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Prefaci

Benvolgut lector, el que ve a continuació és una llista d’exercicis de corbes i superfícies
que es poden resoldre amb els coneixements habituals dels primers cursos de geometria
diferencial. De fet, la majoria d’ells s’han utilitzat en el curs de geometria diferencial que
s’imparteix a la UAB, en el que han participat durant diversos anys els autors d’aquest
recull. Aprofitem per agrair a altres professors que també hi han participat com Joan
Girbau, Marcel Nicolau, Eduardo Gallego, Gil Solanes, David Marín (i els que en aquest
moment no ens venen al cap) les seves aportacions.

En no tenir la restricció del número de classes de què es disposa durant un curs hem
ampliat les llistes originals amb problemes que ens han semblat interessants, com l’estudi
detallat de les geodèsiques de l’el.lipsoide o cicloides el.líptiques.

Tot i que hi ha molts bons llibres sobre el tema pensem que el fet que aquestes
notes siguin interactives, amb enllaços a Geogebra a la majoria de les il.lustracions i
a SageMathCell en alguns dels càlculs més llargs, les fan diferents i molt útils per als
estudiants.

Els capítols Fets bàsics de la teoria de corbes i Resum teòric sobre superfícies pretenen
ser una guia mínima per localitzar els resultats i fórmules bàsiques que intervenen en les
resolucions dels exercicis i, si convé, s’en poden consultar els detalls a qualsevol tractat
de la matèria. En la mesura del possible, els exercicis estan agrupats per temes per tal
de facilitar l’accés a les qüestions que interessin en cada moment.

S’ha separat els enunciats dels exercicis de les seves solucions per tal d’evitar que el
lector es trobi amb aquesta solució abans d’haver reflexionat sobre l’enunciat i d’haver
plantejat les seves estratègies de solució. En qualsevol cas, les solucions sempre són
accessibles des de l’enllaç (de color verd) que hi ha a la numeració de cada exercici (o
de cada una de les parts que té). Al final de cada solució hi ha un enllaç que torna
directament a l’enunciat corresponent, de tal forma que es pot navegar entre una part i
l’altra sense dificultats (o això és el que esperem).

Finalment, tot i que hem dedicat molt de temps repassant que no hi hagi errades
importants i que aquest text sigui el més clar possible, no dubteu a contactar amb els
autors si detecteu alguna incoherència, creieu que hi ha algun detall fosc o teniu algun
suggeriment sobre enfocaments alternatius a algun dels exercicis.

http://www.geogebra.org
https://sagecell.sagemath.org/
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Fets bàsics de la teoria de corbes

Definició. Sigui I ✓ R un interval obert de R. Una corba parametritzada, o simplement
una corba, és una aplicació � : I �! R3, diferenciable de classe C1.

El conjunt �(I) ⇢ R3 es diu traça de �. El vector

� 0
(t) =

d�(t)

dt

de R3 es diu vector tangent a la corba en el punt �(t).
Si � 0

(t) 6= 0, 8t 2 I, es diu que � és una corba regular.

Definició. Sigui [a, b] ⇢ I i sigui � : I �! R3 una corba parametritzada. La longitud
de � entre a i b es defineix com

Lb
a(�) = lim

n!1

nX

k=1

k�(tk � �(tk�1

))k , tk = a+ k
b� a

n
.

De forma immediata es pot comprovar que aquesta longitud està donada per

Lb
a(�) =

Z b

a

k�0(t)k dt.

Definició. Es diu que una corba � : I �! R3 està parametritzada per l’arc quan

k�0(t)k = 1, 8t 2 I.

Es demostra fàcilment que tota corba regular es pot reparametritzar per l’arc. En
aquest cas el vector

T (s) = �0(s)

és el vector tangent unitari a la corba en el punt �(s).
El vector

N(s) =
T 0
(s)

kT 0
(s)k

és el vector normal principal a la corba en el punt �(s) i el vector

B(s) = T (s) ^N(s)

és el vector binormal a la corba en el punt �(s).

Tenim les definicions següents:
• Referència de Frenet. {�(s); (T (s), N(s), B(s))}.
• Pla osculador. És el pla que passa per �(s) amb espai vectorial director generat

per T (s) i N(s).
• Pla normal. És el pla que passa per �(s) amb espai vectorial director generat per
N(s) i B(s).

• Pla rectificant. És el pla que passa per �(s) amb espai vectorial director generat
per T (s) i B(s).

• Curvatura. És la funció k : I �! R3 tal que T 0
(s) = k(s)N(s).
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Fets bàsics de la teoria de corbes 8

• Radi de curvatura. És l’invers de la curvatura, ⇢(s) = 1/k(s). Òbviament només
està definit en punts de curvatura diferent de zero.

• Cercle osculador. És el cercle del pla osculador amb centre el punt �(s)+⇢(s)N(s)
i radi ⇢(s), on ⇢(s) és el radi de curvatura. Podem dird també, doncs, que la
curvatura és l’invers del radi del cercle osculador.

• Torsió. És la funció ⌧ : I �! R3 tal que B0
(s) = ⌧(s)N(s).

Les fórmules de Frenet donen les derivades de T , N , B escrites en aquesta mateixa
base:

T 0
(s) = k(s)N(s)

N 0
(s) = �k(s)T (s)� ⌧(s)B(s)

B0
(s) = ⌧(s)N(s)

Aquestes fórmules les va obtenir J. F. Frenet a la seva tesi de 1847, però no les va
publicar fins 1852 a Sur quelques propriétés des courbes à double courbure, Journal de
Mathématiques Pures et Appliquées 17 (1852), 437–447. De manera que no va ser el
primer de publicar-les ja que el 1851 les va publicar J. A. Serret a Sur quelques formules
relatives á la theorie des courbes à double courbure, Journal de Mathématiques Pures et
Appliquées 16 (1851), 193–207.

El Teorema fonamental de la teoria local de corbes diu que la curvatura i la torsió
determinen la corba, llevat de moviments rígids.

Toc
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Capítol 1

Corbes planes

1. Parametritzacions i paràmetre arc

Exercici 1. Doneu una corba parametritzada �(t) que tingui per traça el cercle unitat
x2

+y2 = 1 i tal que �(t) el recorri en el sentit de les agulles del rellotge amb �(0) = (0, 1).

Exercici 2. Considerem la corba parametritzada �(t) = (t3 � 2 t, t2 � 2).
(a) Determineu si els punts (�1,�1), (4, 2) i (1, 2) estan sobre la seva traça.
(b) Calculeu els punts d’intersecció amb els eixos de coordenades.
(c) Doneu una equació que defineixi el conjunt imatge.

Exercici 3. Es consideren les aplicacions �, � : R �! R2 definides per
�(t) = (cos (2 t), cos(t)) ,

�(t) = (sin (2 t), cos(t)) .

Decidiu si són corbes regulars (derivada mai nul.la).

Exercici 4. Doneu una parametrització diferenciable de la corba determinada per la
gràfica de la funció y = |x| a l’interval �1 < x < 1.

Exercici 5. Parametritzeu les corbes de R2 definides implícitament per
(a) 4 x2

+ y2 = 1.
(b) x2/3

+ y2/3 = 1. (Astroide, Hipocicloide de 4 punxes, exercici 11).
(c) x3

+ y3 � 3 a x y = 0. (Folium de Descartes).
(d) (x2

+ y2)2 = a2 (x2 � y2). (Lemniscata de Bernoulli).

Exercici 6. (Corba no rectificable). Considerem la corba � : [0, 1] �! R2 definida
per

�(t) = (t, t sin(⇡/t)), si t 6= 0 ,

�(0) = (0, 0).

