposta és de 1’ordre de microsegons, que esta per sota del temps de
tick, cosa que significa que la tasca que s’estigui executant en el moment d’ocorre I’esdeveniment
s’interromp 1 es passa a executar la tasca que esta esperant el mecanisme associat a I’esdeveniment.

Taula 25.2: Crides de notificacions de tasques i els mecanismes equivalents

Mecanisme Temps (microsegons)
Semafor binary 93,6
Notificacid directa 79,2
Grup d’esdeveniments 306

156 Capitol 25. Comunicacié entre tasques

P Pos: 46.80,05 CURZ0RES

Tipa

Fuente

EII;IIII;IIII;IIII;IIII

e R M 00s 2
21-abr-13 17:54 =10Hz

CURSORES

Tipa

Fuente

CH1 1.00% CH2 1.00%
[tilice el mando rmultiuso para mover el Cursor 1

Figura 25.4: Temps de resposta usant notificacid a tasca

25.7 Comparant temps de resposta 157

P Pos: 126,005 CURZ0RES

Tipa

Fuente

+

Cursar 1
0,00

CH1 1.00% CHZ 1.00% M 500005
21-8br-13 1756

Figura 25.5: Temps de resposta usant groups de notificacié

Aquesta pagina esta en blanc expressament, tot va bé.

A TI’exemple Freertos_UART hi ha el mateix exemple vist a Seccié 14.3 - Un exemple amb la
UART més complicat pero en aquest cas usant FreeRTOS. Per aixo hi ha uns pocs canvis:

* Alesinterrupcions de la USART (USART1_TX_IRQHandler() i USART1_RX_IRQHandler())
se les canvia la prioritat, ja que a FreeRTOS Ia prioritat de les interrupcions han de tenir un
valor diferent a 0. Veure aquest enlla¢ de la documentacié de FreeRTOS [55].

* Enlloc de fer servir el buffer circular es fa servir una cua de FreeRTOS. Aixi la ISR de
recepcid guarda el valor rebut a una cua i la ISR de transmissié va buidant la mateixa cua.

* La funci6é USART_Send() també fa servir la cua de transmissié per extreure els caracters a
enviar per la UART

* Enlloc d’un while(1) al main(), s’ha creat una tasca que prova de llegir un caracter de la cua
de recepcid per fer la seva feina.

Llistat 26.1: ISR de RX de la UART amb FreeRTOS

void USART1_ RX_TIRQHandler (void) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
char data;

if (USART1->IF & LEUART_IF_RXDATAV) {
data = USART_Rx (USART1);
xQueueSendFromISR (USART_RX_queue, &data, &xHigherPriorityTaskWoken);
USART_IntClear (USART1, USART_IEN_RXDATAV) ;

}

/+ Awake a task ? x/
POortYIELD_FROM_ISR (xHigherPriorityTaskWoken) ;

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_UART

160 Capitol 26. Exemple amb la UART i interrupcions

Llistat 26.2: ISR de TX de la UART amb FreeRTOS

void USART1_TX_IRQHandler (void) {
char data;

USART_IntClear (USART1, USART_IEN_TXC);
if (xQueueReceiveFromISR (USART_TX_queue, &data, 0) == pdTRUE) {
USART_Tx (USART1, data);

Llistat 26.3: funcié UART_Send() per FreeRTOS

void USART_Send (USART_TypeDef =xusart)
int data;

if (xQueueReceive (USART_TX_queue, &data, 0) == pdTRUE) {
USART_Tx (USART1, data);

Llistat 26.4: Tasca principal de I’exemple

static void UARTTask (void xpParameter) {
(void) pParameter;
char recv_char;
char tx_char;

for (;;) {
if (xQueueReceive (USART_RX_queue, &recv_char, portMAX_DELAY)) {
tx_char = recv_char;
xQueueSend (USART_TX_queue, &tx_char, 0);
tx_char++;

xQueueSend (USART_TX_queue, &tx_char, 0);
tx_char++;

xQueueSend (USART_TX_queue, &tx_char, 0);
USART_Send (USART1) ;

161

Per la resta, I’aplicaci6 té el mateix funcionament que 1’exemple sense RTOS. Es pot consultar
I’exemple original per una millor explicacié del funcionament (veure Secci6 14.3 - Un exemple
amb la UART més complicat).

Aquesta pagina esta en blanc expressament, tot va bé.

acié completa amb FreeRTOS

Per resumir i posar un exemple de tot el vist sobre FreeRTOS, agafarem I’aplicaci6é d’exemple feta
a Capitol 21 - Una aplicacio completa i es transformara en una aplicacié6 amb FreeRTOS. Per
comencar es treballara amb la versié amb polling de I’aplicaci6 original.

27.1 Tasques

Una de les caracteristiques d’un RTOS €s que les diferents tasques a fer per ’aplicacié es divideixen
en tasques. En aquest cas, sembla senzill pensar que es pot dividir la feina a fer en dos parts: (i)
llegir la dada del sensor i (ii) canviar el duty cycle del PWM segons el valor llegit. En resum, les
tasques seran:

* ReadSensor_task: aquesta tasca llegeix peridodicament el valor de proximitat del sensor i
envia aquesta dada cap a I’altra tasca. Aixo ho fa cada mig segon i fa polling del registre
d’estatus del sensor (veure llistat 27.1).

* MngData_task: aquesta tasca rep la dada de proximitat i fa dues coses: la treu per la consola
de debug amb un printf() i canvia el ritme de pampallugueig del LED segons aquest valor.
Aquesta tasca es bloqueja esperant obtenir una dada, i en quan en rep una canvia el parametre
del PWM i imprimeix el valor per la consola (veure llista 27.2).

Les dues tasques s’han de poder comunicar, doncs la tasca que llegeix el valor de proximitat
del sensor I’ha de poder enviar a la tasca que gestiona el PWM. Aixi doncs, tenim dues tasques
comunicades amb una cua (anomenada sensor_data_queue). Com que el tipus de dades que hem
d’enviar d’una tasca a I’altra és tant sols el valor de proximitat proporcionat pel sensor, la cua pot
emmagatzemar directament aquest valor. Es per aixd que la cua es crea amb 4 posicions de 8 bits
cada una (veure Llistat 27.3).

Com ja hem vist anteriorment, es creen les dues tasques dins de la funcié main() (Llistat 27.3).

164 Capitol 27. Una aplicacié completa amb FreeRTOS

Llistat 27.1: Tasca ReadSensor

static void ReadSensor_task (void xpParameter) {
uint8_t p_data;
bool ret;

(void) pParameter;
APDS_9960_InitProximity();

while (pdTRUE) ({
ret = APDS_9960_ReadProximity (&p_data);

if (ret == true) /{
xQueueSend (sensor_data_qgueue, &p_data, portMAX_DELAY) ;

vTaskDelay (500 / portTICK_PERIOD_MS) ;

Llistat 27.2: Tasca MngData

static void MngData_task (void xpParameter) {
uint8_t p_data;

(void) pParameter;
while (pdTRUE) ({
xQueueReceive (sensor_data_queue, &p_data, portMAX_DELAY);

printf ("Proximity: %d\r\n", p_data);

/% Convert from range 0 — 256 to 0 — 100 +/
PWM_Set ((p_data * 100) / 256);

Llistat 27.3: Creaci6 de tasques

main () {

/+* Create queue to send data between two tasks =*/
sensor_data_queue = xQueueCreate (4, sizeof (uint8_t));

/% Create read sensor task =/
xTaskCreate (ReadSensor_task, (const char *) "ReadSer
configMINIMAL_STACK_SIZE-65, NULL, READ_TASK_PRIORITY, NULL);

/+ Create print & LED ctrl task =/
xTaskCreate (MngData_task, (const char x) "Mngbhata',
100-5, NULL, MNG_TASK_PRIORITY, NULL);

27.2

27.2 Modificant el wrapper d’12C 165

Modificant el wrapper d’'12C

Com que FreeRTOS €s un sistema operatiu preemptiu, cal que les funcions de les biblioteques es
puguin fer servir per diverses tasques alhora (siguin re-entrants) [52, pagina 236]. Habitualment
aixo es fa amb un mutex que protegeixi la o les seccions critiques de cada biblioteca. En el cas de
la biblioteca I2C_Wrapper es fa amb un sol mutex que protegeix la crida a la transferéncia 12C
propiament dita (veure Llistat 27.4).

D’aquesta manera en el cas que dues tasques fessin servir el wrapper per accedir al bus 12C,
quan cridessin a la funcié 12C_WriteRegister() o I12C_ReadRegister() aquestes funcions es
protegeixen de la re-entrada amb el mutex I2C_mutex impedint que es pogués cridar dos cops (un
cop de cada tasca) a la funcié I2C_Transfer(), que faria que les transferéncies I2C no es fessin
correctament.

El mutex (anomenat I12C_mutex) esta definit com static dins el fitxer 2C_Wrapper.c. Aixo fara
que aquesta variable només estigui disponible dins el modul i no sigui una variable global a tot el
projecte. Aquest mutex s’inicialitza a la funcié I2C_initialize().

La resta de biblioteques usades no cal canviar-les respecte a 1’aplicacié baremetal, ja que la
biblioteca APDS-9960 fa servir la biblioteca I2C que ja esta preparada per ser re-entrant i la
biblioteca BSP no necessita de cap canvi perque funcioni sota FreeRTOS ja que no fa ds de cap
recurs compartit ni cal protegir les funcions per la seva re-entrada.

Llistat 27.4: Part de la funcié 12C_WriteRegister() adaptada a FreeRTOS

bool I2C_WriteRegister () {
géémaphoreTake(IZC_mutex, portMAX_DELAY) ;
I2C_Status = I2C_TransferInit (I2C0, &seq);
while (I2C_Status == i2cTransferInProgress) {
I2C_Status = I2C_Transfer (I2CO);

}

xSemaphoreGive (I2C_mutex) ;

27.3

166 Capitol 27. Una aplicacié completa amb FreeRTOS

static SemaphoreHandle_t I2C_mutex;

I2C_initialize() |

I2C_mutex = xSemaphoreCreateMutex();

Analitzant les diferéncies

Un factor a tenir en compte quan treballem amb RTOS és la sobrecarrega que provoquen. Aquest
sobre-preu pot ser en codi i complexitat del mateix, en quantitat de memoria utilitzada o en la
complexitat intrinseca de fer-los servir.

Anem a comprovar primer el sobrecost en 1’is de la memoria, ja que acostuma a ser el recurs més
escas en un sistema encastat.

Mirant la Taula 35.1 veure que I’aplicacié amb FreeRTOS necessita més quantitat de memoria tant
FLASH com RAM. Em quantitat de codi és evident, ja que hi hem afegit tot el codi del S.O. Pel
que a la memoria RAM (seccions data i bss) augmenta considerablement I’tis de la secci6 bss.
Aquesta secci6 la utilitza el FreeRTOS per reservar-la per I’ stack de cada una de les tasques. Com
que aquest regié es reserva de forma estatica ja apareix a la comanda size.

R) Recordem que text €s I’espai de memoria FLASH necessari; data la quantitat de bytes de
variables inicialitzades (ocupen tant FLASH com RAM) i bss la quantitat de memoria RAM
de la que cal disposar per variables (veure Subseccié 2.3.2 - Mida del codi i seccions de
memoria).

Taula 27.1: Ocupacié de memoria de les dues aplicacions

Aplicacio text | data | bss
Baremetal_App_1 | 13126 | 120 68
FreeRTOS_App_1 | 22884 | 124 | 2368

(28. Us del watchdog en RTOS

Quan es treballa en un entorn amb un RTOS, cal estudiar bé com fer servir el watchdog. La primera
pensada pot ser d’afegir les crides per alimentar el watchdog a cada una de les tasques com si fossin
mini-aplicacions individuals. Aquesta aproximacio, pero, faria que el sistema mai es reinicii encara
que una tasca deixi de funcionar o tingui algun problema greu, ja que la resta de tasques seguirien
alimentant-lo.

La solucié més habitual és la de tenir una tasca dedicada a alimentar el watchdog i que rebi una
mena d’OK de cada una de les tasques restants del sistema. D’aquesta forma, si una tasca deixa de
funcionar, aquesta tasca dedicada ho detectara i deixara d’alimentar el watchdog provocant que el
sistema es reinicii (Llistat 28.1).

El codi que es veu al Llistat 28.1 proporciona la funcié watchdogTouch() que és la que haura de
cridar les diferents tasques del sistema, cadascuna amb un parametre WATCHDOG_TASK<N>
diferent i tnic.

Com es pot veure a I’exemple, la variable local a la biblioteca warchdog_list emmagatzema |’ estat
de totes les tasques i s hi accedeix a la funcié watchdogTouch() que protegeix 1’accés amb un
mutex. La tasca watchdogTask() avalua aquesta variable d’estat i si tot ha anat correctament (totes
les tasques han cridat la seva funcié almenys un cop), alimenta el watchdog. En cas contrari, la
tasca no I’alimenta i acabara per reiniciar el sistema.

A I’exemple aquesta tasca s’executa un cop cada segon, i el watchdog s’ha de configurar d’acord
a aquest temps (un temps de watchdog de 2 segons seria I’adequat). La resta de tasques haurien
de cridar la funcié watchdogTouch() amb un periode de temps prou curt (per exemple cada 500
mil-lisegons) per tal de que tot el sistema s’executi correctament.

168

Capitol 28. Us del watchdog en RTOS

Llistat 28.1: Codi d’exemple de la tasca de control del watchdog

0x01
0x02
0x04
0x08
0x0F

##define
#define
#define
#define
#define

WATCHDOG_TASK1
WATCHDOG_TASK2
WATCHDOG_TASK3
WATCHDOG_TASK4
WATCHDOG_FULL

static uint8_t watchdog_list;
SemaphoreHandle_t watchdog_mutex;

void watchdogTouch (uint8_t task)
xSemaphoreTake (watchdog_mutex,
watchdog_list |= task;
xSemaphoreGive (watchdog_mutex) ;

void watchdogClear () {
xSemaphoreTake (watchdog_mutex,
watchdog_list = 0;
xSemaphoreGive (watchdog_mutex) ;

{
portMAX_DELAY) ;

portMAX_DELAY) ;

void watchdogTask (void *parameter) {

WDOG_Init (&init);
watchdog_mutex

xSemaphoreCreateMutex () ;

watchdog_list = 0;
while (1) {
if (watchdog_list == WATCHDOG_FULL) {
WDOG_Feed() ;

watchdogClear () ;

vTaskDelay (pdMS_TO_TICKS(1000));

(29. Drivers en multi-tasca

Quan fem servir un dispositiu (I2C, SPI, etc.) en un entorn multi-tasca com és FreeRTOS podem
tenir el problema de dos o més tasques accedint simultaniament a un mateix recurs (el modul
hardware del microcontrolador). Es per aixd que cal escriure els drivers per accedir a dispositius
d’una manera especial quan treballem en entorns multi-tasca.

Ens podem imaginar que passaria si dues tasques intentessin accedir al bus 12C alhora? Que passaria
quan una estigues llegint pel bus i, pel que fos, quedés suspesa i la segiient tasca a executar-se
comences una transferéncia d’escriptura pel mateix bus? Segurament es corromprien totes dues
transferéncies o s’estarien fent transferéncies erronies al sistema.

El que volem evitar és que dues o més tasques facin us alhora del recurs compartit. Per tant, caldra
establir un control d’accés de manera que fins que una tasca no ha acabat de fer servir el recurs
I’altra tasca s’ha d’estar esperant. Ja hem vist una aproximacié senzilla a Seccié 27.2 - Modificant
el wrapper d’12C, per0 ara anem a mirar-nos-ho amb més deteniment.

Hi ha diferents maneres de fer aixo, aqui farem servir la més senzilla i estesa, que és escriure un
wrapper (embolcall) que protegeixi les funcions del driver i que seran les que farem servir a les
nostres tasques. Aquest wrapper contindra totes les funcions necessaries i les protegira amb un
mutex (veieu Fent servir Mutex en aquest mateix curs). Aquest mutex ens servira per controlar
I’accés a les parts compartides, que seran les propies crides al driver del més baix nivell.

Veiem-ho amb un exemple fent un wrapper al driver d’I2C de Silicon Labs que tenim a una
aplicacié completa (codi al github). En el cas que tinguéssim un sistema on hi hagués més d’un
dispositiu Slave connectat el bus, que hi accedeixen dues tasques diferents, podriem trobar-nos amb
el problema que comentavem d’accés multiple. Per tant, ens cal protegir els accessos amb el mutex
tal com hem comentat.

El primer que caldra és definir una funcié d’inicialitzaci6 del wrapper 12C, que podria quedar com
es veu al Llistat 29.1.

La funci6 tant sols crea un mutex i inicialitza el driver de la biblioteca emlib d’I2C del fabricant. El

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_App_1

170 Capitol 29. Drivers en multi-tasca

Llistat 29.1: Inicialitzacié del wrapper 12C amb Mutex

ok ke ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok k)
/ * Fitxer I2C_Wrapper.h */
[k ko ko ok ok ok ok ok Kk kK ko ok Kk ko kK A k)

typedef struct I2C_Handle_t»* I2C_WrapperHandler_t;

I2C_WrapperHandler_t I2C_initialize (void);

bool I2C_WriteRegister (I2C_WrapperHandler_t handlr,
uint8_t data);

bool I2C_ReadRegister (I2C_WrapperHandler_t handlr,
uint8_t =*val);

/****************************/

/* Fitxer I2C_Wrapper.c */

/****************************/

struct I2C_Handle_t {
SemaphoreHandle_t mutex;

}i

static struct I2C_Handle_t i2c_hdnl = {0};

I2C_WrapperHandler_t wrapper_I2C_Init () {

if (i2c_hdnl.mutex == NULL) {
i2c_hdnl.mutex = xSemaphoreCreateMutex();
I2C_Init (...);

return &i2c_hdnl;

uint8_t addr,

uint8_t addr,

uint8_t reg,

uint8_t reg,

171

Llistat 29.2: Modificacions a les funcions wrapper 12C amb Mutex

bool wrapper_I2C_ReadReg (I2C_WrapperHandler_t handlr, uint8_t address, uint8_t
reg, uint8_t =data) {

xSemaphoreTake (handlr->mutex, portMAX_ DELAY);
I2C_Transfer(...);

xSemaphoreGive (handlr->mutex);

bool wrapper_I2C_WriteReg (I2C_WrapperHandler_t handlr, uint8_t address, uint8_t
reg, uint8_t data) {
xSemaphoreTake (handlr->mutex, portMAX DELAY);
I2C_Transfer (...);

xSemaphoreGive (handlr->mutex);

mutex el retorna com un tipus handler de '[2C (I2C_WrapperHandler_t) i sera el primer parametre
que caldra passar a la resta de crides a les funcions del wrapper.

Aixi, podem modificar les dues funcions per accedir al bus 12C i que provin d’accedir al mutex, les
modificacions podrien quedar tal com es veu al Llistat 29.2.

Aixi, amb aquests canvis el que tenim ara és que una funcié d’accés al bus I2C no es col-lissonara
amb una altra, ja que abans d’intentar accedir-hi haura d’agafar el mutex. Si no ho aconsegueix, la
funcid es queda esperant-lo un temps infinit (es bloqueja la funci6 i la tasca que 1’hagi cridada).
Quan estara disponible el mutex? Doncs quan una altra funcié d’una altra tasca acabi el seu accés i
alliberi el bus.

Cal veure també que el tipus del handler (I2C_WrapperHandler_t) és I'tinic tipus que és public del
modul i aixi amaguem I’implementacié de I’estructura del handler. En aquest cas el handler és una
estructura amb només un mutex, pero si més endavant cal afegir-hi més informacié no fara que
canvii el tipus del handler que fan servir els diferents moduls.

Aquesta és una bona practica per amagar I’implementacié de la definici6 i deixant independent una
de I’altra i donant-los la llibertat de canviar I’estructura sense haver de canviar res del codi que fa
servir la biblioteca.

També cal veure que el handler és, de fet, un apuntador a una estructura. Aixo també és una practica
comuna, ja que és molt més rapid i eficient passar com a parametre un apuntador (que no deixa de
ser un tipus de 32 bits) que no pas passar tota I’estructura sencera (que poden ser for¢a camps i
molt costosa de passar, copiar, etc.).

Un exemple de canvi a I’estructura del handler podria ser afegir el timeout que volem per provar
d’accedir al mutex associat, de manera que a la funcié 12C_initialize() se li passés el timeout desitjat
i es guardes a I’estructura handler. Els canvis serien els que es veuen al Llistat 29.3.

Aquesta canvis només implicarien afegir el parametre de timeout a la crida d’inicialitzacié de I'[2C
1 cap altre canvi per part dels moduls que facin servir aquesta biblioteca.

172 Capitol 29. Drivers en multi-tasca

Llistat 29.3: Afegint més dades a 1 ’estructura del wrapper I12C amb mutex

struct I2C_Handle_t {
SemaphoreHandle_t mutex;
TickType_t timeout;

}i

I2C_WrapperHandler_t I2C_initialize(TickType_t timeout) {

i2c_hdnl.mutex = xSemaphoreCreateMutex();
i2c_hdnl.timeout = timeout;

bool I2C_WriteRegister (I2C_WrapperHandler_t handlr, uint8_t addr, uint8_t reg,
uint8_t data) {

xSemaphoreTake (handlr->mutex, handlr->timeout);

Un altre canvi que es podria afegir és en el cas que tinguem més d’un periferic del mateix tipus (és
a dir, 3 SPIs, 0 2 12C, o...) caldria llavors passar quin dels periferics volem inicialitzar i fer servir.
Per tant, una opcid seria passar com a parametre a la funcié 12C_initialize() quin dels periferics 12C
es vol inicialitzar. El handler que tornés hauria de ser diferent en funcié del periféric a treballar i
quin és s’hauria de guardar a I’estructura oculta.

30

30.1
30.2

31

31.1
31.2
31.3
31.4

32

32.1
32.2
32.3

Model d’interficie amb periférics

Polling d’esdeveniments
Interrupcions

Models de computacié

Bucle de control
Maquines d’estat finits
Codificant FSMs

Flux de dades

Tractament deltemps

FSMs amb temps
Tasques periodiques
Multitasca

177

Aquesta pagina esta en blanc expressament, tot va bé.

175

Fins ara hem vist com controlar els periferics més habituals que poden trobar a un microcontrolador,
fent ds de les biblioteques dels fabricants. També s ha observat que la programacié per sistemes
encastats és forca diferent a la d’una aplicacié d’escriptori o d’una app per un telefon mobil. Per
aixo cal ara dedicar uns capitols a presentar els diferents models de programacié més utilitzats
en la programacié de sistemes encastats. També caldra introduir conceptes teorics potser nous i
classificar aquestes models segons diferents aspectes per donar un seguit de criteris a 1’hora de
decidir quin model utilitzar per cada aplicacié concreta.

Aquesta pagina esta en blanc expressament, tot va bé.

30.1

(30. Model d'interficie amb periférics

Una primera classificacié de com es planifica i s’acaba codificant la nostra aplicacié €s segons com
es faci la interficie amb els diversos periferics. Aquesta classificacid es basa en la ja coneguda
dicotomia entre el polling i el treball amb interrupcions sobre periferics. Aquesta classificacié és
independent de les segiients classificacions que es faran, tal com es veura més endavant i, de fet, es
poden combinar amb les classificacions segiients segons les necessitats de cada aplicacio.

Polling d’esdeveniments

El primer model de programacid i potser el més senzill és el d’un bucle infinit que esta en una
espera activa (polling) de certs esdeveniments per actuar com calgui segons 1’aplicacié. En aquest
model no es fan servir les interrupcions i en tot moment es prova de fer la lectura dels periferics o
sensors que han de permetre una lectura nova i potser provocar un canvi en el sistema. Per tant,
aquest model consistira basicament en un bucle infinit dins la funci6 main de I’aplicacié. Aquest
bucle anira repetint indefinidament les lectures necessaries i les actuacions pertinents si s’han pogut
fer.

Un exemple d’aquesta mena d’estil de programacié s’ha vist a Capitol 21 - Una aplicacié
completa, on I’aplicacié ha de llegir un sensor de distancia per mostrar-la en un LEDs con-
trolant la seva potencia. En aquest exemple, el codi conté una funcié main que hi ha un bucle
infinit on continuament es prova de llegir el valor de proximitat del sensor i, si és el cas, variar la
[luminositat del LED segons la lectura feta (veure també el codi 21.5).

Aquesta mena de programacié és suficient per mdltiples aplicacions senzilles, on la logica de
I’aplicacié depen de poques variables o condicions i el concepte de timeout o de temps en general
n’és absent. Si, per exemple, volem que transcorri algun temps entre algunes instruccions o
esperar-se un determinat temps per realitzar una operacid, caldra introduir el temps al model.

També cal tenir en compte que aquest model fa que tota I’estona el microcontrolador estigui
treballant i, per tant, el consum energetic sera el maxim. Aixo per multiples aplicacions no sera cap
problema, perd s’haura de tenir en compte en aplicacions orientades al baix consum.

30.2

178 Capitol 30. Model d’interficie amb periférics

Interrupcions

L’ altre opci6 és dissenyar I’aplicacié de manera que els diversos periferics llencin interrupcions
quan hagin fet les diverses tasques necessaries i el microcontrolador pugui estar Idle tot esperant
per rebre les interrupcions i seguir amb [’aplicacio.

Normalment aquest mode de treballar fa el codi una mica més complex (veure Llistat 7.1 -
Exemple d’ISR per GPIO i el repositori). En aquests casos es configuren primer tots els periferics
necessaris per 1’aplicaci6 i a partir d’alla es té o bé un bucle infinit molt senzill processant dades o
es fa tot en funcions de callback i dins les ISR i al final del main tant sols hi ha un bucle infinit
sense fer res.

En aquest model, el microcontrolador podra estar en un mode de baix consum fins que no es generi
una interrupcié d’algun dels periferics, baixant considerablement el consum energetic de tot el
sistema (vegeu Secci6 35.3 - Estrategies de baix consum).

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/GPIO_2

31.1

(31 . Models de Qmp@géi{)’

Segons com es dissenyi i codifiqui el comput de les dades d’entrada per obtenir unes sortides
determinades, tenim diferents models de computacié. Anem a veure els més comuns.

Bucle de control

Una caracteristica forca diferent entre un codi de programa per un sistema encastat respecte a un
codi per una aplicacié habitual és que en el cas dels encastats el programa no pot acabar mai. I aixo
és perque el codi de programa és Unic, i per tant, si acaba el codi el microcontrolador no tindra cap
altre codi a executar i acabara per reiniciar-se el sistema (que pot ser el comportament desitjat en
algun cas).

Dit aix0, el cas més senzill d’estil de programacio6 per sistemes encastats és un simple bucle infinit
on s’executen les operacions a realitzar per 1’aplicaci6 desitjada. Abans d’aquest bucle es configuren
i preparen els dispositius i variables necessaries, tal com es pot veure a diferents exemples (GP1O_1,
Printf_SWO, PWM_1).

L’exemple Llistat 6.1 - Codi d’exemple de GPIO al repositori) és un exemple senzill d’aquest
tipus de codi.

Quan I’aplicacié es complica i comenga a tenir més camins de decisio i condicions, s’acostuma a
canviar el model cap a maquines d’estat finits, com es veura al segiient apartat.

