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Prefaci

Benvolgut lector, el que ve a continuaci6é és una llista d’exercicis de corbes i superficies
que es poden resoldre amb els coneixements habituals dels primers cursos de geometria
diferencial. De fet, la majoria d’ells s’han utilitzat en el curs de geometria diferencial que
s'imparteix a la UAB, en el que han participat durant diversos anys els autors d’aquest
recull. Aprofitem per agrair a altres professors que també hi han participat com Joan
Girbau, Marcel Nicolau, Eduardo Gallego, Gil Solanes, David Marin (i els que en aquest
moment no ens venen al cap) les seves aportacions.

En no tenir la restriccié del nimero de classes de qué es disposa durant un curs hem
ampliat les llistes originals amb problemes que ens han semblat interessants, com 1’estudi
detallat de les geodésiques de 'ellipsoide o cicloides elliptiques.

Tot i que hi ha molts bons llibres sobre el tema pensem que el fet que aquestes
notes siguin interactives, amb enllacos a Geogebra a la majoria de les il'lustracions i
a SageMathCell en alguns dels calculs més llargs, les fan diferents i molt ttils per als
estudiants.

Els capitols Fets basics de la teoria de corbes i Resum teoric sobre superficies pretenen
ser una guia minima per localitzar els resultats i formules basiques que intervenen en les
resolucions dels exercicis i, si convé, s’en poden consultar els detalls a qualsevol tractat
de la matéria. En la mesura del possible, els exercicis estan agrupats per temes per tal
de facilitar I'accés a les qliestions que interessin en cada moment.

S’ha separat els enunciats dels exercicis de les seves solucions per tal d’evitar que el
lector es trobi amb aquesta solucié abans d’haver reflexionat sobre I'enunciat i d’haver
plantejat les seves estratégies de solucid. En qualsevol cas, les solucions sempre son
accessibles des de l'enllag (de color verd) que hi ha a la numeraci6 de cada exercici (o
de cada una de les parts que té). Al final de cada soluci6 hi ha un enllag que torna
directament a ’enunciat corresponent, de tal forma que es pot navegar entre una part i
'altra sense dificultats (o aixo és el que esperem).

Finalment, tot i que hem dedicat molt de temps repassant que no hi hagi errades
importants i que aquest text sigui el més clar possible, no dubteu a contactar amb els
autors si detecteu alguna incoheréncia, creieu que hi ha algun detall fosc o teniu algun
suggeriment sobre enfocaments alternatius a algun dels exercicis.


http://www.geogebra.org
https://sagecell.sagemath.org/
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Fets basics de la teoria de corbes

Definici6. Sigui I C R un interval obert de R. Una corba parametritzada, o simplement
una. corba, és una aplicacié v : I — R3, diferenciable de classe C*.
El conjunt v(I) C R? es diu traga de . El vector
: dr(t)
7'(t) = 3
de R3 es diu vector tangent a la corba en el punt y(t).
Siy/(t) # 0,Vt € I, es diu que 7 és una corba regular.

Definicié. Sigui [a,b] C I i sigui v : I — R? una corba parametritzada. La longitud
de v entre a i b es defineix com

b—a

by 1 B
Li(y) = JL%; (s =3t te=a+ k—.

De forma immediata es pot comprovar que aquesta longitud esta donada per

b
L) = [ e de
Definicié. Es diu que una corba v : I — R3 esta parametritzada per l’arc quan
V(@) =1, Vt eI

Es demostra facilment que tota corba regular es pot reparametritzar per 'arc. En
aquest cas el vector

T(s) =7'(s)
¢s el vector tangent unitari a la corba en el punt v(s).
El vector T'(s)
s
N(s) = 77—
17" (s)ll

¢s el vector normal principal a la corba en el punt y(s) i el vector
B(s) =T(s) AN N(s)

¢s el vector binormal a la corba en el punt y(s).

Tenim les definicions segiients:
e Referéncia de Frenet. {v(s); (T(s), N(s), B(s))}.

e Pla osculador. Es el pla que passa per v(s) amb espai vectorial director generat

per T'(s) 1 N(s).

e Pla normal. Es el pla que passa per (s) amb espai vectorial director generat per
N(s) i B(s).

e Pla rectificant. Es el pla que passa per 7(s) amb espai vectorial director generat
per T'(s) 1 B(s).

e Curvatura. Es la funcié k : I — R® tal que 77(s) = k(s) N(s).

7



Fets basics de la teoria de corbes 8

e Radi de curvatura. Es l'invers de la curvatura, p(s) = 1/k(s). Obviament només
esta definit en punts de curvatura diferent de zero.

e Cercle osculador. Es el cercle del pla osculador amb centre el punt y(s)+p(s) N(s)
i radi p(s), on p(s) és el radi de curvatura. Podem dird també, doncs, que la
curvatura €s linvers del radi del cercle osculador.

e Torsié. Es la funcié 7: I — R? tal que B'(s) = 7(s) N(s).

Les formules de Frenet donen les derivades de T', N, B escrites en aquesta mateixa
base:

T'(s) = k(s) N(s)
N'(s) = —k(s) T(s) — 7(s) B(s)
B'(s) = 7(s) N(s)

Aquestes formules les va obtenir J. F. Frenet a la seva tesi de 1847, perd no les va
publicar fins 1852 a Sur quelques propriétés des courbes a double courbure, Journal de
Mathématiques Pures et Appliquées 17 (1852), 437-447. De manera que no va ser el
primer de publicar-les ja que el 1851 les va publicar J. A. Serret a Sur quelques formules
relatives d la theorie des courbes a double courbure, Journal de Mathématiques Pures et
Appliquées 16 (1851), 193-207.

El Teorema fonamental de la teoria local de corbes diu que la curvatura i la torsio
determinen la corba, llevat de moviments rigids.

Toc <4< > > < » Tornar



Capitol 1
Corbes planes

1. Parametritzacions i parametre arc

EXERCICI 1. Doneu una corba parametritzada v(t) que tingui per traga el cercle unitat
22 +y* = 11 tal que ¥(¢) el recorri en el sentit de les agulles del rellotge amb v(0) = (0, 1).

EXERcIcI 2. Considerem la corba parametritzada v(t) = (13 — 2¢,1? — 2).
(a) Determineu si els punts (—1, —1), (4,2) i (1,2) estan sobre la seva traga.
(b) Calculeu els punts d’interseccié amb els eixos de coordenades.

(¢) Doneu una equacié que defineixi el conjunt imatge.

EXERCICI 3. Es consideren les aplicacions 3,7 : R — R? definides per
B(t) = (cos(2t),cos(t)),
~(t) = (sin (2t), cos(t)) .

Decidiu si son corbes regulars (derivada mai nulla).

EXERCICI 4. Doneu una parametritzacié diferenciable de la corba determinada per la
grafica de la funcié y = |z| a interval —1 < x < 1.

EXERCICI 5. Parametritzeu les corbes de R? definides implicitament per
(a) 42 +y* =1

(b) 2%/3 44?3 = 1. (Astroide, Hipocicloide de 4 punxes, exercici 11).
(¢) 2+ y* —3axy=0. (Folium de Descartes).

(d) (22 + y*)* = a® (#* — y*). (Lemniscata de Bernoulli).

Exercict 6. (Corba no rectificable). Considerem la corba « : [0,1] — R? definida
per

v(t) = (t,t sin(w/t)), sit #0),
7(0) = (0,0).

Demostreu que la longitud d’arc de v corresponent a =7 <t < - és, com a minim,
2/(n+ 3) =4/(2n + 1). Utilitzeu aquest fet per demostrar que la longitud d’arc de v a

I'interval 1/N <t <1 tendeix a infinit si N — oc.

EXERCICI 7. Determineu (si es pot) una parametritzacié per I'arc de les corbes definides
per

(a)
(b)
(c)
EXERCICI 8. Doneu una parametritzaciéo de la trocoide: corba caracteritzada per ser

I’orbita d’'un punt P situat a una distancia a del centre d’una circumferéncia de radi b
quan aquesta roda sense lliscament sobre una recta fixada.

y = logwx,
2/3 4 y2/3 — q2/3

T
r?/a* +y*/V* = 1.

9



Parametritzacions i parametre arc 10

N \_/ J

Trocoide amb a > b.

En el cas a = b s’anomena cicloide. Calculeu el parametre arc de la cicloide.

Exgrcict 9. (Cicloide com isocrona') A Moby Dick de Herman Melville (1851) tro-
bem la cita seglient:

Quan no s’utilitzen, aquestes calderes es conserven considerablement netes. A
vegades les poleixen amb sabé de sastre i sorra fins que brillen per dins com ponxeres
de plata. Durant les guardies nocturnes, alguns vells mariners cinics s’hi entaforen,
s’hi ajoquen i fan una becadeta. Quan els mariners es dediquen a polir-les —un
home a cada caldera, tocar a tocar— es passen moltes comunicacions confidencials
per damunt els llavis de ferro. També és un lloc adient per a profundes meditacions
matematiques. Fou dins la caldera de ma esquerra del Pequod, amb el sabo de sastre
que m’envoltava per totes bandes, que per primera vegada em va impressionar el
fet remarcable que, en geometria, tots els cossos que llisquen al llarg de la corba
cicloide, el meu sabé de sastre per exemple, baixen en el mateix espai de temps des
de qualsevol punt.

(La destilleria, Moby Dick)

Anem a verificar aquesta propietat de la qual es parla en forma de problema. S’ano-
mena cicloide invertida una cicloide en la qual s’han canviat de signe les coordenades y
dels punts de la corba. S’ha de comprovar que en una cicloide invertida, el temps que
triga un cos que cau lliscant per la corba per efecte de la gravetat, sense fregament, en
arribar al punt més baix és independent del punt de partida.

(a) Comproveu que la cicloide invertida (de parametre a = 1) esta donada per (t) =
(t —sin(t),cos(t) — 1), 0 <t < 2x. Dibuixeu-la i comproveu que el punt més baix
correspon al parametre t = 7.

Verificarem a continuacioé que, en una cicloide invertida, el temps que triga un cos
que cau lliscant per la corba per efecte de la gravetat (en particular, amb velocitat
inicial nulla), sense fregament, en arribar al punt més baix és independent del punt
de partida.

Per a aixo fem les passes segiients:

(b) Suposem que un cos llisca (velocitat inicial zero i sense fregament) sobre la cicloide
des del punt 7(tp) fins al punt ~y(¢). Calculeu la velocitat v(¢) amb qué arriba aquest
cos al punt ().

(Indicacié: Recordeu la llei de conservacio de Ienergia i les expressions de I’energia potencial
i cinética, E, = mgh i E. = mv?/2 respectivament).
(c¢) Calculeu la distancia recorreguda entre v(to) i v(t).

La cicloide també verifica que és la braquistocrona, és a dir, la corba al llarg de la qual una particula
llisca sota 'acci6 de la gravetat i sense fregament en un temps minim d’un punt A a un punt B situats
en verticals diferents (vegeu Aventuras Matemdticas, Miguel de Guzman, Ed. Labor 1988).

Toc <4< > > < » Tornar



Parametritzacions i parametre arc 11

(d) Sigui 7 = 7(t) el temps transcorregut per anar de (o) a y(¢). En particular 7(¢y) = 0.
Calculeu 7(7) (temps d’arribada des de () al punt més baix) i comproveu que no
depén de tj.

Exercict 10. Determineu una parametritzacié de la cardioide: corba caracteritzada per
ser el lloc geométric de I’orbita d'un punt P d’una circumferéncia de radi a a mesura que
gira sense lliscament sobre una altra circumferéncia fixada del mateix radi que ’anterior.

Exercict 11. Parametritzeu les hipocicloides: les corbes descrites per un punt d’un
cercle de radi r que gira sense lliscar a 'interior d’un cercle més gran de radi R = k.

Exercict 12. Quan una circumferéncia de radi r gira al voltant d'una circumferéncia de
radi R, exteriorment a ella, la trajectoria de qualsevol dels seus punts es diu epicicloide.

EXERCcCICI 13. Donats un punt F' i una recta d del pla, i un nombre real positiu e, la
conica de focus F' directriu d i excentricitat e és el lloc geométric dels punts P del pla tals
que
d(P,F)=e-d(P,d).
Si e > 1 (hipérbola) es considera

ep p
e2 -1’ e2—1’

p=eo, c=

Isie <1 (ellipse) es posa’

p:657 c °p a —p b:V(lz—CQ.

T 1—e T 1—e?
Observeu que en els dos casos es compleix p = b%/a, quantitat que s’anomena parametre

focal

(a) Determineu 'equacié de la conica en el cas particular en qué F' = (ae,0) i d és la
recta x = a/e.

(b) Proveu que tota conica (amb e # 1) té dos focus i dues directrius.

(c¢) Proveu que tota conica (amb e # 1) és el lloc geométric dels punts del pla tals, que
la suma (resp. diferéncia) de les distancies d’aquests punts a dos punts donats (els
focus) és constant.

(d) Proveu que 'equacié de la conica en coordenades polars focals és

B p
~ 1—ecos(f)
Per coordenades polars focals entenem coordenades polars de centre un dels focus
i eix d’origen d’angles la recta que uneix els dos focus en la direcci6 de 1'origen cap el
segon. Aixi si F} és el focus origen d’angles tenim r = PF} i 0 = ZPFF5.
(e) Proveu que v(t) = (acos(t),bsin(t)) és una parametritzacioé regular d’ellipse, i que
v(t) = (acosh(t),bsinh(t)) és una parametritzacio regular de la hipérbola.

r

ExERCICI 14. Recordem que dos diametres d;, dy d'una conica es diuen conjugats quan
ds és parallel a la tangent a la conica en el punt en qué aquesta talla d;. Es veu facilment
que no depén de quin dels dos punts de tall entre d; i la conica es consideri, i que d; és
conjugat a ds si, i només si, dy és conjugat a d;.

2Fl cas e = 1 correspon a la parabola, que no es considera aqui.

Toc <4< > > < » Tornar



Parametritzacions i parametre arc 12

Donada I'el'lipse

2 2
x Yy
@ et
demostreu que els pendents m i m’ de dos didmetres conjugats compleixen
b2
mxm = ——.
a2

ExXERCICI 15. Sigui
o7, %) = Z a™® iy = p,
ik

amb p constant, una ellipse o una hipérbola. Siguin Z, ¥ direccions que corresponen a
diametres conjugats. Demostreu que llavors ®(Z, ) = 0.

EXERcICI 16. Parametritzeu la corba anomenada tractriu, caracteritzada geomeétrica-
ment pel fet segiient: per a tot punt P de la corba, la distancia entre aquest punt i el
punt ), d’interseccid entre la recta tangent a la corba en P amb l'eix d’abscisses, és cons-
tant i igual a 1. Es diu que és el cami que es veu obligat a fer un gos lligat a una corda,
i que va tibant cap al nord, quan el seu amo es passeja cap a l’est. Doneu també una
parametritzacio per 'arc de la tractriu.

ExERrcICI 17. La corba plana donada per la grafica de la funci6é y = cosh(z) s’anomena
catenaria. Parametritzeu-la per 'arc.

EXERcICI 18. (Coordenades polars) Es diu que una corba plana «y ve donada en polars

quan s’expressa com:
() = (r(t) cos(6(t)),r(t) sin(6())) ,

on r(t) i 0(t) son respectivament les expressions, en funci6 del parametre ¢, de la distancia

a lorigen de coordenades (pol) i de I'angle que forma el vector (t) amb l'eix de les x

(origen d’angles). Quan es pren I'angle t = § com a parametre, I'expressio en polars ve

donada per la funci6 r = r(t).

(a) Determineu l'equacié en coordenades polars d’una circumferéncia de radi R > 0 cen-
trada a l’origen.

(b) Determineu 'equaci6é en coordenades polars d’una circumferéncia de radi R > 0 i
centre (R,0).

(c¢) Feu una representacio grafica aproximada de la corba definida en coordenades polars
per r(t) = 1 —sin(t) i comproveu que es tracta d'una cardioide.

(d) Demostreu que la longitud L d’una corba donada en polars com r = r(t), t € [a,b] és

L:lﬂﬁimvﬁ

ExERcICI 19. (Espiral logaritmica) Considerem la corba plana v : R — R? definida
per

v(t) = (ae’ cos(t),ac’ sin(t))
amb b < 0 < a.

(a) Estudieu el comportament de ~(¢) quan t tendeix a +oo.

Toc <4< > > < » Tornar



Parametritzacions i parametre arc 13

(b) Proveu que /() — (0,0) quan t — oo i que

t
lim / I/(s)] ds
t—o00 to

és finit. Es a dir que ~(¢) té longitud finita a tot interval de la forma [ty, c0).

Exercict 20. [J. W. Rutter’] La parabola y*> = z es desplaga girant sobre I'eix de les

y. Demostreu que el lloc geométric del focus és la catenaria x = 1 cosh(4y).

Exercict 21. Calculeu la trajectoria d’un focus d’una ellipse quan aquesta es desplaca
girant sense lliscar per sobre de l'eix .

Exercict 22. [Shifrin?] Freddy Flintstone® vol conduir el seu cotxe de rodes quadrades
per una carretera convenient.

Com es pot dissenyar la carretera per tal que la trajectoria sigui perfectament suau, és a
dir, per tal que el centre de la roda segueixi una trajectoria horitzontal?

Exercict 23. A la pagina 82 de La Géométrie de René Descartes ’autor dona la sorpre-
nent construccié de la normal a la corba que ell anomena la concoide dels antics.

Sigui DC' la primera concoide dels antics, de la qual A és el pol, i BH el regle:
totes les linies rectes que miren cap a A, i que es troben compreses entre la
corba CD i la recta BH, com ara DB i CE, son iguals.

D

C -\
F
AR N B
H
A

G

St volem trobar la linia CG que la talla en el punt C' segons angles rectes,
[-..] cal prendre CF damunt la linia recta CA, i fer-la igual a CH que és
perpendicular a HB. Despres des del punt F' tirar la recta F'G parallela a BA
1 igual a EA, i aizi s’obté el punt G pel qual ha de passar la recta buscada

CaG.

3 Geometry of curves, Chapman&Hall, 2000.

4 Curves and Surfaces, 2010.

5Es manté la versi6 de Shifrin tot i que al nostre pais aquest personatge es va conéixer com Pedro
Picapiedra.

6Sembla ser que la concoide va ser introduida per Nicomedes un 200 anys AC, per trisecar I'angle i
duplicar el cub.
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L’exercici consisteix a comprovar que aquesta construccié és correcta. [ un segon
exercici de caire historic és saber com va arribar Descartes a la seva construccio.

ExXBERCICI 24. Estudieu les corbes de Watt. Quina d’elles és una lemniscata?’ Per corba
de Watt entendrem la trajectoria del punt mitja X d’una barra rigida AB que es mou
estant sempre A en una circumferéncia de centre F i B sobre una circumferéncia de centre
F5, les dues del mateix radi.

2. Curvatura

EXERCICI 25. Siguiy : I — R? una corba regular plana i~y : I — S la seva indicatriu
de les tangents. Fixem un punt tqg € I. Donat ¢ € I denotem per L(t) (resp. Li(t)) la
longitud de 'arc de v (resp. 71) entre o i t. Demostreu que la curvatura k(to) de 7 en ¢,

Ly(t
és igual al limit }LI% Ll((t))

ExXERCICI 26. [J. W. Rutter| Proveu que, per a una corba determinada per la condicio
f(xz,y) =0, amb f diferenciable, la curvatura ve donada per

_ Jow fay\ [ Ty
(fy fx) (f:z:y fyy) (_f:r:>
lgrad(f)[I”

amb signe + si el moviment al llarg de la corba és en la direccié del vector (f,, —f;) 1 —
en cas contrari.
Apliqueu la férmula anterior per a calcular la curvatura de la hipérbola

=3y =1

k==

en el punt (2,1).

EXERCICI 27. Demostreu que una corba regular plana té curvatura constant si, i només
si esta continguda en una circumferéncia.

EXERCICI 28. Demostreu que el signe de la curvatura d’una corba del pla R? esta donat
per det(v/(t),~”(t)) encara que t no sigui parametre arc.

"James Watt (1784) va introduir una familia de corbes donades per barres enllagades. Aquests me-
canismes apareixen en enginyeria sobre tot quan es vol aconseguir un moviment rectilini a partir de
moviments circulars. Veurem que la corba descrita pel punt mitja d’una barra que gira subjecte a dues
circumferéncies que giren s’aproxima a una recta. Watt ho va estudiar concretament en relacié a les
maquines de vapor.
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Curvatura 15

ExERrcICT 29. Determineu I'equacio6 intrinseca de les epicicloides (12)

EXERcICI 30. Recordem que per una corba plana 7(s), la definicié de curvatura és amb
signe de tal manera que si y(s) esta parametritzada per I’arc llavors

k(s) = det(v/(s),7"(s)).
(a) Sigui £ : I — R una funcié diferenciable i siguin sg,s1,$2 € I. Si posem 6(s) =

S
/ #(u) du, comproveu que tota corba v : I — R? parametritzada per I'arc i amb
S0

curvatura igual a aquesta funci6 donada k(s), es pot escriure, respecte d’una certa

referéncia ortonormal, de la forma

(s) = ( / cos(0(w)) du, / sm(e(u))du).

(b) Observeu que un canvi en les constants s, s1, o indueix un moviment rigid (rotaci6
més translacio) en la imatge.

(¢) Deduiu que tota corba plana de curvatura constant no nulla és una circumferéncia.

(d) Sigui v : (—a,a) — R? tal que la seva curvatura verifica k(—s) = k(s). Demostreu
que la traga de «y és simétrica respecte de la recta normal a 7 en v(0).

(e) Sigui 7y : (—a,a) — R? tal que la seva curvatura verifica k(—s) = —k(s). Demostreu
que la traca de «y és simétrica respecte del punt ~(0).

EXERCICI 31. Determineu una/la corba ~y(s) parametritzada per I'arc, amb curvatura

1
k(s) = 1152
i amb v(0) = (0,0) i v/(0) = (1,0). Podrieu dir de quin tipus de corba es tracta? (podeu

ds
V1+s?
Exercict 32. Considereu una corba plana v donada en polars com:

y(t) = (r(t) cos(t), r(t) sin(t))

(es dona el radi en funcié de 'angle de posicio).

utilitzar que = arcsinh(s) + ¢).

(a) Demostreu que la curvatura de la corba r = r(t) esta donada per
k(t) =

2(r"? —rr" +r?

((r’)2 + 7“2)3/2

(b) Proveu que si la funci6 r(t) té un maxim en t = ¢y, aleshores la curvatura de la corba

r(to)

Exercict 33. Calculeu la curvatura d’una ellipse determinada per I’expressio en coorde-
nades polars

r =r(t) en el punt t = ¢y és més gran o igual que

P
r0) = 1—ecos(f)’

on p és el parametre focal i e ’excentricitat.

Exercict 34. (Una altra expressié de la curvatura per a les coniques) Donada
una corba v diferenciable i un punt P sobre ella, la subnormal per P és el segment de la
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recta normal que va de P al tall amb l’eix x. Denotem per N la longitud de la subnormal
en P. Proveu que la curvatura k de lellipse (£)* 4 () = 1 en el punt P és

p2

k:m,

on p = b?/a és el parametre de Pellipse.
Proveu el mateix per a la hipeérbola (£)* — (%)? = 11 la parabola y* = 2p .

ExeRrcict 35. Demostreu que el recorregut que fan les dues rodes d’una bicicleta (so-
bre un terra pla) que manté el manillar en un angle constant séon dues circumferéncies
concentriques.

(Fixeu-vos que en el cas extrem que l'angle del manillar sigui recte, és clar que la roda
davantera descriu una circumferéncia de radi igual a la distancia entre els centes de les
dues rodes mentre la posterior gira, sense avancar, sobre un punt fix. Mentre que en ’altre
extrem, quan la roda del davant esta alineada amb el cos de la bicicleta, el recorregut de
les dues rodes és una linia recta).

Exercict 36. Clotoide. Determineu el punt A = (a,0) i la clotoide adequada 7(s) tal
que v(0) = A, amb +'(0) = (1,0), que per a un cert valor del parametre s la corba sigui
tangent a la circumferéncia de centre (1,1) i radi 1/2, i tingui en el punt de contacte la
mateixa curvatura (2) que aquesta circumferéncia.

ExXERCICI 37. Vegeu que una corba plana travessa el seu cercle osculador en qualsevol
punt que no sigui un extrem de la curvatura.

ExercIcI 38. Demostreu que cercles osculadors suficientment proxims d’una corba plana
no es tallen.

3. Envolupants

Donada una familia de corbes X (s,t) (per a cada s fix es considera una corba parametrit-
zada per t) l'envolupant v(s) de la familia X és una corba tal, que la seva recta tangent
coincideix amb la recta tangent a la corba X(s,t) en el punt de contacte, aixd es pot
formular dient que hi ha una funcié t = t(s), determinada pel punt d’intersecci6 de 7(s)
amb X (s,t), amb el mateix vector tangent en aquest punt. Aixi v(s) es pot escriure com
v(s) = X(s,t(s)), i el seu vector tangent ha de ser proporcional al vector tangent a la
corba X (s,t) obtinguda fixant s i variant ¢. Més especificament, per a cada sy

dX (s, t(s)) _ dX(t,so)
ds ’S=50 - dt ‘t=t0 ’
on tg =1t(sp) i A € R.
Aixo és, aplicant la regla de la cadena,
0X 0X dt dX(t, so) 00X
s ors0) o s0) Gy = AT ey = A g oo o)
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Per tant, com que (g, So) és un punt arbitrari, %—f i %—)t( son proporcionals, cosa que es pot
escriure posant
0X 0X
det(—,—) =
ds Ot

Aquesta condicio és la corresponent al cas de les envolupants a families de rectes
definides per una condici6 de la forma f(z,y,\) = 0 que es tracta a lapartat (b) de
I’exercici 5, on es veu l'astroide com ’envolupant d’un cert feix de rectes.

ExXERcICI 39. Proveu que tota corba plana amb curvatura diferent de zero és ’envolupant
dels seus cercles osculadors.

ExeErcICI 40. Determineu ’envolupant de la familia de rectes

U/\(t) = (-T)\(t)7y)\<t>> = (Oa )‘) +t(1,)\2).

EXERCICI 41. Determineu Ienvolupant de les cordes de la parabola y = 2 que la tallen
formant una figura d’area constant S.

ExXERcICI 42. Demostreu que la caustica d’una circumferéncia respecte un dels seus
punts és la cardioide. Recordem que la caustica d’una corba I' respecte d'un punt P és
I'envolupant dels rajos lluminosos provinents de P (focus).

4. Involutes i evolutes

EXERcICI 43. (Involuta) Sigui v : I — R? una corba regular plana. S’anomena involuta
de v a qualsevol corba 3 que talli ortogonalment a totes les rectes tangents de . Es diu
llavors que -y és I’evoluta de 5. La figura segiient mostra una involuta de la circumferéncia.

Observeu, per exemple, que la recta P() de la figura és tangent a la circumferéncia en
el punt P i normal a la involuta en el punt Q).

Suposem que 7 esta parametritzada pel parametre arc s. Per a un s fixat, la recta
tangent a v en el punt y(s) és y(s) +t+/(s), t € R, i el punt en qué aquesta recta tangent
talla la involuta § ¢és de la forma £(s) = v(s) + A(s) 7/(s) per a un cert valor de t = A(s)
(atencio: s és parametre arc de 7y, perd no ho sera de f3).

(a) Determineu quina ha de ser la funcié A(s), sabent que per a un s = sy fixat es
compleix £(sg) = v(so) (a la figura anterior, sq seria el parametre de la circumferéncia
corresponent al punt en qué la involuta talla la circumferéncia).
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(b) Interpreteu geométricament la parametritzacié obtinguda.
(Indicacié: Podeu utilitzar un cordill).

(¢) Doneu una parametritzacio de la involuta 8 quan la corba inicial 7y no esta parame-
tritzada per I'arc sin6 per un altre parametre.

(d) Trobeu la involuta de la catenaria donada per y = cosh(x) que passa pel punt (0,1).
Comproveu que es tracta de la tractriu.

(e) Doneu parametritzacions de les involutes de la circumferéncia i de la cicloide.

EXERcICI 44. (Evolutes) Es diu que una corba regular plana /3 és I’evoluta d’una altra
corba regular plana - si, i només si v és una involuta de 3. Aixo es pot dir d’una altra
manera considerant que /3 és 'envolupant de la familia de rectes normals de . (Recordeu
que I’envolupant d’una familia de corbes és una corba que és tangent a totes les corbes de
la familia).

(a) Determineu una parametritzacié de 8 en funcié del parametre arc de -y, suposant que
la curvatura de v no s’anulla.

(b) Interpreteu geomeétricament la parametritzacié obtinguda.

(c¢) Determineu I'evoluta de la cicloide.

ExeRrcict 45. Deduiu geomeétricament que 'evoluta de la tractriu és la catenaria.

ExXERCICT 46. Demostreu que 1’evoluta de la cardioide és una altra cardioide homotética
de la original amb ra¢ 1/3 i girada 7 radians al voltant del centre d’homotécia. En general,
I’evoluta de les hipocicloides i epicicloides son respectivament hipocicloides i epicicloides.

Exercict 47. Demostreu que la caustica d’'una corba I' respecte un punt P és ’evoluta
de l'ortotomica de I' respecte de P. Recordem que la catlistica d’una corba I' respecte
d’un punt P és I'envolupant dels rajos lluminosos provinents de P (focus), reflectits per
I' i que l'ortotomica és I’envolupant de les circumferéncies de centres en el punts de I' i
que passen per P.

EXERcICI 48. (Relacid entre les curvatures d’una corba i de la seva evoluta)

(a) Calculeu l'expressio de la curvatura de la catenaria quan estd parametritzada per
I’arc.

(b) Determineu la curvatura de la tractriu respecte el parametre induit per la catenaria.

(¢) Deduiu una féormula general per la curvatura d’una involuta de « en el parametre
induit per 'arc de a.

Exercict 49. (Rellotges de péndol, Huygens, 1673%) Per evitar que les variacions
d’amplitud en les oscillacions d’un péndol provoquessin un error en la mesura del temps,
Huygens va idear un sistema basat en les propietats de la cicloide. Es parteix d’una
cicloide invertida de parametre a, és a dir

v(t) = (a(t —sin(t)),a(cos(t) — 1)), —mw<t<m.

Tot seguit, suposem que aquesta corba és rigida, construida amb un determinat metall.
Del vertex O de la cicloide (vegeu la figura) pengem un cordill amb un pes a l’altre extrem
(punt P de la figura).

8Vegeu Horologium oscillatorium, siue, de motu pendulorum ad horologia aptato demonstrationes ge-
ometricae. Paris, Apud F. Muguet, (1673).
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P

El cordill pot oscillar, perd en el seu moviment no pot travessar mai la cicloide metal-
lica. A la figura hem designat per @) el punt de la cicloide en qué el cordill deixa d’estar
recolzat sobre la cicloide. La recta determinada per () i P és tangent a la cicloide. Llavors
la corba que descriu 'extrem lliure del péndol és ortogonal a les rectes tangents; per tant,
és una involuta de la cicloide. Si s’agafa un cordill de longitud 4 a aquesta corba també
és una cicloide. Llavors el semiperiode del péndol (el temps que tarda en anar des d’'un
extrem a la posicié d’equilibri) és independent de 'amplitud degut a que és el temps que
triga un cos en caiguda lliure sobre una cicloide en anar al punt més baix. Calculeu la
corba descrita per 'extrem del péndol i comproveu que és una cicloide.
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Capitol 2
Corbes a l’espai

1. Parametritzacions i parametre arc

Exercict 50. Comproveu que la corba v(t) = (¢ cos(t),t sin(t),t) té la imatge sobre un
con de R3. Calculeu la velocitat i Pacceleracio de (¢) en el vertex del con.

EXERCICI 51. Determineu (si es pot) una parametritzacié per ’arc de les corbes definides
per:

(a) (1)
(b) v(t)
(c) ¥(¢)
ExeRrcict 52. Considerem una corba v : I — R3 i un vector fix ¥ € R®. Demostreu
que si 7/(s) és ortogonal a ¢ per a cada s € I llavors la corba és plana.

(e! sin(t), 1,¢e" cos(t)),
(cosh(t),sinh(t),t),
(t,t2,3).

ExERcICI 53. Considerem una corba v : I — R3 i un vector ¥ € R3. Suposem que
~(to) 1 +/(t) son ortogonals a @ per a tot ¢ € I. Demostreu que (t) és ortogonal a ¢ per
a tot t.

EXERCICI 54. Sigui P un punt de R?® que no esta contingut en la imatge de la corba
v : I — R3. Sigui sy € I tal que el punt y(sg) és el punt de la corba més proper a P.
Demostreu que 7/(sg) és ortogonal al vector v(sg) — P.

2. Triedre de Frenet. Curvatura i torsio

EXERCICI 55. Sigui v(t) la parametritzaci6 d’una corba regular (no necessariament per
I'arc). Demostreu les formules per a la curvatura k(t) i la torsio 7(t) d’aquesta corba
segiients:

k(1) = |7/ (¢) M’;(t)||7
1)l

(@) A", 7))
v/ (t) Ay ()12

T(t) = —

ExXERcICI 56. Calculeu la curvatura, la torsio i el triedre de Frenet de les corbes segiients:

(a) y(t) = (.22, £%).
1—t 1—1¢2 ) ) _ .
(b) ~(t) = (¢, — ). Proveu, a més, que la corba és plana i determineu el pla que

la conteé.
(c) y(t) = (¢",e™", V2 1).
(d) v(t) = (2¢,1og(t), ?).
(e) v(t) = (3t — 3,312, 3t + 13). En aquest cas proveu que k(t) = £7(t).
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Triedre de Frenet. Curvatura i torsid 22

ExErcICI 57. Corbes de Salkowski.! Comproveu, utilitzant alguna eina de calcul
simbolic i numeric, que la corba

16 V257 -1 2 VBT +1 2 1
") = g (‘Wﬁu gy St e ) = e — gy S T s g Sm“)) ’
_ 16 V257 —1 2 V257 +1 2 1
vt = g (4 i I Y ATV - s e Y. - COS“)) ’
(t) = 64 ( 2t )
=T Nt

(que és un cas particular de corba de Salkowski), té curvatura constant k = 1 i torsio
variable 7(t) = tan(7=).

EXERCICI 58. Sigui v : I — R3 una corba regular amb curvatura idénticament nulla.
Demostreu que (/) esta continguda en una linia recta.

EXERCICI 59. Sigui vy : I — R? una corba regular. Demostreu que si totes les seves rectes
tangents passen per un punt fix, llavors la traga de v esta continguda en una recta.

EXERCICI 60. Demostreu que una corba regular +(t) té imatge continguda en una recta
si, i només si v”(t) és proporcional a v/(t).

EXERCICI 61. Sigui v : I — R? una corba regular amb curvatura mai nulla. Demostreu
que 7 és plana si, i només si tots els plans osculadors son parallels a un pla fix.
Proveu també que v és plana si, i només si la torsié de v és idénticament zero.

EXERCICI 62. Considerem 'aplicacié de R en R? de classe C™ definida per
(t,0,e7 /) pert >0
Y(t) =X (t,e,0) pert<0
(0,0,0) per t = 0.
Comproveu que aquesta corba té torsié nulla pero no esta continguda en un pla.
EXERCICI 63. Sigui v : I — R? una corba regular amb curvatura mai nulla. Demostreu

que si totes les seves rectes normals passen per un mateix punt aleshores la traga de ~
esta continguda en una circumferéncia.

EXERCICI 64. Sigui v : [ — R? una corba regular amb k(s) # 0 per a tot s € I.
Demostreu que si tots els plans osculadors de v passen per un punt fix P llavors la corba
és plana.

EXERCICI 65. Sigui v(¢) una corba regular i ¢, un valor del parametre per al qual la
curvatura k(tp) # 0. Sigui 7 la projeccio ortogonal sobre el pla osculador de «y en ¢y i
4 = m o~ la projeccié sobre aquest pla de la corba . Proveu que el valor l;(to) de la
curvatura de 4 en ¢, coincideix amb k(ty).

Wegeu Salkowski curves revisited: A family of curves with constant curvature and non-constant tor-
sion, Computer Aided Geometric Design, J. Monterde, Volume 26, Issue 3, March 2009, Pages 271-278
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EXERcICI 66. (Corbes de Bertrand?”) Siguin 3(¢) i v(¢) dues corbes diferents tals que
per a cada t € (a,b) la recta normal principal a 5(t) en el punt de coordenada ¢ coincideix
amb la recta normal principal a v(t) en el punt de coordenada la mateixa t. Suposem que
la curvatura kg(t) i la torsié 75(t) de B(t) son no nulles en tot punt.

(a) Proveu que existeix una constant r # 0 tal que y(t) = B(t) +r Ns(t), Vt € (a,b), on
Ng(t) és el vector normal principal a la corba §(t). En particular la distancia entre
B(t) i~(t) és constant.

(b) Proveu que 'angle entre els vectors tangents a 5(t) i v(t), en els punts corresponents
al mateix parametre ¢, és constant.

(c¢) Proveu que hi ha una relacio lineal entre la curvatura i la torsio de 5(t) (és a dir, que
existeixen constants a, b tals que a kg(t) +b7(t) = 1).

ExXERcICI 67. Si hi ha una correspondéncia bijectiva entre els punts de dues corbes i les
tangents en punts corresponents séon paralleles, demostreu que les normals principals sén
també paralleles, i per tant també les binormals.

Proveu també que
k’g T2 ds 1

By om dsy
Quan tenim dues corbes aixi relacionades diem que una s’ha obtingut de I'altra per

una transformacio de Combescure’.

ExXERCICI 68. Demostreu que si v és una corba de curvatura constant llavors la corba for-
mada pels centres de curvatura també és de curvatura constant i la corba dels seus centres
de curvatura és la corba inicial. En particular son corbes de Bertrand (exercici 66).

EXERCICI 69. Sigui v : I — R3 una corba regular amb curvatura mai nulla. Demostreu
que si tots els centres dels cercles osculadors de v estan continguts en una recta aleshores
~ és una circumferéncia.

Exercict 70. Demostreu que el lloc geométric dels centres dels cercles osculadors és una
corba tal, que la seva tangent en cada punt és ortogonal a la tangent de la corba inicial
en el punt corresponent.

ExXERCICI 71. Sigui v(s) una corba tal, que curvatura i torsié no s’anullen mai. Demos-
treu que el coneixement del vector binormal B(s) determina la curvatura k(s) i el valor
absolut de la torsio 7(s).

EXERCICI 72. Sigui v(s) una corba regular. Suposem que la curvatura k(s) i la torsio
7(s) no s’anullen en cap punt de la corba.

(a) Demostreu que

o a vy ()
IN/(s)? (42)" 41

(1)

2Les avui nomenades corbes de Bertrand apareixen per primer cop al treball Mémoire sur la théorie des
courbes & double courbure, Journal de Mathématiques Pures et Appliquées 15 (1850), 332-350. L’interés
per aquestes corbes ja havia estat formulat cinc anys abans per Saint-Venant. Bertrand demostra que
hi ha una relaci6 lineal entre la curvatura i la torsi6 de cadascuna d’aquestes corbes i que si una de les
corbes té curvatura constant (hipotesis que en realitat no és necessaria) llavors el producte de les torsions
de les dues corbes en punts corresponents és constant.

3 Aquesta transformacié apareix al treball de E. Combescure Sur les déterminants fonctionnels et les
coordonnées curvilignes, Annales Scientifiques de I'Ecole Normale Supérieure, Paris IV (1867), 93-131.
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(b) Demostreu que si s és el parametre arc, es coneix N(s) en tot punt i en sy coneixem

k(s0)
7(s0)

tant, la corba, llevat de moviments rigids).

el quocient , llavors podem calcular k(s) i 7(s) en tot punt de la corba (i per

Exercict 73. Trobeu una corba parametritzada per l'arc amb curvatura k(s) = 1/s,
torsio 7(s) = 0, que passi pel punt (1,0,0) quan s = 11 que, en aquest punt, el seu triedre
de Frenet sigui la base canonica de R3.

EXERCICI 74. Determineu una corba parametritzada per I'arc amb curvatura k(s) = s,
torsio 7(s) = 0, que passi per l'origen quan s = 0 i que, en aquest punt, el seu triedre de
Frenet sigui

7(0) = (2.2 0)
N = (2.~ 0)

B(0) = (0,0, —1).

Exercict 75. El triedre de Frenet d'una corba esta format per vectors lliures i podem
pensar, doncs, que en variar el parametre ¢ de la corba, tenim una familia de triedres que
es mouen amb un punt fix (per exemple, I'origen de coordenades). Es ben sabut que quan
un cos rigid (en aquest cas, el triedre) es mou amb un punt fix, el moviment és un gir
infinitesimal al voltant d’un eix.

Determineu la velocitat angular en qué gira el triedre de Frenet d’una corba en termes
dels invariants d’aquesta corba’.

3. Corbes esfériques i hélixs

ExERrcIcI 76. (Volta de Viviani) Sigui C la corba intersecci6 de 'esfera % +y?+2% = 1
amb el cilindre 2% + y? —y = 0. Calculeu la curvatura i la torsié de C'

4Darboux, a la seva obra Lecons sur la theorie generale des surfaces et les applications gométriques
du calcul infinitesimal, Gauthier Villars et Fils, Paris, 1887, 4 vol. de 1887, 1889, 1894, 1896, dedueix les
formules de Frenet a partir del fet fisic de qué, quan un sistema rigid es mou al voltant d’un punt fix, les
velocitats dels diferents punts dels sistema sén les mateixes que si el sistema girés al voltant d’una recta
que passés pel punt fix. Aquesta recta rep el nom d’eix instantani de rotaci6. Just amb aquestes paraules
que acabem de traduir gairebé directament de les Lecons comencen els 4 volums d’aquesta immensa obra.
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ExXERcICI 77. Es diu que una corba és esférica si el seu recorregut esta sobre una esfera.

(a) Demostreu que una corba ~y(s) és esférica si, i només si, existeix un punt fix cq (el
centre de l'esfera que la conté) tal que el vector v(s) — ¢g és perpendicular a /() per
a tot s.

(b) Comproveu que si y(s) és esférica llavors k(s) > 0 per a tot s.

(¢) Comproveu que el centre ¢y de l'esfera que conté una certa corba y(s) (parametritzada
per l'arc) es pot obtenir com

1 K'(s)
Ko O ) P

per a qualsevol s on 7(s) # 0,” i per tant, el radi d’aquesta esfera és

) ()

(d) Tenint en compte els calculs de I'apartat anterior, demostreu el reciproc. Es a dir, si
v(s) és una corba parametritzada per 'arc amb k(s) # 01 7(s) # 0 tal que

(i) * (i)

amb ¢ constant, llavors y(s) esta sobre una esfera de radi /c.

co=(s) +

EXERcCICI 78. Es designa per héliz una corba tal que les seves tangents formen un angle
constant amb una direcci6 fixada (que és diu que és Peix de 1’helix).5

(a) Proveu que una corba és una hélix si, i només si, les seves normals principals son
paralleles a un pla fixat (de fet, el pla perpendicular a 'eix).

k(s
(b) Demostreu que si la torsio no s’anulla, llavors 7(s) és una hélix si i només si k(s) = ct.

7(s)

®Si 7(s) = 0 per a tot s la corba és plana (un parallel o meridia) i no es pot determinar el radi de
Pesfera que la conté. Un parallel pot ser comu a esferes de diferent radi. Fora dels intervals on 7(s) = 0
aquestes formules son certes encara que 7(s) = 0 en un punt (a la demostraci6 es veura que si 7(sg) = 0
també k'(sg) = 0) ja que per ser y(s) diferenciable ho és la component de y(s) — ¢ respecte B(s), la qual

és una funcié que val W@(s) fora dels zeros de 7(s) i SILII;O (k(sk)/)% quan 7(sg) = 0.

6 Amb aquesta definici6 tota corba plana és una hélix ja que les seves tangents formen un angle de /2
amb el vector director del pla. Per aixo assumirem que les hélixs son corbes no planes.
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(¢) Quin invariant permet distingir una hélix dextrogira d’una hélix levogira?

(d) Proveu que tota helix v(s) es pot escriure com y(s) = 5(s) + s ¢ on B(s) és una corba
plana continguda en un pla perpendicular a 'eix de y(s) i ¥ un vector fix. Relacioneu
les curvatures de 3(s) i y(s).

(e) Comproveu que la corba y(t) = (a cos(t),a sin(t),bt) és una helix (s’anomena héliz
circular). Determineu 'eix i la corba plana associada.

(f) Vegeu que el lloc geomeétric dels centres dels cercles osculadors d'una hélix circular és
una altra hélix circular coaxial i del mateix pas.

(g) Localitzeu, entre les corbes que han sortit en exercicis anteriors, altres hélix i mireu
d’obtenir el seu eix i la corba plana associada.

ExXERrcICI 79. Considerem 1'hélix circular donada per

v(s) = (a cos(s/c),a sin(s/c),bs/c),
amb s € Ric* =a®+ V7.
(a) Demostreu que (s) esta parametritzada per I'arc.
(b) Determineu la curvatura i la torsié de ~(s).
(¢) Determineu el pla osculador.
(d) Demostreu que les rectes que tenen direccié N(s) i passen per 7(s) tallen l'eix Oz
amb angle constant igual a /2.

ExErcICI 80. Sigui y(s) una corba que té curvatura constant k = 3, torsié constant 7 = 4
i quan s = 0 passa per (0,0,0) amb triedre de Frenet T'(0) = (1,0,0), N(0) = (0,1,0),
B(0) = (0,0,1). Determineu la parametritzacié per l'arc de 7.

EXERCICI 81. Trobeu totes les corbes parametritzades per I'arc v : R — R3 que tinguin
vector binormal B(s) = \/% (sin(\%), — cos(\%), 1) 1 torsi6 positiva.

EXERCICI 82. Sigui y(s) una corba regular parametritzada per 'arc, amb curvatura mai

nulla. Definim la seva indicatriu tangent com la corba esférica v;(s) = 7/(s). Trobeu la

curvatura kq(s) i la torsio 71(s) de v;1(s) en funci6 de la curvatura k(s) i la torsio 7(s)
(s)

de 7(s). Deduiu que ~;(s) és plana si i només si 7 ¢s constant. Doneu una definicio

d’indicatriu binormal i deduiu férmules analogues.
ExErcict 83. Determineu les hélixs esfériques.

EXERcICI 84. Considerem la corba parametritzada () = (cosh(t),sinh(¢),t), t € R.

(a) Calculeu-ne la curvatura i la torsi6. Demostreu que 7(t) és una helix.
(b) Determineu el parametre arc de ().

Exercict 85. Comproveu que la corba definida per

s = (2 [sinos)) ds. % [ costos) as. )
amb a? 4+ b? = 2, i on 6(s) és qualsevol funcié amb 6'(s) # 0, compleix que % = %
-

(en particular, és una hélix).

ExERrcict 86. Donada una corba 7, existeixen infinites corbes tals, que les seves rectes
tangents tallen v ortogonalment’.

“L’estudi d’evolutes a l’espai és la primera cosa que va estudiar Monge al llarg de la seva llarga carrera.
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En el seu treball ,Mémoire sur les développées, les rayons de courbure, et les differents genres d’inflexions
des courbes a double courbure, Mémoires présentés par divers savants a I’Académie des Sciences de 1'Ins-
titut de France X(1785), diu: je me propose de démontrer dans ce Mémoire qu’une courbe, plane ou a
double curvature a une infinité de développées, toutes a doublecourbure, [...] et de donner la maniére de
trouver les equations de telle de ces courbes qu’on voudra, etant données les equations de la développante.
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Resum teoric sobre superficies

La majoria dels conceptes sobre superficies que aniran apareixent en aquestes notes es
deuen a C. F. Gauss que les va introduir en el seu famoés treball Disquisitiones generales
circa superficies curvas. Commentationes Societatis Regiae Scientarum Gottingensis Re-
centiores Classis Mathematicae VI, 99-146, (1827). S’hi pot trobar el que avui anomenem
aplicaci6 de Gauss, curvatura de Gauss, primera i segona formes fonamentals, geometria
intrinseca, simbols de Christoffel, equacié de les geodésiques, etc.

Primera forma fonamental

Definicié. (Superficie) Una superficie regular és un subconjunt S C R? tal que per a
tot punt P € S existeix un entorn obert W de P a R? i una aplicaci6 ¢ : U C R? — R3
diferenciable, on U és un obert de R?, amb o(U) = W N S, tal que

(a) ¢ : U — W NS és homeomorfisme (quan dotem W NS de la topologia induida).
(b) Per a tot punt @ € U, l'aplicaci6 diferencial dyg : R*? — R? és injectiva.

Cada parell (U, ) amb les propietats anteriors es diu carta local o parametritzacio
local.

Els dos mecanismes més basics per tal d’obtenir superficies sense haver de donar
parametritzacions explicites s’obtenen a partir dels resultats segiients:

Proposicié. Sigui h: U C R? — R una funcio diferenciable definida sobre l'obert U de
R2. Llavors la grafica de h
Gn={(z,y,2) €eUxR|z=h(z,y)}

€s una superficie.

Proposicié. Sigui f : V C R?® — R diferenciable sobre 'obert V, i sigui a € R tal que
dfp # 0 per a tot P € f~(a). Llavors S = f~(a) és una superficie.

Definici6. Sigui P un punt d’una superficie S. L’espai tangent a la superficie en P, TpS,
és el subconjunt de R3 format pel vectors tangents en P de totes les corbes sobre S que
passen per aquest punt.

Si (U, ) és una parametritzacio de S llavors TpS és 'espai vectorial generat pels vec-
tors tangents o, (u,v), ,(u,v). No obstant, sovint es parla d’espai tangent a la superficie
en P per referir-se a l'espai afi P + Tp(S5).

Definicié. Sigui P un punt d'una superficie S. La primera forma quadratica fonamental
de S en P és la restricci6é a TpS del producte escalar de R3. Es a dir,

Ip: TPS X TPS — R
XY — (X,Y).
La matriu de I respecte la base (@, ¢,) es denota per
E F
(5 5.
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Es a dir, £ = (pu,0u), F = {0u,00), G = {@u,¢s). Som funcions sobre I'espai de
parametres U on esta definida la carta local.

El coneixement d’aquests coeficients sobre una corba ¢(u(s), v(s)) de S permet conéi-
xer la seva longitud. Concretament

b
L:/ VE W) +2Fu v +G (V)2 dt,

on E = E(u(s),v(s)), etc.
I també l'ara d’una regi6 R = ¢(Q) per

Area(R) = / /Q VEG — F? dudv.

Definici6. (Isometries) Una aplicacio diferenciable F': S; — S entre dues superficies
és una isometria local si preserva longituds; i.e. per a tota corba v : I — S es compleix
L(y) = L(F o~y). Si, a més, F' és bijectiva es diu que F' és isometria.

El resultat segiient permet identificar les isometries locals i és, normalment, el que
s’'utilitza per a aquestes situacions.

Proposicié. Sigut F : S — Sy una aplicacio diferenciable. Llavors F és isometria
local si, i només si els coeficients E, F', G de la primera forma fonamental de Sy respecte
una certa carta local (U, ) coincideizen amb els coeficients E, F, G de la primera forma
fonamental de Sy respecte la carta local (U, F o ).

Segona forma fonamental

Endomorfisme de Weingarten

Definicié. (Aplicacié de Gauss) Es diu que una superficie S és orientable si existeix
una aplicacié diferenciable
v:S — 5%
on S? és esfera de centre I'origen de R? i radi 1, tal que
V(P) L TP(S), VP e S.

Aquesta aplicacio v es coneix com aplicacio de Gauss de S.

Definici6. (Endomorfisme de Weingarten®) L’endomorfisme
Wp : TpS — TpS

donat per
Wp = —de

8 Julius Weingarten, Uber eine Klasse auf einander abwickelbarer Flichen, Journal fiir die reine und
angewandte Mathematik 59 (1861), 382-393. En aquest article apareixen les avui anomenades superficies
de Weingarten que son les que tenen la propietat de qué un radi de curvatura principal es pot determinar
de la mateixa manera en cada punt a partir de ’altre, és a dir, superficies en les que hi ha una equaci6
funcional entre les dues curvatures principals ®(k1,k2) = 0 que es compleix en tots els punts de la
superficie.
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s’anomena endomorfisme de Weingarten.
Dit d’una altra manera, l’endomorfisme de Weingarten és la diferencial de 'aplicacio
de Gauss, canviada de signe.

Definici6é. (Direccions principals) Les direccions principals i les curvatures princi-
pals en un punt P € S sén, respectivament, les direccions propies i els valors propis de
I’endomorfisme de Weingarten Wp.

Definici6. (Curvatura mitjana i curvatura de Gauss) La curvatura mitjana H de
la superficie en P € S és la meitat de la traga de ’endomorfisme de Weingarten.

La curvatura de Gauss K de la superficie en P € S és el determinant de ’endomorfisme
de Weingarten.

Definicié. (Segona forma fonamental) Sigui P un punt d’una superficie S. La segona
forma quadratica fonamental de S en P és 'aplicacio

I TPS X TPS — R
(X,Y)  — (Wp(X),Y)

Definici6. Es diu que un vector X € TpS és direccié asimptotica quan

(X, X)=0.

Definicié. (Indicatriu de Dupin) El conjunt format per les dues coniques de TpS que
respecte la base ortonormal de vectors propis ej, es de I'endomorfisme de Weingarten
tenen equacions

kya? + kyy? = +1,

on k1, ko son les curvatures principals, es diu Indicatriu de Dupin.

De fet, els punts d’'una superficie es poden classificar, segons la indicatriu de Dupin
sigui una ellipse, una hipérbola, dues rectes paralleles o el conjunt buit, de la manera
segiient.

Punts el'liptics, si ki ks > 0.
Ezemple: el punt (0,0,0) de p(x,y) = (z,y, 2>+2y?) on tant k; com ky s6n positius,
ode ¢(z,y) = (z,y, —2* — 2y?) on tant k; com ky son negatius
Punts hiperbdlics, si ki ky < 0.
Ezemple: el punt (0,0,0) de ¢(z,y) = (z,y,2* — 29?). Si tallem la superficie amb
el pla 2 = € obtenim 2% — 2y? = ¢ i la indicatriu de Dupin és 222 —49% = 1.
Punts parabolics, si k1 ko = 0 amb £y o ko diferent de zero.

Ezemple: el punt (0,0,0) de ¢(x,y) = (x,y,2?). Si tallem la superficie amb el pla
z = € obtenim les rectes (€,y,€) i (—€,y,€) (és a dir, les rectes © = +e del pla z =€),
i la indicatriu de Dupin és x = :I:\%.
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Punts plans, si ky = ky = 0.
Ezemple: el punt (0,0,0) de p(x,y) = (z,y,2*) (o qualsevol punt d’un pla, dbvia-
ment). O la cadira de mico: ¢(z,y) = (x,y, 2> — 3z y?). (La tercera component és
la part real de (z + yi)?). La indicatriu de Dupin no dona informacié.

Dins la tercera memoria que configura 1’obra de Charles Dupin Développements de
géometrie, Paris (1813) titulada Suite de la théorie des tangents conjuguées apareix el
resultat segiient: Théoréeme Fondamental. Pour chaque point non singulier d’une surface,
il existe toujours une ligne du second degré placée sur le plan tangent, ayant pour centre
le point que l’on considere, et telle enfin qu’elle indique et caractérise toujours tout ce qui
peut étre relatif a la courbure de la surface, a partir du point qu’on a pris pour centre.
Telle ést la courbe que nous nommons indicatrice.

Calculs en coordenades

Si ¢ : U C R? — R3 és una parametritzaci6 o carta local d’'una superficie i s’escriuen les
matrius de la primera i segona forma fonamentals respecte de la base (8“" Qte) com

ou’ v
E F e f aip a2
I = II = W =
(F G)’ <f 9)’ (am Cm)

E = <S0U790U>7 7F = <90u7§00>7 G = <S0’U790v>7
€ = <l/, Sﬁuu>a f = <I/, @uv>a g = <V7 ‘;va>a

on v és la normal a la superficie considerada com funci6 a ’espai de parametres.
L’endomorfisme de Weingarten és llavors

_ 1 Ge—Ff Gf—Fg

_ 1 _

W=Ill=ga—p (Ef—Fe Eg-Ff)

Per tant, les curvatures mitjana i de Gauss estan donades per
1Eg—2Ff+Ge

es té

"2 EG-F2 2)
eg—f*

Un dels resultats que posa de manifest la importancia de considerar la primera i segona
forma fonamentals és el segiient’.

Teorema. (Teorema fonamental de la teoria de superficies) Siguin Sy i Sy super-
ficies orientables amb S connexa. Sigui ¢ 1 S7 — So una isometria local que conserva la
segona forma fonamental. Llavors ¢ és la restriccié a Sy d’un moviment rigid de R3.

Corbes sobre superficies

Sigui v(s) una corba parametritzada per I’arc sobre una superficie orientada S.

En cada punt de «y(s) tenim cinc vectors que juguen un paper destacat: La referéncia
de Frenet T'(s), N(s), B(s), el normal a la superficie en el punt, v(v(s)), que d’ara en
endavant denotarem v(s), i el vector tangent a la superficie i normal a T'(s), donat per

e(s) =v(s) NT(s).

9Vegeu S. Montiel and A. Ros, Curvas y Superficies, Proyecto Sur, 1997.
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Definicié. (Curvatures normal i geodésica) Sigui v(s) una corba sobre una superfi-
cie orientada S, parametritzada per ’arc. Els coeficients que apareixen en descompondre
~"(s) en la base (e(s),v(s)) son la curvatura geodesica i la curvatura normal respectiva-
ment.

Tindrem, doncs,
V() = kg(s) e(s) + kn(s) v(s). (4)
En particular,
kg = (" v NY) = det(v,7, "),

2 2 2
k2= k2 4 k2.

Teorema. (Teorema de Meusnier'") Sigui v = v(s) una corba sobre una superficie
orientada S, parametritzada per l’arc. La curvatura normal de v en el punt v(s) val

kin(s) = Iy (7' (s),7"(5))-

Definici6. (Linies de curvatura) Sigui y(s) una corba continguda en una superficie S.
Direm que 7 és linia de curvatura si +'(s) és, per a tot s, vector propi de 'endomorfisme
de Weingarten. Dit d'una altra manera, la tangent a v en cada punt és una direccid
principal.

Definicié. (Linies asimptotiques) Sigui v(s) una corba continguda en una superficie
S. Direm que 7 és linia asimptotica si v'(s) és, per a tot s, direcci6 asimptotica. Es a dir,
per a cada s, es compleix II(v'(s),'(s)) = 0.

Una corba 7(s), que s’escriu com y(s) = p(u(s),v(s)) respecte una certa carta local
(U, ), sera:

Una linia de curvatura si compleix I'equaci6 diferencial
(1/)2 —u' v (u/)Q

E F G |=0. (5)

e f g
Una linia asimptotica si compleix 'equacié diferencial

e(u)+2fu v +g(@)?=0.

Naturalment, s’ha d’entendre que els coeficients de la primera i segona forma fonamentals
estan avaluats sobre els punts de la corba (E = E(u(s),v(s)), etc.).

Teorema egregi

Sigui (U, ) una carta local d'una superficie S. Si s’escriuen les derivades segones de ¢
en el punt (u,v) respecte de la base ¢, (u,v), p,(u,v), v(u,v), on v és la normal a la
superficie es tenen les igualtats de funcions vectorials definides a U segiients:

Puu = F%190u+ril Yy T ev,
Puv = F%z Py + F?Q oy + [, (6)
0o = Doy 0u+ T3y 00 + g1,

10J. B. Meusnier, Mémoire sur la courbure des surfaces, Mémoires de savants étrangers, Paris, 1785.
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on e, f, g son els coeficients de la segona forma fonamental.
Els coeficients Ffj, funcions de u i v, s’Tanomenen simbols de Christoffel.
Multiplicant aquestes equacions per ¢, i ¢, i resolent els sistemes que es van obtenint

és facil obtenir el valor dels simbols de Christoffel en termes dels coeficients de la primera
forma fonamental i les seves derivades. Només s’ha d’observar que

Eu =2 <90uu; Spu>7

Ev =2 <80uv7 90u>7

Fu - <S0uua (PU> + <90u; Spuv> .

Aixi s’obté

E,)2  F,—E,/>2 T e e
Fv - Gu/2 Gv/2 1—%2 1—%2

I, multiplicant per la dreta per la matriu inversa'’ de la primera forma fonamental I,
s’arriba a

GE,-2FF,+FE, 2EFF,—-EFE,-FE,

I = r2 =

H 2(EG—F2) 7 M1 2(EG —F?) 7
., GE,-FG, , EG,-FE,
Fm:uEG—Wy FH:uEG—my
2GR -GG, -FG ., EG,-2FF+FG,
2 2(EG—F2) 7 2 2(EG — F?)

La importancia fonamental d’aquestes féormules rau en qué permeten veure que els
simbols de Chirstoffel es poden calcular coneizent només els coeficients de la primera
forma fonamental. 1T aquest fet és el germen del teorema egregi.

El teorema egregi i les equacions de Codazzi-Mainardi s’obtenen simplement en con-
siderar les parts tangent i normal de les equacions
(QDuu)v = (quv)ua (Spuv)v = (90117))11'
Una de les igualtats que s’obté és
eg—f°
EG - F?
que dona la curvatura de Gauss en termes dels simbols de Christoffel.

—F = (Ffz)u - (F%)U + F%2 F%l - F%l 1?2 + F%z F%2 - F%l 1%2

-1 _ __1 G -F
EG-F2 \_p E |
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Capitol 3
Superficies

1. Parametritzacions. Espai tangent.

EXERCICI 87.

(a) Sigui S la superficie de R?® determinada per I'equacié f(z,y,z) = 0, on 0 és un valor
regular de la funcié f. Comproveu que el pla tangent a S en un punt py = (o, Yo, 20)
qualsevol es pot escriure com

%(m) (z — 20) + g—‘;(po) (y — o) + g—ﬁ(po) (z—2) =0 (1)

(b) Com sera 'equaci6 del pla tangent a una superficie de R? si és el grafic d’una funci6
de dues variables (z = h(z,y))?

EXERCICI 88. Sigui S el subespai de R? determinat per 'equacié z +y = 2% + 1.

(a) Comproveu que S és una superficie regular.

(b) Doneu una parametritzacio de S.

(¢) Determineu per a quin valor de a € R el vector v = (a,3,1) de R? és tangent a S en
el punt P = (1,1,1).

EXERCICI 89. Demostreu que el subconjunt S de R? determinat per la condicié 23 —

3z y? = z és una superficie regular i determineu 'equacié que té el seu pla tangent en un
punt qualsevol pg = (o, Yo, 20)-

EXERcICI 90. Doneu parametritzacions regulars (definides en algun obert prou significa-
tiu) de les quadriques:
(a) Cilindres:
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Cilindre elliptic Cilindre parabolic Cilindre hiperbolic

DROEEEE RN SO

(b) Ellipsoides:

(¢) Hiperboloides:

Hiperboloide d’un full Hiperboloide de dos fulls

Q-0 O

(d) Paraboloides:

Paraboloide elliptic Paraboloide hiperbolic
N 2 Y\ 2 N 2 Y\ 2
() +(5) = (5) ~(§) =

Exercict 91. (Quadriques confocals)! Proveu que tot punt de R? es pot donar com
interseccid de tres quadriques confocals.

Exercict 92. (L’helicoide)

(a) Comproveu que
o(u,v) = (u cos(v),u sin(v),av)

és una parametritzacié regular de la superficie S de R? determinada per 1’equacié

y cos(z/a) — x sin(z/a) =0

'En aquest exercici i els 217, 218, 219, 220 i 221 s’esta seguint Eisenhart.
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(b) Determineu el pla tangent (i la direcci6 normal) a S per a un punt arbitrari de la
superficie.

Exercict 93. Sigui S una superficie regular i connexa. Suposeu que totes les rectes
normals a la superficie passen pel mateix punt. Demostreu que S esta continguda en una
esfera.

2. Primera forma fonamental.

ExXERCICI 94. Determineu els coeficients de la primera forma fonamental del pla zy de
R3 quan es considera aquest pla parametritzat per les coordenades polars.

EXERcICI 95. Considerem Daplicacié ¢ : R? — S? del pla a l'esfera unitat de centre
l'origen de R3, donada per ¢(u,v) = p € S?, on p és el punt d’interseccié amb I'esfera de la
recta que passa per (u,v,0) i el pol nord (0,0,1) de ’esfera unitat tal i com es representa
en l'esquema segilient

Es clar que ¢ és una bijeccié entre el pla R? i S? menys el pol nord. L’aplicaci inversa
o~ !, que va doncs de l'esfera unitat menys el pol nord al pla, es diu projeccid estereografica
de l’esfera sobre el pla.

(a) Demostreu que la inversa ¢ de la projeccio estereografica és una parametritzacio re-
gular de l'esfera.

(b) Calculeu els coeficients de la primera forma fonamental de l'esfera respecte aquesta
parametritzacio.

(c) Comproveu que aquesta parametritzacio conserva els angles (I’angle entre dues corbes,
o vectors, de R? és el mateix que hi ha entre les seves imatges sobre lesfera).
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EXERcICI 96. Considereu la parametritzacio de U'esfera (llevat dels dos pols i un meridia)
donada per la longitud w i la latitud v:

o:(—mm)x(-7/2,7/2) —> R3

(u,v) — (cos(u) cos(v),sin(u) cos(v),sin(v)).

(a) Comproveu que és una parametritzacio regular i determineu els coeficients de la pri-
mera forma fonamental respecte aquesta parametritzacio.

(b) Donades les corbes v1(t) = ¢(t,0), 1a2(t) = @(n/4,t) i v3(t) = @(t,t) (en tots tres
casos t € [0,7/4]), calculeu (aproximant, si cal) 'area del triangle que determinen, les
llargades de cada un dels segments i els angles que formen.

(c¢) Feu els mateixos calculs que abans substituint la corba 73 per I'arc de circumferéncia
que s’obté tallant I'esfera amb el pla y = z (que també apareix a ’esquema anterior),
determinant préviament els nous punts de tall entre les corbes (en aquest cas, la
tercera corba talla el meridia en un punt de latitud més baixa que abans).

EXERCICI 97. Sigui v : I — R? una corba parametritzada per I'arc tal que ||v(v)|| = 1,
Vv € I (el recorregut de 7 esta sobre 'esfera unitat). Considereu la superficie parame-
tritzada per

p(u,v) =uy(v),
u>0,vel.

(a) Calculeu-ne la primera forma fonamental.
(b) Demostreu que és localment isométrica al pla.

ExXERrcict 98. Calculeu l'expressié de la primera forma fonamental de les superficies
parametritzades per:

(a) @(u,v) = (u cos(v), u sin(v), u?)
(b) ¢(u,v) = (u cosh(v), u sinh(v), u?)
(¢) p(u,v) = (a sinh(u) cos(v), b sinh(u) sin(v), ¢ cosh(u)) (on a, b i c sén constants).

Exercict 99. Calculeu la primera forma fonamental de la superficie de revolucio
x =r cos(v),
y = r sin(v),
2= ¢(r).

Veieu que existeixen coordenades isotermals. Concretament trobeu coordenades (u,v)
(v la mateixa que anteriorment) tals que

ds* = X\ (du® + dv?),
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amb A\ = \(u).”

Exercict 100. Demostreu que 1’angle entre les corbes (parametritzades per 1’arc) donades
per (u1(s),v1(s)) 1 (ua(s),v2(s)) (denotem igual els parametres arc) i que estan sobre la
superficie ¢(u, v) es pot calcular a partir de la formula

sin(f) = VEG — F? |u} vy — uyvy],

on els coeficients de la primera forma fonamental estan valorats en el punt de tall. En
particular, ’angle que una corba parametritzada per 'arc (u(s),v(s)) forma amb la corba
coordenada v = ct. és

VEG — F? 1

VE [W'|,  cos(f) = \/—E (Eu' + Fv').

sin(f) =
ExErcICI 101.

(a) Proveu que l'equaci6 general de les trajectories ortogonals a una familia de corbes
sobre una superficie parametritzada per ¢ : U C R? — R? donades en coordenades
per 'equaci6 del tipus ¢(u,v) = ¢ (¢ és doncs una funcié sobre U) és

0¢ 0] 0P 0p
E——-F—-)d F——-G—)dv=0
( v 8u) u+< v ou) T

on, com sempre, ., F', G son els coeficients de la primera forma fonamental respecte .
(b) Calculeu les trajectories ortogonals a la familia de cercles del pla de centre a l'eix z i
radi variable determinats per la férmula

2?2+ y? =2 z = d?,

on A és el parametre de la familia i @ una constant.

2La notacio ds? prové del fet que el parametre arc s(t) esta donat per

s(t) = /t VEWP 1 2Fw v + G W) dt

d’on, derivant i elevant al quadrat, resulta

ds\ du\ 2 du dv dv\?

que, per simplificar la notacid, escriurem ometent els denominadors com

ds®> = Edu® + 2 F dudv + G dv?.
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(c¢) Calculeu les trajectories ortogonals a la familia de corbes sobre I’helicoide
o(u,v) = (u cos(v),u sin(v), v)

donada per ¢(u,v) =v—3u =c.

EXERcICI 102. [Eisenhart’] Considerem sobre una superficie ¢(u, v) la familia de corbes
donades per ¢(u,v) = ¢. Sigui P un punt de la superficie. Per a cada corba v(s) =
o(u(s),v(s)) parametritzada per I'arc amb (0) = P definim el quocient diferencial com
la velocitat en qué ¢ varia al llarg de ~.
(a) Proveu que

do _ Pu+k @y

ds VE+2Fk+GEk?

(2)

on k =v'(0)/4'(0).
(b) Denotem A = ‘%|. Veieu, derivant respecte k, que el maxim es déna quan
(E ¢y — F du) + (F v — G gu)k = 0, (3)
i que aixo es dona quan la direcci6 de v en P és perpendicular a les corbes de nivell
de ¢.
(c¢) Veieu que el valor maxim de A és

‘@  VER-2F$,$,+ G2
ds| VEG — F2 '

Exercict 103. [Eisenhart] Demostreu que si en el pla tangent en un punt P d’una
superficie es tracen totes les semitangents corresponents a tots els valors de k, positius
o negatius (notacié de l'exercici 102) i sobre elles les corresponents longituds A (valors
absoluts dels quocients diferencials) a partir de P, el lloc geométric de les extremitats
d’aquests segments és una circumferéncia per P tangent a les corbes de nivell de ¢.

EXErcIc 104. Sigui H Vhelicoide (exercici 92) parametritzat per © = u cos(v), y =
u sin(v) i z = v, on u,v € R. Calculeu:

(a) L’area del “triangle” T' determinat per 0 < u < sinh(v) i 0 < v < wy.

(b) La longitud dels costats de la figura de 'apartat anterior.

(c) Els angles que formen aquests costats.

EXERCICI 105. Demostreu que les loxodromies de I'esfera (corbes que tallen amb angle
constant els meridians) estan donades per

log (tan (%)) = (0 + ¢) cot(p)

on ¢ és la colatitud, # la longitud i  és 'angle constant.

Exercict 106. Demostreu que les loxodromies del con circular recte es projecten a
espirals equiangulars.

EXERcICI 107. (Volta de Viviani “revisited”). Sigui S l'esfera de radi 2a centrada a
lorigen (d’equacio x? + y? + 2% = 4a?) i sigui S el cilindre d’equaci6 2% + (y — a)? = a?.

3L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, Ed. Gin and Com-
pany, 1909.
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(a) Calculeu la primera forma fonamental de S'i S.

(b) Parametritzeu la corba « obtinguda al fer la interseccié SN.S. (Ampliem i modifiquem
lleugerament ’exercici 76 en el que a = 1/2).

(c¢) Calculeu 'angle que forma la corba v amb els parallels de 'esfera.

(d) Calculeu la seva longitud.

(e) Proveu que l'area de la volta de Viviani, que és la regi6 de la esfera 22 + 4% + 2% = 4 >
delimitada pel cilindre (x — a)? + y* < a? dins el semiespai superior z > 0, val
4a?(r—2).

Exercict 108. Tallem una esfera de radi R per una esfera massissa de radi r, amb r < R,
i centre sobre la primera. Demostreu que 1'area de la interseccio és 7 2.

EXERcICI 109. La primera forma fonamental d’'una superficie S parametritzada com

o(u,v) és
1 0
0 u?+a?
2

(a) Calculeu el perimetre del triangle curvilini determinat per les corbes u = j:% av® i
v=1.

(b) Determineu els angles d’aquest triangle curvilini.

(c¢) Calculeu 'area del triangle determinat per les corbes u = +aviv = 1.

on a és una constant positiva.

Exercict 110. (Equaci6 de Beltrami-Laplace®) Sigui (s, t) una parametritzacio d'u-
na certa superficie. Demostreu que si podem trobar coordenades u, v sobre S (una segona
parametritzacio 1(u,v) que es denomina isoterma) tals que

Eds® +2Fdsdt + Gdt* = \(du® + dv?)

4El 1864 Beltrami generalitza els parametres diferencials de Lamé al cas de les superficies. Veu que
el terme esquerra d’aquesta expressio és invariant enfront de canvis de coordenades i utilitza aquest fet
per estudiar I'existéncia de coordenades isotermes sobre la superficie. La meétrica es pot escriure com
A (du? + dv?) si, i només si, Uexpressi6 s’anulla. Observeu que aquesta expressio per al cas de la métrica
plana ' = G = 1, F = 0, coincideix amb la laplaciana de u, per aixd d’aquesta equacié s’en diu de
Beltrami-Laplace. El treball de Beltrami es titula Richerche di analisi applicata alla geometria, Giornali
di Matematiche II, (1864), 267-282, 297-306, 331-339, 355-375. També es pot trobar a Opere Mat 1.,
1902, pp. 107-198.

Gabriel Lamé té nombrosos treballs sobre parametres diferencials i coordenades curvilinies, molts d’ells
recollits en el llibre Legons sur les coordonnées curvilignes et leur diverses applications, Mallet-Bachelier,
Paris, 1859.
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per a una certa funcio A = A(u, v) llavors, considerant les coordenades (u, v) com funcions
diferenciables de (s, 1), es compleix

8(Fus—Eut)+8(Fut—Gus)_0
Ot\VEG — F? IOs\VEG—F2 )
(us = —gg, etc.)

3. Segona forma fonamental

ExeRrcict 111. Determineu la primera i segona formes fonamentals, i les curvatures de
Gauss 1 mitjana, de la superficie parametritzada per

Exercict 112, Donada una funcié de dues variables h(z,y), calculeu en funcié de les
derivades parcials de h, les expressions del vector normal, I'aplicaci6 de Weingarten i la
curvatura de Gauss per a la superficie S que s’obté considerant el grafic de h.

ExXERrcICT 113. Sigui S una superficie regular que és tangent a un pla fix per a tots els
punts d’una certa corba (regular). Queé es pot dir de la curvatura de Gauss de S en
els punts d’questa corba? Preneu com exemple un tor de revolucié com el de 'esquema
segiient

EXERCICI 114. Sigui S una superficie regular de R3. Suposeu que S es connexa. De-
mostreu que sén equivalents:

(a) La segona forma fonamental de S és constant igual a zero.
(b) L’aplicacié de Gauss de S és constant.

(c) S esta continguda en un pla.
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EXERCICI 115. Demostreu que la curvatura de Gauss K i la curvatura mitjana® H d'una
superficie ¢(u, v) es poden calcular a partir de les férmules

KVEG — F? =det(v,vy, ),
—2HVEG— F? =det(v, pu, ) + det(v, vy, ©,),

on E, F, G son els coeficients de la primera forma fonamental i v és el camp normal
unitari en la direccié donada per ¢, A ©,.