Demostreu que la longitud d’arc de � corresponent a 1

n+1

 t  1

n és, com a mínim,
2/(n +

1

2

) = 4/(2n + 1). Utilitzeu aquest fet per demostrar que la longitud d’arc de � a
l’interval 1/N  t  1 tendeix a infinit si N ! 1.

Exercici 7. Determineu (si es pot) una parametrització per l’arc de les corbes definides
per
(a) y = log x,
(b) x2/3

+ y2/3 = a2/3,
(c) x2/a2 + y2/b2 = 1.

Exercici 8. Doneu una parametrització de la trocoide: corba caracteritzada per ser
l’òrbita d’un punt P situat a una distància a del centre d’una circumferència de radi b
quan aquesta roda sense lliscament sobre una recta fixada.

9



Parametritzacions i paràmetre arc 10

a b

Trocoide amb a > b.

En el cas a = b s’anomena cicloide. Calculeu el paràmetre arc de la cicloide.

Exercici 9. (Cicloide com isocrona1) A Moby Dick de Herman Melville (1851) tro-
bem la cita següent:

Quan no s’utilitzen, aquestes calderes es conserven considerablement netes. A

vegades les poleixen amb sabó de sastre i sorra fins que brillen per dins com ponxeres

de plata. Durant les guàrdies nocturnes, alguns vells mariners cínics s’hi entaforen,

s’hi ajoquen i fan una becadeta. Quan els mariners es dediquen a polir-les —un

home a cada caldera, tocar a tocar— es passen moltes comunicacions confidencials

per damunt els llavis de ferro. També és un lloc adient per a profundes meditacions

matemàtiques. Fou dins la caldera de mà esquerra del Pequod, amb el sabó de sastre

que m’envoltava per totes bandes, que per primera vegada em va impressionar el

fet remarcable que, en geometria, tots els cossos que llisquen al llarg de la corba

cicloide, el meu sabó de sastre per exemple, baixen en el mateix espai de temps des

de qualsevol punt.

(La destil

.

leria, Moby Dick)

Anem a verificar aquesta propietat de la qual es parla en forma de problema. S’ano-
mena cicloide invertida una cicloide en la qual s’han canviat de signe les coordenades y
dels punts de la corba. S’ha de comprovar que en una cicloide invertida, el temps que
triga un cos que cau lliscant per la corba per efecte de la gravetat, sense fregament, en
arribar al punt més baix és independent del punt de partida.
(a) Comproveu que la cicloide invertida (de paràmetre a = 1) està donada per �(t) =

(t � sin(t), cos(t) � 1), 0  t  2⇡. Dibuixeu-la i comproveu que el punt més baix
correspon al paràmetre t = ⇡.

Verificarem a continuació que, en una cicloide invertida, el temps que triga un cos
que cau lliscant per la corba per efecte de la gravetat (en particular, amb velocitat
inicial nul.la), sense fregament, en arribar al punt més baix és independent del punt
de partida.

Per a això fem les passes següents:
(b) Suposem que un cos llisca (velocitat inicial zero i sense fregament) sobre la cicloide

des del punt �(t
0

) fins al punt �(t). Calculeu la velocitat v(t) amb què arriba aquest
cos al punt �(t).
(Indicació: Recordeu la llei de conservació de l’energia i les expressions de l’energia potencial

i cinètica, Ep = mg h i Ec = mv

2

/2 respectivament).

(c) Calculeu la distància recorreguda entre �(t
0

) i �(t).
1La cicloide també verifica que és la braquistocrona, és a dir, la corba al llarg de la qual una partícula

llisca sota l’acció de la gravetat i sense fregament en un temps mínim d’un punt A a un punt B situats
en verticals diferents (vegeu Aventuras Matemáticas, Miguel de Guzmán, Ed. Labor 1988).

Toc
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Parametritzacions i paràmetre arc 11

(d) Sigui ⌧ = ⌧(t) el temps transcorregut per anar de �(t
0

) a �(t). En particular ⌧(t
0

) = 0.
Calculeu ⌧(⇡) (temps d’arribada des de �(t

0

) al punt més baix) i comproveu que no
depèn de t

0

.

Exercici 10. Determineu una parametrització de la cardioide: corba caracteritzada per
ser el lloc geomètric de l’òrbita d’un punt P d’una circumferència de radi a a mesura que
gira sense lliscament sobre una altra circumferència fixada del mateix radi que l’anterior.

Exercici 11. Parametritzeu les hipocicloides: les corbes descrites per un punt d’un
cercle de radi r que gira sense lliscar a l’interior d’un cercle més gran de radi R = k r.

Exercici 12. Quan una circumferència de radi r gira al voltant d’una circumferència de
radi R, exteriorment a ella, la trajectòria de qualsevol dels seus punts es diu epicicloide.

Exercici 13. Donats un punt F i una recta d del pla, i un nombre real positiu e, la
cònica de focus F directriu d i excentricitat e és el lloc geomètric dels punts P del pla tals
que

d(P, F ) = e · d(P, d).
Si e > 1 (hipèrbola) es considera

p = e �, c =
e p

e2 � 1

, a =

p

e2 � 1

, b =
p
c2 � a2 .

I si e < 1 (el.lipse) es posa2

p = e �, c =
e p

1� e2
, a =

p

1� e2
, b =

p
a2 � c2 .

Observeu que en els dos casos es compleix p = b2/a, quantitat que s’anomena paràmetre
focal
(a) Determineu l’equació de la cònica en el cas particular en què F = (a e, 0) i d és la

recta x = a/e.
(b) Proveu que tota cònica (amb e 6= 1) té dos focus i dues directrius.
(c) Proveu que tota cònica (amb e 6= 1) és el lloc geomètric dels punts del pla tals, que

la suma (resp. diferència) de les distàncies d’aquests punts a dos punts donats (els
focus) és constant.

(d) Proveu que l’equació de la cònica en coordenades polars focals és

r =
p

1� e cos(✓)
.

Per coordenades polars focals entenem coordenades polars de centre un dels focus
i eix d’origen d’angles la recta que uneix els dos focus en la direcció de l’origen cap el
segon. Així si F

1

és el focus origen d’angles tenim r = PF
1

i ✓ = \PF
1

F
2

.
(e) Proveu que �(t) = (a cos(t), b sin(t)) és una parametrització regular d’el.lipse, i que

�(t) = (a cosh(t), b sinh(t)) és una parametrització regular de la hipèrbola.

Exercici 14. Recordem que dos diàmetres d
1

, d
2

d’una cònica es diuen conjugats quan
d
2

és paral.lel a la tangent a la cònica en el punt en què aquesta talla d
1

. Es veu fàcilment
que no depèn de quin dels dos punts de tall entre d

1

i la cònica es consideri, i que d
1

és
conjugat a d

2

si, i només si, d
2

és conjugat a d
1

.
2El cas e = 1 correspon a la paràbola, que no es considera aquí.
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Parametritzacions i paràmetre arc 12

Donada l’el.lipse
x2

a2
+

y2

b2
= 1

demostreu que els pendents m i m0 de dos diàmetres conjugats compleixen

m⇥m0
= � b2

a2
.

Exercici 15. Sigui
�(~x, ~x) =

X

ik

aik xixk = p,

amb p constant, una el.lipse o una hipèrbola. Siguin ~x, ~y direccions que corresponen a
diàmetres conjugats. Demostreu que llavors �(~x, ~y) = 0.

Exercici 16. Parametritzeu la corba anomenada tractriu, caracteritzada geomètrica-
ment pel fet següent: per a tot punt P de la corba, la distància entre aquest punt i el
punt Q, d’intersecció entre la recta tangent a la corba en P amb l’eix d’abscisses, és cons-
tant i igual a 1. Es diu que és el camí que es veu obligat a fer un gos lligat a una corda,
i que va tibant cap al nord, quan el seu amo es passeja cap a l’est. Doneu també una
parametrització per l’arc de la tractriu.