Aquest model de programacio és el que es fa servir en Arduino, on s’ha separat en dues funcions,
una per configurar els periferics i demes (funcié setup() i la funcié principal que es va cridant un
cop i un altre (funci6 loop(). La funcié main() del sistema Arduino basicament executa el que es
veu al llistat 31.1 (es pot veure a SARDUINOS$/hardware/arduino/avr/cores/arduino/main.cpp).

https://github.com/mariusmm/cursembedded/blob/master/Simplicity/GPIO_1/
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Printf_SWO
https://github.com/mariusmm/cursembedded/blob/master/Simplicity/PWM_1/
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/GPIO_1

31.2

180 Capitol 31. Models de computacié

Llistat 31.1: funcié main() d’ Arduino

int main (void)

{

setup () ;

for (;;) {
loop();
if (serialEventRun) serialEventRun();
}
return 0O;

}

Maquines d’estat finits

Una maquina d’estats (FSM!, de Finite State Machine en anglés) és un model de maquina que
reacciona a certes entrades i calcula el valor per les sortides, segons I’estat en que estigui. També
es pot veure com un seguit d’estats possibles (finit!) en el que pot estar la maquina (el nostre
programa) i que va canviant segons les entrades del moment. Les sortides depenen de I’estat on
s’esta i/o de les entrades (segons el tipus de maquina que s’estigui modelant: maquina de Moore o
de Mealy) [56].

p) Formalment un FSM es pot definir com una 6-tupla de (S,1,0,F,H, s) tal que:

¢ S és un conjunt finit d’estats sq, sy, ..., S,
¢ [ésun conjunt d’entrades ig, iy, ..., i
* O és un conjunt de sortides 0,01, ...,0k
e F ésla funcié de transici6 del tipus: F : SxI — S
* H és la funci6 de sortida tal que:
— Si la maquina és del tipus Moore: H és del tipus: H : S — O
— Si la maquina és del tipus Mealy, H és del tipus: H: Sx I — O
* 5 € S ésestat inicial

Aixi, el diagrama d’estats de la FSM que implementaria I’exemple vist a (veure Llistat 6.1 - Codi
d’exemple de GPIO i el repositori) seria el que es veu a la Figura 31.1.

’0’ ’1’

B 13
start —
,0’

Figura 31.1: FSM per I’exemple GPIO_1

On I’entrada (1’ 0 ’0’) es correspon amb 1’entrada del pin corresponent, i On i Of f vol dir que en
aquell esta el LED ences o apagat.

Aquesta FSM es pot codificar de la manera que es veu al Llistat 31.2. En aquest codi es pot veure
que dins el el bucle infinit de la funcié main hi ha una estructura switch-case per cobrir tots els

1 Finite state machine

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/GPIO_1

31.2.1

31.2 Mdaquines d’estat finits 181

Llistat 31.2: Codi d’exemple de GPIO

enum {On, Off} state;
state = On;

int input_value;

/+ Infinite loop, FSM*/

while (1) {
input_value = GPIO_PinInGet (gpioPortD, 8);
switch (state) {

case On:
GPIO_PinOutSet (gpioPortD, 7);
if (input_value == 0) {
state = Off;
} else {
state = On;
}
break;
case Off:
GPIO_PinOutClear (gpioPortD, 7);
if (input_value == 1) {
state = On;
} else {

state = Off;
}
break;
case default:
/* something wrong has happened =/
GPIO_PinOutClear (gpioPortD, 7);
state = On;
break;

estats. Aquests es defineixen amb un enum amb els noms desitjats i es crea una variable d’aquest
tipus, que s’inicialitza amb I’estat inicial (en aquest cas I’estat On). Després, per cada estat s’avalua
I’entrada i es pren la definicié de quin ha de ser el proper estat. En aquest exemple la FSM és de
tipus Moore, i per aixo la sortida del LED esta fixada per cada estat. Si es vol implementar amb
una maquina de Mealy el codi hauria de ser tal com es veu al Llistat 31.3, on la sortida depen de
I’estat i ’entrada actual.

Les FSM son una bona manera d’estructura la solucié de 1’aplicacid, ja que cal dissenyar-les i
pensar-les abans de comencar a escriure codi. L'ds d’aquests mecanismes també ajuda a reduir el
nombre de camins d’execucid, cosa que simplifica el test del codi.

Maquina d’estats finits estesa

Les maquines d’estats finits esteses (EFSM?) amplien el concepte de les FSM amb el de variables

que mantenen valors interns de manera que la funcié de transicié pot preguntar per valors d’aquestes
variables [57].

2Extended finite state machine

182 Capitol 31. Models de computacié

Llistat 31.3: Codi d’exemple de GPIO

switch (state) {
case On:
if (input_value == 0) {
GPIO_PinOutClear (gpioPortD, 7);
state = Off;

} else {
GPIO_PinOutSet (gpioPortD, 7);
state = On;

}

break;

case Off:

if (input_value == 1) {
GPIO_PinOutSet (gpioPortD, 7);
state = On;

} else {

GPIO_PinOutClear (gpioPortD, 7);
state = Off;

}

break;

case default:

/* something wrong has happened =/

GPIO_PinOutClear (gpioPortD, 7);

state = On;

break;

31.2.2

31.2 Maquines d’estat finits 183

p) Formalment un EFSM es pot definir com una 8-tupla de (S,7,0,D,E,U,F,s) tal que:

* S és un conjunt finit d’estats sq, Sy, ..., S,

* [és un conjunt d’entrades ig, iy, ..., i

* O és un conjunt de sortides 0,01, ...,0k

* D és un espai lineal de j dimensions Dy X Dy x ... x D;

* FE ésun conjunt de funcions d’activacié del tipus: £ : D — 0, 1

* U és un conjunt de funcions d’actualitzaci6 del tipus: U : D — D
e F éslafuncié de transicid del tipus: F : SXIXE —-SxU x O

* 5 € S és estat inicial

Amb aquesta mena de maquines d’estats, es poden tenir variables que, per exemple, comptin fins a
un cert valor i llavors permetre un canvi d’estat, o que una variable controli un interval de temps,
etc.

Un exemple amb FSM

Veiem un exemple dissenyant un termostat senzill amb la nostra placa d’avaluacié. Es simulara
la lectura d’un termometre amb el potenciometre que ja es va fer servir a I’exemple Capitol 12 -
ADC i es fara servir un dels LEDs per simular que s’engega 1’escalfador d’aigua.

Aix{i, per implementar un termostat senzill, cal implementar la maquina d’estats de la Figura 31.2.
En aquest diagrama d’estats no es dibuixen les transicions que mantenen 1’estat, que en aquest cas
seria si no es compleixen les condicions de temperatura (si la temperatura és superior a 21°C i esta
al’estat Off es manté I’estat, el mateix per I’estat On si la temperatura esta per sota del 23°C).

R) Que hi hagin dos estats i les transicions entre ells sigui amb temperatures diferents (s’en-
gega a 21°C i s’apaga amb 23°C) serveix per no tenir un termostat engegant-se i parant-se
continuament un cop s’arriba a la temperatura indicada.

El codi es troba al repositori, al projecte FSM_1.

Temp < 21

Temp > 23

Figura 31.2: FSM d’un termostat senzill

El codi d’aquest projecte comparteix funcions o crides a la biblioteca ADC d’EMLIB ja vistes a
Seccié 12.1 - Exemple d’ADC. S’han encapsulat dins la funci6 ADCGetValue(), que fa polling
de I’ ADC per obtenir un valor de conversié (veure el Llistat 31.4).

La funci6 getTemperature() utilitza la funci6 anterior per obtenir un valor de I’ADC, convertir-lo a
valor de temperatura (simulada en aquest exemple) i retornar el valor calculat (veure el Llistat 31.5).

També existeixen unes funcions de simulacié SwitchOff() i SwitchOn() que son les que engegarien
i pararien I’escalfador d’aigua. Per les proves aquestes funcions encenen o apaguen un dels LEDs
de la placa.

La implementacié de la FSM és molt senzilla i es veu al codi del Llistat 31.6 i al repositori.
Primerament es llegeix la temperatura (simulada) i llavors, segons quin estat estigui la maquina, es
compara amb un valor o un altre per saber si cal canviar d’estat o mantenir-se en 1’actual. A cada

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FSM_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FSM_1

184 Capitol 31. Models de computacié

Llistat 31.4: funci6 ADCGetValue()

static uint32_t ADCGetValue () {
uint32_t ADCvalue = 0;

ADC_Start (ADCO, adcStartSingle);
while (ADCO->STATUS & ADC_STATUS_SINGLEACT) ;

ADCvalue = ADC_DataSingleGet (ADCO) ;

return ADCvalue;

Llistat 31.5: funcié getTemperature()

static uint32_t getTemperature () {
uint32_t raw_sensor_value;
uint32_t temperature_value;

raw_sensor_value = ADCGetValue () ;
/+ Fake conversion: just for the example we map 0..4095 values of the ADC to
15..35 celsius degree =/

temperature_value = ((raw_sensor_value x 20) / 4095) + 15;

return temperature_value;

31.3

31.3 Codificant FSMs 185

Llistat 31.6: Codi de la FSM per un termostat senzill

while (1) {
temperature = getTemperature();

switch (state) {
case Thermo_OFF:

if (temperature < MIN_TEMPERATURE) {
state = Thermo_ON;
printf (,

temperature) ;

}

SwitchOff ();

break;

case Thermo_ON:
if (temperature > MAX_TEMPERATURE) {
state = Thermo_OFF;
printf(’
temperature) ;
}
SwitchOn () ;

break;

default:
state = Thermo_OFF;
SwitchOff ();

estat es crida a la funcié de sortida SwitchOff() o SwitchOn() (la maquina és una maquina d’estats
de Moore).

Cal fer notar que la FSM esta permanentment consultant el valor del termometre (simulat), ja que
quan acaba una avaluacié de I’estat i pren la sortida oportuna, el codi torna a comengar el bucle.
Aix0 pot ser un problema en segons quins casos, com el que el sensor a llegir tingui un nombre
limita de lectures o calgui un consum del dispositiu molt baix.

R) Toti que els dos exemples que han aparegut sobre FSMs son amb només dos estats, una
maquina d’estats en pot tenir un nombre arbitrari segons les necessitats de 1’aplicacid.

Codificant FSMs

Com ja hem vist al Llistats 31.3 1 31.6, és relativament senzill codificar una FSM en C. Tot i aixo,
es pot trobar un model generic per simplificar les coses. Anem a presentar-lo.

Com s’ha dit anteriorment, una FSM consta de 4 operacions:

* Llegir les entrades. Aix0 provocara o no canvis en I’estat i les sortides.

* Calcular els nous valors de les variables.

* Escriure les sortides que calgui segons 1’estat de la maquina d’estats.

» Calcular I’estat segiient segons les entrades llegides, les diverses variables 1 I’estat actual.

186 Capitol 31. Models de computacié

Llistat 31.7: Estructura basica d’una FSM

void loop () {
read_inputs () ;
calc_values () ;
write_outputs();
next_estate();

}

int main(void) {
setup () ;
while (1) {

loop () ;
}

L’ordre d’aquestes operacions és indiferent mentre s’executin totes 4 a cada iteracié. D’aquesta
manera, podem disposar la nostra funcié de loop() tal com es veu al Llistat 31.7.

Si adaptem I’exemple del termostat a aquest metode de codificacid, quedaria tal com es veu al
Llistat 31.8 i al repositori.

Si la nostra aplicaci6 requereix més d’una FSM, es poden intercalar les crides a cada operacié de
manera que es vagin executant alternant les FSMs tal com es veu a la Figura 31.9.

Si s’utilitza habitualment aquest mode de programacid, és possible que surti a compte muntar-se
una estructura de control propia que manegui la crida ordenada d’aquestes funcions i sigui senzill
registrar una nova FSM per ser executada concurrentment amb les demes. Un esbos d’aquest kernel
podria ser el que es veu al Llistat 31.10.

Aquest kernel va executant cada una de les operacions de totes les FSM que s’hi hagin registrat
previament. D’aquesta manera es pot tenir implementades les FSMs que solucionin la nostra
aplicaci6 d’una forma rapida.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FSM_2

31.3 Codificant FSMs 187

Llistat 31.8: Codi de termostat amb I’estructura basica d’una FSM

void read_inputs () {
temperature = getTemperature();

void calc_values () {
switch (state) {
case Thermo_OFF:
termostat_on = false;
break;
case Thermo_ON:
termostat_on = true;
break;

void write_outputs () {
if (termostat_on) {
SwitchOn () ;
} else {
SwitchOff ();

void next_estate () {
switch (state) {
case Thermo_OFF:
if (temperature < MIN_TEMPERATURE) {
state = Thermo_ON;
}
break;
case Thermo_ON:
if (temperature > MAX_TEMPERATURE) {
state = Thermo_OFF;
}
break;

188 Capitol 31. Models de computacié

Llistat 31.9: Funci6 de loop amb mudltiples FSMs

void loop() {
read_inputs_FSM1 () ;
read_inputs_FSM2 () ;
read_inputs_FSMN () ;

calc_values_FSM1 () ;
calc_values_FSM2 ();

calc_values_FSMN () ;

write_outputs_FSM1 () ;
write_outputs_FSM2 () ;

write_outputs_FSMN () ;

next_estate_FSMI1 () ;
next_estate_FSM2 () ;

next_estate_FSMN() ;

31.3 Codificant FSMs 189

Llistat 31.10: Estructura basica d’un kernel per multiples FSMs

#define MAX_FSM 10

typedef struct {

void (xread_input_func) (void);
void (*calc_values_func) (void);
void (xwrite_outputs_func) (void);
void (*next_estate_func) (void);

} FSM_t;

FSM_t FSM_array[MAX_FSM]; // can manage MAX_FSM FSMs

bool register_ FSM(FSM_t &fsm) {

const int index = 0;
FSM_array([index] = fsm;
index++;

void loop () |
int i;

for(i = 0; i < MAX_FSM; i++) {
if (FSM_array[i].read_input_func) {
FSM_arrayl[i].read_input_func();

for(i = 0; i < MAX_FSM; i++) {
if (FSM_array[i].calc_values_func) {
FSM_array([i].calc_values_func();

190 Capitol 31. Models de computacié

31.4 Flux de dades
TBD

32.1

(32. Tractament del telé;pg;:

Tot i que el tractament del temps (deixar passar un cert temps, esperar per un esdeveniment un cert
temps, etc.) es pot fer tant amb FSMs com amb un bucle de control senzill, hi ha models pensats
que el tracten especificament.

FSMs amb temps

Una forma molt senzilla d’afegir temps a una FSM és afegir un temps d’espera a la funcié loop().
Un cop decidit el temps de cada iteracid, cal afegir aquest retard (delay) al final de cada iteracid.
Aixi, el codi de la funcié loop() quedara tal com es veu al Llistat 32.1 i al repositori.

D’aquesta manera cada iteraci6 s’executara amb el periode triat sempre que el temps d’execucié de
les seves operacions no 1’excedeixi. Com es veu al codi, el temps a esperar-se de la funcié delay() es
calcula a cada iteracid, aixd permet que cada iteracid es faci en el periode fixat independentment del
temps que hagi transcorregut 1’execuci6 de les operacions anteriors. Com que sovint les operacions
no transcorren en un temps determinista, inserir un simple delay(period) faria que 1’execucié de
cada iteracio es fes en un temps diferent.

En aquest model, la funcié delay() pot manegar opcions de baix consum, de manera que pot fer que
el microcontrolador entri a un mode de baix consum mentre transcorre el temps seleccionat.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FSM_3

192 Capitol 32. Tractament del temps

Llistat 32.1: FSM amb control del temps

const int period = 50; // period time in miliseconds

void loop () {
uint32_t start_time, end_time, iteration_time;

start_time = RTC_CounterGet(); // time value in miliseconds

/* FSM */
read_inputs () ;
calc_values () ;
write_outputs () ;
next_estate();
/% FSM */

end_time = RTC_CounterGet ();
iteration_time = end_time - start_time;
delay (period - iteration_time);

32.2 Tasques periodiques

32.2.1

Un altre model for¢a habitual de tractar el temps d’una forma senzilla és fent s de tasques
programades. Aquestes tasques son funcions que es criden de forma periodica i realitzen les tasques
necessaries per I’aplicacié final. Aixi, podem tenir un codi similar al del Llistat 32.2

La funcié Registra_tasca() registra la funcié que se li passa per a que es cridi cada cert temps. El
kernel s’encarrega de programar algun em timer per a que notifiqui el microcontrolador el temps
corresponent i, per exemple, pugui posar en un mode de baix consum el microcontrolador mentre
aquest temps no arribi. Com que el microcontrolador es pot despertar per diversos esdeveniments,
dins el bucle infinit de la funcié main() es crida a la funcié per a que el kernel, si s’escau cridi al a
funcid registrada, torni a programar el timer com calgui i torni a dormir el microcontrolador. El
pseudocodi per aquesta funci6 seria tal com es veu al Llistat 32.3.

Implementacié

En el cas de treballar amb la plataforma EFM32 part d’aquestes funcionalitats les tenim imple-
mentades a la biblioteca RTCDRYV i SLEEP que pertanyen a la biblioteca d’alt nivell EMDRYV del
fabricant [58].

La primera de les biblioteques, RTCDRYV, permet gestionar timers virtuals fent servir només un
Timer real, com el nom indica, es fa servir el timer RTC del microcontrolador (veure Capitol 9
- RTC) [59]. D’aquesta manera es simplifica tenir multiples timers i permet registrar callbacks
per quan un timer arriba al seu temps programat de manera que quan un timer arriba al seu temps
d’expiracio es crida a la funci6 de callback registrada.

La segona llibreria, SLEEP, gestionar automaticament els modes de baixa energia del micro-
controlador, fent que aquest entri al mode més baix possible segons els periférics que es tenen
activats. D’aquesta manera, amb una sola crida a una funcié de la biblioteca s’aconsegueix posar el
microcontrolador en mode de baix consum [60].

D’aquesta manera, la funci6 Registra_tasca() passaria a ser una crida a la funcié6 RTCDRV
_StartTimer() amb la funcié periodica com a callback i la resta de parametres com calgui (rtcdrv-

32.2 Tasques periddiques 193

Llistat 32.2: Estructura basica de les tasques programades

void tascal (void) {
// codi tasca 1
}

void tasca?2 (void) {
// codi tasca 2

void main (void) {
// inicialitzacions

// es registren les dues tasques, una es crida cada 5 segons, 1’altra cada 15
segons

Registra_tasca(tascal, 5000);

Registra_tasca(tasca2, 15000);

while (1) {
Executa_kernel () ;

Llistat 32.3: Estructura basica de la funcié Executa_kernel()

void Executa_kernel (void) {
Configurar els timers necessaris
Posar processador en mode de baix consum
/+ Aqui el processador esta suspes esperant algun esdeveniment o que es
dispari un timer */

Esbrinar quina tasca toca executar-se
Executar tasca
(Opcional) Cridar a una funcio generica de 1’usuari

32.3

194 Capitol 32. Tractament del temps

Llistat 32.4: Estructura basica de la funcid Executa_tasca()

/+ Aquesta funcio es crida des d’una ISR, ha de ser curta =*/
static void TimerCallback (RTCDRV_TimerID_t id, woid* param) ({
int timer;

index = * (intx)param;
my_timers[index].semaphores = true;

void Registra_tasca (mycallback_t func, uint32_t period) {
static int 1 = 0;

my_timers[i].callbacks = func;
my_timers[i].value = i;

RTCDRV_AllocateTimer (&my_timers[i].timers_array);
RTCDRV_StartTimer (my_timers[i] .timers_array, rtcdrvTlimerTypePeriodic, period,
TimerCallback, &i);

i++;

static void Executa_tasca(int timeout) {
int i;

for (i = 0; i1 < EMDRV_RTCDRV_NUM_TIMERS; i++) {
if (my_timers[i].semaphores == true) {
my_timers[i].semaphores = false;
if (my_timers[i].callbacks) {
my_timers[i].callbacks();

TimerTypePeriodic, el temps en mil-lisegons, etc.). I la funcié Executa_kernel() no hauria de fer
gran cosa.

Aquesta estratégia te un problema, i €s que la funcié de callback se la crida dins del context
d’interrupcid, cosa no sempre desitjable, ja que les ISR haurien de ser sempre funcions molt curtes,
sense gaire funcionalitat, tal com es va explicar a Capitol 7 - Controlador d’interrupcions. Per
solucionar aix0 es pot canviar una mica I’estratégia i mantenir una estructura que permeti saber
quina funcié cal cridar i tenir una funcié de callback tinica que mantingui aquesta informacié.
Llavors, a la funci6 Executa_kernel() es comprova si s’ha de cridar alguna funcié i llavors es crida
des d’alla, fora del context d’interrupcid. Aixo es pot veure al Llistat 32.4.

Aquest model de programacié és forca senzill i es podria veure com un pas previ a I’is d’un
RTOS on el maneig de les tasques és mes complex i ens ofereixen mecanismes de sincronitzacio i
comunicacié entre les tasques més enlla de variables compartides.

Multitasca

Com ja veurem a Part IV - FreeRTOS, és possible tenir multitasca en sistemes encastats. Pot ser
una bona forma de tenir multiples tasques funcionant alhora sense haver de gestionar nosaltres

32.3 Multitasca 195

mateixos aquesta complexitat.

Donats I’Gs de recursos que es fa i la complexitat a I’hora de programar per aquesta mena de
sistemes fa que no sigui la solucié idonia per tot tipus d’aplicacié encastada. A més, aquesta
estrategia pot incloure també FSMs, de manera que una o més tasques de 1’aplicaci6 estiguin
implementades amb una FSM tal com s’ha comentat a les seccions anteriors.

L’ds de RTOS facilita la comunicaci6 entre tasques,

Aquesta pagina esta en blanc expressament, tot va bé.

33
33.1

34

35

35.1
35.2
35.3
35.4
35.5

36

37

37.1
37.2
37.3
374
375
37.6

38
38.1

38.2
38.3
38.4

39

40

40.1
40.2
40.3

41

41.1
41.2
41.3
414

42

43

Gestio d’excepcions 199
Exemple detectant errors greus

Shadow Registers 203

Baixcosum 205
Consideracions previes

Modes d’sleep

Estratégies de baix consum

Timers de baix consum

Baix consum i RTOS

Documentantelcodi 211

CMSIS ... 215
CMSIS-Core

CMSIS-Driver

CMSIS-DSP

CMSIS-RTOS

CMSIS-DAP

CMSIS-NN

Normes de codificacié 217
The Power of 10: Rules for Developing Safety-Critical
Code

MISRA-C

Embedded C Coding Standard

JPL Institutional Coding Standard for the C Program-
ming Language

CH++vsC ... 223
Primer exemple en C++

Un driveren C++

Conclusions

Relacidé Esquemadtici FW 231
Seleccié de pin-out

Seleccié de rellotges

Canvis durant el layout

De la placa de prototipat a PCB propia

Inicialitzacié del sistema i del llenguatge
C o 235

Aquesta pagina esta en blanc expressament, tot va bé.

33.1

(33. Gestié d ex&pci_c:ins,;_

Sovint treballant amb sistemes encastats ens trobem amb errors d’origen desconegut que es poden
provocar per multiples causes. Aixi, per exemple, una divisi6 per zero, un accés incorrecte a una
zona de memoria o un accés a una posicié de memoria fora de rang faran que el processador es
reinicii [22, pagina 102][61, pagina 318][62].

Aquests casos poden ser molt dificils de trobar si sén casos esporadics, pero 1’arquitectura ARM
té unes caracteristiques que ajuden a detectar-los i trobar-los. En sintesi, el cortex-M llenca una
interrupcié molt prioritaria anomenada HardFault_Handler() quan succeeix un problema greu
del que el processador no pot recupera-se, com una divisié per zero, un accés il-legal a memoria,
etc. Abans de cridar a I’excepcid, la CPU guarda tot de valors claus a diferents registres, i aixi
per exemple en el registre PC s’hi emmagatzema 1’adre¢a de la instruccid executada, aixi que, en
principi, només cal anar a aquella posicié de memoria per veure quin ha estat el codi que ha causat
el problema. També s’emmagatzema el valor de retorn (la instrucci6 segiient a I’executada que ha
causat I’error) al registre LR [63].

Aixi doncs, es pot reescriure la ISR per obtenir les dades que ens informi sobre que ha passat per
ajudar-nos a obtenir pistes de quin codi esta fallant [64].

Exemple detectant errors greus

A I’exemple del repositori hi ha un codi que genera diferents errors segons la funcié que es cridi i
una implementacié de HardFault_Handler(). Aquesta funci6 esta escrita en assemblador, pero el
que cal veure és que es crida a la funci6 my_HardFault_Handler() que es qui en realitat fa tota la
feina i és la que cal entendre [65].

A la primera part (veure Llistat 33.1) de la ISR es treu per la consola de debug la causa de 1’excepcid
(bus fault, memory access, divide by zero, etc.).

Tot seguit es treu per la mateixa consola els valors dels registres que hi ha a I’stack per tenir dades
que ens permetin localitzar I’error (Llistat 33.2).

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/ErrorHandling

200 Capitol 33. Gestié d’excepcions

Llistat 33.1: Codi HardFault_Handler

void my_HardFault_Handler (uint32_t =*stack) {
printf ("Error Handler\r\n");
printf ("SCB->HFSR = 0x%081x\r\n", (uint32_t) SCB->HFSR);

if ((SCB->HFSR & (1 << 30)) !'= 0) {
printf ("Forced Hard Fault\r\n");
printf ("SCB->CFSR = 0x%081lx\r\n", SCB->CFSR);

if ((SCB->CFSR & 0x02000000) != 0) {
printf ("Divide by zero\r\n");

}

if ((SCB->CFSR & 0x01000000) != 0) {
printf ("Unaligned\r\n");

}

if ((SCB->CFSR & 0x00010000) != 0) {
printf ("Undefined\r\n");

}

Llistat 33.2: Codi HardFault_Handler (continuacid)

void my_HardFault_Handler (uint32_t =*stack) {

printf ("sp = 0x%081X\r\n", (uint32_t) stack);
printf("r0 = 0x%081X\r\n", stack[0]);
printf("rl = 0x%081xX\r\n", stack[1]);
printf("r2 = 0x%081xX\r\n", stack[2]);

(
()
()
()
printf ("r3 = 0x%081x\r\n", stack[3]);
("rl2 = 0x%081xX\r\n", stackl[4]);
()i
()
()

"lr = 0x%081X\r\n", stack[5]);

"pc = 0x%081X\r\n", stack[6]
printf ("psr = 0x%081xX\r\n" stack[7]

’

’

33.1 Exemple detectant errors greus

201

J

printf(“sp
printf("ro
printf("rl
printf("r2
printf("r3
printf("rl2 =
printf("1lr
printf("pc
printf(“psr =

DEBUG_BREAK;

while (1) {
LedToggle

Ox%08LX\r\n",
Ox%08LX\r\n",
Ox%08LX\r\n",
Ox%08LX\r\n",
Ox%08LX\r\n",

Ox%08LX\r\n",

X%08LX\r\n",

0
Ox%08LX\r\n",

Ox%08LX\r\n",

();

(uint32_t) stack);
stack[0]);
stack[1]);
stack([2]);
stack[3]);
stack([4]);
stack([5]);
stack[6]);
stack([7]);

& console &2 | @ nemor

Irogram Output Console
Divide by zero

sp = 0x20000FB8
ro = 0x0000001C
rl = 0x50000000
r2 = 0x0000000A
r3 = 0x00000000
ri2 = 0x10000878
1r = 0x0O00O6FF
pc = 0x0OOOO6AE

psr = 0x61000000

Figura 33.1: Debugger aturat a la instrucci6 DEBUG_BREAK i el dump els registres

202

Capitol 33. Gestié d’excepcions

wrongfunctionAlign ~ | &1 ti1 [& Y

0000069cC:
000006%e:
000006a0:
21

000006a2:
000006a4 :
22

00000646 :
000006a8:
24

00000baa:
00000bac:

00006b2:
25

000006b4 :
000OO6DhG:

g

000006ae:

1

}

push {r7}

sub sp,sp,#0x14

add r7,sp,#0x0
int a = 10;

movs r3,#0xa

str r3,[r7,#0xc]
int b = B;

movs r3,#0x0

str r3,[r7,#0x8]
c =a/ b;

ldr r2, [iri7,#0xc]

-3 r?@xS]
7, #0x4]

adds r/,#0x14
mov sp,ri

Pt F

Figura 33.2: Codi assemblador a la posicié de memoria indicada pel registre PC

Per dltim, es crida la macro DEBUG_BREAK, que esta definida com una instruccié en assemblador
(BKPT #01) que posa el core en mode Debug i atura 1’execucié en aquest punt. Aixi, si tenim un
debugger connectat, veurem com 1’execucid s’atura en aquest punt i torna el control a la nostra eina
(veure Figura 33.1).