Exgrcict 116. Sigui S una superficie de R* i F': R* — R® 'homotécia de ra¢ positiva
A. Comproveu que S = F'(S) és també una superficie i expresseu la curvatura de Gauss i
la curvatura mitjana de S en termes de les de S.

Exercict 117. Considereu un helicoide parametritzat per
o(u,v) = (u cos(v),u sin(v), av).

Calculeu-ne la curvatura de Gauss i la curvatura mitjana.

EXERcICI 118. (Superficies paralleles o semitubs).
Donada una parametritzacié ¢(u, v), d’'una superficie S, es defineix la superficie paral-
lela o semitub a distancia ¢, S;, com la superficie donada per

P (1,0) = pl,0) + (),
on v = v(u,v) és el vector normal unitari de S (escollim un dels dos).
(a) Trobeu, respecte de les coordenades u, v, ’expressio de 1’element d’area de S;.
(b) Proveu que la curvatura de Gauss K* = K'(u,v) esta donada per
. K
T1-2HtT K
on K = K(u,v) i H= H(u,v) son les curvatures de Gauss i mitjana de la superficie

inicial en el punt corresponent.
(¢) Proveu que la curvatura mitjana H'* = H'(u,v) de S; esta donada per

. H-Kt
O 1—-2Ht+ K12

(d) Si S és una superficie amb curvatura mitjana constant ¢ # 0, demostreu que la
1
superficie tubular a distancia 5z té curvatura de Gauss constant K = 4 c¢2.
c
(e) Si S és una superficie amb curvatura de Gauss constant a® # 0, demostreu que la

1
superficie tubular a distancia — té curvatura mitjana constant H = —a/2.
a

Exercict 119. (Superficies minimals) Demostreu que una superficie és minimal (en
el sentit de que té curvatura mitjana zero) si i només si tot petit domini de S és punt
critic de I’area respecte de les variacions normals.

Exercict 120. Demostreu que si I'aplicacié de Gauss d’una superficie S és conforme,
llavors S és una esfera o una superficie minimal (curvatura mitjana zero).

Exercict 121. (La banda de M&bius) La imatge segiient

5De la curvatura mitjana se’n diu també curvatura de Sophie Germain, en honor a aquesta matematica,
gran coneixedora de 'obra de Gauss que entre altres coses va publicar I'article Mémoire sur la courbure
des surfaces, Journal fiir die reine und angewandte Mathematik, 7, p.1-29, (1831).
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que s’obté considerant (u,v) € (0,27) x (—1/4,1/4) i definint la parametritzacio
o(u,v) = ((1 + v cos(u/2)) cos(u), (1 + v cos(u/2)) sin(u),v Sin(u/2)>

és el recorregut d’un segment de longitud 1/2 que es desplaga sobre la circumferéncia
unitat al mateix temps que gira sobre si mateix, a una velocitat igual a la meitat de la
velocitat que té sobre la circumferéncia, i determina una superficie homeomorfa a una
banda de Mébius. (En particular, és una superficie reglada).

(a) Calculeu el vector normal a la superficie i comproveu que quan v — 01 quan v — 27
els vectors normals tendeixen a dos vectors diferents.

(b) Calculeu I'area d’aquesta superficie.

(c) Doneu una expressio en funcié dels parametres (u,v) per a la curvatura de Gauss.
Comproveu que no és 0 en cap punt (sempre és estrictament negativa).

EXERCICI 122, Sigui S una superficie connexa i suposem que tots els seus punts séon
umbilicals (un punt es diu umbilical si les curvatures principals en aquest punt son iguals).
Demostreu que S esta continguda en una esfera o en un pla.

EXERCICI 123. Descriviu la regi¢ de S? recoberta per la imatge de laplicacié de Gauss
de les superficies segiients:

Hiperboloide d’un full {(z,y,2) € R? | 2* + ¢y* — 22 = 1}.
Paraboloide circular {(z,y,2) € R? | z = 2% + 3*}.

Tor {(z,y,2) € R® | (\/22 + 4% — R)? + 2% = r?}.

Exercict 124. Dues direccions tangents en un punt d’una superficie es diuen conjugades
quan ho soén respecte de la indicatriu de Dupin (veieu I'exercici 15). Demostreu que, si 6
i 6 son els angles que formen dues direccions conjugades amb la direccio principal eq, es
compleix

tan(6) tan(f') = Pz
f1
on p1, p2 son els radis de curvatura principals.

EXBERCICI 125. Demostreu el teorema de Koenigs’:

Sobre qualsevol superficie s’hi pot tragar, sense efectuar cap integracid, un
nombre illimitat de sistemes conjugats.

6M. G. Koenigs va ser un dels joves gedmetres deixebles de Darboux que el va ajudar en la revisi6 de
les proves de les Lecons.
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EXERCICI 126. Sigui () una corba sobre una superficie, 1 w(t) el vector unitari que
dona la direcci6 de la recta interseccio dels plans tangents a la superficie en els punts (0)
i 7(t). Llavors les direccions +/(0) i ,lfmé w(t) son conjugades.

—

Exercict 127. Calculeu, a l'origen, ’aplicacié de Weingarten, la primera i segona formes

fonamentals i les curvatures i direccions principals de les superficies de R3:

(a) z = 2? 4+ y* (paraboloide elliptic).

(b) z = 2% — y? (paraboloide hiperbolic).

(¢) Repetiu I'exercici per a l'esfera z + y* + 22 = R?, pero ara feu els calculs en un punt
arbitrari.

EXERCICI 128. Demostreu que la superficie z = ax y (hiperboloide) té, a l'origen, curva-
tura de Gauss K = —a? i curvatura mitjana H = 0.

Exercict 129. Demostreu que un punt d’una superficie és umbilical si i només si la
segona forma fonamental en aquest punt és un multiple de la primera.

Calculeu els punts umbilicals de 'ellipsoide d’equacio

332 y2 22

e + 5+ ol 1,
onl<c<b<a.
Demostreu que els plans tangents a 1’ellipsoide en els punts umbilicals sén parallels a
les seccions cicliques (plans que tallen ellipsoide en cercles).

Exercict 130. Sella de mico. Determineu la segona forma fonamental de la superficie
determinada per l'equaci6 z = z® — 3z y* (exercici 89). Expresseu la seva curvatura de
Gauss K en termes de r = /22 + y? i decidiu si es tracta d’una superficie minimal.
Doneu una expressio per a l’equacio diferencial de les linies asimptotiques. Determineu
les linies asimptotiques per (0,0, 0).
Quins son els punts umbilicals?

Exercict 131. Determineu els punts umbilicals de les superficies definides per

(a) z==xy.
2 2
(b) z:%—i—e‘Z—Q,one:il.

ExERcICI 132. Calculeu, directament a partir de la definicié de curvatura de Gauss com
limit de quocient d’arees, la curvatura de Gauss del tor

Y(u,v) = ((R+r cos(u)) cos(v), (R +r cos(u)) sin(v), r sin(u))
en el punt P =(0,0) = (R+1,0,0).

Exercict 133. Sigui €' C S una corba regular de la superficie S que té curvatura de
Gauss K positiva. Demostreu que la curvatura k£ de C' en tot punt P € C' C S satisfa:
k> min(|ky|, |k2|), on ki i ko son les curvatures principals de S en P.

Exercict 134. Estudieu les superficies amb les dues curvatures principals constants.

ExERCICI 135. Demostreu que una superficie compacta té com a minim un punt el-
liptic. Deduiu que una superficie minimal (i.e. amb curvatura mitjana H = 0) no pot ser
compacta.

EXERCICI 136. Sigui ¢(u,v) una carta isoterma.
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(a) Demostreu que (Ap, p,) = (Ap, ¢,) = 0.
(b) Demostreu que la superficie p(u,v) és minimal si i només si Ap(u,v) =0

EXERCICI 137. Suposem que projectem sobre una pantalla plana 'ombra que fa un
superficie quan la illuminem amb una llum formada per raigs parallels a una direccié. La
frontera de 'ombra és el que s’anomena el contorn aparent de la superficie en la direccid
determinada per la llum. Cada punt d’aquesta corba plana correspon, com a minim, a
un punt de la superficie. El conjunt d’aquest punts s’anomena generador del contorn, o
corba generatriu.”

(a) Demostreu que una condicié necessaria (en general no suficient) per tal que un punt
P d’una superficie S, pertanyi a la corba generatriu del contorn és (v(P),w) = 0, on
v és el camp normal unitari a la superficie S i w és el vector que ens dona la direccié
dels raigs de llum.

(b) Demostreu que

I(T,w) =0,

on T és el vector tangent a la corba generatriu en el punt P, i II és la segona forma
fonamental de la superficie.

(¢) SiTiw son linealment independents (i, per tant, base de TpS) demostreu que l'apli-
caci6 de Weingarten esta donada per

1 ko (T) —kn(w) cos(6)
W= sin?(9) (—kn( ) cos(0) ko (w) ) ’

on f és 'angle entre T' i w.
(d) Si el pla on veiem l'ombra és ortogonal a w, demostreu que

K(P) = (k(Q), kn(w)),
on K(P) és la curvatura de Gauss de la superficie en el punt P, () és 'ombra de P, i
k(Q) és la curvatura de la corba contorn aparent en Q).

EXERcICI 138. Estudieu les corbes v(t) sobre una superficie S tals que, donat un punt
fix F', es compleix (v(y(t)),v(t) — F) =0, on v és el camp normal unitari a la superficie
S. Aquesta corba és la corba generatriu de la superficie illuminada amb un focus situat
en el punt fix F.%

(a) Demostreu que
I(T,P—-F)=0,
on T és el vector tangent a la corba generatriu en el punt P, i II és la segona forma
fonamental de la superficie.
(b) Trobeu la matriu de I’aplicacio de Weingarten en la base T'i w = P — F' (en el cas
que aquests dos vectors formin efectivament una base).
(¢) Demostreu que
ko(T) - kn(P —F)
sin?(0)
on K(P) és la curvatura de Gauss de la superficie en el punt P, i 6 és 'angle entre T’
iw=P—F.

K(P) =

EXERcICI 139. Sigui S C R3 I’hiperboloide d’equacié 2% + y? = 1 + 2%

" Apunts J. Monterde
8 Apunts J. Monterde
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(a) Determineu l'area de la regi6 de S limitada pels parallels z = 25 1 2z = 2.
(b) Calculeu la curvatura de Gauss de S.

EXERCICI 140. Sigui u : R® — R una funcié diferenciable amb gradient no nul. Sigui
S la superficie de nivell u = o, on « és una constant. Denotem amb H (u) el Hessia de u
en un punt P € S, isigui X € TpS. Llavors

HwX = |Vu|| VxN + AN

on N és la normal unitaria a la superficie en P i A un cert escalar. En particular, si Y
també pertany a TpS
(H(u) X,Y) = |[Vul] II(X,Y).

Es pot dir, doncs, que el hessia és, essencialment, la segona forma fonamental.”

4. Teorema egregi
EXERcICI 141. Considereu una superficie S de R?* amb una parametritzacié de la forma
(grafic)
o(u,v) = (u,v,a(u,v)),
on a és una funcié diferenciable.

Doneu, en termes de a i de les seves derivades, ’expressi6 dels simbols de Christoffel
de S.

ExXERrcICT 142. Doneu 'expressio de la curvatura de Gauss en un sistema de coordenades
ortogonals.

ExeErcicI 143. Demostreu que les superficies
@(t,s) = (t cos(s),t sin(s), s) Helicoide
W(t,s) = (t sin(s),t cos(s),log(t)) Logaritmoide

9 Aquest resultat l'utilitza Bouquet a Note sur les surfaces orthogonales, Journal de Mathématiques
Pures et Appliquées, 1846, per donar un exemple d’una familia uniparameétrica de superficies que no pot
formar part d’un sistema triplement ortogonal.
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tenen, en punts corresponents (mateixes coordenades (t,s)), la mateixa curvatura de
Gauss, pero Paplicacié que porta el punt de coordenades (¢, s) de I'helicoide al punt de
coordenades (t, s) del logaritmoide no és una isometria. (La curvatura no determina la
métrica).

EXERCICI 144. Sigui S la superficie de R? donada pels punts del pla horitzontal (x,y,0).

(a) Calculeu els simbols de Christoffel de S quan es parametritza S per les coordenades
cartesianes (z,y).

(b) Considereu la parametritzacio de S per les coordenades polars (de forma que x =
r cos(f), y = rsin(f)) i calculeu un altre cop els simbols de Christoffel respecte
aquesta parametritzacio.

(c) En els dos casos, apliqueu la formula de Gauss per a calcular la curvatura de S.

ExXERcICI 145. Calculeu els simbols de Christoffel de 'esfera de radi r arbitrari en el
sistema de coordenades (esfériques) naturals donades per la longitud (u) i la colatitud (v)
x =1 cos(u) sin(v)

y = r sin(u) sin(v)

z =1 cos(v)

ExErcict 146. Justifiqueu per qué les superficies segiients no son dues a dues localment
isomeétriques:

(a) lesfera,
(b) el cilindre,

(c) la sella definida per z = 2% — y?.

EXERCICI 147. Suposant ds® = A(u,v) (du® + dv?), on A\(u,v) és una funci6 positiva (u,
v s6n coordenades isotermes), proveu que la curvatura de gauss K esta donada per

1
K=——Al

on A = 88—; + g—; és el Laplacia de R2.
Calculeu la curvatura de Gauss d’una superficie en la qual £ = 1/(u? +v*+ 2> =G
i F=0.

5. Superficies de revoluci6

EXERcICI 148. Considereu una corba de la forma y = f(z) en el pla zy (pensat dins R?
com els punts amb z = 0), on f és una funci6 diferenciable amb f(z) > 0 per a tots els x.
Sigui S el subconjunt de R? obtingut en fer girar la corba anterior al voltant de 1'eix de
lesz (y =2=0).

Toc <4< > > < » Tornar



Superficies de revoluci6 49

(a) Demostreu que S és una superficie regular veient que S = ®~1(0) per a una submersio
d: R — R.

(b) Doneu una parametritzaci6 (regular) de S.

(¢) Comproveu que, per a cada punt p = (x,y, z) de S, el pla tangent és perpendicular al

vector N = (f(x) f'(z), —y, —2).

ExeRrcict 149. El conjunt de punts descrit per una corba plana regular C' C II girant

sobre un eix contingut en el pla II i que no talla a la corba C' és una superficie regular

anomenada superficie de revolucio generada per la corba C'.

(a) Proveu que si C = {(2,0,2) € I = {y = 0} C R* | f(z,2) = 0} i es pren com
a eix de gir Oz aleshores la superficie de revolucié generada per C' ve donada per
S ={(z,y,2) € R?| f(y/2% + y*,2) = 0}. Apliqueu-ho al cas particular en que C' és
una circumferéncia que no conté en el seu interior l'origen de coordenades.

(b) Demostreu que si y(u) = (a(u),0,b(u)) és una parametritzacié regular de C' aleshores

o(u,v) = (a(u) cos(v),a(u) sin(v), b(u))
és una parametritzacié regular de S. Les corbes coordenades d’aquesta parametritza-
ci6 s’anomenen parallels si u = ug i meridians si v = vy5. Doneu una parametritzacioé
regular del tor de revoluci6.
(c) Calculeu la primera forma fonamental d’una superficie de revoluci6 utilitzant la pa-
rametritzacié de l'apartat anterior (podeu suposar que u € [0, /] és el parametre arc
de C).
(d) Teorema de Pappus. Amb les mateixes notacions dels apartats (b) i (¢), comproveu
que 'area de S esta donada per
¢
27 / a(u) du .
0

Exercict 150. (Un altre Teorema de Pappus). Demostreu que si una lamina d’area
A situada en el pla yz gira al voltant de 'eix de les y, genera una figura de volum V' donat
per

V =27z A,
on zy és la coordenada z del centre de gravetat de la lamina. Calculeu el volum d’un tor
de revolucio6.
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Exercict 151. Determineu ’aplicacié de Weingarten i calculeu la segona forma fonamen-
tal d’una superficie de revolucié i apliqueu-ho a les superficies segiients:

(a) Esfera.

(b) Tor (exercici 149).

(c) Helicoide (exercici 92).

(d) La superficie parametritzada per

o(u,v) = (Vu? +a? cos(v), Vu? + a? sin(v), a log(u + Vu® +a? )).

Exercict 152. Considerem la superficie de revolucié que s’obté en girar la grafica de la
funci6 y = 2 per a x € (—1,1) al voltant de la recta z = 1. Trobeu els punts parabolics,
hiperbolics i elliptics d’aquesta superficie.

Exercict 153. Trobeu les loxodromies del tor de revolucié parametritzat per

o(u,v) = ((a + 7 cos (%)) cos(v), (a + 7 cos (%)) sin(v), 7 sin (%)) :

Recordeu que les loxodromies d’una superficie de revolucié son les corbes p(u(t), v(t))
que formen un angle constant # amb els parallels u = ct. (O de forma equivalent amb els
meridians que son perpendiculars als anteriors).

EXERcICI 154. Considerem la superficie de revolucié S donada per ’equacio

z = cosh(y/22 + y? ).

(a) Calculeu la longitud r de I'arc de meridia que uneix els punts (0,0, 1) i (a, 0, cosh(a)).

(b) Calculeu I'area A de la regié R de S donada per z < cosh(a) i expresseu-la en funcié
de r (A= A(r)).

(c) Calculeu el cosinus de 'angle que forma el vector normal a S en el punt (a, 0, cosh(a))
amb el vector (0,0, 1).

(d) Calculeu I'area del casquet esféric obtingut com la imatge de R C S per I'aplicaci6 de
Gauss de S. Aquest casquet el denotarem v(R) i la seva area per A(v(R)). (L’area
d’un casquet esféric d’amplitud 6 € [0, 7], en una esfera de radi 1, és 27 (1 —cos(f))).
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(e) Calculeu la curvatura de Gauss K de S en el punt (0,0,1) i comproveu que

2_A
lim T A0 _ g
r—0 rd 12
(Tingueu en compte que arcsinh(z) = In(z + Va2 +1) = x — % + O(2°) i que
(14 2)* =14 Az + 28027 4 O(43)).
mb la mateixa notacié que a l'apartat anterior, comproveu que
f) Amb 1 i 16 I’ i

L AWR)
K= 71"—>0 A(r) '

ExERrcICct 155. Demostreu que les tniques superficies de revolucié minimals sén el pla i
la catenoide.

Exercict 156. [Fedenko] Demostreu que si una superficie té la propietat que les seves
rectes normals tallen totes una mateixa recta, llavors es tracta d’una superficie de revolucio
al voltant d’aquesta recta.

Exercict 157. Considerem la superficie de revolucié generada per una corba (), t € I,
del pla xz al girar al voltant de l'eix z. Sigui Z;,+, la zona determinada per dos parallels
que passen pels punts (1) 1 y(t2). Demostreu que la curvatura total de Z;,;, és igual a

27 (sin(a(ty)) — sin(a(ta))),

on «a(ty), a(ts) son els angles que la tangent a y(¢) en els punts ¢t = tq, i t = ¢ forma amb
I'eix de gir.

6. Superficies reglades

EXERCICI 158. Una superficie S de R? s’anomena reglada si es pot parametritzar de la
forma
p(s,t) =(s) +tu(s),

on (s) i v(s) sén corbes de R3 i |ju(s)|| = 1.

(a) Demostreu que una superficie reglada S té curvatura de Gauss K < 0. A més, K =0
si, 1 només si, el vector normal unitari v de S és constant al llarg de les rectes s = ct.

(b) Les superfices reglades amb K = 0 s’anomenen desenvolupables. Proveu que en aquest
cas hi ha una corba t = t(s) on ¢(s,t) deixa de ser regular. Aquesta corba s’anomena
eix de regressid (no és pas una recta com podria suggerir la paraula “eix”). Proveu
que les rectes s = ct. son tangents a 'eix de regressio.

ExeErcicI 159. Determineu els punts que realitzen la distancia minima entre dues rectes
consecutives d’una superficie reglada ¢(s,t) = v(s) + tu(s).

ExeErcICI 160. Sigui S una superficie reglada tal que les generatrius son rectes senceres.
Suposem K < 0. Demostreu que la curvatura total és igual a —2 L on L és la longitud de
la indicatriu unitaria de les generatrius.

Useu aquest resultat per calcular la curvatura total de la sella de muntar (hiperboloide)
z = xy i determineu quin percentatge de l'esfera queda cobert per ’aplicacié de Gauss.

Exercict 161. L’invers del parametre de distribuci6 és la taxa de variacido de l'angle
entre rectes respecte la seva distancia.
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EXERCICI 162. Determineu la corba d’estriccio de

©o(s,t) = (cos(s) + s sin(s),sin(s) — s cos(s), s) + L (sin(s), — cos(s), 1).

V2

Es una corba plana? De quina superficie es tracta?
ExERrcIcI 163. Trobeu la corba d’estriccié de

s, 1) = (% cos(s). sin(s),0) +

;(S) (— sin(s), V2 cos(s), \/5) .

3 + cos?

Es una corba plana? De quina superficie es tracta?

EXERCICI 164. (Desenvolupant tangencial) Sigui v(s) una corba parametritzada per
I’arc de curvatura no nulla en tot punt.

(a) Comproveu que ¢(s,t) =y(s) +t+(s), amb t # 0, defineix una superficie.

(b) Demostreu que aquesta superficie és desenvolupable.

(c) Proveu que els coeficients de la primera forma fonamental no depenen de la torsio
de 7.

(d) Calculeu la curvatura de Gauss i la curvatura mitjana en termes de la curvatura i
torsio de la corba.
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(e) Considerant una corba plana amb la mateixa curvatura que 7y, deduiu que hi ha una
isometria d’un obert de la superficie anterior amb una regié del pla.

Exercict 165. (Desenvolupant de les normals) Sigui v = ~(s) una corba de R?
parametritzada per ’arc amb curvatura k # 0 i torsié 7. Calculeu la curvatura de Gauss
de la superficie parametritzada per

p(s,t) =(s) + TN (s),
on N és el vector normal de la corba 7.

ExXERCICI 166. (Desenvolupant de les binormals) Sigui 7 = 7(s) una corba de R?
parametritzada per ’arc amb curvatura k # 0 i torsié 7. Calculeu la curvatura de Gauss
de la superficie parametritzada per

p(s,t) =~(s) + 1 B(s),
on B és el vector binormal de la corba ~.

EXERCICI 167. (Superficie polar) Sigui v = v(¢) una corba regular de R*® parametrit-
zada per I'arc. La superficie polar de v és la superficie reglada formada per les rectes
paralleles a la binormal (en cada punt) que passen pel centre de curvatura (en aquest
punt). Concretament

ot 5) = A(t) + p(t) N(t) + 5 B(t),
on p(t) és el radi de curvatura de . La recta que obtenim en fixar ¢ i variar s es diu eiz
polar.

(a) Demostreu que aquesta definici6 coincideix amb la classica: La superficie polar de -y
és l’envolupant dels plans normals. Recordem que I’envolupant d’una familia unipa-
rametrica de plans (la nostra familia és uniparamétrica perqué tenim un pla per a
cada valor del parametre ¢ de la corba) és una superficie tangent en cada punt a un
d’aquests plans. Aquesta superficie es troba facilment resolent el sistema format per
I'equaci6 dels plans (que depén de t) i I'equaci6é que s’obté derivant aquesta respecte
del parametre ¢.

(b) Trobeu els centres de les esferes osculatrius, que sén aquelles amb contacte d’ordre 3
amb ~(t). Comproveu que pertanyen a la superficie polar.

Indicacié: L'esfera S donada per la condicié (¢ —a, ¢ —a) — R? = 0 té un contacte d’ordre
k amb ~(t) en un punt g si
di
ﬁS(y(tg)) =0, 1=0,...,k.
Comproveu que les esferes amb centre ’eix polar que passen pel punt corresponent de ~y
tenen contacte d’ordre dos amb la corba.

(¢) Comproveu que la superficie polar és desenvolupable, amb eix de regressio format pels

centres de les esferes osculatrius.
Indicacio6: L’eix de regressié de la superficie polar és el lloc geométric dels centres de les
esferes osculadores (no és pas una recta com podria suggerir la paraula “eix”). Recordem
que l'eix de regressié d’una familia uniparameétrica de plans G(z,y, z,t) = 0 és la corba que
s’obté en resoldre el sistema

G($7 y7 Z’ t) = 07
4 Gy, 2t) = 0
dt :B7 y7 Z’ - )
d2
ﬁG(w,y,z,t) =0.
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Exercict 168. Considerem les superficies reglades que es poden construir entre dues
corbes tancades dels plans z = 01 z = h. Veieu que la que tanca volum maxim és
desenvolupable.

EXERCICI 169. [Fedenko] Sigui ¢(u, v) una parametritzacio principal (F' = f = 0) d'una
certa superficie. Sigui ¢(u,vg) una de les linies de curvatura. Considerem la superficie
reglada formada per les rectes que tallen ¢(u, v) tenint en el punt de contacte la direcci6
de l'altra linia de curvatura, és a dir

U(u,t) = p(u,vg) +t g—f(u, Vo).

Demostreu que aquesta superficie reglada és desenvolupable i cada punt de 'aresta de
retrocés esta a distancia 1/kgi(u,v) de p(u,vp), on kg és la curvatura geodesica de les
les linies coordenades v = vy i l’aresta de retrocés és una corba que té per tangents les
rectes de la superficie reglada (esta formada pels punts on la parametritzacio deixa de ser
regular i per tant queda fora de la superficie).

Exercict 170. Demostreu que I’helicoide recte és la tnica superficie reglada minimal
(llevat del pla).

Exercict 171, (Desenvolupable osculadora'’) Sigui «(s) una corba sobre una su-
perficie. Sigui Y(s) un camp tangent a la superficie al llarg de 7(s) i suposem que
II(+'(s),Y(s)) = 0. Llavors la superficie reglada ¢(s,t) = v(s) +tY(s) és desenvolupa-
ble.

7. Corbes sobre superficies
7.1. Curvatura normal i curvatura geodésica

ExXERrcICT 172, Doneu una féormula per al calcul de les curvatures normal i geodésica per
a corbes no parametritzades per 1’arc.

EXERCICI 173. Sigui f : S; — Sz una isometria local i sigui y(s) una corba a 5.
Demostreu que la curvatura geodésica de ~y(s) coincideix, per a cada s, amb la curvatura
geodésica de la corba f(y(s)).

ExXERrcICI 174. Sigui (U, ¢) una parametritzacio ortogonal (F' = 0) d’una superficie.
Denotem kg la curvatura geodeésica de les corbes v = constant i ko la curvatura geodesica
de les corbes u = constant. Llavors tenim

T
AT OB VG
by = 2t
2 9GVE

EXERCICI 175. Sigui (s) una corba sobre una superficie S' (no necessariament parame-
tritzada per 'arc). Demostreu que la seva curvatura normal &, es pot calcular com
o (s) = DE0()
n - , 9 )
[7'(s)]

10 Aquest és el nom que li dona Klingenberg.
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on v és el vector normal de la superficie'!.

EXERCICI 176. Demostreu que la curvatura mitjana H en un punt d’una superficie es
pot calcular com

e

H:l/ ko (0) O,
0

on k,(0) és la curvatura normal, en aquest punt, en la direcci6 que forma un angle # amb
una direccié prefixada.

ExXBRCICT 177. Sigui v(t) = (u(t),v(t)) una corba regular de R?. Considereu la parame-
tritzacio del cilindre ¢(u,v) = (cos(v),sin(v),u) i la corba 5(t) = ¢(y(t)). Determineu,
en termes dels invariants de v, la curvatura geodeésica de f3.

Exercict 178. Calculeu la curvatura geodésica del parallel superior del tor de revolucio
generat per revoluci6 del cercle

(x—a)’+22=7% y=0
al voltant de l'eix z (a > r > 0).

ExXERrcICT 179. Siguin S; i Sy dues superficies que es tallen al llarg d’una corba regular
C' formant un angle (P) (angle entre les normals) en cada un dels punts P € C.
Demostreu que la curvatura k& de C' en P compleix

k?sin?(0) = AT + A3 — 2\ Ay cos(h),

on A1 i Ay so6n les curvatures normals en P en la direccié de la recta tangent a C', a 57 i
Sy respectivament.

7.2. Linies de curvatura

Exercict 180. Recordeu que una linia de curvatura d’'una superficie és una corba tal
que el seu vector tangent és una direcci6 principal en cada punt.

(a) Demostreu que una corba =y : I — S és linia de curvatura de S si i només si (v o) (¢)
és multiple de 7/(t) Vt € I, on v és el normal a S.
(b) Teorema de Joachimstal.'” Suposem que dues superficies S; i Sy es tallen en una
corba C, que és linia de curvatura de S;. Demostreu que C' és linia de curvatura de
S5 si i només si 'angle entre S 1 Sy és constant al llarg de C.
Exercict 181. Considereu un helicoide parametritzat per
o(u,v) = (v cos(u),v sin(u), cu),

on ¢ és una constant qualsevol. Determineu les seves linies de curvatura.

EXERCICI 182. (Superficie de Enneper)'® Sigui S la superficie parametritzada per

o(u,v) = (u+uv® —u?/3,v+uPv —v3/3,u? —v?).

HEn certs texts es pot trobar aquesta propietat com a definicié de la curvatura normal.

12 Demonstrationes theorematum ad superficies curvas spectantium, Journal fiir die reine und angewand-
te Mathematik 30 (1846), 347-350.

13 Aquesta superficie, que té autointerseccions, va ser introduida per Alfred Enneper el 1864 en 'estudi
de superficies minimals a Particle Analytisch-geometrische Untersuchungen, Zeitschrift fiir Matematik
un Physik 9 (1864), 96-125). La parametritzacié que apareix a ’enunciat sembla una expressié compli-
cada pero, utilitzant el que s’anomena representacid d’Enneper-Weirstrass de les superficies minimals,
correspon simplement a la que dona el parell de funcions holomorfes f(z) =1, g(z) = z.
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(a) Calculeu els coeficients de la primera i la segona formes fonamentals.
(b) Comproveu que la curvatura mitjana és 0 (superficie minimal).
(c¢) Quines son les curvatures principals? Determineu les linies de curvatura.

ExERCICI 183. Sigui S la superficie de revolucié generada per la corba del pla y = 0 que
s’escriu com y(u) = (a(u),0,b(u)) (parametritzada per 'arc i amb a(u) > 0) donada per
e(u,v) = (a(u) cos(v),a(u) sin(v),b(u)).

Determineu les curvatures principals i les linies de curvatura.
EXERCICI 184. Les linies de curvatura donen lloc, a través de les normals a la super-

ficie, a corbes sobre les superficies focals que tenen, en el punt d’interseccid, direccions
conjugades.

Exercict 185. Comproveu l'equacié de les linies de curvatura donada per Darboux
(Legons, p. 194),

dr du u
dy dv v|=0,
dz dw w

on u, v, w soén els cosinus directors de la normal, i que coincideix amb I’equacié 'habitu-
al (5) quan la superficie esta donada per z = z(z, y).

EXERCICI 186. Si el pla osculador al llarg d’una linia de curvatura (no asimptotica en
cap punt) forma angle constant amb el pla tangent a la superficie, llavors la corba és
plana.

ExERCICI 187. Demostreu que una corba v sobre una superficie és linia de curvatura si,
i només si, la recta tangent a ~ i la recta tangent a la seva imatge esférica per ’aplicacio
de Gauss son paralleles en punts corresponents.

ExERcICI 188. (Teorema de Monge'") Demostreu que una corba d’una superficie S
és linia de curvatura si i només si les rectes normals a S al llarg de la corba formen una
superficie desenvolupable.

Exercict 189. Calculeu les linies de curvatura de les superficies de revolucio.

Exercict 190. Demostreu que les inversions conserven les linies de curvatura.

4 Gaspard Monge tot estudiant el problema del transport de terres a Mémoire sur la théorie des
déblais et des remblais, Histoire de I’Académie Royale des Sciences. Paris (1781), 666-704, es troba amb
superficies reglades que tallen normalment la superficie i li apareixen de manera natural les linies de
curvatura. Les curvatures principals ja havien estat estudiades per Euler, perd no les linies de curvatura
principal.
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7.3. Linies asimptotiques

Exercict 191. Demostreu que una corba és asimptotica quan és ortogonal a la seva
imatge esférica.

EXERCICI 192. Sigui S C R? una superficie regular, i sigui v : I — S una corba regular
continguda a S. Suposem que v és una corba asimptotica de S (i.e. que la seva curvatura
normal és zero).

(a) Demostreu que B = v o+, on B és el binormal a v i v és el normal a S.

(b) Calculeu II(T,T) i II(N,T), on T i N son respectivament el tangent i el normal
principal a «, i IT és la segona forma fonamental. (Observeu que N és tangent a la
superficie, per 'apartat anterior, i per tant té sentit fer aquest calcul).

(c) Demostreu que per tot ¢t € I es compleix la igualtat K(y(t)) = —7(¢)%, on 7 és la
torsio de v i K és la curvatura de Gauss de S.*

Exercict 193. Demostreu que les corbes coordenades de la superficie parametritzada
per
U —v U+ v

o(u,v) = (e* cos(b), e sin(b), a), a=a(u,v)= 5 b=blu,v)= 5

son linies asimptotiques.
Comproveu que sobre la linia v = 0 es té 72 = — K.

EXERCICI 194. Determineu les corbes asimptotiques, les linies de curvatura, la curvatura
de Gauss i la curvatura mitjana de les superficies segiients:

(a) La catenoide: superficie de revolucié que s’obté girant la catenaria (exercici 151(d))
al voltant d’una recta que no la talli i sigui perpendicular al seu eix de simetria.

(b) L’helicoide (exercici 117)

(c¢) La pseudoesfera: superficie de revolucié generada per la tractriu (exercici 16) al voltant
del seu eix.

(d) La uralita: Grafic de z = 2 cos(y).

Exercict 195. [Shifrin] Demostreu que la trajectoria que descriu el focus d'una ellipse
quan aquesta gira sense lliscar per sobre d’una recta és una corba tal que engendra per
rotacié sobre aquesta recta una superficie de revolucié de curvatura mitjana constant.

15 Aquest resultat va ser publicat per A. Enneper, Uber asymptotische Linien, 1870, i també per E. Bel-
trami Dimostrazione di due formole del Sig. Bonnet, 1866, i per aix0 es coneix com Teorema de Beltrami-
Enneper.
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EXERCICI 196. Sigui S la superficie de R?® engendrada fent girar al voltant de l'eix y
la corba C' continguda en el pla zy i parametritzada per v(t) = (2 + cos(t), 2 sin(¢)) on
0 <t < 2m. Determineu les corbes de S que son asimptotiques i, a la vegada, linies de
curvatura.

Exercict 197. Determineu les corbes asimptotiques i les linies de curvatura de la super-
ficie d’equaci6 z = x y.

Exercict 198. Expliciteu la isometria entre la catenoide i ’helicoide tot veient que les
linies de curvatura de 'una van a parar a les linies asimptotiques de I’altra i reciproca-
ment.

Exercict 199. Demostreu que quatre linies asimptotiques qualssevol d’una superficie
reglada, diferents de les generatrius, tallen aquestes en quatre punts que tenen sempre la
mateixa rad doble.

Exercict 200. (Féormula de Liouville!'®) Sigui (U, ) una parametritzaci6 ortogonal
d’una superficie S i sigui y(s) = ¢(u(s), v(s)) una corba sobre S parametritzada per 'arc.
Demostreu que la curvatura geodésica de y(s) ve donada per

ky = kg1 cos(6) + ko sin(0) + 6", (4)

on 6 = 0(s) és Pangle orientat entre o, 14/(s) en el punt (s) i k,1, kg2 son respectivament
les curvatures geodésiques de les corbes v = constant i u = constant que passen pel punt
(s).

7.4. Geodésiques

Exercict 201. Doneu una parametritzacié del cercle maxim de 'esfera obtingut per
la intersecci6 amb el pla y = z en termes de les coordenades esfériques (expresseu la
colatitud com funcié de la longitud). Es compleix 'equacié diferencial de les geodésiques
per a aquesta corba (amb aquesta parametritzacio)?

ExERcICI 202. Quina condicié (tipus equacio diferencial) ha de complir una corba sobre
una superficie per tal de poder afirmar que, fent un canvi de parametre, s’obté una
geodeésica?

16 Aquesta formula apareix per primer cop a la versié comentada per Liouville de Application de I’A-
nalyse a la Géométrie de Monge (Nota IT), cinquena edicio, el 1850.
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ExeRrcict 203. Considereu I’helicoide parametritzat per
o(u,v) = (u cos(v),u sin(v),v).

(a) Determineu les equacions diferencials que han de complir (u(s),v(s)) per tal que la
corba v(s) = ¢(u(s),v(s)) sigui una geodesica.

(b) Comproveu que les corbes de la forma v = ct., convenientment parametritzades, son
geodeésiques.

(c¢) Si una corba sobre I’helicoide talla amb un angle constant les corbes de la forma
v = ct., pot ser una geodeésica?

EXERCICI 204.

(a) Suposem que dues superficies son tangents al llarg d’una certa corba C'. Demostreu
que si C' és geodésica en una de les dues superficies també ho és a 'altra.

(b) Demostreu que tota corba v(s) de R? és geodésica d’alguna superficie.
(Nota: Si no veieu com obtenir aquesta superficie, proveu la superficie reglada
©(s,t) =7(s) +t B(s), on B(s) és el vector binormal de la corba).

(c¢) Descriviu un métode per determinar les geodésiques d’una superficie per medi d’una
banda adhesiva (cello).

EXERcICI 205. Siguin S C R? una superficie regular i C' C S una corba regular contin-
guda a S. Demostreu les segiients afirmacions.

(a) C és geodésica de S i linia asimptotica de S si i només si C' esta continguda en una
recta de R3.

(b) Suposem que C és geodésica de S. Aleshores C' és linia de curvatura de S si i només
si C' és plana.

(¢) Podeu donar un exemple de linia curvatura plana perd que no sigui geodésica?

ExERCICI 206. Sigui S una superficie connexa en la que totes les geodésiques sén corbes
planes. Demostreu que S esta continguda en un pla o en una esfera.

ExeErcict 207. Demostreu que els plans osculadors d’una geodésica sobre un con estan
a distancia constant del vértex.

ExERrcICI 208. [Struik p.154] Demostreu que les evolutes d’una corba son geodésiques
de la superficie polar d’aquesta corba.
Exercict 209. Demostreu que les geodésiques del tor de revolucié

U(p,8) = (r cos(p),r sin(p),a sin(d)), r=p+a cos(h)

compleixen 'equaci6 diferencial de primer ordre
cadf

dp = ——
7 rv/r2 —c2

amb ¢ constant.

Exercict 210. Sigui ¢(r, @) un sistema de coordenades polars geodésiques. Sabem, pel
lema de Gauss, que la primera forma fonamental s’escriu com

= &)
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Demostreu que
VG =1+ o0(r), quan r — 0.

Aixo vol dir que o(r) és una funcié de r i « tal, que

lim M =0.
r—0 7r

Exercict 211. Demostreu que en un sistema de coordenades polars geodésiques tenim,
amb la mateixa notaci6é que a ’exercici 210,

7”3

m:’I"—KOE-f-O(Tg)

onm=+G,iKy=K(0,0) és la curvatura de Gauss a l’origen.
Exercict 212, Calculeu la longitud i 'area del cercle geodésic de radi R.
Exercict 213. (Pseudoesfera) Calculeu les geodésiques de la pseudoesfera.

EXERcICI 214. (Torsié geodésica) Sigui v(s) una corba sobre una superficie S, para-
metritzada per arc. Sigui P = v(0) i (7, e) una base ortonormal positiva de TpS amb
T =~'(0). La torsid geodesica'” de v(s) en P és

79 = (V'(0), €),
on v(s) representa el valor del vector normal a la superficie v en el punt v(s) i

v(0) = dilis> |s=0"

Demostreu que
(a)
7, = (k1 — ko) cos(a) sin(w),
on ki, ko son les curvatures principals i o és 'angle entre la direccié principal e; i el
tangent a la corba T
(b)
6'(0) =7 — 7,
on 6 és l'angle orientat entre el normal principal a la corba N i v. Orientat vol
dir que hem de sortir de N en direcci6 B (binormal de la corba). En particular,
cos(6(s)) = (v(s),N(s)). També es compleix que 7, coincideix amb la torsi6 de la
geodeésica que passa pel punt P amb la mateixa tangent que la corba considerada.
(c¢) Les linies de curvatura tenen torsi6 geodésica zero en tots els seus punts, i aquesta
condici6 les caracteritza.

ExXERcICI 215. Sigui S la superficie de revolucié de la corba del pla zz donada per
v(u) = (a(u),0,b(u)), al voltant de l'eix de les z, parametritzada per

o(u,v) = (a(u) cos(v),a(u) sin(v), b(u)),
ona(u) >01i(a)?+ (V)?=1.

1TTerme introduit per Bonnet, ja que coincideix amb la torsi6 de la geodésica que passa pel punt amb la
mateixa tangent que la corba considerada. Pero a diferéncia de la curvatura geodésica la torsié geodésica
no es conserva per deformacions (isometries) de la superficie.
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(a) Calculeu el simbols de Christoffel i les equacions de les geodésiques de S.

(b) Comproveu que els meridians d’una superficie de revoluci6 soén geodésiques.

(c) Proveu que un parallel és una geodésica si, i només si, la recta tangent al meridia
que passa per cada un dels seus punts és parallela a l’eix de rotacié de la superficie.
Apliqueu-ho al cas de l'esfera i del tor.

(d) Demostreu el Teorema de Clairaut:

Si B(s) és una geodésica (parametritzada) de S i 0(s) és l'angle que forma
B amb el paraliel per 5(s), aleshores el producte de la distancia de 5(s) a
Ueix de gir pel cosinus de 0(s) és constant al llarg de la corba .

(e) Veieu que el teorema de Clairaut sobre el con equival al teorema del sinus Euclidia i
sobre l'esfera equival al teorema del sinus esféric.
(f) Calculeu la curvatura geodésica dels parallels (u = ug) en funcié de a(u).

EXERCICI 216. Sigui v : I € R — C C R? una corba regular parametritzada per
l'arc en el pla zy de la forma v(u) = (z(u),y(u),0) i @ = £(0,0,1) un vector unitari
perpendicular al pla que conté la corba.
Sigui U = I x R i considerem l'aplicaci6 ¢ : U C R? — S C R? donada per
o(u,v) = cosh(v) y(u) + sinh(v) .

(a) Proveu que ¢ : U — S defineix una parametritzacié regular de S C R3.

(b) Determineu la primera forma fonamental de S i I'angle que formen les linies coor-
denades. Per a quines corbes « totes les linies coordenades de la superficie S son
ortogonals?

(c¢) Calculeu el vector normal a S al llarg de v en termes del vector tangent a la corba
i del vector unitari .

(d) Proveu que 7 és una geodésica de S.

(e) Es v una linia de curvatura de S?

(f) Si v és la parametritzaci6 d’'una circumferéncia, quina és la superficie que estem
considerant?

EXERCICI 217. (Superficies isotermes de Liouville '*) Demostreu que si Ielement
de longitud d’una superficie es pot escriure com

ds* = (U = V) (U du® + V dv?)
amb U = U(u), U; = Uy(u), V = V(v), V; = Vi(v) llavors les geodésiques compleixen
I'equaci6 diferencial (angle d’inclinacio)
U sin?(0) +V cos*(0) = a,
on a és una constant i 6 = 6(u(s),v(s)) és 'angle que en cada punt de la geodésica de

coordenades (u(s), v(s)) forma aquesta amb les corbes coordenades v = ct. que passen pel
punt.

Exercict 218. Comproveu que les quadriques son superficies isotermes de Liouville (217)
utilitzant la parametritzacié que es desprén dels calculs de 'exerci 91. Estudieu les linies
de curvatura de 'ellipsoide.

Exercict 219. Demostreu que les geodesiques de l'ellipsoide que no passen pels punts
umbilicals es mantenen en una regié limitada per linies de curvatura. Si passen per un

18Les superficies de Liouville apareixen a la Nota III de la versié6 comentada per Liouville, el 1850, de
I’obra de Monge Application de I’Analyse a la Géométrie.
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punt umbilical arriben al punt umbilical diametralment oposat i dues d’aquestes no es
tallen si no és en aquests mateixos punts umbilicals.

EXERCICI 220. Sigui ¢ : U C R? — R3 una superficie i suposem que les corbes sobre
U donades per f(u,v) = ¢ donen lloc a una familia de geodésiques sobre la superficie.
Demostreu que existeix una funcié ¢(u, v) que és constant sobre les trajectories ortogonals
a la familia de geodésiques anterior i tal que si (u(s),v(s)) son les coordenades d’una
d’aquestes geodésiques (f(u(s),v(s)) = ¢) llavors ¢(u(s),v(s)) = s + ct. (La funcio ¢
mesura distancia sobre les geodésiques).

Exercict 221. Demostreu que les linies de curvatura de 1’el'lipsoide son ellipses i hipér-
boles geodésiques.”

Exercict 222. Trobeu 'equacié de 'angle d’inclinacié de les geodésiques a partir de la

formula de Liouville.

8. Sense classificacio clara

Exercict 223, Considerem dos meridians C i Cs d'una esfera que formen un angle «
en el punt P. Fem el transport parallel d'un vector w tangent a C; en P al llarg de C}
i també al llarg de Cy fins el punt @ on els meridians es tornen a trobar (@) és doncs
I'antipodal de P). Siguin w; i wy els dos vectors tangents a l'esfera en ) aixi obtinguts.
Quin angle formen wy i wy?

EXERCICI 224. Sigui N un pol de l'esfera S? i siguin P, () dos punts del corresponent
equador tals que els meridians N@Q i N@ formen un angle o en P. Sigui w un vector
unitari tangent al meridia NP en N.

(a) Fem el transport parallel de w al llarg de la corba tancada NPQN (meridia-equador-
meridia). Determineu I'angle que forma w amb el seu transportat parallel al final de
la corba, és a dir, en N.

(b) Repetir I'exercici anterior quan P i () son punts d’'un parallel de colatitud ¢y (si
o = /2 estem en el cas anterior).

EXERCICI 225. (Superficies tubulars). Sigui v : I — R?® una corba regular parame-
tritzada per l'arc i amb curvatura mai nulla. Sigui IL, el pla normal a la corba en el punt
~(u). Sobre I, considerem una circumferéncia C, de centre v(u) i radi r(u). La reunié
S = UyerC, d’aquestes circumferéncies s’anomena superficie tubular o tub al voltant de
la corba 7y(u) amb radi (variable) r(u). Moltes vegades es pren r(u) constant ry i es parla
del tub de radi ry.
(a) Proveu que
o(u,v) = y(u) + r(u) (cos(v) N(u) + sin(v) B(u)),
on N(u) i B(u) denoten els vectors normal principal i binormal de la corba ~, para-
metritza S.
(b) Calculeu els coeficients de la primera forma fonamental de S i proveu que si 0 < r(u) <
1/k(u), on k(u) és la curvatura de -, aleshores ¢ és una parametritzacio regular.
(c¢) Demostreu que I'area de S no depén de la torsi6 de 7.

19 Aquestes hipérboles s6n corbes tancades.
20Problema 14, secci6 4-8, Struik
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(d) Determineu les linies de curvatura si r és constant i la corba ~ és plana.
(e) Particularitzeu els resultats anteriors al cas del tor.

EXERCICI 226. Determineu 'equacié diferencial dels cilindres i de les superficies de revo-
luci6.?!

EXERCICT 227. [Weatherburn®?’] Considerem la familia de superficies u(z,y,2) = ct.

d
Sigui n el camp unitari normal a aquestes superficies, n = M. Sigui 7y(s) una
lgrad(u)|

corba integral de n parametritzada per I’arc. Demostreu que la magnitud del rotacional
de n és la curvatura de la corba trajectoria ortogonal « i la seva direccié és la de la
binormal a la corba, és a dir,

rot(n) = k B

on k = k(s) és la curvatura i B = B(s) la binormal de ~(s).

ExeRrcict 228. Calculeu la familia de superficies ortogonals al camp

X=(yz(y+z2),rz(x+2),ry(r+y)).

ExXERCICI 229. [Puig Adam]| Determineu les superficies tals que el seu pla tangent en
cada punt talli I'eix 2z en un punt d’ordenada z igual i de signe contrari a ’ordenada z
del punt de contacte. D’entre aquestes localitzeu la que conté la hipérbola 2% — y? = 1,
z=1.

21 Andlisis Matematico, J. Rey Pastor, P. Pi Calleja, C. A. Trejo
22 Differential geometry of three dimensions, Cambridge University Press, 1955.

Toc <4< > > < » Tornar



64

Solucions als Exercicis

Corbes planes

Parametritzacions i parametre arc

Exercici 1. La parametritzaci6 més natural de la circumferéncia unitat consisteix a
donar t +— (cos(t),sin(t)), t € [0,27]. Amb aquesta parametritzacié la circumferéncia
es recorre en el sentit positiu dels angles, és a dir en contra de les agulles del rellotge,
comengant pel punt (1,0). Si volem recorrer-la en sentit contrari només hem d’invertir
la direcci6 del parametre t, és a dir, posar —t en lloc de t. Aixi, la parametritzacio
t — (cos(—t),sin(—t)) = (cos(t), —sin(t)), amb t € [0,2 7], comenca també en el punt
(1,0) pero descriu la circumferéncia en el sentit de les agulles del rellotge.

Finalment, si volem una parametritzacié que comenci en un altre punt diferent del
(1,0) només hem de fer una translaci6 en el parametre ¢t. Per exemple, per tal que v(0) =
(0,1) ens podem quedar amb la mateixa parametritzacié que ja tenim (cos(t), —sin(t))
perd amb t € [37”, 37” +27]. Siho volem reparametritzar entre 0 i 27 només hem de posar
T=t—3"€0,2n], i tindrem

v(T) = (cos(T + 3;), —sin(T + 3;)) = (sin(T), cos(T)).

O

Exercici 2(a) Observem en primer lloc que y(t) = (¢ (t* — 2),t? — 2).

El punt (—1,—1) pertany a la imatge de v. En efecte, les equacions > — 2 = —1 i
t-(—1) = —1 tenen per soluci6 el parametre ¢t = 1, és a dir, v(1) = (-1, —1).

De la mateixa manera v(2) = (4, 2).

En canvi, el punt (1,2) ¢ Im~ ja que el sistema d’equacions t* —2=21it¢-2=1no
té solucio. O]

Exercici 2(b) La interseccié de la imatge de v amb 'eix de les z (y = 0) correspon als
valors del parametre ¢ que fan que 2 —2 = 0, és a dir, per a t = /2, i y(£v2 ) = (0,0).
D’altra banda, la intersecci6 amb leix de les y (x = 0) s’obté en resoldre ¢ (t* —2) = 0 i
consisteix per tant en l'origen v(£v/2 ) = (0,0) i en v(0) = (0, —2). O

2
Exercici 2(c) Es compleix % = t, d’on (%) — 2 =1*—2 = y(t). De manera que

la imatge esta continguda en el conjunt C' = {(x,y) € R? | 2* — 2¢y* — ¢ = 0}. D’altra
banda, tot punt (z,y) de C' compleix automaticament que y > —2 ja que la condicid
que compleixen els punts de C' també es pot escriure com y? (y + 2) = 22, de manera
que podem prendre t = /y + 2 i tenim () = (x,y), i.e. la imatge de v no només esta
continguda a C' si no que és igual a C'.
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O

Exercici 3. Cal veure si aquestes parametritzacions determinen un vector tangent a la
corba que no s’anulla en cap punt.

Com que

B'(t) = (=2 sin(2t), —sin(t)),

la primera component s’anulla en tots els valors de t que s6n miltiples enters de 7/2
(t = nm/2) i la segona s’anulla sempre que el valor de ¢ sigui un multiple enter de
(t =n'm). Aix0 fa que les dues components s’anul'lin simultaniament en tots els multiples
enters de 7, per tant la corba parametritzada § deixa de ser regular en els valors de ¢
multiples enters de 7.

Si es fa un grafic del seu recorregut s’obté un esquema com el segiient:

on es veu clarament que la corba correspon a un tros de parabola, concretament la donada
per = y*> — 1. A l'enlla¢g®® https://ggbm.at/kkh3ePA9 (GeoGebra) hi ha una animacio
d’aquesta corba amb el seu vector tangent, on es pot comprovar com el vector tangent
s’anulla a les dues puntes de la dreta on el recorregut de la corba ha de tornar enrere.

Per a la corba v es compleix
7' (t) = (2 cos(2t), —sin(t)).

La segona component (sin(¢)) s’anulla quan el valor del parametre ¢ és un multiple enter
de 7 (t = nm), perd en aquest cas la primera component és igual a 2 cos(2n7) = 1 i, per
tant, mai s’anullen simultaniament les dues components del vector tangent a la corba +.
Aixi, la corba parametritzada v és regular en tot el seu recorregut. El grafic d’aquesta

corba sera com el segiient (x =2y +/1 —y? ):

23Els enllacos a fitxers GeoGebra que aniran apareixent sén obra de Gregori Guasp.
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I podeu jugar amb una construccié dinamica seguint l’enlla¢ https://ggbm.at/UDsznsCt.

O

Exercici 4. Prenem ~(t) = (h(t),h(t)) sit > 01 y(t) = (=h(t),h(t)) sit < 0 on

h(t) = e /. Com que totes les derivades de h(t) quan t = 0 sén zero, aquesta funcio
és C*.

Si en tenim prou amb una parametritzacié C? es pot prendre, per exemple, la funcié

donada per h(t) =t —sin(t) (que té les dues primeres derivades en ¢t = 0 nulles). O

Exercici 5(a) 4z®> +y?> =1

0.2 0.4 0.6 0.8 1 1.2

-1.2

Observem que aquesta equaci6 es pot escriure com
2z)+y" =1,
que suggereix escriure
21z =cos(t), y=sin(t),

per a un cert parametre t. Aixi, els punts (z,y) que compleixen l'equacié anterior es
poden escriure com

(x,y) = (% cos(t),sin(t)),
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amb t € [0,27]. Més formalment, tenim una parametritzaci6 v : [0,27] — R? donada
per

1
y(t) = (5 Cos(t),sin(t)>.
Obtindreu una illustraci¢ de la situacié a l'enllag https://ggbm.at/WQrRAwuc. [
Exercici 5(b) %/ + y?/3 =1

1.2 1.4

Serveix la mateixa estratégia que en el cas anterior. Concretament es posa
2?% = cos®(t), y*/® = sin’(t)
de manera que es té
2?3 4y = cos(t) +sin’(t) = 1.
Per tant, la corba s’obté per la parametritzaci6 v : [0, 27] — R? donada per

~(t) = (COSS(t), sin3(t)>
L’enllag https://ggbm.at/zF7QRe6h mostra la situacio.
Noteu, per la forma de la corba, que sera impossible parametritzar-la de forma regular
i amb el vector tangent continu. La parametritzacié que es proposa té el vector tangent
continu pero anullant-se als punts on apareixen les punzes. No obstant, cada una de les
quatre branques si que acceptara una parametritzacio regular (la que s’obté escrivint la
coordenada y en funcié de la coordenada ). Segons el que es vulgui fer serd més tutil una
parametritzacio o 'altra.

Envolupant.
L’envolupant®* de la familia de rectes f(x,y,A) = 0 (una per a cada \) es troba resolent
el sistema

fl,y,A) =0,
0
a—i\c(a:, y,\) = 0.

Aix0 és degut a que els punts de ’envolupant (una corba que té en cada punt per tangent
una recta de la familia) es troben tallant cada recta amb una proxima i passant al limit.
Concretament, si denotem (z, y.) un punt soluci6 de

f(z,y,A) =0,
f(z,y, A +¢€) =0,

24 A la secci6 3 hi ha altres maneres de determinar envolupants i alguns exemples de corbes obtingudes
d’aquesta manera.
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els punts de I'envolupant sén els punts limit lir%(.r€,y€) = (20, yo) suposant que existeix
e—
aquest limit. Aixi,

ll_{% f(xmym )‘) = f(l’(),yo, )‘) =0
f(xeayea A+ h) — f(xea Yes )‘>

lim == (2, Ye, A) = lim lim

e—0 O\ e—0 h—0 h
= lim lim f<x€’y€’ A + h) B f(xeu Ye, )\)
h—0e—0 h
= lim f(@o, 40, A+ 1) = [0, Yo, A)
h—0 h
0
= a_.i(a:anOa)\) =0.

També es pot raonar escrivint les rectes de la familia com a(t) x + b(t) y + ¢(t) = 0.
Per tallar amb una recta proxima es resol el sistema
a(t)z+b(t)y+c(t) =0,
a(t +e)x+bt+e)y+c(t+e) =0.

Restant i aplicant el teorema del valor mitja

ed(m)r+eb(m)y+ecd(n) =0, t<m<t+e
Simplificant € i passant després al limit quan € — 0 es veu que s’ha de resoldre el sistema
a(t)z+b(t)y+c(t) =0,
dt)z+V({t)y+(t)=0
com ja s’ha vist abans (pero el métode anterior funciona per a funcions f(z,y, ) encara
que no siguin lineals).
L’astroide és ’envolupant d’'una escala de longitud a que s’aguanta en els eixos de
coordenades i va lliscant. Es la familia de rectes
y+ tan(a) z — a sin(a) = 0.
Derivant respecte o
x
——— —acos(a) =0
cos?(a) a cos(a) ’
per tant
r = a cos®(a),
d’on
y = —a tan(a) cos®(a) + a sin(a) = a sin®(a),

que coincideix amb la parametritzacié obtinguda abans.
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Exercici 5(c) 2* + y* —3azy =0

Un cop més, pensar en coordenades polars dona un cami clar per obtenir una solucié
raonable. Pensem els punts del pla determinats per les seves coordenades polars (posen
(r,t)) i determinem en funci6 d’aquests parametres quins son els punts de la corba. Si
(x,y) = r(cos(t),sin(t)) I'equacio de la corba s’escriu com

3 (cos(t))® + 72 (sin(t))® — 3ar? cos(t) sin(t) = 0.
Traient els factors comuns r? (que sén els que diuen que la corba passa per l'origen) queda
r (cos®(t) + sin®(¢)) — 3acos(t) sin(t) =0
i, per tant,
3acos(t) sin(t)
r= .
cos3(t) + sin®(¢)

Prenent, doncs,
3acos(t) sin(t) ,
T,Yy) = cos(t),sin(t

( y) COSg(t) + Sins(t) ( ( ) ( ))
s’obté una parametritzacié de la corba. En aquesta expressié cal notar uns quants fets
importants:
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e Des del punt de vista geométric, aquesta construccidé esta mostrant que en cada
direccié del pla hi ha un tnic punt de la corba i és d’aquesta manera que parame-
tritzem la corba.

e Els punts apareixen associats a les direccions del pla no al raigs que surten de
I'origen, aixo es manifesta en el fet que hi ha valors de t per als quals la r corresponent
és negativa.

e En afegir mitja volta (7 radians) al parametre ¢ els sinus i cosinus canvien de signe
i, per tant, apareix el mateix punt. Aixo significa que per descriure tota la corba
n’hi ha prou amb un interval de t que cobreixi només mitja volta. (Aixo no deixa
de ser una altra manifestacié del mateix que apareix als punts anteriors).

e Quan t = —7/4 ot = 37/4 el denominador de r es fa 0 i, per tant, I'expressio
tendeix a infinit. Aixo significa que el millor interval per descriure la corba sera el
que conté les t entre —m/4 1 37/4.

Podeu experimentar la situacié a ’enllag https://ggbm.at/G3ZkvjTu.

Estudi analitic del signe de r. Observem que el denominador és igual a (cos(t) +
sin(t)) (1 —sin(¢) cos(t)) (tenint en compte que a®+b* = (a+b) (a*> —ab+b?)). Per tant,
té el signe de cos(t) + sin(t) = v/2 cos(t — T). D’on resulta clar que el denominador és
positiu a (—m/4,37/4).

El numerador és essencialment sin(2¢) (considerant a > 0). Per tant és positiu a
(0,7/2) U (m,3m/2).

D’aqui es dedueix que r és positiu a (0,7/2)U(37/4,7)U(37/2,77w/4), com ja es veu
en el dibuix.

No obstant la parametritzacio

(3a/2) sin(2t)

() = cos3(t) + sin®(t)

per a t € [0, 7| té perfecte sentit (encara que en alguns punts el signe de r sigui negatiu) i
ja parametritza tota la corba. Es pot pensar que “unim” els tres intervals anteriors restant
7 (que ja hem dit que no canvia els punts de la corba) al tercer interval (37/2,7m/4).

(cos(t), sin(t)).

Recordatori sobre quart harmonic. Recordem que donats quatre punts alineats
A, B,C, D es defineix la seva ra6é doble com el quocient de raons simples

(A, B,C)
(A,B,C,D) = m
Si fixem una referéncia afi (un punt i un vector) i prenem coordenades es compleix
c—a d—a
c—b d—1b
on a, b, c,d son respectivament les coordenades dels punts A, B,C, D.
El quart harmonic dels punts A, B, O és el punt X tal que

(A,B,0,X) = —1.

(A,B,C,D) =

(L’ordre és molt important).
Si prenem la referéncia afi amb origen en O, la coordenada x del quart harmonic X

compleix, doncs,

a r—a

) b xz—0b

(A,B,0,X

Y
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o equivalentment
2
a b
és a dir, la coordenada del quart harmonic és la mitjana harmonica de les coordenades

dels altres dos punts.

Definicio geométrica del Folium. Considerem les paraboles y = %xQ, xr = %yQ. Diem
A, 1 B, respectivament els punts en qué la recta y = tan(u) z talla aquestes dues paraboles
i sigui O l'origen de coordenades. El Folium de Descartes és el lloc geométric de punts X
del pla tals que (Ay, By, O, X) = —1, és a dir, el lloc geométric dels quarts harmonics de
Ay, By, O.

Un calcul facil diu que

A,=am(l,m), B,=—(—,1),

a 1
m m
on m = tan(u).

Per tant, prenent sobre la recta y = tan(u) « la referéncia afi {O; (cos(u), sin(u))} les

coordenades de A, i B, son respectivament
[Au]:am 1+m27 [Bu]:iz\/l‘f‘mQ
m

Ara bé, per la formula (5), la coordenada de X sobre la recta O, A,, B,, respecte la
referéncia afi {O; (cos(u),sin(u))}, és

2 _Zam\/l—l—mQ

1+m3

t=— 1
Znien
Aix{ les coordenades en el pla del punt X séon (recordem cos(u) = +1/v/1+ m?,
sin(u) = m =+ /v/1+m?, on el signe es determina pel quadrant, de fet [t| =¢ a [0,7/2] U
[37/2, 7w /4], on cos(a) > 01 |t| = —t a [37/4, 7], on cos(ar) < 0)

2ma 2m2a )

X = Ga1) = (1] cos(a ] sinfu) = (200, 2200

En funcié de 'angle wu,

a sin(2u)

X = (21,5) = cos?(u) + sin® (u)

(cos(u),sin(u)). (6)

Ara es veu facilment que
x‘z’ —i—yi’ =2ax Yy,

que és I'equacio del folium. (Aixi la constant a és 3/2 de la constant a que apareixia a la
formula inicial del folium).
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Una altra parametritzacio. Posem y = t x llavors
P2 =3ata?
és a dir
3at 3at?
r=-—-7 = —.
1+ YT

Asimptota. Una manera enginyosa de trobar ’asimptota, és observar que un polinomi

té I’arrel doble z = 0 si el terme independent i el coeficient de z sén zero. Per tant, posant

z = 1/, un polinomi té l’arrel oo doble si els dos coeficients de grau superior s’anullen.
En tallar 2° + 9® = 32y amb una recta arbitraria y = m x + n obtenim

(1+m*) 2> +3m(mn—1) 2> +3k(mn—1)z+n*=0.
Per tant 14+m® =01i3m (mn — 1) = 0. Es a dir, Pasimptota és y = —z — 1. O
Exercici 5(d) (x? + y?)? = a? (2 — y?)

Com en els altres casos semblants, pensant (z,y) = r (cos(t), sin(t)), I'equacié que defineix
la corba s’escriu en funcié de (r,t) com

rt = a?r? (COSQ(t) — sin2(t)>

que es transforma immediatament en

r = ay/cos(2t)

i genera la parametritzacio

(x,y) = a+/cos(2t) (cos(t),sin(t)) .
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Es clar que aquesta expressié només té sentit quan cos(2t) > 01 aix0 no es produeix quan
tésa(m/4,37/4) oa (5n/4,7m/4). Per tant, quan es pensa d’aquesta manera s’hauran
de considerar per separat la parametritzacio del lla¢ de la dreta (per at € [—m/4,7/4]) i
la del llag¢ de l’esquerra (t € [37/4,57/4]).

Es pot definir en un sol interval traslladant el segon; tindriem v : [—7/4, 37 /4] — R?
donada per

o cos(2t) (cos(t),sin(t)) site[—m/4,7/4]
’}/ =
—cos(2t) (—sin(t),cos(t)) sit e [n/4,3m/4].

Definicio geométrica de la Lemniscata.
Calculeu el lloc geométric dels punts del pla tals que el producte de distancies als
punts (1,0) i (—1,0) respectivament és 1. O

Exercici 6.

0.4
0.3

0.2

-0.3

-0.4

-0.5

-0.6

Considerem els punts de I'eix de les x donats per = 1/n (que corresponen als punts on
la corba travessa l'eix ja que sin(nm) = 0) i enmig de cada parell consecutiu 1/(n + 1),
1/n afegim el punt 1/(n + 1) =2/(2n + 1) on el valor del sinus és £1. Observem que la
corba ~(t) passa pels punts A, B, C segiients:

1 1
1 1 1
Bzv(n—l—%):(n—l—%’n—l—%)’
1 1
0:7(5) = (5’0)-

La longitud de la corba entre A i C' és més gran o igual que la longitud de la poligonal
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ABC. Pero per a aquesta poligonal es té

{(ABC) = \/(,mlgn+ ) (2n2+1)2+\/<m>2+(2”2+1)2
s (ot v+ )

2n+1

Resumint, la longitud de la corba a Uinterval [0, 1] sera més gran o igual que la suma de

la série
o 4
anl 2n+1

que és divergent. L’esquema segiient mostra els elements que s’han utilitzat en aquest
raonament.

(1/(n+3),1/(n + 3))

n(2n+1) 2n+1

\/(<n+1><12n+1>> *(m%) \/( n )z+( 5 )2

(1/(n+1),0) (1/n,0)

1 1
(n+1)@2n+1) n(2n+1)

(1/(n+3),0)

Exercici 7(a) y = log(x)
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La longitud s(z) de la corba des del punt (1,0) fins al punt de coordenades (x,log(z))

sera
- [ fita

ja que el vector tangent s’expressa com (1,1/x) per a un valor arbitrari z del parametre.
Amb una mica d’habilitat es pot veure que el valor d’aquesta integral sera

[ 1 1 1
/ 1+t—2dt:\/t2+1 —§log<\/t2+1 +1>+§log<\/t2+1—1>

(la part dels logaritmes també es pot escriure en termes de arctanh(y) = log (w / Hz >)

Aixo vol dir que la funci6 longitud s(x) sera

Vil VETT -1
) = VI 5 o (ﬁ )*” g (WH)

No es podra, doncs, donar una expressio de x en funcié de s, encara que si que es
pugui calcular de forma explicita la longitud. U

Exercici 7(b) %/3 + y?/3 = a?/3

1.2 1.4

Si parametritzem la corba per v(t) = (a (cos(t))?, a (sin(¢))*) com es fa a I'exercici 5(b) el
vector tangent sera

V() = (—3 a sin(t) (cos(t))2, 3 a cos(t) (sin(t))2>
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i la seva norma (suposem a > 0)
17/ ()]l = 3a |sin(t) cos(t)] .

Per simetria, i per no tenir problemes amb el valor absolut, ens podem limitar a
I'interval [0, 7/2] ja que la situaci6 es va repetint en cadascuna de les quatre branques de
I’astroide.

Per tant, la longitud s(t) de I'astroide des del punt corresponent al valor 0 del para-
metre (punt (1,0)) fins al punt corresponent al valor ¢ < 7/2 (punt (0,1)) sera

Lo 3a,. .
S(t) = / 3 sin(x) cos(z) dz = -2 (sin(t))
0

2
que proporciona la relacié inversa

) 2
t(s) = arcsin ( — s > :
3a

Aixo fa que es pugui parametritzar aquesta branca de 'astroide en funcié de I'arc s com

F(s) = y(t(s)) = (a (cos(arcsin ( % s )))S,a (sin(arcsin (\/% s )))3> :

Tenint en compte les relacions entre sinus i cosinus

= (o (1) e (5)):

La longitud de 'astroide és doncs
L=4s(r/2)=6a.

Exercici 7(c) ?/a®* + y?/b®> =1
Utilitzant com a parametritzacié obvia de la corba
() = (a cos(t), b sin(t)),
el vector tangent sera
v (t) = (—a sin(t), b cos(t))

amb norma

I/ ()]l = /a2 sin®(£)? + b2 cos?(1)? .
Per a calcular la longitud s(¢) fins a un cert valor del parametre caldra fer la integral
t
s(t) = / \/@2 sin®(z)) + b2 cos?(x) dx
0

que tampoc és expressable en termes de funcions elementals si no s’esta en el cas a = b
(circumferéncia). Per tant, ja no es pot fer res més. U

Exercici 8. Comencem buscant una parametritzacié de la trocoide. La parametritzacio
del centre de la circumferéncia és t — (bt,b). Naturalment el factor que multiplica la ¢
no és necessari pero simplificara els calculs, el motiu és que d’aquesta forma ¢ representa
I’angle de gir de la circumferéncia (vegeu el dibuix de més avall) i aixi quan ¢ varia entre 0
i 27 la circumferéncia ha fet una volta completa. Aleshores un punt P situat a distancia
a del centre i fixat a aquest per mitja d’un radi té una posicié relativa al centre donada
per t — (—a sin(t), —a cos(t)). Aixi doncs la parametritzaci6 demanada és

v(t) = (bt — a sin(t),b — a cos(t)).
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Quan a = b tenim la cicloide
v(t) = a(t —sin(t), 1 — cos(t)). (7)

Parametre arc de la cicloide. Com que
7 (t) = a (1 - cos(t), sin(t)),
17 ()]l = a/2(1 = cos(t))

el parametre arc és

—a/ de—Qa/ 1/sm a (1 — cos(t/2)).

En particular, la longitud d’un arc de cicloide és s(27) = 8a, resultat obtingut per
Christoffer Wren el 1658. U

Exercici 9(a) Tal com es veu directament a la figura (relacionem les coordenades (z, y)
de P amb les del centre de la circumferéncia)

la cicloide invertida esta parametritzada per
xr =at — a sin(t),
y =a cos(t) —a

que escrivim 7(t) = a (t —sin(t), cos(t) — 1). Com era d’esperar no és meés que 'equacio (7)
canviant y per —y. U

Exercici 9(b) Igualant en els punts y(to) 1 y(¢) la suma de les energies cinética i potencial
es té
mgh=mu(t)?/2,

v(t)=+/2gh,
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on h és la distancia vertical entre aquests punts (diferéncia d’algades). Noteu que s’ha
usat que en (o) la velocitat inicial, i per tant I’energia cinética en aquest punt, és zero.
Per tant,

h = a(cos(tg) — 1) — (cos(t) — 1)) = a(cos(ty) — cos(t)).

Aixi que
= \/2ga(cos(ty) — cos(t)) .
U
Exercici 9(c) La distancia recorreguda pel cos entre els punts vy(tg) i y(t) és
= /ta \/1 + cos?(t) — 2 cos(t) + sin®(t) dt = /ta V2 — 2 cos(t) dt
K to t )
= /to 2a 8111(2) dt =4 a cos( 2) da cos(é).
U

Exercici 9(d) La derivada respecte el temps de 'espai recorregut dona la velocitat:

PO — 0 s )omsr o = vlt(r)) = V2gafoos(le) — conli(r))

Es a dir, es té 'equaci6 diferencial

2a sin(@) dt

2./9a \/COSQ(tQO — cos?(17) dr
Per tant, integrant respecte 7, s’obté que el temps que tarda el cos en baixar des de la
posicio 7(750 ) fins al punt més baix 'y( ) és

7(m) ) L
/ \/> sin(=5+) \/> / sin 2) @
\/ cos?(L2) 0082((7 0052 — cos?(3)

2

0

2) 1 du

a COS
a / b de a
=92,/ —— =TT,/ —.
Vg Jo vVI—22 Vg
Com es veu, el temps de caiguda només depén del radi de la circumferéncia que defineix
la cicloide i no depén de la posici6 inicial del cos. O]

Exercici 10. Podeu veure un document GeoGebra amb la construccié d’una cardioide
amb D'enllag segiient (feu clic sobre el dibuix):
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Podreu manipular els parametres i prendre mesures.
En qualsevol cas, si es considera, com en ’animacié, que la circumferéncia que va

rodant comenga a la part de dalt de tot i es segueix el punt en el que coincideixen les
dues circumferéncies, la situacié després d’haver recorregut un arc d’angle ¢ sobre la

circumferéncia fixada sera com a l’esquema segilient

.-

On, potser, I'inic que cal explicar és que l'angle entre la recta que uneix els centres de
les circumferéncies i la direcci vertical també val ¢ ja que es tracta de 'angle que forma

una secant entre dues paralleles (angles alterns-interns).
Vist aix0, la posicio del centre de la circumferéncia que roda, després del gir correspo-

nent a l'arc t, sera
C = (2acos(t+7/2),2asin(t+ 7/2)) = (—2a sin(t),2a cos(t)),

i el vector que va des del centre fins al punt que s’esta seguint sera

v=(acos(2t —m/2),a sin(2t — 7/2)) = (a sin(2t), —a cos(2t)).
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De forma que la posicié del punt vermell és
(r,y) =C+v=a(—2sin(t) +sin(2t),2 cos(t) — cos(21)). (8)

Naturalment hi ha altres opcions que difereixen d’aquesta per la posicié de les circumfe-
réncies respecte els eixos, la posicio relativa del punt inicial, etc. Per exemple, si passa

per l'origen, com indica la figura segiient.
P

y .

El centre B de la circumferéncia exterior que gira ve parametritzat per l'expressio
v(t) = (a + 2a cos(t),2a sin(t)), suposant un sentit de gir antihorari, on ¢ és l'angle
entre la recta AB i l'eix de les a’s. Ara cal parametritzar el gir del punt P respecte a
B. El que cal observar és (mireu els tres arcs de cercle més gruixuts de la figura) que
I’angle que forma la recta PB amb l'eix de les 2’s és el doble de t, per tant el movi-

ment ve parametritzat, respecte d'uns eixos traslladats parallelament al nou origen B,
per B(t) = (a cos(2t),asin(2t)).

Y

Aixi doncs, la parametritzacio de la cardioide és
Y(t) = (a +2a cos(t) + a cos(2t),2a sin(t) + a sin(2t)) = a (1 + 2" 4 '),
Equivalentment
v(t) = (2a cos(t) (1 + cos(t)),2a sin(t) (1 + cos(t))).

La distancia d’aquest punt a 'origen és

V@2 +y()? =2a(1 + cos(t)).
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La cardioide és un cas particular d’epicicloide, vegeu 'exercici 12. O
Exercici 11.
xz(t) =r(k—1) sin(t) — r sin((k — 1) t),
y(t) =71 (k—1) cos(t) +r cos((k — 1)¢t).