Exercici 17. La corba plana donada per la gràfica de la funció y = cosh(x) s’anomena
catenària. Parametritzeu-la per l’arc.

Exercici 18. (Coordenades polars) Es diu que una corba plana � ve donada en polars
quan s’expressa com:

�(t) =
�
r(t) cos(✓(t)), r(t) sin(✓(t))

�
,

on r(t) i ✓(t) són respectivament les expressions, en funció del paràmetre t, de la distància
a l’origen de coordenades (pol) i de l’angle que forma el vector �(t) amb l’eix de les x
(origen d’angles). Quan es pren l’angle t = ✓ com a paràmetre, l’expressió en polars ve
donada per la funció r = r(t).
(a) Determineu l’equació en coordenades polars d’una circumferència de radi R > 0 cen-

trada a l’origen.
(b) Determineu l’equació en coordenades polars d’una circumferència de radi R > 0 i

centre (R, 0).
(c) Feu una representació gràfica aproximada de la corba definida en coordenades polars

per r(t) = 1� sin(t) i comproveu que es tracta d’una cardioide.
(d) Demostreu que la longitud L d’una corba donada en polars com r = r(t), t 2 [a, b] és

L =

Z b

a

p
r2 + (r0)2 dt.

Exercici 19. (Espiral logarítmica) Considerem la corba plana � : R �! R2 definida
per

�(t) = (a eb t cos(t), a eb t sin(t))

amb b < 0 < a.
(a) Estudieu el comportament de �(t) quan t tendeix a +1.

Toc
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Parametritzacions i paràmetre arc 13

(b) Proveu que �0(t) ! (0, 0) quan t ! 1 i que

lim

t!1

Z t

t0

k�0(s)k ds

és finit. Es a dir que �(t) té longitud finita a tot interval de la forma [t
0

,1).

Exercici 20. [J. W. Rutter3] La paràbola y2 = x es desplaça girant sobre l’eix de les
y. Demostreu que el lloc geomètric del focus és la catenària x =

1

4

cosh(4 y).

Exercici 21. Calculeu la trajectòria d’un focus d’una el.lipse quan aquesta es desplaça
girant sense lliscar per sobre de l’eix x.

Exercici 22. [Shifrin4] Freddy Flintstone5 vol conduir el seu cotxe de rodes quadrades
per una carretera convenient.

Com es pot dissenyar la carretera per tal que la trajectòria sigui perfectament suau, és a
dir, per tal que el centre de la roda segueixi una trajectòria horitzontal?

Exercici 23. A la pàgina 82 de La Géométrie de René Descartes l’autor dona la sorpre-
nent construcció de la normal a la corba que ell anomena la concoide dels antics6.

Sigui DC la primera concoide dels antics, de la qual A és el pol, i BH el regle:
totes les línies rectes que miren cap a A, i que es troben compreses entre la
corba CD i la recta BH, com ara DB i CE, són iguals.

D

F
E

G

A

B

H

C

Si volem trobar la línia CG que la talla en el punt C segons angles rectes,
[. . . ] cal prendre CF damunt la línia recta CA, i fer-la igual a CH que és
perpendicular a HB. Desprès des del punt F tirar la recta FG paral.lela a BA
i igual a EA, i així s’obté el punt G pel qual ha de passar la recta buscada
CG.

3Geometry of curves, Chapman&Hall, 2000.
4Curves and Surfaces, 2010.
5Es manté la versió de Shifrin tot i que al nostre país aquest personatge es va conèixer com Pedro

Picapiedra.
6Sembla ser que la concoide va ser introduïda per Nicomedes un 200 anys AC, per trisecar l’angle i

duplicar el cub.
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L’exercici consisteix a comprovar que aquesta construcció és correcta. I un segon
exercici de caire històric és saber com va arribar Descartes a la seva construcció.

Exercici 24. Estudieu les corbes de Watt. Quina d’elles és una lemniscata?7 Per corba
de Watt entendrem la trajectòria del punt mitjà X d’una barra rígida AB que es mou
estant sempre A en una circumferència de centre F

1

i B sobre una circumferència de centre
F
2

, les dues del mateix radi.

X B
A

F2
F1

2. Curvatura

Exercici 25. Sigui � : I �! R2 una corba regular plana i �
1

: I �! S1 la seva indicatriu
de les tangents. Fixem un punt t

0

2 I. Donat t 2 I denotem per L(t) (resp. L
1

(t)) la
longitud de l’arc de � (resp. �

1

) entre t
0

i t. Demostreu que la curvatura k(t
0

) de � en t
0

és igual al límit lim

t!t0

L
1

(t)

L(t)
.

Exercici 26. [J. W. Rutter] Proveu que, per a una corba determinada per la condició
f(x, y) = 0, amb f diferenciable, la curvatura ve donada per

k = ±

�
fy �fx

� ✓fxx fxy
fxy fyy

◆ ✓
fy
�fx

◆

kgrad(f)k3

amb signe + si el moviment al llarg de la corba és en la direcció del vector (fy,�fx) i �
en cas contrari.

Apliqueu la fórmula anterior per a calcular la curvatura de la hipèrbola

x2 � 3 y2 = 1

en el punt (2, 1).

Exercici 27. Demostreu que una corba regular plana té curvatura constant si, i només
si està continguda en una circumferència.

Exercici 28. Demostreu que el signe de la curvatura d’una corba del pla R2 està donat
per det(�0(t), �00(t)) encara que t no sigui paràmetre arc.

7James Watt (1784) va introduir una família de corbes donades per barres enllaçades. Aquests me-
canismes apareixen en enginyeria sobre tot quan es vol aconseguir un moviment rectilini a partir de
moviments circulars. Veurem que la corba descrita pel punt mitjà d’una barra que gira subjecte a dues
circumferències que giren s’aproxima a una recta. Watt ho va estudiar concretament en relació a les
màquines de vapor.
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Curvatura 15

Exercici 29. Determineu l’equació intrínseca de les epicicloides (12)

Exercici 30. Recordem que per una corba plana �(s), la definició de curvatura és amb
signe de tal manera que si �(s) està parametritzada per l’arc llavors

(s) = det(�0(s), �00(s)).

(a) Sigui  : I ! R una funció diferenciable i siguin s
0

, s
1

, s
2

2 I. Si posem ✓(s) =Z s

s0

(u) du, comproveu que tota corba � : I ! R2 parametritzada per l’arc i amb

curvatura igual a aquesta funció donada (s), es pot escriure, respecte d’una certa
referència ortonormal, de la forma

�(s) =

✓Z s

s1

cos(✓(u)) du,

Z s

s2

sin(✓(u)) du

◆
.

(b) Observeu que un canvi en les constants s
0

, s
1

, s
2

indueix un moviment rígid (rotació
més translació) en la imatge.

(c) Deduïu que tota corba plana de curvatura constant no nul.la és una circumferència.
(d) Sigui � : (�a, a) ! R2 tal que la seva curvatura verifica k(�s) = k(s). Demostreu

que la traça de � és simètrica respecte de la recta normal a � en �(0).
(e) Sigui � : (�a, a) ! R2 tal que la seva curvatura verifica k(�s) = �k(s). Demostreu

que la traça de � és simètrica respecte del punt �(0).

Exercici 31. Determineu una/la corba �(s) parametritzada per l’arc, amb curvatura

k(s) =
1

1 + s2
,

i amb �(0) = (0, 0) i �0(0) = (1, 0). Podríeu dir de quin tipus de corba es tracta? (podeu

utilitzar que
Z

dsp
1 + s2

= arcsinh(s) + c).

Exercici 32. Considereu una corba plana � donada en polars com:

�(t) =
�
r(t) cos(t), r(t) sin(t)

�

(es dona el radi en funció de l’angle de posició).
(a) Demostreu que la curvatura de la corba r = r(t) està donada per

k(t) =
2 (r0)2 � r r00 + r2
�
(r0)2 + r2

�
3/2

.