Si anem a la finestra Disassembly i anem a la posicié de memoria que indica el registre PC (Ox6AE
a I’exemple), veurem que apunta a una instruccié assemblador sdiv, que es corresponent amb una
divisié. Si mirem el codi anterior, podem deduir que a la posicié de memoria R7+0x8 (corresponent
a la variable b) s’hi ha emmagatzemat un O (instruccions a 0x6A6 i 0x6A8) i aquesta variable es fa
servir a la divisié com a divisor, causant I’error (veure Figura 33.2).

També cal comentar que les diferents funcions que generen errors sén les segiients:

WrongfunctionDiv0() causa una divisi6 per zero.

WrongfunctionAlign() causa un error d’accés a memoria fora d’alineament.
WrongfunctionWrongMemory() causa un error per accés fora dels limits de la memoria.
fp() causa un intent d’executar a la posicié 0x0000_0000 de memoria.

(34. Shadow e@sfers___;‘

En algunes arquitectures i en periferics d’alguns fabricants poden llegir que es fan servir shadow
registers. S’anomenen aixi a registres que contenen una copia d’un altre registre i que son els que
es poden llegir per part d’altres dispositius o periferics.

Aixi per exemple, trobem shadow registers a alguns processadors de manera que quan la CPU entra
a una interrupcio es passa a treballar amb un banc separat de registres de propoOsit general. AixoO es
fa per evitar un sobrecost a la crida de la ISR, ja que si es tenen aquests registres s’han de guardar
els valors actuals de tots els registres a la pila abans de poder executar el codi de la ISR. En canvi,
si es tenen aquests registres, la CPU passa a treballar amb un banc diferent (els shadow registers)
durant I’execuci6 de la ISR i no cal salvaguardar cap valor dels registres originals. Un cop se surt
de 1a ISR la CPU torna a treballar amb el banc de registres originals. En el cas dels Cortex-M no es
treballa amb aquesta mena de shadow registers i, per tant, caldra que les ISR salvin els valors dels
registres de proposit general que sobreescriguin durant la seva execucio.

Una altra lloc on ens podem trobar shadow registers és en alguns periferics que treballen valors
grans repartits en diversos registres. Si aquests registres s’actualitzessin entremig d’una lectura per
part del Firmware, aquest podria tenir una inconsisténcia a les dades. Per aix0, és habitual que un
valor determinat s’emmagatzemi a shadow registers mentre els registres “amagats” s’actualitzen de
forma normal. Aquests shadow registers seran els que el firmware pot llegir i s’actualitzaran tots de
cop una vegada s’hagin llegit tots pel firmware.

® A tots ens ha passat o tenim un company que ha perdut una tarda sencera intentant llegir
uns registres d’aquesta mena sense seguir bé I’ordre i rebent valors dolents sense caure en el
problema amb els shadow registers.

Un exemple d’aixo tltim succeeix amb els registres de data i temps del RTC dels microcontroladors
d’ST (veure Capitol 9 - RTC). Aquest periféric conté uns shadow registers on es copien cada 2
cicles els registres reals amb la data, el temps i els segons del RTC (Figura 34.1). Quan es llegeix
el registre amb el temps o amb els segons es bloqueja la copia de tots els tres registres perque la

204 Capitol 34. Shadow Registers

v
ck_spre
iz LRTC_PRER | | (yetauit 1 Hz)
—| Synchronous

15-bit prescaler

(default = 256) Calendar
Shadow register Shadow registers —
RTC SSR RTC_TR, -
RTC_DR _‘

Figura 34.1: Shadow registers del periferic RTC dels STM32 [30, pagina 800]

lectura dels demes no doni cap incoheréncia. Si no hi fossin, podria passar que es llegis el temps
(per exemple les 23:59:59 del dia 1) i poc després al llegir la data ja hagués passat el segon i la data
jafos el dia 2, resultant en que enlloc de llegir les 23:59:59 del dia 1 s’hauria llegir les 23:59:59 del
dia 2. En aquest cas sembla que és molt millor llegir la data correcte i que es tingui un error d’un
segon a tenir un dia sencer d’error (!).

Per tant, en aquest periferic, primer cal llegir el registre amb el temps o els segons i després el
registre amb la data [30, pagines 800 - 805]. Aixi si només es vol llegir el temps del RTC perqué no
interessa la data del sistema, no es poden fer lectures consecutives del temps sense llegir també,
encara que no interessi, la data del RTC. La API del fabricant en aquest cas no ho gestiona, pero si
que ho adverteix a la seva documentacio [66, pagina 719].

35.1

35.2

Un dels temes més habituals de trobar-se quan es tracten temes amb microcontroladors és el del baix
consum. Gracies a la tecnologia de fabricacié dels microxips i els avencos en les arquitectures dels
microcontroladors, aquests han arribat a unes fites de consum molt baixes, permeten desenvolupar
aplicacions on el sistema pugui anar alimentat per bateries o altres fonts d’alimentaci6 alternatives a
I’alimentacié general. En aquest capitol veurem les caracteristiques actuals dels microcontroladors
en aquest aspecte, com treure tot el partit a aquestes caracteristiques i, per dltim, com adaptar els
RTOS per treballar amb baix consum.

Cal repassar uns quants conceptes sobre el consum d’energia abans d’introduir-nos de ple en el
tema.

Consideracions prévies

Per la propia natura dels circuits digitals, aquests consumeixen sobretot quan el seu rellotge principal
esta actiu. Aixo0 fa que I’estrateégia principal per reduir el consum d’un circuit és desactivar-li
precisament el rellotge o reduir la seva freqiiéncia, ja que el consum és proporcional a la velocitat
de rellotge.

® Donat que el consum és quasi proporcional a la freqtiencia de rellotge, els fabricants acostumen
a donar el consum per MHz (tipicament tA/MHz).

També cal tenir en compte que qui més consumeix en un microcontrolador és el propi core o CPU i
que, per tant, sera el modul que caldra tenir apagat el maxim de temps possible.

Modes d’sleep

Els diferents fabricants de microcontroladors basats en Cortex-M ofereixen diferents modes d’sleep,
aixo és, diferents combinacions de periferics que estan actius a cada mode per tal de reduir el
consum.

35.3

35.3.1

206 Capitol 35. Baix cosum

Taula 35.1: Consum d’energia de diferents fabricants i modes (per un Cortex-M0+) [40][67]

Processador STM32 EFM32
SleepMode
EMO - Run mode 76 uA/Mhz | 114 uA/MHz
EML1 - Sleep mode 42 uA/MHz | 48 uA/MHz
EMA4 - Standby mode 230 nA 20 nA

Aixi, els microcontroladors de Silicon Labs tenen 4 modes d’sleep' [24, pagina 6]:

* EMO - Energy Mode 0: Tot el sistema esta actiu incloent-hi tots els periferics.

* EMI1 - Energy Mode I: La CPU esta desactiva i la resta de periférics estan disponibles.

e EM2 - Energy Mode 2: La CPU esta desactivada i només els periferics de baix consum estan
disponibles (UART, RTC, TIMER, Watchdog)

* EM3 - Energy Mode 3: Tot el sistema esta desactivat, només es manté la RAM activada i
certes interrupcions

* EM4 - Energy Mode 4: Tot el sistema esta desactivat, només es pot fer un reser al sistema.

En canvi, els microcontroladors de ST tenen només 3 modes de baix consum? [30, pagina 126]:

* Run mode: Tot el sistema esta actiu incloent-hi tots els periferics.

* Sleep mode: La CPU esta desactiva i la resta de periferics estan disponibles.

* Stop mode: Tot el sistema esta desactivat, només es manté la RAM activada i certes interrup-
cions

* Standby mode: Tot el sistema esta desactivat, només es pot fer un reser al sistema.

Els core Cortex-M es poden posar en mode de baix consum fent servir dues instruccions WFI i
WFE. El primer que cal fer és configurar a quin mode d’adormir es vol posar el microcontrolador
i després executar la instruccié que pertoqui. La CPU es quedara en I’estat de baix consum que
s’hagi configurat fins que es generi una IRQ per algun periféric o generat per un senyal extern.

Estratégies de baix consum

Vist tot I’anterior, 1’estratégia basica per tenir un baix consum sera la de preparar els periferics
per a que facin la funcionalitat d’entrada/sortida necessaria de manera que llencin una IRQ quan
finalitzin, posar en un dels modes de baix consum on la CPU esta desactivada a I’espera de les
interrupcions; a continuacid, la CPU processara les dades o esdeveniments que hagin succeit i es
tornara a configurar els periferics i es tornara a posar la CPU en mode baix consum, etc.

Per tant, quan es desenvolupa una aplicacié per ser de baix consum, s’acostuma a treballar basant-se
en interrupcions (Veure Capitol 7 - Controlador d’interrupcions) i tenint la CPU el maxim de
temps en algun dels modes de baix consum.

Exemple de baix consum

[’exemple que es veura fara servir I’ADC per convertir una entrada analdgica a un valor digital,
com jaes a fer a ’exemple Seccio 12.1 - Exemple d’ADC. En el cas de baix consum, es configura
el periferic de la mateixa forma pero s’hi afegeix I’opcié que generi una IRQ quan acaba de fer una
conversid. Aixi, el nostre codi al bucle principal engegara la conversid, entrara en el mode de baix

1A més, hi ha el mode normal, on la CPU esth a ple rendiment
2Versions de Cortex-MO+ tenen algun mode més

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/ADC_1_LP

354

35.4 Timers de baix consum 207

Llistat 35.1: Bucle principal amb funcions de baix consum

void main () {

while (1) {
ADC_Start (ADCO, adcStartSingle);

EMU_EnterEMI () ;
ADCvalue = ADC_DataSingleGet (ADCO) ;

printf (, ADCvalue);
}

W 44,29 ps B 19,15 kHz @ 84,34 % B 52,21 ps

Figura 35.1: Captura de les mesures de temps amb 1’analitzador logic

consum EM1 perque la CPU es quedi en repos mentre I’ ADC fa la seva feina i es desperti per la
IRQ de finalitzacid; tot seguit es llegeix i es mostra la dada convertida.

Podem fer una mesura del temps que esta la CPU en el mode EM1 posant un pin a 1’ quan s’entra
al mode i posar-lo a ’0’ quan se’n surt, tal com es veu al projecte d’exemple.

Si usem I’analitzador 10gic per mesurar els temps, veiem la imatge de la Figura 35.1 que les mesures
diuen que 44,29 microsegons de 52.21 la CPU esta en mode de baix consum (el 84.84% del temps).

Timers de baix consum

Un mode que es fa servir sovint en sistemes de baix consum és el de tenir un timer configurat
perque desperti el sistema cada cert temps. Aixi per exemple, en un sistema que ha de llegir un
sensor cada 30 segons, el timer seria I’tnic periféric en funcionament actiu i estaria configurat per
generar una IRQ cada 30 segons; la resta del microcontrolador podria estar en un mode de baix
consum que el permeti consumir molt poca energia mentre espera a ser despertat per una IRQ.

Al projecte del repositori hi ha un exemple d’aquest tipus. Es fa servir un LETIMER, que és un
timer de baix consum i baixa freqiiéncia que pot funcionar mentre la resta del microcontrolador
esta en el mode EM2 (o EM3 segons la configuracié que es faci servir) [4, pagina 294]. Aquest
LETIMER es pot alimentar amb el rellotge extern de baixa freqiiencia a 32.768 Hz (LFXO) o
bé amb 1’oscil-lador intern a 1.000 Hz (ULFRCO) (al codi es pot triar segons es defineixi o no la
macro USE_ULFRCO). El rellotge que s’hagi triat es pre-escala per un factor suficient per tenir
un comptador prou lent, ja que cal tenir en compte que aquest comptador é€s de només 16 bits i, per
tant, si tenim una freqiiéncia de funcionament elevada no podrem comptar gaire temps. Tot seguit
el timer es configura per generar una interrupcié quan arribi a 0 (és un comptador decreixent) i el
seu valor TOP (al valor al que es reinicia després d’arribar a 0) es posa en funcié de la freqiiencia

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/LETIMER_LP

35.5

208 Capitol 35. Baix cosum

Llistat 35.2: Exemple 4s de LETIMER

#define PRESCALER cmuClkDiv_1

#define EFECTIVE_CLK_FREQ (1000/PRESCALER)

#define SLEEP_SECONDS 4

#define TOP_VALUE (EFECTIVE_CLK_FREQ * SLEEP_SECONDS)

void LETIMERO_IRQHandler (void) {
uint32_t flags;

/+ Clear flag for LETIMERO #*/
flags = LETIMER_IntGet (LETIMERO) ;
LETIMER_IntClear (LETIMERO, flags);

/* Toggle LED ON/OFF */
GPIO_PinOutToggle (gpioPortD, 7);

void main (void) {

/% ULFRCO is 1,000 kHz =/
CMU_ClockSelectSet (cmuClock_LFA, cmuSelect_ULFRCO) ;
CMU_ClockDivSet (cmuClock_LETIMERO, PRESCALER);

LETIMER_ CompareSet (LETIMERO, 0, TOP_VALUE);
while (1) {

/#* nothing to do here #*/
EMU_EnterEM3 (true) ;

de funcionament i el temps que es vol tenir el sistema en baix consum, a I’exemple del repositori es
posa a 4 segons. Un resum del codi de I’exemple es veu a Llistat 35.2.

Aquest és un exemple senzill que fa servir un timer especial de la familia EFM32 de Silicon
Labs. Altres fabricants proporcionen timers similars. Aixi ST té un timer forca similar, anomenat
LPTIMER ([68]) i Fresscale te el LPTMR amb caracteristiques similars [69]. Els timers de ST i de
Silicon Labs poden generar senyals tipus PWM mentre el microcontrolador esta en modes de baix
consum (veure Capitol 10 - PWM).

Baix consum i RTOS

Quan treballem amb un RTOS funcionant en el nostre microcontrolador, hi ha diferents estrategies
per aconseguir disminuir el consum energetic.

Basicament hi ha dues estrategies:

 Aprofitar la tasca Idle per posar al microcontrolador en un mode de baix consum.
e Passar a un sistema sense tick (també dit tickless).

En qualsevol cas, I’avantatge de que sigui el SO qui s’encarregui de gestionar el baix consum és
que les tasques no s’han de preocupar per aquesta gestio.

35.5.1

35.5.2

35.5 Baix consum i RTOS 209

Tasca Idle per baix consum

L’estratégia més senzilla és la d’activar un mode de baix consum quan s’executa la tasca Idle. Com
que aquesta tasca s’executa quan no hi ha cap altra tasca preparada per agafar el microcontrolador,
té sentit pensar en aturar el microcontrolador i esperar a que una tasca estigui disponible. Quan
succeeixi el proper tick, el microcontrolador sortira del mode d’sleep i tornara a executar el
planificador, que, si segueix sense haver cap tasca disponible (en estat Ready) per executar tornara
a executar la tasca Idle que tornara a adormir la CPU i es repetira el cicle [70].

R) Cal recordar que quan el core esta en algun mode de baix consum, el SysTick també es
desactiva. Per tant, per poder tenir un tick quan el core esta en un mode de baix consum caldra
fer servir un altre Timer que si que funcioni en aquests modes de baix consum.

Cal pensar que tot i que aquest metode és molt senzill d’implementar, té la limitacié de que a cada
tick es treu la CPU del mode de baix consum per comprovar si hi ha alguna tasca en estat Ready.
Podem imaginar-nos una aplicacié que llegeixi d’un sensor cada 200 ms i processant les dades,
com I’aplicacié d’exemple XXXXX. Si es té€ en compte que el tick pot ser de 1000 Hz, és facil
d’observar que es despertara molts cops al core perque tant sols el planificador vegi que no hi ha
cap tasca Ready i torni a adormir el processador.

Aquesta caracteristica es pot activar a FreeRTOS editant el fitxer “FreeRTOSConfig.h” i fixant a *0’
la definicié configUSE_TICKLESS_IDLE i triant el valor 1’ per configUSE_SLEEP_MODE

_IN_IDLE. En el cas de Silicon Labs, el microcontrolador es posa en el mode EM2 (veure
Seccié 35.2 - Modes d’sleep) i deixant en funcionament tant sols el RTC (veure Capitol 9 - RTC) i
les IRQ dels GPIOs que 1’usuari hagi configurat (veure Capitol 7 - Controlador d’interrupcions).

FreeRTOS sense lick

L altre estrategia per disminuir encara més el consum, €s desactivar el tick durant cert temps. En
una aplicaci6 on totes les tasques estan bloquejades (i que entraria la tasca Idle) es pot calcular
el temps en que alguna tasca es desbloquejara (perque alguna tasca estigui bloquejada perque ha
cridat la funcié vTaskDelay()). Es pot desactivar el Tick i programar el Timer perque generi una
interrupcié en aquell temps calculat. Si mentre esta el sistema adormit esperant aquell temps hi
ha algun esdeveniment extern (interrupcid), es despertara i es podra reprendre 1’execucié normal i
tornar a activar el Tick.

Amb aquesta estrateégia es maximitza el temps en que el core esta en algun dels modes de baix
consum i per tant es pot reduir drasticament el consum d’una aplicaci6 (veure Capitol 35 - Baix
cosum).

En el cas de FreeRTOS, el port disponible per Cortex-M ja incorpora aquesta caracteristica, i es
pot configurar editant el fitxer “FreeRTOSConfig.h”’, concretament fixant el valor 1’ a la macro
configUSE_TICKLESS_IDLE. En el cas de Silicon Labs, el microcontrolador es posa en el mode
EM2 igual que en cas amb fticks i es programa el RTC perque generi una IRQ en el temps adequat.

En ambdés casos el codi que gestiona el baix consum i els ticks en el port FreeRTOS esta al fitxer
low_power_tick_management.c a la funcié vPortSetupTimerInterrupt().

Aquesta pagina esta en blanc expressament, tot va bé.

Un tema recurrent en temes d’enginyeria del software €s com documentar el codi font que es
desenvolupa per tal d’afavorir, sobretot, el manteniment del codi durant el temps 1 algd altre (o
nosaltres mateixos) haguem de modificar, re-uilitzar o arreglar algun problema. No farem aqui una
discussi6 sobre els beneficis de documentar, quan fer-ho, etc.

Hi diferents tecniques i metodes de documentar el codi, aqui veurem només una, basada en
Doxygen. Aquest programa processa la documentaci6 inserida dins el propi codi font i genera
diferents sortides, la més habitual és una carpeta html amb tota la documentacié ben bonica i
accessible amb un navegador (té altres formats de sortida, com .pdf, .doc, etc.). Per documentar el
nostre codi, el que cal que fem és escriure la documentaci6 dins el propi codi com a comentaris
de codi seguint unes normes i tags molt senzills propis de Doxygen. (veure Figura 36.1). Aquest
metode de documentar ha esdevingut un estandard de facto i es troba arreu. Per documentar-se
sobre com treballar amb Doxygen, la seva pagina web esta forca bé amb exemples de tots tipus
[71].

A simplicity (i de fet, a qualsevol IDE basat en Eclipse), podem activar Doxygen com [’eina de
documentacid, i d’aquesta manera I’editor ens ajudara alhora d’escriure-la, ja que, per exemple, en
escriure «/**» davant una funcid ens inserira automaticament el codi Doxygen per documentar-la
(incloent-hi tots els parametres), simplificant molt la nostra feina.

Una bona opcio és afegir un directori on ficar-hi el fitxer de configuracié del Doxygen (directori
/Doc) i on es genera el codi html (directori /Doc/html). El Doxygen s’executa dins del directori
/Doc i es genera el codi html (o pdf, o rtf, o el que calgui). Si al fitxer Doxygen li posem I’extensié
.doxyfile el propi simplicity el reconeix com a fitxer de documentacié i podem executar Doxygen
pitjant el boté amb una arroba de color blau a la barra d’eines (Figura 36.2).

També podrem editar de forma visual el fitxer de configuracié fent-hi doble-click i veure el resultat
obrint dins del Simplicity el fitxer /Doc/html/index.html (Figura 36.3).

Hi ha un exemple complet al projecte FreeRTOS Queue (veure Subseccio 25.2.1 - Exemple

212 Capitol 36. Documentant el codi

L€l main.c £3
r AWUNRNT o LU D™ H

I
portYIELD FROM_ISR(xHigherPriorityTaskWoken);

}
/ g
* Our first task. A task is always a endless loop
pParameter Unused parameter
none

static void TasklLedToggle(void *pParameter) {
(void) pParameter;
uint32_t my_delay;
uint32_t recv_delay;
/* Here optional init variables or functions */

my delay = pdMS TO TICKS(500);

Fmw f . r

Figura 36.1: Comentari per doxygen dins un codi

& 1@vHvRvF

Figura 36.2: Botons de Simplicity, I’arroba blava permet executar Doxygen

amb cues). En aquest cas, I’explicaci6 del projecte (la seccid principal anomenada mainpage en
Doxygen) esta al final del fitxer main.c. També hi ha la possibilitat de posar aquesta seccié en
un fitxer a part, normalment un fitker README.md. Si ho fem aixi, aquest fitker README.md
github el presenta a la pagina principal del projecte. El fitxer generat també es pot obrir dins el
propi Simplicity Studio (Figura 36.4).

A més, si configurem com cal github, podem pujar el codi html generat per Doxygen al repositori i
veure’l a un adreca de github. La de I’exemple esta a aqui [72] i es pot obrir des d’un navegador
qualsevol,

https://mariusmm.github.io/cursembedded/Simplicity/FreeRTOS_1/Doc/html/

213

[8 main.c Freertos queuedaxyfile &\ @ FreeRTOS Queue Example: BSP
A_ =
Basic
Project Output Formats
Name: “FreeRTOS Queue Example”]
@
Version or Identifier: @ plain HTML
() with frames and navigation tree

Input diractories: (7) prepared for compressed HTML (.chm)

Jsre Add | with search function (requires PHP enabled server)

WJinc /8

(] scan recursively (i) b Eages

[] Rich Text Format

Output Directory: . |Browse... D XML
Mode Diagrams to Generate
Select the desired extraction mode: o diagrams

) documented entities only se built-in diagram generator

all entities se dot tool from the Graphviz package to generate:

[Jindude cross-referenced source code in the output

= 9] callaboration diaarams.

Basic Advanc
T T T T
. .,
Figura 36.3: Configuracié de Doxygen dins de Simplicity
8 ADC 1 LR ‘@:,: B BSeh \Qm_am_ns i ?::gJ

main file More...

Macros

¢ o m ¢ |file/fhome/marius/Work/Cursmbedded/repossimplicity/FreeRTOS_1/Doc/html/group_main.htm|

#define TOGGLE_TASK_PRIORITY (tskiDLE_PRIORITY + 1)
#define QUEUE_LENGTH (10)

Functions

staticvoid TaskPWMCtrl (void *pParameter)
PWM Ctrl from value received through a queue, More...

staticvoid TaskADCRead (void *pParameter)
Get ADC value and sent it through queue. More...

int main (void)
main function

Variables

QueueHandle_t ade_gueue
Queue to send & receive ADC values.

R pr ms ‘@mrmx\atmsme ‘@* ‘}-“"7.—‘/:

Figura 36.4: Pagina web de documentacid vista dins de Simplicity Studio

Pagina web de documentaci6 vista dins de Simplicity Studio, en aquest cas es visualitza un dels

fitxers locals

Aquesta pagina esta en blanc expressament, tot va bé.

37.1

37.2

(37. CMSIS

CMSIS és una proposta d’ARM per unificar les diferents biblioteques dels fabricants sota una sola
especificacid, de manera que un disseny es pugui migrar a un altre fabricant de Cortex sense gaires
problemes. Hi ha diferents subconjunts d’aquesta proposta, anem a veure’ls un a un.

CMSIS-Core

Aquesta part de 1’especificacié fixa la forma de comunicar-se amb les parts més core de la CPU,
com son: el mapa de memoria (Subseccio 2.3.1 - Periferics mapats a memoria), el sistema
d’excepcions (Capitol 33 - Gestié d’excepcions), els registres de control de la CPU, el gestor
d’interrupcions (Capitol 7 - Controlador d’interrupcions), el Systick (Seccié 5.1 - Systick)
i les caches [73]. En aquesta biblioteca s’inclouen també els fitxers d’inicialitzacié de cada
microcontrolador en concret (Subseccio 2.3.3 - Procés de boot).

Aixi, i a tall d’exemple, les funcions que ja hem fet servir per controlar interrupcions com
NVIC_EnableIRQ() a Capitol 7 - Controlador d’interrupcions no sén propies de cap fabri-
cant si no que sén funcions definides per CMSIS-core. També la manera en que es defineixen
estructures per accedir als diferents periferics ve marcada per 1’especificaci6 CMSIS-Core (veieu
Llistat 2.2 - Exemple de definici6 d’estructura per accedir a memoria).

CMSIS-Driver

Aquesta especificacié defineix una API' per tot un seguit de periférics per tal que els fabricants
puguin implementar el driver corresponent i els desenvolupadors no hagin de dependre de llibreries
propies de cada fabricant. Aquesta especificaci6 inclou els segiients periferics:

e CAN
¢ Ethernet
 I2C

LApplication programming interface

37.3

374

37.5

37.6

216 Capitol 37. CMSIS

+ MCI?

¢ NAND
¢ Flash

+ SAP

e SPI

» Storage
* USART
 USB

Hi ha una implementacié d’alguns dels moduls feta per 1’autor al repositori https://github.
com/mariusmm/CMSIS_Drivers pels dispositius de Silicon Labs i de ST.

CMSIS-DSP

Aquesta biblioteca inclou totes les funcions especifiques de tipus DSP dels Cortex-M més avancgats
(Cortex-M4 1 Cortex-M7) i funcions que treballen amb punt flotant per tot tipus de Cortex-M. Si el
Cortex-M amb el que treballem suporta punt flotant, la biblioteca fara les operacions per HW, i les
fara per SW en cas contrari [74][75].

CMSIS-RTOS

Aquesta biblioteca defineix un conjunt de funcions i crides per “amagar” el sistema operatiu que es
pugui fer servir, de manera que es pugui intercanviar el RTOS sense afectar al codi d’aplicaci6 [76].

D’aquesta manera es tenen crides estandard per les funcions habituals (crear tasques, semafors, cues,
etc., enviar dades a la cua, etc.) i aixi es pot, en principi, intercanviar el RTOS sense haver de canviar
res del codi d’usuari. Fent servir aquesta API no cal congixer les interioritats i particularitats de
cada RTOS que es vulgui fer servir, ja que quedaran amagades i pre-configurades per la biblioteca.

Aixi tenim que ST proporciona un wrapper de CMSIS-RTOS per FreeRTOS que s’integra facilment
al seu IDE [77]. Silicon Labs no proporciona suport per aquesta biblioteca, pero es pot fer servir el
wrapper de codi obert disponible a GitHub.

A part, es va crear una implementacié de CMSIS-RTOS anomenada CMSIS-RTOS-RTX (o també
Keil RTX) per part de Keil (empresa propietat d’ ARM) [78].