Posant k£ = m/n amb m,n coprimers, obtindrem una hipocicloide tancada de parametre
t que variara a 'interval [0,2n 7).

Les coordenades del centre del cercle petit son ((R — ) sin(t), (R —r) cos(t)). Per trobar
les coordenades de P hem de sumar (r cos(f),r sin(8)). Perd Rt =raif+a=m/2+t.

Observeu que per a k = 4 obtenim l'astroide. Recordeu que sin(3¢) = 3 sin(t) —
2 sin®(t). O

Exercici 12.

Els mateixos arguments fets a ’exercici 11 per a les hipocicloides porten a que les equacions
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de les epicicloides son
R+
r

z(t) = (R+r) sin(t) — r sin( t),

y(t) = (R+r) cos(t) —r COS(R :_ r t).

U

Exercici 13(a) No cal fer calculs massa complicats per obtenir les expressions canoniques
2 2
%i%:L

(4 en el cas de l'ellipse i — en el de la hipérbola). U]
Exercici 13(b) En les coordenades anteriors el focus era F; = (ae,0) i la directriu
x = a/e. Considerem el punt I, = (—ae,0)ilarecta dy donada per z = —a/e. L'expressio

canonica mostra que, si (z,y) és un punt de la conica, llavors (—z,y) també hi pertany.
Per tant,

d(('%?/)ﬂ Fl) _ d((—l’, y)> Fl) _ d((.%,y), FQ) —

d((z,y),d)  d((—z,y),d)  d((z,y),d2)
Aixi, el paper que juga (F1,d;) és el mateix que el jugat per (Fy, ds). O

Exercici 13(c) En el cas de l'ellipse, si Fi, Fy son els focus i dy, ds les directrius, cadascun
dels seus punts P compleix

d(P,Fy) d(P Fy) <1

d(P,dy) — d(P,dy)
Observeu que d(P,d;) = d(P,(Q1) on () és el peu de la perpendicular a d; des de P i
d(P, dy) = d(P,Q2), on Q2 és el peu de la perpendicular a da des de P (les directrius sén

paraleles).

Qo b @1

do dy
Llavors
d(P, Fy) + d(P, Fy) = e(d(P, Q1) + d(P,Q2)) = e d(Q1,Q2) = e d(dy, dp),

quantitat que no depén del punt P elegit sobre I'ellipse.
Observeu també que la distancia entre les directrius és

d(dl, dg) = 20,/6

(obvi si es recorden les equacions d’aquestes rectes en coordenades canoniques) de manera

que es té
d(P,Fy) + d(P, F3) = 2a
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Reciprocament, el lloc geometric dels punts del pla tals, que la suma de distancies a
dos punts donats és constant és una ellipse. En efecte, prenem coordenades de manera
que aquests punts siguin (¢,0) i (—¢,0). Sumem les distances d’un punt (x,y) a aquests
punts. S’obté

Ve =) +12 +V(z+c)? +12 = 2
Passant una arrel a la dreta, elevant al quadrat dos cops apareix immediatament ’expres-
si6 canonica

2 2
T Y
pER R

El cas de la hipérbola es pot tractar de la mateixa manera. O

Exercici 13(d) La situaci6 correspon a l'esquema segiient.

2a— r

2c¢

2a

Aleshores el Teorema del cosinus sobre el triangle F F5 P dona la igualtat
(2a—71)?=(2¢)*+1r*—2(2¢)r cos(h)

que sera equivalent a
4a* —dar+r* =4 +r? —4der cos(d)

(que és lineal respecte r) i permet escriure

-7 (a*—=)/a
a—ccos(f) 1—(c/a)cos(f)’
Tenint en compte les definicions de b, pie

r =

p

"= 1 —ecos(6)

El cas da la hipérbola és similar, només que ara el triangle PF;Fy té costats r,2c i
r — 2a. U]

Exercici 13(e) Es clar que aquestes parametritzacions compleixen les equacions canoni-
ques.
En el cas de I'el'lpse, el vector tangent a la corba respecte aquesta parametritzacioé sera

7' (t) = (—a sin(t), b cos(t))
i les funcions sinus i cosinus mai s’anullen simultaniament. Aixi doncs la parametritzacio
és regular.
Observeu, a més, que t no és la coordenada polar de P sin6 la d’un punt @) situat a
la mateixa vertical que P sobre la circumferéncia de radi I’eix major a i centre l'origen. I
I’horitzontal per P talla la circumferéncia de radi ’eix menor b i centre 'origen justament
en el mateix punt en qué aquesta circumferéncia talla la recta OQ).
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»
Q

b sin(t)

g @------— -

o) a cos(t)
a
En el cas de la hipérbola el vector tangent sera
7' (t) = (—a sinh(¢), b cosh(t))
i, com abans, les funcions sinh i cosh no s’anullen simultaniament. [l

Exercici 14. Calcul directe o utilitzant que I’ellipse de semiexos a i b es transforma en
la circumferéncia de radi a per I'aplicacio f(u,v) = f(u, §v) (suposem a eix major i b eix
menor). Aquesta mateixa aplicaci6 també permet veure que el diametre d; és conjugat al
diametre ds si i només si ds és el lloc geomeétric dels punts mitjos de les cordes paralleles

a dl. U
Exercici 15. Sigui d; el diametre de direccié & i dy el didmetre de direccio .

Per la caracteritzacié de diametres conjugats com punts mitjos de les cordes, existeix
una constant ¢ tal que els punts § + ¢ ¥, y — ¢ ¥ pertanyen tots dos a la conica. Per tant,
Y+ cZ, ¥+ cZ) =p,

Oy —cZ,y—cT)=p.
Restant aquestes dues equacions obtenim
4ed(Z,y) =0,

com voliem.
En particular el problema anterior es pot resoldre simplement escrivint

1/a*> 0 1\
(1 m) ( 0 1/b2) (m,) = 0.
Exercici 16.

Si la corba ve donada de la forma y = y(x) el pendent de la tangent a la corba en un
punt P de coordenada x és y/(z) i es té la situacio de la figura, on R és la projecci6 de P
sobre l'eix de les 1 ) és el punt d’intersecci6 de la tangent a la corba en P amb l'eix de
les x.

O
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A partir de la figura es veu directament que

y;:tan(W—a):—tan(a):—RQ:— T

Aquesta equacié diferencial es resol pel métode de separacié de variables. Es a dir,

s'integren els dos termes de
V1—19?
———dy = dx.
)

Per fer la integral de 'esquerra es pot utilitzar el canvi de variable y =

tanh(¢
— cosh( t) )dt. Aleshores

1= 1
—/—ydy — [ tanh®(t) dt = t — tanh(t) + C' = arccosh <—> —V1-y2 =zx+C.
) Y

Si s'imposa que la corba passi pel punt (0, 1) la constant d’integraci6 ha de ser C' = 0.
S’obté doncs una primera parametritzacié de la tractriu en funcié de laltura y:

1 —
cosh(t)’ dy o

= 1) _ — 2
x(y) = arccosh (y) 11—y

amb 0 <y < 1.
Aprofitant els calculs anteriors també es pot parametritzar la tractiu com

() = (t — tanh(t), Wi(t))

amb 0 <{ < co.

Un altre canvi de variable que també resol la integral anterior és y = sin(t), amb
t € (0,7/2]. Aleshores

v1-= 1 1
d = dt = — t) — dt = C.
/ y = [ sin(t) — (@) cos(t) /sm( 5 T+
A la segona mtegral s'introdueix el canvi s = tan (%) que, com és ben conegut, dona
dt 2 , 2s 1—s?
t=2 arctan(s), % = m, sm(t) = m, COS(t) = 1 i 32 .

S’obté = — cos(t) — In(tan(t/2)) + C, perd C' = 0 pel mateix motiu d’abans. De manera
que s’arriba a la parametritzacio, classica, de la tractriu segiient:

7(t) = (= cos(t) — In(tan(t/2)), sin(¢))
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(per a t = m/2 passa pel punt (0,1)).

Si es vol comencar en el punt (0, 1) i acabar a (00,0) es posa T'= —t + 5 € [0,7/2), i
si abans t variava de 7/2 fins a 0 ara T varia de 0 fins a /2.

Canviant ¢t per T' s’obté una altra parametritzacio de la tractriu, amb ~(0) = (0, 1):

AT) = (~sin(T) — In(22) cos(T))

que es pot escriure com

Y(T) = (—sin(T) — In(1 — sin(7")) + In(cos(T)), cos(T))

Parametre arc. Es té
. 2 T)
) — (Sln( e T>
|7/ ()]] = [tan(T)| = tan(T), ja que T' € [0,7/2).

Aleshores el parametre arc, contat a partir del punt (0, 1) (és a dir, "= 0), és
4 1
s(T) = /o tan(x) dr = —In(cos(T)) = ln(cos(T)>'
Suposant una parametritzaci6 del tipus y(z) = (z,y(x)) (que no s’ha pogut explicitar)
es tindria (denotant s(z) la longitud de la tractriu entre (0,1) i (z,y(x)))

/de_/,/ 1_ (j))dx:ln(ﬁ)

Aixo vol dir que I'expressio de la tractriu respecte del parametre arc s és

v(s) = (arccosh(e®) — V1 — e 25,e7%) ‘

Observem que les dues expressions s(T') i s(x) que s’acaben d’obtenir per al parametre
arc diuen el mateix: la longitud d’arc és el logaritme neperia de l’invers de la segona
component. U]

Exercici 17.
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El vector tangent a una corba de la forma (z,cosh(z)) sera (1,sinh(z)) amb norma
V/1+ (sinh(z))? = cosh(z).
Per tant, la funci6 longitud s(x) sera

s(z) = /Ox cosh(t) dt = sinh(z)

de forma que la parametritzacié de I'arc s’obtindra prenent x = arcsinh(s) i sera de la
forma

v(s) = (arcsinh(s), V1 + s? )

(ja que cosh(t) = /T + (smb())? ).

Deduccio de l’equacio de la catenaria. Suposem una cadena amb extrems en els
punts (—a,b) i (a,b), a > 0, que penja sota 'acci6 de la gravetat. Considerem un petit
tros de cadena de longitud s comptat a partir del punt més baix de la cadena i cap a la
dreta. El pes d’aquest tros és “massa x gravetat”. Suposem densitat 1 per no arrossegar
constants, de manera que la massa és essencialment la longitud. Llavors el pes és g s o,
vectorialment, F = (0, —g s).

To

Aquesta forga esta compensada per les forces que actuen tangencialment en els extrems
del segment de cadena que s’esta considerant. Concretament per la forga Ty = (=T, 0),
amb Ty > 0, que fa el cable en el punt més baix i per la forca T' = (T cos(6), T sin(6))
tangent al cable en el punt més alt del segment de longitud s. L’angle 6 és doncs ’angle
que forma la tangent a la cadena en aquest punt i la condicié d’equilibri sera

To = T cos(0),
gs=Tsin(0).
Dividint, s’obté
tan(f) = gz
1o

Pero tan(f) = y/(x), on x és I'abscissa del punt extrem superior del segment de corda que
s’esta considerant. De manera que, denotant per s(x) la longitud del segment de corba
entre els punt d’abscisses 0 i x,

y'(z) = As(x), amb \= g
T
Aquesta és I'equacio diferencial de la catenéaria.

Derivant, es té
d*y ds dy\”
Y\ 14 (Y
dx? dx * (dx) ’
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(la darrera igualtat per definicié de parametre arc).

d
Equivalentment, posant v(x) = d_y’
x
dv
d_ = )\ V 1 + UQ N
x

Aquesta equacio6 diferencial de primer ordre és trivial i dona
arcsinh(v) = Az + C.
Com que v(0) = 0 (en el minim la tangent és horitzontal) es té
v(x) = sinh(\x),
que integrant dona
y(x) = % cosh(Ax) + Cy

i tenint en compte la condicié inicial es determina C i s’obté

1 1
y(x) = 3 cosh(Ax) +b— X cosh(Aa).

Si A =110b=cosh(a) resulta y(z) = cosh(z) que és I'expressio de la catenaria donada
a ’enunciat.

Nota. L’equacio diferencial de la catenaria y/(x) = A s(z) també es pot deduir aixi:
Considerem el tros de corda o cadena que penja entre els punts (—a,b) i (a,b) perod
ens fixem nomeés en el tros que esta esta entre els punts (0,¢) i (z,y(z)). Suposem que
aquest tros té longitud s. La massa sera doncs proporcional a aquesta longitud, posarem
M = ps, on p és una constant (la densitat). Ara substituim aquest tros de corda per
un objecte ideal format per N + 1 boles, totes elles de la mateixa massa my, unides
entre si per un cable rigid de massa negligible i longitud d5 de manera que Ny = s, i
Sobre cada bola B; actuen tres forces: el pes my g, la tensio del fil per la dreta ﬁ-ﬂ,

i la tensi6 del fil per I'esquerra T.. Denotem T; =

fZH i 0; 'angle que forma T’l amb
I’horitzontal. Totes aquestes quantitats depenen de N perd posem més subindexs per no

recarregar meés la notacié. La condicié d’equilibri (suma de forces igual a zero) s’escriu
com

Tiv1 cos(0;11) = T; cos(6;),
Tivq sin(f;41) — T; sin(6;) = mpy g.

Diem T al valor T;cos(6;), que hem vist que no depén de i, és a dir T' = T; cos(6;), i
sumem, des de ¢ = 0 fins a ¢ = N — 1 la segona igualtat. Els termes successius es van
cancellant (suma telescopica) i queda només el primer i I'tltim:

Ty sin(Oy) — Ty sin(6g) = Nmyg= (M —my)g=spg—mng.

Si la bola By ocupa el punt més baix de la cadena, com en el dibuix anterior, 6, = 0, i
I’expressio anterior, dividida per T', és

Si ara prenem limits quan N — oo, i recordant que la bola By esta en el punt de
coordenades (z,y), s'obté (th my = 0)
—00
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on A és una constant, que és ’equaci6 diferencial de la catenaria. O
Exercici 18(a) r(t) = R (t 'angle de les coordenades polars). O
Exercici 18(b) L’equaci6 de les coordenades cartesianes d’aquesta circumferéncia és

(x — R)?+y* = R%.

Desenvolupem z2 +y? — 2 Rz = 0, fem la substitucié = r cos(t), y = r sin(¢) i obtenim
que 72 — 2 Rr cos(t) = 0, d’on

r(r—2R cos(t)) =0.

Com que el cas 7 = 0 correspon tnicament al punt (0,0), tenim que el recorregut de la
circumferéncia es pot parametritzar com

r(t) =2R cos(t), —m/2 <t <m/2.

En realitat, aquest calcul no és necessari ja que el resultat es veu directament mirant
la figura i tenint en compte que els punts d’'una circumferéncia veuen el seu diametre sota
un angle recte. Dit d’una altra manera, els calculs anteriors només sén una constatacid
del fet, ben conegut des de I'antiguitat, que el diametre d’una circumferéncia es veu sota
un angle recte des de qualsevol del seus punts.

(R,0)

O

Exercici 18(c) Podem fer una representacio grafica (numérica) i s’obtindra un grafic com
el de la figura segiient (clicant a sobre anireu a una construccié dinamica de GeoGebra).

Sembla clar, després de fer aparéixer els elements ocults de la construccié dinamica,
que es tracta d’una cardioide obtinguda fent girar sobre la circumferéncia de radi 1/2 i
centre en (0, —1/2) una altra circumferéncia del mateix radi.
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Observeu que aquesta cardioide es pot parametritzar, en funcié de 'angle de gir 8 com

a(f) = ((6),y(0)) amb '
z(0) = —sin(0) + ) sin(20) ,

y(0) = —% + cos(f) — %cos(2 0)

(només cal recordar que quan la circumferéncia gira un angle € el punt es separa un angle
20 de la vertical). Observeu que només hem posat a = 1/2 i hem traslladat segons el
vector (0, —1/2) les formules de la cardioide (8).

Equivalentment, observeu que amb la notacié anterior tenim la configuracié

amb ZDCA=260—m/2, AC = OP = 1/2, de manera que les coordenades (x,y) del punt
A sén

r=—(EC — DC) = —sin(f) + % cos(260 — w/2),

1
y=AD - OF = isin(20 —m/2) — (1/2 — cos(6)).
Si s’aplica una mica de trigonometria es veu que aquestes formules es poden compactar
x(f) = —sin() (1 — cos(6)),
y(0) = cos() (1 — cos(6))
de forma que és ben clar que la distancia a I'origen dels punts d’aquesta cardioide és
r(0) =1 — cos(f) .

Pot semblar que encara no es té I'expressié en coordenades polars ja que ’angle no
esta mesurat des de 1'origen de coordenades sin6 des del centre de la circumferéncia fixa
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i, a més, respecte 'eix vertical i no 'horitzontal. Pero, tenint en compte que AO i C'P
son parallels, angle 6 que s’ha triat com a parametre és igual a t — 7/2 i la distancia a
I’origen dels punts de la cardioide sera doncs

1 —cos(f) =1—cos(t —m/2) =1 —sin(¢)
que és la formula de 'enunciat. [l
Exercici 18(d) Si es posa (t) = (r(t) cos(t), r(t) sin(t)) es té
7'(t) = (r' cos(t) — r sin(t),r’ sin(t) + r cos(t)),

dr

e Aixi

onr =

17 ()1l = V2 + ()

i per tant
b
L= / V24 (r')? dt.

Nota: Observem que si denotem per s = s(t) el parametre arc (és a dir, s(t) és la longitud
entre un valor fixat a i t) llavors

d
d_j — 72 + (7’/)2 .
U
Exercici 19(a) tlim v(t) = (0,0) ja que b < 0. O
00

Exercici 19(b) +/(t) = (abe’! cos(t) — ae’! sin(t),abeb? sin(t) + ae’® cos(t)), per tant,
tlim 7' (t) = (0,0) ja que b < 0. La norma de la derivada és
00

WOl = V@ R+ @bt — adt VIFR,
per tant

t ¢
ltlim / 17/ (s)]| ds = tlim / ae’’V1+b2 ds= —% V14 b2 ebto
=00 Jyo oo Jio

que és un nombre finit positiu.

Espiral logaritmica amb a = 1, b= —0.1 1 ¢t € [-20, 100].
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De l'espiral logaritmica també se’n diu espiral equiangular ja que talla els radis vectors
sempre amb el mateix angle. Concretament,

(&) y@) _ b
YOI IO V1 +062

Observeu que l'espiral anterior també es pot escriure com

()

o, en polars (r,0),

1 T
9:51n(5)+k7r.

No s’ha de confondre amb ’espiral d’Arquimedes que s’expressa en coordenades polars com
r(f) = af i caracteritzada pel fet que la distancia entre dues interseccions consecutives
de la corba amb una recta per l'origen és constant (igual a 2a 7).

-
~/

%

Espiral d’Arquimedes amb a =11 6 € [0, 30]

Compareu els dos dibuixos. O

Exercici 20. Fixem un punt P(t) = (t2,¢) i fem un gir d’angle 7/2 — a/(t) amb centre
aquest punt, on «(t) és Iangle que forma la tangent a la parabola en P(¢) amb 1'eix de
les z, és a dir, tan(«(t)) és el pendent de la recta tangent a la parabola en el punt P(t).
Per tant,

tan(a(t)) = 37
A continuaci6 traslladem la parabola girada fins el punt (0,s(¢)) on s(¢) és la longitud
de la parabola entre els punts (0,0) i (t?,¢). Es a dir, fem una translacié de vector
(—t%,s(t) — t). D’aquesta manera el punt P(t) haura anat a parar sobre el punt que
correspon al moviment de girar la parabola sobre I'eix de les y.

Les equacions del gir compost amb la translacié son

(525) = Cnle) e (525 + (o)
(7) = (o) ) (4 2) + ()
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I posant o en funci6 de ¢

_ 1 2t

Y _ | Vigae T Viae x—t? X 0

— 2t 1 _ t S(t) .
Yy V1+41t2 V14412 Yy

Aixo dona, per a cada t, la posicié de la parabola girada. Per calcular el lloc geométric
del focus només s’ha de substituir, en aquestes equacions, (z,y) per (1,0). S'obté

1
T Z\/1+4t?,

1
y= —§t\/1 + 42 +5(t).
En el cas de la parabola es pot calcular s(t) explicitament, pero els arguments fets fins
aqui (abans de parlar de focus) servirien igualment per a l’ellipse o altres corbes on no es
pot calcular s(t) explicitament.
En els nostre cas

! 1 1
s(t) :/ V1+4u? du= 1 sinh_1(2t)+§t\/1—|—t2.
0

Per tant
1
z=7 V14412,
1
7 = - sinh™'(2¢)
4
Per tant

com es volia veure.

La figura segiient representa la posicié de la pardbola girada per a t = 0.6. En
aquest cas $(0.6) ~ 0.72 de manera que els dos punts de la figura, que es corresponen pel
moviment, son (0,0.72) 1 (0.36,0.6). Aixi mateix es veu el recorregut del focus (inicialment
el punt (1/4,0)) en color vermell i la figura conté un enllag cap a una animacié de la
parabola rodolant sobre 1’eix.

2.5

1.5

2.5

-0.5
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O

Exercici 21. Seguirem la mateixa técnica que a ’exercici 20. Recordem que les equacions
d’un gir del pla d’angle «, en sentit contrari al rellotge, i centre P = (a, b) son

()= () + () ) (70)- o

Suposem que un vertex de I'ellipse esta en el punt (0,0) a I'inici del moviment. Su-
posem que y(s) és una parametritzaci6é per I'arc®® de Pellipse amb ~(0) = (0,0). Rotem
la ellipse sobre I'eix z fins que 7(s) passi a ser el punt (s,0).

0.0 (50
Aquest moviment es pot considerar com composicié de dos moviments, un gir de centre
v(s) i angle —a(s), on a(s) és 'angle’® entre la tangent a 'ellipse en el punt y(s) i 'eix
de les z, i una translacio de vector (s,0) — y(s).

El motiu de girar —a és per fer coincidir la tangent amb 'eix de les x.
Per tant, segons la formula (9), la trajectoria 3(s) del focus F' sera

B(s) = ((5,0) = ¥(s)) +7(s) + Goa(e)(F = 7(s))

o ~( cos(a(s)) sin(a(s))
Goato) = (—sin(a(s)) cos(a(s)))
= (0, /).
Equivalentment, si escrivim ~(s) = (z(s),y(s)) i F = (0, f),

B(s) = (s,0)+(=x(s) cos(a(s)) + (f —y(s)) sin a(S)) z(s)sin(a(s)) +(f —y(s)) cos(a(s)))

Un calcul directe, on caldra utilitzar que z/(s) = cos(a(s)), ¥'(s) = sin(a(s)) i que
(2")2(s) + (v')*(s) = 1, mostra ara que
(B'(5), B(s) = (5,0)) = (B'(s), G-a(F = (s))) = 0.
Aquesta igualtat s’interpreta dient que el moviment és un gir infinitessimal al voltant del

punt de contacte. [l

Exercici 22. Suposem que el quadrat en la posicié inicial és el quadrat de vértexs
(£1,+£1). Denotem O = (0,0) i C el centre del quadrat, que coincideix, doncs, amb O en

25Que la parametritzaci6 sigui per l'arc és, en aquest punt, irrellevant. L’Gnic que importa és que el
que avanca la corba sobre 'eix de les x és el mateix recorregut sobre l'ellipse entre el vertex (0,0) i el
punt v(s) de forma que, si s no és el parametre arc de -+, el punt sobre l’eix on toca lellipse sera de la
forma (£(s),0), on £(s) designa la longitud de ’arc de corba entre (0,0) i y(s).

26Si v(s) parametritza per I'arc I'ellipse es té 7/(s) = (cos(a(s)),sin(a(s))) i aquesta igualtat permet
determinar de forma explicita el valor de a(s) en funcié de y(s). Si la parametritzacié no és per l’arc
basta normalitzar el vector tangent per tal de tenir una expressié equivalent.
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la seva posici6 inicial. Sigui v(s) = (z(s),y(s)) una parametritzacié per l'arc del perfil de
la carretera. Sigui P = 7(s) el punt de contacte en cada instant entre la roda quadrada i
el terra. Sigui @) el punt mitja del costat del quadrat que esta en contacte amb el terra.

OC = 0P + PG+ QC.

Observem ara que Cﬁ = sv/(s) ja que és clar que aquest vector té la direccié de la tangent
pero la seva longitud és exactament la longitud del tros de carretera que ha trepitjat la
roda, que és s.
Observem també que Q? és un vector unitari ortogonal a Cﬁj, i per tant igual a
(—y/(s),2'(s)). Aixi
OC =~(s) = (x(s), y(s)) — 5 (2'(5), 4/ (5)) + (' (5),'(5)).

Imposant que la segona component sigui constant

y(s) — sy'(s) + a'(s) = ct.

Per a cada s tenim

i derivant
_2'(s) _ y(s)
Cy(s) @(s)
Si ara es pensa la trajectoria y(s) com una corba del tipus (z,y(z)), el parametre arc
compleix

2
ﬁz 1+ d_y :‘/14—82,
dx dx

és a dir,

ds

— =dx
Vits

que resolent dona
x(s) = arcsinh(s) + C'.
tant, s = sinh(z).
Com que (2)? + (y')* = 1 es compleix
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Es tria el signe negatiu per les condicions del problema i integrant s’obté directament
y(s) = —v1+ s? (la constant d’integracio torna a ser 0). Per tant el perfil de la carretera
és, localment, la catenaria

y = — cosh(z).

Cal afegir localment ja que s = HI@H < 1. A partir d’aqui cal traslladar la catenaria per
tenir una carretera ondulada de catenaries.

O

Exercici 23. Suposem que A sigui 'origen de coordenades, la recta HB la recta y = a,
AB leix de les y/'s i prenguem BD = 1. Les rectes per 'origen de pendent tan(t) tallen
y = a en el punt (acot(t),a) i, per tant, el punt d’aquesta recta que pertany a la concoide

€S
a

() = (m + 1) (cos(t),sin(t)) = (a + sin(t)) (cot(t), 1).

Llavors
'(t) = (—sin(t) — —5—, cos(t
() = (=sin(t) — s costh)
i, per tant, la recta normal és
Y(t) + pr (cos(t), sin(t) + —5—).
sin“(t)

Amb la notaci6 de Descartes el parametre ¢ correspon al punt C' = ~(¢). Aixi d(C, H) =
sin(t), el punt F' ha de ser de la forma F' = Av(t) i A\ queda determinat per la condici6

d(C, F) = d(y(t), Av(t)) = sin(?).
S’obté
F = (a+ sin(t) 4 sin?(t)) (cot(t), 1).

Observem també que
a

sin(t)
Finalment G és un punt sobre la normal amb la mateixa primera coordenada que F'.
Posant, doncs,

y(t) + p (cos(t), sin(t) +

resulta p = sin(t) i

d(A, E) = [v@)] =1 =

sinz(t)> = ((a +sin(t) + sin*(t)) cot(t), cz)

¢s = a + sin(t) + sin(t) (sin(t) + ﬁ) |
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Aixi a
F = =d(AF

com voliem. O

Exercici 24. L’equacié®” en polars centrades al punt mitja de F}F, i amb aquesta recta
com eix de les x és

P2 =q?— (c sin(t) £ /b2 — &2 COSQ(t))2 (10)

amb a = FlA = FQB, 2b = AB, 2¢c= FlFQ.
Per tal d’obtenir aquesta equacié només cal escriure

A= (—c+a cos(a),a sin(a)),
B = (¢+ a cos(B), a sin(B)),

de forma que el punt mitja sera
X = g(cos(oz) + cos(p), sin(a) + sin(B)) = (r cos(t), r sin(t)).

Per les formules tipiques de trigonometria, aquestes igualtats s’escriuen com

a cos(a ; 5) COS(a ; ﬁ) = r cos(t),
a sin(a il 6) cos(a _ ﬁ) = r sin(t).

2

2
Dividint, s’obté tan(t) = tan(2t2), d'on t = 2£2 i substituint novament a les equacions
anteriors

Com que AB = 2b es té
40* =4c*+2a* (1 —cos(fB — a)) +4ac(cos(f) — cos(ar))

=4c®+2a*(1 —cos(B—a)) —8acsin(t)/1— —
i com que r = [|[OX]|, amb O = (0,0),

,_ a
=g (14 cos(B — a))

i es pot escriure

2 2
4 =4 +2a* (2 - —2) —8cVa?—r? sin(t).
a
Resolent ’equacié de segon grau
40 =4+ 4w? — 8cw sin(t)

amb w = va? —r? ja es té el resultat.
Observem finalment que en el cas particular b = ¢, a = v/2 ¢ 'equacio (10) es redueix
ar? =a? cos(2t) que és l'equaci6 de la lemniscata (vegeu l'exercici 5 (d)).
]

2TLes coordenades cartesianes (z,y) del punts d'una corba de Watt sén zeros d’un polinomi de grau 6
en dues variables.
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Curvatura

Exercici 25. Quan la corba inicial v(¢) no esta parametritzada per I'arc, la indicatriu de
les tangents s’escriu com
PN O (D)
Ol ds o=
on s és el parametre arc de y(t). En aquesta situacio es té ds/dt = ||7/(t)]]. Les longituds
respectives venen donades per

L@z[ﬂﬂmwm
h@zlwﬂmwt

Diguem s; al parametre arc de 7 (t). Resultara

dsi  _|ldn _ [[dn(t(s)) ds
dt |t:t(s) dt |t:t(s) ds dt |t:t(s)
_ || @ vt || .. - ,
=N ds | |7 Doy = FEED IV DI

Com que aquesta igualtat és certa per a tot s, també ho és per a tot valor de t de manera

que es compleix
I @1 = k@) IV @O

Per tant . \
L= [ ol = [ ko Vol
to S0
I pel teorema del valor mitja per a integrals s’ha acabat. U

Exercici 26. Suposem (x(t), y(t)) parametritzada per arc i f(z(t),y(t)) = 0. Derivant
s'obté

fola(t), y(@) /(1) + fy(x(t), y(t) y/'(t) = 0
i per tant (2/,y") = A (fy, —fz) on A = A(t). Derivant les igualtats ' = X f,, v/ = =\ f, i
eliminant \" es té

<anxmg»+@’w<ﬁjg9(j)zo

Per tant
dy — 2y = (@), (o a)) = (@) (o )
3 . fmac f:vy fy
= -\ (fy fﬂﬁ) (fwy fyy) (_fx)
Finalment

fxz fa:y fy
' y// — y/ B (fy _fz) (fxy fyy) <_fx) |

(Jeriep) lerad (£

En el cas de la hipérbola 22 — 3y? = 1, la curvatura en el punt (2,1) és

EETRE

(Va2 BV
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O

Exercici 27. Recordeu que una circumferéncia de radi r parametritzada per l'arc a(s) =
(r cos(s/r),r sin(s/r)) tindra com derivada segona

a’(s) = %(— cos(s/r), —sin(s/r))

. i 1
i, per tant, la curvatura és k = — (constant).

Tenint en compte I’anterior, donada una corba arbitraria parametritzada per 1'arc y(s)
i de curvatura constant k (diferent de 0, és clar), considerem, per a cada punt de la corba,

el centre C(s) definit per
1

C(s) =(s) + z N(s).
Les féormules de Frenet donen
1 1 o
C'(s) =9'(s) + % N'(s) =T(s) + 7 (kT(s)) =0

1

T Dit d’una altra
1

manera, y(s) sempre és un punt de la circumferéncia de centre Cy i radi T

de forma que C(s) = Cp (constant) i, en particular, ||v(s) — Co|| =

Naturalment, si la curvatura és nulla els calculs no tenen sentit. Pero en aquest cas
és clar que la corba és un segment de recta (que, si es vol mantenir I'enunciat sense
afegir més detalls, es pot considerar una circumferéncia de radi infinit) ja que admet una
parametritzaci6 amb derivada segona nulla. 0

Exercici 28. Les corbes planes es poden considerar com corbes de R3 contingudes en
un pla, pero el seu tractament és lleugerament diferent quan les considerem com corbes
del pla R%. El motiu fonamental és que hi ha corbes que es poden fer coincidir per un
moviment directe de ’espai pero no per un moviment directe del pla que les conté.

Per exemple les corbes (z(t),y(t),0) i (z(t), —y(t),0) es poden fer coincidir per un gir
(moviment directe) al voltant de I'eix de les x pero I'inic moviment del pla z = 0 que les
fa coincidir és la simetria (moviment invers) respecte 1'eix de les x.

Per a les corbes del pla R? definirem dues normals, una involucrant la derivada segona
i laltre no. Donada v(s) = (z(s),y(s)) parametritzada per l’arc definim

N(s) =iT(s),
! T/
Vg = 20 _ T
()l [T ()
Observem que no cal introduir la notacié complexa, només és una manera rapida de
dir que N(s) és I'tinic vector que fa que (7'(s), N(s)) sigui una base ortonormal positiva

(respecte lorientacié canonica de R?). Clarament, si canviem s per —s, N(s) també
canvia de signe.
Per definici6 de curvatura k(s) i curvatura amb signe k(s) es compleix

T'(s) = k(s) N(s),
T'(s) = r(s) N(s).
Equivalentment
k(s) = det(T(s),T"(s)).
Per exemple, si recorrem la circumferéncia en contra de les agulles del rellotge y(s) =

(cos(s),sin(s)), 0 < s < 2m, K(s) és positiva, perd si recorrem la mateixa circumferéncia
seguint les agulles del rellotge (cos(s), —sin(s)) tindrem k(s) negativa.
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Resumint, donada v(s) = (z(s),y(s)), sigui s parametre arc o no, sempre tindrem

N(s) = N(s) si i només si r(s) > 0,
N(s) = —]/\}(s) si i només si k(s) < 0.
I es compleixen el que podriem anomenar formules de Frenet per a la curvatura amb signe:
T'(s) = k(s) N(s),
N'(s) = —k(s) T(s).

Les formules de Frenet

son igualment certes.
Per decidir el signe de k(s) quan s no és el parametre arc observem que

/

!/
g 28 1 '
et(1(6). 7)) = detl L (20 ) ) = i )
[eGIIAN A (o4&
i el signe queda determinat doncs pel det(y,~"), encara que la parametritzacié no sigui
per l'arc.
Finalment, a I'exercici 30 es veu que

K(s) = s

(sense valors absoluts), on s és el parametre arc de v(s) i a(s) és I'angle entre la tangent
v'(s) i l'eix de les = (de fet, una direcci6 fixada qualsevol). O

Exercici 29. A partir de les equacions

z(t) = (R+r)sin(t) —r sin(R il
R+r

y(t) = (R+r) cos(t) — r cos(

t).
obtingudes a l’exercici 12, calculs senzills diuen que

o () + () =4(R+r)? sin%%)

d’on el parametre arc s(t) i el radi de curvatura p(t) estan donats per
r(R+r) Rt

t) =4 i
s(t) 7 cos( 5 r)
4r(R+r) . Rt
t) = —— " in(=—
) = —p gy gy
d’on, clarament,
2 2
LGy
A? B2
amb A = 4T(g+T), B = 4%@;@. Com que la curvatura determina la corba, aquesta és
I’equaci6 intrinseca de les epicicloides. [l
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Exercici 30(a) Abans de comencar observem que 6(sg) = 01 que 6'(s) = k(s). Observem
també que si podem escriure v com s’indica a ’enunciat, llavors tindriem v(s;) = (0, —),
V(s2) = (=,0), 19(s0) = (cos(0(s0)),sin(0(s0))) = (1,0).

Amb aix0 present tornem a l’enunciat. Sigui v : I — R una corba parametritzada
per l'arc amb curvatura x(s). Siguin A = 7v(s1) i B = y(s2). Considerem uns nous eixos
ortogonals de coordenades, que tinguin 'origen en ~(sg) i eix de les z’s en la direccid
~'(s0). Més concretament situem en y(so) la base ortonormal directa (7(s), N(s)) prenent
aquestes direccions respectivament com les direccions positives dels nous eixos z, y.

A continuaci6 els traslladem parallelament de manera que A estigui sobre el nou eix
de les 3y's i B sobre el nou eix de les 2's.

Llavors, respecte dels nous eixos, tenim: v(s) = (x(s),y(s)) amb 2/(s)? + y/(s)* = 1, de
manera que el vector normal és N(s) = (—y/(s), #'(s)), (vegeu Pexercici 28).

Sabem que en aquestes circumstancies existeix una determinacio de [’argumen
a dir, una funci6é o : I — R tal que

2%, és

y'(s) = sin(a(s)).
Ambaixf)x”() —a/(s) sin(a(s)).

= sin
Com que 7" (s) = r(s) N(s) (vegeu novament I'exercici 28) també es compleix z”(s) =
—k(s)Y'(s) = —k(s) sin(a(s)), i per tant k(s) = o/(s), resultat ben conegut (la curvatura
és la velocitat de gir de la tangent respecte el parametre arc).?’

Per tant, o/(s) = €'(s), i com que a(sg) = 0(sp) = 0, ha de ser 0(s) = a(s).

Llavors tenim
(69 = o)) = ([ [/ )

ja que z(s1) = y(s2) = 0. Per tant
= ( y’(u) du> = (/ cos(a(u))du,/ sin(a(u))du),
52 s1 S9
i com que a(u (u) hem acabat. U

28Donades dues funcions a,b : I — R diferenciables definides en un obert I de R, tals que a® +b% = 1,
existeix 0 : I — R tal que a(t) = cos(0(t)) 1 b(t) = sin(6(¢)), Vt € I.
29Si no s’introdueix la curvatura amb signe només podem dir k(s) = |o/(s)].
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Exercici 30(b) En efecte, canviar sy vol dir canviar la direccié de l'eix de les 2's, és
a dir, fer una rotaci6. Aquests eixos després s’han de traslladar per tal que passin per
A =(s1) 1 B ="(s2), punts que depenen, com es veu, de s; i s,. Hem demostrat, doncs,
que dues corbes planes amb la mateixa funcié de curvatura difereixen en un moviment rigid
ja que totes dues es poden escriure exactament igual perd sobre referéncies ortonormals
diferents. O

Exercici 30(c) Si k(s) és constant, tenim 6(s) = k (s — ) amb & el valor constant de la
curvatura (0 = k).

En particular
y(s) = ( / cos(k (u — so)) du, / sin(k (u — o)) du>.

Integrant tenim

z(s) = %Sin(fi (s —s0)) +a,

1
y(s) = - cos(k (s — s0)) + b,
per a certes constants a,b € R.

Per tant la corba esta continguda a la circumferéncia
1\ 2
w2+ -0 = (1)
K
U
Exercici 30(d) Fent un gir i una translacié podem suposar que «(0) = (0,0) i &/(0) =
(1,0), de manera que la recta normal per a(0) és 'eix de les y. En el context d’aquest

exercici aixo és equivalent a agafar s = s; = s = 0. Calculem en primer lloc 0(—s)
utilitzant que x(—u) = k(u).

fent el canvi de variable w = —u tenim

O(—s) = —/0 K(—u) du = /Soﬁ(w) dw = —/OS k(w) dw = —0(s).

—S

Ara s’obté

I
-
Q
@}
A
=
|
S
QU
IS
I
|
::\m
(@)
o
n
—~
=
E
QU
S
Il
|
=
NG
S
Il
[
=

sin(f(u)) du = /0_S sin(—0(—u)) du

<
—~
|
V2)
~—
I

__ /0 (=) du — /O sin(8(w)) dw = y(s) (w = —u).

Per tant, v és simétrica respecte de I'eix de les y. 0
Exercici 30(e) De la mateixa manera es veu que quan k(—s) = —k(s) aleshores 6(—s) =
0(s) i, per tant, x(—s) = —x(s) i y(—s) = —y(s), de manera que llavors 7 és simétrica
respecte de l'origen (0,0) = 7(0). O
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Exercici 31. Utilitzarem el problema 30 amb sy = s; = s = 0. Prenem

0(s) = /05 k(s)ds = arctan(s)

i sabem directament que la corba és
v(s) = (/ cos(arctan(u)) du,/ sin(arctan(u)) du) = (arcsinh(s), V1 + s —1).
0 0
Es doncs la catenaria, concretament 'estudiada en el problema 17, traslladada segons el
vector (0, —1). O

Exercici 32(a) Si r = r(t), la corba en cartesianes és y(t) = (r(t) cos(t), r(t) sin(t)).
La curvatura amb signe d’una corba plana ~y(¢) que no estad parametritzada per l'arc es
calcula amb la formula®

det(y/(2), 7" (%))

k(t) =
Iy 1
En efecte, v/ =vT i+ =v'T+vT =v'T +v*k N, don
det(v',7") = v*k det(T, N) = v* k.

Si escrivim (t) = r(t) ¢'* tenim que
Y(t)=r'(t)e +r(t)ie",
') =" () et ()it + () iet —r(t) el = (r"(t) —r(t)) et + 27/ (t)iel.
r’ T
" —r 27

Per tant, com que e'’, ie'® és una base ortonormal, det(v',~v") = =2(r')? —
rr’ +r?i
k(1) = 2(r')? —7"7“”(—1—7"27
()2 + r2)3/2

on, obviament r, ', r” denoten r(t), r'(t), r"(t).

Nota: Puig-Adam®’ ho fa aix{: Considerem la corba r = r(t) i denotem a = a(t) Pangle
de la tangent amb 'eix de les a’s i per u = p(t) 'angle entre la tangent i el radi vector.

«

)

Fent el producte escalar del vector posicio v(t) = (r(t) cos(t),r(t) sin(t)) i del vector
tangent +/(¢) obtenim

r
[ = arctan (—/)
r
1 per tant
r
a:t+u:t+arctan<—/>.
r

30F] determinant de dos vectors és el determinant de la matriu que té per columnes les coordenades
d’aquests vectors respecte d’una base ortonormal. Noteu que aixo és essencialment el mateix que suposar
que la corba esta en el pla zy de R? i aplicar la férmula de la curvatura per a les corbes de I’espai.

31 Calculo Integral, p.291
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Finalment
do da dit ("2 —ro” 1
k():_:_'_:(+ 2 /2) :
ds dt ds r2 + (1) 2 ()2

Nota de la nota: El calcul de p es pot fer a partir de la definici6 de derivada.
Aplicant el teorema del sinus al triangle OAB de la figura s’obté

sin(8) sin(At).

r AB
Prenent limits quan At — 0, i observant que  tendeix a p (angle entre la tangent i el
radi vector) es té

in (1) i sin(At) i At dt r
sin(p) = r lim =r lim —=r— = —o
K At>0  AB At—0 As ds 2 ()2
on s és el parametre arc. Aixo ja diu que tan(u) = r/r’. O

Exercici 32(b) Si () té un maxim en ¢t = ¢y es complira r/(to) = 01 r"(to) < 0, d’on
—r(to) " (to) + r(to)? S 1

r(to)? — r(to)
Observem també que en un dibuix l'acotacio és clara: que r(¢) tingui un maxim local a

to implica que localment la corba ~y(t) passa per dins d'un circumferéncia de radi r(to) i
per tant la seva curvatura sera més gran que la d’aquesta circumferéncia, que és 1/r(tg).

k(to) =

U

Exercici 33. Recordem que si es té una corba parametritzada en polars com r = r(0) el
valor de la curvatura és )
2 () —rr" +1r?

k(0) = .
(0) ((T’)2+T2)(3/2)
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Tenint en compte com s’expressa r en el cas de 'el'lipse, les derivades primera i segona
seran

Y e sin(0)
b (1 —e cos(6))*

o cos(f) + e cos?(6) — 2e
B (1—e cos(@))?’
(hi ha un sin?(8) = 1 — cos?(6)).

Els termes individuals del numerador de la formula seran

.2 2
9 (r’)2 —9p?e? sin”(6) = 22 ¢ 1 — cos®(0) -
(1 —e cos(f)) (1 —e cos(f))
2 _
e = R cos(f) + e cos (6)4 267
(1 —e cos(f))
P2 = 1 _ (1 — e cos(h))?

(1 — e cos(0))? (1— e cos(6))"’
que sumats donaran
) 2¢e* —2¢? cos?(0)
2 (7”/)2 —rr 4+ = P +e(cos() + e cos®(0) — 2e)
+1—2e cos(f) + e* cos?(6)

= — e cos(f
(1 —e cos(6))* < ©)

p2

(1 —e cos(h))®
Mentre que en el denominador hi haura

p2

(1 —e cos(0))*
= P’ - (1+¢e* —2e cos(0))
(1 — e cos(0))

(") + 7% =

(e — €? cos®(0) + 1 — 2e cos(f) + e* cos®(0))

de forma que

"2 2 3/2 p3 2 3/2
((T) +r ) = 01— cos@) (1+e*—2ecos(f))”".

Dividint, el resultat final sera
(1 —e cos(6))?

k(0) = .
(6) p(1+ €% —2e cos())3/?
Comproveu que amb tot aixd hem demostrat el resultat de Newton®*:

Teorema. La curvatura de l’ellipse en un punt P esta donada per

k:n

q_27

onn €s la distancia entre la tangent per P i el diametre parallel a ella, 1 2 q €s la longitud
d’aquest diametre.

32 Philosophie Naturalis Principia Mathematica. Vegeu Curvatura de les coniques sequint Newton,
http://mat.uab.es/"agusti/docencia.html

Toc <4< > > < » Tornar


http://mat.uab.es/~agusti/docencia.html

Solucions als Exercicis 106

Només cal observar que ’equacié en cartesianes de 'ellipse anterior és

x —c)? 2
( )+y

a? b_2:1’

o bé
z(0) =r(0)cos(0), y(@)=r(0)sin(0).
El pendent de la tangent en un punt P de parametre 6, és
y'(0) e —cos(0)
2'(0) sin(f)
La distancia de P al diametre parallel a la tangent per P, que és doncs la recta y =
m (x — ¢) (observem que (c,0) és el centre de I'ellipse) és
. |mr(0) cos(0) — r(#) sin(d) — mc| __a (1 —e cos(f))
V1+m2 V1+e2—2ecos(d)

Per calcular ¢ tallem 1’ellipse amb la recta y = m (z — ¢) 1 obtenim que les abscises
21, Lo dels dos punts de tall son

m =m(0) =

ab
VRt am

i per tant les ordenades son y; = m(x; — ¢) i aixi

T, =c=k

2b+/1+¢€2—2e cos(h)

2q = — x1)? )=
¢=/(w2— 21+ (12 — 1) 1— e cos(0)
Finalment doncs
n (1 — e cos(0))?
LA

¢  p(l+e2—2ecos(h))3/?

com voliem veure.

Nota®’: Aprofitant aquests calculs es veu facilment que la normal a 'ellipse en P talla
'eix de les z en un punt @) de coordenades () = (er,0), amb r = r(0).

33Vegeu Puig-Adam, Calculo Integral, p.290.
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N
Q
Per tant, N = d(P,Q) = rv/1 + €2 — 2ecos 0, i aixi
2
n p

Calculs més simples sense polars. A partir de la parametritzacié de ’ellipse donada
per x = acos(t), y = bsin(t) tenim

7' (t) = (—a sin(t),b cos(t)), ~"(t) = (—a cos(t),—b sin(t)).

Per tant ;
a
k(t) = L
on A = a? sin®(t) + b? cos?(t).
Per calcular n, observem que n és la distancia del punt (0,0) a la recta tangent

To Ly

a? e b
i per tant (x; = a cos(t),y; = b sin(t))
1 ab
n= = :
N2 2 A2
() + ()

Per calcular 2 ¢, longitud de I'eix parallel a la tangent per P, només ens hem d’adonar
que si denotem (21, Y1), (22, y2) els punts de tall de 'eix parallel a la tangent amb Dellipse,
tenim

2q = \/(xg—x1)2+(y2—y1)2 = |xg — 21| V1 +m?,

on m és el pendent de la tangent i per tant

b cos(t)
m=——: .
a sin(t)
Per calcular z, x5 resolem
2 m2a?
FER R T

1 obtenim

ab

Aixi |29 — 21| = 2a |sin(t)], d’on es dedueix

2¢ =2a |sin(t)] V1+m2 =2AY2

x; = = +a sin(t).
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Finalment

També és veu molt facilment que la subnormal N (longitud de la normal entre el punt

de contacte i I'eix de les x) val
b

N = ZAY?
a
(lequaci6 de la normal és y — yg = “Zé’o(% — 1)) i per tant també podem escriure la
curvatura com
2
P
=¥

Geodésia. La mateixa expressio s’acostuma a escriure en geodeésia en funcié de 'angle
¢ que la normal per P forma amb la part positiva de l'eix de les x, anomenat latitud
geodésica. Aquest angle és justament el complementari de I'angle que forma la tangent
en P amb la part negativa de l'eix de les x. Si I'equaci6 de ’ellipse és

2 2
T Yy
e et
la tangent per P = (z1,y;) és
rTr1 | Y
@ T
Per tant,
2
a"y
tan(e) = 552
que permet escriure
bz 2 2 72
cos(p) = ——==, ¢ =a" —b",
(?) Vat — 2t
d’on
a cos(p)

€

B V1—e?sin®(p)
Per altra banda, la tangent talla I’eix de les x en el punt (;—?, 0) de manera que

cos(p) =

Q = (a2/21,0)

(amb la notaci6 de la figura el denominador és RQ = OQ — (OS — RY)).
D’on s
o (@ =2 cos()

z sin?(yp)

Substituint el valor de x; s’obté
p

N =
V1 —e2 sin?(p)
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Per tant tenim una altra expressié per a la curvatura de l’ellipse en P:
(1 — €2 sin?((p))3/?
p .

k:

O

Exercici 34. Calculem primerament la subnormal per a tota corba donada de la forma
(x,y(z)). Per a aixd observem que si « és I'angle que forma la tangent a aquesta corba en
un punt P = (z,y(x)) amb eix z, llavors N cos(a) = y(x) on N és la subnormal en P.

Q

Pero 1/ cos(a) = y/1 + tan?(«) i per tant N = y(z) /1 + (v/(2))?.
Per altra banda, la féormula de la curvatura quan la corba no esta parametritzada per
I'arc aplicada a la corba (x,y(z)) dona

que es pot escriure com
vy
k(2) = =5 (11)
formula valida, doncs, per a tota corba donada com a grafica d’una funcié y = y(x).
Apliquem ara aquests calculs a ’ellipse. Derivant dos cops ’equaci6 de ’ellipse s’obtenen
les equacions

T /
Loy
a b?

1 1

Pl ﬁ((y/)Q +yy") =0,

a partir de les quals, i de I’equacio inicial de 'ellipse, es pot aillar 3" i obtenir
b4
"o

a2y’
Substituint aquest valor de y” a (11) s’obté I'expressié que voliem (hem assumit, per
seguir el dibuix y > 0).
Per a la hipérbola i la parabola val exactament el mateix resultat, & = p*/N?, pero
observeu que p té un significat lleugerament diferent en el cas de la parabola. U

Exercici 35. Sigui (s) la corba descrita per la roda posterior i v(s) la que descriu
la roda davantera. Suposem que s és el parametre arc de f(s). Sigui L la distancia
constant entre 3(s) i y(s). Observem que el vector velocitat de la roda del darrera tindra
la mateixa direcci6 que ((s) — v(s). Aixd permet escriure y(s) = S(s) + L f'(s) ja que
I7(s) = B(s)|| = L.
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Derivant s’obté 7/(s) = §'(s) + L k(s) N(s) on k(s) és la curvatura de §(s) i N(s) la
seva normal principal. Multiplicant per §'(s) s’obté
(V(5), B'(s)) = (B'(s), B'(s)) = 1
1 per tant
17 (s)I] cos(6(s)) =1,
on #(s) és angle entre '(s) 1 7/(s). Perd per hipotesi, en coincidir aquest angle amb
I'angle entre el quadre i el manillar de la bicicleta, aquest angle és constant 6(s) = 6.

Pero clarament
17/ (s)I = v/ 1+ L2k2(s),

1+ L2 K%(s) cosf =1
i per tant k(s) és constant i B(s) és una circumferéncia (de radi r = L cot(f)). A partir
d’aqui és immediat comprovar que el recorregut de y(s) estara sobre la circumferéncia
concéntrica a I'anterior i de radi R = v/r? + L?. (Clicant sobre 'esquema accedireu a una
construcci6é dinamica on podreu modificar els parametres).

de forma que

Observem finalment que I’area entre les dues circumferéncies és
A=nR —ar =70+ L*) —7rr’=nl?
que no depén de I'angle!! O

Exercici 36. Recordem que la clotoide és la corba que es defineix imposant que la seva
curvatura varii linealment amb I’arc, és a dir,

k(s) = As

per a una certa constant A. Si diem «(s) l'angle entre la tangent a aquesta corba i I'eix
de les x sabem que

da

k(s) = As = —
(5) = As = —

i per tant (suposant «(0) = 0)

Com que ((2/(s),y'(s)), (1,0)) = 2'(s) = cos(a(s)) la clotoide és

+(s) = (/0 cos(us2),/os sin(,u32)>, 2= A

La clotoide que busquem en aquest problema en particular és de la forma

v(s) = (a + /08 cos(pt?) dt, /08 sin(pt?) dt).
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La seva curvatura és
k(s) = [7"(s)l =2ps,
de manera que k(s) = 2 (curvatura del cercle donat) quan s = 1/p.
Per a aquest valor de s s’han de complir dues coses:

(a) ||[v(1/u) — (1,1)]] = 1/2, (el punt de la clotoide esta en el cercle donat),

(b) (y(1/p) — (1, 1), (cos(p s?),sin(u s%))) = 0, (la clotoide és tangent al cercle en el punt
de contacte).

Aquestes dues equacions, amb les dues incognites a, u, son

<a+ /Ol/ucos(utz)dt - 1)2 + </01/Nsin(ut2)dt — 1>2 = i,
(a + /OW cos(pt?) dt — 1) cos(1/p) + (/OW sin(pt*) dt — 1) sin(1/p) = 0.

D’aqui es dedueix

1 1/p
a = §sin(1/u)~|—1—/ cos(pt?) dt
0

1/u 1
/ sin(put?)dt — 1 = —3 cos(1/p).
0

La segona equacié només involucra g i té solucié p = 0.356. .. 1 per tant, substituint a la
primera equacio, s’obté a = —0.106. . .
En resum, la clotoide buscada és**

v(s) = (— 0.106+/ COS(O.356t2)dt,/ sin(0.356 t2) dt>.
0 0

Si es dibuixa aquesta funci6é s’obté

1.4

1.2

0.8
0.6
0.4

0.2

34F]s valors dels parametres que apareixen a la férmula sén les aproximacions mencionades anteriorment
i son suficients per donar un grafic prou precis.
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O

Exercici 37. Considerem un punt qualsevol del recorregut de la corba que no sigui
un extrem de la curvatura. Prenem, amb centre en aquest punt, la referéncia 7'(0),
N(0). D’aquesta manera la corba (s) = (z(s),y(s)) compleix z(0) = y(0) = 0, 2'(0) =
1, ¥(0) = 0, 2”(0) = 0, y"(0) = k(0) = 1/p, on p és el radi de curvatura en (0).
(Parametritzem la corba de forma que s és el parametre arc).

Sigui D(s) la funcio distancia dels punts de la corba al centre de curvatura (0, p). Es

compleix
D(s) = Va(s)* + (y(s) — p)*.

Les derivades successives de D(s) queden bastant simplificades si es té en compte que
només interessa el seu valor en s = 0.
En efecte,

D'(s) = (x(s)2'(s) + (y(s) — p) y/'(s)) D(s) ™",
D"(s) = (2/(s)* + 2(s) 2" (s) + ¥/(s)” + (y(s) — p)y/'(5)) D(s)™" + D'(s) As),
D"(s) = (2"(s)* + a'(s) 2"(s) + 2"(s)” + 2¢/(s) y" () + (y(s) — p)y"'(5)) D(s)™"
+ D'(s) uls) + D"(s) v(s),

on A(s), u(s), v(s) son certes funcions. Posant s = 0 s’obté

D(0) = p,
D'(0) =0,
D"(0) =0,

D///(O) _ _y///(o)'

Es facil veure que &'(0) = 4" (0)/2, de manera que la hipotesi de que el punt no sigui
extrem de la curvatura diu que y"”(0) # 0.
Per tant, desenvolupant D(s) per Taylor s’obté

D(s)=p+as®+...,

on a = —k'(0)/3. Aixi a té signe oposat a k'(0): positiu si la curvatura decreix i negatiu
si la curvatura creix.

Si a > 0, els punts de la corba amb s < 0 sén interiors al cercle osculador, i els punts
de la corba amb s > 0 son exteriors al cercle osculador.

Si a < 0, els punts de la corba amb s < 0 sén exteriors al cercle osculador, i els punts
de la corba amb s > 0 sén interiors al cercle osculador.

Nota: Observeu que aquesta propietat no és gens facil de veure en un grafic de la situacio
ja que l'ordre de contacte entre les dues corbes fa que siguin indistingibles en un entorn
del punt que es consideri. O

Exercici 38. Sigui 7(s) una corba plana parametritzada per 'arc. La corba o(s) dels
centres de curvatura és la corba

o(s) =(s) + p(s)N(s),
on p(s) i N(s) son, respectivament, el radi de curvatura i la normal de ~(s).
Puntualitzarem l’enunciat suposant que p’(0) > 0. En particular existeix un petit
entorn de 0 en el qué p'(s) > 0. Veurem que els cercles osculadors corresponents a aquests
valors de s no tallen el cercle osculador corresponent a s = 0.
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La longitud de o entre o(0) i o(s) és

flot /Ho— M ds = [ 1 (6) 1 ds = o) = )

Sigui @ un punt qualsevol del cercle osculador en el punt v(0). Veurem que @) és
interior al cercle osculador en el punt v(s). En efecte,

d(Q,0(s)) < d(Q,0(0)) +d(a(0),0(s)) < p(0) + £(c(0),0(s)) = p(s).
Pero el signe igual en aquesta igualtat només es pot donar si la corba de centres de
curvatura és una recta (en el petit interval que estem considerant). Pero aixd vol dir
que el vector normal N(s) és constant, la qual cosa només es dona quan 7 és una recta,
situaci6 implicitament no considerada ja que quan parlem de p(s) entenem que k(s) # 0.

Per tant

d(Q,0(s)) < p(s),
i tot punt del cercle osculador en el punt v(0) és interior al cercle osculador en el punt
7(s).

L’esquema esta enllacat a una construccié dinamica en la que es pot comprovar com els
cercles osculadors (verd i blau) de la corba (vermella) en dos punts propers estan un
dins laltre i quan un dels puts va més enlla d’un extrem de la curvatura (zeros de p') es
tallen. 0

Envolupants

Exercici 39. Encara que geométricament és evident els calculs explicits son un exercici
prou interessant.

Sigui (s) una corba parametritzada per I'arc amb k(s) # 0 per a tot s. El cercle
osculador en el punt 7(s) es pot parametritzar per (s fixat)

X(s,t) =v(s) + p(s) N(s) + p(s) (cos(t) T'(s) —sin(t) N(s)), 0<t <27,
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Cal fer les derivades

X~ T(3) + H(5)N5) + p(s) k()T () + 9/(5) (con(r) T(s) — sint) N (s)),

cos(t N(s) —sin(t) (—k(s) T(S)))

:(M@amw+mw0T@+(M@a—mw»+waN@>

0X

ot —p(s) sin(t) T'(s) — p(s) cos(t) N(s).

Ja que l'equacio de l'envolupant s’obté substituint, a 'expressio de X(s,t), el parametre
t pel valor que es dedueix de la igualtat
0X 0X
det(—

0s’ 8t> 0.

Aixo és
p'(s) cos(t) +sin(t) p'(s) (1 —sin(t)) + cos(t)
—p(s) sin(?) —p(s) cos(t)
Equivalent a p/(s) (1 — sin(t)) = 0 que, si no estem en un punt critic, implica t = 7/2.
Substituint aquest valor a X(s,t) resulta
X(s,7/2) = v(s) + p(s) N(s) + p(s) (=N(s)) = 7(s)

com es volia veure. O

=0.

Exercici 40.
Primer métode. Calculem la relacié entre A 1t resolent el sistema

dry(t) dxa(t)
N R
dyx(t)  dyx(t) 2 ’
Gl ) A 1T+20¢
1
per tant A = TS La corba buscada és doncs
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Segon métode. La familia de rectes donada es pot escriure en forma implicita com

y—A—Nz=0.
Nomeés s’ha de resoldre el sistema format per aquesta equacio i la seva derivada respecte
A, =1 —2Xz = 0 (com a lexercici 5(b)). Substituint a la primera A = —z- s'obté
1
=L, O

Exercici 41.
Primer métode. L’equacié d’aquestes cordes és y = mx + n i 'area determinada per
una d’aquestes rectes i la parabola és
x9 1 1 T2
S:/ (y — 2% dx = {meQJrnx— gx?’

1 1

1
— 6( 2 +4n)3/27

on
m+Evm?2+4n
2

son les abscisses dels punts d’interseccié de la recta i la parabola. S’ha utilitzat que
x? = m x?+n z; per reduir la primitiva a una expressio de grau 2 i després que 2 = m x;+n
per reduir-la a una expressié de grau 1.

Pel teorema de la funcié implicita, pensant n = n(m), s’obté

Tr; =

1
0= 6(m2 +4n)2 (2m +4n)

d’on

i per tant n = —mTQ + c.
Ara ja es pot utilitzar el métode estandard per trobar envolupants: resoldre el sistema
format per I'equacioé de la recta i la seva derivada respecte el parametre.

Yy=mx-+n
m
O=z+4+n'=2——.
+ 2
Per tant,

+e=12*+e

(22)”
1

y=22"4+n=22"—

Es a dir, envolupant buscada és la parabola y = 22 donada traslladada segons el vector
(0,¢).

Aquesta constant d’integracio ¢ es pot determinar, en funcié de S, calculant simple-
ment l'area determinada per la corda y = ¢, que ha de ser S. Aprofitant el calcul anterior
amb m = 0,n = ¢ s’obté

1
S = 6(4 0)3/27

Segon métode (Fedenko)®. Comencem al revés i determinem una constant ¢ tal que
la corda y = c talla la parabola donant lloc a una regi6 d’area S. Obtenim com abans

35 Problemas de Geometria Diferencial, bajo la direccion de A. S. Fedenko, Editorial Mir, 1991.
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c = (25)%3. A continuaci6 es fa una rotacid parabolica que deixi invariant (no punt a
punt) la parabola y = 22
Es facil veure que aquesta “rotacio” és la transformacié (z,y) — (2/,y) determinada

per

¥ =x+ A,

Y =2Ax+y+ A%,
Aquesta transformacié també deixa invariant (no punt a punt) la parabola y = 2% + ¢ i
porta la tangent en el punt (0,c) a la tangent en el punt imatge (A, c + A?). Com que
el determinant de la part lineal és 1 aquesta transformacié conserva arees i per tant les

cordes buscades son les tangents a la parabola y = 22 + ¢, que és doncs ’envolupant
buscada.

0

Exercici 42. Sigui P = (1,0) i T la circumferéncia 2% + y* = 1. El raig de llum que surt
del punt P = (1,0) i arriba al punt (t) = (cos(t),sin(t)) surt reflectit en una recta de
pendent 6 = t—a, on « és 'angle a la base del triangle isosceles (0, 0), (1, 0), (cos(t), sin(t)).

Per tant 2a+t =7, 04+ a =1t, i aixi

3t 7w
0=———.
2 2
El raig reflectit és doncs la recta
3t
y —sin(t) = tan(; — —) (z — cost),
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que, simplificant, queda
cos(3t) + si (315) cos(t)
—)x+sin(—)y = —).
2 oY 2

Per obtenir I'envolupant d’aquestes rectes només s’ha de resoldre el sistema format
per aquesta equacid i per I'equacié de les rectes que tenen per coeficients les derivades
dels coeficients respecte t, és a dir,

3t 3t t
=3 sin(—)z + 3 cos(— )y = —sin(=).
() +3 cos()y = —sin()
La soluci6é d’aquest sistema sera

T = % (cos(t) 4 cos?(t)) — %7

Y- % (sin(t) + sin(t) cos()),

on s’ha utilitzat que 2 cos?(%) = 1+ cos(t), sin(t) = sin(2f — £), i similars. Aleshores és
clar que aix0 és una cardioide, tal i com es veu directament comparant aquestes equacions

amb les equacions de la cardioide obtinguda a l’exercici 10.

"“7/ \\\\\\\\
4 ~ ~ NN
e GREEE Y )

Involutes 1 evolutes

Exercici 43(a) Sigui v(s) una corba regular plana parametritzada per 'arc. Mirem si
existeix una funcio diferenciable A(s) tal que

Bs) =(s) + Als

)Y (s),
sigui la involuta de 7(s). Només hem d’imposar (7'
)

(s),8'(s)) = 0. Per tant
(V' (5),7/(s) + X(5) 7 (s) + Als) k() N(5)) = 1+ N (s) = 0,

i d’aqui en resulta que només hem d’agafar A(s) = —s + ¢, on ¢ és una constant.
Aixi doncs

Bls) =(s) + (c = 5)7'(s)-
Per determinar aquesta constant imposem la condici6é de I'enunciat v(sg) = 5(sp) que ens
diu ¢ = s, és a dir, la corba demanada és

Bls) =(s) + (50 = 5) 7 (s).
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Observem que en el cas kK = 0, i.e, una recta, qualsevol recta perpendicular és una
involuta i tanmateix no admet una parametritzacié d’aquest tipus. U]

Exercici 43(b) Observem que podem suposar sense pérdua de generalitat que v esta
parametritzada per I'arc. Aleshores la distancia de 7(s) a [(s) mesurada al llarg de la
recta tangent és |sg — s, que és la longitud de la corba 7(s) entre els punts de coordenades
so 1 s. Per tant podem pensar que la involuta és la corba que s’obté desembolicant una
corda tibant que ha estat embolicada al llarg de 7. U]

Exercici 43(c) Suposem ara que t no és parametre arc de 7. Sigui s,(¢) un parametre
arc corresponent a 7. Aleshores () = v(t) + \(t) ¥/ (t) 1 es té

B(t) = (1) + (5+(to) — (1) % (12)

O

Exercici 43(d) Només cal aplicar la formula de I'apartat (c) als calculs de I'exercici 17.

V(t) = (¢, cosh(t)),
7'(t) = (1,sinh(t)),
17 (£)]] = cosh(?),
s(t) = sinh(t).
Com que v(0) = (0,1) i volem que f3 passi pel punt (0,1) prenem ¢, = 0. Aleshores

B(t) = (t - tanh@),wi@))

que és una parametritzacio de la tractriu (recorreguda en sentit contrari al que s’havia
pres a l'exercici 16). O
Exercici 43(e)
Circumferéncia. Sigui v(t) = (R cos(t), R sin(t)). Aleshores el vector tangent sera
v(t) = (=R sin(t), R cos(t)), amb ||7/(¢)]| = R i s(t) = Rt + c. Per determinar la
constant ¢ imposem s(0) = 0 (desemboliquem a partir del punt (1,0)) i obtenim ¢ = 0 de
manera que el parametre arc és s(t) = Rt.

Per tant, aplicant la formula (12) s’obté

B(t) = R (cos(t) + t sin(t),sin(t) — t cos(t)).
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—

La longitud de cada tangent es igual a la longitud de la circumferéncia entre el punt de
contacte i el punt (1,0).

Cicloide. Considerem la cicloide (vegeu també I'exercici 44)

~v(t) = (t +sin(t), —1 + cos(t)).
Es compleix v/(t) = (1 4 cos(t), —sin(t)), [|[//(¢)]| = 2 cos(t/2) i s(t) = 4 sin(§) + ¢. Per
determinar la constant ¢ imposem s(27) = 0 (vegeu figura) i s’obté ¢ = 0, de manera que

el parametre arc és s(t) = 4sin(%).
Aleshores, aplicant la formula (12) es té

B(t) = (t +sin(t), —1 + cos(t)) — 4 sin(~

1 .
2) W) (1 + cos(t), —sin(t))

= (t —sin(t), 1 — cos(t)),

que és el mateix resultat que a ’exercici 44 esmentat abans.

H /. Cicloide involuta

Observeu que el desenvolupament del cordill és només entre m i 27 ja que el punt de
parametre 7 és singular. La longitud de cada tangent es igual a la longitud de la cicloide
(evoluta) entre el punt de contacte i el punt (27,0). O

Exercici 44(a) Suposem que 7(s) estd parametritzada per I'arc. La familia de rectes
normals es pot escriure com
v(s)+tN(s), teR
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(una recta per a cada valor del parametre s).

Podem construir una corba que tingui un punt sobre cadascuna d’aquestes rectes i que
en aquest punt aquesta recta de la familia de normals sigui la seva recta tangent? Si aixo
és possible sera la evoluta de 7.

La pregunta anterior és equivalent a la seglient: ezisteix una funcid diferenciable \(s)
tal, que la corba B(s) = v(s) + A(s) N(s) compleix que §'(s) té la mateixa direccid que
N(s)?

Només s’ha de derivar i obtenim

B'(s) = T(s) + N(s) N(s) = k(s) Ms) T'(s)
= (1—Fk(s)X(s))T(s) + N(s) N(s).
Per tant, ha de ser 1 —k(s) A(s) =0, és a dir, A(s) = En termes del radi de curvatura
p(s) = 1/k(s) I'evoluta de (s) és doncs la corba

B(s) =7(s) + p(s) N(s).
Observeu que, si es canvia el parametre, la féormula anterior no canvia. La figura
representa 'evoluta E de 'ellipse C'.

1
k(s)”

0

Exercici 44(b) L’evoluta és el lloc geomeétric dels centres de curvatura d’una corba
plana. U

Exercici 44(c) Considerem la cicloide y(t) = a (t — sin(t),1 — cos(t)). Aleshores, re-
cordant que la normal principal d’una corba plana (z(t),y(t)) que no esta en principi
parametritzada per arc és N(t) = (—y/(¢),2'(t))/ [[(=v/(t),2'(t))]| si det(y'(t),7"(t)) >0

iMﬂz%wﬁMﬁWWwﬁ%(Mﬂ®ﬂ()(D<(wmwmmwmm
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en la situaci6 actual) es té

v (t) = a (1 — cos(t), sin(t)),

7"(t) = a (sin(t), cos(t)),
1 . S
N(t) = =y @ (- sin0), 1 = cos(t)) =

I @)I° = 2 (1 = cos(t)),
/ 3
p(t) = M!Z(i—f)lﬂ)l =4a sin(%).
Per tant B(t) = v(t) + p(t) N(t) = a (t +sin(t), (—1+cos(t))) = a (t +sin(t), —1 + cos(t)).
La figura segiient mostra els grafics de dues cicloides: (t) = a (t —sin(¢), 1 — cos(t)) i

la seva evoluta 3(t) = a (t + sin(t), —1 4 cos(t)) per a 0 <t < 6.
Cicloide

m a (sin(t), —1 + cos(t)),

Evoluta de la cicloide = Cicloide

Observem que es passa d’una a ’altra per la translacié de vector (7, —2), és a dir, que si
considerem la transformacio

S]]
I
_|_
A

Y|
Il
NS
|
“N.)

tenim

T(t)=t—sin(t) + 7

g(t) = —1 — cos(t)
i s’obté una reparametritzacio de B(t), ja que (z(t),y(t)) = B(t + 7). L’evoluta de la
cicloide és la mateixa cicloide traslladada! U

Exercici 45. Recordem que la tractriu té la propietat de que la longitud de la subtangent
és constant. (La subtangent és el segment de la tangent a la corba en un punt, determinat
per aquest punt i el punt de tall de la recta amb l'eix de les z).

Es el mateix veure que l'evoluta de la tractriu és la catendria, que veure que una
involuta de la catenaria és la tractriu (exercicis 43 i 44).
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P = (t, cosh(t))

(0,0) R = (¢,0)

Hem vist a l'exercici 17 que el parametre arc de la catenaria (¢, cosh(t)) esta donat
per s(t) = sinh(¢). Observem que s(0) = 0, és a dir que mesurem longituds a partir del
punt (0, 1).

Prenem sobre la tangent a la catenaria per P la longitud sinh(¢), és a dir, la longitud
de la catenaria entre els punts (0,1) i P = (¢, cosh(t)), de manera que la distancia entre
P i@ és també sinh(t).

L’angle a = ZRP(Q) és el complementari de ’angle que forma la tangent P() amb l'eix
de les 2’s. Com que el pendent de la tangent és sinh(t), tenim

tan(a) = — ! :
sinh(t)
En particular
cos(a) = tanh(t), sin(a) = cosi(t)'

Per altra banda és clar que
Q) = (t — sinh(t) sin(«), cosh(t) — sinh(¢) cos(«))
de manera que
1

@ = (t — tanh(¢), cosh (1)

).
En particular
d(Q.R) = 1.

Com que cosh?(t) — sinh?(¢) = 1, el triangle APQR ha de ser rectangle en Q.
Aixi, la corba descrita per () té subtangent 1 de forma que és la tractriu i, per un altre
costat, talla ortogonalment les tangents de la catenaria, és a dir, és la seva involuta. [

Exercici 46. L’equaci6é d’una homotécia de centre Pirad A és X' = P+ (X — P)ila
simetria de centre Q) és X' =20Q — X.
Partim de la parametritzacié de la cardioide, donada a I’exercici 10,

v(t) = (2a cos(t) (1 + cos(t)),2a sin(t) (1 + cos(t))).
Un calcul directe dona

det(y/(t),7"(t)) = 12a* (1 + cos(t))
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(convé recordar que cos(t) = cos(2t — t) = cos(2t) cos(t) + sin(2¢) sin(t)) i
IV (8)]1” = 8.a® (1 + cos(t)).

Per tant la curvatura esta donada per

3
K = 4a+/2 \/1+cos(t)

4av/2 \/1+ cos(t
(1) = o) + L2V
on N(t) és la normal unitaria donada per

1 / /
BECIRR

1
B 2a+/2 \/1+ cos(t) (

(com que la parametritzacio gira deixant U'interior de la cardioide a I’esquerra s’ha d’agafar
N(t) de manera que la base (7/(t), N(t)) sigui positiva).
Substituint N (t) a la féormula anterior s’obté que I'equaci6 de I'evoluta és
1 4a

olt) = =5 () + (5

Aixi I'equaci6 de I'evoluta és

N(t)

—2a cos(t) —2a cos(2t),—2a sin(t) — 2 a sin(2t))

,0).

—
\_

S’obté el mateix resultat si s’aplica una homoteécia de ra6 1/3 i centre (a,0) a la
cardioide (%) 1 a continuaci6 es fa una simetria respecte aquest mateix punt (a,0). [

Exercici 47.
Primera part.

Vegem primerament que la ortotomica de I" respecte P coincideix amb la corba [(t)
dels simétrics de P respecte de les tangents a I'. Es a dir, 3(t) i P so6n simétrics respecte
de la tangent a I' en el punt v(t) = (z(¢),y(t)).

En efecte, les circumferéncies que generen l'ortotomica séon

Ci(u) = (X (), Y (t,u)) = (2(t) +r(t) cos(u), y(t) +r(t) sin(u)), € [0,27],
—
amb r(t) = H'y(t)PH
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En particular,

/ _ / _
T, = & (x pl)j:y (y p2)7 P = (plap2)'

L’equacié de l’envolupant s’obté substituint a l’expressio de Cy(u), el parametre u pel
valor que es dedueix de la igualtat

X oY
ot ot ¥ 471" cos(u) y +r' sin(u) .
0xX oY —r sin(u) r cos(u) '
du  Ou
Es a dir,
z' cos(u) + ¢y sin(u) + " = 0. (13)

Aixi dones f(t) = (z(t) + r(t) cos(u), y(t) + r(t) sin(u)), amb u donada per (13).
La comprovaci6 que (3(t) és el simétric de P respecte de la tangent s’obté a partir de
I’esquema segiient

D’on es desprén

(1)
(P, () = (& + 1 cos(u) — pr,y + 1 sin(u) — pa), (', 3))

=xx' +ra cos(u) —pra’ +yy +ry sin(u) —py/
=ra’ cos(u) +ry sin(u) +rr’ =0.