(b) Proveu que si la funció r(t) té un màxim en t = t
0

, aleshores la curvatura de la corba
r = r(t) en el punt t = t

0

és més gran o igual que
1

r(t
0

)

.

Exercici 33. Calculeu la curvatura d’una el.lipse determinada per l’expressió en coorde-
nades polars

r(✓) =
p

1� e cos(✓)
,

on p és el paràmetre focal i e l’excentricitat.

Exercici 34. (Una altra expressió de la curvatura per a les còniques) Donada
una corba � diferenciable i un punt P sobre ella, la subnormal per P és el segment de la
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recta normal que va de P al tall amb l’eix x. Denotem per N la longitud de la subnormal
en P . Proveu que la curvatura k de l’el.lipse (

x
a)

2

+ (

y
b )

2

= 1 en el punt P és

k =

p2

N3

,

on p = b2/a és el paràmetre de l’el.lipse.
Proveu el mateix per a la hipèrbola (

x
a)

2 � (

y
b )

2

= 1 i la paràbola y2 = 2 p x.

Exercici 35. Demostreu que el recorregut que fan les dues rodes d’una bicicleta (so-
bre un terra pla) que manté el manillar en un angle constant són dues circumferències
concèntriques.

(Fixeu-vos que en el cas extrem que l’angle del manillar sigui recte, és clar que la roda
davantera descriu una circumferència de radi igual a la distància entre els centes de les
dues rodes mentre la posterior gira, sense avançar, sobre un punt fix. Mentre que en l’altre
extrem, quan la roda del davant està alineada amb el cos de la bicicleta, el recorregut de
les dues rodes és una línia recta).

Exercici 36. Clotoide. Determineu el punt A = (a, 0) i la clotoide adequada �(s) tal
que �(0) = A, amb �0(0) = (1, 0), que per a un cert valor del paràmetre s la corba sigui
tangent a la circumferència de centre (1, 1) i radi 1/2, i tingui en el punt de contacte la
mateixa curvatura (2) que aquesta circumferència.

Exercici 37. Vegeu que una corba plana travessa el seu cercle osculador en qualsevol
punt que no sigui un extrem de la curvatura.

Exercici 38. Demostreu que cercles osculadors suficientment pròxims d’una corba plana
no es tallen.

3. Envolupants

Donada una família de corbes X(s, t) (per a cada s fix es considera una corba parametrit-
zada per t) l’envolupant �(s) de la família X és una corba tal, que la seva recta tangent
coincideix amb la recta tangent a la corba X(s, t) en el punt de contacte, això es pot
formular dient que hi ha una funció t = t(s), determinada pel punt d’intersecció de �(s)
amb X(s, t), amb el mateix vector tangent en aquest punt. Així �(s) es pot escriure com
�(s) = X(s, t(s)), i el seu vector tangent ha de ser proporcional al vector tangent a la
corba X(s, t) obtinguda fixant s i variant t. Més específicament, per a cada s

0

dX(s, t(s))

ds |s=s0
= �

dX(t, s
0

)

dt |t=t0
,

on t
0

= t(s
0

) i � 2 R.
Això és, aplicant la regla de la cadena,

@X

@s
(t

0

, s
0

) +

@X

@t
(t

0

, s
0

)

dt

ds |s=s0
= �

dX(t, s
0

)

dt |t=t0
= �

@X

@t
(t

0

, s
0

).
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Per tant, com que (t
0

, s
0

) és un punt arbitrari, @X
@s i @X@t són proporcionals, cosa que es pot

escriure posant
det(

@X

@s
,
@X

@t
) = 0.

Aquesta condició és la corresponent al cas de les envolupants a famílies de rectes
definides per una condició de la forma f(x, y,�) = 0 que es tracta a l’apartat (b) de
l’exercici 5, on es veu l’astroide com l’envolupant d’un cert feix de rectes.

Exercici 39. Proveu que tota corba plana amb curvatura diferent de zero és l’envolupant
dels seus cercles osculadors.

Exercici 40. Determineu l’envolupant de la família de rectes

��(t) = (x�(t), y�(t)) = (0,�) + t (1,�2).

Exercici 41. Determineu l’envolupant de les cordes de la paràbola y = x2 que la tallen
formant una figura d’àrea constant S.

Exercici 42. Demostreu que la càustica d’una circumferència respecte un dels seus
punts és la cardioide. Recordem que la caùstica d’una corba � respecte d’un punt P és
l’envolupant dels rajos lluminosos provinents de P (focus).

4. Involutes i evolutes

Exercici 43. (Involuta) Sigui � : I ! R2 una corba regular plana. S’anomena involuta
de � a qualsevol corba � que talli ortogonalment a totes les rectes tangents de �. Es diu
llavors que � és l’evoluta de �. La figura següent mostra una involuta de la circumferència.

Observeu, per exemple, que la recta PQ de la figura és tangent a la circumferència en
el punt P i normal a la involuta en el punt Q.

P

Q

Suposem que � està parametritzada pel paràmetre arc s. Per a un s fixat, la recta
tangent a � en el punt �(s) és �(s)+ t �0(s), t 2 R, i el punt en què aquesta recta tangent
talla la involuta � és de la forma �(s) = �(s) + �(s) �0(s) per a un cert valor de t = �(s)
(atenció: s és paràmetre arc de �, però no ho serà de �).
(a) Determineu quina ha de ser la funció �(s), sabent que per a un s = s

0

fixat es
compleix �(s

0

) = �(s
0

) (a la figura anterior, s
0

seria el paràmetre de la circumferència
corresponent al punt en què la involuta talla la circumferència).
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Involutes i evolutes 18

(b) Interpreteu geomètricament la parametrització obtinguda.
(Indicació: Podeu utilitzar un cordill).

(c) Doneu una parametrització de la involuta � quan la corba inicial � no està parame-
tritzada per l’arc sinó per un altre paràmetre.

(d) Trobeu la involuta de la catenària donada per y = cosh(x) que passa pel punt (0, 1).
Comproveu que es tracta de la tractriu.

(e) Doneu parametritzacions de les involutes de la circumferència i de la cicloide.

Exercici 44. (Evolutes) Es diu que una corba regular plana � és l’evoluta d’una altra
corba regular plana � si, i només si � és una involuta de �. Això es pot dir d’una altra
manera considerant que � és l’envolupant de la família de rectes normals de �. (Recordeu
que l’envolupant d’una família de corbes és una corba que és tangent a totes les corbes de
la família).
(a) Determineu una parametrització de � en funció del paràmetre arc de �, suposant que

la curvatura de � no s’anul.la.
(b) Interpreteu geomètricament la parametrització obtinguda.
(c) Determineu l’evoluta de la cicloide.

Exercici 45. Deduïu geomètricament que l’evoluta de la tractriu és la catenària.

Exercici 46. Demostreu que l’evoluta de la cardioide és una altra cardioide homotètica
de la original amb raó 1/3 i girada ⇡ radians al voltant del centre d’homotècia. En general,
l’evoluta de les hipocicloides i epicicloides són respectivament hipocicloides i epicicloides.

Exercici 47. Demostreu que la càustica d’una corba � respecte un punt P és l’evoluta
de l’ortotòmica de � respecte de P . Recordem que la caùstica d’una corba � respecte
d’un punt P és l’envolupant dels rajos lluminosos provinents de P (focus), reflectits per
� i que l’ortotòmica és l’envolupant de les circumferències de centres en el punts de � i
que passen per P .