CMSIS-DAP

Meés que una biblioteca, aquesta part de CMSIS €s una definicié de com ha de treballar un dispositiu
que faci de pont entre un port USB i el port de configuracié dels microcontroladors Cortex. Aixo
possibilita que, per exemple, la placa de prototipat tingui un port USB i el puguem fer servir per
programar el microcontrolador, tenir la consola de debug (SWO), poder inspeccionar registres de la
CPU, etc. [79].

CMSIS-NN

Aquesta biblioteca esta composta d’un seguit de funcions i algorismes per implementar xarxes
neurals a processadors Cortex-M i queda fora de 1’objectiu d’aquest llibre [80][81].

2Memory Card Interface
3Serial Audio Interface

https://github.com/mariusmm/CMSIS_Drivers
https://github.com/mariusmm/CMSIS_Drivers
https://github.com/labapart/polymcu/tree/master/RTOS/FreeRTOS/cmsis

(38 Normes e'odlfi;:

Per tal d’unificar estils de codi i per evitar possibles errors, és habitual seguir algun conjunt de
normes de codificacié quan es desenvolupa un projecte. Aquest costum de normes acostumen a ser
una llista de recomanacions d’estil sobre 1’escriptura del codi, normes sobre coses prohibides o
no recomanades, etc, Per cara regla, s’acostuma a donar una breu explicacié del motiu. Aquests
conjunts de normes acostumen a ajudar a evitar bugs de dificil deteccio.

® Tot i que un conjunt de normes de codificacié ajuda a no inserir bugs, les normes per si soles
no poden garantir que no es generin bugs en un sistema complex. Cal sempre seguir les bones
practiques de Test.

Normes generals n’hi ha moltes i alguna de les mes populars és la coneguda com “The Power of 10:
Rules for Developing Safety-Critical Code” (“El poder del 10: regles per desenvolupar codi critic”
[82]. En aquest document es presenten tant sols només 10 regles per ajudar a escriure codi més
segur i menys propens a errors.

En ambits molt especifics hi ha normes i estandards propis, com el DO-178 per I’ambit aeri i
espacial; IEC 61508, ISO 26262 o SAE J3061 per automoci6 o IEC 62304 per I’'industria medica.
Per I’ambit espacial el JPL (Jet Propulsion Laboratory) té publicada una norma propia [83].

També hi ha normes genériques, que no es centren a cap ambit concret. Les normes generiques
més habituals i conegudes sén MISRA-C [84] i “Embedded C Coding Standard” [85]. Per espai, la
ESA! fa servir el document “C and C++ Coding Standards” [86].

Es descriuen breument als apartats segiients.

' European Space Agency

38.1

38.2

38.3

218 Capitol 38. Normes de codificacid

The Power of 10: Rules for Developing Safety-Critical Code

Aquest conjunt de només 10 regles es va escriure per ajudar a 1’analisi estatic del codi i la revisié
per desenvolupadors. Es poden resumir en:

 Evitar construccions complexes com goto i I’ts de recursivitat.

* Tots els bucles han de tenir fitada la seva longitud.

* Evitar I'tis de memoria dinamica.

* Restringir la llargada d’una funci6 a 60 linies.

* Fer servir un minim de dos comprovacions en temps d’execucié per cada funcio.

* Restringir la vida de les dades el més possible.

* Comprovar el valor de retorn de totes les funcions que retornen un valor.

* Poc ts del pre-processador.

* Limitar I’ds de punters a una sola indireccio i no usar punters a funcions.

» Compilar amb tots els warnings activats. Resoldre sempre tots els warnings abans de publicar
el codi.

MISRA-C

MISRA C és un conjunt de normes i guies per programar en codi C per sistemes encastats. Es
va proposar per primer cop el 1997 per 1’associacié MISRA (sigles de Motor Industry Software
Reliability Association) i ha tingut diverses revisions, la tercera i Ultima es va publicar el 2012
[84][87]. Aquestes especificacions cal comprar-les (la versi6 digital costa 15 lliures) i no es poden
redistribuir lliurement, perd si podem tenir accés a algun addenda per veure com sén aquestes
normes [88].

Aquestes normes es divideixen en 3 classificacions segons el grau d’obligatorietat:

* Mandatory s6n normes que s’han de complir sense cap excepcid

* Required s6n normes a complir perd es poden incomplir si hi ha una explicacié racional
(anomenada Deviations

* Advisory que sén normes optatives, pero no cal complir-les, tot i que es recomana fer-ho.

Les normes consten d’una frase dient que s’ha de fer o no s’ha de fer, una explicacié del perque de
la norma i un exemple de I’tis correcte.

Aix{ si mirem a 1’addenda 1 [88, pagina 4] (que és de lliure distribucio i accés), la regla 21.14 diu
que la funci6 mememp() no s’ha de fer servir en altre cosa que no siguin cadenes acabades en
NULL (’\0’). Aquesta norma evita que es puguin fer servir buffers d’una mida superior a la cadena
de text que guarden i provoqui errors que poden ser molt complexes de trobar.

Existixen eines que automaticament comproven la conformitat d’un projecte o codi a les normes
MISRA. Entre aquestes eines, algun compilador fa la comprovacié en temps de compilacié (ho fan
els compiladors d’TAR i de TI).

Per ultim, cal dir que hi ha forca controversia amb d’idoneitat de seguir les normes MISRA, donat
les limitacions que provoca al desenvolupador i les suposades avantatges que proporciona.

Embedded C Coding Standard

Aquestes normes son de lliure accés i escrites pel Barr Group. Conté regles tant d’estil de text
(nimero de caracters per linia, on posar els *{’, etc.) com regles de sintaxi en C, com per exemple
quan i on usar la paraula reservada volatile, etc. Segons el mateix document, aquestes regles sén
més laxes que les normes MISRA [85].

38.4

38.4 JPL Institutional Coding Standard for the C Programming Language 219

En aquest cas, cada regla consta de 1’explicacié de la regla en si mateixa, el raonament que hi ha
per definir la regla, quan pot haver-hi una excepcié i com aplicar-la.

També hi ha eines per comprovar que el codi escrit segueix aquestes normes.

JPL Institutional Coding Standard for the C Programming Language

Aquesta normes de codificacié venen d’un laboratori del JPL per tal d’aconseguir millor seguretat i
qualitat en el software que s’escriu a les sondes espacials d’aquesta instituci6 [89].

Les normes de codificacié son una ampliacié de les normes MISRA per afegir-hi sistemes multi-
tasca [83]. Es defineixen nivells d’acompliment amb les normes, anant des de LOC-1 fins a LOC-4
amb un total de 120 regles. La majoria de regles son equivalents a algunes de les normes MISRA.
Els dos udltims nivells d’acompliment (LOC-5 1 LOC-6) consisteixen a acomplir amb totes les regles
obligatories o opcionals de les normes MISRA.

Aixi, com a diferéncia de regles que es poden trobar a d’altres normes de codificacid, aquestes
afegeixen regles com la Regla 6, que demana que sempre es facin servir mecanismes IPC per
comunicar tasques entre si, 1 que cap tasca ha d’accedir a dades o executar codi d’altres tasques. La
Regla 7 demana que les tasques no se sincronitzin fent servir delay.

Aquesta pagina esta en blanc expressament, tot va bé.

Com ja s’ha comentat, els Cortex-M4 i Cortex-M7 suporten instruccions addicionals de tipus DSP
[23, pagina 173][22, pagina 255]:

» Instruccions tipus SIMD!

* Instruccions de saturacié

» Instruccions addicionals de multiplicacié i MAC?
* Instruccions de empaquetar i desempaquetar

* Opcionalment, instruccions de punt flotant

Aquestes instruccions s’afegeixen al conjunt d’instruccions maquina de la CPU i permeten que els
processadors Cortex-M puguin implementar algorismes de DSP de forma prou eficient. Com que
moltes d’aquestes instruccions i nous tipus de dades no s6n estandard dins els compiladors de C
més habituals, ARM proporciona la biblioteca CMSIS-DSP (veure Seccié 37.3 - CMSIS-DSP).
Aquesta biblioteca, curiosament, es pot fer servir tant en Cortex-M4 i M7, com en Cortex-M3 i MO
que no tenen instruccions especifiques de DSP.

Per fer-la servir cal fer, almenys, dues passes:

1. Definir un simbol de compilacié segons el processador amb el que estiguem treballant
(ARM_MATH_CM0, ARM_MATH_CM3, ARM_MATH_CM4).

2. Afegir la biblioteca pre-compilada al nostre projecte (er aixo cal afegir també el PATH on
esta situada la biblioteca) tal com es veu a la Figura 39.1.

La documentaci6 de la biblioteca proporciona totes les funcions implementades aixi com un conjunt
d’exemples dels usos més comuns [CORE-DSP]. SiliconLabs també proporciona documentacié
en un Application Note sobre la biblioteca [75].

! Single Instruction, Multiple Data Unica instrucci6, Midltiples dades
2Multiply and Accumulate Instruccié de multiplicar i acumular

222 Capitol 39. DSP

type € Settings & v
> Resource
Builders Configuration: GNU ARM v4.9.3 - Debug [Active | ~ | Manage Configurations...,
~ {/C++ Build
Board/ Part/ SDK
Build Variables % Tool Settings | & Buwsmpsl " Build Aﬂﬂaﬂi almryParsgrsiﬁ Error Parsers
f:\;l;z‘r;ment 35 Debug Settings Libraries () 888§y
Project Modules (E2Memory Layout) arm_cortexM41_math
: ~ & GNU ARM € Compiler
Settings @Dmlect
> C{[ii General & Preprocessor
S . & symbols
Refactoring History Eincludes
Run/Debug Settings & Optimization
(& Debugging
EWarnings
EMiscellaneous
~ 8 GNU ARM Assembler
(EaGeneral
&symbols
EMiscellaneous
~ & GNU ARM C Linker
EGeneral
EMiscellaneous
(& shared Library Settings
& 0rdering
@ OK || cancel

Figura 39.1: Configuracié del Simplicity Studio afegint-hi la biblioteca CMSIS-DSP

En aquest llibre s’ha treballat exclusivament en llenguatge C (versié C99) i no s’ha parlat res de
C++. Anem a fer-ho ara en aquest capitol.

La discussi6 sobre usar o no C++ en sistemes encastats deu ser tant antiga com 1’aparicié d’aquest
llenguatge orientat a objectes. Si bé als seus inicis el llenguatge presentava forca problemes, ja
fa molts anys que és un llenguatge estable i candidat a ser usat en sistemes encastats. Tot i aixo,
la seva popularitat ha estat desigual i encara hi ha molts equips de desenvolupadors de sistemes
encastats que treballen exclusivament en C.

Els problemes habituals que s’ha acusat al C++ per no fer-lo servir en sistemes encastats son els
segiients [90]:

* codi més llarg: si bé aixo pot ser veritat, les mides de les memories FLASH dels microcon-
troladors és cada cop més gran i els compiladors moderns generen codi forca optimitzat, a
més que es poden desactivar opcions del llenguatge que no es fan servir.

* més lent: aix0 era cert amb els primers compiladors de C++, perd actualment el codi generat
és de la mateixa qualitat que el generat pels compiladors de C.

* més stack: seguint les mateixes normes que amb C, és possible tenir codi C++ que faci un s
correcte de I’ stack

En canvi, els avantatges que ens pot proporcionar treballar amb C++ poden ser:

» comprovacié de tipus en temps de compilacié. C és forga laxe en aquest tema, i aixo pot
conduir a errors. C++ és capag de fer comprovacions en temps de compilacié per avaluar la
correccid de les conversions.

* namespaces, que permeten classificar i organitzar el codi d’una forma intuitiva i senzilla.

* constructors i destructors permeten inicialitzar i destruir o netejar estructures de forma
automatica.

* orientacio a objectes, 1’organitzacié del codi en objectes pot ajudar a ordenar i simplificar el
codi.

40.1

40.1.1

224 Capitol 40. C++vs C

€ Ssettings & =

> Resource

Builders Configuration: GNU ARM v4.9.3 - Debug [Active] ~ | Manage Configurations...
v C/C++ Build
Board/ Part/SDK
Build Variables i Tool Settings # Build Steps ' Build Artifact | [} Binary Parsers & Error Parsers
Debug Settings Other flags --fmessage-length=0 -fno-rtti -fno-exceptions
Envwr?nment 35Deb et . P P
Logging
Project Modules @emory Layout =INerbos(v)
e ~ & GNU ARM C Compiler | Position Independent Code (£P1C)
= EDialect
RACEH Garefal EPreprocessor
it & symbols
Refactoring History Sndudes
Ruri/frebug Settings & optimization
& Debugging
& Warnings
(EMiscellaneous
~ % GNU ARM C++ Compiler
@Dpialect
& Preprocessor
Eindudes
& optimization
#Debugging
~ & GNU ARM Assembler
@General
@ OK Cancel

Figura 40.1: Configuracié Simplicity Studio per deshabilitar RTTI i les excepcions

» sobrecarrega d’operadors, fent que operacions entre objectes sigui senzilla amb un codi
resultant forca senzill.

També cal recordar que no cal fer servir totes les noves capacitats de C++ respecte a C de cop, si
no que es poden anar incorporant poc a poc al nostre codi conforme anem guanyant experiencia i
coneixements.

Dues de les caracteristiques de C++ que ocupen for¢a memoria sén el RTTI! i el control d’excep-
cions. RTTI dona informacié del tipus de classes polimorfiques (que tenen almenys un metode
virtual) i és una caracteristica que es faci servir gaire en sistemes encastats. El control d’excepcions
permet I’execucié d’un metode i capturar I’error que es pugui generar i tractar-lo fora de la funcié i
de forma controlada.

Aquestes dues caracteristiques de C++ afegeixen forca codi a qualsevol projecte amb el que
treballem, fent que, per exemple, no puguem compilar un simple “Hello World embedded” per la
nostra placa de desenvolupament ja que ocupa massa FLASH. Les opcions per deshabilitar aquestes
funcions al compilador GNU (que és el compilador utilitza Simplicity Studio) son:

—fno-rtti —-fno-exceptions

1 es configura tal com es veu a la Figura 40.1.

Primer exemple en C++

Lexemple CXX_1 és el tipic “Hello World” per sistemes encastats escrit en C++.

Aquest exemple fa servir dues classes dins el namespace BSP.

LED

Com el seu nom indica, serveix per controlar I’tinic LED de la PCB de prototipat. Esta basada en una
classe amb tres metodes senzills per controlar un sol LED (LED::On(), LED::Off(), LED::Toggle()).

YRun-time type information Informacié de tipus en temps d’execucié

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/CXX_1

40.1.2

40.1.3

40.1.4

40.1 Primer exemple en C++ 225

Llistat 40.1: Part del codi de la classe LED

LED::LED () {

CMU_ClockEnable (cmuClock_GPIO, true);

GPIO_PinModeSet (gpioPortD, 7, gpioModePushPullDrive, 0); /#* LED */
}

void LED::0On () {
GPIO_PinOutSet (gpioPortD, 7);
}

Dins el constructor s’activa el rellotge pel periferic GPIO i es configura el pin corresponent al LED
de la PCB (Llistat 40.1).

Buiton

Aquesta classe gestiona el valor d’una entrada del GPIO d’una fora senzilla, la classe Button
emmagatzema els parametres d’un pin d’E/S i abstreu les crides a la biblioteca emlib de Silicon
Labs (veure Llistat 40.2).

Un Hello World “més C++”

A continuacié modifiquem 1’exemple per donar-li una volta més i que sigui més “estil C++" (esta
al repositori). El que s’ha fet ha estat crear una nova classe Pin que abstrau la informaci6 d’un
pin GPIO d’EFM32. La classe Button fa servir Pin per obtenir les caracteristiques del GPIO a
controlar.

Mida dels executables

A I'exemple CXX_1 tenim el “Hello World embedded” fet en C++ de manera basica. A I’exemple
CXX_2 s’ha fet una implementaci6 “més C++" amb la mateixa funcionalitat. A la Taula 40.1 es pot
veure la quantitat de memoria de tot tipus que necessiten les dues aplicacions aixi com 1’exemple
basic en C.

Taula 40.1: Ocupacié de memoria de “Hello World embedded ”* en C i C++ (tots els projectes
compilats amb optimitzaci6 -O2).

Aplicacié | text | data | bss
GPIO_1 | 972 | 108 | 28
CXX 1 | 1836 | 112 | 32
CXX_ 2 | 2076 | 112 | 32

Com a curiositat, I’s de std::cout de la biblioteca iostream i I’operador << afegeix uns 150KB de
codi FLASH (!!!), fent que sigui poc recomanable o impossible de fer servir en un sistema encastat
actual.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/CXX_2
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/CXX_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/CXX_2
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/CXX_2

226 Capitol 40. C++vs C

Llistat 40.2: Part del codi de 1a classe LED

Button::Button (GPIO_Port_TypeDef port, int pin, bool pull, bool pullup) {

CMU_ClockEnable (cmuClock_GPIO, true);

m_port = port;
m_pin = pin;
m_pull = pull;
m_pullup = pullup;

if (m_pull == false) {
GPIO_PinModeSet (port, pin, gpioModeInput, O0);
} else {
if (m_pullup == true) {
GPIO_PinModeSet (port, pin, gpioModeInputPull, 1);
} else {

GPIO_PinModeSet (port, pin, gpioModeInputPull, 0);

bool Button::getValue () {
unsigned int pin_value;
pin_value = GPIO_PinInGet (m_port, m_pin);
if (pin_value == 0) {
return false;
} else {
return true;

40.2

40.2.1

40.2 Un driveren C++ 227

Un driver en C++

Com hem vist al llarg del llibre, bona part del codi sén drivers per controlar els diferents periferics
o dispositius del nostre sistema encastat. Si treballem en C++, caldra que aquest drivers els fem
també en C++. Veurem ara un exemple amb la UART, escrivint un driver i un exemple igual al vist
a Seccio 14.3 - Un exemple amb la UART més complicat.

En aquest exemple tenim una classe UART que és la implementacié del driver per la UART que es
va veure a I’exemple de la Seccié 14.3. Aquesta classe UART fa servir buffers circulars per emma-
gatzemar les dades que es reben o s’han d’enviar per la UART i té els metodes AvailableData(),
GetData() i SendData() com ja tenia el modul UART de I’exemple en C. Aquests metodes tant
sols accedeixen al buffer circular adequat (de transmissié o recepcid) que esta implementat a la
classe CircularBuffer .

Tal com es veu al Llistat 40.4 s’ha sobrecarregat I’operador << per fer més facil 1’ds de la classe a
I’hora d’enviar dades i poder escriure codi com el del Llistat 40.3.

La resta del codi és prou autoexplicatiu a excepcié de I’implementacié de les ISRs de la UART.
En aquest cas ens trobem que les ISRs haurien d’estar encapsulades dins la propia classe UART
perod aixo no és possible, donat que la classe no és estatica, i per tant “no existeix” fins que no es
crea instanciant un objecte d’aquest tipus [91][92]. Una possible soluci6 a aquest problema és el
que es veu al codi 40.5: es té el codi propiament dit de la ISR a uns metodes privats de la classe
del driver (en aquest cas la classe UART) i en algun altre lloc del codi (en aquest exemple al fitxer
main) s’insereix la construccié que es veu al Llistat 40.6. D’aquesta manera les ISRs criden als
metodes adequats de la classe pertinent.

Ocupacié de memoria

De nou, anem a analitzar I’espai de memoria necessari per aquest exemple comparat amb 1’exemple
escrit en C amb la mateixa funcionalitat.

El codi en C++ es compila amb 3 variants:

* Sobrecarregant I’operador << que pugui rebre dades de tipus char.
* Sobrecarregant I’operador << que pugui rebre dades de tipus std.:string.
» Sense sobrecarregar I’ operador.

Els resultats es mostren a la Taula 40.2. Es pot veure que 1’ds de 1’operador que suporta std.::string
afegeix forca codi ROM (segona columna a la Taula, uns 2 KB) i que, en general, 1’ts de C++
afegeix un sobrecost en espai ROM al nostre codi. Potser el més destacable és que la quantitat de
RAM necessaria no s’incrementa de manera significativa, sent aquest recurs el més escas en un
microcontrolador.

Llistat 40.3: Us de I’operador << de la classe UART

my_uart << << ;

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/CXX_UART

228 Capitol 40. C++vs C

Llistat 40.4: Implementacié de I’operador << per la classe UART

class UART {

UART& operator<<(charx str) {
for (charx it = str; =*it; ++it) {
this->Tx (xit);
}

return xthis;

UART& operator<<(std::string str) {
for(std::string::iterator it = str.begin(); it != str.end(); ++it) {

this->Tx (xit);
}

return xthis;

void UART::Tx (unsigned char c) const {
USART_Tx (m_uart, c);

Llistat 40.5: Implementaci6 de les ISRs en C++

void UART::USART1_TX TIRQHandler (void) {
USART_IntClear (USART1, USART_IEN_TXC);

Send () ;

void UART::USART1_RX_IRQHandler (void) {
char data;

if (USART1->IF & LEUART_IF_RXDATAV) {
data = USART_Rx (USART1);

m_RX.PushData (data) ;
USART_IntClear(USART1, USART_IEN_RXDATAV) ;

class UART {

friend void USARTI1_TX_ IRQHandler ();
friend wvoid USART1_RX_ TIRQHandler ();

private:
void USARTI1_TX_IRQHandler (void) ;
void USARTI1_RX_IRQHandler (void) ;

40.3

40.3 Conclusions 229

Llistat 40.6: Part del fitxer UART.cpp de I’exemple d’us del driver en C++ per la UART

static UART* helper_uart;

void USARTI1_TX_TIRQHandler () {
helper_uart->USART1_TX_IRQHandler () ;
}

void USARTI1_RX_IRQHandler () {
helper_uart->USART1_RX_IRQHandler () ;
}

Taula 40.2: Ocupacié de memoria d’exemple amb la UART en C i C++ (tots els projectes compilats
amb optimitzacié -O2, en KB).

Aplicacio text | data | bss
Sense operador << 4636 | 120 | 40
Amb operador << i char 4644 | 120 | 40
Amb operador << i std::string | 6796 | 128 | 168
Original en C 2620 | 116 | 184

Conclusions

Tot i que s de C++ enlloc de C incrementa la mida de I’executable final i les seves necessitats de
memoria, el seu Us pot estar justificat en casos on I’encapsulacié que proporciona C++ ajudi a la
claredat del codi o a la portabilitat del mateix a diferents plataformes.

En qualsevol cas, cal una expertesa en el llenguatge per fer-ne un bon us per tenir en compte les
particularitats d’escriure codi C++ per sistemes encastats.

Aquesta pagina esta en blanc expressament, tot va bé.

41.1

41.2

(41 Relacié Esquema

Quan es dissenya un sistema encastat, una de les parts més importants i on contribueixen perfils
professionals de diferent mena és la del disseny de 1’esquematic. Aquest document especifica tots
els detalls hardware de la connexi6 dels dispositius del sistema, els diferents dominis d’alimentacio,
els diferents rellotges del sistema, etc. Tots aquests aspectes influiran i seran influits per, entre
d’altres, el disseny de FW i les caracteristiques particulars del microcontrolador triat. Es per tot
aixo que en aquesta primera fase de disseny, cal implicacié de part de 1’equip de FW.

Seleccid de pin-out

Els microcontroladors actuals tenen la capacitat de poder cablejar la sortida o entrada d’un dels
periferics a diferents pins del mateix. Per exemple, els dos pins del bus I2C (SCL i SDA, veure
Capitol 15 - 12C), en cert dispositiu de Silicon Labs (EFM32TG840) es poden cablejar cap
a: PAO/PA1, PD6/PD7, PC6/PC7, PFO/PF1, PE12/PE13 [31, pagina 50]. A nivell de FW sera
indiferent fer servir un o altre conjunt de pins (tant sols caldra canviar la configuracié) pero a nivell
d’esquematic i a I’hora de fer la PCB pot ser un canvi important.

Un altre aspecte a tenir en compte sera el dels pins d’entrada que poden o no generar IRQ, de quina
mena, etc. Per exemple, ja s’ha comentat que a la familia STM32 de ST, els pins amb el mateix
nombre generen la mateixa interrupcio, aixi el pin PE6 genera la mateixa interrupcié (EXTI6) que
el pin PA6 [30, pagina 382]. De forma similar, a EFM32 els pins generen una interrupcié o una
altra segons tinguin numeracié parell o senar i només un pin de cada conjunt amb el mateix nombre
pot generar interrupcié (només un dels pins de cada conjunt pot generar IRQ: PA1, PB1, PC1, PDI,
etc.) [4, pagina 471]. Aquestes particularitats de cada familia poden ser un inconvenient pel disseny
FW del sistema i caldra tenir-ho en compte alhora de dissenyar I’esquematic i el FW associat.

Selecci6 de rellotges

Un altre aspecte important és el de triar la freqiiencia de funcionament del rellotge del sistema i
d’altres rellotges auxiliars. Com ja s’ha comentat a Capitol 35 - Baix cosum, la freqiiéncia de

41.3

41.4

41.4.1

41.4.2

232 Capitol 41. Relacié Esquematic i FW

funcionament del sistema €s un dels factors més importants en el consum del microcontrolador.
Com és evident, també afecta de forma directa al rendiment del sistema i a la seva capacitat de
calcul, procés de dades i resposta a esdeveniments.

També, pero, és important la freqiiencia triada per la generaci6 d’altres freqiiéncies que necessitin
alguns periferics. Per exemple, la USART necessita certes freqiiencies de rellotge per poder
treballar amb els bit-rates més habituals. Els fabricants proporcionen metodes per calcular les
millors opcions de freqiiencies segons el bit-rate desitjat o taules amb parametres precalculats [4,
pagina 153] [30, pagina 980].

Cal tenir en compte que, sovint, els microcontroladors tenen més d’un arbre de rellotges (veure
Capitol 5 - Gestio de rellotges) i que cal triar bé quins oscil-ladors i a quina freqiieéncia treballaran.

Canvis durant el layout

Per ultim, succeeix sovint que certes connexions de I’esquematic es canvien en I’etapa de layout
per necessitats del disseny. Pot ser que per poder routejar millor una linia es demani de canviar de
pin. Aix0 provocara canvis en el FW que s’hauran de tenir en compte. Si hem fet bé el disseny del
nostre codi, només caldra fer algun canvi senzill al nostre BSP (veure Seccié 6.2 - BSP).

De la placa de prototipat a PCB propia

Un altre dels canvis importants és el de passar de treballar amb una placa de prototipat o de
desenvolupament a poder-ho fer en una PCB propia. La placa de prototipat porta muntat cert
nombre de dispositius externs que segurament no estaran presents a la nostra PCB.

Mecanisme de programacié

Un dels canvis més notoris és de I’absencia del programador integrat a la PCB propia. Les plaques
de desenvolupament modernes acostumen a integrar el programador, de manera que la placa de
prototipat s’alimenta i es programa a través d’un connector USB estandard. Aix0 amaga que a la
propia placa de desenvolupament hi ha tota el circuit per programar el microcontrolador principal.
De fet, a la placa de prototipat que estem fent servir, hi ha un microcontrolador que rep les comandes
del debugger per USB i les transforma a les comandes adequades per programar el microcontrolador
principal a través del port SWD [93, pagina 30].

Aquest circuit no s’acostuma a posar les PCBs de productes finals, si no que es deixa disponible
d’alguna manera (connector, pins, pads) a la PCB I’accés directe al port SWD del microcontro-
lador. Aix0 provoca que calgui un programador extern a la PCB per tal de poder programar el
microcontrolador. Aixo es pot fer comprant un dispositiu debugger, tot i que també es pot fer servir
una de les plaques de prototipat perque faci de programador de qualsevol microcontrolador extern
connectat a través del port de DEBUG.