(2) Angle 8, = Z() P,/ (t).
OB, ) =7 cos(dr) =~ =)’ = (y = pa) Y = ="
(3) Angle 6, — /4 (0)A(E), v(1).
(B (1) = 1 cos(6) = {(r cos(u),r sin(w), (&', /) = —r 1"
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Per tant ; = 05 i hem acabat.

Nota. Aix0 es pot veure sense cap calcul aixi: Si prenem dues circumferéncies de la
familia, proximes, una amb centre ~y(¢) i altre amb centre (¢ + €), les dues per P, la
recta que uneix els punts de tall P, P’ és perpendicular a la linia que uneix els centres, i
P i P’ s6n simétrics respecte d’aquesta recta. En el limit, quan ¢ — 0, aquesta recta és
la tangent i P’ és el punt de I’envolupant.

Segona part. Per definicié de corba envolupant, en el punt de parametre ¢ la tangent a la
corba ortotomica [(¢) i la tangent a la circumferéncia de centre (t) per P (que passa per
B(t)) coincideixen , i per tant les normals també. Pero la normal a la tangent en un punt
d’una circumferéncia és un diametre, de manera que podem afirmar que les rectes (t)3(t)
son les rectes normals a la corba ortotomica. La seva envolupant és doncs l'evoluta de
l'ortotomica, perd com que les rectes (¢)/5(t) son també les rectes reflectides de les rectes
P~(t), podem dir que la caustica de ' respecte de P és l'evoluta de lortotomica de T
respecte de P. O

Exercici 48(a) Reprenem els calculs de Iexercici 17. Respecte el parametre “natural” ¢,
la catenaria esta donada per a(t) = (¢, cosh(t)). Aleshores:

o' (t) = (1,sinh(t)),
a"(t) = (0, cosh(t)),
_|det(a/,a”)] 1
N P ST )
La parametritzacio de la catenaria respecte el parametre arc és
B(s) = (arcsinh(s), V1 + s2 ),

i el parametre arc esta donat per s(t) = sinh(¢) (recordeu que s és la integral de la norma
del vector tangent). Aleshores

Fls) = (\/821+ i \/828+ 1 ) ’

k(t

" —S 1
Fis) = ((32 TR 1)3/2)'
Per tant 1
(s) = 16") = 15

Observem que si en aquesta formula canviem s pel seu valor s(t) = sinh(t) s’obté el

valor de k(t) d’abans. O

Exercici 48(b) L’expressio de la tractriu en el parametre “natural” de la catenaria és

(vegeu 'exercici 16).
1

cosh(t) )

A(t) = (¢ — tanh(),

Per tant

sinh?(t) _ sinh(?) )
cosh®(t)”  cosh®(t)”’

_2sinh(t) cosh(t) cosh(¢)(sinh*(t) — 1)
B cosh(t) cosh*(t)

() = (

7" (t) )-

Toc <4< > > < » Tornar



Solucions als Exercicis 126

La curvatura és doncs
v = 007 0) 1
IV @)I° sinh(f)
Pero s(t) = sinh(t) és el parametre arc de la catenaria, comptades les longituds a partir
del punt (0,1) comu a la catenaria i a la tractriu, s(0) = 0, aixi que

és a dir, la curvatura de la tractiu és l'invers del parametre arc de la catenaria, més
concretament, la curvatura de la tractriu en el punt corresponent al punt de la catenaria
que dista s de l'origen és 1/s. En general sera (vegeu apartat (c) segiient): la curvatura
de la involuta en el punt que s’obté quan s’ha desembolicat una longitud s del cordill
inicialment sobre la evoluta, és 1/s.

Nota: Si pensem la tractriu com v(x) = (z,y(x)) on y(x) és la solucié de I'equacid

diferencial
;o y

tenim /' (z) = (1,4 (x)), 7" (x) = (0,y"(x)). Pero és facil veure que

I (@) = — e
gl =
v Yy ()

Y (LC) - _(1 _ yg)g/g'

Per tant la curvatura val

SR CCH O o)
/()P

La curvatura és simplement la derivada (canviada de signe). U

Exercici 48(c) Sigui a(s) una corba parametritzada per l'arc. Les seves involutes s’es-
criuen com [(s) = a(s) + (so — s) &/(s) com es veu a l'exercici 43. El punt on es comenca
a desembolicar el cordill és, doncs, a(sg) = B(sp). Aixi

B'(s) = (so — s) k(s) N(s),
B"(s) = (—k(s) + (s0 — 5) K'(s)) N(s) — k*(s) (s0 — 5) T(s).
Per tant la curvatura ks(s) de la corba [ és

ka(s)

d’acord amb el que s’ha vist a 'apartat (b). O

1

- |s — sol

Exercici 49. El vector tangent és +/(t) = a (1 — cos(t), —sin(t)) i té norma ||7/(¢)| =
2a sin(t/2). La longitud de la cicloide des del vértex O fins un punt ~(¢) ve donada per
L(t) =4a (1l —cos(t/2)) (formula obtinguda en el problema 9, apartat (c), amb ¢y = 0).

Si el cordill té longitud 4a vol dir que la parametritzacié de la corba descrita per
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I'extrem del péndol ve donada per

B QR
5(t> - ’Y(t) + ||’7/(t)H (4 L(t))
B ' 2a cos(t/2)
= a(t —sin(t),cos(t) — 1) + Csin(t/2)
cos(t/2)

sin(t/2)

(1 — cos(t), —sin(t))

=a(t—sin(t),cos(t) — 1) + 2a (2 sin®(¢/2), —2 sin(t/2) cos(t/2))
= a(t +sin(t), —3 — cos(t)),

que és clarament la cicloide de la figura.
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Corbes a 'espai

Parametritzacions i parametre arc

Exercici 50. Aquesta corba esta continguda en el con x2 +y* — 2% = 0. (0) és el vértex
del con. Es compleix 7/(0) = (1,0,1) i 7v”(0) = (0,2,0).

Exercici 51(a) ~(t) = (e’ sin(t), 1, e’ cos(t))

[}

El vector tangent és
7' (t) = (cos (t) €' + e'sin (t), 0, cos (t) e" — e'sin (1)),

1 la seva norma
Iy ()] = V2 €.

Per tant, la longitud s(t) de la corba entre els valors del parametre 0 i ¢ sera
t
s(t) :/ V2 e dx = ﬁ(et —1),
0
de forma que el parametre ¢ sera, en funcié de la longitud s,

V2 s

t=log(" 1 1),
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i la corba es pot reparametritzar per I'arc com

+(s) = ((‘55 +1> sin(log(ﬂs F1),1, (ﬁs +1) cos(log(@ +1))) .

2 2 2
O
Exercici 51(b) ~(t) = (cosh(t), sinh(t),1)
1 ')‘
1
15
El vector tangent és
¥/(#) = (sinh(¢), cosh(t), 1),
i la seva norma
17/ (t)]| = v/(cosh(t))2 + (sinh(t))2 + 1 = v/2 cosh(t).
Per tant, la longitud s(t) de la corba entre els valors del parametre 0 i ¢ sera
t
s(t) = / V2 cosh(z) dz = /2 sinh(t),
0
de forma que el parametre ¢ sera, en funci6 de la longitud s,
2
t(s) = arcsinh (%s) ,
i la corba es pot reparametritzar per I'arc com
[ 82 /2 . V2
v(s) = ( 1+ 505 arcsinh (T s) )
O

Exercici 51(c) ~(t) = (¢, t3,t°)
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El vector tangent és
Y(t) = (1,2¢,3¢),

1 la seva norma
H’y’(t)” =V1+4t24+9¢4,

Per tant, la longitud s(¢) de la corba entre els valors del parametre 0 i ¢ sera

t
—/ V14422 +92% du,
0

integral que no es pot expressar en termes de funcions elementals. Aixo significa que en
aquest cas no hi ha manera donar de forma explicita el parametre inicial ¢ en funcié del
parametre arc. [

Exercici 52. Considerem la funcio f(s) = ((y(s) — 7(so)), V). Clarament f(sg) = 0 i
f'(s) = 0 per a tot s. Aixd implica f(s) = 0 per a tot s, i hem acabat (la corba esta
inclosa en el pla que passa per y(sg) amb vector normal 7). O

Exercici 53. S’ha de veure que el producte escalar (y(t), ) és idénticament zero. Per a
aixo definim la funcio f(t) = (y(t),v) i veiem que s’anulla idénticament. Com que f(t)
és diferenciable n’hi ha prou amb veient que la seva derivada, f'(t), és idénticament zero,
amb la qual cosa f(t) és constant i, com que per hipotesis f(tg) = 0, ha de ser f(t) =0
per a tot t. Derivant s’obté

df d . R S "
= —(v(1),7) = (Y(1),7) + (+(t), (v)) = (+/ (1), ¥)
dt — dt
que és idénticament zero ja que s’esta suposant que 7/(t) és ortogonal a ¥/ per a tot t € I.

(
Observeu que qualsevol corba del tipus y(t) = (x(t),y(t),0) esta en les hipotesis de
I'exercici amb v = (0,0, 1). O

/

Exercici 54. Considerem la funcié

h(s) = ((v(s) = P), (7(s) — P)).

Per hipotesi, h'(sg) = 0. Perd aquesta derivada val

W(s0) =2 (v (s0), (v(s0) = P)) =0
i s’ha acabat. O
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Triedre de Frenet. Curvatura i torsid

Exercici 55. Sigui s = s(t) el parametre arc de y(¢). Quan derivem ~y(t) respecte ¢ i
escrivim el resultat en funcié de s s’obté?’
dry(t dy(t d d
(1) _ dy(t(s)) ds B (14)
At li=t(s) ds  dtl=tts) — dt le=t(s)
on T'(s) és el vector unitari tangent a la corba en el punt de coordenada s = s(t).
Per alleugerir la notaci6 s’escriu habitualment
b _dyds s
TS T ds dt - dt

Es deueix en particular que
Il =
LT
Per trobar la curvatura es fa la segona derivada respecte ¢ (i s’aplica la formula de Frenet
de la derivada del vector tangent):

d*>y  d%s ds\ > d*s 2
" = — = — T —_— k,' N = — T ! k: N 15

= =T () N =T (15)
Fent producte vectorial amb 7/ (que és multiple de T') s’obté 'expressio per a la curvatura

ja que
d*s

VA = (I A (G T+ I RN ) =11 kB, (16)
d’on queda clar que
3
I AN =117 F,

i en conseqiiéncia
IIH

po Ay
- 3
ol
Quan es fa la tercera derivada respecte t (i ens despreocupem dels termes en T o N,
que no importaran per a més endavant) s’obté

ds dN
V= )T )N PRS2 )T )N+ I (KT =7 B)

que, agrupant en funci6é de T', N, B, sera

V= (T4 ()N = I kT B,
i fent el producte escalar amb ' A 7" quedara com

(A A ==Y AN R
Perd com que |7/ A" = ||¥]|> k es pot dir que
(Y Ay det(y,7",79")

AP AP

36Utilitzant el teorema de la funci6 inversa i la regla de la cadena

df (t(s)) _ df(t) dt

ds dt li=t(s) ds
que es pot escriure com
df(t) _df(i(s)) ds
dt |t:t(s) ds dt \t:t(s)'
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que és el que es volia veure. O

Exercici 56. Com que aquestes corbes no estan parametritzades per I’arc utilitzarem les
formules (14), (15) i (16) de Pexercici anterior 55. A partir d’elles s’obté directament

1 / " o 1
~ oAy OO = e R
N(t) = B(t) AT(t) = —T(t) A B(1).

Aquestes formules son molt 1tils ja que donen directament el triedre de Frenet per a
corbes que no estan parametritzades per ’arc.

Aixo vol dir que tot el que s’haura de fer en cada apartat sera calcular v/, v", v A", 7",
el determinant de les tres derivades i les normes corresponents a les formules. Observeu
doncs que, a la practica, es calcula abans el vector binormal B(t) que la normal principal
N(t). O

Exercici 56(a) ~(t) = (t,t?,t3).

B(t) (' () A(1)),

Si es van calculant els elements necessaris per aplicar les férmules:
v(t) = (1,2¢,3t%),
7"(t) = (0,2,61),
7" (t) = (0,0,6),
V() Ay"(t) = (6%, —61,2),
17/ ()] = VI+ 482+ 9t
17/ (£) A" (1) = V3614 + 3612 + 4,
(' (1) A (), 7(8)) = 12.

t
t

De forma que la curvatura i la torsi6é seran:

V3611 +3612 44

k(t ,
() (94 + 412+ 1)%?
3
P L S
)= —gaor 1
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I el triedre de Frenet sera
1

T(t) = 1,2t,3%),
Q \/1+4t2+9t4( )
1
B(t) = (3t*,—31t,1),
VIt 4+ 982 +1
1
N(t) = —9t3 —2t,—9t* +1,6¢> + 3¢).
Q \/1+4t2+9t4\/9t4+9t2+1( )
O
1—t 1—t¢2
Exercici 56(b) ~(t) = (t,T, ; ).
[}

Amb una mica de vista es pot comprovar que la corba queda sobre el pla x —y 4+ z = 1.
(Per tant, el seu binormal hauria de ser multiple de (1, —1,1)).
Si es fan els calculs per determinar curvatura, torsio i triedre de Frenet:

Vo= (1 -z -z 1),

o= (0.5 %),

v = (0.5 -5).
VOA 0= (550 5 )

2 2 Vit +t2+1
IOl =y 5+5+2 =v2 T

I Ayl = 22

t
<’7,(t) A 7”(15),’)/”(75» —0.

De forma que la curvatura i la torsi6é seran:

3 t3
k(t) = \/; (t* + 12+ 1)3/2
7(t) = 0.
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I el triedre de Frenet sera

2 1 1 1
T(t) = t (17 T2 Ty T 1> - (t27 -1,-1- t2)7
V2 V2 + 1 2t V2V

3 2 2 2 1
B(t) = S-S o) = —(1,-1,1
) 2\/§(t3’ t3’t3) vz

1
N(t) = 242,22+ 1,82 - 1).
(¥ V6V 12+ 1 ( )
O
Exercici 56(c) ~(t) = (et,e %, v2 t).
De forma que la curvatura i la torsioé seran:
K(t) V2 e?t B V2
ettt 1 9e2t 4] (e2t+e—2t)2’
vz vz
T(t) = o2t ¢ o2t 1 9 - (2t 4 ¢—2t)2°
I el triedre de Frenet
1 t —t
T(t):et_i_e*t (e,—e ,\/5),
]‘ -t .t
B(t) = et + et (—e ¢ ’\/5) ’
1
N(t) = —— (\/gth,\/gth,l —e2t> )
1+ e2t
L]

Exercici 56(d) ~(t) = (2t,log(t), t?).
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2t2+1
1 (t) ||—\/ + +16—

De forma que la curvatura i la torsioé seran:

- — 2L 2
14211 et

2t 2t
W= el @R
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I el triedre de Frenet

2t 1 22
T(t) =
®) (2t2+1’2t2+1’2t2+1>’
2t 22 1
B(t) = — —
(®) (2t2+1’ 212+ 1’ 2t2+1)’

2t — 1 2t 2t
N(t)= (- — ‘
(*) ( 22 +1° 2t2+1’2t2+1>

Exercici 56(e) ~(t) = (3t — t3,3t%,3t + t3).

&

v (t) = (=3¢7+3,6t,3t° +3) =3(1 —¢*,2¢,t* + 1),
V'(t) = (=6, 6, 6t) = 6 (—t, 1,1),
7" (t) = (=6, 0, 6) = 6(—1,0,1),
Y () AY'(t) = (18¢% — 18, =36, 181* + 18) = 18 (t* — 1, —2¢,t* + 1),

V()] = VISt + 3612 +18 =3v2 (2 +1),
17/ (£) A" (8)] = V648 + 1296 12 + 648 = 182 (12 + 1),
(Y (#) AY"(1),7" (1)) = 216.

De forma que la curvatura i la torsioé seran:

1
T
1
TN

I el triedre de Frenet

1 t2—1 V3 t 1
\/§t2+1 24112

1 t?2—1 J7_t t 1
\/_t2+1 t2—|—1’\/§ ’

21
0
t2+1 t2+1 )
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Exercici 57. El grafic d’aquesta corba sera
J

<
"

e

Clicant a sobre s’accedeix a un full de GeoGebra on es poden fer les comprovacions. [

Exercici 58. Com que és regular es pot reparametritzar per 'arc. Diguem s a aquest
parametre. Com que 7”(s) = k(s) N(s), tenim ~”(s) = 0, que implica, integrant dos cops
cada component, v(s) = (a1 + sag, by + sba, c1 + s¢c2) = (a1, b1, ¢1) + s (ag, ba, c2), que és
una recta. U

Exercici 59. En primer lloc, reparametritzem ~(s) per l'arc. Fent una translacio si és
necessari es pot suposar que totes les rectes tangents passen per 1’origen, és a dir, que per
a tot s € I existeix (un tnic) A(s) € R tal que y(s) + A(s)7/(s) = 0. Observem que la
funcio A(s) (que esta ben definida) és diferenciable, ja que A(s) = —(v(s),v/(s)).

Derivant s’obté

V(s) + XN(s)7'(s) + A(s) 7" (s) = 0.

Si la curvatura k(s) de ~y(s) fos diferent de zero en un punt, seria diferent de zero en

un entorn d’aquest punt, i en aquest entorn es compliria

(14 N(s))T(s) + A(s) k(s) N(s) =0,

on T'(s) i N(s) son els vectors tangent i normal principal unitaris. (Recordem que per
poder definir la normal principal cal que k(s) # 0).
Com que T'(s) i N(s) son linealment independents es té

14+ XN(s)=0, Xs)k(s)=0,
que, amb k(s) # 0, son dues equacions incompatibles. Per tant k(s) = 0 en tot punt i

7 és una recta. ]

Exercici 60. Suposem inicialment que 7(¢) esta continguda en una recta. Aixo vol dir
que es pot escriure

y(t) =y(to) + f(1) ¥
on f(t) és una certa funci6 i U és el vector director de la recta. Llavors 7/(t) = f'(t) ¥, la
qual cosa implica en particular que f'(t) # 0 per a tot ¢, ja que s’esta suposant que (t)
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és regular. Tornant a derivar
V) @),

V) = FOT =105 = 7O

és a dir, la derivada segona és proporcional a la derivada primera, com voliem veure.
Reciprocament, si 7"(t) = A(t)7/(t), per a una certa funcié A(¢), es complira v/(t) A
~"(t) = 0 1 per tant (utilitzant la férmula de la curvatura k(t) respecte una parametre
arbitrari), k(t) = 0. I ja es veu a l'exercici 58 que les corbes amb curvatura nulla estan
sobre una recta. U

Exercici 61. Recordem primer que per poder parlar de pla osculador necessitem la
condici6é de curvatura no nulla.
Si la corba és plana, el pla que la conté és el pla osculador i s’ha acabat.
Reciprocament, suposem que tots els plans osculadors séon parallels, és a dir, que el
vector binormal B(s) és constant B(0) (suposem que s és el parametre arc) i definim

f(s) = {y(s) =~(0), B(0)).
Es compleix f(0) =01

f'(s) = (7'(s), B(0)) = (T'(s), B(s)) = 0.
De manera que f =01 v esta continguda en el pla osculador de v pel punt ~(0).

La tercera equacié de Frenet diu que B(t) és constant si, i només si 7(s) = 0.

D’altra banda, la hipotesi sobre la curvatura (vegeu on s’ha utilitzat) és necessaria
ja que existeixen exemples de corbes regulars que séon localment planes sense estar con-
tingudes en un tnic pla, per exemple, dues corbes planes unides per un segment recte
(observem que sobre aquest segment la curvatura és zero i que, en realitat, podria ser un
tnic punt). Vegeu l'exercici 62. O
Exercici 62. Es facil veure que

lim ~/(¢) = lim +/(¢) = (1,0,0).
Jim (2) = lim +'(t) = (1,0,0)

1/t2

Per tant, la corba és regular. De fet és C*™ ja que la funci6 e~ té la propietat de que

ella 1 totes les seves derivades s’anullen en ¢t = 0. Aixi
lim %) (¢) = lim v () = (0,0,0), k> 1.
t—0—

t—0t

Per un altre costat, en tot el recorregut corresponent a t > 0 la corba esta continguda en
el pla xz, mentre que en el recorregut de ¢t < 0 esta dins el pla zy i, per tant, en tots els
punts del recorregut amb t # 0, 7(¢) = 0. Perd, com que la corba és diferenciable, la seva
torsio també ho ¢és i per tant 7(0) = 0. Aixi y(¢) té torsi6 nulla a tot arreu i no es plana.
I no és contradicci6 amb el problema anterior perqué la curvatura de y(t) en t = 0 és 0.

Totes aquestes caracteristiques es poden observar sense problemes al grafic segiient
sense cap calcul addicional
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0

Exercici 63. Parametritzem v per 'arc. El fet de suposar que la curvatura k(s) de
v(s) no s’anulla mai implica que el vector normal N(s) esta definit per a tot s € I.
Després de fer una translacio, si s’escau, es pot considerar que totes les rectes normals
passen per l'origen, és a dir, que per a tot s € [ existeix un tnic A(s) € R tal que
7v(s) + A(s) N(s) = 0. De la mateixa manera que al problema 59 es veu que la funci6 A(s)
és diferenciable. Derivant I’expressio anterior s’obté que +/(s)+A(s)N'(s)+N(s)N(s) =0,
és a dir,
(1= X(8)k(s))T(s) + N(s) N(s) — A(s) 7(s) B(s) = 0.
Per tant, igualant a zero els tres coeficients, es veu que A(s) és una constant no nulla,
k(s) =1/X(s),17(s) =0. Com que la torsi6 és zero la corba és plana (exercici 61). I les
corbes planes de curvatura constant son circumferéncies (exercici 27). U
Exercici 64. Per hipotesi, existeixen funcions A(s) i u(s), que suposarem diferenciables,
tals que
P =7(s) + Als) T(s) + pu(s) N(s).
Derivant
0 =T + A(s) k(s) N(s) + N(s) T(s) + 1/ (s) N(s) + pa(s) (—k(s) T + 7(s) B(s)).
Aquesta igualtat és equivalent al sistema
1+ N(s) = k(s) pu(s) =0
As)k(s)+u'(s)=0
p(s)7(s) =0
D’aqui es dedueix que 7(s) = 0 per a tot s, i per tant la corba és plana. En efecte,
si 7(sg) # 0, llavors 7(s) # 0 en un petit entorn obert de so. En aquest entorna ha de

ser, per la tercera equacio, p(s) = 0. I, per tant, també p/(s) = 0 en aquest entorn. Pero
llavors la segona equaci6 diu A(s) = 0 i la primera 1 + X (s) = 0, contradiccio. O

Exercici 65. Reparametritzem ~(¢) pel parametre arc s, amb s = 0 en el punt y(t,). Es
molt facil veure que, respecte la referéncia de Frenet en s = 0, la corba és

k?
x(s)zs—gs:)‘—i—...
k K
y(s):§sz+gs?’+...
k
z(s):—Ts3+...

6
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on k, 7 s6n la curvatura i la torsio de la corba en s = 0, 1 k' és la derivada de la curvatura en
s = 0. En aquestes condicions, projectar sobre el pla osculador vol dir considerar la corba
A(s) = (x(s),y(s) = (s = E s+ ... B2 4 B3 4 ). Pero clarament 7'(0) = (1,0)
i4”(0) = (0,k) de manera que la curvatura en s = 0 de ¥ és igual a k, justament la
curvatura de v en s = 0.

Es pot interpretar doncs la torsio de la corba v com el que fa pujar (torsi6 negativa
o moviment dextrogir) o baizar (torsi6 positiva o moviment levogir) la corba des del pla
osculador (respecte al vector binormal). Observem també que quan es reparametritza
una corba canviant-li el sentit els vectors tangent i binormal canvien de signe i el vector

normal continua sent el mateix. O

Exercici 66(a) Suposem que t és el parametre arc de 5. Aixd implicara, en general, que
t no és el parametre arc de 7.
Per hipotesi es té Ng(t) = £N,(t), on N,(t) és el vector normal principal de ~(¢), i
per tant, v(t) = B(t) + A(t) Ns(t). Cal veure doncs que A(t) és constant. Derivant
(1) = 8(6) + X(0) No(t) + A(t) Nj(0)
= (1= ka(t) A(1)) Tp(t) + N'(t) N (t) — A(t) 75(t) Ba(t).
on kg(t) i 75(t) son la curvatura i la torsio de 5(¢), i Ts(t), Ns(t), Bs(t) és la referéncia de

Frenet de §(t).
Multiplicant per Ng(t) s’obté 0 = N'(t) i aixo implica A(t) =r € R. O

Exercici 66(b) Derivant el producte (Tp(t),T,(t)) respecte t i denotant s = s(t) el
parametre arc de 7y es té,

(Ts(t), T ()" = (Tp(t)', Ty(1)) + (T5(t), T, (¢))
= (ks (t) N (1), T,(1)) + (T5(t), ks (1) % N, (1)) =0,

ja que Ng(t) = =N, (t). Noteu que per obtenir aquestes igualtats cal utilitzar la regla de
la cadena i que
T d3(s)

W(t): ds |8=t’

on J(s) = y(t(s)) és la reparametritzacio per I'arc de (t).

Aixi doncs (T3(t),T,(t)) és constant. Com que sén unitaris, aixo diu que l'angle que
formen és constant. O
V(1)

Exercici 66(c) Com que 7,(t) usant el calcul de I'apartat (a) i tenint en

—Iver
compte que 'angle entre els tangents a les corbes és constant (apartat (b)), s’obté
V(1) 1 —ks(t)r
¢ = (Tp(t), T, (1)) = (Ts(t), 7540) = T
I (¢ V(L= ka(t) r)? +r275(t)

@l

Aleshores (1 — kg(t)7)* (1 — ¢*) = *r?75(t)* amb c i r constants. Com que 75 # 0,
(1 — ¢%) tampoc pot ser 0 ja que

(1 o 62) _ r? Tﬁ(t)2
(1= kg(t)r)® +r275(t)*
De manera que
L—kg(t)r  cr

() V1=
Prenent b = c¢r/+v/1 —¢? (constant) i a = r s’ha arribat a 1 — akg(t) = b7s(s) com es
volia.
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Observem que quan ¢ = 0 (tangents ortogonals), b = 0 i la torsi6 no té cap rellevan-
cia a la formula. També és clar que les tiniques corbes de Bertrand planes son cercles
conceéntrics.

Observem també que, si diem 6 I’angle entre les tangents, es compleix ¢ = cos(6) de

manera que la relacié entre curvatura i torsié es pot escriure com
1
/fg + COt(Q) T3 = —
,

Per altra banda, la igualtat que s’obté a 'apartat (a)
V() = (1= kg(t) r) Ts(t) — r7s(t) Bs(t)

es pot escriure en termes del parametre arc s de () com

fi_z % = (1= k() r) Ts(t) — r75(t) Bs(t)

i com que clarament

d
d_V = cos(0) Ty + sin(0) Bg,
S

comparant les dues férmules anteriors, s’obté

cos(0) = (1 — kg(t)r) %»
dt

sin(f) = —r Tg(t)%.

C=
=

Ara bé, el paper jugat en aquest exercici per les corbes i és reciproc. Per refer
el problema comengant per 7 en lloc de § només s’ha de canviar A per —A (si y(t) =
B(t) + AN(t) lavors B(t) = v(t) — AN(t)) i 0 per —0 ja que son angles orientats. Més
especificament, per passar de la base T, Bg a la base T, B, es fa un gir d’angle ¢ i per
tant per passar de T, B, a T, Bs s’ha de fer un gir d’angle —6.

Per tant les formules anteriors donen lloc a

—

cos(8) = (1 + k() %
sin(0) = —A7,(t) %

que multiplicant-les donen
1 .
75(6)7,(8) = -5 sin*(0)
(1—Aks(t)) (1+ Ak, (t) = 6082(9)

Toc <4< > > < » Tornar



Solucions als Exercicis 142

La primera diu que les torsions de dues corbes de Bertrand en punts corresponents
tenen el mateiz signe i el seu producte és constant (resultat de Schell); i la segona diu que
si P i Py son punts corresponents en dues corbes de Bertrand i O, Oy son els seus centres
de curvatura, llavors la rad doble (P, P',0,0'") és constat i igual a sec®() (resultat de
Mannheim). Per tal d’obtenir aquest resultat cal recordar que

pro0y=2=L 0" _ . _m
o O-P O —-P pg—A p,—A
A
O. PC .P o
I | |
ps |
Py

0

Exercici 67. Siguin 7;(t) i 72(s) dues corbes que podem suposar parametritzades per
I’arc. Suposem que hi ha una aplicacié diferenciable bijectiva ¢ entre els intervals de
definici6 d’aquestes corbes. Aquesta ¢ doéna lloc a la transformacié entre les corbes que
aplica el punt 71 (¢) al punt v2(¢(¢)). Equivalentment i per simplificar, posem s com funcié
de t, s = s(t). La hipotesi de I'exercici és que aquesta transformaci6 és de Combescure,
és a dir,

dn _dn

dt [t~ ds ls=s

dn(t) _ dya(s)
dt  ds
donant per descomptat que s = s(t) o t = t(s) quan convingui.
Ara, per la regla de la cadena,

que escriurem simplement

d dys(s) d dvy(t) d*yy dt dt
Ny(s) = —(2248)y _ @ I N HE
k() Nols) = ) = & ) T e @ - OO
De forma que Np(t) = Ny(s) i
k’Q(S) . dt
k1<t> B dS.

Per veure la relaci6 entre les torsions només s’ha de derivar i s’obté (sempre amb la relacid

s = s(t))

dN
d—tl = — k() Ty (t) — 71(t) By (1)
= —k1(t) Ta(s) — 71 () Ba(s)
dNy ds ds
=——=| - Ts(s) — B —.
= (- RO - a6 B(9)
Igualant coeficients ja es té el resultat. 0

Exercici 68. Considerant v parametitzada per I'arc s, la corba dels centres de curvatura
de v(s) és a(s) =~(s) + pN(s), amb p el radi de curvatura constant. Observem que

o'(s) =7'(s) + p(=kT(s) = 7(s) B(s)) = —p7(s) B(s)
0"(s) = p7'(s) B(s) — p7(s)* N(s)
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Aixi ) ,
e Al

lo" (s)II” !

g

La binormal de o és

I aixi
N, =B, NT, = —N.
En particular, aquestes dues corbes son corbes de Bertrand.
Finalment, quan es calcula la corba dels centres de curvatura de o, s’obté

0(s) + pNo(s) =7(s) +pN(s) = pN(s) =(s)
és a dir, la corba inicial.
Nota: Observeu que, en aquesta situacio les tangents entre les dues corbes sén perpendi-
culars i, per tant, la cotangent de ’angle 6 que formen és nul'la. Aixo significa que la relacio
lineal entre la curvatura i la torsié quan es tenen corbes de Bertrand k+cot(0) 7 = % no té
1

com a conseqiiéncia que la torsi6 sigui constant, ja que es redueix a la igualtat k = % =5

(la distancia r entre les corbes és el radi de curvatura p). U

Exercici 69. Parametritzem v pel parametre arc s i definim la corba dels centres dels
cercles osculadors (s) = v(s) + p(s) N(s) on p(s) = 1/k(s) és el radi de curvatura. La
hipotesi de que f(s) esta continguda en una recta es pot traduir en el fet que la curvatura
de B(s) és zero, o equivalentment que 5'(s) A 8”(s) = 0. Utilitzant les formules de Frenet
de v s’obté (totes les funcions valorades en s, que ometem per comoditat)

B'=y—pN+pN=T—-pN+p(—kT —7B)

= _IO/ N — pT Ba
B'=—p"N+p (kT +7B)—(p7))B—pr*N

=0 kT —(p"+p7°) N + (p’T - (w)’) B,
BAB = (—p’ (0T = (p7)) = p7 (0" + pTQ)) T—pp kTN —(p)kB.
Imposant ara §'(s) A 8”(s) = 0 obtenim tres equacions que impliquen p'(s) = 0 (i per
tant k(s) és constant) i 7(s) = 0 (i per tant, exercici 61, la corba v és plana). Aixi es
dedueix que 7 és una circumferéncia (exercici 27). U

Exercici 70. La corba f((s), lloc geométric dels centres de curvatura de la corba v(s)
(parametritzada per I’arc), s’escriu com

B(s) = (s) + p(s) N(s),

on p(s) és el radi de curvatura i N(s) la normal principal. Derivant respecte s tenim

B'(s) =T(s) + p'(s) N(s) + p(s) (—k(s) T(s) — 7(s) B(s)),
on 7(s) és la torsi6 i B(s) el vector binormal.
Com que p(s) k(s) = 1, B(s) és combinaci6 lineal de N(s)1i B(s), i per tant és ortogonal
a T'(s), per a tot s. O
Exercici 71. Podem suposar que la corba esta parametritzada per I'arc. Fent servir el
triedre de Frenet sabem que B’ = 7 N (sobreentenem en el punt s) i per tant |7| = || B’||.
Derivant un altre cop

B'"=7N+71(—kT—7B)=—-k7T+7 N—-7°B.
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BAB 1 BADB
B ——— ) =+k k= |=( B" ———— )|.
< wwABw> " 7< wwABwN

Es a dir, es pot calcular k i |7| usant el vector binormal B i les seves derivades. U

Exercici 72(a) Veiem primer que quan v(s) esta parametritzada per I'arc la formula és
certa. Després estendrem el resultat per a un parametre qualsevol.
Per les formules de Frenet es té

N'(s) = —k(s) T(s) — 7(s) B(s)
N"(s) = =K' (s) T(s) — (k(s)* + 7(5)*) N(s) — 7'(s) B(s).

Llavors
IN"(s)|I* = k(s)* + 7(s),
N(s)AN'(s) =k(s)B(s) —7(s)T(s),
(N(s) AN'(s), N"(s)) = K'(s) 7(s) — 7'(s) k(s
Aixi

V) AN Ny ()
IN(s)]” 14 ( <s>>

(s)

D’altra banda, quan la corba (t) no esta parametritzada per 'arc es reparametritzar
per 'arc s = s(t), i denotant v = ds/dt i aplicant la regla de la cadena es compleix

N'(t)=vN,
N"(t) = v'N 4+ v2N,
(N(t) AN'(t), N"(t)) =v* (N AN, N),
k(t)\/ kN
(7o) =2 ()

on el punt denota la derivada respecte del parametre arc s i la prima la derivada respecte

del parametre t. Aixi N = %, etc. En particular, doncs,
i a v e _wwans o) ()
N N OO

U

Exercici 72(b) Sigui s el parametre arc. Conéixer N(s) per a tot s, vol dir conéixer el
primer terme de 'equaci6 (1). Diguem-li f(s). Llavors la funci6 y(s) = k(s)/7(s) verifica

I'equaci6 diferencial
/

1+2—fU

d’integracio 1mmed1ata i que dona y(s) = tan([ f(s , on la constant d’integraci6é C

Coneixem doncs el quocient k(s)/7(s). Pero, a més, sabem que ||N’(s)||2 = k(s)* +
7(s)?. De manera que també coneixem la suma k(s)? + 7(s)?, per a tot s. Aquests dos
valors (el quocient i la suma de quadrats) determinen totalment k(s) i 7(s), i per tant,
llevat de moviments rigids, la corba. U

Toc <4< > > < » Tornar



Solucions als Exercicis 145

Exercici 73. Com que la corba és plana (torsio nulla) sabem que k(s) = |0'(s)| on 0(s)
és l'angle que forma la tangent a la corba amb la direccio (1,0).

Més concretament, 6(s) és una determinacié de I'argument, vegeu exercici 30, o dit
d’una altra manera una funcié 6 : I — R (on I és l'interval on esta definida la corba)
tal, que 7/(s) = (cos(0(s)),sin(0(s))).

D’aquesta manera (7'(s), (1,0)) = 2'(s) = cos(0).

En el nostre cas, doncs, 0'(s) = 1/s. Integrant i tenint en compte que 0(1) = 0 aquesta
condici6 diu que

0(s) = In(s).

Finalment, integrant les expressions z'(s) = cos(In(s)) i ¢'(s) = sin(In(s)), i tenint en

compte les condicions inicials s’obté

v(s) = (g (sin(In(s)) 4 cos(In(s))) +

| —

> (sin(ins)) — cos(in(s))) - % o) |
]

Exercici 74. Abans de comengar observem que, donat que sempre es compleix k(s) > 0,
només es pot considerar s € [0, L] i per tant en el 0 només hi ha derivades per la dreta.
A més, tot i que £(0) = 0, es podra definir N(0) per obtenir el resultat de ’enunciat.

Com que la corba és plana el vector binormal és constant i es compleix B(s) =
(0,0,—1) per a tot s, de manera que la corba esta continguda en el pla xy. I la base
T'(s), N(s) és negativa respecte la base canonica de zy ja que T'(s) A N(s) = B(s) mentre
que (1,0,0) A (0,1,0) = (0,0, 1).

Sabem que k(s) = |0'(s)| on 0(s) és I'angle que forma la tangent a la corba amb la
direccio (1,0,0). Aixi, (7/(s),(1,0,0)) = 2/(s) = cos(8(s)).

En el nostre cas, doncs, |0'(s)| = s i, per tant, (s) = j:% + C, amb el signe + per a
tota s o amb el signe — per a tota s.

......

minada 1 es té )

S ™
=+—+ - > 0.
0(s) 2+4, >0

Per tant
s 2 7
xz(s) = [ cos(x—= + —)dt,
; 2 4
S 2 (]'7)
(s) = / sin(ﬂ:t— + z) dt
Y ; o T
Per controlar el signe, calculem N(0), que ha de ser igual a (72, —72, 0). Aixi es ve

que s’ha d’agafar el signe menys, i per tant la solucio és

S t2
x(s) = /0 cos(—E + %) dt,

5 2
= in(—— + —) dt.
y(s) /0 sin(—3 + )

Aquestes integrals no son expressables en termes de funcions elementals.

Un altre métode. Podem procedir integrant directament les equacions de Frenet. Po-
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sant T'(s) = (x1, 9, x3), N(s) = (24, x5, 26) les equacions de Frenet son

Ty = smy,
xh = s s,
Ty = s g,
Ty = —suy,
T = —8 I,
/
Ty = —SI3.
Per tant
v = -3swy— 527,

I expressions analogues per a x5 i zg.
Aquesta equaci6 diferencial és dificil de resoldre, pero es pot comprovar que la solucié
donada anteriorment n’és una solucio.
Com que x4 és la primera component de N(s), i la corba (z(s),y(s)) donada per les
equacions (17) esta parametritzada per I'arc,
2

) s T
24(8) = sin(—— + —
() =sin(~ 5+ ),
funcié que compleix efectivament 1’equaci6 diferencial anterior. [l

Exercici 75.
Cas particular previ. Suposem un punt () que gira al voltant d’un eix, descrivint doncs
una circumferéncia en un pla perpendicular a aquest eix. Si r(t) és el vector posicio, per

ser ||r(t)|] = constant, obtenim (r'(¢),r(¢f)) = 0. Per altra banda, si denotem per e el
vector unitari director de 'eix, obtenim (r(t),e) = ||r(¢)|| cos(cr) = constant, i per tant
(r'(t),e) = 0. Com que 7’(t) és perpendicular a () i a e tenim

r'(t) = At) e Ar(t). (18)

Igualant els moduls

I @1 = A@#) NI (B sin(a) = At) a,

on a és el radi de gir.

Pero ||r/(t)|| és la velocitat v(t) del punt i per definici6 de velocitat angular tenim

v(t) =w(t)a
de manera que A(t) = w(t). Definim aleshores el vector de Darboux com
d(t) =w(t)e (19)
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i equaci6 del moviment (18) s’escriu
r'(t) = d(t) Ar(t).
Cas general. Considerem una corba i les seves equacions de Frenet. FEls tres vectors
T'(t), N'(t), B'(t) pertanyen, en cada punt, al pla E(t) donat per
E(t) = (N(t), =k(t) T'(t) — 7(t) B(1)).

El vector director d’aquest pla, que denotem d(t) per analogia amb el cas anterior (perd
ara varia amb t també la direcci6), és

d(t) = N(t) A (=k() T(t) — 7(t) B(t)) = k(t) B(t) — 7(t) T'(t)
de manera que
T'(t) és ortogonal a T'(t) i a d(t). Per tant, T'(t) = A(t) d(t) N T'(t).
N'(t) és ortogonal a N(t) i a d(t). Per tant, N' = u(t)d(t) A N(t).
B'(t) és ortogonal a B(t) i a d(t). Per tant, B’ = v(t) d(t) A B(t).
Comparant amb les formules de Frenet es veu que A = u = v = 1. En efecte,
T/(t) = k(£ N(£) = M) (k(t) B®) — 7(8) T()) A T() = A(t) k(t) (),
per tant A(f) = 1. Analogament
B'(t) = r(t) N(t) = v(t) (k(t) B(t) — 7(t) T(t)) A B(t) = v(t) 7(t) N(1),
per tant v(t) = 1. 1
N'(t) = k() T(t) — 7(t) B(t) = p(t) (k(t) B(t) — 7(t) T(t)) A N(t)
= —p() k@) T(t) — p(t) r(t) B(t),

per tant u(t) = 1.
En particular, les féormules de Frenet es poden reescriure com

T'(t) =d(t) NT(t),
N'(t) =d(t) A N(t),
B'(t) = d(t) A B(t).
de manera que, per a qualsevol punt P, solidari al triedre de Frenet, és a dir, tal que el
seu vector posicio 7(t) respecte del triedre de Frenet sigui de la forma r(t) = aT'(t) +
bN(t)+c¢B(T), amb a, b, ¢ constants, es compleix
r'(t) = ad(t) NT(t) +bd(t) N N(t) + cd(t) A B(t)
=d(t)AN(aT(t))+d(t) AN (BN(t)) +d(t) A (cB(t)) =d(t) Ar(t).

La comparacié d’aquesta formula 7/(t) = d(t) A r(t) amb (19), que representa un gir,
és el motiu pel qual es diu que tot moviment d’un solid rigid amb un punt fix és un gir
infinitesimal.

Si definim la velocitat angular w(t), a 'instant ¢, com el quocient entre la velocitat

lineal ||7/(¢)]| i el radi (instantani) de gir

a(t) = [lr@)] sin(a(t))

amb a(t) Pangle entre r(t) i d(t), tenim

17 ()] = w(®) at) = [[d@)]| Ir(#)] sin(a(t)),
és a dir

w(t) = dD = VE(1)* +7(t)?
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Aquesta és la velocitat angular en la que gira el triedre de Frenet.

Observem que hem demostrat el segiient resultat ben conegut des de fa uns 300 anys:

Teorema. Tot moviment d’un solid rigid amb un punt fix é€s un gir infinitesimal.

Demostracio. Pensem que aquest solid rigid té una referéncia ortonormal solidaria amb
ell, amb origen el punt fix. Si d’aquesta referéncia en diem T'(t), N(t), B(t), com que, per
hipotesi, coneixem T'(t), N(t), B(t) en tot instant ¢ també coneixem les seves derivades.
En particular podem pensar que és la referéncia de Frenet d’una corba de curvatura
IT"(t)]| i torsio || B'(t)]| (suposem 7 # 0 i treballem localment amb 7 sempre positiu o
sempre negatiu). Les formules de Frenet d’aquesta corba que hem vist que es poden
escriure com producte exterior amb un eix de gir d(t) que varia amb el temps resolen el
problema. O

O

Corbes esfériques i hélixs

Exercici 76. Observem, completant quadrats, que 1’equaci6 del cilindre donat es pot
escriure com z2 + (y — 1/2)? = 1/4, i és doncs un cilindre vertical de radi 1/2 amb 'eix
donat per = 0, y = 1/2. Per tant, prenent coordenades polars en el pla zy centrades al
punt (0,1/2,0) el cilindre té equaci6

— “sin(t
x 2sm(),

1 1
y=5+ §COS(t),
z2=2z.

Substituint aquest valors a I’equaci6 de l'esfera i aillant z s’obté

= “CTOS(O — +sin(t/2).

El que queda és un calcul simple on s’apliquen les formules de la curvatura i torsi6 per
a corbes amb parametre arbitrari de ’exercici 55:

() = (% sin(t), % + %cos(t), sin(t/2)> :
V() = (cos(t) _sin(?) cos(t/Q))’

2 2 2
/()] = 53/ TF co(t72),
V(t) = (_sin(t) _ cos(t) _sin(t/2)) ’

2 7 2 4
V(1) A () = ( sin(t) sgn(t/2) +cos(t) (;05(15/2)’
cos(t)sin(t/2) sin(t)cos(t/2) 1 )
8 4 C 4 )
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I (6) A" (0) = /8~ Bsin?(2/2),
k() = V/8 — 3sin?(t/2)

(1 +cos?(t/2))3/2
w cos(t) sin(t)  cos(t/2)
v (t) - (_ 9 ) 2 y 3 > y
det(y/(1), (1), 7"(1)) = =22,
~ —6cos(t/2)
"= S a0

O

Exercici 77(a) Suposem primerament que 7(s), que suposem parametritzada per 1'arc
per comoditat, esta sobre una esfera de centre ¢y i radi R. Per tant

(v(8) — co,v(8) — co) = R?.
Derivant tenim
(' (s),7(s) = co) = 0 (20)
i aixo és dir que el vector radi vy(s) — co 1 la corba son perpendiculars per a cada s.
Reciprocament, suposem que existeix un punt ¢ tal que

(7'(s),7(s) = o) = 0.
Pel que acabem de veure la funci6 h(s) = (y(s) — o, y(s) — ¢o) té derivada zero i per tant
és constant ¢. En conseqiiéncia la corba esta sobre esfera de centre ¢ i radi 1/c. U

Exercici 77(b) Tornant a derivar la igualtat (20) obtenim
0= (7"(s),7(s) = co) + (7'(5),7'(5)) = ("(5),7(s) — co) + 1.

Observem que en particular aquesta igualtat implica v”(s) # 0, que vol dir, geométrica-

ment, que una corba, pel fet d’estar sobre l'esfera, ja té curvatura estrictament positiva.
O]

Exercici 77(c) Com que v"(s) = k(s) N(s) tenim
(NV($).7(5) — ex) = — 1
Derivant un cop més
(N'(5),7(5) = o) + (N(5), T(8)) = o)
’ T R

i com que (N(s),T(s)) =01 N'(s) = —k(s) T(s) — 7(s) B(s), aquesta igualtat es redueix
a

—7(5) (B(s),7(s) — co) =

que ja ens diu que 7(s) = 0 implica ¥'(s) = 0.5
Com que hem fet la hipotesi 7(s) # 0 es pot escriure

Ly =)
<B(8)77<8) O> (k‘(S))2 T(S) :

37En particular si 7(s) = 0 per tot s, la curvatura és constant, i tenim un cercle (les corbes planes de
Pesfera son cercles).
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Tenint en compte que T'(s), N(s), B(s) és una base ortonormal de I’espai per a cada
s, els resultats anteriors es poden resumir en la igualtat

S SO oR S C) N
W) == g N~ Gy

que és el que es volia comprovar. 0

B(s)

Exercici 77(d) Per tal de simplificar les expressions, denotem p = 1/k1© = 1/7. Notem
que, amb aquesta notacio, el vector radi 7(s) — ¢y d'una corba esférica parametritzada
per 'arc s’escriu com

Y(s) —co=—p(s) N(s) + p'(s) O(s) B(s).
Llavors, donada una corba ~y(s) per a la qual p?(s) + (p' ©)(s)? sigui constant, i guiats
per 'anterior expressié considerem

c(s) = ~(s) + p(s) N(s) = p'(s) ©(s) B(s) .
Ara només cal provar que c(s) és constant. Derivant aquesta I’expressié s’obté (totes
les funcions valorades en s)
d=T+pN+p(—kT—-7B)— ())©)B—-71pON

=—(pT+(O))B

=—(p®" +(V0)) B,
on hem usat pk = ©7 = 1. Per un altre costat, derivant la condici6 p? + (p' ©)? = ct.
s’obté

pp'+p O O) =0
d’on, dividint per p' ©,
PO +(PO) =0

i per tant ¢ =01 ¢(s) és constant, com voliem. O

Exercici 78(a) Sigui a(s) una corba parametritzada per l'arc (la definici6 d’hélix no
depén de la parametritzacid). Sigui ¥ un vector unitari arbitrari i fix. Aleshores es
compleix

(T'(s), )" = k(s) (N(s),7) .
De forma que:

Si a(s) és una helix i ¢ el vector director unitari del seu eix, el valor de (T'(s),v) és
constant i la seva derivada nulla. Per tant, (N(s),v) = 0 (cal que k # 0 si es vol
parlar de vector normal) i N(s) és, per a tot s, parallel al pla perpendicular a ’eix.

Reciprocament, si N(s) és parallel per a tot s a un pla fix i ¥ és el vector unitari per-
pendicular a aquest pla, la mateixa formula dira que ’angle entre el vector tangent
i la direcci6 determinada per aquest vector és constant. I aixd és dir que a(s) és
una hélix amb eix determinat per v.

U

Exercici 78(b) Suposem primerament que 7 és una hélix parametritzada per l'arc i
designem per ¥ el vector director del seu eix. La condicioé (N(s),?v) = 0 implica que ¢
s’ha d’escriure com

v=ua(s)T(s)+ b(s) B(s).

Derivant aquesta igualtat

0= (a(s) k(s)+b(s) T(S)) N(s)+d(s)T(s)+b(s) B(s).
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Per tant a 1 b s6n constants 1

que és una constant.
(Notem que, si 0 és I’angle entre la tangent a la corba i I'eix, el valor de b/a és tan(f)).
Reciprocament, suposem que k(s)/7(s) és constant i prenem l'angle donat per § =
arctan(—k(s)/7(s)). Definim el vector

U(s) = cos(0) T'(s) + sin(0) B(s)
que forma un angle constant § amb 7T'(s) al llarg de tota la corba. Derivant,

#(s) = (k cos(f) + 7 sin(0)) N = 0

sin(0

(ja que (6) = ——) i per tant el vector ¥ és constant i s’ha acabat. O
cos(0) T

Exercici 78(c) La torsio. O

Exercici 78(d) Notem en primer lloc que si (¢, T'(s)) = 0, és a dir, quan estem en el cas
particular d’hélix en qué langle entre T'(s) i una direcci6 donada no és només constant
sin6 que és igual a 7/2, la corba sera plana i continguda en un pla perpendicular a ¢. En
efecte, derivant la funcié h(s) = (¥, v(s) — v(so)), que compleix h(sg) = 0 es té
W (s) = (U,7(s) —v(s0))" = (0, T(s)) = 0,

igualtat d’on es desprén que h(s) és constant, i per tant h(s) = 0 per a tot s, de manera
que y(s) — v(so) és perpendicular a v, i en conseqiiéncia y(s) esta continguda en el pla
ortogonal a v que passa per (sg). Ja s’ha comentat en el peu de pagina anterior que,
normalment, s’exclouen les corbes planes de la definicié d’hélix.

Suposem doncs que (U, T(s)) = ¢ # 0 i projectem ~y(s), que suposem parametritzada

per 'arc, sobre el pla perpendicular a l'eix que passa per un punt qualsevol (y(sg)) del
seu recorregut de forma que s’obtingui una corba [3(s) sobre aquest pla i de la forma

B(s) =(s) + A(s) ¥,
on A(s) és una funcio tal que A(sp) = 0. Com que f'(s) sera perpendicular al vector ¢
(unitari) s’obtindra

0= (0,8(s)) = (U, T(s)) + N(s) =c+ N(s)

de forma que N'(s) = —c i, tenint en compte que en A(sp) = 0, A(s) = —c(s — sp). Per
tant,

—

V(s) = B(s) +c (s —s0) U= B(s) + (s — 50) W
amb W = cv.
Si 0 pertany a l'interval de definicié del parametre arc s i tenim la precaucié de tallar
pel pla que passa per v(0) (calculs anteriors amb sy = 0) s’obté

V(s) = B(s) + s
com demana l’enunciat del problema. Suposarem que aquesta és la situacio.
Per calcular la curvatura de 3(s) podem procedir de dues maneres.
Primer de tot observem que si escrivim la condicié d’hélix com (U, T'(s)) = ¢ = cos(«),
llavors (W, w) = cos?a i (7/(s),wW) = c(T(s),¥) = cos*(c). Aixi, denotant per u el
parametre arc de [3(s) es té

(%) = <ﬂ’(3),5’(s)> = <,->/(3) — ’Llj, ’Y/(S) _ 117) _ sinz(a) '
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Aixi
dBG) i) ds 1

T - _
5(u) du ds |s=s(U) du sina

(7' (s(u)) — cos(a) V),

i per tant

bals()Na(s(0)) = T = L S (s0) o) 1) = s (460

du sin(a) du sin(«)
L (d(s) ds 1
~ sin(a) ( ds ls=s(u @) = mkw(S(U))N(S(U))

i com que aquesta igualtat és certa per a tot u és certa per a tot valor del parametre s de
manera que

1
kg(s) = —5— k4(5).
(5) = g o9
També es pot procedir directament aplicant les formules conegudes. Calculant d’aquesta
manera

kols) = L= ATN _ )5 ) — cos(a) o1 Ny (5} = p

sin®(a) ~ sin®(a) sin?(a)

ja que, tal com es veu a la figura (recordem que (¥, N(s)) =0), (B, A N) = cos(a).

N

<y

O

Exercici 78(e) Per relacionar aquest apartat amb ’apartat anterior reparametritzem per
I'arc. Dient ¢ = a®+b?, tenim ||7/(t)|| = ¢, de manera que ds/dt = c, on s és el parametre
arc de ~y(t). Aixi

S . [/S\ bs
v(t(s)) = (a cos (E) ,a sin (E) ,?)
En particular
dy(t(s)), _ b
1), 2y = 2
((0,0,1), LDy _
Per tant, a la vista del paragraf anterior,
b S . /S
B(s) =~(s)—s - (0,0,1) = (a cos <E> ,a sin <E> ,0).

Desfent el canvi de parametre s = ¢t tenim
7(t) = (acos(t),asin(t),0) + ¢(0,0,b)

de manera que, encara que t no és parametre arc, hem pogut escriure la corba com a
I’apartat anterior. Aixo és degut a que el canvi de parametre ha estat lineal. En general
aixo no es podra fer. Pensem per exemple en 'hélix v(t) = (cos(t?), sin(¢?), t?) (el vector
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tangent forma angle constant amb (0,0,1)). No podem escriure v(t) = §(t) + tw amb
S(t) plana (sobre un pla de vector director (0,0, 1)).
]

Exercici 78(f) Calculem en primer lloc la curvatura de v(t) = (a cos(t), a sin(t),bt).

7 (t) = (—a sin(t),a cos(t),b),
7'(t) = (—a cos(t), —a sin(t),0),
v (t) A" (t) = (ab sin(t), —ab cos(t),a?),

17 ()l v@”’?2

k(t
®) a2 + b2
Podem calcular la normal principal pel métode habitual perdo com k i [|7/(¢)]| son
constants tenim T'(¢) = 2 +/(¢), d’on
dr  dT dt  k

ds — dt ds &2

i per tant N = 1~/"(t).
Aixo fa que la corba dels centres de curvatura sigui

2 b2 b2 b2
5(t) = 2(t) + T (= cos(t), —sin(),0) = (—— cos(t), = sin(t), bt),
a a
que és una helix sobre el cilindre x? + y* = b*/a?, del mateix pas de rosca b que I'hélix
inicial. U]

Exercici 78(g) Estudiem els exemples (¢), (d) i (e) de 'exercici 56.
) a(t) = (e',e7, /2 t) que té curvatura i torsi6 iguals

V2
k(t) =7(t) = (@ o202
(k(t)/7(t) = 11 per tant helix).
1) «a(t) = (2t,log(t),t?) que té curvatura i torsi6 iguals
2t
(2t + 1)

~—~

k(t)/T(t) =11 per tant hélix).
D) a(t) = (3t —1t3,31%,3t +t3) que té curvatura i torsi6 iguals perd canviades de signe
1
k(t) = —71(t) = ———+
(0= ~r0) = 575
(k/T = —1 i per tant helix).

A Tapartat (b) d’aquest mateix exercici hem vist que el vector director de I’eix d’una
helix es pot escriure com ¢ = aT'(t) + b B(t), on a i b son constants tals que k(t)/7(t) =
—b/a. Observem que v es pot escriure com

7=a(T(t)+ g B@) = a () - "W ).

Per tant, la direcci6 de I'eix de cada una d’aquestes corbes vindra donada respectivament
per:
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I) v=T(t) — B(t) = (1,—1,0) ja que

T(t) = _ <et, —e ", \/5) :

et + et

B(t) = _ (—e_t,et, \/5) :

el + et

II) v=T(t) — B(t) = (0,1,1) ja que
2t 1 22
T(t) =
(®) (2t2+1’ 282+ 1 2t2+1>’
2t 22 1
B(t) = — - :
®) <2t2+1’ 21241’ 2t2+1)

) v =T(t)+ B(t) = (0,0,2/v/2 ) ja que

1 -1 t 1
Tt = (- 2
0 (\/51&2+1’\/—t2+1’\/§>’

121 t 1
B t = T =" _\/5 N . = .
(®) (\/2_t2+1 2+1 \/5)
Per tal de determinar la corba associada només caldra projectar sobre el/un pla per-
pendicular a l'eix. Tenint en compte que la component vertical del punt de la corba

respecte aquest pla de projeccié s’obtindra fent el producte escalar d’aquest punt amb el
vector unitari que determina l'eix, s’obté la formula general

B(t) = alt) — {a(t), —2-) H_H

7]

que ens dona ((t) quan projectem sobre un pla que passa per l'origen. En cada cas
tindrem doncs:

t —1
1 _e—e L o
I) (aft), 75(1, -1,0)) = 7 De forma que la projeccié sobre el pla x —y = 0
(perpendicular a I’eix per l'origen) sera
et —et 1 el +et et et
t) = a(t) — —(1,-1,0) = , N2t
p(t) = aft) 7 \/g( )=(— )

— (cosh(t), COSh(t), ﬂt) .
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IT) («(t), \%(0, 1,1)) = \/ii(log(t) +t%). T la projecci6 sobre y + z = 0 sera
log(t) +t* 1

V2 V2

1) (a(t),(0,0,1)) = >+ 3t. Amb la projecci6 sobre el pla z =0

B(t) = a(t) — (£* +31)(0,0,1) = (3t — *,3¢%,0) .

B(t) = a(t) (0.1,1) = (2t, 5 (108(1) ~ ), 5 (~ log(1) + ).

Exercici 79(a) Com que

()= (=2 sin(s/e), & osts).

a? + b2
I ()l =\ - =1

Per tant 7(s) esta parametritzada per 1'arc. O

Exercici 79(b) D’altra banda

k(s) N(s) =+"(s) = ( — % cos(s/c), —% sin(s/c), 0) :
¢ ¢

lal

c2

tenim

Per tant, k(s) = — 1 N(s) = —sgn(a) (cos(s/c),sin(s/c),0).

El vector binormal sera B(s) = T'(s) x N(s) = sgn(a) <l£ sin(s/c), —gcos(s/c), %),
d’on
7(s) N(s) = B'(s) = sgn(a) c% (cos(s/c),sin(s/c),0),

) b

i7(s) = = O
Exercici 79(c) El pla osculador en el punt ~(s) és el que passa per (s) i el seu espai
director esta generat per T(s) i N(s) o, equivalentment, és perpendicular a B(s). Per

tant té per equacio
b sin(s/c) (x — acos(s/c)) — b cos(s/c) (y — a sin(s/c)) +a(z —b(s/c)) =0.
U

Exercici 79(d) El cosinus de I'angle 6(s) que forma el vector N(s) amb (0,0,1) és el
producte escalar (N (s), (0,0,1)) = 0, per la qual cosa 0(s) = 7/2. A més, aquesta recta,
que ve donada pels punts (x,y, 2) = (a cos(s/c),a sin(s/c),bs/c)+ X (cos(s/c),sin(s/c),0)
(per escriure la recta, el signe del vector director és irrellevant), passa pel punt (0,0,bs/c)
de l'eix Oz (A = —a). O

Exercici 80. Sabem que per recuperar la corba a partir de la curvatura i la torsié hem
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de resoldre el sistema de 9 equacions i 9 incognites segiient

1'1, = 32?4,
Ty = 31‘5,
T3 — 3.%'6,
Ty —31‘1 — 41‘7,
Ty = -3 Lo — 41]8,
1'6/ = —3513'3 — 4513'9,
1'7, = 4[L‘4,
rg = 4.735,
Tg = 41’6,

amb x; = x;(s), etc. Aquest sistema prové d’escriure

T(s) = (w1(s), x2(s), w3(s)),
N(s) = (z4(s), z5(s), 26(5)),
B(s) = (z1(s), zs(s), 29 (s)) -
Aixi
24" = 924 — 1614 = —25 24,

......

Bysin(5s). Pero com z4/(0) = —3x1(0) — 427(0) = —3, ha de ser By = —3/5. Per tant

z1(s) = 3/3:4(3) ds = 29—5cos(5 s)+C,

9 16
que ajustant la constant ens dona z1(s) = — cos(b s) + 55 finalment la coordenada z(s)

de la corba 7y(s) = (z(s),y(s), z(s)) buscada és
9 . 16 s
z(s) = /ml(s) ds = Esm(f) s) + o5
Analogament
1’5” =-9 Ty — 16 Iy — —25 Ty
cos(5s) + Bssin(5s). Perdo com z5'(0) = —3x2(0) — 4x5(s) = 0, ha de ser B; = 0. Per
tant

To(s) = 3/x5(s) ds = gsin(’c') s),

i finalment la coordenada y(s) de la corba buscada és

y(s) = /:r;g(s) ds = —2% cos(bs) + 2%

Per acabar,
16" (s) = —9x6 — 16 x5 = —25 6,

......

d’on xg(s) = Agcos(b s) + Bgsin(5 s), amb la condici6 inicial z6(0) = 0, ¢és a dir, zg(s) =
Bgsin(5s). Pero com x4’ (0) = =3 23(0) — 429(0) = —4, ha de ser Bg = —4/5. Per tant

12 12
x3(s) = 3/1’6(5) ds = 3% cos(5s) — 55
i finalment la coordenada z(s) de la corba buscada és
12 | 12 s
z(s) = /xg(s) ds = 558111(5 s) — -5
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Resumint, la corba buscada és

1
v(s) = E(Q sin(bs) +80s, —15 cos(5s) + 15,12 sin(5s) — 60 s) .

Segon métode, només valid si es té en compte que ha de ser una hélixz. (Consi-
deracio raonable a partir de 'exercici (78) ja que estem parlant d’una corba amb curvatura
i torsié constants).
Sabem que I’helix
B(t) = (a cos(t),a sin(t), bt)

té curvatura i torsio

a b
= — 7, T = ————"—"".
a2 + b a2 + b2
Per tant, prenent a = 3/25, b = —4/25 tenim una hélix amb curvatura k = 317 = 4 com

es buscava. Ara bé, en t = 0 la referéncia de Frenet d’aquesta corba és

N(0) =(-1,0,0)

B(0) = (0,4/5,3/5)
i no pas la demanada (ha de ser la base canonica) i tampoc passa per 'origen quan
t =0 ja que v(0) = (3/25,0,0) (pero aixo es pot arreglar facilment fent una translacio i
considerant la corba (a cos(t) — 3/25,a sin(t),bt)).

Per tal que es compleixin tots els requeriments considerem el moviment rigid donat
per la matriu M tal que

0 -1 0 100
M-|3/5 0 4/5]=(01 0
—4/5 0 3/5 001

D’aquesta igualtat es dedueix directament (calculant la inversa, que és igual a la trans-
posada, ja que s’estan manipulant matrius ortogonals)

0 3/5 —4/5
M=1-1 0 0
0 4/5 3/5
Apliquem ara M a la hélix i s’obtindra la corba demanada
3 y 3
%C??S()_% | ( 9sin(t) + 161
y(t) = — sin(¢) =— | —15cos(t) + 15
25, 125\ 12sin(t) — 12¢
—%t
De fet, un cop reparametritzada per 'arc, és a dir posant ¢t = 5 s, dona exactament la
corba que ha aparegut abans. O

Exercici 81. Utilitzem el triedre de Frenet. Tenim
dB 1 S S
— = = | cos(—=),sin(—=),0 ) =71(s) - N(s),
=3 (5 sin(25).0) = 7(5) (o)
d’'on 7(s) = 1/2 (ja que imposem que sigui positiva) i N(s) = (cos(%),sin(\%),()).
Aleshores
dN 1 1

o = 5 (s eosl 550.0) = —k(s) -7 - 5 B)
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d’on
V2 V2

Per tant T'(s) = % (sin(5), —cos(5), —1) i k = 1. Aixi, doncs, la corba demanada és
I’helix

46) 706) = 42 (sin(5). —eon( 5,1 ).

A(s) = (—cos%), —sin(—), —ﬁ) + (20,0, 20),
on 7(0) = (0, 4o, ). 0

Exercici 82. Utilitzarem la notaci6 segiient: les lletres sense subindex es referiran a la
corba 7 i en canvi les lletres amb subindex 1 a la corba ~;. Totes elles valorades en el
punt de parametre s que ometem. A partir de les férmules de Frenet de v obtenim

VW=KN+kN =-k*T+KN—krB,
W= (kT - KT + k' N+ KN — (k7)) B— k1B
= -3kKT+ (k”—k3—k72) N — (2k’r+lm’) B,
YAy =k B — k1T,
I AP = K (k2 72),
MANAN) =kk -k

Aixi, la curvatura i la torsié de ~; sén

T = .
’f1+(g)

En particular, v, és plana si i només si 71 = 0, o equivalentment si 7 és constant, és a dir,
si, 1 només si 7y és una helix.

De la mateixa manera, definim la indicatriu binormal de v com 1»(s) = B(s). Seguirem
denotant sense subindex els elements de v i amb un subindex 2 el corresponents a ;.
I ometem la referéncia al parametre s on estan valorades totes les funcions.

Un altre cop a partir de les féormules de Frenet de v es pot escriure

vy =B =71N,
v = |7,
vy =7 N+7N =~ktT+7 N—1°B,
VW= (k)T —ktT +7"N+7 N —(r*Y B—-7*DB
= (—k'T—Zk:T')T— <k27'—7'3> N —-377 B,
VAV =kT*B 13T,
Iy AN =74k + 72),
(Vo A9 ) = 73 (K'7—k7).
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Aixi, la curvatura i la torsi6 de v, son

VEETT

ko =
A
By 1
E ?(E) k2472
També tenim que 7, és plana (7, = 0) si, i només si, 7 és constant, és a dir, si, i només
si, v és una helix. 0

Exercici 83. Per estar sobre una esfera de radi a,
L),
B2 ke
amb k = k(s), 7 = 7(s) (exercici 77). O, en funcié del radi de curvatura p = 1/k,

(P/)2 2
o = a’.

p°+

Pel fet de ser helix, 1/7 = p tan(«) per a una certa constant «. Substituint 7 pel seu
equivalent en funcié de p, ’equacié diferencial es pot escriure com

pdp

—v/a? — p? tan(a) = s+ C.

=ds.

tan(a)

Integrant s’obté

Si es considera s = 0 en el punt on p = a apareixen les equacions intrinseques de les
helixs esfériques

@" =15 = 5% cot?(a),
1
s%+ == a® tan*(a).

Observem que la primera d’aquestes equacions és (si la corba fos plana) 'equacio
intrinseca de les epicicloides (exercici 12). Aixd suggereix projectar I’hélix sobre un pla
per tal de donar una férmula explicita d’aquestes corbes.

Considerem 'hélix esférica 7(s), parametritzada per 'arc, amb eix l'eix de les z, és a
dir,

(7/(s), e) = cos(a) = constant, e = (0,0,1).
Si es projecta sobre el pla z = 0 s’obté la corba
m(s) =7(s) = (v(s),e) €.
D’aqui es dedueix que
7 (s)|| = sin(a)
i, en conseqiiéncia, el parametre arc s; de 7y;(s) és

s1(s) = sin(a) s
i el radi de curvatura p; resulta
pi(s) = pls) sin?(a)

Per tant es compleix
(p1)? () + (51)? cos?(a) = a sin*(a),
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d’on es desprén que la corba projectada és una epicicloide. Com que tenim l’expressio
explicita de les epicicloides (exercici 12) es pot trobar I'equacio explicita de les hélixs sense
cap altre calcul que pujar aquestes equacions a l'esfera 22 = a? — 2% — 32

Amb la notacié de 'exercici 12 I'expressio anterior s’escriu

()°, (o)
A2 Bz
amb
A = a tan(a) sin(a), B = a sin*(a).

I eliminant R i r en funci6 de A i B a les férmules de 'exercici 12 resulta
AB?
A2 _ 32
i aquest és el radi de la circumferéncia que genera la epicicloide. Geométricament ja es veu
aquest resultat donat que aquest cercle ha de ser la projeccié del parallel on arriben les
hélixs esferiques. Que les heélixs esfériques no superen aquest parallel es veu directament
descomponent el vector unitari tangent a I’hélix 7/(s) com /'(s) = Avg + p vy, on vy, v,
son els vectors unitaris en les direccions del parallel i del meridia en el punt 7(s). Es
compleix A2 + p? = 1, llavors cos(a) = (7/(s),e) = p cos(m/2 — @) on ¢ és la collatitud
del punt. Per tant ¢ ha de ser més gran que 7/2 — a. De forma que les hélixs esfériques
no poden supera el parallel de latitud a que és de radi a cos(a). O

R= = a cos(«)

Exercici 84(a) Fent els calculs, tenim:
7 (t) = (sinh(t), cosh(t), 1),
7" (t) = (cosh(t), sinh(¢), 0),
~"(t) = (sinh(t), cosh(t) 0),
17/ ()] = V/cosh(2) + 1 = V2 cosh(t),
YAy (t) = (= sinh(t),cosh( ), —1),
IV (6) A" ()]l = V2 cosh(t),

v = @Al
@l 2 cosh’(1)’
(1) = Cdet(y'(8),7"(1),y"(®) 1 |
Iy (&) Ay ()] 2 cosh’(t)
Observem que k(t)/7(t) = —1, i per tant la corba és una hélix.

També es pot comprovar directament utilitzant la definicié d’helix. En efecte, si
prenem la direccié 7 = (0, 1,0), I'angle entre 7/(s) i ¥/ és constant i igual a arccos(1/v/2 )
/4. O

Exercici 84(b) El parametre arc s de 7y sera

= [ W@l o= [ V2 cohaydo = V2 sinht)

o, de forma equivalent, ¢ = arcsinh(s/v/2 ). O
Exercici 85. Observem que
/ a . a b
() = (2 sin(@(s)), ©cos(0(s), ),
17 ()l =1,
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v'(s) =

7///((9)

(6'(s) cos(B(s)), =0 (s) sin(6(s)), 0),
(—0'(s)*sin(0(s)) + 0" (s) cos(A(s)),
—0'(5)*cos(0(s)) — 8" (s) sin(6(s)), 0),

Ql@QIQ

, " ab'(s ,
() A7) = L b sin(os)) b cos(0(), ~a),
/ " a /
1Y (s) A" ()l = Z 16°(s)]
a /
K(s) = 210 (s)]
—a*b 0 (s)?
det Y (8), " 3 b,
) = ST OTEG)  T  byy
17/ (s) A" (s)]] at'(s) ¢
c
Aixi, fgzg = —%'2 ) Com que 0'(s) # 0 tindrem: o bé sempre €'(s) < 0, i el quocient

entre curvatura i torsm és positiu, o bé sempre ¢'(s) > 0, i el quocient entre curvatura i
torsio és negatiu. (]

Exercici 86. Suposem 7(s) parametritzada per I’arc. Si una tal corba f(s) existeix es
podra escriure com

B(s) =(s) +a(s) V(s),

B'(s), 1 q(s) és una funcié desconeguda.

on V) = [T

Derivant es té

1B°(s)Il VI(s) = T(s) +¢'(s) V(s) +q(s) V'(s).
Com que (V(s),V'(s)) = 0, per ser V(s) unitari i (T'(s),V(s)) = 0 per hipotesi, la

igualtat anterior només es pot donar si
T(s)+q(s)V'(s) =0. (21)
Ara bé, per hipotesi,
V(s) = sin(a(s)) N(s) + cos(a(s)) B(s).

Derivant i substituint a (21) s’obté
0="T(s)+q(s) (sin(a(s)) (—k(s)T(s) — 7(s) B(s)) + a(s) cos(a(s)) N(s)
+ 7(s) cos(a(s)) N(s) — a/(s) sina(s) B(s)) :

Aixo implica (coeficient de T'(s))

i (coeficients de N(s) i B(s))
(a'(s) 4+ 7(s)) cos(a(s)) =0, (a/(s)+7(s)) sin(a(s)) = 0.

Aquestes dues igualtats impliquen o/(s) = —7(s), és a dir

a(s) = —/OST(U) du +c,

on c és una constant.
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Finalment doncs (canviant el signe a la definicié de «a(s))

B(s) =(s) + p(s) (N(s) — cot(a(s)) B(s)), afs)= /OS 7(u) du + c. (22)

Cada valor de ¢ correspon a una de les infinites evolutes de la corba 7(s).
Si 7 =0, una de les evolutes és plana i les altres son hélixs sobre el cilindre ortogonal
al pla de la corba. 0]
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Superficies

Parametritzacions. Espai tangent.

Exercici 87(a) L’espai tangent a S en pg, T,,5, és I'espai vectorial format per tots els
vectors tangents en py a corbes y(t) que, passant per pg, estan contingudes a S. El pla
de l'espai aff R® que passa pel punt pg 1 té espai vectorial director T},,S es diu pla (aff)
tangent a la superficie en py.

Sigui, doncs, y(t) una d’aquestes corbes. Suposarem (o) = po i ¢ variant en un
entorn obert de tg. En aquest entorn tenim f(v(¢)) = 0 per estar la corba continguda a la
superficie. Derivant i aplicant la regla de la cadena tenim (posem ~(t) = (z(t),y(t), z(t)))

/ a / 8 / a ’
(@) 10)) = S o002 t0) + S o) 1) + G )2/ (1) =0,
1 aquesta expressio es pot escriure com

(G0 S ). i)} 00, 0) = (9 0, ) =0

Per tant V f(pp) és el vector normal del pla tangent. Aixi, un punt (z,y, 2) € R? pertany
al pla (afi) tangent a S en el punt pg si el vector (z — zo,y — Yo, 2 — 29) és ortogonal al
gradient V f(po), és a dir,

(Vf(po), (x — 20,y — Y0, 2 — 20)) = 0

que és justament 'equacio 1.

De fet, 'observacié anterior només demostraria que ’espai tangent esta contingut en
el pla que té com a vector normal Vf pero, com que les dimensions dels dos espais
coincideixen, la igualtat es dona sense haver de fer més consideracions. 0

Exercici 87(b) Si es pensa com en el cas anterior, la superficie definida com el grafic
de h(z,y) també sera la que ve determinada per 'equaci6 f(z,y,z) = h(x,y) — 2z = 0.