Exercici 48. (Relació entre les curvatures d’una corba i de la seva evoluta)
(a) Calculeu l’expressió de la curvatura de la catenària quan està parametritzada per

l’arc.
(b) Determineu la curvatura de la tractriu respecte el paràmetre induït per la catenària.
(c) Deduïu una fórmula general per la curvatura d’una involuta de ↵ en el paràmetre

induït per l’arc de ↵.

Exercici 49. (Rellotges de pèndol, Huygens, 16738) Per evitar que les variacions
d’amplitud en les oscil.lacions d’un pèndol provoquessin un error en la mesura del temps,
Huygens va idear un sistema basat en les propietats de la cicloide. Es parteix d’una
cicloide invertida de paràmetre a, és a dir

�(t) = (a (t� sin(t)), a (cos(t)� 1)), �⇡ < t < ⇡.

Tot seguit, suposem que aquesta corba és rígida, construïda amb un determinat metall.
Del vèrtex O de la cicloide (vegeu la figura) pengem un cordill amb un pes a l’altre extrem
(punt P de la figura).

8Vegeu Horologium oscillatorium, siue, de motu pendulorum ad horologia aptato demonstrationes ge-
ometricae. París, Apud F. Muguet, (1673).
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Q

P

O

El cordill pot oscil.lar, però en el seu moviment no pot travessar mai la cicloide metàl-
lica. A la figura hem designat per Q el punt de la cicloide en què el cordill deixa d’estar
recolzat sobre la cicloide. La recta determinada per Q i P és tangent a la cicloide. Llavors
la corba que descriu l’extrem lliure del pèndol és ortogonal a les rectes tangents; per tant,
és una involuta de la cicloide. Si s’agafa un cordill de longitud 4 a aquesta corba també
és una cicloide. Llavors el semiperíode del pèndol (el temps que tarda en anar des d’un
extrem a la posició d’equilibri) és independent de l’amplitud degut a que és el temps que
triga un cos en caiguda lliure sobre una cicloide en anar al punt més baix. Calculeu la
corba descrita per l’extrem del pèndol i comproveu que és una cicloide.
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Capítol 2

Corbes a l’espai

1. Parametritzacions i paràmetre arc

Exercici 50. Comproveu que la corba �(t) = (t cos(t), t sin(t), t) té la imatge sobre un
con de R3. Calculeu la velocitat i l’acceleració de �(t) en el vèrtex del con.

Exercici 51. Determineu (si es pot) una parametrització per l’arc de les corbes definides
per:
(a) �(t) = (e

t
sin(t), 1, et cos(t)),

(b) �(t) = (cosh(t), sinh(t), t),
(c) �(t) = (t, t2, t3).

Exercici 52. Considerem una corba � : I �! R3 i un vector fix ~v 2 R3. Demostreu
que si �0(s) és ortogonal a ~v per a cada s 2 I llavors la corba és plana.

Exercici 53. Considerem una corba � : I �! R3 i un vector ~v 2 R3. Suposem que
�(t

0

) i �0(t) són ortogonals a ~v per a tot t 2 I. Demostreu que �(t) és ortogonal a ~v per
a tot t.

Exercici 54. Sigui P un punt de R3 que no està contingut en la imatge de la corba
� : I �! R3. Sigui s

0

2 I tal que el punt �(s
0

) és el punt de la corba més proper a P .
Demostreu que �0(s

0

) és ortogonal al vector �(s
0

)� P .

2. Triedre de Frenet. Curvatura i torsió

Exercici 55. Sigui �(t) la parametrització d’una corba regular (no necessàriament per
l’arc). Demostreu les fórmules per a la curvatura k(t) i la torsió ⌧(t) d’aquesta corba
següents:

k(t) =
k�0(t) ^ �00(t)k

k�0(t)k3
,

⌧(t) = �h�0(t) ^ �00(t), �000(t)i
k�0(t) ^ �00(t)k2

.

Exercici 56. Calculeu la curvatura, la torsió i el triedre de Frenet de les corbes següents:
(a) �(t) = (t, t2, t3).

(b) �(t) = (t,
1� t

t
,
1� t2

t
). Proveu, a més, que la corba és plana i determineu el pla que

la conté.
(c) �(t) = (e

t, e�t,
p
2 t).

(d) �(t) = (2 t, log(t), t2).
(e) �(t) = (3 t� t3, 3 t2, 3 t+ t3). En aquest cas proveu que k(t) = ±⌧(t).
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Exercici 57. Corbes de Salkowski.1 Comproveu, utilitzant alguna eina de càlcul
simbòlic i numèric, que la corba

x(t) =

16p
257

 
�

p
257 � 1

4(

p
257 + 2)

sin((1 +

2p
257

) t)�
p
257 + 1

4(

p
257 � 2)

sin((1� 2p
257

) t)� 1

2

sin(t)

!
,

y(t) =

16p
257

 p
257 � 1

4 (

p
257 + 2)

cos((1 +

2p
257

) t) +

p
257 + 1

4(

p
257 � 2)

cos((1� 2p
257

) t) +

1

2

cos(t)

!
,

z(t) =

64p
257

cos(

2 tp
257

),

(que és un cas particular de corba de Salkowski), té curvatura constant k = 1 i torsió
variable ⌧(t) = tan(

tp
257

).

Exercici 58. Sigui � : I �! R3 una corba regular amb curvatura idènticament nul.la.
Demostreu que �(I) està continguda en una línia recta.

Exercici 59. Sigui � : I ! R3 una corba regular. Demostreu que si totes les seves rectes
tangents passen per un punt fix, llavors la traça de � està continguda en una recta.

Exercici 60. Demostreu que una corba regular �(t) té imatge continguda en una recta
si, i només si �00(t) és proporcional a �0(t).

Exercici 61. Sigui � : I ! R3 una corba regular amb curvatura mai nul.la. Demostreu
que � és plana si, i només si tots els plans osculadors són paral.lels a un pla fix.

Proveu també que � és plana si, i només si la torsió de � és idènticament zero.

Exercici 62. Considerem l’aplicació de R en R3 de classe C1 definida per

�(t) =

8
>><

>>:

(t, 0, e�1/t2
) per t > 0

(t, e�1/t2 , 0) per t < 0

(0, 0, 0) per t = 0.

Comproveu que aquesta corba té torsió nul.la però no està continguda en un pla.

Exercici 63. Sigui � : I ! R3 una corba regular amb curvatura mai nul.la. Demostreu
que si totes les seves rectes normals passen per un mateix punt aleshores la traça de �
està continguda en una circumferència.

Exercici 64. Sigui � : I �! R3 una corba regular amb k(s) 6= 0 per a tot s 2 I.
Demostreu que si tots els plans osculadors de � passen per un punt fix P llavors la corba
és plana.

Exercici 65. Sigui �(t) una corba regular i t
0

un valor del paràmetre per al qual la
curvatura k(t

0

) 6= 0. Sigui ⇡ la projecció ortogonal sobre el pla osculador de � en t
0

i
�̃ = ⇡ � � la projecció sobre aquest pla de la corba �. Proveu que el valor ˜k(t

0

) de la
curvatura de �̃ en t

0

coincideix amb k(t
0

).

1Vegeu Salkowski curves revisited: A family of curves with constant curvature and non-constant tor-
sion, Computer Aided Geometric Design, J. Monterde, Volume 26, Issue 3, March 2009, Pages 271-278
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Exercici 66. (Corbes de Bertrand2) Siguin �(t) i �(t) dues corbes diferents tals que
per a cada t 2 (a, b) la recta normal principal a �(t) en el punt de coordenada t coincideix
amb la recta normal principal a �(t) en el punt de coordenada la mateixa t. Suposem que
la curvatura k�(t) i la torsió ⌧�(t) de �(t) són no nul.les en tot punt.
(a) Proveu que existeix una constant r 6= 0 tal que �(t) = �(t) + r N�(t), 8t 2 (a, b), on

N�(t) és el vector normal principal a la corba �(t). En particular la distància entre
�(t) i �(t) és constant.