A part d’aquesta mena de programacié pel port SWD, es pot tenir en compte que alguns microcon-
troladors porten un bootloader en HW que permet actualitzar el Firmware via un port serie (veure
Secci6 18.2 - Bootloaders) [44]. Aix0 pot simplificar la programacié del microcontrolador, perd
cal tenir en compte que aquesta mena de comunicacié no permet debug.

Migracié vertical

Treballant amb la placa de prototipat es poden avaluar les prestacions del sistema aixi com les
necessitats de memoria, tant FLASH com RAM. Usualment, i per temes de costos, s’acostuma a
triar el microcontrolador de la mateixa familia més senzill i barat que compleixi els requeriments
trobats.

41.4 De la placa de prototipat a PCB propia 233

Aquest canvi també pot causar canvis al nostre FW, ja que pot ser que diferents models tinguin
un mapat de pins diferents, o algun periferic no es pugui routejar al pin que s havia previst, etc.
Aquesta informaci6 acostuma a estar al Reference Manual de cada familia, a [4, pagina 8] es veu la
taula resum de cada model (anomenats parts en angles).

Per migraci6 vertical ens refereix a la possibilitat de canviar de familia dins un mateix fabricant
mantenint el mateix encapsulat fisic de manera que es poden incrementar les capacitats del mi-
crocontrolador sense haver de fer canvis a la PCB. Per exemple, es pot consultar els datasheets
de la familia Tiny Gecko (Cortex-M3) [94, pagina 72], Zero Gecko (cortex-MO0+) [95, pagina 66] i
Happy Gecko (Cortex-M0+)[96, pagina 76] i es veura que el mateix encapsulat, per exemple un
QFN24, és compatible pin a pin amb qualsevol de les tres families (veure Figura 41.1). Aixi, en
el nostre disseny podrem posar un Cortex més potent o menys segons I’aplicacié o les necessitats
sense haver de canviar el dibuix de la PCB. El mateix passa amb altres encapsulats i models tant en
aquesta fabricant com a d’altes.

Com que actualment les biblioteques que ofereixen s6n compatibles entre diferents families (o
si més no, molt similars) la transicié entre diferents families acostuma a ser forga senzill. La
biblioteca emib no presenta canvis entre diferents families de Cortex, per tant el nostre codi no
haura de recollir cap canvi en aquest sentit.

234 Capitol 41. Relacié Esquematic i FW

[Te]
D‘
™ o~ =)
— — = o~ — (=]
] i o [y w L
Pin 1 index A A& H 2 oo
< m o~ — (=] o
o~ o~ o~ o~ ~ —
PAO 1 18 PC15
IOVDD 0 2 17 PC14
PCO 3 . 16 DECOUPLE
| Pin © |
PC1 4 LEE 15 VDD_DREG
PB7 5 14 PD7
PB8 6 13 PD6

7
8
9
10

RESETn

Figura 41.1: Pinout pels microcontroladors
Pinout pels microcontroladors EFM327ZG, EFM32HG i EFM32TG amb encapsulat QFN24 (extret
de [94, pagina 72]).

42. Inicialitzacié del sistema i del llenguatge C

Es la funcié main() realment la primera funcié que s’executa quan comenca 1’execucié? Qui
implementa les funcions malloc()/free()? Ara toca aprendre sobre els interiors del runtime de C i
com s’inicialitza tot el sistema

Abans no comenci I’execucié del nostre programa s’executen tot de funcions per preparar tant el
microcontrolador com I’entorn d’execucio de C.

Comencem per I’inici: quan el microcontrolador surt de 1’estat de reset, el que fa és anar a executar
el ResetHandler que esta a I’adreca per defecte del Program Counter (registre pc).

Aquesta funci6 la trobem definida al fitxer startup_gcc_efm32tg.s al directori CMSIS del projecte i
aquest handler tant sols crida la funcié Systemlnit(), tal com es veu a la Figura 42.1.

Podem dir-li al debugger que s’aturi en aquesta funcié canviant-li la configuraci6 i dient-li que
s’aturi a la funcié que vulguem, en aquest cas hi podem escriure Reset_Handler. Per defecte veurem
que esta configurat per que s’aturi a la funcié main() (Figura 42.2).

Aquesta funci6 esta definida pel fabricant i la trobem al fitxer system_efm32tg.c al mateix directori.
En el cas dels Cortex-M el que fa és modificar el registre VTOR de la CPU per a que apunti a la
taula de vectors d’interrupcié definits al fitxer startup_gcc_efm32tg.s.

2 glua:_ll Reset_Handler
. type Reset_Handler, %function
Reset_Handler:

#ifndef _ NO_SYSTEM_INIT
ldr @, =SystemInit
blx rd

#endif

Figura 42.1: Reset Handler per Cortex-M

236 Capitol 42. Inicialitzacié del sistema i del llenguatge C

Debug Canfigurations

Create, manage, and run configurations s
@ [Main}: Program does not exist i

= R = :_: v Name: DAC_2 GNU ARM v4.9.3 - Debug

= } ﬁ]_‘ Main | I+ Connection LE‘;'J Cnnﬁguratin‘n £ Tracing ® Exceptions | E: Source | (=] Common
[Launch Group Aash Erase Options

| Full Erase

v EGSI

V. @ Page Erase
mSnapzhmA\bum =
|| Merge Content

|‘| Run from reset

!il Break at main

|7 | Run Startup Script:

Filter matched 4 of 4 items

I.\’?:\I Close

Figura 42.2: Configuracié del Debugger

A continuacio segueix executant-se el Reset Handler, i el primer que fa és copiar la seccié .data a
la RAM (Figura 42.3). Aixo que vol dir? Doncs que les variables que s han inicialitzat amb algun
valor inicial al nostre codi s’han emmagatzemat al fitxer binari a continuacié del codi (secci6 .text).
Abans de comengar a funcionar el codi, cal copiar aquestes variables a la memoria RAM, que és la
secci6 .data. Aixi, quan aquesta part de la inicialitzacié acaba, tenim les variables a la memoria
RAM amb els seus valors inicials.

Un acabada aquesta copia, es crida a la funcid _start() de la biblioteca que estiguem fent servir. En
el cas de EFM32 la biblioteca és la Nano C library. Aquesta biblioteca implementa les llibreries
estandard de C (stdlib, string, memory, etc.) i li cal una inicialitzacié que es troba al fitxer crt0.S
(situada a newlib/libc/sys/arm/crt0.S).

El que es fa aqui és inicialitzar el punter de I’stack a I’adreca que s’indiqui al fitxer del linker i
posar a zero tota la memoria de la secci6 .bbs (Figures 42.4 1 42.5).

A continuaci6 es crida la funcié __libc_init_array() (situada a newlib/libc/misc/init.c) que va cridant
funcions d’inicialitzacié de la propia biblioteca (i constructors estatics si treballem en C++).

Finalment, la funci6 _start() crida a la funci6é main() del nostre programa i ja comenca a executar-se
el nostre codi (Figura 42.6).

Com es pot veure, no és trivial engegar un microcontrolador i tenir 1’entorn del llenguatge C
preparat, perd per sort tenim aquestes biblioteques i els fitxers que ens donen els fabricants per
fer-ho sense que ens n’haguem de preocupar.

237

f* 5Single section scheme

* The ranges of copy fromfto are specified by following symbols

. __etext: IMA of start of the section te copy from. Usually end of text
. __data start © VMA of start of the section to copy o
. _data end - VMA of end of the section to copy to

* All addresses must be aligned to 4 bytes boundsry

"/
ldr rl, = ptext
ldr 12, = data start
1dr 13, = data end__
<L loopl:
cmp 2, 13
ittt 1t

ldrlt @, [rl], #4
strlt @, [x2], #
b1t .L_loopl
d#endif /* _ STARTUP COPY_MULTIPLE =/

Figura 42.3: Copia de la secci6 .bss a la memoria RAM

/* Set up the stack pointer to a fixed value. */
/* Changes by toralf:
- Allow linker script to provide stack via __stack symbol - see
defintion of .Lstack
- Provide "hooks" that may be used by the application to add
custom init code - see .Lhwinit and .Lswinit. */

ldr r3, .Lstack

cmp r3, #0

/* Note: This 'mov' is essential when starting in User, and ensures we
always get *some* SP value for the initial mode, even if we
have somehow missed it below (in which case it gets the same
value as FIQ - not ideal, but better than nothing). */

mov sp, r3

/* We don't care of r2 value in standalone. */
bl FUNCTION (_stack_ init)

Figura 42.4: Inicialitzaci6 del registre d’stack (Stack Pointer)

/* Zero the memory in the .bss section. */

movs az, #0 /* Second arg: fill value. #*/

mov fp, a2 /* Null frame pointer. */

mov r7, a2 /* Null frame pointer for Thumb. */

ldr a1, .LC1 /* First arg: start of memory block. */
ldr-a3, .LC2

subs a3, a3, al /* Third arg: length of block. =*/

Figura 42.5: Inicialitzacié de la secci6 .bss

238 Capitol 42. Inicialitzacié del sistema i del llenguatge C

ldr r@, .Latexit

cmp r@, #0
beq .Lweak_atexit
#endif

ldr re, .Lfint

bl FUNCTION (atexit)
.Lweak_atexit:|

bl FUNCTION (_init)

movs ro, rd
movs ri, rd
#endif

bl FUNCTION (main)

bl FUNCTION (exit) /* Should not return. =*/

Figura 42.6: Crida a la funcié _init() i funcié main()

(43.

Sempre s’ha dit que cal evitar I’ts de variables en punt flotant (float o double) en sistemes encastats.
Aix0 ve dels temps en que els microcontroladors disponibles no tenien cap unitat hardware de punt
flotant i aquestes operacions s’havien de fer per software i aixo penalitzava moltissim el rendiment.

Aix0 encara és aplicable per la majoria de casos, tot i que els nous microcontroladors basats en
Cortex-M4 o Cortex-M7 poden portar unitats de punt flotant. Anem a veure amb detall una mica
com treballar amb les eines i el codi perque tot funcioni correctament.

Treballarem amb dos exemples molt senzills, que son les funcions mulf() i muld() (Llistats 43.1
1 43.2), que multipliquen dos valors de tipus float i double respectivament. Cal recordar que el
tipus float correspon a un tipus de punt flotant de 32 bits conegut com single precision seguint
I’standard IEEE 754. Double correspon a un tipus de 64 bits conegut com double precision del
mateix standard [97].

Les biblioteques estandard de C incorporen funcions per operar amb aquests tipus, i son les que es
fan servir per defecte pel compilador si no li donem ordres especials.

Aixi doncs, si compilem el fitxer mulf.c amb la segiient comanda

> arm-none—eabi—-gcc mulf.c —o— -S —mthumb -mcpu=cortex —-m4

ens mostrara per pantalla el codi en assemblador que genera el compilador. Cal fixar-se que els

Llistat 43.1: funcié mulf()

/* mulf.c =/
float mulf (float a, float b) {
return axb;

}

240 Capitol 43. Treballant amb punt flotant

Llistat 43.2: funcié muld()

/+ muld.c =/
double mulf (double a, double b) ({
return axb;

}

Llistat 43.3: codi assemblador de la funcié mulf.c

push {r7, 1r}

sub sp, sp, #8

add r7, sp, #0

str r0, [r7, #4] @ float
str rl, [r7] @ float
ldr rl, [r7] @ float
1ldr r0, [r7, #4] @ float
bl __aeabi_fmul

mov r3, r0

mov r0, r3

adds r7, r7, #8

mov sp, r7

@ sp needed

pop {r7, pc}

flags que li passem al compilador son només que el microcontrolador és un Cortex-M4.

Aqui el que es veu és que es preparen uns registres i es crida una funcié anomenada __eabi_fmul
que és la funcié de la biblioteca encarregada de fer les multiplicacions per software.

Si ara especifiquem que el cortex-M4 te el modul d’operacions en punt flotant amb la segtient
comanda:

> arm-none—eabi—-gcc muld.c —o— -S —mthumb -mcpu=cortex —-m4
—-mfloat—abi=hard —-mfpu=fpv4-sp-dl16

El resultat sera el segiient, on ja es veu que es fan servir instruccions de punt flotant (vstr, vldr,
vmul, vmov, etc.)

En aquest cas els flags del compilador indiquen quin modul FPU te el nostre microcontrolador
(fpv4-sp-d16): fp versid 4, single precision i 16 registres).

Aix0 seria pel cas de la funcié que treballa amb precisié simple, si ara fem el mateix per la funcié
que treballa amb dobles, fent servir els mateixos flags

> arm-none—eabi—-gcc muld.c —-o— -S —mthumb -mcpu=cortex -mé4
-mfloat—abi=hard —-mfpu=fpv4-sp-dl6

Veiem que altre cop es fa I’operacié per software enlloc de fer-la via les instruccions de punt flotant.
Per que passa aix0? Doncs perque 1’arquitectura Cortex-M4 només permet FPUs de precisi6 simple
i no pot treballar amb precisié doble i aixi li hem especificat al compilador. Per tant el compilador
fa les crides a la biblioteca software pertinent (__eabi_dmul).

Per tant, compte amb treballar amb doubles i arquitectures Cortex-M4 o inferiors! Cal tenir en

241

Llistat 43.4: codi assemblador de la funcié mulf.c usant FPU

push {r7}
sub sp, sp, #12
add r7, sp, #0
vstr.32 s0, [r7, #4]
vstr.32 sl1, [r7]
vldr.32 sl14, [r7, #4]
vldr.32 s15, [r7]
vmul . £32 sl5, sl4, sl15
vmov . £32 s0, sl15
adds r7, r7, #12
mov sp, r7
@ sp needed
ldr r7, I[spl, #4
bx 1r

Llistat 43.5: codi assemblador de la funcié muld.c
push {r7, 1lr}
sub sp, sp, #16
add r7, sp, #0
vstr.64 d0, [r7, #8]
vstr.64 dl, [r7]
ldrd r2, [r7]
1drd r0, [r7, #8]
bl __aeabi_dmul
mov r2, r0
mov r3, rl
vmov d7, r2, r3
vmov . £32 s0, sl4
vmov . £32 sl, sl15
adds r7, r7, #16
mov sp, r7
@ sp needed
pop {r7, pc}

242

Capitol 43. Treballant amb punt flotant

Llistat 43.6: codi assemblador de la funcié muld.c usant FPU de Cortex-M7

push {r7}

sub sp, sp, #20
add r7, sp, #0
vstr.64 d0, [r7, #8]
vstr.64 dl, [r7]
vldr.64 do6, [r7, #8]
vldr.64 d7, [r7]

vmul . £64 d7, de, d7
vmov. £64 do, d7
adds r7, rl, #20
mov sp, r7

@ sp needed

ldr r7, [spl, #4
bx 1r

compte que algunes operacions en C que fan servir constants poden acabar en un tipus double si no
vigilem.

Si ara fem la prova amb la mateixa funci6 pero usant els flags per un Cortex-M7

> arm—-none—-eabi—-gcc muld.c —o— —S —mthumb —mcpu=cortex —-m7
—mfloat—abi=hard —-mfpu=fpv5-dl16

En aquest cas, els flags indiquen que el processador é€s un Cortex-M7 i la unitat de punt flotant és la

versid 5 (Tal com indica el ARM Cortex-M7 Processor Technical Reference Manual [98][8-2)].

Amb aquests flags, el codi assemblador que es genera €s el que es veu al llistat segiient

Aqui es veu que es torna a fer servir registres i instruccions propies del punt flotant (vstr, vldr, vmul,
vmov) amb el suffix .f64 que es correspon a la mida del tipus double (64 bits) i que, per tant, les
operacions no es fan per una rutina software si no que les executa el modul de punt flotant del
microcontrolador.

Per tant, podem veure clar que 1’ds del tipus double només és recomanat per arquitectures Cortex-M7
1 posteriors si no volem tenir una perdua de rendiment considerable.

Per tltim, no cal espantar ningd, ja que aquest flags> els maneguen les eines de cada fabricant
segons les caracteristiques dels seus microcontroladors i normalment no ens n’hem de preocupar.

44

45
46
47
48
49

50
50.1

51
51.1

52

53
53.1

Us de memodria dindmica 247

Usdevoldtile 249
Funcionsre-entrants 251
Deadlock 253
Inversié de prioritats 255
Assignacio de prioritats 257
Midadelescues 259
Model M/M/1

Debounce 263

Un exemple de debouce
Us eficientde prinff 267

Empaquetant estructures 269
Un exemple senzill

Aquesta pagina esta en blanc expressament, tot va bé.

245

En aquest capitol veurem una serie de bones practiques habituals en la programacié de sistemes
encastats. Aquestes bones practiques donen consells 1 guia sobre com dissenyar o programar parts
de codi per evitar problemes que, habitualment, sén molt complicats de detectar.

Aquesta pagina esta en blanc expressament, tot va bé.

Una de les diferéncies més notables a I’hora d’escriure codi per un sistema encastat és 1’ts de
memoria dinamica. Basicament se’n desaconsella totalment el seu Us en sistemes encastats. Aixo es
deu al fet que tenim molt poca memoria RAM disponible (pocs KB) i que la possible fragmentaci6
que s’origina en fer-ne un Us dinamic poc exhaurir-la molt més facilment. A més, el fet d’usar
memoria dinamica fa que el sistema sigui menys predictible, ja que en certs casos, I’ordre en que
s’executen diferents malloc() pot ser diferent a cada execucio.

Es per aixd que no s’acostuma a usar memoria dinamica en sistemes encastats. Si, tot i la
recomanacié de no fer-ho, és necessari alguna mena de gestié dinamica de la memoria, la millor
opci6 és proveir-se d’una estructura propia anomenada pool de blocs d’'una mida predeterminada
que proporcionin aquesta funcionalitat. D’aquesta manera s’evita la fragmentacid ja que tots els
blocs tenen la mateixa mida.

En alguns casos, pot ser inevitable I’'us de memoria dinamica (inicialitzacié d’estructures que
no se sap a priori si caldran o no) i és acceptable fer aquesta reserva de memoria en el moment
d’inicialitzaci6 del sistema.

Aixi, podriem resumir que el que esta prohibit €s 1’ds de la comanda free() més que no pas la
comanda malloc().

Aquesta pagina esta en blanc expressament, tot va bé.

Com ja s’ha comentat a Subseccié 7.2.1 - Us de variables globals, errors en s de la paraula
reservada volatile poden ocasionar bugs dificils de trobar al nostre codi. Per tant, i com a recordatori,
cal definir una variable com a volatile en el segiients casos:

* Variable global que comunica una ISR amb una funcié.

* Variable comptador d’un bucle per implementar un delay.

* Punter a una adreca de memoria corresponent a un periféric mapat a memoria.
* Variable global que hi accedeixen dues o més tasques d’un RTOS.

Cal recordar que I'tis de volatile fara que les optimitzacions del compilador no s’apliquin a la
variable definida com a tal.

Aquesta pagina esta en blanc expressament, tot va bé.

46. Funcions re-entrants

Com ja es va comentar breument a Seccié 27.2 - Modificant el wrapper d’12C, quan es treballa
en un entorn multitasca (com quan es té un RTOS) cal tenir en compte que funcions que puguin
ser utilitzades alhora per més d’una tasca cal que siguin re-entrants. També cal adonar-se que una
biblioteca per un periferic HW qualsevol segurament haura de ser re-entrant, ja que diverses crides
simultanies sobre el mateix HW pot ocasionar errors de funcionament.

La norma general és de protegir cada funcié que hagi de ser re-entrant amb un Mutex. La funci6 en
qiiestié intentara agafar el Mutex a I’inici de la seva execucid i el retornara en quan acabi. En el cas
de biblioteques per accedir a HW, és habitual tenir un sol Mutex compartit per tota la biblioteca i que
es crea quan es crida a la funcié d’inicialitzaci6 de la biblioteca (veure Secci6 27.2 - Modificant el
wrapper d’12C).

Aquesta pagina esta en blanc expressament, tot va bé.

Un Deadlock és una situacié on diverses tasques tenen una dependeéncia circular entre elles i queden
totes elles bloquejades esperant-se unes a les altres.

Per evitar aquestes situacions, sovint complexes de detectar, hi ha dues recomanacions:

* Evitar adquirir dos o més Mutex. Provar d’agafar dos o més Mutex pot provocar que s’agafi
un pero fallin els demes, fent que la tasca hagi d’esperar a d’altres tasques els alliberin, que
potser necessiten del primer Mutex.

* Ordenar els Mutex de manera que, si s’ha d’agafar més d’un, totes les tasques segueixin el
mateix ordre.

Amb aquests dues recomanacions es poden evitar la majoria de deadlocks generats per 1’ds de
mutex entre tasques.

Aquesta pagina esta en blanc expressament, tot va bé.

(48. Inversié de prioritats

Quan tenim un parell de tasques que comparteixen un recurs, una amb poca prioritat (77) i la segona
amb més prioritat (73,), si s’afegeix una tercera tasca amb una prioritat intermedia (7,) al sistema,
podem tenir un problema d’inversié de prioritats. Aixo passara quan la tasca de menys prioritat
agafa el recurs compartit amb (7). En aquest moment, si la tasca de prioritat intermedia esta a
I’estat Ready, passara a executar-se, fent que la tasca (7;) no s’executi i retardant I’execucié de
la tasca (7j,), fent que, de fet, la prioritat de 7}, i 7}, s’hagin invertit, ja que la tasca amb prioritat
intermedia es pot executar tot el temps que vulgui i la tasca més prioritaria no té la oportunitat [99,
pagina 101].

La manera més senzilla de resoldre aquest problema és usar Mutex amb herencia de prioritats.
Aquest mecanisme fa que, provisionalment, la tasca que agafa el Mutex pugi temporalment la
seva prioritat a la mateixa de la tasca que 1’esta esperant [99, pagina 106]. FreeRTOS suporta
aquest mecanisme als seus Mutex, i per tant fent un bon ts dels mateixos evitarem aquest fenomen
d’inversio [52, pagina 251].

Aquesta pagina esta en blanc expressament, tot va bé.

Sovint un dels dubtes que sorgeixen en el disseny de sistemes encastats és quines prioritats cal donar
a cada una de les tasques del sistema. Existeix un algorisme molt senzill per assignar les prioritats
a cada tasca, basant-se en el temps de procés que necessita cada una. Aquest algorisme s’anomena
Rate-Monotonic Algorithm (RMA) i fa les segiients assumpcions [100][101, pagina 136]:

* Totes les tasques son periodiques.

El deadline de cada tasca és el seu periode.

Totes les tasques s6n independents.

* Totes les tasques son pre-emtives i el cost d’aquest és negligible.

Aquest algorisme senzillament assigna la prioritat més alta a les tasques amb un periode més curt.
Aixi, s’ordenen les tasques segons el seu periode (primer els periodes més curts) i s’assignen les
prioritats, de més alta a més baixa.

Per saber si es podran executar totes les tasques dins dels seus limits complint tots els deadline es
poden fer els segiients calculs:

Sigui c; el temps d’execuci6 de la tasca 7;. Sigui p; el periode d’execuci6 de la tasca 7;. Sigui n el
nombre de tasques totals. Es defineix 1’ds acumulat u a:

S’ha de complir la condici6 49.1 perque es compleixin tots els deadlines de totes les tasques,
sempre amb els suposits inicials.

w<n(2/"—1) (49.1)

Aixi, si tenim 3 tasques amb les dades d’execucié de la Taula 49.1 I’algorisme RMA assignarien
les prioritats de la segiient manera:

258

Capitol 49. Assignacié de prioritats

1. T3 més prioritaria.
2. T2 prioritat intermedia.
3. T1 baixa prioritat.

També es pot calcular u

20030 15 o
H=3500"250 "100

i segons I’Equaci6 49.1 tindrem que

0.31 <n(2'/"—1)=32'3-1)~0.78

Per tant es compleixen les condicions perque les tres tasques es puguin executar sense perdre cap
esdeveniment. L’algorisme RMA dona una conjunt de prioritats que és Optima, per tant, si no es
compleixen els deadlines, cap altre metode d’assignar prioritats fixes podra aconseguir-ho. En
aquest cas caldra tenir un scheduler amb un algorisme de prioritats dinamiques.

També val la pena observar que la part dreta de I’Equaci6 49.1 té un limit:

limn- (2" —1)=1In(2) = 0.7

n—soo

que ens indica que amb les condicions dites abans, un sistema amb moltes tasques hauria de dedicar
el 70% d’ocupacio total per garantir tots els deadlines de les tasques.

Taula 49.1: Dades d’exemple de tasques i prioritats (temps en mil-lisegons)

Temps d’execucio ¢

20

30

Tasca | Periode p
T1 500
T2 250
T3 100

15

50.1

(50. Mida de les cues

Quan hem parlat de les cues en un RTOS a Seccio 25.2 - Cues, hem dit que a I’hora de la seva
creacio cal especificar el tipus de dades que emmagatzemara cada element de la mateixa i el nombre
d’elements d’aquest tipus que la cua manegara.

Pero, com saber quants elements cal atorgar a una cua en la seva creacié? Aquest parametre sera
clau, ja que si creem una cua amb pocs elements disponibles, la tasca productora potser es quedi
bloquejada si la tasca consumidora no va prou de pressa. Tot i que es pot triar aquest valor d’una
forma empirica, comengant per un valor prou baix i fent proves i via successives aproximacions
arribar a un valor prou bo.

Aquest metode, perd, no ens assegura que en qualsevol cas el sistema no acabi amb una cua plena.
Per aixo, cal un analisi més analitic del problema per trobar una solucio.

Model M/M/1

Aquest model de cues és dels models estadistics més senzills perd que ens pot donar informacié
important només amb les dades més basiques del nostre sistema. Aquest model fa certes suposicions
que podem donar per bones pels nostres sistemes [102][103][104][105]:

 El productor genera noves entrades a la cua seguint una distribuci6é de Poisson.
* El consumidor processa dades a la cua seguint una distribucié exponencial.

* Només hi ha un productor.

* La cua és de tipus FIFO.

Amb aquestes suposicions ens cal trobar els parametres A i u pel productor i el consumidor
respectivament, ara es veura com.

Si la nostra tasca consumidora genera un element nou a la cua de mitjana (seguint una distribucié
de Poisson) cada cert Pr temps tindrem:

Pr = temps mitja a generar una dada (50.1)

260 Capitol 50. Mida de les cues

i llavors tindrem que

1

= (50.2)

El mateix calcul el podem fer pel temps de la tasca consumidora (que segueix una distribuci6
exponencial):
C = temps mitja a processar una dada (50.3)

1 llavors tindrem que

1
=— 50.4
=z (50.4)
Amb aquestes dades, tenim les segiients férmules:
c A
p=—=— (50.5)
Pr u

Aquesta primer valor p ens indica si el sistema és factible o no: si p és més petitd’1 (p < 1), la cua
té sentit, en cas contrari, el ritme de inserir elements a la cua és més rapid que el ritme de treure’ls i,
per tant. la cua s’acabara omplint en algun moment o altre i el productor haura de llencar dades que
no podra inserir a la cua.