Aleshores, com que
Oh Oh
=(=—,—,—-1
vf (8.%7 ay? ) Y
I’equaci6 del pla tangent sera
oh oh
5, P0) (z = @0) + a—y(po) (¥ —y) — (2 —2) =0

(tenint en compte que zy = h(zo,yo))-

Naturalment, s’arriba al mateix resultat si es considera la superficie parametritzada per
o(x,y) = (x,y,h(x,y)). Com que el pla tangent té per direccié l'espai vectorial generat
pels vectors ¢, = (1,0, h;) i ¢, = (0,1, hy), el seu vector normal és ¢, A, = (—hy, —h,, 1)
i obtenim el mateix resultat. 0

Exercici 88(a) Com que es pot aillar z o y en funci6 de les altres dues variables, es té
un grafic i, per tant, una superficie regular de forma automatica. O

Exercici 88(b) N’hi ha prou posant
@(y, Z) - (Zg -y + 17?/; Z)7

parametritzacié definida a tot R?. Recordem que ¢ : R?> — R? ha de ser homeomorfisme
quan posem a ¢(R?) la topologia induida per S (ha de ser continua, bijectiva i oberta,
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és a dir, per cada obert U C R? ha de ser ¢(U) = SN W amb W obert de R?), i la
diferencial de ¢ ha de ser, en cada punt injectiva.*®
Aquesta segona condici6 és facil de comprovar ja que el rang de la matriu associada a

(dp)p, P =(y,2),

—1 322
1 0
0 1

és 2, i per tant (dy)p és injectiva.

Respecte la primera condicié observem que ¢ és clarament continua i injectiva. Per
demostrar que també és oberta observem que per tot obert U C R? tenim p(U) =
SN(RxU).

O

Exercici 88(c) El vector perpendicular al pla tangent a S en el punt X = (x,y, z) és el
gradient de f(x,y,2) = x+y— 2> —1 en aquest punt, és a dir, Vf(X) = (1,1,-3 2?). En
P = (1,1,1) (que pertany a S ja que 1 +1 = 13+ 1) sera Vf(P) = (1,1, —3), de forma
que, imposant ((1,1,—-3), (a,3,1)) =0, obtenim @ + 3 — 3 =0 i per tant a = 0.

38Si sabem que S és una superficie no cal comprovar que la candidata a parametritzaciéo és oberta.
Tenim el resultat segiient: Sigui S una superficie. Sigui ¢ : U € R? — S, amb U obert de R?,
una aplicacio ‘candidata’ a carta local, de la qual sabem que és diferenciable, injectiva, amb diferencial
injectiva en tot punt de U. Llavors (U, ¢) és carta local, és a dir, que ¢ és oberta (tinica condici6 que ens
faltava). Vegeu Notes sobre corbes i superficies, A. Reventos, 2018.
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0

Exercici 89. Utilitzem el resultat que diu que si f : W C R> — R és una funcio
diferenciable sobre un obert W, i a € R és tal que dfp # 0 per a tot P € f~*(a), llavors
S = f~1(a) és una superficie.

En el nostre cas prenem f(z,y,2) = 2 — 3z y? — 2 i hem de veure que f~(0) és una
superficie. Només cal veure doncs que dfp # 0 per a tot P € f~1(0), pero

df = (3‘7"2 —3y2,—6l"y,—1)

que sempre és diferent de 0, perqué la tercera component és —1.
Per altra banda, el vector normal al pla tangent (i a la superficie) sera aquest V f =
(32% —3y? —6xy,—1), i per tant el pla tangent és

(390?) - 3?/(2))@ —x0) + (=6 20%0)(y — yo) — (2 — 20) = 0.

Alternativament, S és el grafic de la funcio h(x,y) = 23—3 2 y?. Podem prendre, doncs,
la parametritzacio ¢(z,y) = (z,y, h(x,y)), de manera que la base de la direccié del pla
tangent sera la donada en cada punt (x,y, h(z,y)) pels vectors p.(z,y) = (1,0,3 2% —3y?)
ipy(x,y) =(0,1,—6zy). Podem escriure I’equaci6 vectorial d’aquest pla com

(Ll',y, Z) = (3307y07 ZO) + )‘(17 07 31,(2) - 3y§) + N(Oa 17 _6370 y0)7 )‘nu eR.
O

Exercici 90. Es facil veure, pel teorema del valor regular, que totes aquestes quadriques
son superficies. Aixo fa que per veure si una aplicacié ¢ : U C R? — R3 és una para-
metritzacié d’'una d’aquestes quadriques només hem de veure que és continua, injectiva
amb diferencial injectiva (no cal veure que és oberta). En els casos que segueixen les
aplicacions considerades son clarament continues i injectives i només estudiarem la seva
diferencial.

Com que ¢~ ! es continua i la imatge continua d’un compacte és un compacte no podem
aspirar a cobrir amb una sola carta les quadriques compactes considerades a continuacio.
Donarem una carta que les cobreix quasi totalment (excepte un conjunt de mesura zero)
cosa que acostuma a ser suficient per als problemes d’integracio, etc. No obstant, es poden

Toc <4<« > > < > Tornar


https://ggbm.at/mnAmbacD

Solucions als Exercicis 166

tapar totes elles amb dues o tres cartes®”. En el que segueix suposarem sempre a > 0,
b>0,c>0. 0
Exercici 90(a)
Cilindre elliptic: (§>2 + (%)2 — 1. Definim ¢ : (0,27) x R —> R® per

o(u,v) = (a cos(u), b sin(u),v)

La diferencial d’aquesta parametritzacio és:

—a sin(u) 0
bcos(u) 0],
0 1

que, clarament, és de rang 2 per a tots els valors dels parametres (u,v).
Observem que els punts del cilindre amb x = a no pertanyen a la imatge d’aquesta
carta.”!

Cilindre parabolic: y = cz?. Definim ¢ : R*> — R? per
o(u,v) = (u, cu?,v)
La diferencial d’aquesta parametritzacio és:

1 0
2cu 0
0 1

que, clarament, és de rang 2 per a tots els valors dels parametres (u,v).

2 2
Cilindre hiperbalic: (f) _ (%) — 1. Definim o : R2 —s R3 per
a

¢(u,v) = (a cosh(u), b sinh(u),v)
Com que cosh(u) > 1, amb aquesta parametritzacié només obtenim punts amb = > a,
que corresponen a una de les branques de la hipéerbola. Per obtenir I'altra branca z < —a
hem de posar ¢(u,v) = (—a cosh(u),b sinh(u),v) i parametritzar per separat les dues

branques.
Les diferencials corresponents a cada una de les branques s’escriuran com:

+a sinh(u) 0

b cosh(u) 0

0 1
I, tenint en compte que el cosh(u) sempre és més gran que 1, queda clar que el rang
és 2. L]

Exercici 90(b)

2 2 2
Ellipsoide: (f) v (%) + (f) _1.
a c
Es pot pensar en coordenades esfériques. Posant (z/a)? + (y/b)? = w?, equacié de

Iellipsoide és w? + i—; = 1 que suggereix posar w = sin(u) i z = c cos(u). Aquesta u
correspon a la collatitud que usem en l'esfera.

39Es pot provar que si una superficie compacta de R? es pot recobrir amb dues cartes definides sobre
oberts connexos i simplement connexos llavors és una esfera.

40F] cilindre elliptic no és compacte. Es pot recobrir amb una sola carta? Si U es simplement connex,
no. Pero es pot agafar com U la corona circular oberta formada per dues circumferéncies concéntriques
de radis 1 i 2 respectivament. Es facil construir una bijecci6 diferenciable f entre (1,2) i R. Llavors

xT

podem recobrir el cilindre elliptic per la carta definida a U per ¢(z,y) = (7577 m, FUl,»I)-
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De la primera igualtat deduim (x/a) = w cos(v), (y/b) = w sin(v), que permet definir
U (0,7) x (0,27) — R? per
U (u,v) = (a sin(u) cos(v), b sin(u) sin(v), ¢ cos(u)).
El parametre v correspon a la longitud que usem en l'esfera.
La necessitat de fer variar u en (0,7) apareix en voler demostrar la injectivitat de W.
Aleshores la diferencial s’escriu com:
a cos(u) cos(v) —a sin(u) sin(v)
b cos(u) sin(v) b sin(u) cos(v)
—c sin(u) 0
Com que el determinant de les dues primeres files ¢s ab cos(u) sin(u) = 3ab sin(2u),
només s’anulla quan 2u = k7, perd com que u € (0,7) només s’anulla quan v = 7/2.
En tots aquests casos, doncs, ja tenim rang 2. Si u = 7/2 la diferencial és

0 —asin(v)
0 b cos(v)
—c 0

que té també rang 2.
2 2
Els punts de 'ellipse <§> + (f) =1, del pla y = 0, amb x > 0, no pertanyen a
a c
U(U).

Naturalment, també es podria aillar una de les coordenades en funcio de les altres
dues i considerar, per exemple,

(2,9) — (2.9, %e V1= (2/a)? = /07 )
Aquesta parametritzacié dona una diferencial de la forma

10
01
* ok

(grafic d’'una funcio) i, per tant, sempre sera regular. (Noteu, pero, que quan (z/a)* +
(y/b)?> — 1 larrel quadrada perd la diferenciabilitat i també cal restringit el rang dels
parametres a 'obert on (z/a)? + (y/b)? < 1). O
Exercici 90(c)

) ) N2 /y\2 23\ 2
Hiperboloide d’un full: (—) + (—) — <—> =1.

a b c
Raonant de la mateixa forma que en el cas anterior, perd amb funcions hiperboliques,

podem definir ¢ : (0,27) x R — R? per
o(u,v) = (a cos(u) cosh(v),b sin(u) cosh(v), ¢ sinh(v)).
Com en el cas anterior, la diferencial és de la forma

—a sin(u) cosh(v) a cos(u) sinh(v)
b cos(u) cosh(v) b sin(u) sinh(v)

0 ¢ cosh(v)
El determinat de les dues primeres files val —a b cosh(v) sinh(v) = —3ab sinh(2v), només
s’anulla quan v = 0 i llavors la diferencial seria de la forma
—a sin(u) 0
bcos(u) 0
0 c
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que també és de rang 2.

2 2
Els punts de I’hipérbola (£> — (—) =1, del pla y = 0, amb x > 0, no pertanyen a

p(U).

N 2 Y\ 2 2\ 2
Hiperboloide de dos fulls: <—) + <E> _ (-) — 1.
a c
Com que cap punt amb z = 0 és soluci6 d’aquesta equacio tenim un full amb z > 0 i

un altre amb z < 0. Podem fer, en cadascun d’aquests fulls, el mateix raonament que en
el cas anterior i definir ¢ : (0,27) x (0,00) — R3 per

o(u,v) = (a cos(u) sinh(v),b sin(u) sinh(v), £c cosh(v)).

Restringir v als reals positius és necessari per a la injectivitat de ¢ (recordem cosh(v) =
cosh(—v)). La diferencial d’aquesta parametritzacio sera:

—a sin(u) sinh(v) a cos(u) cosh(v)
b cos(u) sinh(v) b sin(u) cosh(v)
0 ¢ sinh(v)

I es veu rapidament, fent calculs similars als anteriors, que el rang d’aquesta matriu és 2
excepte si v = 0 cas exclos ja que prenem v > 0.

Observem que els punts (0,0, £¢) no pertanyen a la imatge d’aquesta parametritzacio.
Podem construir, pero, facilment una parametritzacio que si que els contingui, per exemple
aillant z en funcié de x,y tenim una aplicaci6 ¢ : R? — R3 donada per

o(u,v) = (u,v, +c/(u/a)? + (v/b)? + 1)

La diferencial és

1 0
0 1
a2 2431 82
que esta ben definida per a qualsevol valor de (u,v) i sempre té rang 2. 0J

Exercici 90(d)
Y

2 2
Paraboloide el'liptic: (f) + (g) =cz.
a
Prenent coordenades polars en el pla zy tenim ¢ : (0, 00) X (0,27) — R? donada per

o(u,v) = (au cos(v),bu sin(v),u®/c).
La diferencial
a cos(v) —awu sin(v)
bsin(v) bu cos(v)
2u/c 0
té rang 2 ja que el menor definit per les dues primeres files és igual a abu que només

s’anulla si u = 0 cas que hem exclos. El punt (0,0,0), que pertany al paraboloide, no
queda cobert per aquesta carta.

Alternativament, podem definir ¢ : R? — R? per
2 2
o) = (o, PP CIY,

c
que també té diferencial de rang 2 ja que el menor definit per les dues primeres files és
igual a abu que només s’anulla si © = 0 cas que hem exclos.
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N 2 U\ 2
Paraboloide hiperbolic: <—) — (Z) =cz.
a

Utilitzant funcions hiperboliques podem definir ¢ : (0,00) x R — R3 per
¢(u,v) = (au cosh(v),bu sinh(v), u*/c)

que té diferencial

a cosh(v) awu sinh(v)

b sinh(v) bu cosh(v)

2u/c 0

de rang 2 ja que el menor definit per les dues primeres files és igual a abu que només
s’anulla si © = 0 cas que hem exclos.

Pero d’aquesta manera només obtenim punts amb z > 0 (suposem ¢ > 0). Per tal
d’obtenir la part amb z < 0 caldra intercanviar el paper del sinus i el cosinus hiperbolics
i obtindrem

¢(u,v) = (au sinh(v),bu cosh(v), —u?/c).
El punts del paraboloide amb z = 0 no queden coberts per aquestes cartes.

Utilitzant x,y com a parametres (en aquest cas és, potser, més natural) podem definir

¢ : R? — R3 per
(u/a)® — (v/b)2> ’

C

o(u,v) = <u, v,

que també té diferencial de rang 2, i no té problemes en z = 0 (recobrim el paraboloide
hiperbolic amb una sola carta). 0

Exercici 91. Recordem abans de comengar que els focus de l'el'lipse

ZL‘2 y2

_ 2 2
p+b—2—1, aZb

son els punts (£f,0) amb f? = a? — b? i que, per tant, totes les ellipses de la forma
22 2
.Y
a?—\ b2-=A

on A pren valors entre —oo i b?, sén confocals.

Per aquest motiu la familia de quadriques
72 y? 52
+ + =1, a®>v¥>c
-\ R-X 2\ “ ==
es diu confocal. Quan es talla pel pla z = 0 s’obté la familia d’ellipses confocals d’abans.

De fet la quadrica anterior és:

un ellipsoide si —oo < \ < 2,
un hiperboloide d’un full si ¢ < X < b?,
un hiperboloide de dos fulls si b? < A < a?.

Veurem que per cada punt (z,y,2) € R donat passen tres quadriques de la familia,
una de cada tipus. En efecte, si fixem (z,y,2) i a, b, ¢ 1 busquem \ a partir de I'equacio
anterior trobem que A ha de ser arrel del polinomi de tercer grau

d(A) = (a®—=X) (B* =) (P=N)—2% (b =) (= N)—9* (a® =) (E—N\) =22 (a®* = \) (B*—=)).
Pero és clar que aquest polinomi té tres arrels reals diferents ja que
$(—00) >0, ¢(c*) <0, ¢(b*) > 0, ¢(a*) <0.

Tenim doncs, per a cada (x,y, z) fixat, A1, Az, Az tals que ¢();) = 0 (les quadriques passen
per (z,y,z)) i amb

Toc <4< > > < » Tornar


https://ggbm.at/bVKRNeyx
https://ggbm.at/qJ5tVRCz

Solucions als Exercicis 170

b? < \; < a?, & la quadrica corresponent és un hiperboloide de dos fulls,
c? < Xy < b?, & la quadrica corresponent és un hiperbolide d’un full,
—00 < A3 < 2, & la quadrica corresponent és un ellipsoide.

A partir d’aquestes tres arrels es pot descompondre el polinomi en factors irreductibles
com

P(A) = —(A = A1) (A = A)(A = A3)
de manera que
¢(a®) = —(a® = A1) (@ = Xo) (a® = Ag) = —2® (b* = a®) (¢* = a?),
B(b%) = — (0% = M) (b7 = Xo) (07 — Ag) = =y (a® = V%) (¢* = 1),
O(c?) = = (= M) (€ = Xo) (P = N3) = =27 (a = &) (b* = ¢2),
d’on
w2 (@@= A) (@ = X) (@® = Xg)
(@~ B (a - &)
o _ (0P = A1) (07 — ) (07 — Ng)
! (> = a?) (17 = &)
s _ (@ = A) (= Ag) (2 — Ng)
(@~ a) (e~ 1)
Es diu que els \; son les coordenades elliptiques del punt i descriuen el punt (z,y, z)
com la intersecci6 de les tres quadriques que passen per ell.

A més, reanomenant a®> — \; simplement per a, b> — )\ per bi ¢ — \; per ¢, 'equacié
de la quadrica corresponent a A; sera
2 2 2
x Y z
—t+ =1
a b c

Si també es posa u = Ay — A 1 v = A3 — A1 queda

x:\/a(a—u)(a—v)
(a—"b)(a—rc)
bbb —u)(b—)
y—\/ (b—c)(b—a)

Z_\/c(c—u)(c—v)
(c—a)(c—0b)

Per les relacions que s’han obtingut abans, quan es considera Ay fix i Ay, A3 variables
els punts (x,y, z) corresponents van passant per tota la quadrica i, per tant, els (u,v) i
aquestes formules parametritzen aquesta quadrica (de fet les vuit parametritzacions que
apareixen combinant els signes + de les arrels quadrades) que correspon a

un ellipsoide quan 0 < c < v < b < u < a,
un hiperboloide d’un full quan v < ¢ < 0 < b < u < a,
un hiperboloide de dos full quan v < c<u <b <0 < a.
O]

Exercici 92(a) Noteu en primer lloc que la funcié f(z,y,2) = y cos(z/a) — x sin(z/a)
té la diferencial de la forma

df = (—sin(z/a),cos(z/a), —(y sin(z/a) + x cos(z/a))/a)
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i, per tant, sempre diferent de 0. Aixo assegura que S és regular.

A més, la parametritzacid ¢ cobreix S i es pot observar que totes dues aproximacions
descriuen el recorregut d’'una recta que va girant al mateix temps que puja sobre [’eix de
les z.

En efecte, només cal escriure les equacions anteriors com

(0,0,av) + u (cos(v), sin(v), 0)
y = x tan(z/a)
que, respectivament, diuen directament que per a cada v tenim la recta de vector director

(cos(v),sin(v),0) i que per a cada z tenim una recta de pendent tan(z/a), que és la
mateixa evidentment. O

Exercici 92(b) Si es pren un punt py en S corresponent a les coordenades (ug,vo) (és
a dir pg = ¢(ug,vp)) el pla tangent en aquest punt sera el que té la direcci6 generada
per ¢, = (cos(vy),sin(v),0) i ¢, = (—up sin(vy), up cos(vy), a) de forma que el seu vector
normal serd (a sin(vg), —a cos(vg), ug).

Aixo coincideix (llevat de multiples) amb el que apareix si es considera (df),, com a
vector normal a la superficie (només hem de posar x = ug cos(vg), y = ug sin(vg), 2 = a vy
en l'expressio de df obtinguda a ’apartat anterior).

El pla tangent pel punt (zo, yo, 2z0) de 'helicoide és doncs

a sin(vo) (z — xo) — a cos(vo) (y — yo) + uo (2 — 20) = 0.
O
Exercici 93. Sigui ¢ una parametritzacioé de S (no cal que el seu recorregut sigui tota la
superficie). La condici6é que s’ha imposat diu que existeix un punt cq tal que p(u,v) — ¢
és normal a la superficie. En particular
(¢ = co,pu) = (¢ — o, 00) =0
Pero aixo diu que la funcié de (u,v) donada per
r(u, U) = <90(u7 1}) — Co, QO(U, U) - CO)
té les dues derivades parcials 7, i r, iguals a 0 i, per tant, que és una funcié constant
ro. Com que S és connexa, aixd demostra que la superficie esta continguda en 'esfera de
centre ¢g i radi 79. (L’argument mostra que el conjunt de punts a una distancia fixada de

co és obert ja que inclou el recorregut d’una parametritzacié al voltant de qualsevol del
seus punts). O

Primera forma fonamental.

Exercici 94. Tenint en compte que la parametritzacié en polars del pla z = 0 vindra
determinada per
@(r,8) = (r cos(d),r sin(f),0)
la base de I'espai tangent sera
¢, = (cos(6),sin(),0), @9 = (—r sin(f),r cos(f),0).

Fent els productes escalars corresponents

E=1
G =r?
F=0
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I posat en forma de matriu simétrica
1 0
= <O 7"2) '

Exercici 95. Per tal de fer els calculs de l'exercici caldra explicitar, en primer lloc,
I'expressio de ¢. Considerem, doncs, un punt qualsevol (u,v,0) del pla z = 0. La recta
que passa per aquest punt i el pol nord de l'esfera (0,0, 1) es pot parametritzar com

(0,0,1) + A (u,v, —1)
i els punts sobre 'esfera seran aquells que compleixin
Au)?+ Av)2P+(1-N)?2=1.
Com que 'equaci6 anterior es pot posar com

M@ +v*+1)—-21=0,

0

si es descarta la solucio A = 0 que correspon al pol nord, el punt ¢(u,v) haura de ser el

que correspongui a A = . Resumint, 'expressi6 de ¢ sera

w2 +0v2 41
2u 20 w4+ v =1
w42+ 17w 4+02+ 1w +02 41/

p(u,v) = (

(Noteu que ¢ esta definida en tot el pla i que quan (u,v) va cap oo és quan els seus
valors tendeixen al pol nord (0,0,1). En particular, ¢ parametritza 1’esfera menys el pol

nord). O
Exercici 95(a) Un calcul directe mostra que:
2 (—u?+v2+1) —4duw 4u
o < (w2 +v2+1)* 7 (W2 + 02+ 1) (u2 + 02 + 1)2)
—4uv 2 (u? —v*+1) 4v
A ((u2 +o2+ 1) (2402 41)° 7 (u2 402 + 1)2) '

Veurem a ’apartat segiient que la primera forma fonamental és no degenerada i, per tant,
@ és regular.’! O

Exercici 95(b) Fent els productes escalars corresponents (i més calculs):

4
E = <90u790u> = ma
F = {pu, py) =0,

4
G = (pv, ) =

(u? + 02+ 1)

1 en forma matricial

4
[ (@mme Y _ 4 10y
0 @mmnr) @4+ A0 1

Que, clarament, és no degenerada. U]

41Recordem que ||p, A @, || = VEG — F2.
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Exercici 95(c) L’expressio de la primera forma fonamental deixa clar que les mesures
d’angles coincideixen: La primera forma fonamental de I'esfera respecte la carta o(u,v)
i la primera forma fonamental del pla son multiples una de 'altra. En aquestes casos la
formula per al calcul dels (cosinus dels) angles té la constant de proporcionalitat com a
factor comu al numerador i el denominador. O

Exercici 96(a) Calculant les derivades
Yy = (—sin(u) cos(v), cos(u) cos(v),0),
vy = (—cos(u) sin(v), —sin(u) sin(v), cos(v)) .
Fent els productes escalars corresponents:
E = (pu, Pu) = cos’(v),
F = (pu, pu) =0,
G = (py, py) = L.

Com que el domini per a les v no conté els valors +7/2 (que sén els que anullarien
el determinant) la primera forma fonamental és no degenerada i la parametritzacié és
regular. U

Exercici 96(b) L’element d’area de l'esfera, respecte aquesta parametritzacio, sera
dS = cos(v) dudv.

(Noteu que cos(v) > 0 en el domini que s’esta considerant). Aixi, 'area T' del triangle es

pot calcular amb la integral
/4 pu
T :/ / cos(v) dv du.
o Jo

Aquesta integracié és immediata i dona
7T/4 2
T = / sin(u)dv =1— \/T_ ~ 0.292893218813452 . ..
0

Per a calcular les longituds notem, en primer lloc, que es compleix
7' = ¢u (= (1,0))
¥ =, (=(0,1))
v3' = u 0y (= (1,1))
al llarg del seu recorregut. De forma que les velocitats d’aquestes tres corbes seran

Il = cos(0) = 1,

(recordeu que 7, correspon a v = 0)

'l =1,
|7s'|| = \/cos2(t) + 1.
A partir d’aqui les llargades respectives ¢, £5 i {3 seran
T
61 - At - Z,
T
62 - At - Z,

(71 1 72 estan parametritzades per l'arc).

w/4
ly— / Vcos2 (1) + 1 dt ~ 1.058095501392563 . ..
0
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(No hi ha expressio elemental per a la integral corresponent a /3).
Siguin 019, 023 i 013 els angles que formen, respectivament, v; i yo, ¥2 1 ¥3, 1 71 1 7s.
Aleshores

m
COS(912) = <g0u, §0v> =0= 612 = 5
(7 19’ son unitaris),

us u v 1
cos(f3) = {Pu ou + 0) = :>913:E

V2 V2 4

(recordeu que en aquest cas la interseccié es produeix en el punt amb 0 =t = u = v),

c0s(fa3) = %\/TJ;W — \/2/3 = By ~ 0.615479708670387 . . .
(el punt de tall correspon a w/4 =t = u = v, per tant ||| = /cos?(n/4)+1 =

V1I+35 ) O

Exercici 96(c) El recorregut del pla y = z sobre l'esfera es pot parametritzar com

~ya(t) = (cos(t), \/75 sin(t), \/75 sin(t))

pero d’aquesta forma el parametre t no té relacid directa amb les coordenades (u,v) de
I’esfera corresponents a la longitud i latitud. Si interessa relacionar la corba amb la
parametritzacioé de 'esfera sera millor considerar

va(u) = @(u,v), amb v = arctan(sin(u))
(que és el resultat d’imposar y = z en l'expressio de p(u,v)).
En qualsevol cas, és clar que el punt de tall de v; amb ~4 és (1,0,0) i el de 75 amb 4
6s (1/v/3,1/4/3,1/v/3) (ja que el meridia u = 7/4 esta sobre el pla 2 = y).
Tenint en compte la parametritzacié de v, en termes de la longitud u, 'area T3, del
triangle que delimiten 7y, 75 i 74 es calculara amb la integral

m/4 parctan(sin(u))
15 —/ / cos(v) dv du
0 0

que no és tan dificil com sembla ja que es pot deixar com

Ty = o —Sin(u) du
0 /14 sin*(u)
(I"anic truc que hi ha aqui és recordar que sin(arctan(a)) = S per a qualsevol

V14 a?

valor a) i aquesta integral és gairebé immediata (teniu en compte que 1 + sin?(u) =
2 — cos?(u)). S’obté, finalment,

Respecte la llargada dels segments corresponents a aquest segon triangle es té:

e El segment corresponent a 7; és el mateix que abans i té llargada /4.
e El segment corresponent a 7, arribara fins un valor ¢ = v del parametre (arc)
1
que correspon a — = z = sin(t) de forma que la llargada sera arcsin(1/y/3 ) ~

0.615479708670387 . ..
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e Com que la parametritzacié de v, donada per

va(t) = (cos(t), \/—5 sin(t), E sin(t))

2 2
tenim que
2 2
7' (t) = (— sin(t), g cos(t), g cos(t)) :
Es clar que ||v4/|| = 1 i, per tant, el parametre ¢ correspon a la llargada d’aques-
ta corba. Com que el punt inicial correspon a ¢t = 0 i el punt final correspon a
1

E =z = cos(t) la llargada d’aquest segment vindra donada, en conseqiiéncia, per
arccos(1/v/3 ) ~ 0.955316618124509 . . .

Finalment, per a calcular els angles entre aquestes tres corbes caldra tenir en compte:
e L’angle 05 entre v i 79 és el mateix que abans (7/2).

e El punt de tall entre v, i 74 és (1,0,0) i els vectors tangents son, respectivament,
7' = (0,1,0) i 74/ = (0,/2/2,v/2/2) (tots dos unitaris) de forma que 'angle 6,
entre aquestes dues corbes complira cos(f14) = /2 /2 i, per tant, 614 = 7/4.

e El punt de tall entre v, i 4 és (1/v/3,1/v/3,1/4/3). Aixd determina que els vectors
tangents siguin

Yo =, = <—g sin(v), —g sin(v),cos(v))

(i estem en un punt on 1/v/3 = x = cos(t

- (VEEE)

Com que els vectors son unitaris,

1 2
cos(fay) = 3%X3~

~—
~—

I per tant Ooy = /3.

Com observaci6 final, noteu que la suma dels tres angles del triangle val 137 /12 i
aquest valor supera m en 7/12 que (per casualitat?) és exactament el valor de l'area T5.

Calcul alternatiu de 6o4. Les corbes v4(u) = ¢(u, arctan(sin(u))) i y2(t) = p(7/4,t) es
tallen en v = 7/4.
Les components, respecte la base de 'espai tangent a la superficie determinada per

©u, Pu, dels vectors tangents de 74" séon (1, ljgfrf;gu) |u:7r/4) = (1, ‘g), i les components dels
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vectors tangents de v’ son (0,1). Aixi

COSQ(U)COS v)=1/2/3 0 0
o (e 3

Jo i () ()

i torna a quedar clar que gy = 7/3. U

cos(fay) = =1/2.

Exercici 97(a) Tenint en compte la definicié de ¢ i posant ¢, = @, (u,v), @, = ©,(u,v)
per simplificar la notaci6é tenim
Pu = P)/(U)a
v =uy'(v).
Per a calcular els coeficients de la primera forma fonamental caldra tenir en compte que
2
o (V(v),7(v) = lv(@)I"=1.

e (7 (v),y(v)) =0 (derivant la igualtat anterior).

Aleshores,
E= <90u7§0u> =1,
F = {pu, o) = (7(v),u"'(v)) = 0,
G = (pv, o) = (uy'(v),u”'(v)) =

O

Exercici 97(b) Si es recorda l'expressié6 de la primera forma fonamental del pla en
coordenades polars es veu que és equivalent a la d’aquesta superficie, on el paper del
modul el fa la coordenada u i el de I'argument la coordenada v.

Dit d’una altra manera, la transformacié que fa correspondre al punt p = u~y(v) (de
parametres (u,v)) el punt del pla donat per (u cos(v),u sin(v),0) és una isometria local.
En efecte, si f : S — R? ve donada per f(o(u,v)) = (ucos(v),usin(v)) i prenem com
nova carta local del pla ¢ = f o ¢ és clar que I, = I, (primeres formes fonamentals
coincideixen). O

Exercici 98(a)

vu = (cos(v),sin(v), 2u),
©y = (—u sin(v),u cos(v),0),

de forma que

E =144
F=0,
G = u’.

Exercici 98(b)
¢y = (cosh(v),sinh(v),2u),
vy = (u sinh(v), u cosh(v),0),
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de forma que
E = cosh®(v) + sinh®*(v) + 4 u? = cosh(2v) + 4 u?,
F = 2w cosh(v) sinh(v) = u sinh(2v),
G = u? (sinh?®(v) + cosh?(v)) = u? cosh(2wv).

U
Exercici 98(c)
¢u = (a cosh(u) cos(v),b cosh(u) sin(v), ¢ sinh(u)),
¢» = (—a sinh(u) sin(v), b sinh(u) cos(v),0),
de forma que
E = a® cosh®(u) cos?(v) + b* cosh?(u) sin®(v) + ¢ sinh?(u),
F = (b* — a*) cosh(u) sinh(u) sin(v) cos(v),
G = a? sinh®(u) sin®(v) + b? sinh®(u) cos?(v).
U

Exercici 99. Escrivint la superficie com ¢(r,v) = (r cos(v), rsin(v), ¢(r)) veiem que
pr = (cos(v),sin(v), ¢'(r)),
0y = (=7 sin(v),r cos(v),0),

i per tant ds® = (14 (¢')?) dr? + r? dv®.
Busquem una funcié u = u(r) tal que

ds® = (14 (¢)?) dr® + r* dv® = X (du® + dv®).
Necessitem doncs (du = v’ dr) que

1 + (¢/)2 — TQ ul2‘

u:/—mdr.

Prenem ara com nova carta ¢ (u,v) = @(r(u),v) on r(u) queda determinada, pel
teorema de la funci6 inversa, per ’expressié de u anterior. Tenim

wu(uv U) = QOU(r(u)a 1}) rl(u)v
¢v(u7 'U) = Pu,

Només hem de prendre

i per tant, usant que r’(u) = — tenim

u/(r) = \/1+(<1>’)2 ;

L+ (¢ 0 e (L (@) 0 _ (r* 0
L < 0 r? )’ Ly 0 r2 0o r2)°
Observem que l'aplicacié que envia el punt de la superficie de coordenades (u,v) al
punt del pla (z,y) = (u,v) és conforme (la primera forma fonamental de la superficie

respecte la carta isotermal ¢(u, v) i la primera forma fonamental del pla respecte la carta
f o ¢ son multiples una de 'altra).

Segon métode.

Toc <4< > > < » Tornar



Solucions als Exercicis

178

La formula del canvi de base per a aplicacions bilineals ens diu que

I, = M'I, M,

on [, és la matriu de la primera forma fonamental respecte la base

9¢

5 %f, I, és la matriu

de la primera forma fonamental respecte la base g—lﬁ oh, g—f oh),1 M ésla matriu del canvi

de base, que en el nostre cas és

Oh!
ou
Oh?
u

M =

oh'
v
Oh?
£l

Observem que h = (h!, h?) és I'aplicaci6 del canvi de coordenades, és a dir, ¢ = 1) o h.
Habitualment escrivim h(u,v) = (@,7) amb @ = u(u,v) i © = 9(u,v). D’aquesta manera

ou
du
v
du

M=

ou
v
ov
v

En el cas que ens ocupa podem aplicar aquesta formula amb @ = @(r), v = v de manera
que

ou
— 0
M= | Or
0 1
i tindrem P o
2 = =0
(1+é¢) 02)— or Iy, | or ,
" 0 1 0 1
d’on ()
o (14 (9 0 1
Iy, =M < 0 2 M
és a dir,
L+ (¢)?
— 0
Iy = uz
0 r?
Hem d’imposar doncs
L+ (¢)" = r*ay
com abans. [l

Exercici 100. Calculem primer el cosinus de . Com que les corbes estan parametritzades
per I'arc tenim

/
cos(f) = (uy v}) (? g) <:}L,2> = FEujv] + F (u] vy + uy o)) + Guy vl

9
Per tant
sin?(0) = 1 — (B} v} + F (u} vy + ubv}) + Gubvh)?,
perd com que E (u})? +2 Fujv) + G (v))? = E (u))* + 2 Fub vl + G (vh)* = 1 tenim

sin?(0) = (E (u)* + 2 F u) v} + G (v))?) (B (u))* + 2 Fub vl + G (v})?)
— (Bujv] + F (uj vh + uyvy) + Guyvy)?,
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i simplificant termes s’obté el resultat. 0J

Exercici 101(a) Només hem d’imposar la condici6 d’ortogonalitat
E F\ (v
(va _¢u) (F G> ('U/) =0.

Exercici 101(b) Utilitzant la formula general de (101)** aplicada al cas del pla, és a dir
E=G=1, F=0,amb

U

1
Sr) =+ (1 ) =2
s’obté
2zydr — (2* —y* +a*) dy = 0,

que admet el factor integrant y% Aixo vol dir que hi ha una funci6 f(z,y) tal que

of 2z
or  y
8_f_1_a2—|—:v2
dy y?

o equivalentment
1
df = —
Y2
de manera que un cop trobem f la soluci6é buscada és f = ct.
. . 2 .
Per trobar f només s’ha d’integrar respecte x i s’obté f(x,y) = % +C(y), que derivant
i usant 'expressié anterior de f, dona

2z ydr — (2% — y* + a®) dy).

2% + a?

flz,y) =

Per tant la soluci6 és la familia uniparamétrica

% + a?

+y+C.

+y=2c

que son cercles de centre els punts (0,¢) i radi v/¢? —a? (noteu que, en particular, ha
de ser ¢ > a?) com es pot veure a la figura segiient on els cercles vermells son els de la
familia de I’enunciat i els blaus la familia ortogonal.

“2En el cas del pla no cal usar aquesta formula ja que és evident que les trajectories ortogonals a
@(x,y) = c son les que tenen la direcci6 del gradient, i per tant (', y') = pu (¢u, Pv)-
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N
AN
RN

Aixo vol dir que si fixem un punt (z1,y;) amb z; # 01 y; # 0 per aquest punt hi passa
la circumferéncia de la primera familia 22 + > — 2 A2 = a? corresponent a

2, .2 2
ity —a

2ZE1

A\ =

i la circumferéncia de la segona familia (22 + a?)/y + y = 2 ¢ corresponent a

22+ a?
2e="2—— 44
Y1
i aquestes circumferéncies en el punt (z1,y;) es tallen ortogonalment. ([l

Exercici 101(c) Els coeficients de la primera forma fonamental de I’helicoide respecte la
parametritzaciéo donada son (exercici 117)

E=1 F=0, G=1+u
de manera que la condicié d’ortogonalitat de 'apartat (a) és
du+3(1+u*)dv=0

que admet el factor integrant
1

e e

de manera que s’ha de resoldre els sistema

af 1

ou V1t a2’

0
—f =3V1+u2.
ov
Integrant la primera, amb una constant d’integracié6 que dependra en principi de v, i
substituint a la segona s’obté

f(u,v) = sinh™(u) + 3v V1 +u2 + C.

L’equacié f(u,v) = b, amb b constant, defineix implicitament la familia uniparamétrica
de corbes que, considerades sobre I'helicoide, sén ortogonals a les corbes donades per
v—3u=c. [l
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Exercici 102(a) Per la regla de la cadena i tenint en compte la definicié de parametre
arc de la corba (u,v(u))

Z_Z:\/(l V') (? 2) (5,) —VE+2Fk+Gk?

do _dpdu  put kg,

ds  duds E+2Fk+GkZ

tenim

U
Exercici 102(b) Derivant (2) respecte k obtenim el resultat. Observem que és la condicio
d’ortogonalitat obtinguda a l'exercici 101 (a). O
Exercici 102(c) Només s’ha de substituir el valor de k obtingut a (3) a (2). O

Exercici 103. Prenem noves coordenades sobre la superficie. Suposem per simplificar que
P pertany a la corba de nivell ¢(u,v) = 0. Direm que un punt @) té coordenades (uy,v;)
si @ esta a la corba de nivell ¢(u,v) = uy i la longitud sobre ¢(u,v) = 0 des de P fins
I'inici de la trajectoria ortogonal a ¢(u,v) = ¢ que passa per @) és up. Equivalentment,
tenim noves coordenades (uj,v;1) tals que u; = ¢ son les corbes de nivell de ¢(u,v) i
v1 = ¢ son les trajectories ortogonals a les anteriors corbes de nivell. Denotem FEj, F, Gy
els coeficients de la primera forma fonamental en aquestes coordenades. Per construccio
F; = 0. La formula de l'apartat (a) del problema 102 diu

I O
ds VE| + G k?

amb ki = v} /u}, ja que ¢,, = 11 ¢,, = 0. Per 'apartat (c) del problema 102 el maxim
valor de A és ]
VE
Pel problema 100 tenim
VG ky B VE;
————— cos(bpy) = ——=
VE + Gk} VE1+ Gk}

on 6y és I'angle que forma la direccié donada (i.e., la determinada per k;) amb les corbes
v, = c. Per tant, si pensem les tangents en el punt P a les corbes u; = 01 v; = 0 com eixos
de coordenades del pla tangent, les coordenades dels extrems dels segments de longitud

A séon
, N VE,
Asin(f) = —"L A cos(fy) = ——-
sin(6o) Ei+ G k2 cos(6h) Ei+ G k2

La distancia d’aquest punt al punt mig del segment maxim (#ﬁ, 0) mesurada sobre la

sin(fy) =

1
tangent a v; = 0, val ——= (valor constant que no depén de k). O

2V E;
Exercici 104. Definim els costats del “triangle” T de I'espai de parametres {(u,v) € R?}
per ¢;(t) = (u;(t),v;(t)) amb t € [0, 1] mitjancant

ui(t) = 0, v (t) = vot,
ug(t) = sinh(wvg)t, wa(t) = vy,
ug(t) = sinh(vgt), ws3(t) =vot.
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Llavors els costats del “triangle” T" sobre I'helicoide son les corbes v; = ¢(¢;), amb p(u, v) =
(u cos(v),u sin(v), v).
Calculem en primer lloc 'area de T utilitzant 1’element d’area de 1'hiperboloide H

=VEG—F?2 dudv=+vV1+u? dudv.
S’obté

u=sinh(v) Vo
/ dA = / V1+u? du) = %/ (v 4 cosh(v) sinh(v)) dv
T1 0

4(1}0 + cosh?(vg) — 1)

Ara les longituds dels costats ;. Per fer aixo, escrivim

és a dir, v = u} v, + v @, té coordenades (u;(t),v}(t)) en la base ¢, ¢, del pla tangent
de H en el punt v;(¢). Aixi tenim

VO = (i) vj(1)) ((1) 1+3i(t)2) (Z;g)))

i d’altra banda, la longitud de v; ve donada per

Li=L(z) = / MOIE?

1
/ Vo dt = Vo,
0

1
Ly, = / sinh(vg) dt = sinh(vy),
0

de forma que

Ly

1
L3:/ Vg \/2+2sinh2(v0t) dt

0
1
=2 / vo cosh(vgt) dt = /2 sinh(vy).
0

Finalment, si denotem per «; ’angle oposat al costat v; de T', tenim
(12(1),75(1))
(W {731l

(sinh(vo) 0) ((1) 1+sir(1)h2(vo)> (UOCOE? (U()))

sinh(vg) \/vg + 02 cosh?(vg) (1 + sinh?(vy))

cosh(vg)

cos(aq) =

Y

1 4 cosh*(wvp)

(71(0),73(0))
171 O] 3 (O)l

0 w) (O 1 +002> (Uoczzh(o)) 1

cos(ag) =

—_

vo /203 V2’
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cos(az) = (11(1),75(0))
(DI ([ 0)]
1 0 sinh(vp)
(0 w) (0 1+02) ( 0
v sinh(vp)
o cosh(vp) 7 _ 7
Per tant ay = arccos (—1+Cosh4(vo) ), ap=7%ilag=7. ]

Exercici 105. La parametritzacié de 'esfera de radi 1 donada per la longitud i la colatiud
és

U (e, 0) = (sin(p) cos(f),sin(y) sin(f), cos(y)).
corresponent a I’esquema del grafic segiient