(b) Proveu que l’angle entre els vectors tangents a �(t) i �(t), en els punts corresponents
al mateix paràmetre t, és constant.

(c) Proveu que hi ha una relació lineal entre la curvatura i la torsió de �(t) (és a dir, que
existeixen constants a, b tals que a k�(t) + b ⌧�(t) = 1).

Exercici 67. Si hi ha una correspondència bijectiva entre els punts de dues corbes i les
tangents en punts corresponents són paral.leles, demostreu que les normals principals són
també paral.leles, i per tant també les binormals.

Proveu també que
k
2

k
1

=

⌧
2

⌧
1

=

ds
1

ds
2

.

Quan tenim dues corbes així relacionades diem que una s’ha obtingut de l’altra per
una transformació de Combescure3.

Exercici 68. Demostreu que si � és una corba de curvatura constant llavors la corba for-
mada pels centres de curvatura també és de curvatura constant i la corba dels seus centres
de curvatura és la corba inicial. En particular són corbes de Bertrand (exercici 66).

Exercici 69. Sigui � : I ! R3 una corba regular amb curvatura mai nul.la. Demostreu
que si tots els centres dels cercles osculadors de � estan continguts en una recta aleshores
� és una circumferència.

Exercici 70. Demostreu que el lloc geomètric dels centres dels cercles osculadors és una
corba tal, que la seva tangent en cada punt és ortogonal a la tangent de la corba inicial
en el punt corresponent.

Exercici 71. Sigui �(s) una corba tal, que curvatura i torsió no s’anul.len mai. Demos-
treu que el coneixement del vector binormal B(s) determina la curvatura k(s) i el valor
absolut de la torsió ⌧(s).

Exercici 72. Sigui �(s) una corba regular. Suposem que la curvatura k(s) i la torsió
⌧(s) no s’anul.len en cap punt de la corba.
(a) Demostreu que

hN(s) ^N 0
(s), N 00

(s)i
kN 0

(s)k2
=

⇣
k(s)
⌧(s)

⌘0

⇣
k(s)
⌧(s)

⌘
2

+ 1

. (1)

2Les avui nomenades corbes de Bertrand apareixen per primer cop al treball Mémoire sur la théorie des
courbes à double courbure, Journal de Mathématiques Pures et Appliquées 15 (1850), 332–350. L’interès
per aquestes corbes ja havia estat formulat cinc anys abans per Saint-Venant. Bertrand demostra que
hi ha una relació lineal entre la curvatura i la torsió de cadascuna d’aquestes corbes i que si una de les
corbes té curvatura constant (hipòtesis que en realitat no és necessària) llavors el producte de les torsions
de les dues corbes en punts corresponents és constant.

3Aquesta transformació apareix al treball de E. Combescure Sur les déterminants fonctionnels et les
coordonnées curvilignes, Annales Scientifiques de l’Ecole Normale Supérieure, Paris IV (1867), 93–131.
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(b) Demostreu que si s és el paràmetre arc, es coneix N(s) en tot punt i en s
0

coneixem

el quocient
k(s

0

)

⌧(s
0

)

, llavors podem calcular k(s) i ⌧(s) en tot punt de la corba (i per

tant, la corba, llevat de moviments rígids).

Exercici 73. Trobeu una corba parametritzada per l’arc amb curvatura k(s) = 1/s,
torsió ⌧(s) = 0, que passi pel punt (1, 0, 0) quan s = 1 i que, en aquest punt, el seu triedre
de Frenet sigui la base canònica de R3.

Exercici 74. Determineu una corba parametritzada per l’arc amb curvatura k(s) = s,
torsió ⌧(s) = 0, que passi per l’origen quan s = 0 i que, en aquest punt, el seu triedre de
Frenet sigui

T (0) = (

p
2

2

,

p
2

2

, 0),

N(0) = (

p
2

2

,�
p
2

2

, 0),

B(0) = (0, 0,�1).

Exercici 75. El triedre de Frenet d’una corba està format per vectors lliures i podem
pensar, doncs, que en variar el paràmetre t de la corba, tenim una família de triedres que
es mouen amb un punt fix (per exemple, l’origen de coordenades). És ben sabut que quan
un cos rígid (en aquest cas, el triedre) es mou amb un punt fix, el moviment és un gir
infinitesimal al voltant d’un eix.

Determineu la velocitat angular en què gira el triedre de Frenet d’una corba en termes
dels invariants d’aquesta corba4.

3. Corbes esfèriques i hèlixs

Exercici 76. (Volta de Viviani) Sigui C la corba intersecció de l’esfera x2

+y2+z2 = 1

amb el cilindre x2

+ y2 � y = 0. Calculeu la curvatura i la torsió de C.
4Darboux, a la seva obra Leçons sur la theorie generale des surfaces et les applications gométriques

du calcul infinitesimal, Gauthier Villars et Fils, París, 1887, 4 vol. de 1887, 1889, 1894, 1896, dedueix les
fórmules de Frenet a partir del fet físic de què, quan un sistema rígid es mou al voltant d’un punt fix, les
velocitats dels diferents punts dels sistema són les mateixes que si el sistema girés al voltant d’una recta
que passés pel punt fix. Aquesta recta rep el nom d’eix instantani de rotació. Just amb aquestes paraules
que acabem de traduir gairebé directament de les Leçons comencen els 4 volums d’aquesta immensa obra.
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Exercici 77. Es diu que una corba és esfèrica si el seu recorregut està sobre una esfera.
(a) Demostreu que una corba �(s) és esfèrica si, i només si, existeix un punt fix c

0

(el
centre de l’esfera que la conté) tal que el vector �(s)� c

0

és perpendicular a �0(s) per
a tot s.

(b) Comproveu que si �(s) és esfèrica llavors k(s) > 0 per a tot s.
(c) Comproveu que el centre c

0

de l’esfera que conté una certa corba �(s) (parametritzada
per l’arc) es pot obtenir com

c
0

= �(s) +
1

k(s)
N(s) +

k0
(s)

(k(s))2 ⌧(s)
B(s)

per a qualsevol s on ⌧(s) 6= 0,5 i per tant, el radi d’aquesta esfera és

r =

s✓
1

k(s)

◆
2

+

✓
k0
(s)

(k(s))2 ⌧(s)

◆
2

.

(d) Tenint en compte els càlculs de l’apartat anterior, demostreu el recíproc. És a dir, si
�(s) és una corba parametritzada per l’arc amb k(s) 6= 0 i ⌧(s) 6= 0 tal que

✓
1

k(s)

◆
2

+

✓
k0
(s)

(k(s))2 ⌧(s)

◆
2

= c

amb c constant, llavors �(s) està sobre una esfera de radi
p
c .

Exercici 78. Es designa per hèlix una corba tal que les seves tangents formen un angle
constant amb una direcció fixada (que és diu que és l’eix de l’hèlix).6

(a) Proveu que una corba és una hèlix si, i només si, les seves normals principals són
paral.leles a un pla fixat (de fet, el pla perpendicular a l’eix).

(b) Demostreu que si la torsió no s’anul.la, llavors �(s) és una hèlix si i només si
k(s)

⌧(s)
= ct.

5Si ⌧(s) = 0 per a tot s la corba és plana (un paral.lel o meridià) i no es pot determinar el radi de
l’esfera que la conté. Un paral.lel pot ser comú a esferes de diferent radi. Fora dels intervals on ⌧(s) = 0

aquestes fórmules són certes encara que ⌧(s) = 0 en un punt (a la demostració es veurà que si ⌧(s0) = 0

també k

0
(s0) = 0) ja que per ser �(s) diferenciable ho és la component de �(s)� c respecte B(s), la qual

és una funció que val k

0(s)
(k(s))2 ⌧(s) fora dels zeros de ⌧(s) i lim

s!s0

k

0(s)
(k(s))2 ⌧(s) quan ⌧(s0) = 0.