Amb aquest valor p (o amb Pr i C) podem obtenir els segiients calculs:

Nombre mitja d’elements a la cua

(£ 1(-9)

Temps mitja de vida a la cua

W, = “’%l - % —L, Pr (50.7)
Temps total d’estada en el sistema (procés més espera a la cua)

W:Wq—l—l:Wéﬁ—C:L (50.8)

H I—p
Nombre mitja d’elements al sistema
_(lfp)_w.,x_;‘; (50.9)
Probabilitat que la cua tingui més de K elements
K c*
P(ZK)=p" = (Pr) (50.10)

Aixi si, per exemple, tenim una tasca productora que genera una dada cada 50 ms i una tasca
consumidora que processa una dada en uns 30 ms de mitjana, tenim els segiients resultats:

Pr=50ms

50.1 Model M/M/1 261

C =30 ms
c 30
=—=—=06
P=Pr=50
o 30\ 30
Nombre mitja d’elements a la cua L, = <50> / <1 - 50) =09
Temps mitja de vida a la cua W, = 0.9-50 = 45 ms
30-50
it total de vida d’'una dada W = =75
emps total de vida d’una dada 50-30 ms
. . 75
Nombre mitja d’elements al sistema L = 0= 1.5
30\ 1©
Probabilitat que la cua tingui més de 10 elements P(> 10) = <50> ~ 0,00605 — 0.60%

Aquestes equacions ens indiquen que durant bona part del temps de funcionament del sistema, la
cua entre els dos processos tindra tant sols 1 element, i que la probabilitat que tingui més de 10
elements en algun moment és de només el 0,60%. Cal fer notar que aquest valor probabilistic té€ en
compte que els processos que generen dades es comporten com una variable aleatoria tipus Poisson
iels temps de processat les dades s’ajusta a una variable aleatoria exponencial. Si algun dels dos
processos no es comporta com a tal, si no que el seu temps de procés o de generacié de dades és fix,
els valors Ly, W,, W i L seran certs en tot moment.

Manipulant una mica les férmules, també podem esbrinar quin temps maxim de procés podem tenir
per una tasca que genera dades cada 25 ms i volem menys d’un 0.1% de probabilitats que la cua
arribi a tenir 8 elements.

Tenim, doncs:
Pr=25ms
K=28

Segons la férmula 50.10:

C
Probabilitat que la cua tingui més de K elements = pX = (P—)K < 0.001(0.1%)
r

per tant tenim que

C® < 25%%0,001 — C < V/258%0,001 ~ 10.54 ms

Aix0 ens indica que el temps de processar una dada per part el consumidor (C) ha de ser menor de
10.54 mil-lisegons de mitjana per assegurar els requeriments donats.

Aquesta pagina esta en blanc expressament, tot va bé.

Un problema que ens podem trobar quan volem llegir una entrada digital, és el fenomen dels rebots:
si el pin esta connectat a un boté a algun altre accionador mecanic aquest pot generar rebots al
senyal, que vol dir que no es genera un pols quadrat i perfecte si que no quan es genera un pols
aquest vagi acompanyat per d’altres polsos més petits i espuris. Habitualment les sortides d’altres
components digitals no presenta aquest fenomen i no cal fer servir aquestes tecniques.

Aquest efecte pot provocar que el nostre codi compti més polsos dels que realment s haurien de
comptar i tenir un sistema erroni.

Per solucionar-ho, a part d’afegir certa circuiteria addicional al voltant del pin d’entrada, es pot
desenvolupar codi que tingui en compte aquesta situacié. Aquesta mena de codis es coneixen com
debouncing i normalment es basen en llegir varies vegades el pin implicat i veure quan deixa de
canviar i amb aix0 decidir si hi hagut canvi en el valor del pin o no.

Aquests algorismes han de decidir el més rapid possible si I’entrada ha canviat o no i per contra
quan més temps estiguin avaluant 1I’entrada millor funcionaran i detectaran espuris (glitches). A
més, quan més cops per segons s’avalua el valor d’un pin més ocupacié e la CPU es tindra per
aquesta tasca.

Les tecniques més habituals es basen en programar un timer o una tasca programada per que cridi
una funcié d’avaluacié de forma periodica (cada X mil-lisegons) i la dita funci6 llegeixi el valor de
I’entrada i decideixi el valor real de 1’entrada [106][107].

Un altre forma de fer-ho, potser més senzilla és la de un cop detectat un primer flanc, deixar de
llegir I’entrada fins passat un temps i un cop transcorregut el temps, es llegeix el valor de I’entrada
altre cop. Aixo es pot fer facilment controlant un Timer des de la ISR d’entrada del pin, tal com es
veura a continuacio.

51.1

264 Capitol 51. Debounce

Llistat 51.1: ISR del timer per fer debouncing

void TIMER1_IRQHandler (void) {
uint32_t flags;

/+* Clear flag for TIMERI #*/
flags = TIMER_IntGet (TIMER1);
TIMER_IntClear (TIMER1, flags);

timer_running = false;
if (GPIO_PinInGet (gpioPortD, 8) == 1) {

button_counter++;

}

Llistat 51.2: Codi per engegar el timer a la ISR del GPIO

void GPIO_EVEN_IRQHandler (void) {

if (!'timer_running) {
timer_running = true;
TIMER_TopSet (TIMER1, DEBOUNCE_VALUE) ;
TIMER_Enable (TIMER1, true);

Un exemple de debouce

El codi d’aquest examples esta, com sempre, al repositori. Primer cal configurar el Timer per que
compti un cert temps i generi una IRQ un cop transcorregut aquest temps. Per aix0 configurem el
valor Top tal com ja varem fer a Capitol 8 - Timers.

En aquest exemple es configura el valor top per que estigui comptant 100 mil-lisegons fent un calcul
molt similar al de I’exemple amb Timers anterior. També es prepara la ISR pel Timer! tal com es
veu al Llistat 51.1 (veure Figura 51.1).

La variable timer_running es defineix com una variable booleana (i volatil) amb valor per defecte
a false. A aquesta ISR es comprova el valor desitjat de ’entrada i si és el cas, s’actualitza el
comptador.

Per dltim a la ISR del GPIO corresponent inserim el codi segiient per engegar el Timer quan es
detecti un flanc al senyal (un canvi al seu valor), tal com es veu al Llistat 51.2:

D’aquesta manera tant senzilla evitarem els molests rebots i, de fet, tindrem filtrats tots els polsos
que considerem massa rapids pel nostre sistema.

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/GPIO_Debouncing

51.1 Un exemple de debouce 265

Usuari - - -
Boto
Start
| counting
pESEER
100 miI-IiSE'ignns
Timer overflow
Usuari
]

Figura 51.1: Diagrama de seqiiencia de I’exemple de debounce

Aquesta pagina esta en blanc expressament, tot va bé.

(52. Us eficient de printf

Com ja es va veure a Capitol 4 - Fent servir printf és possible tenir la funcié printf() en els nostres
sistemes encastats, pagant el preu de gastar forca memoria FLASH per la seva implementacio.

Una opci6 recomanable en cas que I’ocupacié de la memoria FLASH pugui ser un problema, és el
de tenir diferents versions de printf() segons els parametres que pot rebre. Aixi, enlloc de tenir el
printf() generic de la biblioteca que accepta tot de tipus de tipus de dades segons el format tindrem
una funcié per imprimir un enter en decimal, una altra per imprimir un enter en hexadecimal, una
funcié per imprimir una cadena, etc. com es pot veure al Llistat 52.1

A més, totes aquestes noves funciones les usarem a través d’una macro de C, de forma que quan
passem a una compilaci6 de release del projecte aquests printf() desapareguin del nostre codi.

268 Capitol 52. Us eficient de printf

Llistat 52.1: Diferents implementacions de printf()

void printf_char (char ch) {
ITM_SendChar (ch) ;

void printf_string(charx str) {
int i = 0;
while(str[i]) |
printf_char (str[il]);
i++;

void printf_hex8 (uint8_t wval) {
if ((val >>4) > 9) {

printf_char ((val>>4) + 70’ + 7);
} else {
printf_char ((val>>4) + 707);

}
if ((val&OxOF) > 9) {

printf_char ((val&OxQ0F) +70" + 7);
} else {

printf_char ((val&O0x0F) +707);

void printf_int (int val) {
int rem_dec;
int dec;
int i;
char buffer[10];

i = 0;
if (val < 0) {

printf_char(’-");
val = -1 x val;

dec = val;

rem_dec = val;
do {
rem_dec = dec%10;
dec /= 10;
buffer[i] = "0’ +rem_dec;
i++;
} while(dec > 10);
buffer[i] = "0’ + dec;

/+* print reverse buffer #*/
for(; 1 >= 0; 1i--) {
printf_char (buffer[i]);

(53. Empaquetant est@ptg@s

L’as d’estructures (struct en C) per emmagatzemar dades que estan relacionades €s forca habitual.
Per fer-ho, només cal definir una estructura i cada camp es defineix amb el tipus desitjat. Tota
I’estructura funciona com un paquet de dades, que es pot moure, copiar i accedir com un tot.

Perd si volem accedir a baix nivell a aquestes estructures per, per exemple, enviar les dades que
conté per un port serie, inserir-la a un paquet de xarxa o enviar-ho a un altre dispositiu via SPI o
12C, cal que tinguem compte el problema de I’empaquetament.

Quan definim una estructura en C, el compilador ha de decidir com I’emmagatzema a la memoria.
Segons les caracteristiques dels busos i I’arquitectura del microcontrolador, pot ser que els accessos
a memoria només es puguin fer a nivell de paraula (en el cas d’ARM una paraula és de 32 bits) i
que no es pugui accedir a un byte individual de la memoria.

I com afecta aix0 a les estructures? Doncs que el compilador pot optar a col-locar els diferents
camps de I’estructura ocupant cada un una posicié de memoria enlloc d’empaquetar-los tant com

pugui.

Aixi, si tenim una estructura definida com es veu al Llistat 53.1 el compilador guardara I’estructura
a la memoria tal com es veu a la Figura 53.3.

Llistat 53.1: Estructura d’exemple

struct {
uint8_t fieldS1;
uintl6_t fieldSlb;
uint32_t fieldLl;
uint32_t fieldL2;
uint8_t fieldS2;
} unpacket_struct;

270 Capitol 53. Empaquetant estructures

Byte 3 Byte 2 Byte 1 Byte 0 Adreca

fieldS1b[1] | fieldS1b[0] | O fieldS1 0x00020000

fieldL1[3] | fieldL1[2] |fieldL1[1] |fieldL1[0] |0x00020004

fieldL2[3] | fieldL2[2] | fieldL2[1] | fieldL2[0] |0x00020008

0 0 0 fieldS2 0x0002000A

0x0002000C

Figura 53.1: Disposicié de I’estructura a la memoria

Llistat 53.2: Estructura d’exemple empaquetada

struct _ attribute_ ((_packed__)) {
uint8_t fieldSl;
uintle6e_t fieldSlb;
uint32_t fieldLl;
uint32_t fieldL2;
uint8_t fieldS2;
} packet_struct;

Que com es pot veure aquesta organitzacié no és la que ens podriem esperar, ja que el camp
fieldS1b no esta enganxat al camp fieldS1 i es per una posicié de memoria per alla enmig. Aquesta
operaci6 s’anomena padding i és forca habitual en totes les arquitectures. En aquest cas fa que
aquesta estructura ocupi 16 bytes a la memoria enlloc dels 12 que podria ocupar si estigues tot ben
empaquetat.

Aix0 no s’acostuma a tenir gaire en compte alhora de programar sistemes encastats, pero pot ser
forgca important si en algun moment una estructura d’aquest estil cal enviar-la byte a byte a algun
modul o periferic. Anem a suposar que enviarem aquesta estructura d’exemple pel port serie. Si
fem una funcié que vagi llegint byte a byte 1’estructura, tindrem que llegira uns buits a 0 enmig que
ens esgarraran el resultat.

En aquests casos, cal dir-1i al compilador que volem que empaqueti tant com pugui I’estructura. Aixo
és fa amb una comanda propia de cada compilador, en el cas de GCC és la comanda __attribute__
que es fa servir tal com es veu al Llistat 53.2. Amb aquesta comanda 1’estructura a memoria queda
com es veu a la Figura 53.3.

Fent servir aquest atribut es veu que esta tot ben empaquetat i ens estalvia uns quants bytes. A més,
s’han omplert tots els forats de manera que ara si que podrem accedir byte a byte I’estructura sense
problemes.

Cal dir que en forca casos aquestes estructures empaquetades poden ser més lentes d’accedir-hi, ja
que la CPU haura d’accedir a diferents posicions de memoria i reconstruir el valor original movent

271

fieldL1[o] | fieldS1b[1] | fieldS1b[0] | fieldS1

fieldL2[0] | fieldL1[3] |fieldL1[2] | fieldL1[1]

fields2 fieldL2[3] |fieldL2[2] | fieldL2[1]

Figura 53.2: Disposici6 de I’estructura empaquetada a la memoria

bits amunt i avall (veure per exemple, com es reconstruiran els camps fieldL1 o fieldL.2)

53.1

272 Capitol 53. Empaquetant estructures

Un exemple senzill

A I’exemple del repositori es defineixen dos estructures iguals, una amb 1’atribut per empaquetar-la
i I’altra amb les opcions per defecte.

Primer es treuen per la consola les mides de totes dues estructures, que encaixen amb el que hem
dit aqui i tot seguit es pinten byte a byte per observar els zeros enmig i com esta emmagatzemada
cada estructura.

Cal destacar com s’accedeix byte a byte a I’estructura. Es defineix un apuntador a byte (uint8_t *) i
es fa apuntar a I’adreca d’inici de I’estructura que es vol analitzar. Tot seguit es va imprimint byte a
byte el contingut de la memoria on esta emmagatzemada 1’estructura.

També es pot analitzar directament el contingut de la memoria usant I’IDE Simplicity Studio fent
servir I’eina de dump de la memoria tal com es veu a la Figura 53.3.

Llistat 53.3: Mostrant una estructura byte a byte

uint8_t «buffer;

buffer = (uint8_t«x) &unpacket_struct;

printf ()i

for(i = 0; 1 < sizeof (unpacket_struct); i++) {
printf (, buffer[i]);

}
printf()

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Structures

53.1 Un exemple senzill

273

‘& Primuil SL£LE Ul SLIULLUTE_AD BUAN , SLLEUI |PdLREL _SLIULL)),

Bx20000098
0x200000C8
0x200000F8
Bx20000128
Bx20000158
0x20000188
Bx200001B8
0x200001E8
0x20000218

- CORE:unpacket_struct

tORE:unpatket_struﬂ:GxZOOOOOSBdra{frtinnab R Ogh New Renderings...}

000ERE0O DERDUONE POEROBL DELOOELE BEOEPROE DEEDODOE BOOBO!
1EA41D36 2000D1F6 199BBDF2 600B9%600 BDF22001 FB5FF060 B5F1E
D10E42ABD1GF4263 D1FO3A10 9800EO16 FB49F000 3910E7EF EOLLL
42B3680E 10090164 D1F71F12 BDF22000 60019806 60669807 E7F82
69121909 23002700 D4161E/F 682650CE D10242AE 42931D1B 6025D
2600608E BDFOGOOE FOOOE736 E7ESFE04 FBO1FOOO B50FETED FBC2ZF
68(C99918 58181845 68006907 90029003 69469818 N5302F00 GB7FO!
98020004 66012100 60449802 30089803 98029003 90623008 1E761
FF63F7FF D1032600 21019802 E7E56001 68009803 D1D40781 68499

Figura 53.3: Detall de la finestra de memory dump a Simplicity Studio

Aquesta pagina esta en blanc expressament, tot va bé.

Enllacos dels exemples 277

Bibliografia 279
Llibres

Glossari 287
Acronims 291
index defigures 297
indexdellistats 299

index de funcions 303

Aquesta pagina esta en blanc expressament, tot va bé.

Periferics mapats a memoria GitHub
Prova de velocitat GitHub

Prova de velocitat 2 GitHub

Consola Debug GitHub

GPIO GitHub

Controlador d’interrupcions GitHub
Timers GitHub

Timers 2 GitHub

Watchdog GitHub

ADC GitHub

DMA GitHub

UART GitHub

12C GitHub

PWM GitHub

Primer exemple en FreeRTOS GitHub
Semafors en FreeRTOS GitHub

Cues en FreeRTOS GitHub

Mutex en FreeRTOS GitHub

Primera aplicaci6 en FreeRTOS GitHub
Gestié d’execepcions GitHub

https://github.com/mariusmm/cursembedded/tree/master/Simplicity/MemoryMap
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/SpeedTest_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/SpeedTest_2
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Printf_SWO
https://github.com/mariusmm/cursembedded/tree/master/GPIO_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/GPIO_2
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Timer_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Timer_2
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/Watchdog
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/ADC_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/DMA_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/UART_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/I2C_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/PWM_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Blink
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Semaphore
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Queue
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_Mutex
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/FreeRTOS_App_1
https://github.com/mariusmm/cursembedded/tree/master/Simplicity/ErrorHandling

Aquesta pagina esta en blanc expressament, tot va bé.

Bibliografia

[10]

[11]
[12]
[13]

Free Software Foundation. Llicéncia Publica General de GNU. https://www.gnu.
org/licenses/gpl.html (vegeu la pagina 13).

Arduino. What is Arduino? https://www.arduino.cc/en/Guide/Introduction
(vegeu la pagina 14).

Silicon Labs. EFM32TG Reference Manual. https://www.silabs.com/documents/
public/reference-manuals/EFM32TG-RM.pdf. Silicon Labs (vegeu les pagi-
nes 14, 105, 109, 110, 207, 231 -233).

Silicon Labs. SImplicity Studio v4. http : / /www . silabs . com/ products /
development—-tools/software/simplicity-studio (vegeu la pagina 14).

Broadcom. APDS-9960 Datasheet. https://www.broadcom. com/products/
optical-sensors/integrated-ambient-light-and-proximity-sensors/
apds—-9960 (vegeu les pagines 14, 90, 92, 118, 121).

ARM. GNU Arm Embedded Toolchain. https://developer.arm.com/open—
source/gnu-toolchain/gnu-rm (vegeu la pagina 16).

ARM. ARM Processors. https://www.arm.com/products/processors. ARM
(vegeu la pagina 19).

Silicon Labs. Silicon Labs Hompage. https://www.silabs.com/ (vegeu la pagi-
na 20).

Texas Instruments. Texas Instruments Hompage. https://www.ti.com/ (vegeu la
pagina 20).

NXP. NXP Hompage. https://www.nxp.com/ (vegeu la pagina 20).
ST. ST Homepage. https://www.st.com/ (vegeu la pagina 20).

Microchip. Microchip Hompage. https://www.Microchip.com/ (vegeu la pagi-
na 20).

https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html
https://www.arduino.cc/en/Guide/Introduction
https://www.silabs.com/documents/public/reference-manuals/EFM32TG-RM.pdf
https://www.silabs.com/documents/public/reference-manuals/EFM32TG-RM.pdf
http://www.silabs.com/products/development-tools/software/simplicity-studio
http://www.silabs.com/products/development-tools/software/simplicity-studio
https://www.broadcom.com/products/optical-sensors/integrated-ambient-light-and-proximity-sensors/apds-9960
https://www.broadcom.com/products/optical-sensors/integrated-ambient-light-and-proximity-sensors/apds-9960
https://www.broadcom.com/products/optical-sensors/integrated-ambient-light-and-proximity-sensors/apds-9960
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://www.arm.com/products/processors
https://www.silabs.com/
https://www.ti.com/
https://www.nxp.com/
https://www.st.com/
https://www.Microchip.com/

280

[14] ARM. Cortex-A Series. https ://www . arm. com/products /processors/
cortex—a. ARM (vegeu la pagina 20).

[15] ARM. Cortex-R Series. https : //www .arm. com/products /processors/
cortex—r. ARM (vegeu la pagina 20).

[16] ARM. Cortex-M Series. https ://www.arm. com/products/processors/
cortex—-m. ARM (vegeu la pagina 20).

[18] ARM. Cortex-M0O+. https://developer.arm.com/products/processors/
cortex-m/cortex—-m0-plus. ARM (vegeu la pagina 20).

[19] ARM. Cortex-M3. https://developer.arm.com/products/processors/
cortex-m/cortex—m3. ARM (vegeu la pagina 20).

[20] ARM. Cortex-M4. https://developer.arm.com/products/processors/
cortex-m/cortex—m4. ARM (vegeu la pagina 20).

[21] ARM. Cortex-M7. https://developer.arm.com/products/processors/
cortex-m/cortex—m7. ARM (vegeu la pagina 20).

[24] Silicon Labs. EFM32G Reference Manual. http://www.silabs.com/documents/
public/reference-manuals/EFM32G-RM. pdf. Silicon Labs (vegeu les pagi-
nes 22, 23, 37,48, 51, 53, 58, 62, 69, 76, 79, 94, 206).

[25] Silicon Labs. EMLIB library. https://siliconlabs.github.io/Gecko_SDK_
Doc/efm32tg/html/group__emlib.html (vegeu les pagines 24, 51).

[26] ST. STM32 Standard Peripheral Libraries. http://www.st .com/en/embedded-
software/stm32-standard-peripheral-libraries.html (vegeu la pagi-
na 24).

[27] ST.STM32 STM32Cube hardware abstraction layer (HAL). https://www.st .com/
en/development—-tools/stm32cubemx.html (vegeu la pagina 24).

[28] Miro Samek. Building Bare-Metal ARM Systems with GNU: Part 2. https: //www.
embedded.com/design/mcus—processors—and-socs/4026075/Building-
Bare-Metal-ARM-Systems-with-GNU-Part-2 (vegeu la pagina 25).

[29] ARM. Cortex™-M3 Technical Reference Manual - ITN. http://infocenter.arm.
com/help/index . jsp?topic=/com.arm.doc.ddi0337e/BABCCDFD.
html (vegeu la pagina 31).

[30] ST. STM32F4XXX Reference Manual - RM0090. http://www.st .com/resource/
en/reference_manual/dm00031020.pdf (vegeu les pagines 37, 48, 57, 69, 94,
105, 109, 204, 206, 231, 232).

[31] Silicon Labs. EFM32TG840F32/F16/F8 DATASHEET (vegeu les pagines 41, 231).

[32] ST.AN3371 - Using the hardware real-time clock (RTC) in STM32 FO, F2, F3, F4 and L1
series of MCUs. https://www.st.com/resource/en/application_note/
dm00025071 .pdf (vegeu la pagina 57).

[33] NXP. PCF85063ATL. https://www.nxp.com/part /PCF85063ATL (vegeu la
pagina 59).

[34] Maxim integrated. DS1307. https://www.maximintegrated.com/en/products/
digital/real-time-clocks/DS1307.html (vegeu la pagina 59).

[35] ST. M41T82. https://www.st.com/en/clocks—and-timers/m41t82.
html (vegeu la pagina 59).

https://www.arm.com/products/processors/cortex-a
https://www.arm.com/products/processors/cortex-a
https://www.arm.com/products/processors/cortex-r
https://www.arm.com/products/processors/cortex-r
https://www.arm.com/products/processors/cortex-m
https://www.arm.com/products/processors/cortex-m
https://developer.arm.com/products/processors/cortex-m/cortex-m0-plus
https://developer.arm.com/products/processors/cortex-m/cortex-m0-plus
https://developer.arm.com/products/processors/cortex-m/cortex-m3
https://developer.arm.com/products/processors/cortex-m/cortex-m3
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://developer.arm.com/products/processors/cortex-m/cortex-m7
https://developer.arm.com/products/processors/cortex-m/cortex-m7
http://www.silabs.com/documents/public/reference-manuals/EFM32G-RM.pdf
http://www.silabs.com/documents/public/reference-manuals/EFM32G-RM.pdf
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__emlib.html
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__emlib.html
http://www.st.com/en/embedded-software/stm32-standard-peripheral-libraries.html
http://www.st.com/en/embedded-software/stm32-standard-peripheral-libraries.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.embedded.com/design/mcus-processors-and-socs/4026075/Building-Bare-Metal-ARM-Systems-with-GNU-Part-2
https://www.embedded.com/design/mcus-processors-and-socs/4026075/Building-Bare-Metal-ARM-Systems-with-GNU-Part-2
https://www.embedded.com/design/mcus-processors-and-socs/4026075/Building-Bare-Metal-ARM-Systems-with-GNU-Part-2
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/BABCCDFD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/BABCCDFD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/BABCCDFD.html
http://www.st.com/resource/en/reference_manual/dm00031020.pdf
http://www.st.com/resource/en/reference_manual/dm00031020.pdf
https://www.st.com/resource/en/application_note/dm00025071.pdf
https://www.st.com/resource/en/application_note/dm00025071.pdf
https://www.nxp.com/part/PCF85063ATL
https://www.maximintegrated.com/en/products/digital/real-time-clocks/DS1307.html
https://www.maximintegrated.com/en/products/digital/real-time-clocks/DS1307.html
https://www.st.com/en/clocks-and-timers/m41t82.html
https://www.st.com/en/clocks-and-timers/m41t82.html

281

[36] Silicon Labs. AN0015.0: EFM32 and EZR32 WirelessMCU Series 0 Watchdog (vegeu la
pagina 70).

[37] putty. https://www.putty.org/ (vegeu la pagina 87).
[38] Tera Term. https://ttssh2.0sdn.jp/index.html.en (vegeu la pagina 87).

[39] TM Terminal. https://marketplace.eclipse.org/content/tm—-terminal
(vegeu la pagina 87).

[40] Silicon Labs. EFM32ZG108 Datasheet. https://www.silabs.com/documents/
public/data-sheets/EFM322G108 . pdf. Silicon Labs (vegeu les pagines 101,
206).

[41] ST.202STM32F405xx/202STM32F407xx Datasheet. https://www.st .com/resource/
en/datasheet/dm00037051 .pdf (vegeu la pagina 101).

[42] 32-bit MCU Knowledge Base: Writing to Internal Flash. https://www.silabs.
com/community/mcu/32-bit/knowledge-base.entry.html/2014/05/
19/writing_to_internal-DOTt (vegeu la pagina 102).

[43] Silicon Labs. EMLIB library - MSC. https://siliconlabs.github.io/Gecko_
SDK_Doc/efm32tg/html/group__MSC.html (vegeu la pagina 102).

[44] Silicon Labs. ANO0O3: UART Bootloader. https://www.silabs.com/documents/
public/application—-notes/an0003-efm32-uart-bootloader.pdf
(vegeu les pagines 103, 232).

[45] Silicon Labs. EFM32 Giant Gecko 11 Family Reference Manual. https : / / www .
silabs . com/ documents /public/ reference -manuals/efm32ggll -
rm.pdf. Silicon Labs (vegeu la pagina 109).

[46] Wikipedia contributors. Media-independent interface — Wikipedia, The Free Encyclo-
pedia. https : / /en .wikipedia.org/w/ index .php?title=Media -
independent _interface & 01did=851943072. [Online; accessed 8-August-
2018]. 2018 (vegeu la pagina 109).

[47] Viquipedia. Controller area network — Viquipédia, I’Enciclopéedia Lliure. [Internet; des-
carregat 21-maig-2018]. 2018. URL: $5Curl%7B//ca.wikipedia.org/w/index.
php?title=Controller_area_network&oldid=19926922%7D (vegeu la
pagina 109).

[48] Inc. Free Software Foundation. LwlP - A Lightweight TCP/IP stack. LwIP-ALightweightTCP/
IPstack (vegeu la pagina 110).

[49] Wikipedia contributors. LwIP — Wikipedia, The Free Encyclopedia. https:/ /en.
wikipedia.org/w/index.php?title=LwIP&01did=839596879. [Online;
accessed 8-August-2018]. 2018 (vegeu la pagina 110).

[50] Silicon Labs. AN00O25: Peripheral Reflex System. https ://www . silabs . com/
documents/public/application—-notes/an0025_efm32_prs.pdf (ve-
geu la pagina 110).

[51] FreeRTOS. FreeRTOS Homepage. http://www . freertos . org (vegeu la pagi-
na 127).