1
z,,
U e, .
*
L e X
1 >,
. I" 2 (‘T: Y, Z)
1
G
~ ¥ R :
~~~~~~ o '
SR . \
- = . \ |
- J
=) e '!' =2 -'ry~ = /
T2 T o e
P T PO S
-------

La primera forma fonamental és llavors

= (cl) singazz)) |

Per tant, suposant que la corba que busquem té coordenades (¢(s),6(s)), tenim

(¢ #) ((1) sing(w)) (é)

\/(QO’)Q + (0)? sin(p)
Multiplicant les matrius i elevant al quadrat

()" sin®(8) = (6')* sin*(i) cos’(B).
Si posem ¢ = p(#), usant la regla de la cadena, tenim

d

d—g = sin(y) cot(8)

que s’integra facilment separant les variables i obtenim

log (tan (g)) = cot(B) (6 + ).

cos(8) =
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2

Exercici 106. Parametritzem el con z? = 22 + 3% en polars per
o(r,0) = (r cos(0),r sin(f),r).

D’aquesta manera la primera forma fonamental és

2 0
= )

i les generatrius (rectes per l'origen) en aquestes coordenades estan donades per 6 = ct.
Per tant, la corba buscada ha de tenir coordenades (r(t),0(t)) tals que

¢ 0G0

V2 (2 +r2(0)2 V2

= ct.

d’on
(") =a () +r*(0)?)
per a una certa constant a amb 0 < a < 1/2. Per tant

,',.I

c—=40

,
amb ¢ = /(1 —2a)/a. Integrant tenim
0=cln(r)+C

que és la formula de les espirals equiangulars donada a ’exercici 19.

:

N
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O

Exercici 107(a) Parametritzem 1’esfera com és habitual amb la longitud 6 i la collatitud
¢ (com a lexercici 105). Prenem 6 = 0 sobre 'eix de les x, augmentant cap a la part
positiva de l'eix de les .

U(0,p) = (2a sin(p) cos(f),2a sin(p) sin(),2a cos(p))
amb 0 € (0,27) i ¢ € (0, 7). Per tant
Uy = (—2a sin(p) sin(),2a sin(yp) sin(f),0)
U, = (2a cos(p) cos(f),2a cos(p) sin(f), —2a sin(y))
i els coeficients de la primera forma fonamental son
E =4a*sin*(p), F=0, G=4d.
En particular, I’element d’area és
dA = ||y AV, || df dp = 4a® sin(p) db dep.
El cilindre es pot parametritzar per
o(a, z) = (a cos(a),a + a sin(a), z)
de forma que
¢ = (—asin(a), a cos(a),0)
¢, =(0,0,1)
i els coeficients de la primera forma fonamental s6n
E=d, F=0, G=1
U

Exercici 107(b) La parametritzacié equivalent a la de I'exercici 76 (multiplicant conve-

nientment pel radi) és
L. I 1 .t

v(t) =2a (5 sin(t), 5 + 5 cos(t),sm(§)), 0<t<2m. (23)
Com que s6n punts de l'esfera es compleix

2a (1 sin(t), 1 + 1 cos(t), sin(%)) = 2a (sin(p) cos(0),sin(p) sin(f), cos(y))

2 2 2
amb 0 < ¢ < 7/2 si ens preocupem de I’hemisferi nord. Per tant
t
cos(p) = sin(ﬁ)
1+ cos(t) t
t f) = ——> =cot(=) =+t
an( ) Sln(t) Co (2) an(g@)

i aixo és equivalent a dir
0=y si0<6<m/2
O=m—yp sin/2<60<m.

S’obté d’aquesta manera una segona parametritzacié en funcié de 6, perd s’ha de
definir la funcié com a funcié continua trogos, com

(sin(0) cos(f),sin?(f), cos(d)) 0<60<m/2,
1(0) =
(sin(6) cos(f),sin?(0), —cos(d)) w/2<6 <.
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O

Exercici 107(c) S’ha de calcular, quan 0 < 0 < 7/2, 'angle entre les corbes esfériques
0 =¢igp=¢y=ct.Iangle entre les corbes esfériques § = 71— i ¢ = ct. quan 7/2 < 6.
Fem el prime cas, després només s’ha de canviar el signe.

Els vectors tangents a aquestes corbes (que es tallen en el punt de coordenades (¢, o))
en la base V., ¥y son respectivament (1,1) i (0,1) de manera que I'angle a que s’esta

calculant compleix
1 0 0
(1 1) (O Sin2(g00)) (1)

[0 Gt O 0 (i) O

sin(¢po)
1 + sin®(go)

cos(a) =

Per tant

cos(ar) =

També es podria fer aquest calcul pensant les corbes com corbes de I'espai oblidant
que son corbes sobre l'esfera. Concretament I'angle entre la corba 7(t) donada per la
parametritzacié de (23) i la corba (el parallel) que tindra una expressi6 de la forma

(sin(yy) sin(t/2),sin(pg) cos(t/2), cos(yy)). O

Exercici 107(d) Per tal de poder donar un resultat numeéric, considerem el cas a =

1/2 en el que la vora de la volta de Viviani es pot escriure com ~(t) = (3sin(?), 5 +
5 cos(t), sin(t/2)).
La longitud doéna lloc a una integral elliptica

/O% \/;1 + %(3082(15/2) dt = 22 E(1/2).

w/2

Recordem que E(1/2) = 1 / V3 + cos(2t)) dt ~ 1.350. Podeu veure com reacciona un
0
programa de calcul simbolic i numeéric amb aquestes integrals utilitzant aquest enllag. [
Exercici 107(e) La regio V' C (0,m) x (0,%) sobre la qual cal integrar I'’element d’area
dA és
V= {(9,90) € (0,7) x (O,g);gogesi0§9§7r/2,9§7r—gosi n/zgegn}.

)
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que també es pot descriure per les condicions
p<O<mT—@pamb0<p<7/2

Aixi I’area de la volta de Viviani és igual a

O=m—¢
/dA 4a/ / sin(p) df dy
=0 0=

=8a’ /:0 sin(p) (mr — 2¢) dp

=4a® (7 —2).
OJ
Exercici 108. Podem pensar, sense perdre generalitat, que el centre de l’esfera petita
és el pol nord, de manera que els punts de la interseccidé estan caracteritzats, en les

coordenades longitud 6 i collatitud ¢, per la condici6 0 < 8 <2710 < ¢ < «, on « esta
caracteritzat per la formula

sin(a/2) = %

com es veu a la figura

Per altra banda a l'exercici 107 es veu que l'element d’area de l'esfera de radi R,
respecte aquestes coordenades, és

dS = R? sin(y) df dyp
de manera que ’area demanda val
Area =27 /a R? sin(p)dp = 27 R* (1 — cos(a)) = 27 R?2 sin®(a/2) = 7 r?.
’ O
Exercici 109(a) Considerem el costat u = %an com la imatge per ¢ de la corba

(% av?,v). El vector tangent té components (a v, 1) respecte de la base (i, ©,), i per tant
la longitud de la corba entre v = 0 i v = 1 esta donada per

/01 \/(C“’ ) ((1) a? +(L(v)2> (af)) dvza/ol(1+%2) — %
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Observis que restringint la métrica als punts de la corba on estem multiplicant el terme
a® + u? es converteix en a? + 1 a®v*. Sobtindria el mateix resultat per a la corba u =
—3av’.

La corba v = 1 és la imatge per ¢ de la corba (u, 1) en el pla de parametres, amb
—% a<u< %a. Per tant, la seva longitud és

20 10 1
;a\/(l 0) <O a2+u2) (0) dv = a.

El perimetre és doncs 10a/3. U

Exercici 109(b) Els veértexs d’aquest triangle curvilini son els punts A = (0,0), B =
(3a,1)i C = (—3a,1). Els vectors tangents a les corbes que es tallen en A estan donats
per (+awv,1), que en A (v = 0) valen tots dos (0, 1), per tant 'angle en el vértex A és
Zero.

Els vectors tangents que concorren en el punt B son (1,0) i (a,1). Per tant

(1 0) <(1) 5;3/4) (‘f) . ) y
IO (e, I \/(a ) <(1) 5@3/4) (6{) =

Els vectors tangents que concorren en el punt C sén (1,0) i (a, —1). Per tant

10 (5 5) (1) .

cosC = = =

1L 0 [l(a, =1)] \/(a ) ((1) 5@(;/4) (_a1>

cos B =

wl

[\]

wi

U
Exercici 109(c) L’element d’area és dA = vu? + a? du A dv.
Per tant,
1 av
Area:/ (/ Vu? + a? du) dv
0 —av
! 1 o
:/ [iu\/u2+a2+§a2 ln<u~|—\/u2~|—a2>] dv
0 —av
1 @2 1
= | d*vV1+0? dv+§/ In(av+av1+v?)dv
0 0
@2 [
—5/ In(—av+av1+v?)dv
0
,, 1 2 a?
—a (—§+§\/§)+3(1—\/§+1n(1+\/§))
2
—%(1+\/§+1n(1+¢§>)
d*(2—V2)
= 3 ,
U
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Exercici 110. Si tenim la igualtat anterior de formes quadratiques llavors

pE=u?+v2
wEF = ugup + vsvy
pG=ui + v}

amb 1 = A\71. Aquestes igualtats que equivalen a la igualtat matricial
Us Vs A0 Us Vg ! . E F
Ug Vg 0 A w v)  \F G

VEG — F? = X (usv; — uy vs).

diuen que

Calculant,

p( Fus — Bug) = v uy +ugvg vy — 2wy — v2u, = vs u VEG — F2.

Per tant
Fu,— FEu
Vg = ——.
VEG — F?
Analogament es veu que
Gugs — Fuy
Ve =

VEG — F?
i, per la igualtat d’Schwarz sobre les derivades segones creuades, hem acabat. De fet

aquesta condicié es compleix sempre i sempre existeixen coordenades isotermes, perod és
dificil de demostrar en el cas C*°, i facil en el cas analitic real. O

Segona forma fonamental

Exercici 111. Si** es comenca calculant els vectors tangents a les corbes coordenades
s’obté:

SD’LL = <]" U? 0)7

(p'U = (17 u? 1)'
Els productes escalars que determinen la primera forma fonamental seran:

E = <90u790u> = 1+U27
F={pu,0s) =1+ uv,
G = <90v730v> - 2+U2.

[ 1+v? 1+uw
T \l+4+uv 244 )

Per tal de determinar la segona forma fonamental caldra calcular el vector normal a
la superficie i les derivades segones de la parametritzaci6é. La direccié del vector normal
és la del producte vectorial ¢, A ¢, = (v, —1,u —v) de forma que el vector normal sera

1 1
v = (v,—1L,u—v) =
VR4 1+ (u—v)? V1i+u? 4202 —2uv

Agrupat matricialment

(v,—1,u —v).

43Noteu que es tracta de la quadrica y = z (x — 2) i, per tant, els calculs també es podran fer utilitzant
les formules corresponents al grafic d’una funcié que es donen a Uexercici 112).
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Els coeficients de la segona forma fonamental es poden calcular fent el producte escalar
de les derivades segones de la parametritzacio

Puu = (Oa 0, 0)7
Yur = (0,1,0),
evr = (0,0,0),
amb aquest vector normal, aixi s’obtindra:
e = (v, ouu) =0,
[ =V, puw) = !

VituZ+202—2uv’
g = <V790vv> =0.

Expressat en forma de matriu:

-1 01
I = .
Vi+u2+202—2uv \1 0

Amb les dades dels calculs que s’han fet fins ara, es pot calcular immediatament la
curvatura de Gauss com:

K eg—f*  —1/(1+u*+2v>—2uv) —1

CEG-F2 1+ u+202—2uv  (1+u?4202 —2uv)?
Finalment, per tal d’obtenir la curvatura mitjana H caldra calcular la traca de W =
—dy =171 II. Fent unes quantes operacions

1 wo+1  —(u®+2)
(1+u2+21}2—2uv)3/2 —(@*+1) wv+l )

De forma que la curvatura mitjana sera

uv—+1
(1+u?+2v2—2uv)

1
H = 5 traca(W) = 57

Alternativament es pot usar la féormula que déna la curvatura mitjana directament a
partir dels coeficients de la primera i segona formes fonamentals

_1Eg—2Ff+Ge_1_2<1+“U)\/1+u2+_211,2_2w B uv+1

2 EG-F* 2 14+u¥+202—2uv (1+u2+202—2u0)¥?
O
Exercici 112. Quan es defineix una superficie S prenent el grafic d’'una funcié de dues
variables h(z,y), la parametritzaci6é natural consisteix a prendre
o(z,y) = (z,y, h(z,y))

de forma que els vectors tangents corresponents seran

wr = (1,0, hy),

¢y = (0,1, hy),
(on els subindex denoten, com és habitual en aquests casos, derivades parcials respecte les

variables). Aleshores la direcci6 del vector normal és la del producte vectorial ¢, A ¢, =
(—hg, —hy, 1) i el vector normal unitari sera

1
SV R PREE e

(—hg, —hy, 1).
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Per tal d’obtenir la curvatura de Gauss i ’expressié de W, el més practic sera considerar

- (1 (he)® hahy
S\ hehy 14 ()

(que té determinant donat per 1+ (h;)?* + (hy)?) 1 calcular la segona forma fonamental a
partir de les derivades segones

Przx = (07 07 hxm)v

Py = (Ov 0, hxy)>

Pyy = (0,0, hyy)7
de forma que s’obtenen els coeficients

y P \/1 T (hm)2 n (hy)Q )
Doz
=V, Pay) = ;
Pl = T tr
_ _ hyy
g - <V7 Soyy> - \/1 + (hx)z + (h,y)2 )
i la matriu de W sera
B 1 1+ (h )2 —h, h h h
_ 1 . — Yy x by xrx Ty
S N 8 R W E)ELE < hohy, 1+ <hw>2> (hxy hyy>
_ 1 hax (1 + (hy)g) - hwy P hy hzy (1 + (hy)2> - hyy ha hy
(L+ (he)? + (hy)2)3/2 \hay (1 + (ha)?) = haw ha by Ty (1 (Ra)?) = hay ha by )

Per un altre costat, la formula per a la curvatura de Gauss sera
K — eg— [ _ (haw hyy = (hay)?) /(1 + (ha)? + (hy)?) _ Pz Py — (hay)? ‘
EG — F? 1+ (hy)? + (hy)? (14 (he)? + (hy)2)?

O

Exercici 113. Sigui p un punt qualsevol de la corba en S on la superficie és tangent
al pla fix. Si la corba és regular, el seu vector tangent ¢ en p serd un vector tangent a
la superficie i diferent de 0. Com que el vector normal a la superficie sera constant al
llarg de la corba (ja que coincideix amb el vector normal al pla amb el que es produeix la
tangéncia) es compleix, per la definici6 general de diferencial d’una aplicacio,

dv(7) =0
(es restringeix 'aplicacié a una corba tangent qualsevol al vector i es busca el vector

tangent a aquesta restriccid, que és una corba en el espai imatge de 1'aplicacio).
Tenint en compte que la curvatura de Gauss K d’una superficie és el determinant de

W = —dv i que s’acaba de trobar un vector no nul en el nucli de W (W (%) = 0), és clar
que s’acaba de veure que K =0 en p. O
Exercici 114.

(a) <= (b)

Tenint en compte les definicions, el valor de la segona forma fonamental II actuant
sobre un parell de vectors u, v s’obté amb

11 (i, V) = (—dv(u), V).
Aleshores, dir que aquesta segona forma fonamental és nulla és equivalent a dir que

la diferencial de 'aplicacié de Gauss dv és 0 en tots els punts i, per tant, que v és
una aplicacié constant.
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(b) = (c)
Es clar que quan la superficie esta continguda en un pla el seu vector normal sera
constant.

Reciprocament, si v és constant, es considera un punt qualsevol py en S i una
parametritzacié ¢(u,v) al voltant de po, es complira

%@(“’”) — D0, V) = {Pu, V) + (¥ — po, V) = 0

(i el mateix respecte v) ja que ¢, és un vector tangent a la superficie (perpendicular
av)1iv és constant. Aixies té que (p(u,v)—po, ) = 01, per tant, el recorregut de ¢
és al pla que passa per pg i té v com a vector perpendicular. Com que s’ha suposat
des del principi que S és connexa, tots els seus punts compleixen aquesta propietat.
(L’argument mostra que el conjunt de punts de S i en aquest pla és obert).

O

Exercici 115. Si escrivim

Uy = 11 Py 1 Q12 P,

Uy = Q21 Py T+ Q22 Py,
veiem directament que

det(v, vy, v,) = det(a;;) det(v, pu, )
= K (v, pu A )
=K |pu ool = KVEG — F?.
Analogament,

det(”u Pu, VU) + det(”u Vu, QOU) = 22 det(u, Puy SO’U) + a1 det(V, Pus SO’U)
= (a1 +ag) VEG — F?

i com que la traga de I'endomorfisme de Weingarten és menys el doble de la curvatura
mitjana hem acabat. Recordeu que I'endomorfisme de Weingarten és igual a menys la
diferencial de la normal, W = —dv. U

Exercici 116. Com que les homotécies I’ soén difeomorfismes de ]1%3 , cada parametritzacio
o(u,v) de S dona, fent la composici6, una parametritzacio de S = F(S) que es podra
escriure com

o(u,v) = Xp(u,v).
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Aleshores les derivades parcial d’aquesta parametritzacioé que generen I’espai tangent seran

Pu=APus  Pv = APy,
de forma que el vector normal 7 de S coincidira amb el vector normal v de S (en els punts
corresponents) ja que @, A @, = A2 Ou N Py B
A partir d’aqui s’obté de forma immediata que les primeres formes fonamentals I i I
de S i S respectivament s’obtenen una a partir de l'altre per la relacio

I=N1,
mentre que la relacié entre les segones formes fonamentals II i II vindra donada per
(productes escalars de les derivades segones amb el mateix vector normal)

IT=\II.
D’aqui es dedueix que la relacié entre curvatures de Gauss sera (quocient de determinants)
_ N2 1
i la relaci6 entre curvatures mitjanes (traga del producte ! - IT)
_ 1
H=—-H
A

(I71 = (1/X2) I"! i els escalars surten fora en els productes de matrius i en el calcul de
les traces). O

Exercici 117. Per a aquesta parametritzacié de la superficie

= (cos(v),sin(v),0),
vy = (—u sin(v), u cos(v), a),

©u Ny = (a sin(v), —a cos(v), u),

(a sin(v), —a cos(v), u),

1
V= ——
«’u2+a2

7 — 1 0 —a
_\/u2—i—a2 —a 0 )’

—a?/(u? + a?) a’ a ?
K — e ——2 = — _— ,
u? + a (ug + CLZ) u? + a

g (1 0 2)) ' < 0 _a/m>

0 1/(u*+a a/vu?+ a® 0
_ ( 0 —a/Vu? +a2)
—a/(u? + a?)3/? 0 ’
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Exercici 118(a) Tenint en compte que les relacions entre els vectors tangents a les dues
superficies corresponents a les parametritzacions respectives son

(Spt)u = SOU + t Vu,

(th)v =y + 11y,

escriurem (aplicacié de Weingarten canviada de signe)

Vy = Q11 Py T+ Q12 Py,

Vy = Q21 Qo + Q22 Po,

de forma que

Pu AN ZE DY) Pu A P,
Uy N ©y = Q11 Pu A P,
vu ANy = K@, A, (K és el determinant),

1 aleshores

(@ Ay = (1 =2Ht+ K1?) 0, A g,

(CLH + Q99 = -2 H)
Aquest calcul mostra que, si d.S és I’element d’area de la superficie original, es complira

dS' = |1 —2Ht+ K| dS.

Noteu que, com a propina, també es veu que els vectors normals v i v! coincideixen
en els punts corresponents als mateixos parametres (u,v) de les dues superficies. Com
que 1 —2Ht+ Kt = K (t — p1) (t — p2) queda clar que quan ¢ estigui entre p; i ps la
normal del tub sera de direccié oposada a la normal de la superficie. En general pensem
tubs proxims a la superficie donada (¢ petit) i en aquest cas 1 —2 Ht + K t? és proxim a
1 i per tant positiu, i.e. per a valors petits de ¢ les normals coincideixen. O]

La superficie determinada per ¢p(u,v) = (v,vu? + (1 —v) u,u) i la seva parallela a distancia t = 0.08. A
distancies més grans, la parallela degenera rapidament.
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Exercici 118(b) Per tal d’establir la relacio entre les curvatures de Gauss K i K* es pot
partir del fet general (que ja ha aparegut en els calculs anterior) donat per les igualtats
AV =Koy Npy,  (V)u A (Vt)v =K' (SOt)u A (")
tenint en compte que els vectors normals de les dues superficies coincideixen. Aixi s’ob-

tindra:

Kou ANy =y Avy= V) A(W)y = KN (0D A"y = KN (1 —2Ht + K)oy A @, .
De forma que

B K

1-2Ht+ K¢t

tal i com diu I’enunciat. 0J

Kt

Exercici 118(c) Partint de les relacions

(Sot)u = QOU + tVu?
(('pt)v = va +tl/v7

i tenint en compte
Vy = 11 Py + Q12 P,
Vy = 21 Py T A22 Py,
s’obtenen les equacions del canvi de base (els plans tangents a S i S* son parallels)
(0")u = (1 +tan) pu + taz @y,
()0 = tag oo + (1 +tag) @,

Fent els calculs de la matriu inversa corresponent, i incorporant K = aq1 ass — @12 o1
(determinant), —2 H = ay; + ag (traga)

1
u = 1+t t w—1 ¢ v
¥ _oHi+ K2 (1 +taxn) (¢ arz (¢)s) ,
1
) = _t t u 1 t ! v/
o= T rgen (e + (L tan) ()
Com que els vectors normals coincideixen, les relacions anteriors permeten obtenir
1
t W=V, = tK ¢ u ¢ v
(V) = v 1—2Ht+Kﬁ(WH+ ) () + a12 (#)u)
1
e =ve = o (@2 (@) + (a2 1K) (9),).

Ara només cal tenir en compte que la curvatura mitjana de S* sera igual a la meitat

de la traga d’aquesta relacié (matriu) canviada de signe. Es a dir
H-Kt

S 1-2Ht+ K¢t

Nota: L’argument també es pot fer utilitzant productes vectorials i les relacions entre
els vectors tangents a les dues superficies com en el cas anterior.

En el sentit contrari, la relacié entre les curvatures de Gauss també surt amb els calculs
fets com en aquest apartat, encara que resulti una mica més carregos que tal i com s’ha
vist abans amb els productes vectorials. O]

Ht

Exercici 118(d) Aplicar la formula anterior amb H =cit=1/(2¢) sera

1/(20) _ K
K 1—2¢(1/20) + K (1/42))

=4
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O
Exercici 118(e) Com en 'apartat anterior, aplicant la formula corresponent amb K = a?
it=1/a donara
Vo _ H—a?(1/a) _ H-a _ a
1-2H(1/a)+a?>(1/a®?) 2—2H/a 2

Nota: El signe de la curvatura mitjana depén del signe del vector normal. Si es canvia
vt per —1t el signe — de la féormula desapareix.

Nota final: La parametritzaci6 ¢; deixa de ser regular si ¢ no és prou petit per tal que
Iexpressio 1 — 2 Ht + K t? sigui diferent de 0. Es pot construir sempre alguna superficie
parallela? Com hauria de ser una superficie sense cap superficie parallela? O

Exercici 119. Sigui (U, ¢) una carta de S i h una funcié arbitraria sobre U. Per a cada
t € (—¢,€) definim
(0, 0) = p(u,0) + Lh(, v) (V)

on v és el camp normal a S.

p(u,v) + th(u,v) v(u,v)

w(u,v)
p(u,v) — th(u,v) v(u,v)

Llavors tenim,
U, = @u+thyv+thuy,,
U =@y +thyv+thuv,,
i per tant els coeficients de la primera forma fonamental de cada una de les suérficies W?
son
E'=FE —2the+o(t?),
F'=F —2thf+o(t?),
G'=G —2thg+o(t?),
ja que (@, v,) = —e, etc.
Per tant, recordant la formula (2) per a la curvatura mitjana,
E'G'"— (F')? =(EG—F?) (1 —4th H + o(t?)).

Per a tot domini D contingut a U denotem A 'area de W'(D) i tenim

Al = / JEG=F) (1= 4th H + o(®)) dudv.
D
Derivant respecte t en ¢t = 0 i recordant que podem derivar sota el signe integral, tenim

dA?!
—/ 2hHVEG — F? dudv.
D

dt le=o
Ara es conclou sense masses dificultats ja que quan H = 0 la integral és 0 i, reci-

procament, si la integral és nulla per a tota variacié normal (h) només pot ser que H
s’anul'li. 0
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Exercici 120. Prenem una parametritzacié ¢(u,v) i en un punt arbitrari P prenem la
base ortonormal de TpS formada pels vectors propis de 'endomorfisme de Weingarten,
és a dir, vectors unitaris que donen les direccions principals.
Aixi, en P, tindrem
dV(61> = —kfl €1,
dV(€2> = —kQ €9.

Per a tota n € R considerem el vector v € TpS donat per v = e; + nes.

El cosinus de ’angle entre e; i v esta donat per
(e1,v) 1

ledll loll /1472

dv(v) = —ky e — nkseo,

Per altra banda

de manera que el cosinus de I’angle format entre dv(e;) i dv(v) és
(e dvl)) K
N 2 72,2 :
il T80~ (] VR TP iy (2

Igualant els valors d’aquests cosinus obtenim

A .
k)
Si k1 = ko estem en el cas d'una esfera i si k; = —k5 en el cas d’una superficie minimal. []

Exercici 121(a)

—1wvcos (u)sin (3 u) — (veos (2 u) + 1) sin (u)

O = (;vsin (2 u)sin (u) + (veos (2 u) + 1) cos (u) |,
bvcos (4u)
cos (1 u) cos (u)
sin (3u)
E= i (4 cos? (%u) +1) v? + 2 cos <%u> +1
— (Z — sin? (%u)) v? + 2w cos (%u) + 1,

F =0,
G=1
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(2 cos (3 u) cos (u) sin (1 u) — sin (u))v + cos (u) sin (3 u)

u) sin (5 u) sin (u) + cos (u))v + sin (3 u) sin (u) | ,

N |—=

Oy N Yy = %(ZCOS(

—v cos? (% u) — oS (% u)
1
V= (SOu A 90v>'

\/(% —sin® (3 u)) v +2vcos (u) +1
Ara queda clar que, quan v — 0 i quan v — 2, la direcci6 de v tendira en el primer
cas a la direccié de (0,v/2, —v — 1) i en el segon cap a la del vector (0,v/2, —v + 1) (que
si es mira sobre v = 0 s6n (0,0,—1) 1 (0,0,1)). O

Exercici 121(b) Tot i que aquesta superficie no és orientable, traient un segment (que
té mesura nulla) ja ho és i, per tant, té sentit integrar i calcular-ne ’area.
Ara s’ha de calcular, usant qualsevol eina de calcul simbolic/numeéric la integral,**

\ 2r  p1/4 5 1 1
Area = / / ——sin?(-u v2+2vcos | =u | +1dvdu.
0o J-1/4 4 2 2
O

Exercici 121(c) Tenint en compte que F' = 01 G = 1, el determinant de la primera
forma fonamental coincideix amb el valor del coeficient E. Per un altre costat, és clar que
©up = 0 (aixo implica que g = 0) i, per tant, per a calcular la curvatura de la superficie
(K = (eg— f?)/(EG — F?)) només es necessitara calcular el valor del coeficient f de la
segona forma fonamental.

Si es calcula la derivada segona corresponent obtenim

—3 cos (u)sin (3 u) — cos (3 u) sin (u)

Oup = | cos (% u) cos (u) — = sin (% u) sin (u) |,

de forma que

[ = ow) =

2\/(% — sin? (%u))vQ + 2vcos (%u) +1 7
i la curvatura sera

_ 1
P S (6 6 0) [T I

2
E (3 —sin® (Fu)) v2+2vcos (3u) +1

—1
4 ((% — gin? (%u)) v? 4+ 2v cos (%u) + 1)2‘

Que resulta estrictament negativa en tots els punts del recorregut (i amb valor —1/4 sobre
la corba v = 0). O

44Veureu que les eines de calcul simbolic tenen problemes per avaluar la integral. Independent d’aixo,
la parametritzacié de la banda de Moebius donada aqui correspon a una superficie que NO té curvatura
de Gauss zero. Per tant, no es correspon amb la banda de Moebius que obtenim habitualment doblegant
el paper. La Flat Moebius band és la superficie de les normals principals de la corba (sin(¢), (1 —
cos(t))3,sin(t) (1 — cos(t))), vegeu A pretender to the title ‘canonical Moebius Strip’, G. Schwarz, Pacific
J.M., 143, 1990.
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https://sagecell.sagemath.org/?z=eJyNkrFugzAURfdI-Qc2bOqkAbZWDBlCfqBblCIX7MSSwdTgV_XvaxtwWjVDtsv1PffZ6AHVKDYRxHi94ikyBHAR1WpAkcFPkDhlnjOczFZkU9mcGkSH_oacY0M2k08Z8JY7W6-Gq_pCPdW0ZaMWddVLNeYNOvGU8Izw_EzQjmRJLzBBm5SkmNRKKl3EStPuwmLSsuFavGnDCHclRUnlwLC_d2WKRnCObJcfnwUjm4w8GPlkpBUEBCYEAgITAgHxhq0AVo9KuztXxr-QuFGzymd19mH4HYYQhhCGEPZ_xtbfpJt3KJyXOH87iLaXgn9X3EiJ8Jabrh6F6nzFq4cOXlvu6DhIXMkj3HHhyoV7bF65cM2-GD71iNAhOW7K9-wffRdv9gvvP0U3soum8ibmADFk2Qogfi0WpDMts3tEZRUYSduPhkbwcuds6ZvbTrvzVGcF_gHFKfB1&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJyNkrFugzAURfdI-Qc2bOqkAbZWDBlCfqBblCIX7MSSwdTgV_XvaxtwWjVDtsv1PffZ6AHVKDYRxHi94ikyBHAR1WpAkcFPkDhlnjOczFZkU9mcGkSH_oacY0M2k08Z8JY7W6-Gq_pCPdW0ZaMWddVLNeYNOvGU8Izw_EzQjmRJLzBBm5SkmNRKKl3EStPuwmLSsuFavGnDCHclRUnlwLC_d2WKRnCObJcfnwUjm4w8GPlkpBUEBCYEAgITAgHxhq0AVo9KuztXxr-QuFGzymd19mH4HYYQhhCGEPZ_xtbfpJt3KJyXOH87iLaXgn9X3EiJ8Jabrh6F6nzFq4cOXlvu6DhIXMkj3HHhyoV7bF65cM2-GD71iNAhOW7K9-wffRdv9gvvP0U3soum8ibmADFk2Qogfi0WpDMts3tEZRUYSduPhkbwcuds6ZvbTrvzVGcF_gHFKfB1&lang=sage&interacts=eJyLjgUAARUAuQ==
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Exercici 122. En aquestes hipotesis tota corba sobre la superficie és linia de curvatura.
En particular, les linies coordenades son linies de curvatura. Apliquem el teorema d’O-
linde® a les corbes u = ct. i v = ct. (suposem ¢(u, v) una parametritzacio local d’aquesta
superficie).

VU(uv U) = )‘(uv U) QOu(UM U),
Uy (u,v) = AMu, v) o (u,v).

Observem que la hipotesi que tots els punts sén umbilicals és la que ens ha permés posar
la mateixa funcié A\(u,v) tant a v, (u,v) com a v,(u,v). Escriurem abreujadament

Uy = A Pus
Vy = A py.
Imposant v,, = v,, obtenim
Au v = Ay Py

Pero com que ¢, i ¢, son linealment independents, ha de ser A\, = A\, = 0, i per tant
A = ct.. Si aquesta constant és zero estem en el cas del pla. Suposem a partir d’ara que
A # 0. Integrant obtenim

v=Ap+a

on @ és un vector constant. Com que (v,v) = 1 tenim

1= N (g, 9) +2X{p, @) + (@,a).

Aixi
1., 1., 1
(90+Xa,g0+xa) =7
Per tant, tots els punts de la forma ¢(u,v) pertanyen a l'esfera de centre —(1/\)a i
radi 1/)\. 0

Exercici 123. Abans de comengar amb el problema farem dues observacions sobre 1’a-
plicacié de Gauss d’una superficie de revolucié S, que es dedueixen de l'expressié del
vector normal v de la parametritzacié habitual ¢(u,v) = (z(u) cos(v), z(u) sin(v), z(u))
on (z(u),0,z(u)) és una corba del pla zz que gira al voltant de l'eix z (veieu el proble-

ma 149)
1

v(u,v) = —2'(u) cos(v), —2'(u) sin(v), 2’ (u)).

(1.0) = e (-2 cos(o), — () sinfo), /(1)

(i) La imatge per l'aplicacié de Gauss d’un meridia (v = ct.) de S esta continguda en
un meridia de Pesfera S?, ja que aquests meridians estan caracteritzats per ser la
interseccid amb l'esfera dels plans y = Az, amb A € R, i en el nostre cas

— / 3
y_zZsinlo) ) = et
r  —z cos(v)
Es a dir, la imatge del meridia v = ct. és el meridia de I’esfera que s’obté tallant-la
pel pla y = Az amb A = tan(v).

45Condicié necessaria i suficient per a qué una corba C' sobre una superficie sigui linia de curvatura és
que
’ o /
Vi(t) = At)y'(t)

on v(t) = v(y(t)), essent v(t) qualsevol parametritzacio de C. En aquest cas, —\(t) és la curvatura
principal de la superficie al llarg de ~(t).
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(ii) La imatge per I'aplicacié de Gauss d’un parallel (u = ct.) de S descriu tot un paral-
lel de D’esfera S?, ja que aquests parallels estan caracteritzats per ser la interseccié
amb l'esfera dels plans z = ct.. En el nostre cas la tercera component z de v és
' [+/(x")? + (2')? que, com que depén només de u, és constant quan u = ct.

No oblidem que v esta determinat llevat del signe. A l'anterior expressiéo hem pres
com sentit positiu de v el donat per la direccié de ¢, A p,, i depén doncs de 'ordre de les
variables (u,v).

Observem que en el punt (i) anterior diem que la imatge d’un meridia esta continguda
en un meridia (en general no sera igual a tot el meridia) i en canvi en el punt (ii) diem que
la imatge del parallel és tot el parallel. Aixi, per veure quina és la imatge de ’aplicacio
de Gauss de S només hem d’estudiar la imatge de la seva restriccié a un meridia de S,
per exemple, sobre la corba generatriu (x(u),0, z(u)). Les superficies de ’enunciat soén
totes de revolucié, per tant, en cada cas la imatge de 'aplicacié de Gauss és

(a) L’equador de S2.

(b) Un parallel de S? que depén de ¢, ja que en aquest cas z(u) = cu, 2(u) = u, i per
tant, recordant que si ¢ és la colatitud d’un punt (z,y, z) sobre l'esfera tenim
z

cot(p) = ————,
9= s
en el nostre cas, mirant 'expressié de v(u,v) que hem obtingut abans, sera
z'(u)
cot(yp) = ) =c.

Es tracta doncs del parallel de colatitud ¢ = arccot(c).

centrada a l'equador de S2, ja que en aquest cas
(només hem de posar y = 0 a 'equaci6 donada i

(c) Una banda oberta d’amplada
x(u) = cosh(u), z(u) = sinh(u
parametritzar), i per tant tenim

ol

~—

' (u)
cot(p) = = tanh(u).
|2/ ()]
Com que —1 < tanh(u) < 1, tenim —7/4 < ¢ < w/4. Després fem variar v entre 0 i
2.

(d) L’hemisferi nord obert, ja que en aquest cas z(u) = u, 2(u) = u?, i per tant,
_o2'(u) 1

2/ (u)| 2 Jul
Aixi 0 < cot(p) < oo, i per tant 0 < ¢ < /2, que descriu tot '’hemisferi nord.
Aquesta és la normal que apunta cap dins en el paraboloide.

cot()

(e) Tota l'esfera dos cops. En aquest cas x(u) = R + r cos(u), z(u) = r sin(u). Per

tant cot(p) = — EE;((Z))‘, cosa que vol dir que ¢ pot prendre qualsevol valor, és a dir,
per a cada v fixada tenim tot el meridia. Pero els meridians estan caracteritzats per
y = Az amb )\ = tan(v), per tant per als valors v i v + 7 estem en el mateix meridia.
Amb aix0 resulta que aquest meridia esta recorregut dues vegades. Variant v s’agafen
tots els meridians dos cops, és a dir la imatge de laplicacié de Gauss del tor és S?

recorreguda dos cops.

(f) En aquest cas xz(u) = cosh(u), z(u) = u, i per tant cot(¢) = sinh(u), cosa que
vol dir que la imatge de I'aplicacié de Gauss és tot S2, excepte els pols, ja que
—00 < sinh(u) < oco.
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O

Exercici 124. Si ey, ey és la base ortonormal de direccions principals de TpS i @ =
Uy €1+ Uses 1 U= vy e 4+ vgey llavors o i ¥ sén direccions conjugades si i només si

kv 0
(u1 UQ) (01 k‘g) (Z;) :kl UlUl“‘kQUQUQ:O

que s’acostuma a escriure com
tan(0) tan(f') = _y
P1
on p; = 1/k; son els radis de curvatura principals. U]

Exercici 125. Vol dir que podem trobar coordenades locals u, v tals que en elles f = 0,
és a dir, I (py, p,) = 0.

Considerem una recta arbitraria D. Les seccions de la superficie amb el feix de plans
per D formen un sistema de corbes que podem pensar com les v = ct. Les corbes con-
jugades d’aquestes son les corbes interseccié de la superficie amb els cons de vértex a
D.

En efecte, si fixem un punt M sobre la superficie el pla tangent a la superficie en
M tallara D en un punt A. El con circumscrit a la superficie de vértex A té AM com
generatriu i aquesta recta que és évidemment (Darboux, Legons p.112) la conjugada de la
tangent en M a la corba de contacte, és tangent a la seccidé determinada per la superficie
iel plaper Di M.

Per aclarir una mica el que és evident per Darboux, i per a qualsevol familiaritzat amb
el concepte de conjugat, observem que si denotem I'(s) la corba intersecci6 del con amb

la superficie es compleix
(T(s) — A,v(s)) =0,

on v(s) denota la normal a la superficie en el punt I'(s). Simplement derivant en s = 0
tenim .

(I'(0), v(0)) + (M A, (0)) = 0,
on v és la derivada del normal sobre I'(s). I com que el primer terme és zero tenim el
resultat, ja que per definici6é de segona forma fonamental

H(MA,T'(0)) = (MA, /(0)) = 0.
O

Exercici 126.
Primer métode. Sigui (¢,y(t)) una corba sobre una superficie z = z(z,y). Suposem
y(0) = 0, 2(0,0) = 01 2,(0,0) = 2,(0,0) = 0. D’aquesta manera la segona forma
fonamental a 'origen esta formada per les derivades segones en aquest punt. Tot aixo sén
simplificacions que no afecten la natura del problema.
Tallem el pla tangent a la superficie en el punt ~(t) =
tangent a la superficie en el punt v(0). Denotem z(t) =
punt () és

), 2(t,y(t))) amb el pla

(t,y(t
t,y(t)). El pla tangent en el

2(t,

ple—1)+qly—yt) - (z - =) =0,
amb p = p(t) = z,(t,y(t)) i ¢ = q(t) = 2z,(¢,y(t)). Tallant amb z = 0 obtenim la recta

p(z—=t)+q(y—y) +=2(t) =0,

que té vector director unitari

y(
(t

1
w(t) = —==—= (¢, -, 0).
P+ ¢
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Ara s’ha de calcular Pr% w(t). Per a aixo calculem inicialment Pr% £. Aplicant I'Hopital
— —

i la regla de la cadena tenim

on 7, s, t son les derivades segones a 1'origen i y' = 3/(0). Substituint a cadascuna de les
coordenades de w(t) tenim

. q . s+ty
lim ——— = lim —
S0P 0/ (p/g) + 1 (r sy (s+ty)?
i
, —p _ -1 —r—sy
lim ———— = lim = .
S0P 0/ (g/p)P L rtsy)?+ (s +ty)?
Aixi,
1
limw(t) = s+ty,—r—sy).
t=0 Q Vr+sy)2+ (s+ty)? ( )

Pero aquesta direcci6 és conjugada, respecte la segona forma fonamental, de la direcci
de la corba en t = 0, ja que

N [T S s+ty )
o (7 2) (51)

Segon métode. La direcci6 de la recta interseccié dels plans de vectors normals v
(vector normal a la superficie en v(0)) i v(t) (vector normal a la superficie en (t)) és
vo A v(t). Volem calcular
ANv(t
t—0 t—=0 || A v(t)]]
(observeu la importancia de normalitzar, ja que el limit del numerador és zero).
Aplicant 'Hopital®®
Av(t A V(0
i A V(0
=0 o Al flv Av(0)]

Aixi
1(7(0), v0 AV'(0)) = (W((0), 10 A/(0))) = ('(0), 1 AV(0)) = 0.

També es pot calcular aquest limit aplicant Taylor considerant v(t) = vo+tv/(0)+. ..
d'on vy Av(t) =tvy AV (0)+ ... 1per tant

v A v(t) . tug AV(0)+ ... vy AV (0)
1M ———————— = 111l = .
=0 [l Av@)] =0 [[tvg Av(0) + | [ AV (0)]]
U
46Per calcular la derivada del denominador posem f(t) = ||vp A v(t)|| i observem que
£(t) = (vo AV (t), 0 A v(t))

ft)

i, novament per I'Hopital
(vo ANV'(0), 9 AV'(0))

f"(0)

f'(0) =

que dona f'(0).

Toc <4< > > < » Tornar



Solucions als Exercicis 203

Exercici 127(a) Parametritzem el paraboloide elliptic com ¢(z,y) = (z,y,2? + y*) de
manera que tenim

pe = (1,0,22),
ey =(0,1,2y),
Po Ny = (—2z,-2y,1),
viz,y) = \/ﬁ(—&zs, —2y,1), r?=2"+17
e = (0,0,2),,
Yzy = (0,0,0),
oy = (0,0,2).

Per tant, en (z,y) = (0,0), tenim

10 2 0
= 9) 1=(5 )

L’origen és, doncs, un punt umbilical. Totes les direccions sén direccions de curvatura
amb curvatura principal 2. O

Exercici 127(b) Considerem la parametritzacio o(x,y) = (x,y,z*> — y*). Tindrem

90:1:(%3/) = (17072$)a
py(z,y) = (0,1, -2y),
Pe(T,y) N py(2,y) = (—27,2y, 1),
gom(m,y) = (07072)7
Puy(x,y) = (0,0,0),
Wyy(xaw =(0,0,-2)
Per tant,
E=1+42% F=—-4zy, G=1+4y°
2 Fo0 g— —9

i 'endomorfisme de Weingarten a l'origen és

o (20
W=1I I[_(O )

de manera que a l'origen les curvatures principals séon k1 = 2, ko = —2 i les direccions
principals ¢,(0,0) = (1,0,0) i ¢,(0,0) = (0,1,0) ja que W esta ja diagonalitzada en
aquesta base. O

Exercici 127(c) Els calculs a l'esfera son especialment simples ja que, com es veura,
tots els punts séon umbilicals amb el mateix valor de les curvatures principals en tots
els punts. En particular, no hi gaire diferéncia entre prendre una parametritzacié a
una altra. Per exemple, si es parametritza 'esfera (de fet la semiesfera superior) per
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gO(ZL’,y) = (:ana V R? — 22 — y2 ) s’obté
1,0,—z/z), onz= \/m,
0,1

Pu :(
QOy:( ’ 7_y/z)a
1
P A Soy = ; (xuyvz)a
1
V(l’,y) = E (xvya Z)v
1 1 1
Vg = E(1707Z$) = E (1707 _I/Z) = }_%()Oxa
1 1 1
Vy = E(()?l)Zy) = E (1,0,-?]/2’) = E(py
Per tant (tenint en compte un altre cop que z, = —x/2 1 z, = —y/z)

oL (F=y wy
22 ry R2—2%)°

1
W= —dy= — 1d.
TR

i, a més,

De forma que totes les direccions son principals amb curvatures principals iguals a —1/R
(son negatives perqué hem considerat la normal exterior de I'esfera). Finalment, és clar
que la matriu de la segona forma fonamental sera

~1 -1 (R?—y* ay

Noteu que la clau en els calculs de W i II és que el vector normal v és un multiple
constant del vector posicié i aixo és independent de la parametritzacié que s’hagi triat.
Podeu veure com s’arriba al mateix resultat quan es considera la parametritzacio, més
usual a l'esfera, per les coordenades longitud 6 i colatitud ¢

x = R sin(p) cos(d),
y = R sin(yp) sin(0),
z = R cos(yp),
(que tenen I'avantatge de ser ortogonals). O

Exercici 128. Considerem la parametritzacio ¢(z,y) = (z,y,axy).

Pz = (17O?ay)>

v, =(0,1,ax),
E=1+ad*vy
F=d’zvy,
G=1+d*2°
V= ! (—ay,—ax,1),

\/1+a2:r2+a2y2

Pra = (07 O? 0)7

ey = (0,0, a),

gayy - (07 07 0)7
e=20,
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a
= zys V) = 5

J = (Pav) \/1+a2x2+a2y2

g =0,

K:det(II): a?

det(I) ~ 1+a2a2+a2y?
Per tant, a l'origen (z,y) = (0,0) tenim K = —a?. A l'origen la primera forma fonamental

¢és la identitat, de manera que la traca de ’endomorfisme de Weingarten coincideix amb
la traga de la segona forma fonamental IT (a l'origen), que és zero. Per tant H = 0. [

Exercici 129. Un punt P € S es diu umbilical si I’endomorfisme de Weingarten en aquest
punt és miltiple de la identitat, Wp = A Id. Equivalentment, P és un punt umbilical si,
i només si les curvatures principals en P coincideixen, ki = ky. En efecte, només hem
d’escriure W(e;) = k;e; = Ae; per veure que A = ki = k.

Ara bé, tenim II(wy,we) = (W (wy),wy) = AI(wy,ws) per definicio de la segona
forma fonamental. Es a dir, en els punts umbilicals la primera i segona formes fonamentals
son proporcionals.

Reciprocament, si en el punt P € S tenim II = A I llavors per a cada parell de vectors
wy, we tindrem [T (wy,wy) = I(W(wy),ws) = A (wy,ws) = I(Awy,ws) 1 aquesta igualtat
implica, per ser I no degenerada, W (w;) = Awy, és a dir, W = A Id en P, com voliem.

Observem que en termes dels coeficients de les matrius de I i Il respecte la base

donada per una carta local aquesta condicié equival a
e_f_y9
E F G

47

Parametritzem 1’ellipsoide per p(u,v) = (z(u,v), y(u,v), z(u,v)),"” amb

x = a cos(u) sin(v),
y = b cos(u) cos(v),
z = ¢ sin(u).
Obtenim
Yy = (—a sin(u) sin(v), —b sin(u) cos(v), ¢ cos(u)),
©y = (a cos(u) cos(v), —b cos(u) sin(v),0),
©u N @y = (be cos®(u) sin(v), ac cos®(u) cos(v),ab sin(u) cos(u)),
Pu\ Po
leu A pull’
Yuw = (—a cos(u) sin(v), —b cos(u) cos(v), —c sin(u)),
Yup = (—a sin(u) cos(v), b sin(u) sin(v),0),
Ypy = (—a cos(u) sin(v), —b cos(u) cos(v),0).

El coeficient F' de la primera forma fonamental val
F = (py, 0o) = (b* — a®) sin(u) cos(u) sin(v) cos(v).
El coeficient f de la segona forma fonamental val
f = {pu,v) =0.

4"Depenent de la parametritzacié que es trii els calculs poden ser més o menys directes. Es pot provar
també amb la parametritzacié que s’introdueix a l’exercici 218.
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Com que en els punts umbilicals la primera i la segona forma fonamentals sén propor-
cionals ha de ser F' = 0, i per tant tenim quatre possibilitats: v =0, v = 7/2, v =7 i

v =3m/2, ja que estem assumint —7/2 < u < 7/2, 0 < v < 2.
Primer cas: u = 0. La primera forma fonamental val

j ? 0
“\0 a® cos?(v) + b% sin®*(v)

- —abe (1 O)
lou Ayl \O 1

i la segona

ja que, en general tenim,

—abc cos(u)
¢ ) = T el

—abc cos®(u)
A S Py

Per tal de que la primera i la segona forma fonamentals siguin proporcionals ha de ser

a® cos?(v) + b* sin’(v) = ¢,
equivalentment
COS ('U) = m,

cosa impossible, ja que 0 < ¢ < b < a.
Segon cas: v = /2. La primera forma fonamental val

I a? sin®(u) + ¢* cos?(u) 0
N 0 b? cos®(u)

i la segona

H:—abccos(u) <1 0 )

lpw Aol \O cos*(w)
Per tal de que la primera i la segona forma fonamentals siguin proporcionals ha de ser
(a® sin®(u) + ¢* cos?(u)) cos®(u) = b* cos?(u),

és a dir,

o bé,

[aZ — b2

/a2 — 2
Observem que hi ha dos angles u;, us = —uy, entre —7w/2 i m/2, amb aquest cosinus.
Tenim doncs dos punts umbilicals

U; = (a cos(u;),0,csin(u;)), i=1,2,

cos(u) =

és a dir,
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El pla tangent a l'ellipsoide en U; és
(x — a cos(u;)) be cos(u;) + (2 — ¢ sin(w;)) ab sin(u;) = 0,
que es pot escriure com
c
z = —— cot(u;) x + d;
a

per a una certa constant d;. Son doncs parallels a les seccions cicliques (veure el Lema
més endavant).
Tercer cas: v = . La primera forma fonamental val
b? sin?(u) + ¢ cos?(u) 0
I = 2 2
0 a® cos®(u)

i la segona
—abce cos(u) (1 0
IIN=—"> N .
lw Aol \O cos*(u)
Per tal que la primera i la segona forma fonamentals siguin proporcionals ha de ser

(b% sin®(u) + ¢* cos?(u)) cos®(u) = a? cos®(u),

equivalentment
COS (’U) = m,

cosa impossible, ja que 0 < ¢ < b < a.
Quart cas: v = 37/2. Es igual al cas v = 7/2, només canvia el signe de la z, de manera
que els quatre punts umbilicals de I'ellipsoide séon

a2 — b2 b2 _ 2

(o Y 0, e ).
(1,2—02 (12—02

Lema. El pla z = Az, amb

talla Uellipsoide donat en circumferencies.

Demostracio. Substituint z = Az a I'equacié de I'el'lipsoide obtenim

2, 2132
y=bv1—Az?, ambA:ﬂ.

a?c?
Aixi, la corba soluci6 és

v(x) = (z,bvV1 — Ax? A\x).

Com que
—bAx
! - ]‘7 7A
7o) =0 =Y
y —bA
7'(x) = (0, 0)

(VI —Az2)3

B bAVI+ N2
(VA +22) (1 — Ax?) + A2p222)3
Per tal que sigui constant (i aixi y(z) sigui un cercle) el coeficient de z? ha de ser zero.
Es a dir,

la curvatura val

Ab? =14+ )2
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Substituint A pel seu valor i simplificant obtenim

)\—:I:cm
N avh?—c2’

com voliem. N

Exercici 130. Amb la parametritzacié ¢(z,y) = (z,y, 23 — 3z y*) podem calcular

gom(x,y) - (1,0,31‘2 - 3y2)7

I aleshores

1+9 (2% —9?)?* —18zy(z* —y?) 6 r -y
—18zy(z®—y?) 1+362%y VI+9rt \—y —x

En polars,

1+97% cos?(2a) —97% sin(2a) cos(2 )
I = 4 o3 4 32 )
—97r* sin(2 «) cos(2 ) 1+97* sin(2 )

n= i (e T

Per tant, ’aplicaci6 de Weingarten té per matriu

Gr (cos(a) (14 187% sin*(a)) —sin(a) (1 + 187* cosQ(a)))
(1+97r4)3/2 \ —sin(a) (1 —9r*cos(2a)) —cos(a) (1+9r* cos(2w))

La curvatura de Gauss és igual a

W=I" 1=

K(z,y) = det(W) = (1i6+4)3 (~a+9r) - %

expressio que només depén de r2.

Observem que S no és una superficie minimal ja que la traca de W no és zero.

Per calcular les direccions asimptotiques hem de determinar els vectors v = a @, +b ¢y,
(amb I(v,v) = 1), tals que II(v,v) = 0, és a dir, tals que

x -y a\
o0 (2 2) 6)-
d’on resulta que s’ha de complir
(a> —b*)x =2aby.

Aixi, per a cada punt de coordenades (z,y) fixat, tenim dues equacions amb dues
incognites, a i b, de la forma

Ea*+2Fab+ GV =1
(a> = b*)x =2aby
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Per exemple, si x = 0, (recta (0,y,0) continguda a la sella de Mico) tenim

(1+9yHa*+b* =1
0=2aby

que implica, quan y # 0, a = 0, b = 1 (¢, direcci6 asimptotica) o bé b =0, a = ﬁ (pz
direcci6 asimptotica). En un punt arbitrari és dificil aillar a i b d’aquesta equacio.

En el (0,0) tota direccié és asimptotica. Perdo només hi passen dues linies asimptoti-
ques, les linies coordenades. L’equacio diferencial de les linies asimptotiques és

('(t) — o/ (t)*) x(t) = 22"(t) y/ (1) y(2)-
Posant dy/dt = (dy/dx) (dz/dt) 'equacié anterior s’escriu

-9 )z =29y, g=dy/da
i aquesta equacio diferencial admet la solucié y = :I:\/%T z. Es a dir, les linies asimptotiques
per l'origen so6n
1 1

r,*—2x)=(r,——=x,0).

olo. ) = (a2 0.0)
La curvatura de Gauss és estrictament negativa en tots els punts, excepte a l'origen,
on val zero. A l'origen I’endomorfisme de Weingarten s’anulla, de manera que és un punt

umbilical amb k; = ks = 0. Cap dels altres punts pot ser un punt umbilical. O

Exercici 131. Recordem que la curvatura de Gauss K compleix que K = ki ko, on ky,
k5 son les curvatures principals. En els punts umbilicals, K = k? > 0.

(a) A l'exercici 128 es veu que la curvatura de Gauss de ’hiperboloide z = zy és estric-
tament negativa en tots els punts. Per tant, no hi ha punts umbilicals.

(b) Prenem la parametritzacio ¢(u,v) = (u, v, Z—z +e Z—z) Les derivades parcials son

2u
QDU(U,U) = (17 07 ?)7

2ev
ool ) = (0,1, 225)

2
<puu(u,v) = (07 07 ;)7

gpw(u, U) = (07 07 0)7

2¢
SDUU(u?U) = (07 07 b_2)7

i per tant els coeficients de la primera forma fonamentals son

4u? deuv 4 ?
La normal és
a’b? 2u  2¢ew
V= (__7__7]-)7
VAR +4ate? +attt - a? b

i per tant els coeficients de la segona forma fonamental son
22 2¢ea?

e= , [=0, g= )
VAu2 bt 4+ 4a* 02 + ad bt / g VAu2 bt + 4a*v? + at bt
Per tant, la curvatura de Gauss sera
K 4eabbb
A2
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amb

A=a*bt + 4% bt + 402 a.
Aixi, si € = —1 no hi ha punts umbilicals. Suposem, doncs, a partir d’ara ¢ = 1.
La curvatura mitjana és

leG-2fF+4gk 274 2,2 | 12 4 2,2
5 EC P (a® 0" +4a®0* + b2 0" + 4% u?)

a? b?
A3/2

La condicié d’umbilical es pot escriure com H? — K = 0. Substituint tenim
474
a*b

2 _
H— K = A5

((aZbQ(b2 + a?) + 4a*v® + 4u262)2

— 44 b? (a4b4+4u2b4+4u2a4)>

4b4
— CLAS (a4 bt (1% — a®)? +8a?b* (a® — b?) u? + 8a* B (b® — a?) v

+16a* v* + 16 u* b* + 32a2b2u2v2).
Els termes d’aquest paréntesi es poden agrupar segons ens convingui per veure que
sempre és una quantitat positiva. En efecte, si a > b els podem agrupar aixi:
(4a*v* +b*a® (b — a2))2 +8a? b u? (a® — b%) +32a% > u? v? + 166" u?
que és una suma de quadrats que no s’anulla mai.

Si a < b I'agrupacié pot ser la segiient: El paréntesis del numerador es pot escriure
com

(42 u? + b2 a2 (a® = b))° +8a' b2 ? (17 — a®) + 3242 b* v v® + 16a* o'
que torna a ser una suma de quadrats que no s’anulla mai.

Per tant, en cap dels dos casos hi ha punts umbilicals.

Finalment, si a = b, es veu que el punt de coordenades (u,v) = (0,0) és un punt
umbilical.

0

Exercici 132. Com que
u(u,v) = (—r sin(u) cos(v), —r sin(u) sin(v),r cos(u)),
y(u,v) = (—(R + r cos(u)) sin(v), (R + r cos(u)) cos(v),0),
la meétrica és

(ch (R+7r (():os<u)>2) '

L’area de la regio R del tor donada per —e < u <€, —0 < v < J és
6 €
A(R) = / / r(R+7r cos(u))dudv =4 Rr e+ 4r°d sin(e).
-6 J—e

Calculem ara larea de la regi6 v(R), on v : Tor — S? és 'aplicaci6 de Gauss. La
normal al tor és

v(u,v) = (—cos(u) cos(v), — cos(u) sin(v), — sinu)
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per tant, v(R) és la regié sobre 'esfera S? determinada pels vectors v(u,v) quan —e <
u<e —0<v<o.

Si pensem, com és habitual, S? parametritzada per la longitud 6 i la colatitud ¢ de
manera que els seus punts son (sin(y) cos(6),sin(¢) sin(6), cos(¢)), la métrica és

ds* = dp* + sin*(p) d6?,
i la relacio entre les coordenades (u,v) d’un punt del tor i els valors (6, ¢) que corresponen
a v(u,v) és cos(p) = —sin(u), 8 = v (com es veu comparant 'expressioé de v(u,v) amb
'expressio dels punts de S? en coordenades (6, ¢) que acabem de donar).

Per tant, la regio v(R) esta caracteritzada per —e + 7/2 < p < e+ 7/2, =5 < 0 < 0.
I 'area de v(R) ¢

A(v(R)) = /6+7r/2 /i sin(p) dddp =26 [— cos(gp)rﬂ/2 =44 sin(e).

—e+7/2 —etm/2
Finalment
A 46 si 1
lim —(V(R)> = lim sin(e) - = i
—0 A(R) —~04Rrde+4r2dsin(e) r(R+r)
Aquest resultat és obvi sense fer cap calcul ja que en el punt P les direccions principals
venen donades per dues circumferéncies ortogonals de radis respectius r i R + 7. O

Exercici 133. Sabem que la relacié entre la curvatura k& de C' i la curvatura de la
corresponent secci6 normal és

k, = k cos(a),

on « és I'angle entre la normal a la corba i la normal a la superficie.
Per altra banda ’equacié d’Euler diu que

ky, = ki cos®(6) + ky sin?(6),

on 0 és 'angle entre el vector tangent a la corba en P i la primera direccié principal.
La hipotesis sobre la curvatura de Gauss diu que ky i ko tenen el mateix signe.
Si k1 1 ko sOn positius,

k >k cos(a) = k; cos®(6) + ky sin?(0) > min(ky, ky) (cos®(0) + sin®*(0)) = min(ky, ko).
Si kq 1 ko sOn negatius,
k1 cos?(0) + ko sin®(0) = k cos(a) > —k
que, canviant de signe dona,
—ky cos?(0) — ky sin?(0) = —k cos(a) < k
1 per tant
min(|k,|, |k2|) = min(—ky, —kz) (cos?(#) + sin®(0))
< —k; cos?(0) — ky sin?(0) = —k cos(a) < k.
U

Exercici 134. Si sén constants i iguals tots els punts sén umbilicals i estem en una esfera
o un pla (exercici 122). Si son constants i diferents prenem una parametritzacié principal
(U, ¢) i apliquem la igualtat de Schwarz a

Vu = _kl SO'LL7
Vy = —ka @y
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Per ser k; # ky obtenim ¢, = 0, i per tant I'l, = T'%, = 0.
Com que (py, ¢,) = 0 tenim

(uvs Pv) + (Pus Pov)
<90uua 901)> + <90u7 (Puv>

0,
0

i per tant '}, =T% = 0.

Llavors, per la formula de la curvatura en funcié dels simbols de Christoffel (que també
s'utilitza a l'exercici 144) es té K = 0.

Només queda considerar, doncs, k; = 0 i ky constant diferent de zero. Com que
ki1 = e/E també tenim e = 0.

Aixi

Puu = Fil Pu

pero, per 'expressié dels simbols de Christoffel en funci6 dels coeficients de la métrica, es

compleix
(VE )
VE

I observem també, abans de continuar I’exercici, que £, = 0, ja que

Ev = <<()OU7QOU>)1) =2 <(puv7 §0u> =0

1
Fll_

donat que @,, = 0.
Aquestes consideracions permeten demostrar que el vector unitari
Pu

VE

a =

és constant.

En efecte,
(j%>u:%u\/F—E(\/F)u% o,
i (%) _ewVE - (VE Jvpu _

VvVE E
Considerem ara l’aplicacié diferenciable G : U — R?® donada per
1
G(U, U) = (P(U, U) - <(,0(U, 'U), (l> a -+ k_ V(ua U)
2
Aquesta funci6 és constant ja que les seves derivades parcials son

1
Gu:@u_<¢U7a>a+_Vu:Oa

ks
1
Gv = Py — <¢v7a>a+_yv =0,
ko
ja que v, =0, (¢,,a) =01 v, = —kyp,. SiceR? és el valor constant de G(u,v) tenim
1
QO(U,U) - <QD(U,U>,G/>CL—C: _I{Z_ I/(U,'U) (24>
2

Ara bé, com que clarament (G(u,v),a) = 0, tenim (c¢,a) = 0. Per tant, prenent normes
(al quadrat) a (24) es compleix

1
lip(u,0) = el = (. 0) — ) =
2
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La part esquerra d’aquesta igualtat és exactament la formula de la distancia del punt
¢o(u,v) a la recta que passa per ¢ amb vector director a (no és més que el teorema de
Pitagores). Per tant, tots els punts de la superficie pertanyen al cilindre circular recte
d’eix la recta ¢ + (a) i radi 1/ks.

Resumint:

Una superficie connexa amb curvatures principals constants o, equivalentment,

amb curvatura mitjana i de Gauss constant és un obert d’una esfera, d’un pla
o d’un cilindre circular recte.

O

Exercici 135. Si S és compacta aleshores la aplicacié f : S — R definida per f(x,y, z) =
I(z,y,2)||*> = 22 + 32 + 2% pren un valor maxim R? en un cert punt p € S. Vegem en
primer lloc que el vector normal de S en p és v(p) = }% p. En efecte, per a tot vector
tangent v € T,S prenem una corba f C S tal que 5(0) = p i /(0) = v. Com que

g(s) = f(B(s)) té un maxim en s = 0 deduim que ¢'(0) = (4'(0), 5(0)) = (v,p) =0, i per
tant p és ortogonal a tot vector tangent. Considerem ara un vector propi de 'aplicacié
de Weingarten en p unitari w € 7,5, amb valor propi k i vy(s) una corba parametritzada
per I'arc amb 7(0) = pi+/(0) = w Com que w és unitari tenim

k= kn(w) = I(w) = (=dv(w), w) = (=(0),7'(0)) = (v(p),7"(0)).

D’altra banda, la funcio g(s) = f(7v(s)) = (y(s),7(s)) t¢é un maxim en s = 0, per tant no
tan sols ¢’(0) = 0 sind que, a més, ¢”(0) < 0. Si es calcula ¢”(0) sl’obté

g”(O) 2((+"(0),7(0)) + (+(0),7'(0)))
2((v"(0),p) + (w, w))
=2(R<7 0),v(p) +1) = 2(Rk + 1).

D'on Rk+1<0,ésadir, k < 2. I per tant, K(p) > 75 > 0. Aixo implica clarament
que una superficie minima no pot ser compacta. L]

Exercici 136(a) Observem que el laplacia es pot escriure com

AQD = Pun + Gow-
Derivant les relacions
<90u7 901)> =0
(Pus Pu) = (Pu, Pu) = A
obtenim
2 <¢uvy Spv> == )\
(P Pv) + {Pus Puv) =0
i, per tant,
M Ay
i VU u:___:O
(Pun + Povs pu) = 5 = 5
I analogament quan multipliquem el laplacia per ¢,,. [l

Exercici 136(b) Si el laplacia és zero, els termes de la diagonal de la segona forma
fonamental son

= _<90uuyy> = <90vv>’/> = —g.
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La matriu de I'endomorfisme associat (endomorfisme de Weingarten) és el producte de
matrius L = I~'II. Aquesta matriu té traca zero, ja que la segona forma fonamental
té traga zero i la primera forma fonamental és un multiple de la identitat. Com que la
curvatura mitjana és la traga de I’endomorfisme associat, hem acabat. 0

Exercici 137(a) Considerem el pla que passa per P amb espai director generat per w,
v(P). La intersecci6 d’aquest pla amb la superficie és una corba i aquesta corba només
pot tenir un punt en comu amb la recta ¢ : P + (w). Per tant, aquesta recta ¢ és tangent
a la corba. Com que v(P) és normal a les tangents en P de tots les corbes contingudes a
la superficie, en particular v(P) és ortogonal a w. O

Exercici 137(b) Per definicio

dv dv
(T, w) = I(—E,w) = (—g,w),

on v(s) és la restriccié del normal a la superficie a la generatriu v(s) (corba integral de
7). O

Exercici 137(c) En aquesta base

i per tant

com voliem. O

Exercici 137(d) Observem que

K(P) = det W(P) =

Per tant, només cal demostra que

k(T) = (k(Q), sin®(6).

Denotem v(s) la corba generatriu del contorn. Llavors la corba contorn aparent és la

corba
Bls) =(s) + Als) w

amb \(s) = — cos(f) (només cal imposar (f'(s), w) = 0).

L’observaci6 important és que v(v(s)) = N(s), on N(s) el el vector normal a ((s).
Aixo és degut a que tant v((s)) com N(s) son ortogonals a w i '(s).

Aixi,

dv
FlT) = I(T.T) = (=—=.T) = (1, 7"(s)) = {1, " (s) + (cos(6))" w) = (v, 5"(5))

Pero s no és parametre arc de 8. Si posem
_ Bl _ B
18" ()l sin(6)

T
tenim
B'(s) = 118'(s)Il Tp
d dr

B'(s) = I8'S)I" T + 18" ()ll =~ =T

Toc <4< > > < » Tornar



Solucions als Exercicis

on 7 és el parametre arc de § (en particular dr/ds = ||5'(s)|| = sin(f)).

Per tant tenim

k(T) = (v, 8"(s)) = (v,sin®(0) ks (s) N(s)) = k(Q) sin®(0)

com voliem.

Exercici 138(a) Derivant
(v(y(t)),~(t) = F) =0
s’obté el resultat de forma immediata.

Exercici 138(b)
7= (kn(T) 0 2)

0 kn(w) [lwl]
Per tant,
-1 1 w|? — |lw]| cos(6 kn(T')
W=rih= l[w]|? sin?(6) (— Hw’H ’cos(Q) | Hl ( )> ( 0
Operant obtenim
_ 1 |l ko (T) —kn(w) [Jw]|* cos
|wlf? sin?(8) <—kn(T) [[w]| cos(8) ko (w) [Jw]?

Exercici 138(c) De l'apartat anterior es dedueix
kn(T) k(P — F)
sin?(0) '

K =detW = K(P) =

Exercici 139(a) Prenem la parametritzacio
¢(u,v) = (cosh(u) cos(v), cosh(u) sin(v), sinh(u))
Llavors
vy = (sinh(u) cos(v), sinh(u) sin(v), cosh(u))
¢y = (— cosh(u) sin(v), cosh(u) cos(v),0),
la primera forma fonamental esta determinada per

E = sinh®(u) + cosh?(u), F =0, G = cosh®(u)

i Pelement d’area és do = v E G — F? = cosh(u) \/1 + 2 sinh?(u) .
Per tant

arcsinh(z1)

Area(R) = 27?/

arcsinh(zo)
3/2 1 :| arcsinh(z1)

= 27r(1 + 2sinh2(u)) -

(@2 - a+2:)

arcsinh(zo)

wl =
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U
Exercici 139(b)
“uuw = (cosh(u) cos(v), cosh(u) sin(v), sinh(u))
Yuw = (—sinh(u) sin(v), sinh(u) cos(v), 0)
Yoy = (— cosh(u) cos(v), — cosh(u) sin(v), 0)
©u A @y = (— cosh?(u) cos(v), — cosh®(u) sin(v),sinh(u) cosh(v))
llow A ol = cosh(u) \/cosh2(u) + sinh?(u)
1
v = ————(—cosh(u) cos(v), — cosh(u) sin(v), sinh(u
oo ( (u) cos(v) (u) sin(v), sinh(u))
1
¢ = (v pu) = cosh(2u)
f= <V’ Souv> =0
iy oy = Coshi()
9= v un) = cosh(2u)
eg—f* -1
K= EG—F?  cosh®(2u)
U

Exercici 140. Recordem que la derivada covariant Vx N esta definida com la projeccio
sobre la superficie de la derivada direccional, és a dir,
DN

VxN =T (_dt ’t:O) .
Recordem que

DN _dN((1)

dt =0~ ar =0’
on y(t) és una corba integral de X, és a dir, 7v(0) = P i+/(0) = X.

Com que el camp normal a u = « és el gradient normalitzat

N = grad(u
[oag &4
tenim ,
DN - (LY () + L (Qu Qu Ouy
dt == \J[vu] ) © [Vu] dt ‘0z’ 9y’ 02
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Com que el gradient és ortogonal a la superficie, en projectar passa a zero i tenim
DN 1 d,0u Ju Ou
w (2 ) = (g S, %u oy
dt li=o [Vul[ dt ‘0z 9y’ 0z
d (3u) Pudr  0*u Oy  O*u Oz

At \0zx) " 02 ot  ozdy Ot | 0w0z ot

i analogament per les derivades de u respecte y i z, de manera que tenim

. (%H) - (ﬁ H(u)X) |

i ja hem acabat ja que ara tenim

1 DN

per un cert p € R, i per tant

Pero

HwX = |Vu|| VxN + AN

amb A = p ||Vul| com voliem.
Observem que tenim doncs

(H(u)X,Y) =||Vu|| I(X,Y)

que expressa la relacié entre la segona forma fonamental i el Hessia. U]

Teorema egregi

Exercici 141. Com que
ou = (1,0, ay)
ey = (0,1, a,)
1
V=
V1t (a)? + (a,)?

Ouuw = (0,0, ayy)

Puv = (0,0, ay)

Pov = (0,0, ay,)

Les parts normals de les segones derivades queden determinades per

(—Clu, —Qy, 1)

(Puus ) = VIt (@) + (a0)? =
<(10uv;V> = \/1 T (au)2 T (av>2 =

(Quv, V) = NiESCREEICOE

De forma que, per a les parts tangents,

Ay,
uu — EV = Aoy, Py, + Ay Py
@ T (@ + (a))? (au @ ©v)
Aoy
w — J V= Ay, Py + Ay Py
Ouw — f T @ T (@) (au @ ©v)
Qyy
Py — gV = (au(pu_{'av(pv)

1+ (ay)? + (a,)?

Toc <4< > > < » Tornar



Solucions als Exercicis
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Aix0o dona els simbols de Christoffel
Fl _ Ay, Ay F2 . Ay, Ay
" 1+ (au)2 + (av)2 H I+ (GU)2 + (av)2
Fl o Ay Qo F2 - Ayy Gy
P14 (au)z + (av)2 P14 (CLU>2 + (av)2
Fl o Ayy Ay F2 o Ayy Ay
2 1+ (a4)? + (ay)? 2 1 (au)? + (ay)?
(]

Exercici 142. El teorema egregi de Gauss es dedueix directament de la formula

—EK = (I'y)y — (T})y + T, 5 + 13,1, — I, 15, — T, T,

de la qual s’en desprén que la curvatura de Gauss K es pot calcular a partir de E i dels
simbols de Christoffel. Com que aquests es poden calcular a partir dels coeficients F, F,
G de la primera forma fonamental i les seves derivades, K queda determinada, doncs, per
la primera forma fonamental®.

L’expressio dels simbols de Christoffel en funcié dels coeficients de la primera forma

fonamental 1 les seves derivades és

rl GE,-2FF,+FE, 2 _2EF,-FEE,-FE,
He 2(EG - F?) e 2(EG— F2)
rt, = S -G p _ EG.—FE,
2 2(EG - F?) 22 (EG — F?)
Il _2GF, -GG, - FG, 2 _FEG,-2FF,+FG,
2 2(EG— F?) 2 2(EG — F?)
que, quan F' = 0 (coordenades ortogonals), es redueixen a
E -FE
I =—= I} =—
=3 1= 5a
E G
1 v 2 _ Gu
F12—2E F12—2
-G G
1 U 2 v
Iy = Y5 F22_2G

De manera que

_EK:<GU)U+(EU>U_ E, E, +<ﬂ>2+ﬂﬁ_ﬂﬂ.

2G 2G

D’on es dedueix

1 G E
¥ —-s7re (772),* (772).)
Observem que quan E = 1, que és la situacié que es dona quan s’utilitzen coordenades
geodésiques, aquesta formula diu simplement que

K- ()

uu

Exercici 143. Calculem la curvatura de Gauss.

¢ = (cos(s),sin(s),0)

48Podeu trobar aquesta expressié per exemple a Notes sobre corbes i superficies, A. Reventos, 2018.
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s = (—t sin(s),t cos(s), 1)

E=1
F=0
G=1+1t
1
v = W(Sin(s),—cos(s),t)
Pt — (07070)

s = (—sin(s), cos(s),0)
wss = (—t cos(s), —t sin(s),0)

e=0

B 1
I=~Vire
g=20

B 1
R

Analogament

Wy = (sin(s), cos(s), %)

s = (t cos(s), —t sin(s),0)

E=1+t4
F =
G="t
1 .
V= W(sm(s),cos(s), —t)
1

s = (—t sin(s), —t cos(s),0)
o
It
f=
B t
NiE
1
T3 o

219

Per veure que l'aplicaci6 f : helicoide — logaritmoide donada per f(¢(t,s)) = ¥(t, s)
no és isometria hem de veure si la matriu de la primera forma fonamental de I’helicoide
respecte de la base ¢y, ¢, coincideix amb la matriu de la primera forma fonamental del

logaritmoide respecte de la base f.p;, fiws.
Pero

d d
fsor = Ehzof(@(@so)) = £|t:0¢(t750) = 1.

Analogament f,p, = 1,. Pero en els calculs anteriors es veu que la matriu de la primera
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forma fonamental de 1'helicoide respecte de la base ¢y, s no coincideix amb la matriu de
la primera forma fonamental del logaritmoide respecte de la base ¥y, 1.

A més podem veure facilment, no inicament que f no és isometria, sind que no hi ha
cap isometria entre I’helicoide H i el logaritmoide L. En efecte, qualsevol isometria F
entre H i L ha de portar el punt de coordenades (¢, s) al punt de coordenades (£t, u(t, s)),
on u = u(t,s) és una funcié desconeguda que ens determina F. Aix0 és degut a que F
conserva la curvatura de Gauss, la qual, com hem vist, només depén de t2. Aixi, doncs,
tenim F'(@(t,s)) = (%t u(t, s)). En particular,

ou
dF (p:) = £ + ¢SE'

Per ser F' isometria
(dE (1), dF (1)) = (o1, 1) = 1,
pero

ou ou 1 ou\ >
(@) P (o) = o+ ozt w5 =1+ (5)
Igualant les dues darreres igualtats s’arriba a una contradiccio. U

Exercici 144(a) Tenint en compte que les derivades segones de la parametritzacioé son
nulles, tots els simbols de Christoffel son 0. O

Exercici 144(b) La parametritzacié per les coordenades polars del pla z = 0 sera
o(r,0) = (r cos(),r sin(f),0)
de forma que els vectors tangents sén
@, = (cos(#),sin(#),0)
g = (—r sin(@),r cos(),0)
i, Obviament, el vector normal sera
v=(0,0,1)
Les derivades segones séon
o = (0,0,0)
©rg = (—sin(0), cos(0),0)
g9 = (—r cos(), —r sin(h), 0)

Sense més calculs es pot veure que

1
Pro = - o
Yoo = —T Pr
de forma que
F%l = F%l =0
F%Q =0 F%Q - %
FéQ =-r FgQ =0
(associant I'index 1 a les derivades respecte r i el 2 a les derivades respecte 6). U

Exercici 144(c) La formula de Gauss de la curvatura en termes dels simbols de Christoffel
és
EK = (F%)@ - (Ffz)r + F%l F%z - F%Q F%l + F%l ng - F%Q F%2
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Es clar que en el cas de les coordenades cartesianes no hi ha cap calcul a fer per a
comprovar que surt K = 0.

En el cas de les coordenades polars, hi ha coeficients diferents de 0 i, per tant, caldra
veure que hi ha compensacions per tal d’obtenir el mateix resultat. En concret

(F%I)G =0
1
(F%Q)r = _ﬁ
Fh F%z =
Pb P%l =0
F%l F%Q =0
1
Pf2 F%Q = 7,_2

Exercici 145. Diem X (u,v) = (z,y, z) a la parametritzacié corresponent. Aleshores
Xy =1 (—sin(u) sin(v), cos(u) sin(v), 0)
X, = r(cos(u) cos(v),sin(u) cos(v), —sin(v))
v = —(cos(u) sin(v), sin(u) sin(v), cos(v))
(v és el vector unitari en la direcci6 del vector posicio)
Xyu = 7 (—cos(u) sin(v), —sin(u) sin(v), 0)
Xuyw = 17 (—sin(u) cos(v), cos(u) cos(v),0)
Xy =1 (—cos(u) sin(v), —sin(u) sin(v), — cos(v))
D’aquestes igualtats es dedueixen, de forma immediata, les relacions

~ cos(v)

uv T

sin(v)
Xy =TV

que corresponen als valors dels simbols de Christoffel

[, =cot(v), T =T =T5=0
Com que

(X, V) = 1 sin®(v)
la seva part tangent sera
Xyu — 7 sin®(v) v = (—r cos?(v) cos(u) sin(v), —r cos?(v) sin(v) sin(u),r cos(v) sin®(v))
des d’on no costa gaire veure (traient els factors comuns adequats) que també es compleix
Xy — 7 sin*(v) v = — cos(v) sin(v) X,
I aquesta igualtat dona els simbols de Christoffel que faltaven
I'l, =0, T3 = —cos(v) sin(v)

OJ

Exercici 146. El Teorema Egregi de Gauss ens diu que si dues superficies S; i S5 son
localment isomeétriques aleshores les seves curvatures de Gauss son iguals en els punts
corresponents per una isometria, és a dir, existeix una aplicaci6 F : S; — Sy tal que
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Kg, = Kg, o F. Ja sabem que la curvatura de Gauss de l'esfera és constant i positiva,
la del cilindre idénticament nulla i finalment, la de la sella 2 = 22 — y? no és constant
en (z,y). Per tant, no hi ha cap parella d’aquestes tres superficies on siguin localment
isomeétriques. L]

Exercici 147. Posant = G = X a I’expressio de la curvatura de Gauss en coordenades
ortogonals (F' = 0) de 'exercici 142 s’obté

1 Au Ay 1 0log(\) 0log(\)
=X ((7)ﬁ (7)) - (%5 )ﬁ( o),
1 [9*log(\)  9?log(N) 1
En particular, si A = - 2 aleshores =t log(A) = log(u? + v? + ¢?) i per tant,

1
u2+v2+c?

( 2u ) 4 ( 2v )
U2+’U2+C2 ” ’LL2+’U2+CZ v

1
(u2 +1}2 +62)2

=2+ v+ ) —4uP 2w+ v+ ) — 40P =42

K =

Superficies de revoluci6

Exercici 148(a) Observem que, per a cada x fix, els punts (z,y,z) de la superficie
corresponen a una circumferéncia de centre (z,0,0) i radi f(x) i per tant compleixen que
y?> + 22 = (f(z))?. Per tant, només cal considerar

q)(xvyv Z) = y2 + Z2 - (f(‘r))Z :

(z, f(2))

Com que f(x) > 0, les coordenades y i z sobre S no es poden anular simultaniament, per
tant la diferencial (gradient) de ¢ donada per

d® = (=2 f(z) f'(x),2y,22)
sempre ¢s diferent de 0 sobre ®~1(0) i, per tant, exhaustiva. U

Exercici 148(b) Prenent coordenades polars en cada un dels plans = = ct. es pot para-
metritzar S posant

p(u,v) = (u, f(u) cos(v), f(u) sin(v)).
Com que
pu = (1, f'(u) cos(v), f'(u) sin(v)),
v = (0, = f(u) sin(v), f(u) cos(v))
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son sempre linealment independents ja que ¢, A ¢, = f(u)(f'(u), — cos(u), —sin(u))
(f(u) > 01iel sinus i el cosinus mai s’anullen simultaniament) no cal fer més calculs. [
Exercici 148(c) El calcul de d® ja dona el resultat. O

Exercici 149(a) En coordenades cilindriques (p,0,z) de R?, C té equacions 6 = 0 i
f(p,z) = 0. Quan C gira, p es manté constant i com que p = y/x2 + y2, tenim que, en
coordenades cartesianes, S té per equacio f(y/x2+ y?,z) =0, amb 6 arbitraria.

Ry
) '!’n )

"y
.\/.

g7y ] JiLY:
flz,2)=0

Superficie de revolucié obtinguda a partir de la corba f(z,z) =0.

Si es vol estudiar el cas d’una circumferéncia, siguin 0 < r < R i considerem la
circumferéncia del pla y = 0 de radi r amb centre (R,0,0). Aquesta circumferéncia té
equaci6 en el pla y = 0 donada per 0 = f(x,2) = (z — R)? + 2% — 12, per tant, pel que
acabem de veure (només cal substituir = per p), la superficie de revolucié corresponent

(tor) té per equaci6 0 = f(y/22+y?,2) = (Va2 +y? — R)* + 2> —r?.

Segona manera de pensar: (com a l’exercici 226 on es pensen les superficies com fami-
lies uniparameétriques de corbes perod sense equacions en derivades parcials). La superficie
de revoluci6 al voltant de l'eix de les z, es pot pensar formada per circumferéncies de
diferents radis situades en els plans z = cte.

Equivalentment, com es fa a l'exercici 226, considerem la familia biparamétrica de
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superficies
z = q,
2yt = 32
i transformem aquesta familia biparamétrica en una uniparamétrica (que aixi produeix
una superficie) donant una relaci6 entre v i 5. Aquesta relacié sera la que lliga laltura
sobre z = 0 i el radi de gir, i vindra determinada justament per la corba del pla y = 0
que fem girar.
La corba que fem girar és la determinada per 'equacié f(z,z) = 0 del pla y = 0 i
com que f3 és la distancia a l'origen, en aquest pla tenim z? + 22 = 2. De manera que

I'equacio6 de la corba genera la relacio f(1/8? — a?,a) =0 entre o i S.

——
8
[ V)
+
<
[ V)
+
I
[V}
Il
w
[V}

Finalment, substituint a i § pel seu valor, I’equacié buscada sera

f(V/x2+y?%,2)=0.

En el cas del tor, la relacié entre « i 3 prové de 'equaci6 (z — R)? + 2% —r? = 0. Com
que 3 és la distancia a l'origen 8 = Va2 + 22, d’'on 22 = 32 — 22 = 3% — a? que dona
(/% —a? — R)? + a* = r?, d’on substituint a i 8 pel seu valor s’obté

(\/W—R)2+z2—r2 =0.
O
Exercici 149(b) Per construcci6 esta clar que la imatge de ¢ esta continguda en la
superficie de revolucié generada per la corba C'. Observem que, com que girem al voltat

de leix z, la tercera component b(u) dels punts de a(u) no varia. I a(u) és el radi de gir.
Vegem que aquesta parametritzacio és regular. Calculem els vectors tangents

pu(u,v) = (a'(u) cos(v), d'(u) sin(v),V'(u)),
(py(U,U) = (—CL(U) SiIl(’U), CL(U) COS(U)a O) :
Per veure que el rang de la matriu

a'(u) cos(v) —a(u) sin(v)
a'(u) sin(v)  a(u) cos(v)
b (u) 0
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és 2 només cal observar que els tres menors 2 x 2 sén aa’, —a b’ sin(v), —a b’ cos(v) i no
es poden anullar tots tres a la vegada ja que, per ser y(u) regular, a’(u)?* + 0'(u)? # 0 i
per tant a’(u) i b'(u) no poden anullarse simultaniament. Aixi doncs, la parametritzacio
és regular.

En el cas del tor es pot prendre y(u) = (R + 7 cos(u), 0,7 sin(u)), amb la qual cosa

o(u,v) :((R + 1 cos(u)) cos(v), (R+ r cos(u)) sin(v), r sin(u)),
(u,v) € (0,27) x (0,27)
és una parametritzacio regular del tor. U

Exercici 149(c) A partir dels calculs de ¢,, ¢, de 'apartat anterior es veu que la primera
forma fonamental ve donada per E(u,v) = a’(u)? + ¥ (u)? = |7/ (u)||> # 0, F(u,v) =01
G(u,v) = a(u)? > 0 ja que C no pot tallar a I'eix Oz. Matricialment,

I:(WV+®W o),

0 a?

El seu determinat és E G — F2 = a2 ||7/||> # 0. Aixd demostra també que la parametrit-
zacio es regular.
Si u és el parametre arc de v aleshores la primera forma fonamental de S té per matriu

1 0
=y 2)-
O

Exercici 149(d) L’element d’area és doncs dA = a(u) /(a')? + (V/)? dudv i Varea de S
(del trog de S generat per v(s) amb u; < s < uy) és igual a

A:/O%dv/uzma\/mdu:%r/oga(s)ds,

on s és el parametre arc de v (hem fet el canvi de variable u = u(s), du = /(s)ds
recordant que ds/du = ||y (u)|| = v/(a’)? + (b')2 ).
Observem que la coordenada x del centre de gravetat de vy(u) (u parametre arc) és

/O " o) du

g Y

per tant I’area generada per rotacié d’una corba de longitud ¢ esta donada per

xr =

A =2n/l% = longitud de la corba x longitud trajectoria centre de masses

igualtat coneguda com Teorema de Pappus.

En particular, I’area del tor (el tor s’obté girant una circumferéncia de radi r situada
al pla y = 0 amb centre el punt (R,0,0) al voltant de 'eix z; el centre de masses és el
centre de la circumferéncia) és igual a

2T R(27r) =471 R,

La féormula estatica de Meusnier. Per trobar el centre de masses d'un arc de cercle, i

poder aixi calcular 1’area d’un troc de tor, podem usar la féormula estatica de Meusnier.

49 Mémoire sur la courbure des surfaces, Mémoires de savants étrangers, Paris, 1785.
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B

Amb la notaci6 de la figura en la que AB és un arc de cercle de la circumferencia de
centre C' es compleix que

(Longitud de 'arc AB) x gC' = AB x CR

/ xds
/ ds
on (z,y) = (r cos(t),r sin(t)) és una parametritzacio de 'arc AB (r = C'A).

Com que ds = rdt tenim
/ r cos(t) rdt

on g és el centre de gravetat de 'arc AB.
En efecte, I'abscissa T de ¢ és

Tr =

g o T sin(a)
/ rdt @
Aixi, h
(Longitud de l'arc AB) x gC =12« L siz(oz) =2rsin(a)r=AB x CR. O
Calculeu 'area interior i exterior del tor. 0J

Exercici 150. Suposem que la lamina esta limitada entre la grafica de dues funcions
z = f(y), 2= g(y), amb a <y < b. La coordenada z del centre de gravetat esta donada

per
1 1 [° ) 1 b ) ) 174
e [ eavas = | (/g(y) sz ) dy = 5 [ 002 =gy = 5.

on A és 'area de la lamina i V' el volum del cos de revolucié. Recordem que el volum del
cos de revoluci6 generat per la grafica de z = f(y) és

b
Volum = 7r/ fly)*dy.

El volum del tor de revolucié val doncs

V=2nRrr®=27*Rr?
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Exercici 151. Calculem primer I'aplicaci6 de Weingarten d’una superficie de revolucio
en general. Les superficies dels apartats (a), (b) i (d) en son casos particulars. Si prenem
la parametritzacié de la corba generatriu v(u) = (a(u),0,b(u)) pel parametre arc, llavors
el vector normal de S és