6Amb aquesta definició tota corba plana és una hèlix ja que les seves tangents formen un angle de ⇡/2

amb el vector director del pla. Per això assumirem que les hèlixs son corbes no planes.
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(c) Quin invariant permet distingir una hèlix dextrògira d’una hèlix levògira?
(d) Proveu que tota hèlix �(s) es pot escriure com �(s) = �(s) + s~v on �(s) és una corba

plana continguda en un pla perpendicular a l’eix de �(s) i ~v un vector fix. Relacioneu
les curvatures de �(s) i �(s).

(e) Comproveu que la corba �(t) = (a cos(t), a sin(t), b t) és una hèlix (s’anomena hèlix
circular). Determineu l’eix i la corba plana associada.

(f) Vegeu que el lloc geomètric dels centres dels cercles osculadors d’una hèlix circular és
una altra hèlix circular coaxial i del mateix pas.

(g) Localitzeu, entre les corbes que han sortit en exercicis anteriors, altres hèlix i mireu
d’obtenir el seu eix i la corba plana associada.

Exercici 79. Considerem l’hèlix circular donada per
�(s) = (a cos(s/c), a sin(s/c), b s/c) ,

amb s 2 R i c2 = a2 + b2.
(a) Demostreu que �(s) està parametritzada per l’arc.
(b) Determineu la curvatura i la torsió de �(s).
(c) Determineu el pla osculador.
(d) Demostreu que les rectes que tenen direcció N(s) i passen per �(s) tallen l’eix Oz

amb angle constant igual a ⇡/2.

Exercici 80. Sigui �(s) una corba que té curvatura constant k = 3, torsió constant ⌧ = 4

i quan s = 0 passa per (0, 0, 0) amb triedre de Frenet T (0) = (1, 0, 0), N(0) = (0, 1, 0),
B(0) = (0, 0, 1). Determineu la parametrització per l’arc de �.

Exercici 81. Trobeu totes les corbes parametritzades per l’arc � : R ! R3 que tinguin
vector binormal B(s) = 1p

2

(sin(

sp
2

),� cos(

sp
2

), 1) i torsió positiva.

Exercici 82. Sigui �(s) una corba regular parametritzada per l’arc, amb curvatura mai
nul.la. Definim la seva indicatriu tangent com la corba esfèrica �

1

(s) = �0(s). Trobeu la
curvatura k

1

(s) i la torsió ⌧
1

(s) de �
1

(s) en funció de la curvatura k(s) i la torsió ⌧(s)
de �(s). Deduïu que �

1

(s) és plana si i només si ⌧(s)
k(s) és constant. Doneu una definició

d’indicatriu binormal i deduïu fórmules anàlogues.

Exercici 83. Determineu les hèlixs esfèriques.

Exercici 84. Considerem la corba parametritzada �(t) = (cosh(t), sinh(t), t), t 2 R.
(a) Calculeu-ne la curvatura i la torsió. Demostreu que �(t) és una hèlix.
(b) Determineu el paràmetre arc de �(t).

Exercici 85. Comproveu que la corba definida per

�(s) = (

a

c

Z
sin(✓(s)) ds,

a

c

Z
cos(✓(s)) ds,

b

c
s),

amb a2 + b2 = c2, i on ✓(s) és qualsevol funció amb ✓0(s) 6= 0, compleix que
k(s)

⌧(s)
= ±a

b
(en particular, és una hèlix).

Exercici 86. Donada una corba �, existeixen infinites corbes tals, que les seves rectes
tangents tallen � ortogonalment7.

7L’estudi d’evolutes a l’espai és la primera cosa que va estudiar Monge al llarg de la seva llarga carrera.
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En el seu treball ,Mémoire sur les développées, les rayons de courbure, et les differents genres d’inflexions
des courbes à double courbure, Mémoires présentés par divers savants à l’Académie des Sciences de l’Ins-
titut de France X(1785), diu: je me propose de démontrer dans ce Mémoire qu’une courbe, plane ou à
double curvature a une infinité de développées, toutes a doublecourbure, [...] et de donner la manière de
trouver les equations de telle de ces courbes qu’on voudra, etant données les equations de la développante.
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Resum teòric sobre superfícies

La majoria dels conceptes sobre superfícies que aniran apareixent en aquestes notes es
deuen a C. F. Gauss que les va introduir en el seu famós treball Disquisitiones generales
circa superficies curvas. Commentationes Societatis Regiae Scientarum Gottingensis Re-
centiores Classis Mathematicae VI, 99–146, (1827). S’hi pot trobar el que avui anomenem
aplicació de Gauss, curvatura de Gauss, primera i segona formes fonamentals, geometria
intrínseca, símbols de Christoffel, equació de les geodèsiques, etc.

Primera forma fonamental

Definició. (Superfície) Una superfície regular és un subconjunt S ⇢ R3 tal que per a
tot punt P 2 S existeix un entorn obert W de P a R3 i una aplicació ' : U ⇢ R2 �! R3

diferenciable, on U és un obert de R2, amb '(U) = W \ S, tal que
(a) ' : U �! W \ S és homeomorfisme (quan dotem W \ S de la topologia induïda).
(b) Per a tot punt Q 2 U , l’aplicació diferencial d'Q : R2 �! R3 és injectiva.

Cada parell (U,') amb les propietats anteriors es diu carta local o parametrització
local.

Els dos mecanismes més bàsics per tal d’obtenir superfícies sense haver de donar
parametritzacions explícites s’obtenen a partir dels resultats següents:

Proposició. Sigui h : U ⇢ R2 �! R una funció diferenciable definida sobre l’obert U de
R2. Llavors la gràfica de h

Gh = {(x, y, z) 2 U ⇥ R | z = h(x, y)}
és una superfície.

Proposició. Sigui f : V ⇢ R3 �! R diferenciable sobre l’obert V , i sigui a 2 R tal que
dfP 6= 0 per a tot P 2 f�1

(a). Llavors S = f�1

(a) és una superfície.

Definició. Sigui P un punt d’una superfície S. L’espai tangent a la superfície en P , TPS,
és el subconjunt de R3 format pel vectors tangents en P de totes les corbes sobre S que
passen per aquest punt.

Si (U,') és una parametrització de S llavors TPS és l’espai vectorial generat pels vec-
tors tangents 'u(u, v),'v(u, v). No obstant, sovint es parla d’espai tangent a la superfície
en P per referir-se a l’espai afí P + TP (S).

Definició. Sigui P un punt d’una superfície S. La primera forma quadràtica fonamental
de S en P és la restricció a TPS del producte escalar de R3. És a dir,

IP : TPS ⇥ TPS �! R
X, Y 7�! hX, Y i.

La matriu de I respecte la base ('u,'v) es denota per

I =

✓
E F
F G

◆
.
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És a dir, E = h'u,'ui, F = h'u,'vi, G = h'v,'vi. Són funcions sobre l’espai de
paràmetres U on està definida la carta local.

El coneixement d’aquests coeficients sobre una corba '(u(s), v(s)) de S permet conèi-
xer la seva longitud. Concretament

L =

Z b

a

p
E (u0

)

2

+ 2F u0 v0 +G (v0)2 dt ,

on E = E(u(s), v(s)), etc.
I també l’àra d’una regió R = '(Q) per

Àrea(R) =

ZZ

Q

p
E G� F 2 du dv .

Definició. (Isometries) Una aplicació diferenciable F : S
1

�! S
2

entre dues superfícies
és una isometria local si preserva longituds; i.e. per a tota corba � : I �! S

1

es compleix
L(�) = L(F � �). Si, a més, F és bijectiva es diu que F és isometria.