[52] Richard Barry. Mastering the FreeRTOS™ Real Time Kernel. https://www.freertos.
org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_
Kernel—-A_Hands-On_Tutorial_Guide.pdf (vegeu les pagines 128, 145, 148,
150, 165, 255).

https://www.putty.org/
https://ttssh2.osdn.jp/index.html.en
https://marketplace.eclipse.org/content/tm-terminal
https://www.silabs.com/documents/public/data-sheets/EFM32ZG108.pdf
https://www.silabs.com/documents/public/data-sheets/EFM32ZG108.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.silabs.com/community/mcu/32-bit/knowledge-base.entry.html/2014/05/19/writing_to_internal-D0Tt
https://www.silabs.com/community/mcu/32-bit/knowledge-base.entry.html/2014/05/19/writing_to_internal-D0Tt
https://www.silabs.com/community/mcu/32-bit/knowledge-base.entry.html/2014/05/19/writing_to_internal-D0Tt
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__MSC.html
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__MSC.html
https://www.silabs.com/documents/public/application-notes/an0003-efm32-uart-bootloader.pdf
https://www.silabs.com/documents/public/application-notes/an0003-efm32-uart-bootloader.pdf
https://www.silabs.com/documents/public/reference-manuals/efm32gg11-rm.pdf
https://www.silabs.com/documents/public/reference-manuals/efm32gg11-rm.pdf
https://www.silabs.com/documents/public/reference-manuals/efm32gg11-rm.pdf
https://en.wikipedia.org/w/index.php?title=Media-independent_interface&oldid=851943072
https://en.wikipedia.org/w/index.php?title=Media-independent_interface&oldid=851943072
%5Curl%7B//ca.wikipedia.org/w/index.php?title=Controller_area_network&oldid=19926922%7D
%5Curl%7B//ca.wikipedia.org/w/index.php?title=Controller_area_network&oldid=19926922%7D
LwIP - A Lightweight TCP/IP stack
LwIP - A Lightweight TCP/IP stack
https://en.wikipedia.org/w/index.php?title=LwIP&oldid=839596879
https://en.wikipedia.org/w/index.php?title=LwIP&oldid=839596879
https://www.silabs.com/documents/public/application-notes/an0025_efm32_prs.pdf
https://www.silabs.com/documents/public/application-notes/an0025_efm32_prs.pdf
http://www.freertos.org
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

282

[55] FreeRTOS. Running the RTOS on a ARM Cortex-M Core. https://www.freertos.
org/RTOS-Cortex—-M3-M4.html (vegeu la pagina 159).

[56] Viquipedia. Automat finit — Viquipedia, I’Enciclopédia Lliure. [Internet; descarregat 23-
febrer-2018]. 2018. URL: $5Curl%$ 7B/ /ca.wikipedia.org/w/index.php?
title=Aut%C3%B2mat_finit&oldid=19686277%7D (vegeu la pagina 180).

[57] Wikipedia contributors. Extended finite-state machine — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Extended_finite-
state_machine&o0ldid=711433361. [Online; accessed 2-January-2019]. 2016
(vegeu la pagina 181).

[58] Silicon Labs. EMDRV. https://siliconlabs.github.io/Gecko_SDK_Doc/
efm32tg/html/group__emdrv.html (vegeu la pagina 192).

[59] Silicon Labs. RTCDRV. https://siliconlabs.github.io/Gecko_SDK_Doc/
efm32tg/html/group__RTCDRV.html (vegeu la pagina 192).

[60] Silicon Labs. SLEEP. https://siliconlabs.github.io/Gecko_SDK_Doc/
efm32g/html/group__SLEEP.html (vegeu la pagina 192).

[62] Keil. Using Cortex-M3/M4/M7 Fault Exceptions. http://www.keil.com/appnotes/
files/apnt209.pdf (vegeu la pagina 199).

[63] Niall Cooling. Developing a Generic Hard Fault handler for ARM Cortex-M3/Cortex-M4.
https://blog. feabhas.com/2013/02/developing-a-generic—hard-
fault-handler-for-arm-cortex-m3cortex—m4/ (vegeu la pagina 199).

[64] ARM. Cortex-M3 Devices Generic User Guide - HardFault Status Register. http :
/ /infocenter .arm.com/help/index . jsp?topic=/com.arm. doc.
dui0553a/Cihdjcfc.html (vegeu la pagina 199).

[65] Debug a HardFault. https://www.silabs.com/community/mcu/32-bit/
knowledge-base.entry.html/2014/05/26/debug_a_hardfault-78gc
(vegeu la pagina 199).

[66] ST. Description of STM32F4 HAL and LL drivers - UM1725. https://www.st .com/
resource/en/user_manual/dm00105879.pdf (vegeu la pagina 204).

[67] ST.STM32L011x3 STM32L011x4 Datasheet. https://www.st.com/resource/
en/datasheet/stm321011d4.pdf. ST (vegeu la pagina 206).

[68] ST.AN4865 - Low-power timer (LPTIM) applicative use-cases on STM32 MCUs. https:
//www.st.com/resource/en/application_note/dm00290631 . pdf
(vegeu la pagina 208).

[69] NXP. LPTMR - Low Power Timer. https://community .nxp.com/docs/DOC-
99954 (vegeu la pagina 208).

[70] FreeRTOS. FreeRTOS Homepage - Low Power Support. https://www. freertos.
org/low-power—-tickless-rtos.html (vegeu la pagina 209).

[71] Doxygen. Doxygen documention. http://www.stack.nl/~dimitri/doxygen/
manual/docblocks.html (vegeu la pagina 211).

[72] GitHub. GitHub pages. https://pages.github.com/ (vegeu la pagina 212).

[73] ARM Ltd. CMSIS-CORE support for Cortex-M processor-based devices. http : / /
arm-software.github.io0/CMSIS_5/Core/html/index.html (vegeu la
pagina 215).

https://www.freertos.org/RTOS-Cortex-M3-M4.html
https://www.freertos.org/RTOS-Cortex-M3-M4.html
%5Curl%7B//ca.wikipedia.org/w/index.php?title=Aut%C3%B2mat_finit&oldid=19686277%7D
%5Curl%7B//ca.wikipedia.org/w/index.php?title=Aut%C3%B2mat_finit&oldid=19686277%7D
https://en.wikipedia.org/w/index.php?title=Extended_finite-state_machine&oldid=711433361
https://en.wikipedia.org/w/index.php?title=Extended_finite-state_machine&oldid=711433361
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__emdrv.html
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__emdrv.html
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__RTCDRV.html
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32tg/html/group__RTCDRV.html
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32g/html/group__SLEEP.html
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32g/html/group__SLEEP.html
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt209.pdf
https://blog.feabhas.com/2013/02/developing-a-generic-hard-fault-handler-for-arm-cortex-m3cortex-m4/
https://blog.feabhas.com/2013/02/developing-a-generic-hard-fault-handler-for-arm-cortex-m3cortex-m4/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/Cihdjcfc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/Cihdjcfc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/Cihdjcfc.html
https://www.silabs.com/community/mcu/32-bit/knowledge-base.entry.html/2014/05/26/debug_a_hardfault-78gc
https://www.silabs.com/community/mcu/32-bit/knowledge-base.entry.html/2014/05/26/debug_a_hardfault-78gc
https://www.st.com/resource/en/user_manual/dm00105879.pdf
https://www.st.com/resource/en/user_manual/dm00105879.pdf
https://www.st.com/resource/en/datasheet/stm32l011d4.pdf
https://www.st.com/resource/en/datasheet/stm32l011d4.pdf
https://www.st.com/resource/en/application_note/dm00290631.pdf
https://www.st.com/resource/en/application_note/dm00290631.pdf
https://community.nxp.com/docs/DOC-99954
https://community.nxp.com/docs/DOC-99954
https://www.freertos.org/low-power-tickless-rtos.html
https://www.freertos.org/low-power-tickless-rtos.html
http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html
http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html
https://pages.github.com/
http://arm-software.github.io/CMSIS_5/Core/html/index.html
http://arm-software.github.io/CMSIS_5/Core/html/index.html

283

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[88]

[89]

[90]

[91]

[92]

ARM Ltd. CMSIS DSP Software Library. http://arm-software.github.io/
CMSIS_5/DSP/html/index.html (vegeu la pagina 216).

Silicon Labs. AN0051: Digital Signal Processing with the EFM32. https : / /www .
silabs . com/documents /public/application—-notes/ANO0O051 . pdf
(vegeu les pagines 216, 221).

ARM Ltd. CMSIS-RTOS?2 Real-Time Operating System: API and RTX Reference Implemen-
tation. http://arm-software.github.io/CMSIS_5/RT0OS2/html/index.
html (vegeu la pagina 216).

ST. Developing Applications on STM32Cube with RTOS - UM1722. https://www.st.
com/resource/en/user_manual/dm00105262.pdf (vegeu la pagina 216).

Keil. Keil RTX. http://www.keil.com/pack/doc/CMSIS/RTOS2/html/
rtx5_1impl.html (vegeu la pagina 216).

ARM Ltd. CMSIS-DAP Interface Firmware for CoreSight Debug Access Port. http :
//arm-software.github.io/CMSIS_5/DAP/html/index.html (vegeu la
pagina 216).

Vikas Chandra Liangzhen Lai Naveen Suda. CMSIS-NN: Efficient Neural Network Kernels
for Arm Cortex-M CPUs. https://arxiv.org/abs/1801.06601 (vegeu la
pagina 216).

ARM Ltd. CMSIS NN Software Library. http://arm-software.github.io/
CMSIS_5/NN/html/index.html (vegeu la pagina 216).

Gerard Holzmann. The Power of 10: Rules for Developing Safety-Critical Code. https:
//www.researchgate.net/publication/220477862_The_Power_of_
10_Rules_for_Developing_Safety—-Critical_ Code. 2006. DOI: DOT :
10.1109/MC.2006.212 (vegeu la pagina 217).

Jet Propulsion Laboratory - California Institute of Technology. JPL Institutional Coding
Standard for the C Programming Language. https://lars-1lab. jpl.nasa.gov/
JPL_Coding_Standard_C.pdf. 2009 (vegeu les pagines 217, 219).

HORIBA MIRA Ltd. MISRA C. https://www.misra.org.uk/Activities/
MISRAC/tabid/171/Default.aspx (vegeu les pagines 217, 218).

Michael Barr. Embedded C Coding Starndard. https://barrgroup.com/Embedded-
Systems/Books/Embedded-C-Coding-Standard. 2013 (vegeu les pagines 217,
218).

HORIBA MIRA Ltd. MISRA C: 2012 Amendment I. https://misra.org.uk (vegeu
la pagina 218).

Jet Propulsion Laboratory. Laboratory for Reliable Software (LaRS). https://lars—
lab. jpl.nasa.gov/ (vegeu la pagina 219).

Barr Group. How to Get Started with C++ in Embedded Systems. https://barrgroup.
com/Embedded-Systems/How—To/Getting-Started-With-Cplusplus
(vegeu la pagina 223).

Alan Dorfmeyer i Pat Baird. Interrupts in C++. https://www . embedded . com/
design/prototyping—and-development /4023817 /Interrupts—in—-C-
(vegeu la pagina 227).

Bill Gatliff. Implementing Interrupt Service Routines in C++. http://www.drdobbs.
com/implementing-interrupt-service-routines/184401485?pgno=
3 (vegeu la pagina 227).

http://arm-software.github.io/CMSIS_5/DSP/html/index.html
http://arm-software.github.io/CMSIS_5/DSP/html/index.html
https://www.silabs.com/documents/public/application-notes/AN0051.pdf
https://www.silabs.com/documents/public/application-notes/AN0051.pdf
http://arm-software.github.io/CMSIS_5/RTOS2/html/index.html
http://arm-software.github.io/CMSIS_5/RTOS2/html/index.html
https://www.st.com/resource/en/user_manual/dm00105262.pdf
https://www.st.com/resource/en/user_manual/dm00105262.pdf
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html
http://arm-software.github.io/CMSIS_5/DAP/html/index.html
http://arm-software.github.io/CMSIS_5/DAP/html/index.html
https://arxiv.org/abs/1801.06601
http://arm-software.github.io/CMSIS_5/NN/html/index.html
http://arm-software.github.io/CMSIS_5/NN/html/index.html
https://www.researchgate.net/publication/220477862_The_Power_of_10_Rules_for_Developing_Safety-Critical_Code
https://www.researchgate.net/publication/220477862_The_Power_of_10_Rules_for_Developing_Safety-Critical_Code
https://www.researchgate.net/publication/220477862_The_Power_of_10_Rules_for_Developing_Safety-Critical_Code
https://doi.org/DOI: 10.1109/MC.2006.212
https://doi.org/DOI: 10.1109/MC.2006.212
https://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
https://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
https://www.misra.org.uk/Activities/MISRAC/tabid/171/Default.aspx
https://www.misra.org.uk/Activities/MISRAC/tabid/171/Default.aspx
https://barrgroup.com/Embedded-Systems/Books/Embedded-C-Coding-Standard
https://barrgroup.com/Embedded-Systems/Books/Embedded-C-Coding-Standard
https://misra.org.uk
https://lars-lab.jpl.nasa.gov/
https://lars-lab.jpl.nasa.gov/
https://barrgroup.com/Embedded-Systems/How-To/Getting-Started-With-Cplusplus
https://barrgroup.com/Embedded-Systems/How-To/Getting-Started-With-Cplusplus
https://www.embedded.com/design/prototyping-and-development/4023817/Interrupts-in-C-
https://www.embedded.com/design/prototyping-and-development/4023817/Interrupts-in-C-
http://www.drdobbs.com/implementing-interrupt-service-routines/184401485?pgno=3
http://www.drdobbs.com/implementing-interrupt-service-routines/184401485?pgno=3
http://www.drdobbs.com/implementing-interrupt-service-routines/184401485?pgno=3

284

[93] Silicon Labs. User Manual Start Kit EFM32TG-STK3300 (vegeu la pagina 232).

[94] Silicon Labs. EFM32TG Data Sheet. https://www.silabs.com/documents/
public/data-sheets/efm32tg—datasheet . pdf. Silicon Labs (vegeu les
pagines 233, 234).

[95] Silicon Labs. EFM32ZG Datasheet. https://www.silabs.com/documents/
public/data - sheets/efm32zg-datasheet . pdf. Silicon Labs (vegeu la
pagina 233).

[96] Silicon Labs. EFM32HG Datasheet. https://www.silabs.com/documents/
public/data - sheets/efm32hg-datasheet . pdf. Silicon Labs (vegeu la
pagina 233).

[97] Viquipedia. IEEE 754 — Viguipédia, ’enciclopedia lliure. [Internet; decarregat 11-July-
2020]. 2020. URL: //ca.wikipedia.org/w/index.php?title=IEEE_754¢&
01did=24054533 (vegeu la pagina 239).

[98] ARM. ARM Cortex-M7 Processor Technical Reference Manual. https://static.

docs .arm.com/ddi0489 /£ /DDI0489F_cortex_m7_trm.pdf (vegeu la
pagina 242).

[100] Michael Barr. Introduction to Rate Monotonic Scheduling. https : / /barrgroup .
com/Embedded - Systems /How—To/RMA—-Rate-Monotonic-Algorithm
(vegeu la pagina 257).

[102] A. Gosavi. Queuing Formulas. http://web .mst .edu/~gosavia/queuing_
formulas.pdf (vegeu la pagina 259).

[103] Ivo Adan. The M/M/I system. http://www.win.tue.nl/~iadan/que/h4.pdf
(vegeu la pagina 259).

[104] Wikipedia contributors. M/M/1 queue — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=M/M/1_queue&oldid=819613747.
[Online; accessed 27-July-2018]. 2018 (vegeu la pagina 259).

[105] David Kalinsky. How to size message queues. https : / /www . embedded . com/
design/other /4024545 /How-to—-size-message—queues (vegeu la pagi-
na 259).

[106] Jack Ganssle. My favorite software debouncers. https ://www .embedded . com/
electronics-blogs/break-points/4024981/My-favorite-software-
debouncers (vegeu la pagina 263).

[107] David B. Stewart. How to Choose A Sensible Sampling Rate. https://www.embedded.
com/design/configurable—-systems /4006414 /How—-to—-Choose—-A-
Sensible-Sampling-Rate (vegeu la pagina 263).

Llibres

[3] Jon Wilson, editor. Sensor Technology Handbook. Elsevier Inc., 2004. ISBN: 9780750677295
(vegeu la pagina 14).
[17] K.C.Wang. Embedded and Real-Time Operating Systems. Springer, 2017. ISBN: 9783319515168.
DOIL: https://doi.org/10.1007/978-3-319-51517-5 (vegeu la pagina 20).

[22] Trevor Martin. The Designer’s Guide to the Cortex-M Processor Family. Volum Second
edition. Newnes, 2016. 1SBN: 9780081006290 (vegeu les pagines 20, 199, 221).

https://www.silabs.com/documents/public/data-sheets/efm32tg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32tg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32zg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32zg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32hg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32hg-datasheet.pdf
//ca.wikipedia.org/w/index.php?title=IEEE_754&oldid=24054533
//ca.wikipedia.org/w/index.php?title=IEEE_754&oldid=24054533
https://static.docs.arm.com/ddi0489/f/DDI0489F_cortex_m7_trm.pdf
https://static.docs.arm.com/ddi0489/f/DDI0489F_cortex_m7_trm.pdf
https://barrgroup.com/Embedded-Systems/How-To/RMA-Rate-Monotonic-Algorithm
https://barrgroup.com/Embedded-Systems/How-To/RMA-Rate-Monotonic-Algorithm
http://web.mst.edu/~gosavia/queuing_formulas.pdf
http://web.mst.edu/~gosavia/queuing_formulas.pdf
http://www.win.tue.nl/~iadan/que/h4.pdf
https://en.wikipedia.org/w/index.php?title=M/M/1_queue&oldid=819613747
https://en.wikipedia.org/w/index.php?title=M/M/1_queue&oldid=819613747
https://www.embedded.com/design/other/4024545/How-to-size-message-queues
https://www.embedded.com/design/other/4024545/How-to-size-message-queues
https://www.embedded.com/electronics-blogs/break-points/4024981/My-favorite-software-debouncers
https://www.embedded.com/electronics-blogs/break-points/4024981/My-favorite-software-debouncers
https://www.embedded.com/electronics-blogs/break-points/4024981/My-favorite-software-debouncers
https://www.embedded.com/design/configurable-systems/4006414/How-to-Choose-A-Sensible-Sampling-Rate
https://www.embedded.com/design/configurable-systems/4006414/How-to-Choose-A-Sensible-Sampling-Rate
https://www.embedded.com/design/configurable-systems/4006414/How-to-Choose-A-Sensible-Sampling-Rate
https://doi.org/https://doi.org/10.1007/978-3-319-51517-5

285

[23]

[53]

[54]

[61]

[86]

[87]

[99]

[101]

Joseph Yiu. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors.
Volum Third edition. Newnes, 2013. ISBN: 9780124080829 (vegeu les pagines 22, 38, 221).

Jack Ganssle i Michael Barr. Embedded Systems Dictionary. CMPBooks, 2003. I1SBN:
1578201209 (vegeu la pagina 143).

Michael Barr i Anthony Massa. Programming Embedded Systems. second edition. O’Reilly,
2007. 1SBN: 980596009830 (vegeu la pagina 143).

ARM System Developer’s Guide. The Morgan Kaufmann Series in Computer Architecture
and Design. Burlington: Morgan Kaufmann, 2004. ISBN: 978-1-55860-874-0. DOI: https :
//doi.org/10.1016/B978-155860874-0/50022-8 (vegeu la pagina 199).

C and C++ Coding Standards. ESA Board for Software Standardisation i Control, 2001
(vegeu la pagina 217).

MISRA C:2012. MIRA Limited, mar¢ de 2013. 1SBN: 9781906400118 (vegeu la pagi-
na 218).

Jiacung Wang. Real-Time Embedded Systems. Wiley, 2017. 1SBN: 9781118116173 (vegeu
la pagina 255).

Peter Marwedel. Embedded System Design. Springer, 2006. ISBN: 9781402076909 (vegeu
la pagina 257).

https://doi.org/https://doi.org/10.1016/B978-155860874-0/50022-8
https://doi.org/https://doi.org/10.1016/B978-155860874-0/50022-8

Aquesta pagina esta en blanc expressament, tot va bé.

(Glossqri

ARM
Empresa anglesa que dissenya i comercialitza arquitectures de processadors i eines associades
19, 25, 221

Buffer circular
Estructura de dades que utilitza un sol buffer i que es pot accedir-ho de forma circular 8688,
98, 99, 159

Callback
Funcié que es crida en quan acaba un procés 96, 98, 192
CMSIS
Cortex Microcontroller Software Interface Standard 215
Cortex
Arquitectura de microcontroladors de la companyia ARM 19, 20
CP2102
Dispositiu conversor de USB a série, forca utilitzat per comunicar microcontroladors amb
ordinadors a través del port USB 85, 86
CPU
Central Processor Unit Unitat central de procés, part que fa tot el comput i maneig de dades
dins un processador 19, 54

Dead-lock
Situacio en que dues o més tasques estan bloquejades esperant-se una a ’altra 69

Duty cycle
Cicle de treball, és la relacio que existeix entre el temp que un senyal esta a ’1’ i el periode
d’aquest senyal 61-63, 118, 120, 122, 163

Flag
Un flag és un bit que indica algun valor determinat d’un dispositiu o dada 48, 50, 53, 80

288 Glossari

FLASH

Memoria no-volatil de gran capacitat i baix consum 14, 34, 93, 101, 102, 223, 232, 267
FreeRTOS

Sistema Operatiu de Temps Real de codi obert i lliure 127, 130, 163
FW

Firmware, Aquell software guardat i executat en un microcontrolador 41, 69, 231-233

GCC
GNU C Compiler], Compilador de C de GNU 25

Layout
Dibuix final de com queda la PCB a dissenyar 232

Macro
Tros de codi que té assignat un nom, de manera que cada cop que s’inserta el nom es canvia
pel codi definit previament 267

Memory mapped
Assignar una posicié de memoria a un component HW per facilitar el seu accés 22

Open drain
Tipus de sortida que només pot forcar un valor de ’0’, per tant li cal un pull-up per funcionar
correctament 121

PCB
Printed Circuit Board Placa de circuit impres on es solden els components Hardware 14, 16,
90, 224, 231, 233
PLC
Programmable logic controller, automats industrials 20
Pull-down
Resisteéncia connectada a terra per forgar un valor d”’0’ a una linia o bus 42
Pull-up
Resistencia connectada a alimentacié per forcar un valor d”1’ a una linia o bus 41, 90, 121,
288
PWM
Pulse Width Modulation 52, 61-63, 117, 118, 120, 122, 163, 208

Race condition
Error provocat per I’exeucud simultanea de dues o més tasques 145, 149

Stack

Regié de memoria on emmagatzemar dades propies d’una tasca 130, 137, 199
Systick

Timer integrat dins els cores Cortex-M 38

Task
Funcié que implementa un procés de SO juntament amb 1’ stack corresponent 127
Tick
Esdeveniment periodic per a que el Sistema Operatiu prengui el controll de I’execuci6 131
Timer
Comptador segons un rellotge que genera una interrupcié quan arriba a un cert valor configu-
rable 51, 57, 61

Glossari 289

Watchdog

Periféric que reinicia el sistema si no s’hi accdeix periodicament 69
Wrapper

Tros de codi que embolcalla un altre per donar-li una interficie comuna 216

Aquesta pagina esta en blanc expressament, tot va bé.

(Acrbnims

ADC
Analog to Digital Converter 14, 75-77, 79, 89, 93, 127, 183, 206, 296
API
Application programming interface 215
ASIC
Application Specific Integrated Circtuit (circuit integrat d’aplicacio especifica) 19

bps
Bits per segon 85
BSP
Board Support Package 43, 232

CAN
Controller area network 109, 215

DAC
Digital to Analog Converter 79, 82, 89
DMA
Direct Memory Access 95, 96, 98, 109
DSP
Digital Signal Processor (Processador Digital de Senyal) 19, 216, 221

EFSM

Extended finite state machine 181
ESA

European Space Agency 217

FPGA
Field Programmable Gate Array 19

292 Acronims

FSM
Finite state machine 180, 195

GPIO
General Purpouse Input/Output 22, 31, 41, 42, 47, 225, 264

12C
Inter-Integrated Circuit 58, 59, 89, 90, 92, 93, 118, 150, 165

IDE
Integrated development environment, Enforn integrat de desenvolupament 16, 31

IRQ
Interrupt request, Peticio d’interrupcio 47, 48, 50, 53, 75, 87, 88, 98, 99, 110, 121, 128, 132,
206, 207, 209, 231

ISR
Interrupt Service Routine, Rutina de servei d’interrupcio 47, 48, 50, 53, 58, 62, 70, 80, 82,
86-88, 99, 101, 110, 121, 122, 128, 132, 135, 144-146, 153, 154, 159, 178, 199, 227, 264,
301

LCD

Liquid Crystal Display Pantalla de Cristall Liquid 109
LED

Light Emission Diode 14, 53, 122, 146, 224

MAC

Multiply and Accumulate Instruccié de multiplicar i acumular 221
MCI

Memory Card Interface 216
MCU

MicroController Unit 16
MII

Media-independent interface 109
MISO

Master Input Slave Output, Entrada al Master Sortida de 1’Esclau 93
MOSI

Master Output Slave Input, Sortida del Master Entrada a I’Esclau 93

NXP
NXP Semiconductors 20

0S
Operating System, Sistema Operatiu 127, 143

pdFALSE

Valor logic “Fals” definit a FreeRTOS 146, 149
pdTRUE

Valor 1ogic “Cert” definit a FreeRTOS 146, 149
PRS

Peripheral Reflex System 110

RAM
Random Access Memory 14, 16, 19, 232

Acronims 293

ROM
Read-Only Memory 16, 19, 101
RTC
Real Time Clock 52, 58
RTOS
Real-Time Operating System, Sistema Operatiu de Temps Real 29, 127, 130, 163, 166, 205,
216, 259
RTTI
Run-time type information Informacio de tipus en temps d’execucio 224

SAI

Serial Audio Interface 216
SCL

Serial Clock Line (I2C) 89, 90
SCLK

Serial Clock, Relloge Master 93
SDA

Serial Data (I12C) 89, 90
SDIO

Secure Digital Input Output 109
SilLabs

Silicon Labs 20
SIMD

Single Instruction, Multiple Data Unica instruccid, Miiltiples dades 221
SPI

Serial Peripheral Interface 89, 93
SS

Slave Select, Seleccio d’Esclau 93
ST

STMicroelectronics 20

TI
Texas Instruments 20

UART

Universal Asynchronous Receiver-Transmitter 85, 227
USART

Universal Synchronous and Synchronous Receiver-Transmitter 85, 86
USB

Universal Serial Bus 85, 86

vdd
Voltatge d’alimentacio 76, 82

Aquesta pagina esta en blanc expressament, tot va bé.