v(u,v) = (= (u) cos(v), —b'(u) sin(v),a’(u))
i aleshores
W(pu) = —dv(pu) = =1, = (V' (1) cos(v),b"(u) sin(v), —a"(u))
= (k(u)d'(u) cos(v), k(u)a'(u) sin(v), k(u) b’ (u)) = k(u) o,

Wigw) = —dv(py) = =1y = (=b'(u) sin(v), =t (u) cos(v),0) =

_b’(u) —a(u) sin(v), a(u) cos(v :M
= o (o) sin(v). a(w) cos(r),0) = T o,

on k(u) és la curvatura de y(u). Per tant, la matriu de l'aplicaci6 de Weingarten W en

la base ¢, ¢, és diagonal i té com a valors propis (curvatures principals) k(u) i % En

E(u) b (u)

a(u)

son els meridians i els parallels.

Nota. Els dos elements de la diagonal de I’aplicaci6 de Weingarten representen les curva-
tures normals maxima i minima. Per a superficies de revolucié aquests extrems s’agafen
en els meridians i parallels. De manera que podem dir que els elements de la diagonal
de I'aplicaci6 de Weingarten representen les curvatures normals de meridians i parallels.
Pero la curvatura normal dels meridians coincideix amb la curvatura dels meridians, de
manera que sense fer calculs podem dir que els elements de la diagonal de I’aplicaci6 de
Weingarten son la curvatura de la corba original que gira i la curvatura normal del parallel
corresponent (b'/a amb la notacié del problema).

particular, la curvatura de Gauss és igual a K (u,v) = . Les linies de curvatura

També podriem haver calculat la matriu de ’aplicacié de Weingarten mitjancant la
multiplicacié de matrius W = I=!- II, on I denota la matriu de la primera forma fona-
mental i I la matriu de la segona forma fonamental. Aquest és un resultat de teoria que
de vegades és molt 1til ja que en general és molt més facil calcular I que dv. Si s’escriu

e f
I = ,
(f 9)
en el cas de les superficies de revolucid, amb corba generatriu parametritzada per l'arc,
resulta
e = <l/7 Souu> — a/ b// o a// b/’
f= (v, puw) =0,
g=(V,pu)=ta.
Particularitzant tot aixo als casos (a)—(d):
(a) L'esfera: ¢(u,v) = (R cos(u) cos(v), R sin(u) cos(v)), aleshores
R? cos?*(v) 0 —R cos*(v) 0 1 —+ 0
I—( 0 R2) I = 0 _R) W=I1"1= 0 _1]-
(b) El tor: p(u,v) = ((a + b cos(v)) cos(u), (a+ b cos(v)) sin(u), b sin(v)), llavors

o ((a+bcos(v))2 0) - ((a—i—bcos(v)) cos(v) 0 ) e (;b_y) 0).

0 b? 0 —b 0 =1
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(c) L’helicoide: ¢(u,v) = (u cos(v),w sin(v), au), aleshores

1:(1 - 2), p=( 0 veE) w-o| D )
0 a*+u TarT 0 (@) 0
(d) Per a la superficie parametritzada per

o(u,v) = (Vu? +a? cos(v), Vu? + a? sin(v),a log(u + vVu? + a?))
es té

1 0 —2_ 0 _—a _ 0
= — | a?+u? — 71 _ [ a®+u2
o et m= () wer= (7 )

Observem que aquesta tltima superficie també és de revolucio, la seva corba generatriu
és v(u) = (Va?+u?,alog(u + va?+wu?)) i és una catenaria (exercici 17). La

superficie de revolucié que genera es diu catenoide.
O

Exercici 152. Mirant el dibuix, on hem de suposar una y fixada (pla parallel al zz on
té lloc la rotacio) veiem que les equacions d’aquesta superficie son

z=1—(1—y"%) cos(t),
Y=Y,
z=(1—y"?) sin(t).

z

_

Dient ¢(y,t) a la parametritzacié que resulta de 'expressié anterior tenim

o = 07 (cos(t), 3575, —sin(1)),
Yt = (1 - y1/3> (Sin(t)7 07 COS(t))v
) = — e (coslt), —5 %, —sin (1),

1+ syiB
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2

Pyy = 9 9_5/3 (—cos(t),0,sin(t)),

1 .
P = =5 % (sin(t), 0, cos(t)).

Pt = (1 - y1/3) (COS(t), 07 - Sin(t))7
2 i 1

€= <90yy;V> = —§y —143,
V1+5y7Y
[= <90yt’y> =0,

1

9= (pu,v)=(1-y"?)

/1 + % y74/3
El determinant de la segona forma fonamental és, doncs, igual a eg. Ara observem
que g és sempre positiva i que e, i per tant el determinant, té el signe de —y.
Resumint, els punts on y < 0 sén elliptics, els punts on y > 0 sén hiperbolics, i els
punts on y = 0 sén parabolics, cosa que es veia, o almenys s’intuia, mirant només el

dibuix. n

Exercici 153. La métrica del tor respecte d’aquesta parametritzacio és

I:(é<a+r&aaf)‘

Busquem corbes (u,v(u)) tals que el seu vector tangent en cada punt (ug,v(ug)) formi
angle constant amb el vector tangent a les corbes (ug,v) en aquest punt. Com que aixd
ha de ser cert per a tot valor ug, traiem aquest subindex i la condici6 és

0 (o rremerr) ()

\/ (0 1) ((1) (a+rgos(g))2> (g) \/ () <é (a+rgos(%))2) (D

= cos(0).

Es a dir,
v'(a+ 17 cos(%))
L = cos(0).
V14 (V)2 (a+ 7 cos(¥))?
Que, elevant al quadrat i agrupant els termes en (v')?, queda

1

' = cot(f) ————
V' = cot( )a+7“ cos(*)

o bé
du

dU = COt(e) (1—1-7“—(;05(—“)

Integrant terme a terme

v = cot(6) / du _2r Cot(92) aretan <(a — ) tan (2“—r)> o

a+r COS(%) a—r a? —1r2

1 hem acabat.
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U
Exercici 154(a) Aquest meridia esta parametritzat per v(x) = (z,0, cosh(z)), amb 0 <
z < a. Per tant 7/(z) = (1,0,sinh(z)), ||7/(z)|| = 1/1 + sinh?(x) = cosh(z) i
r= ’ 17 (2)|| dz = /a cosh(x) dx = sinh(a).
0 0 -
Exercici 154(b) Parametritzem en polars ¢(p, a) = (p cos(a), p sin(a), cosh(p)). Aixi
p = (cos(a),sin(e), sinh(p)),

2o = (=p sin(a), p cos(a), 0),
de forma que la primera forma fonamental resulta

(cosh2 (p) O >
.[ — 2 .
0 p

L’area demanada és doncs

27
/ /pcosh ) dp da

= 27 (a sinh(a) — cosh(a) + 1) = 27 (r arcsinh(r) — V1 +r2 + 1).

Exercici 154(c) El normal en un punt de coordenades (p, «) és

= (—tanh(p) cos(«), — tanh(p) sin(«), .

1
osh(p)
En el punt p = a i a = 0, el producte escalar de v per (0,0,1) és 1/ cosh(a), de manera
que si diem 6 a ’angle que formen en aquest punt aquests dos vectors tenim

cos(6) = Coslll(a) '

OJ

Exercici 154(d) Només hem d’aplicar la formula de I’area del casquet i tenir en compte
I’apartat anterior.
1

Jir)
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O

Exercici 154(e) Tenint en compte que S és també un grafic podem aplicar les formules
de 'exercici 112 1 amb 'ajuda d’un sistema de calcul simbolic s’obtindra que la curvatura
de Gauss K en un punt de coordenades (x,y) estd donada per

sinh (/a7 + 47 )
VT (e (V)

Per tant, prenent limits quan (z,y) — (0,0) tenim que, a l'origen, K = 1.
Per altra banda, desenvolupant fins quart ordre

K —

3 2 4 4
Ap)=2m(r(r—o 4 )= (15— =+t D)) =mr? = T 4
Ara el resultat és clar. O
Exercici 154(f)
A 27 (1 L
lim E:(R)) = lim 2( ML/HT)
r—0 (’T‘) r—=0 7 B -+
2r(l+5 — %4 —1
— lim GCha i )

U

Exercici 155. Ja hem vist a l'exercici 194 que la catenoide té curvatura mitjana zero.
Considerem una corba de la forma (x(z2), 0, 2) i la fem girar al voltant de l'eix z. Obtindrem
la superficie de revolucié que es pot parametritzar per

o(z,u) = (x(2) cos(u), z(z) sin(u), z),

1 per tant

(
= (2"(2) cos(u ) 2" (z) sin(u

2'(z) sin(u), 2'(2) cos(u),0)

=( ,0),
= (—xz(2) cos(u), —x(z) sin(u),0),
E: 1+2'(2)?
F=0,
G = 2(z2)?,
Ou N py = (—x cos(u), —z sin(u), z x'),

lou Aol = 24/1 + (z')?,

v= —cos(u), —sin(u), z'),
e = —
g:

ﬁ
e
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Com que F' = 0 I'equacié de curvatura mitjana zero es redueix a

ZL‘2 x//
O=H=FEg+eG=x+/1+(2)? - —.
1+ (2')?
Per tant
1+ (o) =22
S’ha de resoldre, doncs, aquesta equacié diferencial. Es clar que admet la solucié z =

cosh(z) pero cal veure que no n’hi ha més. Considerem p = z’ com és habitual. Tindrem,
aplicant la regla de la cadena considerant x com variable,

dp dp dx dp
l+p—2—=1+p*—2— - =1+p*—a2p— =0.
P xdz +p xdx dz P xpdx

I ara aquesta equacio diferencial és facil ja que es pot escriure com

dx pdp 1 9
— = = —d(In(1 + :
T 1+p2 2 (In(1+p7))

Integrant als dos costats s’obté
AAx?=1+p?

per a una certa constant d’integracié c¢;. Desfent el canvi p = dx/dz, queda 1'equacid

diferencial
dx

— =dz.
VA2 -1 :

Integrant als dos costats s’obté

1
— In (cl(\/cfﬂ—l —l—clat)> =z + ¢y,
&1

per a una certa constant d’integracio cy. Aillant x,

1
x = — cosh(cy z + ¢3),
C1
on ¢z = ¢1 ¢3 — In(cy). Com que aixo és I'equacio de la catenaria hem acabat. ]

Exercici 156. Observem primerament que dels calculs del problema 183 es dedueix
facilment que les superficies de revoluci6 tenen aquesta propietat: les seves rectes normals
tallen I'eix de gir.

Sigui a el vector director de la recta donada. Prenent 'origen de coordenades sobre
aquesta recta, la hipotesi implica que els vectors a, ¢(u,v), v(u,v) son coplanars (v(u,v)
denota el vector normal a la superficie en el punt ¢(u,v)). Per tant, posant per simplificar
la notacié ¢ = ¢(u,v), v = v(u,v), es complira

(p,aNv) =0,

que implica
(o, a A (pu N o)) = 0.
Utilitzant la formula general a A (b A ¢) = (a,b) ¢ — (a, c) b tenim

(@, {a,0u) po — (a,u) pu) =0,

que es pot escriure com
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Pero aixo es pot interpretar com un jacobia. En efecte, és clar que coincideix amb
(@, @) (@)
(. 00u (@, @)

Per tant, pel teorema de la dependéncia funcional, existeix una funcié f d’una variable
tal que™

=0.

(v, 0) = f({a, ¥)).

Si es considera a = (0,0,1) i s’escriu ¢(u,v) = (x(u,v),y(u,v), z(u,v)), equacio

anterior diu
2®(u,v) +y*(u,0) + 2% (u,v) = f(2(u,0))
i per tant els punts (z,y, z) de la superficie compleixen
z® +y* = h(2)

per a una certa funcié h, i aquesta darrera igualtat caracteritza les superficies de revolucio.
Segon métode. (Evitant I’as del teorema de la dependéncia funcional). Suposem

que la recta és l'eix de les y's. La condicioé donada és equivalent a que existeixi una funcio
A = A(u,v) tal que

o(u,v) + AMu, v) @y (u, v) A @y(u,v) = (0, *,0).
Si ometem, per simplificar, la referéncia al punt (u,v) escriurem només
©+ Ay Ay, = (0,%,0).
De forma equivalent,
&+ ANYu 20 — Yo 2u) = 0,
24+ Mz Yo — Ty yu) = 0.
Tallem ara la superficie en qiiestié pel pla y = yo. Es a dir, fem y(u,v) = yo. Aquesta

igualtat defineix v = v(u) de tal manera que y(u,v(u)) = 0. Derivant tenim

@:yuﬁ-yvylzo,

A continuacié restringim la funcié 2? + 22 = z(u,v)? + z(u,v)?, al pla y = o, de
manera que tindrem una funcié només de u, z(u, v(u))? + z(u, v(u))?, i derivem

2

% =22 (2y + 2,V) + 22 (2 + 2, V)
u
=2z (xy + Ty _yu) + 22z (zy + 2 _yu)
Yv Yo
—z
=2z +2z
Ay Ay
= 0.
El fet que aquesta funci6 sigui constant vol dir que la superficie és de revolucié al
voltant de l'eix de les y's. El radi de gir en el pla y = yy és justament /22 + 22 . O

50Vegeu per exemple Andlisis Matematico, J. Rey Pastor, P. Pi Calleja, C. A. Trejo. En el nostre cas
és clar, ja que els vectors fila de la matriu sén el gradient de les dues funcions i funcions amb gradients
proporcionals tenen les mateixes corbes de nivell, corresponent pero a constants diferents; aquesta relacio
entre les constants és justament el paper de la funcié f que les relaciona.
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Exercici 157. Amb la notaci6 i els calculs que es fan a ’exercici 189 es veu que la
curvatura de Gauss de la superficie ¢(u,v) = (a(u) cos(v), a(u) sin(v), b(u)) no depén de
v i esta donada per

b/

K - _ (a// b/ _ CL/ b//)

a
Ara bé, en els calculs de I'exercici 189 se suposa que la corba inicial esta parametritzada
per larc, és a dir, (a/)? + (/)? = 1. Derivant, s'obté a’a” + V' 0" = 0 i aix0 permet escriure
(@', V) = u(b’,—a") per a una certa funci6 pu. D’aquesta forma la curvatura de Gauss

resulta ser .

a
K=——.
a
En el mateix exercici 189 es veu que l'element d’area esta donat per
dS = adudv

de manera que la curvatura total (integral de la curvatura de Gauss) és

/[ab]X[O%]KdS— /ZW/ w)dudo = =2 [a'(u)] = 2 ('(tr) — d/(2)).

Pero com que ((a'(t),0,0'(t)),(0,0,1)) = b'(t) = cos(a(t)) ha de ser a'(t) = sin(a(t)) i
per tant

/[ Jeios ]KdS = 27 (sin(a(ty)) — sin(a(t2)),

com voliem. O

Superficies reglades

Exercici 158(a) Observem que

ws =7 (8) +t0(s),
@ = v(s),
o = 0.

Per tant, el coeficient g de la segona forma fonamental (¢ = (v, vy)) és zero. Aixo implica
que el determinant de la segona forma fonamental és negatiu o zero (—f?) i, per tant,
K < 0. El cas K = 0 correspon, doncs, al cas f = (v, pg) = —<%,gps> = 0. Com que
tambeé (% o,) = —(v, pu) = 0, resulta que % = 0 i v és constant sobre les generatrius. [

Exercici 158(b) Escrivim v = f (o5 A ) amb f = f(s,t) =
0= = fi(ps Npr) + f (Lot N ).

Aix0 és equivalent, substituint, a

fe( (s) no(s)) + (Efo + ) (V'(s) Ao(s)) = 0.
Siv'(s)i9/(s) fossin linealment independents obtindriem f; = 0it fi+f = 0, i per tant
f =0, que és una contradicci6. Existeix, doncs, una funcio u(s) tal que v'(s) = u(s) v/'(s).
Busquem ara una corba o(s) = y(s) + t(s) v(s) tal que
0'(s) =7/(s) +t'(s) v(s) + t(s) v'(s) = A(s) v(s)
per a una certa funcio \. Com que v(s) és ortogonal a v'(s) (derivant (v(s),v(s)) = 1)

I'anterior igualtat, juntament amb v'(s) = u(s)~+/(s), implica

1+ p(s)t(s) =0,

1 T :
———. Tenim
llosApell®
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és a dir, la corba o(s) amb t(s) = —1/u(s), és tangent a les generatrius.

Observem finalment que s = 7/(s) + tv'(s), de manera que sobre els punts de o(s),

on t(s) = —1/u(s)), tenim @y = +/(s) — H(ls) v'(s) = 0. Es a dir, la superficie deixa de ser

regular sobre 'eix de regressio. O

Exercici 159. Recordem que els punts que realitzen la distancia minima entre les rectes
P+ X, Q4+ puvson X = P+auiY =@ —bvon aib estan donats per ]ﬁ =
ati+bv+c ”Z%”

Considerem la superficie ¢(s,t) = v(s) + tu(s) on s és el parametre arc de la corba
v(s), 1 @(s) és un vector unitari.

Fixem la recta r : v(0) 4+ t4(0). Denotem, per simplificar la notacio, P = ~(0) i
@ = 4(0), de manera que r : P+ t .

Calculem el punt X (s) sobre r que realitza la distancia minima entre r i 75 : y(s) +
tu(s). Per les formules anteriors

X(s)=P+ad,
on a = a(s) esta determinat per la formula
u A U(s)
Py(s) =atd+bu(s) + ¢ c—=—+,
[a A als)]

amb b = b(s), ¢ = c(s).
Les funcions a i b s6n solucions del sistema
(Py(s),d) = a+b(d,u(s)),
(P(s),u(s)) = a(d,u(s)) + b,
i aixi s’obté
sy — (P01 = (@ 7(6) (P )
1 — (i, 1(s))* '
Per tal de calcular lin(l) a(s), i obtenir aixi el punt X (0) que es demana a ’enunciat,
S—r

apliquem dos cops la regla de Bernouilli-I’'Hopital. En el primer pas s’obté

((’/(8),@ — (@, @(s)) (P(s), (s)) )
lima(s) = lim — (u, u(s)) (('( P—S

50 50 =2 (u, u(s)) (, ﬁ’(s))

Quan tornem a derivar numerador i denominador i avaluem en el punt s = 0 (cosa

- oy

que simplifica els calculs ja que (@, 7) = 1,1 (@,7’(0)) = 0, i el vector Pv(s) s’anulla en
s =0) s’obté
_ (0"0),@) = (2((0),7(0)) + ("(0), @) _ (' a’)
a(0) = Ll =
=2 (d,1"(0)) [l
on @' = u'(0), v/ = +'(0) i s’ha utilitzat el fet q ( '(s),d'(s)) + (u(s),ud"(s)) = 0,
igualtat que s’obté derivant dos cops (i(s), @(s)) =
s

Aixi Ay
X(0) =(0) = ~——-u
(o4l
Fent aquest argument per a totes les rectes de la superficie reglada obtenim ’anome-
nada corba d’estriccio, que és la corba
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Els punts de 3(s) es diuen punts centrals de la superficie reglada.

El fet important, que és el que utilitzen els llibres per estalviar-se aquest calcul llarg
amb I'Hopital que acabem de fer, (pero llavors aquesta propietat de distancia minima
queda amagada) és que

(B'(s),u'(s)) = 0.
Resumint, tota superficie reglada no cilindrica (%(s) no constant), es pot escriure com
p(s,t) = B(s) +tuls), |a(s)]| =1
per a una certa corba (3(s) tal que (5'(s),u’(s)) = 0.
En quest cas, la quantitat
_ det(B'(s), uls), u’(s))

pls) l@'(s)|?

rep el nom de parametre de distribucid, i es pot veure (exercici 160) que la curvatura de
Gauss esta donada per

e -~ (Gs)

0

Exercici 160. Es sabut (vegeu Exercici 159) que podem suposar la superficie donada
per
p(s,t) = Bs) +tuls), lu(s)ll =1, (B'(s),v/(s)) =0. (25)
Com que u/'(s) és perpendicular a §'(s) i a u(s) és clar que existeix una funcié p(s) tal
que
B'(s) Nu(s) = p(s)u'(s).

Per determinar p(s) només hem de veure que

det(B'(s), u(s),u'(s)) = (u'(s), B'(s) A ) = p(s) [|[u/(s)]”
d’on es dedueix que
det(B(s), u(s), u/(5))
p(s) = A2 :
[/ ()]
Calculem la primera i segona forma fonamental. Posem, per simplificar, u = u(s),
p = p(s), etc.

ps = [+t
¥t = U,
pss = 8"+t
Yo = U,
i = 0,

Vs Ny = Nu+tu ANu=pu +tu Au,
los A @il® = p* [/ |I* + 2 [l

1
v = (
[ \/p* + 2
dsS = ||| /p? + t? dsdt,

=0, v)= p |l

pu' +tu Au),
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P SR . U r’
EG-F (P +8) g Al (PP

Per tant la curvatura total és suposem s € [a,b])

T Kds — Bl bz N ds = —21L
- p+t23/2 §= = . ||U’|| § == ’

on L ésla longltud de la corba esferlca u(s).

Apliquem-ho a ’hiperboloide. Hem de parametritzar la superficie implicita z = z y en
la forma (25). Per a aixo observem que sempre que tallem per plans y = s = ct. tenim
z = sx que és un altra pla, i per tant la seva intersecci6 sera una recta continguda a
la superficie. Els punts d’aquesta interseccid, en funcié de s que passara de constant a
parametre, seran de la forma (¢, s, st) (hem canviat x per t) que es pot escriure com

o(s,t) =(0,s,0) +¢(1,0,s),

perd que per estar en (25) s’ha d’escriure com

t
s,t) =(0,5,0) + ———= (1,0, s).
Plsnt) = (0,,0) + e (10,9
D’aquesta manera u(s) = m (1,0,s) és unitari, (4'(s),u'(s)) =0 amb S(s) = (0, s,0),
i podem aplicar el resultat anterior.
Per tant,

b b
1
©=-2L= —2/ |/ (s)]] ds = —2/ e ds = —2 (arctan(b) — arctan(a)).
a a §

Pero podem arribar al mateix resultat integrant directament la curvatura de Gauss
(que esta calculada a I'exercici 128). En efecte, es compleix
1

G —
(1422 +y2)?

., BG—F*=1+2%+4°

1 per tant
[e'e) b 1
0=- ————— 1+ 22+ 2 ded
/oo / (a2 gy Voo T
= -2 et —2 (arctan(b) — arctan(a))
com abans.

Si volem, com diu I’enunciat, la curvatura total de tota la sella de muntar només hem
de fer a = —00,b = 00 i s’obté
©=-2m.
Recordeu que aquest valor (en valor absolut) és ’area de I'esfera coberta per 'aplicacio
de Gauss. En aquest cas doncs, mitja esfera queda coberta per I'aplicaci6 de Gauss. [

Exercici 161. Amb la notacié de I'exercici 159 hem de veure que
d(s)
0) = lim —=
p( ) sl—r>I(1J 9(3)
on d(s) és la distancia entre les rectes ¢(0,%) i ¢(s,t), i 6(s) és 'angle entre els vectors
u=u(0) i u(s).
Aprofitant la notaci6 i els calculs del problema anterior tenim que

ﬁ u/\u

Sln
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Per tant,

L) (B0 Bs), toutsy  (BO)B(s), A u(s
50 0(s) 50 sm(@(s)) s—>0 sin?(0(s))

En aplicar un primer cop I’'Hopital obtenim

I @_1, (B'(s),u Au(s)) + (B(0 ;u/\u

S0 0(s) w00 2 sm(@(s» cosw( )) 0(s)

Tornant a aplicar ’'Hopital i tenint en compte que #'(0)% = [|«/(0)||* tenim el resultat.
U

Exercici 162. Si s’escriu ¢(s,t) = (z(s,t),y(s,t), z(s,t)) veiem que

x = cos(s) + z sin(s),

y = sin(s) — z cos(s),
d’on es dedueix facilment que la superficie donada és ’hiperboloide d’un full z?+4y? — 2% =
1.

Per calcular la corba d’estriccié (exercici 159) s’ha d’escriure
(Y'(s), u'(s))
Bls) = (s) = 7 —— 57 u(s)
[/ ()]
amb
v(s) = (cos(s) + s sin(s),sin(s) — s cos(s), s)

u(s) = T (sin(s), — cos(s), 1).

Un calcul directe dona
B(s) = (cos(s), sin(s), 0).
Pero no es cert que les linies d’estriccio dels hiperboloides d'un full siguin sempre planes
com es veu a l’exercici 163. L]

Exercici 163. Observem primer de tot que la superficie que ens donen és una superficie
reglada de directriu Iellipse 222 + y? = 1 del pla 2 = 0, i generatrius de vector director
(—y,2x,4/2 ) en el punt (x,y,0) de I'ellipse. A partir d’aqui és facil veure que la superficie
és I'hiperboloide d’equacié 2 2% +y? = 1 + 22

Per calcular la corba d’estriccié posem

1 :
Bls) = (ﬁ cos(s), sin(s), 0),

1 :
u(s) = TOSZ(S) (—sin(s), V2 cos(s), vV2),

de manera que ¢(s,t) = B(s) + tu(s).
La corba d’estriccio és (exercici 159)

E(s) = B(s) —
Derivant i1 substituint obtenim

1
Bls) = 3 — cos?(s)

(B'(s), ' (s))

T

(V2 cos(s), 3 sin(s), sin(s) cos(s)),
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Corba d’estriccié no plana de 222 +y? — 22 =1

que no és una corba plana, com es veu a la figura.
[ la superficie 2 2% + y? — 22 = 1 reparametritzada a partir de E(s) és

1
3 + cos?(s)(3 — cos?(s)) (

U(s,t) = tsin(s) cos?(s) + V2 cos(s)\/3 + cos?(s) — 3tsin(s
— tV/2 cos®(s) + 3tV/2 cos(s) + 3sin(s)\/3 + cos2(s),

— 12 cos®(s) + sin(s) cos(s)\/3 + cos?(s) + 3t\/_)

O
Exercici 164(a) Localment, la parametritzacié és regular ja que els vectors
ps(s,t) = T(s) +tk(s) N(s),
pi(s,t) = T(s),
son linealment independents, per ser ¢t # 01 k # 0. U
Exercici 164(b) El vector normal val
V(s t) = L NP gy,
s A @il

Com que no depén de ¢, aquest vector i, per tant, el pla tangent séon constants al llarg de les
generatrius, i tal i com es veu a l'exercici 158, K = 0 i la superficie és desenvolupable. [

Exercici 164(c) Clarament, la matriu de la primera forma fonamental respecte la base
Ps, Pt és
I 1+t2k(s)? 1
- 1 1)

Apareix la curvatura pero no la torsio. Es a dir, que si ara repetissim els calculs canviant
J

~(s) per una corba amb la seva mateixa curvatura pero diferent torsio, la matriu de la

primera forma fonamental seria la mateixa. ]

Exercici 164(d)
pas(s, 1) = T'(s) + 1 k() N(s) + tk(s) N'(s)
= k(s) N(s) + 1K' (s) N(s) + tk(s) (=k(s) T(s) — 7(s) B(s))
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e = (v, ) =1t7(3) k(s),
f = <V7905t> = 07
g={(v,ou)=0.

Aixi, eg — f?2 = 0 i per tant K = 0. (Es una superficie desenvolupable).
La curvatura mitjana val
H— 1Eg—2Ff+Ge 17(s)
T2 EG-F2  2tk(s)

(La curvatura mitjana si que depén de la torsio). O

Exercici 164(e) Per a cada valor u € [0, 1] denotem ~*(s) 1'inica corba que té en s = 0
la mateixa referéncia de Frenet que v(s), amb v*(0) = (0), amb la mateixa curvatura
que (s), i torsi6 u7(s). Obtenim una familia uniparameétrica de corbes tal, que quan
u = 0 correspon a una corba plana i quan u = 1 correspon a la corba inicial y(s). Si
denotem per S* la desenvolupable tangencial de +*(s) tenim, per a cada u € [0, 1], una
aplicacio F*: S — S* donada per
F(p(s,1)) = ¢"(s,1),

amb

p(s,t) =(s) +17(s),

©"(s,t) =v"(s) +t(v")(s).

Es a dir, F* envia el punt de coordenades (s,t) de S al punt de coordenades (s, t) de S*.
Els coeficients de la primera forma fonamental de S* respecte ¢(s,t) coincideixen amb els
coeficients de la primera forma fonamental de S* respecte de " = F" o p. Aix0 és degut
a que en els coeficients de la primera forma fonamental de qualsevol d’questes superfi-

cies no apareix la torsi6. Per tant F'* és una isometria. En particular F° desenvolupa
isométricament la corba donada sobre el pla (localment). U

Exercici 165. Només hem de calcular la primera i segona forma fonamental. Utilitzant
les formules de Frenet tenim

ws = (1 —tk(s))T(s) —t7(s)B(s),
v = N(s),
de forma que
E=(1-tk(s)*+t7(s)?} F=0iG=1.
A més,
s Ny = (1 —tk(s)) B(s) —t7(s)T(s),
1

14

- |(1 —tk(s)) B(s) —t71(s)T(s)]| (1 —tk(s)) B(s) —t7(s)T(s)),

Pst = _k<3) T(S) - T(S) 8(3)7
—7(s)

Y e e e
o =0,
g o
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Per tant,
eg—f* —7(s)’

= EG - F? ((1—tk(s))2+t27(3)2)

5
O

Exercici 166. Només hem de calcular la primera i segona forma fonamental. Utilitzant
les formules de Frenet tenim

ps =T(s) +t7(s) N(s),
pr = B(s),
1 per tant
E=1+t7(s)* F=0iG=1.
A més,
ps Ny =t7(s) T(s) — N(s),

1
Y T T N 9T N
o =0,
g="yY,
prs = T7(s) N,
Fo —T

I aixo permet escriure
_eg— 2 —7(s)?
EG— F? (1+t27<5)2)2

U

Exercici 167(a) Sigui v(s) una corba regular de R? parametritzada per 'arc. L eiz polar
en el punt v(s) és la recta parallela a la binormal en aquest punt que passa pel centre de
curvatura. Concretament

pat) = 4(s) + pls) N(s) + 1 B(s), tER
on p(s) és el radi de curvatura. Aixi, la superficie polar és
p(s,1) =(s) + p(s) N(s) + 1 B(s).
Calculem ara I’envolupant dels plans normals. L’equacié d’aquests plans és
(T'(s),X —~(s)) =0. (26)
Derivant respecte s,
(k(s) N(s), X —~(s)) +(T(s), =T(s)) = 0.
Es a dir,
(N(s), X —~(s)) = p(s). (27)
Per tant, existeix una funci6 a(s) tal que
X —7(s) = p(s) N(s) + a(s) B(s).
Per a tota funcié a(s) aquest vector X — 7(s) compleix les equacions (26) i (27), i és

doncs la corba caracteristica per al parametre s. Aixi la superficie envolupant, uni6é de
caracteristiques, és

p(s,t) = 7(s) + p(s) N(s) + t B(s),
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i coincideix amb la superficie polar. U

Exercici 167(b) Recordem que una corba v(s) parametritzada per 'arc té contacte
d’ordre almenys m amb la superficie S donada per F(z,y,z) = 0 en un punt P = v(0) € S
si, i només si la funcioé

compleix
d"q
ds" ls=0
En el cas particular en que S és l'esfera

(z—a)’+(y—0°+(z—c) —r*=0,

la funci6 ¢(s) que hem de considerar és la funci6

a(s) = (5(5) — a)* + (y(s) — b)? + (2(s) — €)* — 1% = (07(s), O (s)) — 1%,

on y(s) = (z(s),y(s), 2(s)), O = (a,b, c).
Observem que, com que P pertany a l'esfera, ¢(0) = 0.

=0, r=1,....,m.

Contacte d’ordre almenys 1. El centre d’una esfera que té contacte d’ordre almenys 1
amb una corba, pertany al pla normal a la corba en el punt de contacte.
En efecte, com que

¢(0) = 2 (0P, (0)),

per a tenir contacte d’ordre almenys 1, O? ha de ser ortogonal a +/(0).
Podem escriure doncs
O? =pN+¢qB, (28)
on N, B son els vectors normal principal i binormal de la corba en P i p, ¢ € R. Equiva-
lentment
O=P—-pN —qB,

i per tant O pertany al pla normal a la corba en el punt de contacte.

Contacte d’ordre almenys 2. El centre d’una esfera que té contacte d’ordre almenys 2
amb una corba pertany a [’eix polar de la corba en el punt de contacte.

En efecte, en aquest cas hem de tenir ¢(0) = ¢/(0) = ¢"(0) = 0.

Com que

¢(s) = 2(0(s),7"())

tenim
(7(0),7/(0)) + 2 (OP, +"(0))
(1+ (0P, 7(0))).

NN

Per tant, ¢”(0) = 0 vol dir

(OP,"(0)) = 1.
Substituint OP per la seva expressio (28) tenim
kp=—1,
on k és la curvatura de la corba en P. Per tant,
O‘}% =—pN +¢qB,

on p = 1/k és el radi de curvatura de la corba en P.

Toc <4< > > < » Tornar



Solucions als Exercicis 243

Equivalentment,
O=P+pN —qB.
Pero [’eiz polar de la corba en P és, per definicid, la recta
X(t)=P+pN+tB, teR,
i, per tant, O pertany a l’eix polar, com voliem veure.

Contacte d’ordre almenys 3. El centre d’una esfera que té contacte d’ordre almenys 3
amb una corba en un punt P és el punt de [’eix polar de la corba en P donat per

o-pr+pn-20p
T

En efecte, en aquest cas s’ha de complir ¢(0) = ¢'(0) = ¢"(0) = ¢""(0) = 0. Com que
q"(s) = 2{(v(s) = 0,7"(s)) + 2

tenim

¢"(0) = 2(+'(0),7"(0)) + 2 (+(0) — 0,7"(0))
2(P —0,7"(0))
2( pN+qB,K(0)N+k(—kT — 71 B))
2(=pk'(0) = qk),
on 7 és la torsio de la corba en P.
Per tant, ¢"’(0) = 0 si, i només si

RO )
T T

i, per tant,
/
o—prin-20p
T

com voliem veure.
Resumint, I'esfera osculatriu d'una corba en un punt, que com hem dit és 1’esfera que
té en aquest punt contacte d’ordre almenys tres amb la corba, té centre

/
0
o—pion_"0p
T

o7 e+ (2

Esfera osculatriu

1 radi

/
PrpN-" © 5
T
B
B -
‘ » Cercle osculador
P

T
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Observem finalment que totes les esferes amb centre 'eix polar i que passen per P
tallen el pla osculador en un mateix cercle: el cercle osculador. Aquestes esferes tenen
contacte exactament 2 amb la corba en P excepte la osculatriu que té contacte almenys
3.

Esferes amb centre a 1’eix polar

Eix polar

P ¥ % Cercle osculador

Exercici 167(c) Per trobar I'eix de regressio hem d’afegir a les equacions (26) i (27)
I’equacié donada per la derivada segona:

(=k(s)T(s) = 7(s) B(s), X —~(s)) = p(s),

O

és a dir
—7(s) (B(s), X —(s)) = p'(s).

Per tant, I'eix de regressio és

/
X(5) = () + () N(s) ~ 22 ).
7(s)
Pero hem vist a apartat (b), que el terme de la dreta és el centre de 'esfera osculatriu,
per tant, 'eix de regressio és la corba formada pels centres de les esferes osculatrius.

La tangent a l'eix de regressié és tangent a la caracteristica en el punt corresponent,
perd com que en el nostre cas les caracteristiques son rectes, ja que la familia de superficies
que estem considerant és una familia de plans, aquestes rectes tangents estan contingudes
a la nostra superficie, que és aixi la desenvolupable tangencial de I’eix de regressio.

De fet, és facil veure directament que X'(s) té la direccié de B(s) i que la seva desen-
volupable tangencial és la superficie polar. O

Exercici 168. Siguin aquestes corbes v (u) = (ai(u), by (u), h) i y2(v) = (az(v), ba(v), 0).
Per a cada funcié v = v(u) podem construir la superficie reglada

U(u, z) = <(a1(u) — as(v)) % + as(v), (b (w) — b)) % + by (v), z) .

Com que V., = 0 l'anullacié o no de la curvatura de Gauss K depén només de si
s’anulla o no el coeficient f de la segona forma fonamental.
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Tenim . .
f=Wy,,v) = <(E (a} — ayv'), 5 (b — bl U’),O),V>,
on v és la normal unitaria. Les ‘primes’ a les lletres amb subindex 1 vol dir derivada
respecte u i a les lletres amb subindex 2 vol dir derivada respecte v.
Tenint en compte que
z z
v= <(b'1 — by ') 7t by v, —(a) — ayv') ” an ', *) (normalitzat)

obtenim .

v ! 1/ / /
f=— (a1 by — b as)
h
i per tant la superficie és desenvolupable si, i només si,
Y ;o
Estudiem ara el volum tancat per aquestes superficies reglades (sense saber encara si

son desenvolupables). Només hem d’integrar les arees de les figures determinades en els
plans z =¢, 0 < c¢ < h. Lacorbaenelplaz=1th,0<t<1,és (v=uov(u))

z(u) = (1 —t)as(v) + tay(u),
y(u) = (1 =) ba(v) +tbi(u),

z(u) = th.
Denotant A(t) 'area a nivell z =th
1 T
AW =5 [ o) dy(w) = y(u) dafu),
0
on hem suposat 0 < u < T (les corbes son tancades 71 (0) = v1(7)).

Tenim
w(u) dy(u) — y(u) do(u) = (x(u) y'(u) — y(u) 2'(v)) du
= (1—1)*(ag by — ayby) v + (1 —t)t (ax b} — by a))
+ (1 —t)t(ay by — by ab) v + 12 (a1 b, — by a})

El primer sumand integrat respecte de u és (1 —t)? per l'area tancada per s i el quart
sumand integrat respecte de u és t? per I’area tancada per ;. No depenen, doncs, de la
funci6 v = v(u) i no intervenen en el problema de maximitzar el volum. Integrant per
parts es veu que el tercer i quart sumands coincideixen de manera que el problema de

maximitzar el volum (el coeficients en ¢ no juguen tampoc cap paper) es redueix a trobar
una funcié v = v(u) que maximitzi la integral

[ (@ato)0) = ba(o) )
Per les equacions d’Euler Lagrange®' obtenim
ay(v) by (u) — b(v) ay(u) = 0.

51Gi, donada una funcié de tres variables L = L(u,z,y), es vol trobar una funcié h : R — R que
minimitzi la integral

b
/ L(u, h(u), b’ (u)) du,

a (o) _on
du \oy) Oz’

En el nostre cas L(u, z,y) = as(x) b (u) — ba(z) a} (u) (en particular les derivades respecte y son zero).

només s’ha de resoldre ’equaci6
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Equacié que defineix implicitament v = v(u). Aquesta és la condicié buscada que coinci-
deix amb K = 0 com voliem.

Nota: Un cas especialment facil és a;(u) = cos(u), bi(u) = sin(u), ag(v) = cos(v),
by(v) = sin(v). La condici6 és

ay by — by ah, = —sin(u) cos(v) 4 cos(u) sin(v) = sin(v — u) = 0,

és a dir u = v com era d’esperar (cilindre circular recte). (El cas v = u + 7, que és el con
amb vertex (0,0,1/2), 22 + y* = (1 — 22)? és un minim). O
Exercici 169. Calculem la segona forma fonamental de la superficie reglada.

Pulu, t) = u(u, vo) + tpun(u, vo),

Ui, ) = @u(u, vo),

Yir(u,t) =0,

Yur(u, 1) = puy(u, o).

El fet que f =0, en el punt (u,vy), comporta

Puv = F%Q Py T+ F%2 2%

i, per tant, 7(u,t) = v(u,vg), on & és la normal de la superficie reglada i v la normal a la
superficie inicial. Aixi

f(u’t) = <wut<u7t)7 I;(Uﬂ t)) = <g0m,(u,vo), V(U,UO)> = f(u,l)()) =0.

Com que 1y (u,t) = 0 també es té g = 0 i, per tant,

_ 2
K= < —0
_F2

& o,
[BHESY

i la superficie reglada és desenvolupable.
L’aresta de retrocés es caracteritza com els punts singulars de 7, on la superficie deixa
de ser regular. Es compleix

wu(% t) A ¢(u7 t) = (1 + tF%Q(“? UO)) QPU(U7 UO) A va(ua UO)u

que s’anulla per a t = —1/T'{,. Per tant el punt de I'aresta de retrocés és
1
p(u,v0) = s Pulu, vo)-
’ F%Q(u? UO) ‘

Ara només cal recordar el valor del simbol de Christoffel i de la curvatura geodésica de
les linies coordenades en coordenades principals, que vindran donats per

Fl — ﬂ k 1 — _ E’U
27 55 M 2 EVG
Denotant per e, el vector unitari en la direcci6 principal ¢, el punt de ’aresta de retrocés
és

1
¢(u,vo) — m ea(u, vo),
que és el que voliem veure. [l

Exercici 170. Es veu a l'exercici 194 que 'helicoide recte té curvatura mitjana zero. El
reciproc és el teorema de Catalan. Sabem que tota superficie reglada es pot escriure com

p(s,t) = v(s) + to(s)
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amb (7/(s),v'(s)) = 0. Per tant

ps =17+t
¥t =1,
pss =" + 10",
Yot =V,
o = 0,

de manera que amb la notacié habitual per als coeficients de la primera i segona forma
fonamental tenim

E={y)+80 ), F={v), G=1,

1
e = —— e —
H(Ps/\@tH "905/\901?"

los Apell = VEG — F2 = /{7, v) + 2 (v/,v') — (7, v)2,

<'y"+tv",'y'/\v+tv’/\v), f <’Ul,’7,/\U>a g:07

i com que
Ho l1Eg—2F f+Ge
2 EG-F?
la condicié de curvatura mitjana zero és
2F f =e.

Quan es substitueixen els valors de e, f, F' en aquesta expressié apareix un polinomi de
grau 2 en t, amb coeficients funcions de s, igual a zero. Per tant els seus coeficients son
zero i s’obté

2(7,v) (V7 Ay = (", Av), (29)
WA AU+ (0 Ay =0, (30)
(W' v Av)=0. (31)

A partir d’aqui es distingeixen dos casos.

Primer cas: v(s) = ¢, amb ¢ un vector constant. Podem tragar una corba sobre
la superficie que talli ortogonalment les generatrius. Només hem de posar J(s) =
v(s) + t(s) ¢ 1 determinar la funcio ¢(s) per tal que
(F,ey={(v+tcrc)=0.
Deduim d’aqui que (s) = y(s) — (v, ¢) c.

Llavors la superficie es pot parametritzar per

P(s,t) =F(s) +tc

amb (7, ¢) = 0. Es clar que aquesta és la mateixa superficie anterior ja que ¢ varia
a R. Tenim la relacio @(s,t — (y,¢)) = ¢(s, t).

Amb aquesta parametritzacio 'equacio (29) diu directament que (y",7 Ac) =0 i
per tant o bé ¢ = A" + pu+” (cosa que porta a contradiccié multiplicant per c), o
bé v = A+'. En aquest segon cas ja es veu, per la formula de la curvatura, que la
curvatura de 7 és zero i per tant és una recta. Aixo, juntament amb el fet que v(s)
sigui constant, diu que la superficie donada és un pla.

Segon cas: v'(s) # 0. Si v/(s) # 0 en un punt, és diferent de zero en un entorn i és
en aquest entorn que es treballa. En aquest cas reparametritzem v(s), que és una
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corba sobre l'esfera S?, de manera que quedi parametritzada per 'arc, és a dir,
|v'(s)]| = 1. En particular, 0 = (v',v)" = (v",v) + 1. Aixi, per I’equaci6 (31) tenim

V" = Ao+ p
amb A = A(s), u = p(s). Per tant
W) =—-1=\
Wy =0=np
i aleshores v = —v. Aixo permet demostrar facilment que la corba v(s) és una
circumferéncia. En efecte, com que s és el parametre arc de v(s) tenim
k=" = l—vl =1,
B det(v’, U”, U/”)
- _
[[/]
ja que v = —v".

Fent un moviment, que afecta a tota la superficie, perd no al resultat que estem
buscant, es pot escriure

v(s) = (cos(s),sin(s),0).
Substituint aquest valor a 'equacio (30) i posant v(s) = (x(s),y(s), z(s)) s’obté
2"(s) = 0, 1 en conseqiiéncia z(s) = as+ b, amb a i b constants. Substituint aquest
valor a I'equacio (29) s’obté

2 (2" cos(s) +y sin(s)) = —a" sin(s) + y" cos(s). (32)
I la igualtat (7/,v") = 0 donara
—a' sin(s) +y' cos(s) = 0, (33)
que derivant és
—z" sin(s) — 2’ cos(s) + y" cos(s) — y sin(s) = 0. (34)

Sumant (32) i (34) s’obté
z' cos(s) +y' sin(s) =0

que, juntament amb (33), implica 2’ = 3’ = 0, i per tant y(s) = (¢1,¢,as + b)
amb c1, ¢ constants. Fent una translaci6 podem suposar ¢; = co = b =0, y(s) =
(0,0,as) i

o(s,t) = (0,0,as) + t(cos(s),sin(s),0)

com voliem veure.””

0

Exercici 171. Calculem la segona forma fonamental d’aquesta superficie reglada. En
primer lloc calculem

ps(s,t) =7'(s) +tY'(s),
Pi(s,t) =Y (s),

Psi(s,t) =Y'(s),

(s, 1) =0.

52E] raonament segueix el treball de fi de Grau de Jose Fabrizio Pineda, Geometria de superficies
manimales, Universdad de la Laguna, 2019.
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Per tant, denotant per v la normal a la superficie reglada, amb I’abtis de notacié habitual
v(s,t) = v(p(s, t))

Per tant eg — f2 =01 K = 0.
Aquest resultat demostra 'existéncia de desenvolupables osculadores, técnica que,cal
remarcar, s’utilitza per al transport parallel, vegeu l'exercici 224. 0J

Corbes sobre superficies

Exercici 172. Donada una corba ~y(t) considerem una reparametritzacié seva per l'arc.
Es a dir, denotem per s el parametre arc de 7(t), determinat llevat de signe i transla-
cio, 1 definim 7(s) = y(t(s)) on t = t(s) és el difeomorfisme que relaciona aquests dos
parametres. Per definicio, la curvatura geodeésica de () en el punt de parametre ¢ és la
curvatura geodésica de 4(s) en el punt de parametre s = s(t). Aixi doncs
24 2
k(1) = Ru(s) = (T ) = (LD
Denotem v = v(s) el vector normal a la superficie en el punt ~y(s)
Per la regla de la cadena®

kn(t) — <M7V> — <i (dl t') 7,/>

ds? ds \ dt
d27 N2 d’}/ 7 d27 N2
=(—=1(t —t = (—=(t
(Tt () + Lt v) = (2 () v)
d?~y

(N2
= (P (L)
Observem com aquesta formula posa de manifest un resultat que ja sabiem: si es
canvia s per —s la curvatura normal no varia.
Estudiem ara la curvatura geodésica.

kylt) = Fo(s) = (E1 () 0 Ty

Aplicant la regla de la cadena

(A ) D))

d*y(t(s)) dy(t(s)) d (dy dvy
ko (t) = (=22 ARy 2 (2} A 2y
=2 VN =G\ a ) vt
Py 0 Ay, dvy ,
Py dy

= (t')? <ﬁ’ v A E>'

Observem que, un altre cop, aquesta formula posa de manifest un resultat ja conegut:
st es canuvia S per —s la curvatura geodesica canvia de signe.

S3Bscriurem L (t(s)) = L (t(s)) &L = L1, ja que t = ¢(s) i se sobreentén que la derivada de y respecte

ds
t és una funcié de t.
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Resumint, si 7(t) no estd necessariament parametritzada per l'arc i t' = dt/ds, on s
és el parametre arc, les formules sén

d?~

2
kn:<t,) <dt2’y>7
Py dy
(43 -
b= O (2200 D),

U
Exercici 173. Sigui (U, ) una parametritzacio de Sy i y(s) = ¢(u(s),v(s)) una corba

sobre S parametritzada per I'arc. Llavors tenim
V(s) = pu + 0 0,
amb ¢, = ¢, (u(s),v(s)), etc. Per tant,

d
7"(8) = (W ou 0/ 00) = u pu +0" o + (W)? Pu + 20V Qo + (V)%
=u" oy + 0" oy + (W) (] 0w + T3 @0 + €v)
+ 20V (T 0 + Th oo + f1) + () Toa 0u + T 00 +9v)  (35)
= (u" 4+ T (W) + 2T u'v' 4 Ty (v')?) u
+ (0" 4+ T3 (W) + 2T, 0/ v' + T3, (V')*) @0
+e@)+2fu'v +g0))v
amb T = T'F(u(s), v(s)), etc.
Escriurem doncs

V'(s) = Apu+ B, +Cv, (36)
amb
A=u"+T7, (W) + 20 u' v + Ty (V)2
B=v"+ F%l (u’)2 +2 F%2 u'v' + 1%2 (U,)Q,
¢ = H(.7).
Per tant,

k, = det(v,y',7") = det(v, v’ u, B @,) + det(v,v" ¢, Apy)
= (u' B —v" A) det(v, pu, )
—VEG - F2 (/' B—v'A).
Com que aquesta expressio només depén de les coordenades de la corba i de la primera
forma fonamental, i la corba f(7y(s)) té les mateixes coordenades respecte f o ¢ que 7(s)

respecte ¢ i els coeficients de la primera forma fonamental respecte f oy i ¢ coincideixen,
k4 és invariant per isometries. U]

Exercici 174. Aclarim primer la notacié. Si posem v = vy, k;1 = ky1(u) és la curvatura
geodesica de la corba ¢(u,v), 1 els termes E, G, E, de la dreta de la igualtat estan
valorats en el punt (u, vg). Analogament, si u = ug, kg = kg2(v) és la curvatura geodésica
de la corba ¢(ug,v) i els termes F, G, G, de la dreta de la igualtat estan valorats en el
punt (ug, v).

Com que les corbes ¢(ug,v) i ¢(u,vg) no estan parametritzades per 'arc, utilitzarem
les formules de I'exercici 172 per calcular la seva curvatura geodeésica.

En aquest exercici es veu que la curvatura geodésica d’'una corba 7(t) esta donada per

/ "
1]

g 9
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pero a 'exercici 173 es calcula el numerador d’aquesta expressio i s’obté
VEG—F? (W B—vA)
kg = pTE , (37)
171l
on A, B son els que s’han utilitzat en el mateix exercici 173.
Aplicant aquesta formula a la corba ¢(u, v) (que compleix dones v/ =1, v = 0, i per

tant B =I'}; = —£%) tenim

VEG B E

(fonEo@) ™°

Aplicada ara a la corba ¢(ug,v) (que compleix doncs v/ = 0, v = 11 per tant A =
I}, = —£4) tenim

VEG (- _ G,
(o 1>E<§(5) 0) o

Exercici 175. Si interpretem la curvatura normal com el valor de la segona forma
fonamental sobre el vector tangent (unitari) a la corba:

() = —{(d) () Ty L) (), (5))

g2

O

I IO ()l
! "(),7'(s)) = _ voy)(s)," (s
= —W«mv)( ). (s)) MOl ((vo)(s),7"(s))
(v 14/ son perpendiculars). O

Exercici 176. Tenint en compte que les direccions principals son perpendiculars i prenent
l'origen per a mesurar els angles en una qualsevol d’elles, la curvatura normal &, (0) es

calcula amb
kn(0) = ki cos*(0) + ky sin®(6),

on ki, ko son les curvatures principals. Aleshores

/7T k. (0) do = /ﬂ(kl cos?(0) + ko sin®(0)) df

:/ (k1+k2 + b~k cos(29)> do
; 2 2

kAt ke -
2
Si s’escull qualsevol altre direccié com origen dels angles, I'nic canvi és una translacio
de 6 que no modifica els resultats. U

Exercici 177. La parametritzacio del cilindre determina una isometria local entre el pla
euclidia (u,v,0) i la superficie, ja que els vectors tangents son:

Pu = (07 0, 1)7
Yy = (—sin(v), cos(v), 0).
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Com que les isometries locals conserven la curvatura geodeésica, les de les corbes v i
coincideixen. Perd la curvatura geodésica de la corba 7 (en el pla z = 0 de R?) sera igual
a la seva curvatura.

Segon métode. (Calcul directe). Suposem 7 parametritzada per I'arc. Com que
B'(t) = (=" sin(v), v cos(v),u’),
B" = (—(v")? cos(v) — v" sin(v), —(v')? sin(v) + v" cos(v),u”),

v = (—cos(v), —sin(v), 0),

tenim . .
S, UN
k:g — </B H;/||3’Y> — u/ v// _ UI u// — k’y7
ja que la curvatura de vy es determina per 'equaci6 (u”,v") = k, (—v,u’). O

Exercici 178. Recordem que la curvatura geodésica d'una corba v(s) sobre una superficie
S, en un punt P = 7(0), coincideix, llevat del signe, amb la curvatura de la corba que
s’obté en projectar y(s) ortogonalment sobre el pla tangent a S en P. Per tant la curvatura
geodeésica és la curvatura del cercle superior que té radi a, i.e. k, = 1/a.

Noteu que la corba d’aquest exercici és la mateixa que es considera a l’exercici 113.

0

Exercici 179. Sigui 7(s) una parametritzacié per 'arc de C'. Sabem que la curvatura
normal en una direcci6 donada es calcula aplicant la segona forma fonamental al vector
unitari en aquesta direccié. Denotem T'(s) = +/(s), llavors

dy;
ds
on N = N(s) és la normal principal de 7(s) i a; és angle entre N i la normal a la
superficie v;.

Observem que

)\i:]]i(T,T):—( JT) = (v, kv) =k cos(ey), i=1,2,

020[2_0517

ja que les tres normals NV, v, 15 estan en un mateix pla, concretament en el pla rectificant

de v(s).
Un calcul directe diu que

sin?(#) = cos?(ay) + cos*(ay) — 2 cos(ay) cos(az) cos(f).
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Per tant,
k? sin®(0) = k* cos®(ay) + k? cos?(ag) — 2 k* cos(ay) cos(ay) cos(f)
= A2 £ A2 —2 ) Ay cos(d).
U

Exercici 180(a) Son linies de curvatura les corbes que tenen com a vector tangent un
vector propi de dv en cada punt. La condici6 de I'enunciat diu exactament aixo (Olinde).
O

Exercici 180(b) Sigui v(s) una parametritzacio per 'arc de C'i vy, v, els vectors normals
a 51 1 5y respectivament. Si calculem la derivada del producte escalar dels normals al
llarg de C' (calculem el cosinus de I’angle entre les superficies) es té

%@1(7(5)), va(7(5))) = {d(7'(s), v2(7(s))) + (1(7(s)), dra(¥ (s)))

= (v1(7(s)), dra(v'(5)))
ja que el primer sumand és 0 donat que /(s) és tangent a les dues superficies i si C' és
linia de curvatura en S; es compleix

dvi(+/(s)) = A(s)7'(s).
Aix{ també és clar que, quan C' també és linia de curvatura en Ss, (v1(7(s)), dva(v'(s)))
també és 0 (val la mateixa observacio) i ’angle entre els vectors normals a les superficies
és constant.
Reciprocament, si l’angle entre les superficies és constant i diferent de 0 (les superficies
tenen vectors normals diferents), 'expressio anterior dira que dis(7/(s)) és perpendicular
a v1. Pero com que els vectors v; son unitaris també es compleix

(dva(v/(s)), v2(7(s))) = 0,

de forma que dvs(7/(s)) 1 v/(s) son dos vectors perpendiculars a vy i v5 al mateix temps.
Com que la dimensi6 és 3, aixo només pot passar si dva(7/(s)) és un multiple de 7/(s) (que
se suposa que és un vector no nul ja que parametritzem per 'arc) i, per tant, v(s) també
és una linia de curvatura en S,. Es clar que si les superficies son tangents al llarg de C
(els vectors normals coincideixen sobre la corba) no s’ha de demostrar res. U

Exercici 181. Tenint en compte que, respecte aquesta parametritzacio, es té:
Yy = (—v sin(u),v cos(u), c),

©p = (cos(u),sin(u), 0),

SEY
1

= (—v cos(u), —v sin(u),0),

= (—sin(u), cos(u),0),

= (0,0,0),

v (—c sin(u), ¢ cos(u), —v),

= (0 1)
Ve2+02 \1 0/

W B . <0 C2iv2>
VeZ+02 \1 0 )
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Es pot plantejar 'equacié que han de complir les linies de curvatura com

2 2
v’ —u'v

¢ 2 2 _
Vzmar D B
que correspon a
0+ (o) =0
i, aillant, a

U/

Ve + ot
S’obté, doncs, que una corba de la forma v(s) = ¢(u(s), v(s)) sera linia de curvatura si, i
nomeés si

u =+

v = ¢ sinh(+u + ct.) = £c sinh(u + ct.)
Es pot arribar al mateix resultat si es té en compte que, en cada punt de la superficie,

: : . 0 =1
els vectors propis de W son els mateixos que els de la matriu M = < 1 826”2) Com
1

que els valors propis de M son Tz 65 clar que els vectors propis de la forma (v, v")
d’aquesta matriu seran els que compleixin

1
w4+ ——=1v"=0.

Ve + o2
I aquesta és la mateixa equacié que abans. 0
Exercici 182(a) Les derivades de primer i segon ordre de ¢ son:
0o = (1 —u?+0%2uv,2u),
0o = uv, 1+ u* — v —2v),
Ouw = (—2u,2v,2),
Cuw = (2v,2,0),
Oow = (2u, —2v, —2).
Amb uns quants calculs (facils) es veu que
2(1 0
I = (1+u2—|—112) (0 1) :
Tampoc costa massa calcular

1
V_1+u2+122

2 0
)

—2u,2v.1 —u? —v?
(—2u,2v,

i, aleshores,

O
Exercici 182(b) A partir dels calculs anteriors és immediat obtenir
2 1
-——
(I+u2+02)° \0 —1
que té traca nulla i, per tant, la curvatura mitjana de la superficie és 0. O

Exercici 182(c) Les curvatures principals son £2/ (1 + u2 + v2) i les linies de curvatura
seran les linies coordenades ja que l'expressio de W ja és diagonal i, per tant, el seus
vectors propis son @, i ¢,. U

Toc <4< > > < » Tornar


https://ggbm.at/pH7jYde9

Solucions als Exercicis 255

Exercici 183. Per a una superficie de revolucié amb aquesta parametritzacio els calculs
donen (tenint en compte que el parametre u és el parametre arc de la corba )

0y = (a'(u) cos(v),a'(u) sin(v),b'(u)),
vy = (—a(u) sin(v), a(u) cos(v),0),
v = (=b'(u) cos(v), =t (u) sin(v),a’(u)).

De forma que

vy = (=0"(u) cos(v), =b"(u) sin(v),a"(u)),

vy = ('(u) sin(v), —b'(u) cos(v),0).
Sense haver de fer cap calcul es veu de forma immediata que I'expressié de v, també es
pot escriure com
b'(u)
alu) Pu
mentre que, si tenim en compte que el vector normal (al pla) de la corba 7y és (=b'(u), a’(u))
i la curvatura es pot obtenir, doncs, de la igualtat (a”(u),b"(u)) = k(u) (=0 (u),d'(u)) de
forma que a”(u) = —k(u) b’ (u), b"(u) = k(u) a’(u), 'expressio de v, sera equivalent a

P () B ()
e TR Gy e Ty P

vy = —

Aquestes dues expressions mostren que ¢, i @, son els vectors propis de W i que els
valors propis corresponents (curvatures principals) son k10 (u)/a(u). En resum, les linies
de curvatura son les corbes coordenades i les linies de curvatura séon les corresponents a
u = ct., v = ct.

Nota: Naturalment, calculant W com I~!II s’arriba al mateix resultat (o a alguna
expressio equivalent). També queda demostrat, sense fer més calculs ni simplificacions,

@’(u)
a(u)

de les dues curvatures principals). O

que la curvatura de Gauss de la superficie sera K = — (corresponent al producte

Exercici 184. Suposem coordenades principals ¢(u,v) sobre una superficie S. En par-
ticular les linies coordenades son ortogonals (F' = 0) i Lo g tangent a la superficie

Oudv
(f = 0). Considerem la superficie focal S}

P(u,v) = p(u,v) + p1(u,v) v(u,v).
(Canviant p; per p, obtenim l'altra superficie focal, i el raonament seria el mateix).
Aleshores es té

Y= ou+ (p1) v+ p1 (=k1gu) = (p1) v,
Yy = (1 — %) o+ (p1)o V.

Per tant, el pla tangent en qualsevol punt ¢ (u,v) de la superficie focal S; esta generat

E
Fixem un punt P = ¢(ug,vg) de S i considg{;n el corresponent punt M = 1 (uqg, v)
a la superficie focal S;. Per M passen les dues corbes que volem veure que tenen, a M,
direccions conjugades.
Aquestes corbes son

Fl (U) =
FQ(U) =

per ¢, i v. I la normal 14, a S és, doncs, 1y =

(u,vo) (,O(U,UO) +p1(U,Uo) V(U7UO)>

(uo, v) = p(ug, v) + p1(ug, v) v(ug, v).

< <
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Per tant
d
@|u:uopl(u) = w'u(an UO)?
d
%’v:vor2<v) = ¢U<U0, Uo).

Denotant II;, W, respectivament la segona forma fonamental i I’endomorfisme de Wein-
garten de Sy tenim (a (ug, vy))

I (v, ) = (Wi(), 1) = (—din(0), 60) = ——=(—dipu (1), 1) = — (v ) = 0.

- VE vVE
Per tant, si p| # 0, II (¢, 1,) = 0.

També es pot veure aquest resultat sense fer cap calcul. En efecte, el pla tangent a S;
en M és M + (p,(ug,v))t. Conté doncs la recta PM.

El pla tangent a S; en els punts de T'y és T'y(v) + (pu(ug,v))t. Contenen doncs les
rectes normals a la superficie en els punts p(ug, v). Clarament aquestes rectes s’acosten,
quan t — 0, a la normal PM.

Aquest argument es formalitza aixi: La intersecci6é dels plans tangents a S; al llarg
de I'y(v) amb el pla tangent a Sy en M és una recta de direccid ¢, (ug, vo) A pu(ug, v) Pel
mateix argument que en el problema 126 el limit quan ¢ — 0 d’aquest vector normalitzat
té la direccié de v, que és el vector tangent en M de I';.

Més explicitament, per Taylor,

(g, v) = @u(uo, vo) + v Yuw (g, vo) + - -
d’on
Y, Vo) A (g, v) = vy (ug, Vo) A Puy(to, vo) + - -

En dividir per la norma el coeficient v se simplifica i tenim

lim Puto, Vo) A Pulto,v)  @ultig, Vo) A Puv(tio, Vo) '

1240 [l@u(uo, vo) A pulto, V)|l [|u(uo, vo) A @uv(uo, vo)]]
Com que, per tractar-se de coordenades principals, la derivada segona creuada no té
component normal (f = 0), el limit anterior és igual a la normal v a la superficie en el
punt de coordenades (ug, vp). O

Exercici 185. Siguin x, y, 2 les coordenades rectangulars d’un punt de la superficie, i u,
v, w els cosinus directors de la normal en aquest punt.
Les coordenades X, Y, Z d’'un punt qualsevol de la normal seran

X=x4+Au, Y=y+Av, Z=z+\w.
Expressem que hi ha un moviment que fa que el punt (XY, Z) descrigui una corba amb

tangent la normal a la superficie (teorema de Monge).
dlz+Au) dy+Av) d(z+Aw)

u (% w

dr+Adu dy+Adv  dz+ Adw

Eliminant els dA

U v w
Eliminant A tenim el resultat.

Quan z = z(xz,y) les funcions u, v, w sé6n

u=—p/V1+p+¢,
v=—q/V1+p*+ ¢,
w=1/v/1+p*+ ¢,
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1 per tant
(1+p* + ¢*)*Pdu = —dp (1 + ¢*) + pq dg,
(1+p* + ¢*)*Pdv = —dq (1 + p*) + pq dp,
(14> + ¢»)3dw = —pdp — qdq.
Per tant ’equacié de Darboux s’escriu
dz —dp(1+¢°)+pgdg —p
dy —dq(1+p*)+pgdp —q| =0,
dz —pdp — qdq 1
que desenvolupant dona
—dxdq+ dydp+ dz (qdp — pdq) = 0.

Substituint dz = pdx+qdy, dp = r dr+sdy, dqg = s dr+t dy obtenim I'equacio diferencial
tipica de les linies de curvatura

dy?>  —dvdy dz?
1+p*> pqg 1+¢|=0.
T S t

U

Exercici 186. Conseqiiéncia quasi directa d’Olinde. Sabem que al llarg d'una linia de
curvatura (s) es compleix

v
3_8 = —k’}//(8>,
on k = k(s) és la curvatura normal en la direccié +'(s).
L’angle entre el pla osculador i el pla tangent és ’angle entre els seus vectors normals:
el binormal a la corba B i el normal a la superficie v.

Derivant el producte escalar tenim
(B,v) =(B",v)+(B,V) =(B,v) — (B,kT) = (B',v) = 7 (N,v) =0,

on T'=1+/(s) i N és el normal principal a la corba.
Ara bé, sabem que per ser la corba no asimptotica en cap punt, es compleix (v, N) # 0
i per tant 7 = 01 la corba és plana. U

Exercici 187. Que les linies de curvatura tenen aquesta propietat és el Teorema d’Olinde
Rodrigues.

Reciprocament, si v/(s) = A(s)v/(s), el vector 7/(s) és un vector propi de I’endomor-
fisme de Weigarten. Sera doncs +/(s) multiple de e; o ey (directions principals). Si és
multiple de ey el valor propi és k; ja que vectors propis proporcionals tenen el mateix
valor propi. Per tant, A = k;. Analogament si 7/(s) és multiple de es. U]

Exercici 188.
Primer métode. Sigui 7(s) una linia de curvatura d’una certa superficie S. Suposem-la
parametritzada per l'arc i denotem v(s) la restriccio a 7(s) del vector normal a S.

La superficie engendrada per les normals de qué ens parla ’enunciat és

p(s,t) = (s) +tv(s).

Recordem que, tal com va dir Olinde,

& = hal)7(5),
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on ky,(s) és la curvatura principal en la direccié principal +'(s).
Aixi
ps =7'(s) +11/(5) = (L= kat)7'(s),
pr = V.
Observem que la relacié entre la curvatura de ~(s), k(s), i la curvatura principal k,(s) és
kn(s) = k cos(0), on 0 és 'angle entre la normal a la superficie i la normal principal de
(s).
Per tant,
U(s,t) =(s) Av(s)
és el vector normal a la nova superficie i depén només de s. Es doncs constant al llarg
de les generatrius. Aixo ja demostra que aquesta superficie és desenvolupable: és reglada
amb el mateix pla tangent sobre les generatrius. Vegeu la definici6 i algunes propietats
de les superficies reglades a ’exercici 158.

No obstant, podem trobar explicitament la linia de regressio, que es pot designar com
la linia que desenvolupa, ja que és una corba dins la superficie tal que les seves tangents
coincideixen amb les generatrius de la superficie reglada.

En efecte, aquesta corba ha de ser de la forma

o(s) = ¥(s) + t(s) 1(s)

i tal, que

0'(s) =7'(s) +1'(s) v(s) +t(s) V'(s) = (1 = kn(s) (5)) 7' (s) + t'(s) ()
tingui la direcci6 de v(s). Es a dir, ha de ser 1 —k,(s) t(s) = 0, que equival a t(s) = p,(s),
on py,(s) és el radi de curvatura principal (p = p,, cos(6)).
Si la linia de curvatura és també geodésica (la normal a la corba i la normal a la
superficie coincideixen) llavors la linia de regressio és justament ’evoluta d’aquesta linia.

Segon métode. La linia de regressio és la linia caracteristica de la familia uniparamétrica
de plans tangents. Recordem que, en general, donada una corba sobre una superficie tenim
la familia uniparamétrica de plans tangents a la superficie en el punts de la corba. La
“caracteristica” d’aquesta familia (que s’obté resolent els sistema de tres equacions format
per l'equaci6 de la familia uniparameética i les seves derivades primera i segona respecte
del parametre) és la que s’anomena “linia de regressio” i és tal que les seves tangents son
les rectes que s’obtenen com a interseccié de plans consecutius.
La familia uniparameétrica de plans tangents a la superficie de Monge és

((z =~(s)),v(s)) =0,

Derivada primera:

ja que (v/(5),7(s)) = 0.

A més, V'(s) =~"(s) Av(s)+v'(s) AV (s) = k(s) N(s) Av(s) = k+/(s), de manera que
de les dues equacions anteriors deduim que (z — y(s)) és ortogonal a V(s) i a 7/(s), per
tant, ha de ser z — y(s) = A(s) v(s), per a una certa funcio A(s).

Derivada segona (derivem ((z — 7(s)), k(s) 7' (s))):

—k(s) + K'(s) {(z = 7(5)):7'(5)) + k(s)* {(z = 7(s)), N(s)) = 0,
on N(s) és el vector normal principal de 7(s). Pero el terme del mig de la suma és zero,

de manera que tenim

—k(s) + A(s) k(s)? cos(f) =0,
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és a dir, A(s) = pn(s), com ja sabiem.

Comentari. Les linies de curvatura estan caracteritzades pel fet que normals en punts
consecutius es tallen. Aquesta afirmacié que es pot trobar en els treballs classics vol dir
el segiient (recordeu que dues rectes de I’espai en general no es tallen). Fixem una recta
r 1 una familia uniparameétrica de rectes s(t) amb s(0) = r. Direm que r = s(0) talla la
recta consecutiva si existeix un punt P € r tal que per tot pla II que contingui r el punt
P(t) = IINs(t) compleix que 15% P(t)=P.

Per exemple, si prenem com r l'eix z i com rectes s(t) les normals a la superficie
z = 32% +y? al llarg d’una corba (t,y(t), 3t* + y(t)?), rectes que s’escriuen com

s(t) : (t,y(t), 31> +y(t)*) + X (=61, —2y(t),1),

i les tallem amb un pla arbitrari que contingui l’eix x, y = px, obtenim

t—y(t)
3t t)? oL AUV
+y(t)” + 6t = 2y(t))
de manera que, per I’Hopital,
o
lim P(t) = (0,0, =Y

20 6 2y/(0)

i aquest quocient no depén de p, i per tant del pla, si i només si ¢'(0) = 0, cas en qué el

limit val 1/6 (sera el valor del radi de curvatura principal en (0,0,0)). Hi ha una segona
direcci6 principal donada per corbes amb vector tangent a lorigen (0, 1,0), que no es té
en compte quan es parametritza per x. U

Exercici 189. Sabem, per I'exercici 149 que les superficies de evoluci6 estan donades per
o(u,v) = (a(u) cos(v),a(u) sin(v),b(u)) on x = a(u), z = b(u) és una corba del pla zz
que gira al voltant de 'eix z. Suposem que aquesta corba esta parametritzada per I'arc,
és a dir, (a')*+ (0')? = 1. Per alleugerir la notacié no s’explicita que a i b sén funcions de
u. Aleshores

= (a’ cos(v),a’ sin(v), '),

@, = (—a sin(v),a cos(v),0),
E—1,
F=0,
G =d*,
Ouu = (a” cos(v),a” sin(v),b"),
Yuw = (—a’ sin(v),a’ cos(v),0),
Yoo = (—a cos(v), —a sin(v), 0),
v = (= cos(v), —b" sin(v),d),
e = (puu,V) = —a"b + a1V,
f = {puv) =0,
9= (Pu,v) =al’

L’equaci6 de les linies de curvatura sera

(,U/>2 —U/U/ (U/)2 (U/)2 _U/ U/ (u/)2
E F G|=|F 0 G |=0.
e f g e 0 g
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Per tant les solucions seran u'v' = 0, és a dir, u = ct. (els parallels) i també v = ct. (els
meridians). O

Exercici 190.
Primer metode (Darbouz a Legons).

Les linies de curvatura es caracteritzen pel fet que si les agafem com linies coordenades
llavors F' = f = 0. La segona condici6 s’escriu dient que les coordenades cartesianes
(x,y, z) dels punts de la superficie compleixen 'equaci6 diferencial (det(¢y, @u, Puw) = 0)

020 00 00
auﬁv_A8u+Bﬁv’ (38)
on A i B son certes funcions. Es a dir, cadascuna de les components de ¢ és una solucio
d’aquesta EDP.
La primera condicié F = 0 és pot reduir ara a dir que 2% + y? + 22 també és solucio
de 'EDP anterior. En efecte,
P4y +2*) 0 Ox dy 0z

= (27— +2y =24+ 2z
ou Ov au( x8v+ yc%+ Z@v)

0%x Lo 0%y Lo 0%z
ou Ov y@u ov Z@u ov

2 2 2 2 2 2
2 (g o)+ A O(z* + y* + 2%) B O(z® +y* + 2%)
ou ov

amb ¢(u,v) = (z(u,v),y(u,v), z(u,v)). Per tant F = 0 si, i només si, 22 + y? + 22 també
és soluci6é de ’EDP anterior.
Estudiem ara les inversions. Aquestes venen donades per (z,y, 2) — (X, Y, Z) amb

K%z K%y K2z

X=—" Y= J=—"—.
$2+y2+22’ I2+y2+227 :E2+y2+22
Les quatre solucions de (38), x,v, 2, % + y* + 2%, es transformen per la inversi6 en X,
Y, Z, X? +Y? + Z? i aillant tenim

= 2 (Pu, pv) + 22

K?X K?Y K?Z
xr = = z =
X2_|_Y2_|_Z2’y X2+Y2_|_ZQ’ X2+Y2+Z2’
K4
2 2 2
Tty +z X21vey2?

Posem

=% + Y2+ 2%
de manera que, quan 0 = XY, Z, 1, tenim les quatre solucions de (38).
Si substituim aquesta expressio de 6 a (38) obtindrem una equaci6é del mateix tipus
per a o, concretament

2
7o =4 0o + By 8—07

Ou v ou ov

per a certes funcions A, B;. Sabem que aquesta equacié admet les solucions X, Y, Z.
Com que (38) admet la solucié § = 1, també admetra la solucié 0 = X2 + Y2 + Z2. Per

tant la superficie corresponent al lloc geométric de (X,Y, Z) té u, v com parametres de

les seves linies de curvatura. Com voliem demostrar.

Segon metode.
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Considerem la primera superficie parametritzada en coordenades principals. Tindrem
o(u,v) = (x(u,v),y(u,v), z(u,v)) amb F' = f = 0. Per més comoditat denotem
o = Lu = Pu ey Pu N\ Py
vVE el [ A @ulll

que és una base ortonormal de I’espai. La inversio transforma la superficie ¢ en la super-
ficie ¢ donada per

N 1
()OICLQO, a = —.
(p, )

Ara s’ha de veure que F' = f = 0. Fent els calculs

Pu = Ay P + APy,

Po = Gy P + Ay,

N =aa,o @, —aa, oA, +a*p, A, (normalitzat),
a, = —2a*(p, pu),

ay = —2a” (p, ),

2 a, a,
Qypy =

—2a? (0, Puv)-

a
Per tant (tenint en compte que F' = 0)

~ 1
F:auava+aau<§07@v>+aav<@u’¢> =0.

Calculem ara f.

f: <SbuvaN>
= Ay @ + Qy Do+ Ay Py + AP, AU P A Py — Ay © N Py + a2 Py A Py)

(falta dividir pel modul del segon terme pero no afecta el raonament ja que només volem
veure que f = 0). Aixi (recordem que, per ser f = 0, tenim (Qyy, Pu A @) = 0)

f =07 au (0,00 A @) + 004 0y (Pu, 0 N 01) — Ay ay Py, 0 A Pu)
+ 0% 4y (Puvs P A o) — 0% @y (Puvs @ A Pu)
= (a* ayy — 20 ay a,) det(p, u, ©y)
+ a? ay, det(p, Py, Puy) — a* a, det(©, Pu, Puy)-
Posem ¢ = Ae; + Bey + C ez de manera que (tornem a usar f = 0)
det(, pus 00) = VEG C,
det(, v, pun) = T, VEG C,
det(p, pu, pur) =TT, VEG C.
Per tant f s’anulla si, i només si,
(a® @y — 2aay,a,) —a*a, '}y — a*a, T2, = 0. (39)

I observem també que a,, es pot escriure com

2 a, ay,
typ = —— =20 (¢, Tz pu + Ty 00)
2 ay, Ay
T4 2a% T, (@, pu) — 20° T35 (0, 00)
_ 2aya,

1 2
= + 'y ay +1'15 ay,
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que és exactament la igualtat (39) que es buscava. 0
Exercici 191. Només cal recordar la definicié

I (v,v) = I(W(v),v) = <—Z—Z,v> =0,
on dv/ds vol dir restringir el camp normal a la superficie v sobre una corba integral v(s)
de v i derivar. I v(y(s)) és justament la imatge esférica de la corba. O

Exercici 192(a) Com que v té el seu recorregut sobre S és clar que

(ron),T)y=0.
Derivant respecte el parametre arc de ~
0=((roy),T) ={woy).T)+{(reor).T).

Per hipotesi, el primer terme de la suma és 0 (0 = k,(T) = —((dv)(T),T) = II(T,T))
ien el segon 77 = kN (cal tenir en compte que si s’esta parlant del vector binormal és
necessari que el triedre de Frenet estigui definit i, per tant, que k # 0) de forma que la
igualtat diu que 7" 1 N soén perpendiculars a v sobre la corba ~. Per tant és clar que
B i v son iguals (excepte un signe que depén de 'orientacié que s’hagi considerat a la
superficie).

Noteu que aquest resultat també es pot enunciar dient que el pla osculador de v coin-
cideix amb el pla tangent de la superficie i que, en realitat, el resultat és una equivaléncia.

O

Exercici 192(b) Ja s’ha fet servir que II(7T,T) = 0 i aquesta igualtat és una de les formes
possibles d’expressar la hipotesi sobre la corba ~.

Per a calcular II(N,T) es pot tenir en compte que (considerant el parametre arc de
la corba)

IH(N,T) = —(N, (dv)(T)) = —(N, (v 0 7))

(tenint en compte que N és perpendicular a v)

— (N, (v 07))
(recordant les formules de Frenet i utilitzant la curvatura k i la torsié 7 de la corba)

=(—kT —71B,vovy)
(s’ha vist a 'apartat anterior que v oy = B)

=(-kT—-7B,B) =—r.

O

Exercici 192(c) Les expressions (matrius) de la primera i segona forma fonamentals de
la superficie (en els punts de la corba) prenent com a base de I'espai tangent el parell T

N seran
10 0 -7
=(o1) 1=(% 7).

de forma que la matriu de ’endomorfisme de Weingarten sera també
W — ( 0 —7')
—T %

K =det(W) = —72.

i la curvatura de Gauss
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O
Exercici 193. Calculem la segona forma fonamental.
1 1 1 1 1
= (g conl) = 5. sin), e sn) + o cosi. ),
1 a 1 a 1 a 1 a 1
0y = (—§e cos(b) — 3¢ sin(b), —5¢ sin(b) + 5 ¢ cos(b), 2)7
1
v =—— (—cos(b), —sin(b), e?),
S (—cos), —sin(t). ")
1 1
Ouw = (—= € sin(b), = e cos(b),0),
1 1 )
Pup = (—5 ea COS(b), - = ea Sll’l(b), 0)7
1
oy = (5 e® sin(b), —= e cos(b),0)
€ = <90uuay> _O’
1, 1
= ’U/U’I/ =3¢ T 5
f <§0 > 2 m
g = <90m)7 V> =0

El fet que e = 0 comporta que les linies coordenades v = ct. sén asimptotiques. En
efecte, el vector tangent a aquestes corbes té coordenades (1, 0) respecte de la base (@, ¢.)
de manera que si diem e; a aquest vector tenim

(er,en) = (1 0) (; g) (é)—e—o.

Analogament, el fet que g = 0 té com a conseqiiéncia que les linies coordenades u = ct.
son asimptotiques. En efecte, el vector tangent a aquestes corbes té coordenades (0, 1)
respecte de la base (¢4, ¢,) de manera que si diem ey a aquest vector tenim

ey, e0) = (0 1) (; g) <(1)>:g20.

Per calcular la torsio de la linia v = 0 hem de calcular ¢, Es facil veure que aquesta
derivada tercera la podem escriure com
S %gpw — ieu/Q (cos(u/2),sin(u/2),0).
També simplifica els calculs observar que
Py = Puyu + % (e¥/? cos(u/2),e"? sin(u/2), 1).
Llavors

T(u) = Pl gt
|pu A uall t+e
Per altra banda la primera forma fonamental val

1w 1 _1
_]:<2€ j‘4 . 41)
1 5€ 1

_det(II(u,0)) —f? B 1 o,
K(w,0) = 3w ~ Ten(l+en)  (I+ew2 ().

de manera que
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O

Exercici 194(a) En primer lloc, observem que podem parametritzar la catenoide mit-
jancant
o(u,v) = (cosh(u) cos(v), cosh(u) sin(v),u),

de manera que

lou x @0l = cosh?(u),

1 lavors

_ (cosh®(u) 0 (-1 0 1. [ —sech®(u) 0
I_( 0 cosh2(u)>’ H_<O 1)’ W=1"1= 0 sech?(u) )’

amb la qual cosa

K(u,v) = —sech*(u), H(u,v)=0.
D’altra banda, com que la matriu de W és diagonal, les linies coordenades sén de curva-
tura, i com que I/ també és diagonal, com abans, les linies asimptotiques son u 4+ v = ct.
Observem que al problema 151 la catenaria es parametritza per

x(u) = vVa?+u?,
z(u) = a log(u+ Va? +u? ).

Veiem que aquesta té la mateixa imatge que x = a cosh(Z —log(a)). En efecte, la segona
_a2e—z/a+ez/a

5 1 per tant

equaci6 imposa a? 4+ u? = (e¥/* — u)?, és a dir, u =

z/a ,—1 —z/a
r=vVaetue =2 (" a 2+ e a) = a cosh (E - log(a)).
a

O

Exercici 194(b) Utilitzant la mateixa parametritzacio que a I'exercici 117, recordem que

I — 1 ) 0 2) I — _0 Vi W = _O N '
0 a“+u ’ Wau? 0 ’ m 0
Per tant, les curvatures principals verifiquen k1 = —ky = %= i les curvatures de Gauss

. o . (12+U2
1 mitjana son
—a?
(a® + u?)?
Observem que II(A,B) = 0 si, i només si, AB = 0, per tant ¢, i ¢, determinen les
direccions asimptotiques i en conseqiiéncia les linies asimptotiques séon les corbes coorde-
nades. D’altra banda, les direccions principals venen donades pels vectors de coordenades
(£va? + u?,1) en la base ¢,, ,. Aixi una corba @(u(t),v(t)) és una linia de curvatura
si, 1 només si, (v, ") || (£vVa? + w2, 1), o equivalentment,
+1

Va2 +u?
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la qual cosa implica que les linies de curvatura sén

v =-ct. + du = ct. £ log(u + Va? + u?
| v sl Vet

Exercici 194(c) Recordem que una parametritzacio de la tractriu era
t — (sin(t), cos(t) + log(tan(t/2))),
per tant, una parametritzacié de la pseudoesfera s’obté posant
o(u,v) = <sin(u) cos(v), sin(u) sin(v), cos(u) + log(tan(g))>.

Calculant, obtenim

IV:]1H:<_ﬁ$m w&@)’

i per tant

de manera que

= -1 H(u,v) = cot(u) — tan(u).
Com que la matriu de W en la base ¢, ¢, és diagonal tenim que les corbes coordenades
son linies de curvatura. Finalment, les direccions asimptotiques A ¢, + B ¢, verifiquen
B = +A sin(u) i per tant les linies asimptotiques s’obtenen integrant I’equacié diferencial
corresponent

u' = v sin(u)

i per tant son les corbes donades per

v = log(tan(u/2)).
U

Exercici 194(d) Per estudiar la superficie z = 2 cos(y) aprofitem els calculs fets per a
superfices donades com grafics de funcions a l'exercici 112 i com que h(z,y) = 2 cos(y)
compleix h, =0, h, = —2 sin(y) obtenim directament

[ (1 0 ) I 1 (0 0 )
0 1+4sin’(y))”’ 1+4sin®(y) \0 —2cos(y))’

i per a 'endomorfisme de Weingarten

B 1 0 0
(1+4sin’(y))3/2 \0 —2sin(y) )
Per tant,
—2 sin(y)
H = . K =0
(1 + 4sin?(y))3/2
Com que la matriu de W esta diagonalitzada les linies de curvatura son les linies coor-
denades. Com que la parametritzacio és ¢(x,y) = (x,y,2 cos(y)) les linies de curvatura
son les © = ct., iles y = ct. Es a dir, les corbes v, (t) = (a,y(t), 2 cos(y(t))) amb a constant
i y(t) una funcié arbitraria; i v2(t) = (z(t), ¢,2 cos(c)), amb ¢ constant i z(¢) una funcié
arbitraria. Observeu que son les rectes que passen per (0, ¢, 2 cos(c)) amb vector director
(1,0,0).
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Per calcular les linies asimptotiques calculem les direccions asimptotiques i integrem.
Les direccions asimptotiques estan donades pels vectors v tals que II(v,v) = 0 i en el
nostre cas aixo implica v = (v1,0). Per tant les linies asimptotiques de coordenades
(x(t),y(t)) compleixen y'(t) = 0, és a dir, sén les y = ct. (que eren també linies de
curvatura). Aixo passa degut a que una de les curvatures principals és zero (la indicatriu
de Dupin degenera). O

Exercici 195. Els calculs de 155, fets alla per al cas de curvatura mitjana H = 0, valen
practicament igual per al cas H = ct. donant lloc a que les superficies de revoluci6 de
curvatura mitjana H = ct., donades per rotacié de la corba (h(z),0, z) al voltant de 'eix
z, han de complir '’equaci6 diferencial
1 h//

h(l+ (W)2)1/2 - (14 (R)2)3/2

Recordem que 'expressio de H en termes dels coeficients de la primera i segona formes
fonamentals (2), quan F' = 0 que és el nostre cas, és

1/g e
H=- (— n —) .
2\G FE
L’equaci6 anterior es pot escriure com

“hI (L4 (W)?)
L+ (WPpr

2H =

2Hh =

que, multiplicant per h’, dona
—hh" + (1+ (R)?)

2HRKW =1
T+ Wpre

que també sera

1 per tant
h
BrP= et (40)

V14 (W)?
Aquesta és, doncs, 'equacio diferencial que caracteritza les superficies de revolucio de
curvatura mitjana H constant.

Estudiem ara la trajectoria del focus d'una ellipse quan aquesta gira sense lliscar per
sobre d’una recta que podem suposar que és I’eix de les = que ja ha aparegut a I’exercici 21.
Podem suposar que la trajectoria de F} que estem buscant és una corba de la forma
(xz,y(z)) de manera que si denotem per s el seu parametre arc, aquesta trajectoria sera

una corba 3(s) = (z(s),y(z(s)) amb ds/dx = /1 + (/).

Toc <4< > > < » Tornar



Solucions als Exercicis 267

P P Py

Aixi, denotant a(s) 'angle entre 5'(s) i la horitzontal tenim

(6(s), (1,0)) = 2'(s) = cos(a(s)).

Utilitzarem també el fet de que el moviment de ’ellipse és, infinitessimalment, un gir
respecte el punt de contacte que es manifesta en la condicio (f'(s), Fl(s)P(sb = 0 com
s’explica a 'exercici 21, on Fj(s) denota la posicié del focus per al valor s del parametre