2.1
22
23
24
2.5

3.1
4.1

6.1
6.2

7.1
8.1
9.1

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8

Fotografia de la placa de desenvolupament de SiliconlLabs 15
Cables AupOoNT .. 15
Aspecte del IDE Simplicity Studio™de SiliconLabs 17
Raspberry Pi amb un processador Cortex-A 21
Diferents microcontrolador Cortex-MOiM3 i 21
Placa Freescale FRDM-KL25Z amb un Cortex-MO+ 21
Mapa de memoriad'un Cortex-M3 e 23
Registres de la Dl a usar al'exemple (24, pdgina24) 23
Captura de pantadlla de la Consola del Simplicity Studio 32
Opcid a Simplicity per activar el punt flotant al printf() 35
Esquematic mostrant un LED connectataunpinde GPIO 42
Esquemadtic amb resistencies de pull-ups 42
Vectors d'interrupCio o 49
Diagrama de sequéncia de I'exemple Timer_2 55
Registres del RTC de STM32 (32) oo oo e 57
Generacié de PWM amb un timer (24, pagina262) vvvii v 62
PWMamb Duty Cycle al 16% ... o e e 63
PWMamb Duty Cycle al80% e e 64
PWMamb Duty Cycle al83.3% e e 64
PWMamb Duty Cycle al TO0% oo e e 65
Fotografia del servomotor Parallaxusat 66
PWM per situar el servomotora0° ... 67

PWM per situar el servomotora 180° i 68

296 INDEX DE FIGURES
11.1 Funcionament del em Watchdog (36) it 70
12.1 Esquemdtic de la connexid del Potenciometre al canald’ADC 77
12.2 Fotografia del sistema amb el connexitat correcte 77
13.1 Senyal capturat per I'osCil-losCopi.o i 83
13.2 Detall del senyal capturat perl'oscillloscopio v oo oo 84
14.1 Connexid del CP2102 ala placade prototipat 87
15,1 Esquema d'unbusl2CHipIC oo 90
16.1 BUSSPItIDIC ... 94
19.1 Consoladel'exemple AES_T 107
19.2 Web per desxifrar el text xifrat de I'exemple AES_1 107
22,1 Estafspossibles d'unatasca ... 129
22.2 Diagrama de sequéenciade duestasques 133
22.3 Diagrama de sequéncia de dues tasquescorrecte 134
24.1 Consola amb la sortida de I'exemple FreeRTOS Delay 141
24.2 Captura de I'oscil-loscopi de I'exemple viaskDelayUntilQ) 142
25.1 Diagrama de sequéencia de I'exemple amb semafors 144
25.2 Diagrama de sequénciade l'exempledecues 146
25.3 Temps de respostausant semafors e e 156
25.4 Temps de resposta usant notificacid atasca 156
25,5 Temps de resposta usant groups de notificacié 157
31.1 FSMperl'exemple GPIO_T 180
31.2 FSMd'untermostatsenzill 183
33.1 Debugger aturat a la instruccié DEBUG_BREAK i el dump els registres 201
33.2 Codi assemblador a la posicié de memdria indicada pel registre PC 202
34.1 Shadow registers del periferic RTC dels STM32 (30, pdgina 800) 204
35.1 Captura de les mesures de temps amb I'analitzador ldgic 207
36.1 Comentariperdoxygendinsuncodi i 212
36.2 Botons de Simplicity, I'arroba blava permet executar Doxygen 212
36.3 Configuracié de Doxygen dins de Simplicity 213
36.4 Pagina web de documentacio vista dins de Simplicity Studio 213
39.1 Configuracié del Simplicity Studio afegint-hi la biblioteca CMSIS-DSP 222
40.1 Configuracioé Simplicity Studio per deshabilitar RTTl i les excepcions 224
41.1 Pinout pels microcontroladors o e 234
42.1 ResetHandler per Cortex-M e 235
422 Configuracié del Debugger 236
42.3 Copiadelaseccié .bssalamemoriaRAM 237
42.4 Inicialitzacié del registre d’stack (Stack Pointer) 237
42,5 Inicidlifzacid delaseccid .bss 237

INDEX DE FIGURES 297

42.6
51.1

53.1
53.2
53.3

Cridaalafuncié _initQifuncio mainQ)t 238
Diagrama de sequéncia de I'exemple de debounce 265
Disposicid de I'estructuraalamemoriao i, 270
Disposicid de I'estructura empaquetada alamemoria 271

Detall de la finestra de memory dump a Simplicity Studio 273

Aquesta pagina esta en blanc expressament, tot va bé.

Ondex de llistats

2.1 AccedintamemoriaenC 23
2.2 Exemple de definici6 d’estructura per accedir a memoria 24
2.3 Declaraci6 d’una variable d’accés a la memoria estructurada 24
2.4 Usdelestructura d’accés oo vt 24
2.5 Codi velocitat d’un microcontrolador L Lo 26
4.1 Funcié_write() e 33
42 Redefenirprintf() 34
5.1 Exemple de configuraci6 del rellotge pel RTC, 38
5.2 Configuracié del Systick 38
5.3 ISRdel Systick e 39
5.4 Funci6 delay() amb Systick 39
6.1 Codid’exemplede GPIO 43
6.2 Codideconfiguracid d’unpin L 43
6.3 Codi amb la nova configuraciédel pin 44
6.4 Exemplede BSPsenzill 44
6.5 Manipulant un bit concret d’una variable oo 45
7.1 Exemple ’ISRperGPIO 48
7.2 Exemple ’ISRper AVR 50
7.3 Exemple d’ISRper AVR 50
8.1 Codidexempled’dsd’unTimer 52
8.2 Codi per comprovar si el Timer ha arribatacertvalor 53
8.3 Codi corresponent a ’activacié de les IRQs del Timer 53
84 ISRdelTimer e 54
8.5 ISR del GPIO per 'exemple del Timer 54
9.1 Imicialitzacio del RTC 58
92 ISRdAelRTC 58
10.1 Configuraci6 del Timer per I'exemple PWM 62

10.2 Configuraci6 del Timer per 'exemple PWM 62

300 INDEX DE FIGURES
10.3 Funci6 que calcula els counts donat els graus que es vol del servomotor 67
10.4 ISR del bot6 que incrementa la rotacié del servomotor 68
11.1 ISR del bot6 que alimenta el Watchdog 70
11.2 Codi per detectar lacausadel reinici 71
12.1 Codidelecturade TADC 76
13.1 Inicialitzacioé del DAC 80
13.2 Bucleinfinitdel DAC 80
13.3 Part de la ISR del Timer per generar ladadapel DAC 83
14.1 ISRsde TXiRXdelaUART 86
142 Exemple ISR avangada 88
14.3 Exemple ISR avancada 88
144 Funcidmain e e e e e 88
15.1 Initialitzacié dels pinsper 'I2C 91
15.2 Inicialitzacié del periferic I2C oL oo 91
15.3 Funci6 I2C_ReadRegister 91
154 Funcid testI2C() e 92
17.1 Inicialitzacid del DMA 96
17.2 Definici6 de la variable dmaControlBlock 96
17.3 Configuracid del canal DMA L 96
17.4 Callback del DMA DmaComplete() 97
17.5 Parametres de configuracio delDMA 97
17.6 Activaci6 de la transferencia DMA oo oo 97
17.7 Comparacié6 dels dos buffers de I’'exemple DMA 98
17.8 Diferencies a la inicialitzaci6 del DMA 98
17.9 Funci6é sendUARTbyDMA() it 99
17.10Funcié main() de 'exemple 99
18.1 Estructura per guardar-sealaFLASH, 102
18.2 Funcions peraccedirala FLASH 102
19.1 Clauitextaxifrar e 106
19.2 Operacid de xifratge e 106
19.3 Operacié de xifratge e 106
20.1 Configuraci6 del Timer i Uinput capture 111
20.2 Configuraci6 del GPIO per generarunsenyal PRS 111
203 ISRdel Timer o . L e 112
20.4 Configuraci6 de I’ADC perque funcioniambel PRS 112
20.5 Configuraci6 del TimerO perque funcioniambel PRS 113
20.6 Configuracié del DMA per obtenir dadesde ’ADC 113
20.7 Configuracié del DMA per obtenir dadesde 'ADC 114
20.8 Configuraci6 del DAC perque funcioni ambelPRS 114
20.9 Configuracié del PRSiel Timer 115
20.10Configuraci6é del PRSiel Timer 115
20.11ISR del botd 1 L . o o 116
21.1 Partde la funcié I2C_WriteRegister 118
21.2 Funci6 PWM_Set() e 118
21.3 Funcié APDS_9960_InitProximity() 119
21.4 Funci6é APDS_9960_ReadProximity() 119
21.5 Funcidprincipal oL 120
21.6 Nova funcié d’initialitzacié del APDS_9960 122
21.7 Habilitar I’interrupci6 del pin corresponent 122

INDEX DE FIGURES 301

21.8 ISRambelflag e 122
21.9 Funcio6 principal amb suport d’interrupcions 123
22.1 Esqueletd’unatasca 130
222 CodiISRd’exemple 132
23.1 Tasca TaskLedToggle per FreeRTOS 137
23.2 Main HelloWorld per FreeRTOS 138
24.1 Tasca de ’exemple FreeRTOS_BlinkTask 139
24.2 Tasca de I’exemple FreeRTOS_Delay, 142
25.1 Tasca amb semaford’exemple 144
252 ISRdelbotd 0 o 145
253 Partdelcodid’unadelesISRs L 146
25.4 Part principal de la tasca TaskLedToggle 147
255 Creacidéd’unacuao e 147
25.6 Paquetdinsd’estructural 147
25.7 Creaci6 de lacuaambun paquetdedades 148
25.8 Rebre un paquetde dadesdelacua Lo 148
259 Exempled’isdemacrosenC Lo 149
25.10Sortida de la consola sense Mutexo 149
25.11Sortidade laconsolaamb Mutex L oo 149
25.12Tasca esperant per un grup d’esdeveniments 151
25.13ISR notificant un esdeveniment aun grup e 151
25.14Tasca esperant un grup d’esdeveniments (OR) 152
25.15Creacié del conjuntdecues 153
25.16Tasca que fa servirel conjuntdecues. 153
25.17Tasca que espera la notificacié L o 154
25.18Tasca que espera lanotificacié 155
26.1 ISR de RX de la UART amb FreeRTOS 159
26.2 ISR de TX de la UART amb FreeRTOS 160
26.3 funcié UART _Send() per FreeRTOS 160
26.4 Tascaprincipalde 'exemple 160
27.1 TascaReadSensor e 164
272 TascaMngData e 164
273 Creacid de tasques v it e e e e e e e 164
27.4 Part de la funcié I12C_WriteRegister() adaptada a FreeRTOS 165
28.1 Codi d’exemple de la tasca de control del watchdog 168
29.1 Inicialitzaci6 del wrapper I2CambMutex 170
29.2 Modificacions a les funcions wrapper 2CambMutex 171
29.3 Afegint més dades a 1 *estructura del wrapper I2C amb mutex 172
31.1 funcid main() d’Arduino 180
31.2 Codid’exemplede GPIO 181
31.3 Codid’exemplede GPIO 182
31.4 funciéd ADCGetValue() e e 184
31.5 funcié getTemperature() o 0 e 184
31.6 Codide la FSM per un termostatsenzill 185
31.7 Estructurabasicad’'una FSM Lo 186
31.8 Codi de termostat amb I’estructura basicad’una FSM 187
31.9 Funcié de loop amb multiples FSMs 188
31.10Estructura basica d’un kernel per multiples FSMs 189

32.1 FSMamb control del temps L 192

302 INDEX DE FIGURES
32.2 Estructura basica de les tasques programades 193
32.3 Estructura basica de la funcié Executa_kernel) 193
32.4 Estructura basica de la funcié Executa_tasca() 194
33.1 Codi HardFault Handler s 200
33.2 Codi HardFault_Handler (continuacidé) 200
35.1 Bucle principal amb funcions de baix consum 207
35.2 Exemple usde LETIMER 208
40.1 Partdelcodidelaclasse LED 225
40.2 Partdelcodidelaclasse LED 226
40.3 Usdel’operador <<delaclasse UART 227
40.4 Implementacié de I’operador << per la classe UART 228
40.5 Implementacié delesISRsenC++ 228
40.6 Part del fitxer UART.cpp de I’exemple d’us del driver en C++ per la UART 229
431 funcidmulf() 239
432 funciomuld() 240
43.3 codi assembladorde la funciémulf.c L. 240
43.4 codi assemblador de la funcié mulf.cusant FPU 241
43.5 codi assembladorde la funciémuld.c. L. 241
43.6 codi assemblador de la funcié muld.c usant FPU de Cortex-M7 242
51.1 ISR del timer per ferdebouncingo 264
51.2 Codi per engegar el timer alaISRdel GPIO 264
52.1 Diferents implementacionsde printf() L. 268
53.1 Estructurad’exemple 269
53.2 Estructura d’exemple empaquetada Lo 270
53.3 Mostrant una estructura byte abyteo e e 272

(Index de funcions

2P 44
PP 44
_eabi_dmul()..............i 240
_eabi_fmul()............ 240
__libc_init_array()cooviiian... 236
start() . 25,236
CWIIte() e 33
e 44
ADC_DataSingleGet().......... 76, 183, 207
ADC_InitSingle()...........cooviina... 112
ADC_Start() . ..oovveeiiiinnnn.. 76, 183, 207
ADCGetValue() 183
AES_DecryptKey128()................. 106
AES_ECBI128() ..o 106
any_IRQHandler()..................... 132
APDS_9960_InitProximity() 118, 163
APDS_9960_InitProximity_IRQ()....... 121
APDS_9960_ReadProximity() . 118, 120, 122,
163
AvailableData() 87, 88,99

BSP_Init()...........c.oooiitt 117, 144

-

—
-
- -

calc_values() 186
check_buffers_copy().................... 97
CircularBufferclass.................... 227
CMU_ClockDivSet()............ 37,58, 208
CMU_ClockEnable().......... 37,42,79, 90
CMU_ClockFreqGet()...........covvn... 38
CMU_ClockSelectSet().......... 37,58, 208
DAC_ChannelOutputSet()............ 80, 82
DAC_INit() .. 79
DAC_InitChannel()................. 79, 112
DAC_PrescaleCalc() ..o, 79
DEBUG_BREAK...................... 202
degrees_to_pwm()c.oiiiii... 66
Delay() ..coovvii 38
DMA_ActivateAuto()ooiiiiin... 96
DMA _ActivateBasic().......... 98, 112, 115
DMA_CfgChannel() 96,112, 115
DMA_CfgDescr().............. 96, 112, 115
DMA _ChannelEnabled() 98
DMA_Init() ...ooviieiiiiii e 96
DmaComplete(). ..., 97
EMU_EnterEMIQ)................. 110, 207

304 INDEX DE FUNCIONS
EMU_EnterEM3() ...t 208 LETIMER_IntClear() 208
LETIMER_IntGet().................... 208
L0OP() e e 186
Flash_Read().......................... 102
Flash_Write()o i, 102
PO e 202 main()............. 25, 26, 29, 44, 52, 54, 80,
free() oo 247 99, 120, 122, 137, 144, 146, 159, 163,
186, 192, 207, 208, 227
malloc() ... 247
1007531013 101 0] () 218
getTemperature() 183 MngData_task() 163
GPIO_EVEN_IRQHandler()48, 54, 66, 70, 79, MSC_ErasePage()oovvenenn... 102
122,144,264 MSC_WriteWord(). 102
GPIO_InputSenseSet() HO muld(). o 239
GPIO_IntClear()............. 48,54,70, 122 mulf() ... 239
GPIO_IntConfig().............. 47,110, 121y DMA_Init() ... 98
GPIO_IntGet() 48,54,70,122 1y HardFault_Handler()............... 199
GPIO_ODD_IRQHandler() 79
GPIO_PinInGet()................... 52,264
GPIO_PinModeSet()........ 43,90, 110, 121
GPIO_PinOutClear()................. 43,48 next_estate() ... 186
GPIO_PinOutSet() 43 NVIC_ClearPendingIRQ()............... 58
GPIO_PinOutToggle()........... 52, 58,208 NVIC_EnableIRQ() 47, 53, 58, 110, 121, 215
HardFault Handler()................... 199 OneTask()........ccovviiiiiiiiit, 130
RC_Init().............................. 90 pdMS_TO_TICKSQ............... 137, 139
I2C_initialize.......................... 165 PopData(). ...l 87,99
I12C_initialize()coovviiiiiiiia 171 portYIELD_FROM_ISR() 132, 144, 146, 150,
I12C_ReadRegister()......... 90, 92, 118, 165 159
I2C_Transfer() 90,92, 118, 165 PRINTFQ)oooiii . 34
12C_TransferInit().......... 90,92, 118, 165 printf() 33, 34, 80, 163, 267
I2C_WriteRegister() 118, 121, 165 printf_char().............. 267
ITM_SendChar() 31, 33 printf_hex8() 267
printf_int()l 267
printf_string()o il 267
PRS_SourceSignalSet() 110, 112, 115
LED: Off() 224 PushData() 87
LED: :On() 224 PWM_Init() “““““““““““““““ 118
LEDI:TOggle() 224 PWM_Set() __________________ 118, 120’ 163
LedInit() 43
LedOff() ... 43
LedOn() 43
LedToggle() 137,139, 144, 146 read_inputs()coiiiiiiiiii 186
LETIMERO_IRQHandler() 208 ReadSensor_task() 163
LETIMER_CompareSet() 208 Registra_tasca()ccoveeeennn. 192

INDEX DE FUNCIONS 305
Reset Handler......................... 235 UART:TXO) oo 227
ResetHandler.......................... 235 UART::USART1_RX_IRQHandler()..... 227
RTC_CompareSet()covviinnn.. 58 UART::USART1_TX_IRQHandler()..... 227
RTC_IntClear()...........ccovvviunnnn.. 58 UARTTask() ..o 159
RTC_IntEnable()..................oo... 58 ulTaskNotifyTake() 154
RTC_IRQHandler() 58 ulTaskNotifyTake()()coovuett. 154
RTCDRV_AllocateTimer() 194 USARTI1_RX_IRQHandler(). .. .88, 159, 227
RTCDRV_StartTimer() 192, 194 USART1_TX_IRQHandler() 86, 88, 159, 227
USART _IntClear().............. 86, 88, 159
USART Rx()................... 86, 88, 159
USART Send()................. 86, 88, 159
SemaphoreHandle_t.................... 167 USART_TXO) e v eveeeeeaeaan, 85, 159
sendUARTbyDMAQ)................. 98, 99
SEEUP() . v vv et 186
setupSWOForPrint()............. 31,33,117
sprintf() 99 vApplicationStackOverflowHook() 131
SystemInit() 25,235 vPortSetupTimerInterrupt() 209
SysTick_Config()covvevieo.. .. 38 vTaskDelay() ... 131, 137, 139, 140, 146, 163,
SysTick_Handler()...................... 38 167, 209
vTaskDelayUntil() 131, 139, 140
vTaskNotifyGiveFromISR()............. 154
vTaskStartScheduler() 137, 138
TaskLedToggle() 137, 139, 144, 146
taskYIELDQ) ..o 149
teStI2C() oo 92
TIMERO_IRQHandler() 53, 82,110 watchdogClear() 167
TIMER1_IRQHandler() 264 watchdogTask()........................ 167
TIMER_CaptureGet() 110 watchdogTouch() 167
TIMER_CompareBufSet() 62,118 WDOG_Feed() 69, 70, 167
TIMER_CompareGet() 51 wrapper_I2C_Init() 169
TIMER_CompareSet()................... 51 wrapper_I2C_ReadReg() 171
TIMER_CounterGet() 52 wrapper_I2C_WriteReg()............... 171
TIMER_CounterSet()....... 52,54, 112, 115 write_outputs()ooiiiiiii 186
TIMER_Enable()...51, 52, 54, 112, 115, 264 WrongfunctionAlign().................. 202
TIMER _Init() 110,112, 115 WrongfunctionDivO() 202
TIMER_InitCC().............outt. 62,110 WrongfunctionWrongMemory()......... 202
TIMER_IntClear() 53, 110, 264
TIMER_IntEnable() 53,110
TIMER_IntGet()............... 53,110, 264
TIMER_TopBufSet() 112,115 xEventGroupSetBitsFromISR() 150
TIMER_TopGet()oovveeeennnn.. 51 xEventGroupWaitBits()................. 150
TIMER_TopSet()............ 51, 54, 62, 264 xQueueCreate()............... 146, 147, 152
xQueueCreateSet()..................... 152
xQueueReceive()......... 146, 148, 159, 163
xQueueReceive()s...................... 153
UART classcoovviiiiiiinn... 227 xQueueReceiveFromISR().............. 159
UART: << .o 227 xQueueSelectFromSet() 153
UART::AvailableData() 227 xQueueSend()..................... 159, 163
UART::GetData() 227 xQueueSendFromISR() 146, 159
UART::SendData()..................... 227 xSemaphoreCreateMutex() 165, 167

306

INDEX DE FUNCIONS

xSemaphoreGive()................. 165, 167
xSemaphoreGiveFromISR() 132, 144
xSemaphoreTake() 144, 149, 165, 167
xTaskCreate() 130, 137, 163
xTaskNotify() ...t 154
xTaskNotifyFromISR()................. 154
xTaskNotifyGive() 154

xTaskNotifyWait() 154

	Part I — Nocions bàsiques
	1 Introducció
	1.1 El que aquest llibre és
	1.2 El que aquest llibre no és
	1.3 Material per seguir el curs
	1.3.1 Placa de prototipat
	1.3.2 Dispositius auxiliars

	1.4 Eines
	1.4.1 Programadors i debuggers
	1.4.2 Toolchain

	2 Breu introducció als sistemes encastats
	2.1 Microcontroladors
	2.2 ARM Cortex
	2.2.1 Cortex-M

	2.3 Arquitectura
	2.3.1 Perifèrics mapats a memòria
	2.3.2 Mida del codi i seccions de memòria
	2.3.3 Procés de boot

	2.4 Rapidesa d'un microcontrolador
	2.4.1 Millor mesura de temps

	Part II — Programació de perifèrics I
	3 Consola de Debug
	4 Fent servir printf
	4.1 Problemes d'usar printf

	5 Gestió de rellotges
	5.1 Systick

	6 GPIO
	6.1 Un exemple senzill
	6.2 BSP
	6.3 Manipulant bits individuals
	6.3.1 Posar a 1 un bit
	6.3.2 Posar a 0 un bit
	6.3.3 Toggle un bit
	6.3.4 Comparar si un bit està a cert valor

	7 Controlador d'interrupcions
	7.1 Escrivint ISRs en C
	7.2 Fent servir ISRs
	7.2.1 Ús de variables globals

	8 Timers
	8.1 Exemple senzill amb un Timer
	8.2 Exemple més complex amb el Timer

	9 RTC
	9.1 RTC externs

	10 PWM
	10.1 Generar PWM
	10.2 Controlant un servomotor

	11 Watchdog
	11.1 Exemple

	Part III — Programació de perifèrics II
	12 ADC
	12.1 Exemple d'ADC

	13 DAC
	13.1 Exemple senzill amb el DAC
	13.2 Exemple més complicat amb el DAC

	14 UART
	14.1 Fent servir una USART
	14.2 Exemple d'ús d'una UART
	14.3 Un exemple amb la UART més complicat

	15 I2C
	15.1 Exemple d'I2C

	16 SPI
	17 DMA
	17.1 Exemple
	17.2 Un exemple amb DMA més complicat

	18 FLASH
	18.1 Un exemple senzill
	18.2 Bootloaders

	19 Mòduls criptogràfics
	19.1 Xifrant dades amb AES-128

	20 Altres perifèrics
	20.1 Peripheral Reflex System
	20.1.1 Un exemple amb PRS senzill
	20.1.2 Exemple amb PRS, DMA, DAC i ADC

	21 Una aplicació completa
	21.1 Biblioteques
	21.1.1 BSP
	21.1.2 I2C_Wrapper
	21.1.3 PWM
	21.1.4 APDS-9960

	21.2 Funció principal
	21.3 Afegint-hi interrupcions
	21.3.1 Connexió del pin INT
	21.3.2 Configurar el dispositiu APDS9960
	21.3.3 Habilitar la interrupció corresponent

	Part IV — FreeRTOS
	22 Conceptes bàsics de FreeRTOS
	22.1 Temps Real
	22.2 Tasques
	22.2.1 Prioritats
	22.2.2 L'ús de l'stack en un S.O.

	22.3 El temps en un RTOS
	22.3.1 Funcions per controlar el temps
	Delays
	Timeout

	22.4 Interrupcions a FreeRTOS

	23 Primer exemple amb FreeRTOS
	24 Controlant el temps a les tasques
	24.1 Un exemple amb vTaskDelayUntil()
	24.1.1 Comprovació amb l'oscil·loscopi

	25 Comunicació entre tasques
	25.1 Semàfors
	25.1.1 Semàfors a FreeRTOS
	25.1.2 Exemple amb semàfors

	25.2 Cues
	25.2.1 Exemple amb cues
	25.2.2 Enviant múltiples dades per una cua

	25.3 Mutex
	Exemple amb Mútex

	25.4 Event Groups
	25.4.1 Exemple de event groups
	25.4.2 Sobre el determinisme dels grups d'esdeveniments

	25.5 Conjunt de cues Queue Sets
	25.6 Notificacions a tasques
	25.6.1 Exemple de notificació directa a tasques

	25.7 Comparant temps de resposta

	26 Exemple amb la UART i interrupcions
	27 Una aplicació completa amb FreeRTOS
	27.1 Tasques
	27.2 Modificant el wrapper d'I2C
	27.3 Analitzant les diferències

	28 Ús del watchdog en RTOS
	29 Drivers en multi-tasca

	Part V — Models de programació
	30 Model d'interfície amb perifèrics
	30.1 Polling d'esdeveniments
	30.2 Interrupcions

	31 Models de computació
	31.1 Bucle de control
	31.2 Màquines d'estat finits
	31.2.1 Màquina d'estats finits estesa
	31.2.2 Un exemple amb FSM

	31.3 Codificant FSMs
	31.4 Flux de dades

	32 Tractament del temps
	32.1 FSMs amb temps
	32.2 Tasques periòdiques
	32.2.1 Implementació

	32.3 Multitasca

	Part VI — Temes avançats
	33 Gestió d'excepcions
	33.1 Exemple detectant errors greus

	34 Shadow Registers
	35 Baix cosum
	35.1 Consideracions prèvies
	35.2 Modes d'sleep
	35.3 Estratègies de baix consum
	35.3.1 Exemple de baix consum

	35.4 Timers de baix consum
	35.5 Baix consum i RTOS
	35.5.1 Tasca Idle per baix consum
	35.5.2 FreeRTOS sense tick

	36 Documentant el codi
	37 CMSIS
	37.1 CMSIS-Core
	37.2 CMSIS-Driver
	37.3 CMSIS-DSP
	37.4 CMSIS-RTOS
	37.5 CMSIS-DAP
	37.6 CMSIS-NN

	38 Normes de codificació
	38.1 The Power of 10: Rules for Developing Safety-Critical Code
	38.2 MISRA-C
	38.3 Embedded C Coding Standard
	38.4 JPL Institutional Coding Standard for the C Programming Language

	39 DSP
	40 C++ vs C
	40.1 Primer exemple en C++
	40.1.1 LED
	40.1.2 Button
	40.1.3 Un Hello World ``més C++''
	40.1.4 Mida dels executables

	40.2 Un driver en C++
	40.2.1 Ocupació de memòria

	40.3 Conclusions

	41 Relació Esquemàtic i FW
	41.1 Selecció de pin-out
	41.2 Selecció de rellotges
	41.3 Canvis durant el layout
	41.4 De la placa de prototipat a PCB pròpia
	41.4.1 Mecanisme de programació
	41.4.2 Migració vertical

	42 Inicialització del sistema i del llenguatge C
	43 Treballant amb punt flotant

	Part VII — Bones pràctiques
	44 Ús de memòria dinàmica
	45 Ús de volatile
	46 Funcions re-entrants
	47 Deadlock
	48 Inversió de prioritats
	49 Assignació de prioritats
	50 Mida de les cues
	50.1 Model M/M/1

	51 Debounce
	51.1 Un exemple de debouce

	52 Ús eficient de printf
	53 Empaquetant estructures
	53.1 Un exemple senzill

	Part VIII — Índex, Bibliografia, Glossari
	Enllaços dels exemples
	Bibliografia
	Llibres

	Glossari
	Acrònims
	Índex de figures
	Índex de llistats
	Índex de funcions