i P(s) el punt de contacte també per a aquest valor de s.

Per la propietat de la tangent a l’ellipse, tenint en compte que ( és perpendicular a
F1 P, i amb la notacié de la figura

LF\PP, = LF,PPy, =7/2 — a,
tots aquest punts i angles funcions de s.
Per tant,
y = [[F1P]| cos(a),
Yo = || F2P]| cos(a).
Utilitzant ara la propietat pedal de 'ellipse, facil de demostrar analiticament, que diu

que el producte de distancies dels focus a una tangent arbitraria és constant i igual a b,
essent b I’eix menor de l'el'lipse, tenim

Yy = b?
i per tant (||F1P|| + ||F1P|| = 2a)
b d
Yy+y=y+— =2a cos(a) :2a—x,
Y ds
i aixi,
d 2
O:y2—2ay—x+b2:y2—i b
ds 1+ (y')?
Posant H = 1/(2a) aquesta equaci6 coincideix amb (40) com voliem veure. O

Exercici 196. La superficie de revolucio esta donada per la parametritzacio
o(t,u) = ((2 + cos(t)) cos(u),2 sin(t), (2 4 cos(t)) sin(u)).
Per tant,
¢ = (—sin(t) cos(u), 2 cos(t), —sin(t) sinu),
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0y = (—(2 + cos(t)) sin(u), 0, (2 + cos(t)) cos(u)),
E = 4 cos?(t) + sin®(t),
F =0,
G = (2 + cos(t))?,
L 1
V4 cos?(t) + sin’(t)
i = (—cos(t) cos(u), —2 sin(t), — cos(t) sin(u)),

(2 cos(t) cos(u),sin(t), 2 cos(t) sin(u)),

Y = (sin(t) sin(u), 0, —sin(t) cos(u)),
Yuuw = (—(2 + cos(t)) cos(u),0,—(2 + cos(t)) sin(u)),
2

e= —\/—F,
f=0
(2 +cos(t)) cos(t)
9= JE .
L’equaci6 de les linies de curvatura és
(u/)Q —ut (t/)z
E 0 G |=tu(Fg—eG)=0,
e 0 g

pero és facil veure, substituint els valors que acabem de calcular, que (E'g —eG) = 0 si,
i nomeés si, 3 cos®(t) = 4 + cos(t), igualtat que no es pot donar mai, de manera que les
linies de curvatura son les linies coordenades t = ct. i u = ct.
Les linies asimptotiques estan caracteritzades per tenir un vector tangent V = (t',u')
tal que II(V,V) = 0. Com que f = 0, aquesta condici6 s’escriu com e (')? + g (u')* = 0.
Considerem les linies de curvatura ¢ = ct., i mirem si sén també asimptotiques. La
condici6 de ser asimptotica és ara gu’? = 0, és a dir,

1
———= (24 cos(t)) cos(t) =0,
T (2 cos(t) cos(t
que implica cos(t) = 0 i, per tant, t = 7/2,37/2. Es a dir, les corbes ¢(£7/2,u) =
(2 £ sin(u),0,2 cos(u)) som a la vegada asimptotiques i linies de curvatura.
Les linies de curvatura u = ct. no séon asimptotiques ja que ara la condici6 és e (t')* = 0,
i com que e = \/% aquesta condicié no es pot donar.
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0
Exercici 197. Considerem la parametritzacio ¢(x,y) = (z,y,xy). Tenim
P = (17 Oa y>7
Py = (07 L, (ﬂ),
E=1+y
F=uy,
G=1+2?
1
V=—FT—— (_y7 _x7 1)7
/1 —|—[L’2 +y2
Prx = (07 07 0)7
Py = (07 07 1)a
pry = (07 07 0)7
= O’
1
R —
V142242
g=20.

Els vectors tangents a corbes asimptotiques tenen coordenades (2'(s),y/(s)) respecte
de la base (¢4, ¢,) tals que

(' y)(? g) <Z>:=2ffy’=0-

Com que f # 0, les corbes asimptotiques son les corbes coordenades x = ct., y = ct.
L’equaci6 diferencial de les linies de curvatura és
() =2y (@)
L+y? vy 14+2° = f(1+y) (@) - f(1+2%)(y)*=0.
0 f 0
Com que f # 0, les linies de curvatura han de complir

x/ /

_ Y
Vits®  1+y2

Integrant obtenim arcsin(z) = arcsin(y) + ¢, és a dir

x =1y cosh(c) + /1 + y? sinh(c).
O
Exercici 198. Mantindrem la parametritzacié de la catenoide donada a l’exercici 194
(cosh(u) cos(v), cosh(u) sin(v), u)
i modificarem lleugerament la parametritzacié de 1'helicoide donada a I’exercici 92 prenent
(sinh(u) cos(v), sinh(u) sin(v),v)

(s’ha canviat la u de 'exercici 92 per sinh(u), que no és cap restriccio).
Definim la familia uniparamétrica de superficies S; parametritzades per

Wy (u,v) = cos(t) (cosh(u) cos(v), cosh(u) sin(v), u)
+ sin(¢) (sinh(u) cos(v), sinh(u) sin(v),v)

Toc <4< > > < » Tornar



Solucions als Exercicis 270

amb t € [0,7/2]. Aixi Uo(u,v) és la catenoide i U, jo(u, v) I'helicoide. Es facil veure que la
primera forma fonamental de cadascuna d’aquestes infinites superficies respecte la carta
U, (u,v) no depeén de t i esta donada per

= (COSIE;(U) COSI?Q(U)) '

En particular, per a tot t € [0,7/2], 'aplicacio F; : Sy — S; determinada per la
condicié Fy(Vo(u,v)) = Vy(u,v) és una isometria.

Es veu a 'exercici 194 que en aquestes coordenades les linies de curvatura de la cate-
noide estan donades per u = ct. i v = ct. i les linies asimptotiques per u = +v + ct.

També es veu en el mateix exercici que les linies asimptotiques de I’helicoide estan
donades per u = ct. i v = ct. (el canvi de u per sinh(u) no afecta a questa igualtat) i les
linies de curvatura per u = sinh(+v — ¢) que, com que hem canviat u per sinh(u), esdevé
u = v + ct. com voliem veure. O]

Exercici 199. L’equaci6 diferencial de les linies asimptotiques de la superficie reglada
o(s,1) =(s) +tu(s)
és
e(s?+2fst +g(t') =0,

perd com que es compleix g = 0 (exercici 158) aquesta equaci6 es redueix a

es’ +2ft' =0,
que es pot escriure com
dt 2
*_ _?f — A(s) + B(s)t + C(s)
ja que
1
e={y"(s)+tv", (y +tv) Av) ,
(v +tv) Ao
1
f={,yAv) .
(v +tv) Ao

I aix0 és una equacié de Ricatti, que com és ben sabut, compleix que tres solucions en
donen una quarta imposant

t(s) — t1(s) ts(s) — t1(s)
t(s) — ta(s) ts(s) — ta(s)
Com que t(s) representa la distancia sobre la generatriu hem acabat. O

= ct.

Exercici 200. Denotem 1 )

€1 = Pu, €2 = Lo
VE VG
de manera que (eq, s, ) on v és la normal unitaria a la superficie és una base ortonormal.
Observem que, si denotem per s; i sy respectivament els parametres arc de les corbes

coordenades v = ct. i u = ct.,

d61 d62
kg = <d_81’62>’ kg1 = —<d—82,€1>>
ja que en general k, = (7", v A7) i en el nostre cas v Ae; = ez 1 v A ey = —e;.
Per la definicié de 6, posant T'(s) = 7/(s), tenim
T(s) = cos(0(s)) e1(s) + sin(0(s)) ea(s). (41)
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Aplicant la regla de la cadena

de; du @ dv @ d_u ds; de; d_v dss de;

- 2= - = — — ) 42
ds ds du + ds dv ds du ds; + ds dv dss (42)
Per definicié de parametre arc aplicat a ¢(u,ct.) i ¢(ct.,v) es compleix
s _ g g
du dv
I per una altra banda, com que T'(s) = v’ ¢, + v' ¢, = cos(f) e; + sin(f) ez, tenim
d d
\/Ed—z = cos(6), @d—z = sin(6).
Substituint a (42) resulta
de; de;
— = 0) — 0) —.
s cos(f) " + sin(6) a5
Derivant (41) i denotant w = —sin(f) e; + cos(#) ea = v A v es té
dr  df d d
R + cos(6) <cos(9) d_z + sin(6) d_Z)
d d
+ sin(6) <cos(9) d—: + sin(#) d_Z)
Per tant,
dr
kg = <E? w)
do d d
= =+ cos’(0) <d—2, w) + sin(8) cos(6) <d—2, w)
+ sin(6) cos(8) <Z—:, w) + sin2(6) <Z—Z, w)
do
=7 + cos®(0) kg1 + sin(0) cos®(0) kyo + sin?(0) cos(8) kg1 + sin®(0) kyo
= kg1 cos(0) + kya sin(6) + ¢,
com voliem. U

Exercici 201. Tenint en compte que la parametritzacié ve donada per
x =1 cos(u) sin(v),
y = r sin(u) sin(v),
z =1 cos(v)
la condicié y = z s’escriura en funci6 de (u,v) com
r sin(u) sin(v) = r cos(v)

de forma que es podra prendre
1

tan(v) = sin(u)

i, per tant,
v = arctan(1/sin(u)).
L’equacié que hauria de complir una geodésica de 'esfera si es suposa que la parame-
tritzacio és del tipus v = v(u) sera de la forma
u” + F%l (UI)Q +2 Fb u' v+ F%2 (U,)Q
v+ T3 (W) + 2T, u' v + I3, (V)3

)

0
0,
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(on cal tenir en compte que, si el parametre respecte al que es deriva és u, v’ = 1, v’ = 0).
Prenent els valors dels Ffj en funcié de les variables, les equacions que s’han de complir

seran
2 cot(v)v =0,
— cos(v) sin(v) = 0.

"
(%

Clarament, aquestes equacions no es verifiquen si v = arctan(1/sin(u)). O

Exercici 202. Per tal de condensar la notacio, escrivim y(s) = (u1(s), uz(s)) per designar
una corba qualsevol en la superficie (referida a una parametritzaci6 donada que no cal
especificar). Recordem que si reparametritzem la corba ~ respecte un parametre nou
t = t(s) es poden relacionar les derivades respecte els dos parametres amb

du;  du; dt
ds — dt ds’
Pu;  dPuy (At du; dPt
ds? — di? (%) dt ds®

Utilitzant aquests convenis, les equacions que ha de complir una corba v(s) per tal de
ser una geodésica s’escriuran com

d*uy , du; du,
R
ds ds ds
(amb ¢,4,7 = 1,2). Si es fa un canvi de parametritzacio, aquestes equacions es convertei-

Xen en
duy (dt) | due d?t i du; duy (dt\* _ 0
i \ds) T i Ugt dt \ds

que es poden reescriure com

Pup g dug dug\ (A dug Pt
dt? Yodt dt ds dt ds?

i es pot deixar com una expressi6 del tipus

Loy sy dd gy due
dt? Jodt dt dt
per a una certa funci6 f (que queda determinada pel canvi de parametres).
Aquesta condici6 necessaria també és suficient ja que si es té una corba ~(t) que
compleix la condici6 i es considera un canvi de parametres t = ¢(s) per al que
d?*t dt

@jtf(t)%:o

es podra assegurar que la reparametritzacio per s de la corba v és una geodésica. (Amb
una mica de paciéncia es pot veure com la corba de l'esfera donada per la interseccio
amb el pla y = z, que es pot parametritzar per ¢ = arctan(1/sin(6)), és una geodési-
ca quan es considera la parametritzacié adequada sense haver de fer explicita aquesta
parametritzaci6).”” O

54Si un punt es mou sobre una superficie, sense forces externes, aquest punt segueix una geodésica. En
efecte, per la llei de Newton
y Av4uT
m— = A\v

at? a

on () és la trajectoria del punt, T la tangent unitaria en aquesta direccio, i v la normal a la superficie.
Les funcions A, p sén coeficients de fregament, i tenim fregament degut a la superficie i per tant en la
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Exercici 203(a) Per a la parametritzacié de 'helicoide que s’ha donat:
pu = (cos(v),sin(v), 0),

vy = (—u sin(v), u cos(v), 1),

v = ———— (sin(v), — cos(v), u).

V14 u?

De forma que per a les derivades segones es té:

Puu = (07 07 0)7
-1

w = (—sin(v), cos(v), 0), oy V) = —,
P = (—sin@).cos). 0, fpunr) =
Yop = (—u cos(v), —u sin(v),0), (Y, V) = 0.

D’aquestes igualtats surt, sense més calculs,
0= F%l = F%l = 1%2: F%z = —u.
I si es té en compte que
1 U _ U
Puw + N V=TT e (—u sin(v), u cos(v),1) = T

s’obtenen els coeficients que falten

u
1+ u?

Aquests calculs serveixen per dir que una corba y(s) = ¢(u(s),v(s)) sera geodésica
quan es compleixin les igualtats

1—%2:07 1?2:

U//+2

O

Exercici 203(b) Quan v = ct. es té v' = 0 i, per tant, la segona equacio es verifica de
forma automatica mentre que la primera es redueix a «” = 0 i1'tinica restriccié que imposa,
és que el parametre u ha de ser una funci6 lineal de la variable s (les rectes v = ct., que
son obviament geodésiques, s’ha de parametritzar linealment respecte el parametre). [

Exercici 203(c) Tenint en compte que la primera forma fonamental de I’helicoide (res-
1 0

0 1+ u?
corba qualsevol v(s) = (u(s),v(s)) (parametritzada per I’arc), que té com a vector tan-
gent 7/(s) = u' p, + v @y, 1 les corbes v = ct., que tenen com a vector tangent ¢,, tindra
com a cosinus el valor «’. Si I’angle és constant es complira u” = 0 i aleshores, mirant la
primera equaci6 de les geodésiques, la corba v només podra ser geodésica en el cas que
u = 0 (leix vertical) o quan v' = 0 (les mateixes rectes v = ct.).

pecte la parametritzacié que s’esta considerant) és I = ( ), I’angle entre una

direcci6é normal a aquesta i un altra fregament oposat al lliscament de la particula i per tant oposat al
seu desplagament. Escrivim la derivada segona en termes del parametre arc s de y(¢), concretament,

dy _ds . (ds\"dT
a2 d? dt ds”

Substituim aquest valor a I’equacio anterior i multipliquem el resultat escalarment per 7' A v, de manera
que tindrem un zero a la dreta, i obtenim (N, T A v) = 0 que implica N = v i la corba és geodeésica.
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Nota final: Si us fixeu en el tipus d’equacions que determinen les geodésiques de 1’he-
licoide, no resulta trivial establir parametritzacions explicites d’aquestes corbes. Un dels
primers resultats de la consulta geodesic lines helicoid a Google porta a ’article “The
Geodesic Lines on the Helicoid”, de S. E. Rasor (Annals of Mathematics, Second Series,
Vol. 11, No. 2 (Jan., 1910), pp. 77-85) on es pot veure com aquestes parametritzacions
no soéon gens facils d’obtenir. O

Exercici 204(a) Només cal tenir en compte que una corba és geodésica d’'una superficie
si, 1 només si el seu vector normal coincideix amb la direccié del vector normal de la
superficie. Amb aquesta caracteritzacidé és clar que, si dues superficies comparteixen
la direcci6 normal al llarg de la corba en ser tangents, la condici6 de geodésica sera
simultania. (El calcul del vector normal a la corba no té cap relacié amb la superficie que

la conté). O
Exercici 204(b)
Sigui s el parametre arc de . La superficie parametritzada per O

p(s,t) =(s) + 1 B(s)
té I'espai tangent generat per
o, =T+tB' =T+ttt N
=B

de forma que el seu vector normal, que en general sera el determinat
per la direccio
ps Npr=—N+t7T,

sera, quan t = 0, parallel al vector normal a la corba N.

Exercici 204(c) Es marca una linia recta al llarg de la cinta i s’enganxa, sense arrugar,
aquesta cinta a la superficie al llarg d’aquesta linia. Com que en la cinta no s’ha modificat
la métrica (sense arrugar!!!l!), la linia marcada és una geodésica en les dues superficies ja
que en aquesta operacio les dues superficies son tangents. O

Exercici 205(a)

(=) Per ser C una geodésica tenim que la curvatura geodésica de C' és nulla. D’altra
banda, per ser linia asimptotica la curvatura normal de C' és també nulla. Per tant la
curvatura de C' com a corba de R? és zero. I ja sabem que una corba regular amb curvatura
zero esta continguda en una recta de R3.

(<=) Reciprocament, si C' esta continguda a una recta de R? la seva curvatura com
a corba de R? és nulla. De la igualtat k = |/k2 + k2 en deduim que k, = k; = 0 i aix0

ens diu respectivament que C' és una linia asimptotica i una geodésica. U

Exercici 205(b) Els vectors tangents a les linies de curvatura sén els vectors propis de
I'aplicacio de Weiergarten, és a dir, donada una parametritzacio y(t), es compleix que
—dv(+'(t)) és maltiple de 4/(t). Sigui v(¢) una parametritzaci6 per 'arc de C'. Per ser
v(t) una geodésica sabem que v’(t) = Av(y(t)). Si A = 0 la corba és una recta i en
particular és plana. Si A # 0, tenim N = v sobre y(t) i

(=dv(v'(1)), B(t)) = <—%V(7(t))a B(t)) = (v(y(1)), T(O)N(2)) = 7(t).

Per tant, si és linia de curvatura (el terme de l'esquerra s’anulla) la torsio és zero i la
corba és plana. Si, reciprocament, la corba és plana, llavors —dr(4/(t)) és ortogonal a
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B(t), pero, com que és tangent a la superficie, també és ortogonal a N = v i per tant té
la direcci6 de ~/(t), i.e. és una direcci6é principal i v és linia de curvatura. U]

Exercici 205(c) En una superficie de revolucio6 les linies de curvatura son els meridians i
parallels (veieu els calcul a lexercici 151) pero els paraliels (que sén sempre circumferén-
cies) només son geodeésiques si la tangent a la corba que gira per a generar la superficie,
en el punt que determina el parallel donat, és parallela a 1’eix de rotaci6. En concret,
tots els parallels d'una esfera son linies de curvatura planes que no séon geodésiques, fora
del que correspon a l’equador. (]

Exercici 206. El fet que les geodésiques siguin planes implica que sén linies de curvatura.
L anica possibilitat que aixo passi és que totes les curvatures normals siguin iguals (hi ha
una geodésica tangent a cada vector tangent a la superficie i, per tant, tots els vectors son
vectors propis de W). En particular tots els punts de S son umbilicals i per I'exercici 122
hem acabat. [l

Exercici 207. El punt central és que les geodésiques estan caracteritzades per la igualtat
de normals en cada punt N = v essent N la normal principal de la geodésica i v la
normal a la superficie. Com que la normal al con és constant al llarg de la generatriu,
la generatriu que passa pel punt P interseccié d’aquesta generatriu amb la geodésica que
estem considerant, esta tota ella continguda en el pla rectificant (pla pel punt amb vector
normal V). En particular el vértex del con pertany a aquest pla rectificant. I la recta
tangent a la geodésica en P també. Tracem en aquest pla la perpendicular des del vértex
a la tangent.

La longitud d d’aquesta perpendicular és la distancia del vértex al pla osculador, ja
que és perpendicular a T'i a N (té la direcci6 de la binormal).

Recta tangent a la geodésica
P

Generatriu

Pla rectificant

Pero com es veu a la figura d = psin(a) on « és 'angle entre la geodésica i la generatriu.
Pel teorema de Clairaut sabem que aquest producte és constant i hem acabat.

Nota: Trogos de geodésiques no parametritzades. En el procés de plegar un paper per
obtenir un con, les rectes del paper van a geodeésiques del con. De manera que una
manera facil d’obtenir aquests trams de geodésiques (no tota la geodésica siné el tram
corresponent a la interseccié d’una recta amb el triangle/sector del pla inicial).

La parametritzacié ¢ del con que correspon a plegar el sector circular U donat, en
coordenades polars (r,6), per 0 <r < Ri0 < 0 < ag sera

o(r,0) =r (a cos(g), a sin(g),b>,

on, si By és l'angle del con, a = sin(fy), b = cos(fy), g = 27 sin(Sy).
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Si tallem una recta arbitraria y = mx +n amb U i considerem la seva imatge sobre
el con obtenim la geodésica

n 6 o
0) = 0),0) = — —),asin(—),b
o) = lr0).0) = i (oD asin),0)
Pero insistim que aquesta expressio, per a 0 < 6 < «p, és només un tros de geodésica no

parametritzada.
Les equacions diferencials de les geodésiques del con amb aquesta parametritzacioé son

,
" o
r — ? =
8” + g /0/ — O,
r
de solucié dificultosa. O

Exercici 208. La superficie polar de la corba 7(s), parametritzada per 1'arc, és

p(s,t) = (s) + p(s) N(s) +t B(s).

Com que
28— () N(s) = pls) 7(5) B(s) + 1 7(5) N(s)
dp
Frie B(s)

el camp normal és
v(s,t) = £T(s)
Només hem de veure, doncs, que la normal principal de I’evoluta en el punt ¢(s,t) té la
direccio de T'(s).
Pero l'evoluta esta donada per (vegeu I’Exercici 86)

B(s) =~(s) + p(s) (N(s) — cot(a(s)) B(s)), a(s) = /OS 7(u) du + c.

Llavors, ometent el parametre s per simplificar,

f'=p N—prB—p cot(a) B+p u

B — t(a) N
2 () pT cot(a)

= (p' — p7 cot(a)) N + cot() (p7 cot(a) — p') B
= (p' — p7 cot(a)) (N — cot(a) B)

Considerant V' = N — cot(a) B és clar (recordeu com es calcula la normal principal
d’una corba no parametritzada per 1’arc) que la normal principal buscada és el vector

VAVAV)
normalitzat. Pero
V'=—kT — 7 cot(a) (N —cot(a) B) = =kT — 7 cot(a) V
1 aix{
VAV =—kV AT
d’on
VAVAV)=kT

ja que V i T sén ortogonals, i per tant la normal principal és igual a £7 com voliem
demostrar. 0
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Exercici 209. La primera forma fonamental és
2 0
(0 )
i, per tant, els simbols de Christoffel son
a sin(6) 2 " sin(6)

r,=-—-——- =

12 o a
i les demés zero.
Les equacions de les geodésiques son, doncs,
s 2a sin(6) 0 =0
r
7 sin(6)

9" + N2 0

—(¢)

La primera es pot escriure com
v ==hy, y=¢ h=2In(r)

de manera que
In(y) = —In(r?) +a,

és a dir,
¢ =kr?,
per a una certa constant k. Per tant, ¢’ = —2kr37’, que substituint a la primera
equaci6 ens dona
" /
_ Ty r
sin(f) = = ——.
() 2a6 ¢ at
Substituint els valors de sin(f) i ¢’ a la segona equacié tenim
" k2 T/
a3

que es pot escriure com
a3 ((9/>2)’ — k2,
i per tant
k‘2

(0')? = —atA

amb A\ una constant, que per la forma d’aquesta equaci6é ha de ser positiva.

Aixi,
gy ARk
ar car
amb ¢ = k/av/\.
Finalment,
de  dyp ds_k:r_2_ ac
do dsdb 0 2 —)
com voliem. U

Exercici 210. Recordem que tenir coordenades polars geodésiques vol dir tenir una
aplicacio ¢(r, a) que associa a cada punt (r, «) € [0,00) x (0,27) el punt @) de la superficie
S que dista r d'un punt fixat P € S (distancia mesurada per sobre la geodésica que el
uneix) i tal que 'angle en P entre una geodésica per P fixada a priori i la geodésica PQ
és a. En particular, les corbes av = ct. sén geodésiques ortogonals a les corbes r = ct.
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El desenvolupament de Taylor respecte r (les derivades en r = 0 sén derivades per la

dreta) dona
2

o(r,a) = p(0,a) + ¢ (0,a) 7 + ¢, (0, @) % N

que es pot escriure com
2

sO(r,a):P+f(a)r+g(a)%+...

1 aixi
%) r?

L e+ ga) S

Observem que f(a) = ¢,(0, a) és el vector tangent unitari a la geodésica determinada
per a, en P.
Com que cos(a) = (f(0), f()), derivant tenim

—sin(a) = (f(0), f'(a)) = [[f" (@) cos(£),
on ¢ és l'angle entre f(0) i f'(cv). Pero com que (f(a), f(a)) = 1, tenim (f(a), f'(a)) = 0,
de manera que £ = a + 7/2.”° Per tant —sin(a) = cos(§) i || f'(a)| = 1.
Fet aixo ja es pot calcular v/G . En efecte,
dp Op r? r?

= (G = (Pt g(@) S+ fla)r g (@) S ) = I @)

on els punts suspensius corresponen a termes amb poténcies de r superiors a 2. Com que
| f' ()|l = 1 tenim

G =1+ o(r?)
d’on es dedueix facilment el resultat. ]

Exercici 211. Desenvolupem m = m(r,6) per Taylor. Com que per l'exercici 210,

. Om :
m(0,60) =01 B lrmo = 1 tenim

2 3

mzr+a25—|—a3g+...
Pero, per la formula de la curvatura de Gauss donada a 'exercici 142,

2*m

2= 55 |,me = —m(0,0) K(0,6) =0
1
*m o) om K
05 = | Lo = oo () = =57 K(0.0) =m(0,0)—~ = —K(0,0),
i per tant
3
m=r— K 3 +

com voliem. 0

Exercici 212. Els punts que estan a distancia R de P estan donats per la corba (R, ),
respecte del sistema de coordenades polars geodésiques amb centre P (exercici 211). De-
rivant respecte de 6, veiem que el vector tangent a aquesta corba té coordenades (0,1) i
per tant la seva norma val VG = m. Aixi,

27
L:/ md0:27rR—gKoR3+~--
0

®S’ha d’excloure el cas £ = o + 37/2. També es pot raonar escrivint f(a) respecte d’una base
ortonormal ey, eq, amb e; = f(0). Llavors les components de f(«) respecte d’aquesta base son cos(«) i
sin(a), de forma que f’(a) té components — sin(a), cos « i per tant, té norma 1.
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i area és

R 27 T
A:/ / mdfdr =mR>— — KoR*+ ...
o Jo 12

que donen interpretacions geométriques de K,

3 2nR—L 12 TR?— A
S - R S = T
O
Exercici 213. La tractriu, situada en el pla yz té equacio (exercici 16)
1
t) = R (t — tanh(¢ .
7(t) = R (t — tanh( ),Cosh(t))

Per raons que es veuran a continuaci6 reparametritzem v(t) per I'arc. Com que

t
awa/mmww:Rmmmw»
0
la reparametritzacio és

a(s) = y(t(s)) = R (arccosh(e¥/F) — e™/B\/e2s/R — 1 e75/R),

Si la fem girar al voltant de I’eix de les s tenim una parametritzacio de la pseudoesfera

U(s,a) = R (e */ cos(a), arccosh(e®/B) — e7s/B\/e2s/B 1 e %/E gin(a))

Calculem la primera forma fonamental respecte aquesta parametritzacio.

U, = (—e /B cos(a),e™*/F/e2s/R — 1, —e /B sin(a))

U, = R(—e*/F sin(a),0,e % cos(a))

1 0
I = <0 R2 e—QS/R) :

Aplicant la formula de la curvatura de Gauss en coordenades ortogonals (F' = 0) de
I'exercici 142 obtenim

i per tant

(VIPETE), (R,

1
K = —— \/G ss — — S — 000 785 -,
Ja ( ) VR2e-25/R Re—s/E R?

és a dir, la pseudoesfera té curvatura de Gauss constant igual a
1

(Ri)*
També podem calcular els simbols de Christoffel amb les férmules de I'exercici 142, i
obtenim

F%Q = 1%1 = _%
I}, = Re 2¢/R
i els demés zero.
Per tant les equacions de les geodésiques (t) = U(s(t), a(t)) som
s"(t) + Re 25O/E /()2 = 0,
2

a’(t) — = s'(t)d(t) = 0.
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Nou canvi de coordenades. Per tal de deixar clar que la pseudoesfera és un tros del
semipla de Poincaré™, fem
r=a«
y = es/R

de manera que dx = da i ds = Re ¥R dy, i per tant
RQ
ds® + R? e 2¥/B da? = 7 (dx? + dy?)

la métrica classica d’Henry Poincaré.
El canvi correspon a reparametritzar:

®(z,y) = V(R In(y),z) = R (%(x)’ arccosh(y) — 5 Viz—-1, Siny(x)).

Com que ara E = G = R*/y* i F = 0, els simbols de Christoffel son (ordre (z,%))

1
F%l =
F%z - F%l - T
1
r2,=--
22 y
i els altres zero. U

Exercici 214(a) Sigui 7' = 7/(0) de manera que
T = cos(a) e; + sin(a) es.
Aplicant I’endomorfisme de Weingarten s’obté
W(T) = ky cos(a) e; + ko sin(a) es.

Pero
W(T) = —dv(T) = —/(0)

de manera que
7, = (V(0),e) = (—ky cos(a) e; — ko sin(a) ez, €)
= (k1 — ko) sin(«) cos(«)
ja que

€2

[

€1

Dibuix en el pla tangent, amb el normal apuntant al lector

%6Es coneix com semipla de Poincaré el semipla y > 0 quan s’hi calculen longituds suposant que hi
ha definida una primera forma fonamental que, respecte les coordenades cartesianes (x,y) té coeficients
E =G = R?/y*i F = 0. Aquesta primera forma fonamental no esta induida pel producte escalar de R3.
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(e1,€) = cos(a+ 7/2) = —sin(w),

(€, €) = cos(a).

Exercici 214(b) Només hem de derivar

cos(6(s)) = (v(s), N(s))
1 tenim

—0 sin(f) = (', N) + (v,—kT — 7 B)
= (V,N) =7 (v B),
pero (mirem el dibuix adjunt)
N = (N,e)e+ (N,v)v =cos(d —m/2) e+ cos(f) v = sin(f) e + cos(d) v
1 per tant
(V',N) =sin(f) (', e) = 7, sin(0)
ja que (V,v) = 0.
L’angle entre v i B és, com es veu a la figura, 27 — 0 + 7/2 = 57/2 — 6 i per tant

(v, B) = sin(6).

v

Aixi
—0" sin(f) = 1, sin(f) — 7 sin(0).
Es a dir,
0 =—1,+7
com voliem veure.

Si la corba donada és una geodésica, 8 = 0 i, per tant, sobre una geodésica la torsio i
la torsi6 geodésica coincideixen.

Més encara, la torsid geodésica de y(s) en v(0) és la torsid de la geodésica que passa
per v(0) amb vector tangent 7' (0). Aixo és conseqiiéncia de 'apartat (a), ja que la formula
7, = (k1 — ko) sin(a) cos(a) diu, en particular, que per calcular 7, en un punt només hem
de coneéixer kq i ko en aquest punt, i 'angle que forma el vector tangent a la corba amb
les direccions principals, és a dir, només depén del vector tangent. O]

Exercici 214(c) Suposem k; # ko. Llavors el resultat és conseqiiéncia directa de (a).
Observem que, sobre les geodésiques, la torsioé i la torsié geodésica coincideixen, de

manera que podem dir que una geodésica (no recta) és plana si i només si és linia de

curvatura. L]
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Exercici 215(a) Com que E(u,v) = 1, F(u,v) = 0 i G(u,v) = a(u)?, els simbols de
Christoffel son els segiients (veieu el problema 142)

I, =0, I3 =0,
Fb =0, F%z = 5

F%z = —a(u) a’(u), ng =0.

I B(s) = p(u(s),v(s)) és una geodésica (parametritzada) de S si, i només si, es satisfan
les equacions:

u'(s) — a(u(s)) d(u(s)) v'(s)* = 0,

v"(s) + 2 Z/((Z((j)))) u'(s)v'(s) = 0.

U

Exercici 215(b) Les funcions u(s) = s, v(s) = vy verifiquen les equacions anteriors i la
corba ((s) = ¢(s,vp) és un meridia de S. O
Exercici 215(c) Els parallels parametritzats a velocitat constant s’obtenen prenent
u(s) = up i v(s) = s. Aquest parell de funcions verifiquen les equacions de les geodé-
siques si i només si a’(ug) = 0 o, equivalentment, si la recta tangent a un meridia que
passi per aquest parallel és vertical (parallela a Ieix de gir).

En el cas de l'esfera, de tots el parallels, només I'equador és geodésica (cercle maxim).
En el cas del tor, hi ha dos equadors, I'interior i I’exterior. O

Exercici 215(d) Si escrivim la segona equaci6 de les geodésiques com
" / /
v(s) | o @'(uls)v'(s)
v'(s) a(u(s))
i integrem respecte a s obtenim la relacio
log(v'(s)) + 2 log(a(u(s))) = log(v'(s) a(u(s))?) = ct.

Sigui B(s) = p(u(s),v(s)) una geodésica parametritzada per l'arc i sigui 0(s) 'angle que
forma 8 amb el parallel que passa per §(s). Llavors el cosinus de 6(s) és igual a

=0

_ {po () pu + 08 0u) _ oy o
A Y N I
Per tant, a(u(s)) cos(6(s)) = v'(s) a(u(s))? és constant. O

Exercici 215(e)
Relacié de Clairaut sobre el con.

Considerem el con desplegat sobre el pla, en el que les geodésiques del con son rectes
del pla.

Aplicant el teorema del sinus al triangle AOCD de la figura es té

ocC OD

sin(r —a)  sin(n)’

és a dir, OD sin(a) = OC sin(n), pero el segon terme d’aquesta igualtat és constant,
ja que queda determinat per la geodésica que s’esta considerant (C' és el seu origen i 7
determina la seva direccié en aquest punt). Per tant, OD sin(«) és constant.
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Figura 3.1: Relaci6 entre el T. de Clairaut i el teorema del sinus.

Ara bé, com que el radi p del parallel AB que passa per D (distancia a 'eix de gir)
queda totalment determinat per OD, la igualtat OD sin(«) = ct. implica p sin(a) = ct.,
com diu la relacié de Clairaut.

Relacié de Clairaut sobre 1’esfera.

Observem que els punts A, C' de la figura 3.2 determinen un meridia i els punts A, B
determinen un altre meridia. Aquests dos meridians estan tallats per la geodésica (cercle
maxim) determinada pels punts B, C.

Figura 3.2: Relacié del T. de Clairaut i el teorema del sinus esféric.

Apliquem el teorema del sinus al triangle esféric ABC'. Es té

A A

sin(C) _ sin(B)
sin(c)  sin(b)

Es a dir, R R
sin(C') sin(b) = sin(B) sin(c). (43)
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Aixo implica que el producte R

sin(C') sin(b)
és constant al llarg de la geodésica ja que si girem el meridia AC' mantenint fix el meridia
AB (i la geodésica) el producte X

sin(B) sin(c)
no varia.

Finalment observem que la distancia de C' a I’eix de rotacio, C'E en la figura, és igual

a sin(ZCOF), ja que la hipotenusa OC' = 1. Pero la longitud b del cercle maxim que
uneix A i C' és justament igual a 'angle (en radians) ZCOE.

Per tant, la igualtat (43) s’escriu com
CFE sin(C) = ct.,
que és exactament la relacié de Clairaut. O

Exercici 215(f) Sigui £,,(s) = ¢(ug, s/a(ug)) amb s € [0, 27 a(ug)] una parametritzacio
per I'arc del parallel que passa per ¢(ug,0). Recordem la formula

1
—— =k =k + K
alug)? B n TRy
D’altra banda, la curvatura normal de 3(s) és igual a
1 | 1 9 (“Om>
I v v) = —dv(py yPv) = T N9
() v alan) ¥ = afug) (W Pe)@0) a(t0)?

on g(u,v) denota el coeficient de la segona forma fonamental de S que esta calculat a
I'exercici 151. Com que el que s’obté alla és g(u,v) = b/(u) a(u) tenim

- L (Vo))" _ |a'(u)]
|kg(Buo)| = \/a(uo)2 (a(uo)) a(ug)

Per determinar el signe hem de tenir en compte que 3, (s) = ky e + k,v on e és un vector
tangent a S unitari de manera que T, N, i v formen una base ortonormal directa de R3.
Per exemple, si el vector normal v = IIwZﬁs@:II apunta cap a fora (en sentit contrari cap on
es troba l'eix de gir de S) i estem en un punt on a’(uy) > 0 (la corba generatriu es recorre

de dalt a baix per tal que el vector v sigui exterior) aleshores podem veure que k, > 0 i

per tant k‘g(ﬂuo) = (ZL((;L(?))'

També es pot arribar al mateix resultat calculant

B (5) = T pu+ypy+2v = —a(io) (cos (@) sin (%UO)) ,0)

i utilitzant que T" = ﬁo) ©y, —pu 1 v formen una base ortonormal directa de R? per deduir
que y = 50(8),90U> = 01 per tant

kg(ﬁu()) = <ﬁ;’0(8), —pu) = ———=

Exercici 216(a) Observem que

pu = cosh(v) 7' (u)
@, = sinh(v) y(u) + cosh(v) W
©u A @y = cosh(v) sinh(v) @ + cosh?(v) (7 (u) A D)
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i aquest darrer vector no s’anulla mai, cosa equivalent a dir que la diferencial de p(u,v)
té rang dos en tot punt. U]

Exercici 216(b) La primera forma fonamental és

( cosh?(v) cosh(v) sinh(v) (y(u),~'(u)) )
cosh(v) sinh(v) (y(u),(u)) sinh®(v) (y(u),y(u)) + cosh?(v)

Per tant, ’angle 0 entre les corbes coordenades esta donat per
N A sinh(v) (y(u),7'(u))
leull el fsinh?(0) (y(w), 7(w) + cosh?(v)

Per tant, les linies coordenades son ortogonals per a aquelles corbes ~(u) tals que
(y(u),~'(uw)) = 0. Es a dir, (y(u),y(u)) = R?, per a una certa constant R. Per tant, v(u)
esta continguda en una circumferéncia de centre 'origen i radi R. U

cos(6)

Exercici 216(c) Observem que ~y(u) esta donada, com corba de S, per la condici6 v = 0.
En particular,
PuNpu), =7 (u) N = £N(u),

on N(u) és el vector normal principal de la corba. Recordem que, en ser la corba plana,
el pla que la conté és el seu pla osculador. O

Exercici 216(d) El calcul anterior demostra que y(u) és geodésica. (El vector normal
principal de la corba i el normal a la superficie son parallels). U

Exercici 216(e) Apliquem Olinde. Es a dir, derivem la normal al llarg de v(u) per veure
si surt un multiple de ~/(u).
= = _k<u> 7/(u)7

vy () = == = S

on k(u) és la curvatura de y(u). Per tant, efectivament, v(u) és linia de curvatura.
També es pot verificar directament si v(u) compleix 'equaci6 de les linies de curvatura
(recordem que en coordenades 7y (u) és (u,0)):

dv? —dudv du? 0 0 1
FE F G|l=|1 0 1|=f
e f g e [ g

_ dv(u,0)  dn(u)

pero f(u,0) =0, ja que
Puv = Sinh(v) ’}//(U)
i per tant
Yuv(u,0) = 0.

Exercici 216(f) Si y(u) = (cos(u), sin(u),0) tindrem

o(u,v) = (cosh(v) cos(u), cosh(u) sin(v), sinh(v))

que correspon a ’hiperboloide d’un full amb la parametritzacié donada a I'exercici 90.
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G

O
Exercici 217. La formula de 'angle d’inclinaci6 en coordenades ortogonals (F = 0) ¢és°7
2VEG Y = E,u — G, 0.
Si pensem la corba com v = v(u) 'equacié anterior s’escriu com
dae d
2VEG 2 = E, -G, —.
du du

que en el nostre cas en qué £ = (U —V)U?, G = (U — V)V queda

de dv dU _ , dv

2(U — R ¢

(U=V)thn du dv % du ' du

. - . dv Uy . , ., . . g
Tal com és la métrica tenim T tan(#) i per tant I'equaci6 anterior, dividida per
U 1
U1V 1 multiplicant per cos(f), queda
g dV U, au

2(U ~ V) cos(0) o = - g cos(®) = T sin(6).

Tenint en compte que v = v(u) i multiplicant per sin(6)

, o dv au .,
2(U —V) cos(#) sin(8) Ju = gy 0 (0) — 7 Sin ().
Aix0 és equivalent a
dg dU dg dv
9 . av av - .2 —9 . av.av 2
U sin(f) cos(h) T + 7, Sin (9) V sin() cos(0) T T gy 08 (0)

que es pot escriure com

d ) ~ d 2
@(U sin(0)) = _du<v cos”(0))
i per tant
U sin?(0) +V cos?*(0) = a,
amb a constant com voliem. O

Exercici 218. Motivat per I'estudi de les quadriques homofocals (exercici 91), que inclou
les superficies triplement ortogonals i el teorema de Dupin, s’arriba a la parametritzacio

5"Vegeu Notes sobre corbes i superficies, A. Reventos, 2018.
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meravellosa de les quadriques com

que, tenint en compte que es compleix
2 2 2
x z
—+ v +—=1,
a b c

queda clar que aquesta quadrica és un
1. Ellipsoide, si @ > b > ¢ > 0. Llavors (u,v) € (b,a) x (c,b).
2. Hiperboloide d’'un full, si @ > b > 0 > ¢. Llavors (u,v) € (b,a) x (—o0,c).
3. Hiperboloide de dos fulls, si a > 0 > b > ¢. Llavors (u,v) € (¢,b) X (—o0,¢).

Denotant com sempre p(u,v) = (z(u,v),y(u,v), z(u,v)) la parametritzaci6 donada
a (44), calculem mecanicament ¢, i ¢,. En aquest punt convé escriure les derivades de la
parametritzacio ¢(u, v) com

a—v) (b —wv)

90“:( wm\/a—b Ya—c) zm\/a—b Yb—c)’

A=)

a—u) (u—b)

%:( QM\/a—b (a—c)’ 2@\/@—1) (b—rc)’

(u—c)

2\/1}—0 \/ (a—c)(b—rc) )
on hem escrit cada factor de manera que sigui positiu (és a dir, hem escrit (v — ¢) en lloc
de (¢ —v) etc.)

A partir d’aqui ja es facil calcular els coeficients de la primera forma fonamental.
S’obté
u(u—v)7 Fo0 G= v(v—u)7

f(u) f)

on f(x)=4(a—z)(b—x)(c—x).

Amb aixo la primera part del problema esta acabada ja que
u

ds? = (u — v) (W du? — % dv2>

i per tant les quadriques son superficies isotermes de Liouville (confronteu amb ’exercici
217).

Observem que a l'ellipsoide tenim v < u, f(u) > 0, f(v) < 0, i relacions similars als
hiperboloides, de manera que ds? és definit positiu.

E =
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Donem per completesa la segona forma fonamental.

Per calcular la normal v(u,v) = (X (u,v),Y (u,v), Z(u,v)) a la quadrica s’ha de cal-
cular ¢, A ¢, i la seva norma.

Les tres components de ¢, A ¢, son

Vbe u—v
Va0 Ju D w00 v
Vea u—"v
4/(b=c)(b—a) \/(u—c)(u—a)(v—a)(c—v)
Vab U —v
Weab-a Vi 9gu-a@ ok v
Dividint per la seva norma
lpu Aull = VEG — F? = (u—v) ) 1)

s’obté que la normal v(u,v) = (X (u,v),Y (u,v), Z(u,v)) a la quadrica estd donada per

_ Jbe(a—u)(a—v)
X_\/uv(a—b)(a—c)
_ Jea(b—u)(b—v)
Y_\/uv(b—a)(b—c)
_ fJab(c—u)(c—v)
Z_\/uv(c—a)(c—b)

La segona forma fonamental®®

abc u—w abc u—v
€=\ F) f=0, 9=\ 0o F)

Com que s’ha obtingut F' = f = 0 sabem que les linies coordenades u = ct., v = ct.
son linies de curvatura.

La parametritzaci6 considerada transforma el rectangle (b, a) X (¢, b), on varien (u,v),
en la part de l'ellipsoide corresponent a l'octant x > 0, y > 0, z > 0 si es pren el signe
positiu en les arrels quadrades de (44). Estudiem les vores d’aquest rectangle. Com es
pot veure a la figura, linies u = b, v = b (verda i blava que queden alineades) van a parar
als punts de ’ellipsoide amb y = 0, la linia u = a (I'altra verda) va a parar als punts de
'ellipsoide amb = = 0, i la linia v = ¢ (blava) va a parar als punts de l’ellipsoide amb
z=0.

%En el calcul llarg de les derivades segones s’utilitza la igualtat (a — v) (b —u) (¢ —u) (b —¢) + (a —

v)b—u)(c—u)(b—c)+(a—v)(b—u)(c—u)(b—c)=(v—u)(a—>b)(b—c)(c—a).
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»(a,b)

w(b,v)

w(a,c)

w(b,c)

e(u,c)

Les linies v = ct. van a parar a les linies de curvatura corresponents sobre 1’ellipsoide que
surten d’un dels segments verds i acaben a ’altre; analogament les linies de curvatura
d’equacié u = ct. surten d’'un dels segments blaus i acaben a I’altre.

Ara bé, per recobrir I'ellipsoide necessitem vuit cartes que provenen de combinar els
signes £ de les arrels quadrades en (44). En cadascuna d’elles podem repetir exactament
els arguments que acabem de fer (I'espai de parametres és sempre el mateix rectangle)
i veiem com les linies de curvatura que en cadascuna de les vuit cartes tenen equacio
u = ct. donen lloc sobre 'ellipsoide a dues corbes tancades.

I el punt umbilical representat a la figura per un punt groc, que té coordenades u =
v = b si pensem la carta local definida sobre el rectangle tancat i no obert com és habitual,
dona lloc a quatre punts umbilicals (també en groc), com es veu facilment a partir de les
vuit cartes i com s’enganxen entre elles.

Cadascuna de les components connexes de les linies de curvatura u = ct. (una amb
x > 01 una altra amb = < 0) separen I'ellpsoide en dues regions, cadascuna de les quals
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conté dos punts umbilicals (no diametralment oposats).
Els mateixos comentaris valen per a les corbes v = ct. U]

Exercici 219. Considerem la parametritzacié de 1’ellipsoide donada a l'exercici 218.
Recordem que estem donant vuit cartes locals.

Com que aquesta parametritzacié és una parametritzacio isoterma de Liouville, sabem
per 'exercici 217, que les geodésiques de 'ellipsoide compleixen 'equacié

(u — a) sin?(0) + (v — a) cos*(#) = 0, (45)

on § = 0(u,v) és angle que forma la geodésica amb les corbes coordenades v = ct. i a és
una constant.

Concretament, aixo vol dir que quan la geodeésica passa pel punt P de coordenades
(ug,vo) s’ha de complir

(ug — @) sin®(0(ug, vg)) + (vo — @) cos®(B(ug, vp)) = 0,

on O(ug,vy) és I'angle en el punt P entre la geodésica i la corba coordenada v = vy.

Observem que aquesta equacio, donat el punt i la constant «, només determina la
tangent al quadrat de 6, i per tant hi ha dues geodésiques associades al mateix valor o
que passen per aquest punt, una formant angle ¢ i I’altra formant angle —0 amb v = ct.

Recordem que les coordenades (u,v) que estem considerant compleixen ¢ < v < b <
u < a. D’aqui i de l'equaci6 (45) es dedueix facilment que per a tots els punts de
coordenades (u,v) d’una mateixa geodésica es compleix v < o < u. En particular a €
(c,a). Aixo dona lloc als tres casos que estudiarem a continuacio.

Primer cas: a € (b,a). Considerem la linia de curvatura donada per u = «. Els seus
punts tenen, doncs, coordenades («,v) amb v € (¢, b).

La geodeésica determinada per « quan passa pel punt de coordenades («, vg), compleix,

per (45),

(vg — a) cos*(A) =0
i per tant, @ = 7/2. Es a dir, si la la geodésica determinada per o € (b, a) té un punt de
contacte amb la linia de curvatura u = «, €s tangent a ella en aquest punt. Observem
que vg — o # 0 ja que a € (b, a) i vy € (¢, b).

Per tant, a partir de 'estudi de les linies de curvatura que hem fet a ’exercici 218,
deduim que la geodésica determinada per la constant o € (b,a) es manté sempre dins
de la regio de l’ellipsoide determinada per les dues components connexes de la linia de
curvature u = «.

Segon cas: a € (¢,b). El mateix argument mostra que la geodésica determinada per
la constant o € (c,b) es manté sempre dins de la regio de Uellipsoide determinada per les
dues components connexes de la linia de curvatura v = «.

Observem que per poder escriure u = « hem d’estar en el primer cas i per poder
escriure v = « hem d’estar en el segon cas.

Tercer cas: a = b. Recordem primerament que els punts umbilicals (tots tenen coor-
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denades u = v = b si estenem la carta local al tancat [b, a] X [c, b]) son els punts

c) )0 (a—c)

Vi = (‘V <aa—_c[; ’0’\/ <ab—_ 3 )

de manera que Uy, Uz i Uy, Uy sOn respectivament parelles antipodals.

Les geodésiques que surten d'un d’aquests punts no corresponen ni al primer ni al
segon cas anteriors (no estan acotades entre linies de curvatura). Han de correspondre,
doncs, al cas que ens faltava estudiar, les geodésiques donades per

(u — b) sin?(#) 4 (v — b) cos?(#) = 0. (46)

Si es pren un punt qualsevol (uy,v;) d’aquest geodésica es veu que 6(uy,v;) no pot ser
mai ni igual a 0 ni igual a 7/2. En efecte, si # = 0 tindriem, per (46), v; = b cosa que no
pot ser, ja que vy € (¢,b). Si @ = 7/2, tindriem u; = b que tampoc pot ser.

Per tant, un cop surt d'un punt umbilical U; aquesta geodésica va creuant totes les
linies de curvatura u = ct. i v = ct. que encerclen respectivament els punts umbilicals
Uy, Uy i Uy, Uy, sense ser mai tangent a elles, i per tant ha d’anar a parar a Us, el punt
umbilical diametralment oposat a U;.

Hi ha una geodésica d’aquest tipus per a cada direccio de I'espai tangent a ’ellipsoide
en U; (que van a parar a Us) i una per a cada direccié de I'espai tangent a 'ellipsoide en
U, (que van a parar a Uy).

Finalment observem que dues geodésiques que surten del mateix punt umbilical no
es poden tallar. En efecte, si es tallessin sabem que 6 queda determinat en aquest punt
llevat del signe, ja que
U b
u—1>
on (u,v) son les coordenades del punt, perd podria ser que una de les geodésiques arribés
a aquest punt amb angle 6 i I’altra amb angle —f. Ara bé, aixo no pot ser ja que en el
sentit creixent del parametre arc de la geodésica mesurada a partir del punt umbilical, per
exemple Uy, la geodésica surt de la regié tancada delimitada per les linies de curvatura
u = ct. i v = ct. que contenen respectivament Uy, Uy i Uy, Uy. Com que aquestes regions
es tallen ortogonalment, el vector tangent a la geodésica ha d’estar forcosament en un dels
quadrants determinats per les tangents a les linies de curvatura en el punt de contacte,
com indica la figura. Aixo determina el signe de I'angle 6 que haura de coincidir per a les
dues geodésiques, i dues geodésiques que en un punt tenen la mateixa tangent son iguals.

tan?(0) =
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O

Exercici 220. Partim de la formula de Bonnet per a geodésiques de la forma f(u,v) = ¢.”

2 Gm—Fn +£ En—Fm B
OuNVEN: —2Fmn+Gm2  OVEn:—2Fmn+ Gm?

on E, F, G son els coeficients de la primera forma fonamental i m = f,,, n = f,. Per tant,
existeix ¢(u,v) tal que

Y

%_ En—Fm
ou  VEnZ—2Fmn+ Gm? (47)
dp Fn—Gm

ov VEn2—2Fmn+ Gm?

Sigui (uq(t),v1(t)) les components d'una una trajectoria ortogonal a les corbes donades
per f(u,v) = c. Aquestes darreres corbes compleixen f, u' + f,v' =mu' +nv' =0, es a
dir, el seu vector tangent (a l’espai de parametres) és proporcional a (—n,m)

La condici6é d’ortogonalitat és

0=(uy o) (? g) <7T7)=u'1(—En+Fm)+v'1(—Fn+Gm).

Anem a veure que ¢(u,v) és constant sobre (uy(t),v(t)).

Derivant
d
dt (ul(t)avl(t)) = Oy ull + @ Ui
En—Fm m Fn—Gm ,
— U v
VEn2 —2Fmn+ Gm? ! VENn2 —2Fmn+ Gm?

=0.

i per tant ¢ és constant sobre les trajectories ortogonals, com es volia veure.

Ara falta veure que ¢(u(s),v(s)) = £s + ct. quan f(u(s),v(s)) = ct.
Només cal derivar la funci6 h(s) = ¢(u(s), v(s)).
dh
ds

59Vegeu Notes sobre corbes i superficies, A. Reventés, 2018. Bonnet déna la formula de la curvatura
geodeésica d’una sola corba f(u,v) = 0, perd aqui ho apliquem a tota una familia de geodésiques.

_¢uu+¢vv =u (¢u+k¢v>a (48)
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on k= Z—Z. Hem reparametritzat la geodésica per u en lloc del seu parametre arc s.
Com que (u,v(u)) és ortogonal a ¢(u,v) = ct. es té

E F\ [(—¢,
10 (e ()
_F¢u_E¢v
- Féy—Goy

Com que s és el parametre arc de la geodésica v(u) de coordenades (u,v(u)) tenim

§§=H¢@N#=¢Uk)(? g><é>::¢E+2Fk+G%2

, 1

u =
VE+2Fk+Gk?
Substituint aquest valor de u’ a (48), i substituint a continuaci6 el valor de k£ obtingut a
(49) s’obté (després d'un calcul una mica llarg)

dh\* _ B¢y —2F dudy + G
(ZJ B EG — F?
Substituint ara en aquesta expressio els valors de ¢,, ¢, obtinguts a (47) s’obté (després
d’un altre calcul una mica llarg) ,
(a) -
ds

i per tant, h(s) = s + ct. com es volia provar. O

1 per tant

k (49)

i per tant

Exercici 221. Considerem l’ellipsoide donat per la parametritzacié de I'exercici 218

x:\/a(a—u)(a—v)
(a—0b)(a—rc)
_[b(b—u)(b—v)
y‘\/<b—a><b—c>

c(e—u)(c—v)
__¢(c—aﬂc—®
amba>b>c>01(u,v) € (b,a) x (¢, b).
Considerem la familia de geodésiques umbilicals donades per
h(u,v) = (u — b) sin*(0) + (v — b) cos*(#) = 0. (50)
La funci6 ¢(u,v) de lexercici 220, que és constant sobre aquesta familia de geodésiques,
es pot calcular explicitament integrant les equacions (47) del mateix exercici 220.

En efecte, en el cas de 'ellipsoide aquestes equacions s’escriuen, respecte de les coor-
denades (u,v) introduides a lexercici 218 en qué

u(u—v) v(v—u)
L )
amb f(x) =4(a—xz)(b—x)(c—x), com
@:u(u—v)n
ou flu) A
%:v(u—v)m
ov f(v)A
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amb m = hy,, n = h, i

A= —— Ip? 4~ m?

Per trobar ¢(u,v) s’observa que

- ¥¢i(uvv) = (bg(u?v)

Anem a veure si ha ha alguna solucié d’aquesta equaci6 diferencial de la forma

d(u,v) = A(u) + B(v).

1w

Si hi fos tindriem

S g2y =0 - I 2y,

i com que el primer terme és una funcié de w i el segon de v aquesta equacio es pot integrar
igualant els dos termes a una constant « i sumant les dues funcions, una de w i l'altra de
v, que obtenim en integrar aquest dos termes. La solucié sera doncs

qﬁ(u,v):/,/%(u—a) dui/‘/%(v—a) v

No posem el signe + a la primera arrel quadrada ja que el que interessa és estudiar
¢(u,v) = ct. i, canviant de signe la constant, les solucions estan incloses a l’expressio
anterior. Per aix0 tampoc importen les constant d’integracio.

Observeu que, per tal que els radicands de les dues arrels quadrades siguin positius i
s’obtingui una soluci6 a l'interval d’inici (u,v) € (b,a) X (¢, b), caldra per un costat que
a < u (ja que els valors f(u) son positius) i per l'altre que a > v (ja que els valors f(v)
son negatius). Per tant s’ha d’agafar av = b.

Posant, doncs, a = b a 'equaci6 anterior i explicitant el valor de f(u) i f(v) es té

/\/a—u w—c M*3 /\/a—v Tw—o &

expressio que té sentit encara que en principi (u, ,a) x (¢,b), ja que les funcions
que integrem son continues sobre [b,a) X (¢, b].
Escriurem simplement

¢(u,v) = fi(u) £ fo(v),

entenent que les constants d’integracié ja s’han considerat en aquestes funcions.
Aixo vol dir que hi ha dues funcions

o1(u,v) = fi(u) + fo(v),  ¢2(u,v) = fi(u) — fo(v)
que sén constants sobre les families de geodésiques umbilicals donades per I'equacio (50).
Aixo és degut a que hi ha dues families diferents de geodésiques que verifiquen aquesta
equacio: les que surten del punt umbilical U; i arriben a Us i les que surten del punt
umbilical Uy 1 arriben a Uy.
Suposem que dues d’aquestes geodésiques es tallen en un cert punt P de coordenades
(u,v). Per l'exercici 220 sabem que la longitud de la geodésica que va de Uy a P és

b= ¢1(u,0) = ¢1(b, b) = fi(u) + fa(v) — ¢1(b, D)

i la longitud de la geodeésica que va de Us a P és

ly = ¢a2(u,v) — da(b,b) = fi(u) — fo(v) — ¢2(b,b)
Ja s’ha comentat a 'exercici 219 que els punts umbilicals tenen coordenades (b, b) si
suposem les vuit cartes locals de 1'exercici 218 definides sobre el tancat [b, a] x [c, b].
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Es té, doncs,
€1+€2:2f1(u)—2¢(b,b), 61—62:2]02(11)
fet que demostra que les corbes u = ct. séon ellipses i les corbes v = ct. hipérboles. [l

Exercici 222. Aquesta formula diu que si tenim coordenades ortogonals (u,v) sobre
una superficie i C' és una corba en aquesta carta local (U, ), parametritzada per y(t) =

e(u(t),v(t)), lavors

ky = % + (kg)1 cos(0) + (k,)2 sin(6),

on

ky = kg(t) és la curvatura geodésica de la corba C' en el punt ~(t).

6 = 0(t) és I'angle en el punt v(t) entre C' i la corba v = constant® que passa per
aquest punt.

(kg)1 = (kg)1(t) és la curvatura geodésica en el punt v(¢) de la corba coordenada
v = constant que passa per aquest punt.

(kg)2 = (kg)2(t) és la curvatura geodésica en el punt vy(¢) de la corba coordenada
u = constant que passa per aquest punt.

Acceptant com a conegudes les formules que ens donen les curvatures geodésiques d’un
sistema ortogonal:

(51)

(52)

E 0 .
on ( 0 G) és la primera forma fonamental respecte de les coordenades (u,v) (en aquest

ordre).

La dificultat del problema esta en qué la féormula de 'angle d’inclinacié de Gauss és
valida per a un sistema de coordenades arbitrari, i la volem deduir a partir de la férmula
de Liouville, que només és certa per a sistemes de coordenades ortogonals. Ara bé, la
formula de Gauss fa referéncia a geodeésiques i la de Liouville a corbes generals.

Suposem a partir d’ara que tenim un sistema de coordenades (u,v) sobre una super-
ficie i que, respecte d’aquestes coordenades, la primera forma fonamental s’escriu com

E F
F G)°
Donem a 0, k,, (ky)1 1 (k,)2 €l mateix significat que els hi acabem de donar en recordar
la formula de Liouville.
Per calcular  només hem de multiplicar els vectors tangents a v = ct. i a y(t).

W 0) (7 6) (5) =B+ Fo = 1600 100 eoso).

Per tant

) Eu + F
cos(f) = :
VEW)?2+2Fu v +GW)?2VE

Si introduim el parametre arc s de (t), que compleix

ds du )\ 2 du dv dv\?
_¢ () captede g (Y,

60Clarament parlem de la corba ¢(u, constant).
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i ometem com és habitual el dt, tenim
Edu+ Fdv
cos(f)ds = ———.
VvVE
D’aqui s’obté facilment
VEG — F? dv
= :
Aquestes expressions del sinus i el cosinus apareixen exactament aixi ja en el Disquisitio-
nes.

Per tal de poder aplicar la formula de Liouville cal tenir coordenades ortogonals. Per
a aix0, fem un canvi de variables del tipus

sin(f) ds =

u = u(u,v),
v

1
I

)

de manera que les noves corbes u = ct. siguin ortogonals a les corbes v = ct.
El camp tangent a les corbes u = ct. és

0p _udp ovdp udp Do

ov  0vou  O0vov 0o ou  Ov

de manera que si imposem que sigui ortogonal a les corbes v = ct., obtenim

(2 0) (5 &) (1)

és a dir,

De forma equivalent

u=—/%dv. (53)

Quan s’aplica la formula de Liouville a les coordenades ortogonals (@, v) s’obté (posem
k, = 0 perqueé volem l'equaci6 de les geodésiques):

do :
T —(kg)v=ct. c08(0) — (kg)a=ct. sin(8).

Observem que # és el mateix independentment de si treballem en el sistema (u,v) o
en el sistema (u, ) ja que és 'angle de la geodésica amb v = v = ct. Observem també

que la primera forma fonamental, respecte dels sistema (u,v) és

E )2 0
GE—F? |,

0 E

ou .

on A = ——, ja que

ou
00 _ ooy
ou  Ou ou’

Observem que, per (53), tenim

()

(F> By F—F,E

E E2
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Usant les formules (51) i (52) tenim

<GE—F2)
5 E _
o _ 1 (EX)s L L sin(6).

= cos(f) — = 3
2 _
B2 /7GEE_F QGEEF E

Que és equivalent a

1 (EN)y Edu+Fdv 1 (GE-—F?
VEG — F2d = - () .
CoEO=%"UF VB m( g ),

Coeficient de du.

1 E; EX\ FE E, E,F
(B NP+ 2FEA)\) = = ==+ +—-F,
2)\2( * ) 2 * A 2F * 2 + E
FE E
= 1 _F,.
2FE * 2
Coeficient de dv.
X (EX?); )
Aprofitant el calcul de 72 Y que acabem de fer s’obté
F (EN), (GE—FQ)UE—Eu(GE—FQ)_F FEU+EU I G
2 E\2 2 E2 E\2E 2 “ 2

FF, GE, GE, E,F?

E 2K * 2F 2 E?

_ FE,
 2F

— Gy

Substituint, tenim

VEG — F2 df = (gg“ +%—Fu> du + (FE —ﬁ> dv

que és exactament la formula de Gauss de les geodésiques.

Sense classificacid clara

297

Exercici 223. Utilitzant que els meridians son geodésiques i que el transport parallel
conserva angles es veu que l'angle final és 2. En efecte, w; és tangent a C, per tant
forma un angle o amb la tangent a C5 en @Q; per la seva banda ws forma també un angle
a amb Cy, perod per estar wy i wy a diferents costats respecte la tangent a C'y en () aquests

angles s’han de sumar i s’obté el valor 2 «.
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O

Exercici 224. Com que el transport parallel al llarg de geodésiques (en aquest cas els
meridians) és molt facil, ometrem 'apartat (a) i de apartat (b) només farem el transport
parallel al llarg del parallel o = g entre els punts P i Q.

Sigui P el punt de coordenades (6, ) = (0,¢p) i sigui w € TpS?. Volem transportar
w parallelament al llarg del parallel ¢ = ¢q fins al punt @ = (0, o).

Denotem X (0, ¢) = (sin(y) cos(f),sin(p) sin(f), cos(y)) i posem
0X 4 0X
o0 lp 70 O P’
Busquem un camp tangent W () al llarg del meridia tal que

DW

Aquest camp W (0) es pot escriure com
W(0) = aXy+bX,

amb a = a(6), b= b() i X, = Ze0) X, = 9X0.20) Derivant tenim

w = Qo

o0 e
aw
E = a/Xg + b,X@ + ang + bX@w
Per tant, la condicio ZF = 0 és (igualem a zero els coeficients de Xy i X,,)

a+all, +bT1, =0
V+al? +0I%,=0.
Substituint els valors dels simbols de Christoffel
a’ 4+ b cot(pg) =0
b — a cos(ypo) sin(pg) = 0.
Ara es resol el sistema amb les condicions inicials donades i tenim el resultat. Per
simplificar els calculs anem a fer, a partir d’aqui, el cas en qué w = X, (P), és a dir, que

tindrem les condicions inicials a(0) = 0, b(0) = 1. Derivant la primera equacié del sistema

i utilitzant la segona tenim
d*a n 2(0) = 0
—— +a cos =
dag Yo

que té soluci6 amb a(0) = 0 donada per

a(f) = B sin(cl), ¢ = cos(po)

Com que
a//
b= — = —B sin cos(cf
COt(gpo) (900) ( )
tenim
1
B =——
sin(o)
Resumint
1
a(f) = —— sin(c6
6) = ~ gty (e
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Tenim doncs determinat W () i w transportat a qualsevol punt del parallel de parametre
0y s’obté simplement escrivint W (6)

W) = _sin(lgoo) sin(c @) Xp + cos(c0) X,,.

Segon métode. La derivada covariant d'un camp W al llarg d’una certa corba d’una
superficie es calcula projectant sobre la superficie la derivada a R? de W restringit a la
corba, dW/dt. Per tant quan dues superficies es tallen en una corba i sobre aquesta corba
tenen el mateix pla tangent, la derivada covariant de W és exactament la mateixa en
les dues superficies. Aleshores, és el mateix calcular el transport pararllel al llarg d'un
parllel de 'esfera que al llarg del con que li és tangent en aquest parallel. A més, com
que el concepte de derivada covariant és intrinsec (es pot calcular a partir de la primera
forma fonamental) podrem desplegar el con sobre el pla, fer el transport pararllel alla i
tornar a la posici6 inicial del con.

Considerem, doncs, el con tangent a l'esfera al llarg del parallel ¢ = ¢y. La longitud
de la base és igual a la longitud del parallel, 27 sin(pg). I un cop desplegat aquest con
sobre el pla obtenim un sector circular d’angle ag = 27 cos(yyp).

tan (o)

%0

La longitud del parallel entre els punts P i @ és 6y sin(pg). Mirat en el con desplegat
tenim un sector circular d’angle ay = 6y cos(yg) ja que la generatriu del con mesura
tan(gg). Observem que amb la notacié de més amunt agy = ¢ 6.

Com es veu a la figura anterior, dreta, el transportat parallelament del vector w €
TpS? a @Q és el vector wy € TpS? que forma un angle ag amb el meridia, és a dir, amb
X, (P). Per tant

Xy X
wy = A +B-—*
R T R P
amb
1
= —Xy) = 2) = —si
(wn, sin(go) 9) = cos(ap + 7/2) sin(ap)
B = (wy, X,) = cos(a)
és a dir,
1
W(0) = ~sin(oo) sin(c ) Xg 4 cos(ct) X,,.
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Exercici 225(a) Com que N(u) i B(u) constitueixen una base ortonormal del pla II,
aleshores tenim que per a tot u € I la corba v — y(u)+r(u) cos(v) N(u)+r(u) sin(v) B(u)
parametritza la circumferéncia C,, de centre y(u) i radi r(u) sobre el pla I1,, i per tant, ¢
parametritza S.

O

Exercici 225(b) Calculem els vectors tangents utilitzant les formules de Frenet de la
corba 7:
ou(u,v) = (u) + r'(u) (cos(v) N(u) + sin(v) B(u))
+ 7r(u) (cos(v) N'(u) + sin(v) B'(u))

= (1 — k(u) r(u) cos(v)) T(u) + (r’(u) cos(v) +7(u) T(u) Sin(“)) N(u)

+ (r'(u) sin(v) — r(u) 7(u) cos(v))mu)
©p(u,v) = —r(u) sin(v) N(u) + r(u) cos(v) B(u)

i la primera forma fonamental ve donada per

E(u,v) = (1 — k(u) r(u) cos(v))? + ' (u)* + r(u)? 7(u)?

F(u,v) = —r(u)*7(u)

G(u,v) = r(u)?
de manera que el seu determinant és igual a

EG—F?= ((1 — k(w) r(u) cos(v))? + r'(u)2> r(u)?

Recordem que ¢ és regular si, i només si dp és injectiva. Aixo és equivalent a que els
vectors ¢, 1 ¢, siguin linealment independents, condicié que es verifica quan ¢, X ¢, # 0
0, de forma equivalent, quan E G — F2 = ||, x @, ||* # 0.

Aix{, la parametritzacié ¢ és regular (immersi6) si, i només si 7(u) # 010 bé 1 —
k(u)r(u)cos(v) # 0 o bé r'(u) # 0, per a tot (u,v) € I x (0,27). Observem finalment
que la condicié 1 — k(u) r(u) cos(v) # 0 es satisfa sempre que 0 < r(u) < ﬁ O
Exercici 225(c) Observem també que l'element d’area dA = v E G — F? dudv no depén
de la torsié 7 de la corba 7. O

Exercici 225(d) Les linies de curvatura son corbes ((t) sobre la superficie de manera
que per a tot t el vector tangent 5'(t) és un vector propi de 'aplicaci6 de Weingarten
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W = —dv. Suposem que r(u) és constant i y és plana (i.e. 7(u) = 0) i calculem en aquest
cas
T(u) N(u) B(u)
Ou Ny = |1 — Ek(u) r(u) cos(v) 0 0
0 —r(u) sin(v) r(u) cos(v)

= —(1—k(u) r(u) cos(v)) (r(u) cos(v) N(u) + r(u) sin(v) B(u)),
llavors el vector normal de la superficie S és igual a
Pu N Py :
v(u,v) = —————— = —cos(v) N(u) — sin(v) B(u).
lpu A ol
Si derivem v(u, v) respecte u i v obtenim

(o) 0,0) = 25 = — confo) N'(w) = — cos(e) K T(w) (1 2u(u,0)

dV(QOU)(U” U) = al/g: U)

Per tant, les linies de curvatura sén en aquest cas les linies coordenades. [l

Exercici 225(e) Sigui

= sin(v) N(u) — cos(v) B(u) (|| ¢u(u,v))

v(u) = (a cos(u/a),a sin(u/a),0),
llavors
N(u) = (= cos(u/a), —sin(u/a),0) i B(u) = (0,0,1).

La condicié de regularitat és

i la parametritzacio és
o(u,v) = a(cos(u/a),sin(u/a),0)
+ b (cos(v) (= cos(u/a), — sin(u/a), 0) + sin(v) (0,0, 1))
= ((a — b cos(v)) cos(u/a), (a — b cos(v)) sin(u/a),b sin(v)).

La primera formal fonamental s’escriu com

(1-2 cos(v))2 0
0 b?
i l'area, com ja haviem vist, és

2ma 27 b
/ (/ (1—- cos(v))bdv) du=4r*ab.
0 0 a

Finalment, les linies de curvatura del tor son les seves linies coordenades, és a dir, els
parallels i els meridians. O

Exercici 226. Una corba es pot donar com interseccié de dues superficies
u(z,y,2) =«
’U(I, y? Z) - 6
Si pensem « i  com parametres llavors tenim una familia biparamétrica de corbes. Pero si

hi ha una relacio entre elles del tipus ¢(«, ) = 0 podem pensar que per exemple 5 = [(«)
i tenim una familia uniparamétrica de corbes, que generen doncs una superficie.
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L’equacié d’aquesta superficie sera en aquests casos

¢(a7 /8) = ¢(u(x7 y? Z)? /U<x7 y? Z)) - 0‘
Aix0 és una equaci6 del tipus F'(z,y,z) = 0 que permet, sempre que es compleixin les
condicions habituals, escriure z = z(x, y).
Derivant respecte x i y I’equacié anterior tenim
Gu (U + Uz p) + &y (v +v.p) =0
Gu (Uuy + uzq) + ¢ (vy +v:q) =0,
on p i ¢ designen, com és habitual, les derivades parcials de la funci6 z(z,y) respecte z i

y repectivament. Per tal que ¢ no sigui constant, el determinant d’aquest sistema ha de
ser 0, és a dir,

Uy, Uy Uy Vg Uy Uy
p =0,
Uy Uy U, v, Uy Uy
que escriurem com una EDP lineal de la forma
O(u,v) O(u,v)  O(u,v) _o (54)

PGy 10w o)

Cilindres. Pensem els cilindres com el resultat de fer passar per cada punt d’'una corba
arbitraria en el pla z = 0 una recta de direcci6 fixada (a, b, 1).
Per descriure aquesta situacio a partir dels comentaris anteriors pensem les rectes com
interseccio de plans
r=az+«o
y=bz+p
(observem que aquestes rectes tallen z = 0 en el punt (a, 3,0)).

Sigui ¢(z,y) = 0 una corba en z = 0. Les rectes de la familia anterior que passen per
aquesta corba venen donades per

¢(a, ) =0
és a dir,
¢lr—az,y—bz)=N0.
lequacio general dels cilindres].
L’EDP associada (54) és doncs (u =z —az,v=y —bz)
—ap—bqg+1=0
lequacio diferencial dels cilindres| que expressa que el vector (a, b, 1) és tangent a la su-
perficie (és ortogonal al normal (p, ¢, —1)).

Superficies de revolucidé. Suposem que tenim una superficie de revolucié d’eix la recta
per lorigen amb vector director (a, b, c).
Aquesta superficie es pot considerar formada per la unié de corbes obtingudes tallant
els plans ortogonals a aquesta recta amb esferes de centre 1'origen.
Es a dir,
ar+by+cz=a«
Y+ =8
amb una relaci6 entre v i 5 del tipus ¢(«, ) = 0 donada per la corba generatriu (la que
fem rotar al voltant de Ieix). Tindrem

plax +by+cz,2* +y* +2°) =0.
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lequacio general de les superficies de revolucié amb eix (a, b, ¢)].
[ PEDP associada (54) és doncs (u=ax + by +cz, v =a? + y* + 2?)

plcy—bz)+qlaz—xc)+ (ay—bx) =0,
que expressa que la normal a la superficie talla ’eix de revolucio. O

Exercici 227. Posant n = (ny,ns,n3) i usant que n? +n3 +n2 = 1 (i per tant les seves
derivades respecte z, y, z son zero) un calcul directe mostra que

—n Arot(n) = ((n,grad(n,)), (n, grad(ns)), (n, grad(ns))).
Interpretant aquests productes escalars com derivades direccionals (recordem que la deri-
vada direccional d'una funcié en una direccié v és multiplicar escalarment v pel gradient
de la funci6) tenim
—n Arot(n) = (Dpny, Dpng, Dyng).
que escriurem simplement com
—n Arot(n) = Dpn.

Pero si denotem per T, N, B la referéncia de Frenet de 7(s) tenim n = T de manera

que
ar
—n Arot(n) = DrT = = kN.
s
Per tant
rot(n) =nA(kN)=kB.

Nota. Si la familia de superficies forma part d’un sistema triplement ortogonal es pot
veure (vegeu On Lamé families of surfaces, C. E. Weatherburn, Annals of Mathematics,
28, p. 301-308, 1926) que

div(D, rot(n)) =0
de manera que en aquest cas I’expressio anterior es pot escriure com

d
div(—(k B)) = 0.
iv(*(k B)
Es a dir
div( B+kTN)=0.

Exercici 228. Primer de tot es comprova la condicié d’integrabilitat®
(X rot(X)) = 0,

calcul facil ja que rot(X) = (22 (y — 2),2y (z — 2),22 (z — y)).

El problema és equivalent a veure si X o algun multiple d’ell és gradient d’una funcié.
Llavors les corbes de nivell d’aquesta funcié seran les superficies buscades.

Plantegem doncs si existeixen funcions u = p(z,y,2), U = U(z,y, z) tals que

,u<yz(y+z)das+:vz(x+z)dy+xy(:v+y)dz):dU. (55)
Comencem considerant, de moment, z com parametre i estudiem

,u(yz(y—l—z)dx—l—xz(x—i—z)dy) = dU.

61 Conseqiiéncia immediata del teorema del rotacional. En aquest exercici seguirem el text Ecuaciones
diferenciales de Puig Adam.
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Es veu que pu(z,y) = és factor integrant (vegeu l'argument al final de 'exercici).

222
Busquem doncs una funcié U = U(z,y, z) tal que

oU  z(y+z)

oxr a2y

oU  z(x+=z)

oy P
Integrant s’obté

Les superficies buscades hauran de ser de la forma
Ulz,y,2) = C(z)

per a una certa funci6 de z (es pot pensar com la constant d’integraci6 del sistema anterior
on z era parametre).
Seran els zeros de 'equacio

F(z,y,z) =U(z,y,2z) — C(2) =0.
Per trobar C'(z) s’ha d’imposar (acabar d’integrar 1'equacio (55))

oy o=ty
Ty
és a dir,
—2(z+y+2)
Ty
i ara es produeix el miracle degut a la condicié d’integrabilitat!! Aquesta funcio de la
dreta sempre és funci6 de U i z.

En el nostre cas

=

o =2u
z
perd com que fem calculs sobre F =0 (U = C) tenim €’ = 2C d’on C(z) = kz?, amb k
constant d’integracio, de manera que les superficies buscades (U = C) sén
—z(r+y+2)

Ty
La familia buscada esta donada doncs per les superficies
r+y+=z

ryY

Ara es pot comprovar que per a tot k, i en els punts de la superficie corresponent,
grad(Fy) = p X.

=k 2 (56)

Fi(z,y,2) =kz+ =0.

De fet
0z Ty
perd substituint ara k& pel seu valor deduit de (56) obtenim
or, x+y
9z ay

com voliem.
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Calcul del factor integrant.
La cerca del factor integrant pu = u(x,y, z) porta a 'equacié en derivades parcials

py (Y +2)y— e (@+2)z+2p(y —x) =0

Primer métode.
Mirar els coeficients de x i y i preguntar-nos si existeix p tal que

__2H
Mo = R
_ 2
Hy = Ytz

1
(x+2)2(y+2)%

En aquest métode el factor integrant és p =

Segon métode.
Per eliminar la g posem A = e que transforma ’equaci6é anterior en

ANW+2)y—A(z+2)z+2(y—2)=0,
que igualant coeficients de x, y, z porta a buscar \ tal que
Ypy = —2
1

. U
22 )2

Aixo porta facilment a p =

Exercici 229. Suposarem la superficie que es vol obtenir donada en la forma z = z(z, y).
L’equaci6 del pla tangent en el punt P = (9, o, 20) ¢s p (x—x0) +q (y—yo) — (2 —20) = 0,
on, com és habitual, p, ¢ denoten les derivades de z respecte z, y respectivament, en el
punt P.

Si es talla amb x = y = 0 s’obté —pxy — qyo — (2 — 20) = 0. Es a dir,

2 =20 —PTo— qYo-

La condici6 imposada per I'enunciat (z = —z) és equivalent, doncs, a dir que per a
tot (x,y) (canviem P per un punt geneéric)

pr+qy=2z
Explicitament, es volen obtenir funcions z = z(x,y) tals que
0z 0z

Aixc‘g és una EDP lineal de primer ordre.
Es sabut (vegeu el Recordatori més avall) que per resoldre aquest tipus d’equacions
s’ha de resoldre primer el sistema associat
dv dy dz
Ty 2z

que tindra com solucié una familia biparamétrica de corbes tal, que per cada punt de
I’espai on estan definides en passa una i només una d’elles.
Per resoldre aquest sistema, i pel teorema del canvi de variable, s’escriu com

y =2
X
2

P
xXr
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ony =dy/dx, 2’ = dz/dzx, que dona la familia biparamétrica de corbes
y=Cx
{z = Cy2?
Aixo vol dir que per cada punt (z,y, z) de l'espai passa una corba
y(z) = (z,Cr 2, Co 2%)

1 en aquest punt

, 1
Y(x) = (1,C1,2Cqx) =

— 2
x(x7y7 Z)?

i aix0 mostra que es compleix el sistema associat.
Si hi ha una relacié entre C; i (5 la familia biparamétrica passa a ser uniparamétrica
i per tant una superficie formada per corbes que compleixen les condicions demanades.
Prenem una funcié h : R — R i canviem Cy per hA(C}). Tindrem

y=Cuz
z = h(Cy)2?

49

que si imposem que aquesta condici6 es compleixi per a la hipérbola 22 — y? = 1, del pla

z =1, tenim
1 _h<\/x2—1 )

1 substituint tindrem

x? x
Aixo implica h(t) = 1 — ¢* de manera que la superficie buscada és

2

z:(l—%) 2= g%y

Si la relacié entre C i Cs esta donada de forma implicita, és a dir tenim una funcié
h : R?> — R, i les relacionem posant h(C1, Cy) = 0 s’obté

2
xx
i, imposant la condicié de passar per la hipérbola 22 —y? = 1, z = 1, la relaci6 22— C? 2? =

1, Cyz? =1 que dona C? =1 — Cy i diu que s’ha d’agafar h(u,v) = u* + v — 1, de forma
que

Es a dir, z = 22 — 9.

Recordatori. Observem que I’EDP
X(z,y,2) % +Y(z,y,2) g_?j =Z(x,y,2)

una mica més general que la de Uexercici (cas particular en quée X =z, Y =y, Z = z)
que es pot escriure com

<(X7 Y7 Z)a (p7 q, _1)> =0

representa el problema d’obtenir les superficies per a les que un camp de R® donat (X,Y, Z)
és tangent, és a dir, que en cada punt P de la superficie S es compleizi

(X(z,y,2(x, ), Y (x,y, 2(2,9)), Z(z,y, 2(x,y))) € TpS, P = (z,y,2(z,y)).
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La idea simple és que es determinen les corbes integrals del camp i la unio d’aquestes
corbes sera la superficie buscada.

Busquem corbes y(t) = (z(t),y(t), z(t)) tals que ' (t) = u(X,Y,Z) amb u = pu(t) @
X = X(z(t),y(t), 2(t)), etc. Eliminem aquest factor u escrivint aquesta condicié amb la
notacio habitual

dv dy dz
X Y z
Es diu que aquest sistema és el sistema de primer ordre associat a la EDP.
Pel teorema del canvi de variable aquest sistema es pot escriure com

(57)

dy _ Y
dr X
& _Z
de X

1 €s doncs del tipus

y/ = Fl(xayvz)

2= Fy(x,y, 2)
Les solucions, que es pot demostrar que existeizen com en el teorema d’existéncia i unicitat
habitual, son corbes del tipus (z,y(x)z(x)) amb vector tangent (1,y',2") = (1, Fy, Fy) =
% (X,Y,Z). Per cada punt de l’espai de definicio passa una i només una corba d’aquest
tipus.

Les solucions son del tipus

fi(z,y,2,C1) =0
fQ(xaya Z, 02) =0

on Ch, Cy son les constants dintegracio. FEl fet que per cada punt de l’espai passi una i
només una d’aquestes corbes €s el que permet aillar les constants v tenir

Cl = f(x,y,z)
{02 = g(xaya Z) (58)

Fizades Cy 1 Cy estem tallant dues superficies i genericament tenim, doncs, una corba.
Les solucions d’aquest sistema son, doncs, families biparameétriques de corbes.

Si, a més, tenim una informacio addicional que ens relacioni les constants Cy i Cy
(per exemple Cy = h(C1) per a una certa funcid real de variable real h) el sistema anterior

esdevé
{ Cr = f(a,y,2)
h(Ch) = g(z,y, 2)
1 tenim una familia uniparameétrica de corbes, €s a dir, intuitivament una superficie.
L’equacio d’aquesta superficie s’obté simplement eliminant C d’aquest sistema, i s’ob-

(59)

té

9(z,y, 2) = h(f(z,y,2))
que clarament conté les corbes donades pel sistema (59) i compleix doncs la condicid que
el camp (X,Y,Z) n’és tangent. V|
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