El resultat següent permet identificar les isometries locals i és, normalment, el que
s’utilitza per a aquestes situacions.

Proposició. Sigui F : S
1

�! S
2

una aplicació diferenciable. Llavors F és isometria
local si, i només si els coeficients E, F , G de la primera forma fonamental de S

1

respecte
una certa carta local (U,') coincideixen amb els coeficients E, F , G de la primera forma
fonamental de S

2

respecte la carta local (U, F � ').

Segona forma fonamental

Endomorfisme de Weingarten

Definició. (Aplicació de Gauss) Es diu que una superfície S és orientable si existeix
una aplicació diferenciable

⌫ : S �! S2,

on S2 és l’esfera de centre l’origen de R3 i radi 1, tal que

⌫(P ) ? TP (S), 8P 2 S.

Aquesta aplicació ⌫ es coneix com aplicació de Gauss de S.

Definició. (Endomorfisme de Weingarten8) L’endomorfisme

WP : TPS �! TPS

donat per
WP = �d⌫P

8Julius Weingarten, Uber eine Klasse auf einander abwickelbarer Flächen, Journal für die reine und
angewandte Mathematik 59 (1861), 382–393. En aquest article apareixen les avui anomenades superfícies
de Weingarten que són les que tenen la propietat de què un radi de curvatura principal es pot determinar
de la mateixa manera en cada punt a partir de l’altre, és a dir, superfícies en les que hi ha una equació
funcional entre les dues curvatures principals �(k1, k2) = 0 que es compleix en tots els punts de la
superfície.
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s’anomena endomorfisme de Weingarten.
Dit d’una altra manera, l’endomorfisme de Weingarten és la diferencial de l’aplicació

de Gauss, canviada de signe.

Definició. (Direccions principals) Les direccions principals i les curvatures princi-
pals en un punt P 2 S són, respectivament, les direccions pròpies i els valors propis de
l’endomorfisme de Weingarten WP .

Definició. (Curvatura mitjana i curvatura de Gauss) La curvatura mitjana H de
la superfície en P 2 S és la meitat de la traça de l’endomorfisme de Weingarten.

La curvatura de Gauss K de la superfície en P 2 S és el determinant de l’endomorfisme
de Weingarten.

Definició. (Segona forma fonamental) Sigui P un punt d’una superfície S. La segona
forma quadràtica fonamental de S en P és l’aplicació

II : TPS ⇥ TPS �! R
(X, Y ) 7�! hWP (X), Y i

Definició. Es diu que un vector X 2 TPS és direcció asimptòtica quan

II(X,X) = 0.

Definició. (Indicatriu de Dupin) El conjunt format per les dues còniques de TPS que
respecte la base ortonormal de vectors propis e

1

, e
2

de l’endomorfisme de Weingarten
tenen equacions

k
1

x2

+ k
2

y2 = ±1,

on k
1

, k
2

són les curvatures principals, es diu Indicatriu de Dupin.

De fet, els punts d’una superfície es poden classificar, segons la indicatriu de Dupin
sigui una el.lipse, una hipèrbola, dues rectes paral.leles o el conjunt buit, de la manera
següent.
Punts el.liptics, si k

1

k
2

> 0.
Exemple: el punt (0, 0, 0) de '(x, y) = (x, y, x2

+2 y2) on tant k
1

com k
2

són positius,
o de '(x, y) = (x, y,�x2 � 2 y2) on tant k

1

com k
2

són negatius

Punts hiperbòlics, si k
1

k
2

< 0.
Exemple: el punt (0, 0, 0) de '(x, y) = (x, y, x2 � 2 y2). Si tallem la superfície amb
el pla z = ✏ obtenim x2 � 2y2 = ✏ i la indicatriu de Dupin és 2 x2 � 4 y2 = 1.

Punts parabòlics, si k
1

k
2

= 0 amb k
1

o k
2

diferent de zero.
Exemple: el punt (0, 0, 0) de '(x, y) = (x, y, x2

). Si tallem la superfície amb el pla
z = ✏ obtenim les rectes (✏, y, ✏) i (�✏, y, ✏) (és a dir, les rectes x = ±✏ del pla z = ✏),
i la indicatriu de Dupin és x = ± 1p

2

.
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Punts plans, si k
1

= k
2

= 0.
Exemple: el punt (0, 0, 0) de '(x, y) = (x, y, x3

) (o qualsevol punt d’un pla, òbvia-
ment). O la cadira de mico: '(x, y) = (x, y, x3 � 3 x y2). (La tercera component és
la part real de (x+ y i)3). La indicatriu de Dupin no dona informació.

Dins la tercera memòria que configura l’obra de Charles Dupin Développements de
géometrie, París (1813) titulada Suite de la théorie des tangents conjuguées apareix el
resultat següent: Théorème Fondamental. Pour chaque point non singulier d’une surface,
il existe toujours une ligne du second degré placée sur le plan tangent, ayant pour centre
le point que l’on considère, et telle enfin qu’elle indique et caractérise toujours tout ce qui
peut être relatif à la courbure de la surface, à partir du point qu’on a pris pour centre.
Telle ést la courbe que nous nommons indicatrice.

Càlculs en coordenades

Si ' : U ✓ R2 �! R3 és una parametrització o carta local d’una superfície i s’escriuen les
matrius de la primera i segona forma fonamentals respecte de la base (

@'
@u ,

@'
@v ) com

I =

✓
E F
F G

◆
, II =

✓
e f
f g

◆
, W =

✓
a
11

a
12

a
21

a
22

◆

es té
E = h'u,'ui, , F = h'u,'vi, G = h'v,'vi,
e = h⌫,'uui, f = h⌫,'uvi, g = h⌫,'vvi,

on ⌫ és la normal a la superfície considerada com funció a l’espai de paràmetres.
L’endomorfisme de Weingarten és llavors

W = I�1 II =

1

E G� F 2

✓
Ge� F f Gf � F g
E f � F e E g � F f

◆
.

Per tant, les curvatures mitjana i de Gauss estan donades per

H =

1

2

E g � 2F f +Ge

E G� F 2

, (2)

K =

e g � f 2

E G� F 2

. (3)

Un dels resultats que posa de manifest la importància de considerar la primera i segona
forma fonamentals és el següent9.

Teorema. (Teorema fonamental de la teoria de superfícies) Siguin S
1

i S
2

super-
fícies orientables amb S connexa. Sigui � : S

1

�! S
2

una isometria local que conserva la
segona forma fonamental. Llavors � és la restricció a S

1

d’un moviment rígid de R3.

Corbes sobre superfícies

Sigui �(s) una corba parametritzada per l’arc sobre una superfície orientada S.
En cada punt de �(s) tenim cinc vectors que juguen un paper destacat: La referència

de Frenet T (s), N(s), B(s), el normal a la superfície en el punt, ⌫(�(s)), que d’ara en
endavant denotarem ⌫(s), i el vector tangent a la superfície i normal a T (s), donat per

e(s) = ⌫(s) ^ T (s).

9Vegeu S. Montiel and A. Ros, Curvas y Superfícies, Proyecto Sur, 1997.
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Definició. (Curvatures normal i geodèsica) Sigui �(s) una corba sobre una superfí-
cie orientada S, parametritzada per l’arc. Els coeficients que apareixen en descompondre
�00(s) en la base (e(s), ⌫(s)) són la curvatura geodèsica i la curvatura normal respectiva-
ment.

Tindrem, doncs,
�00(s) = kg(s) e(s) + kn(s) ⌫(s). (4)

En particular,
kg = h�00, ⌫ ^ �0i = det(⌫, �0, �00),

i
k2

= k2

g + k2

n.

Teorema. (Teorema de Meusnier10) Sigui � = �(s) una corba sobre una superfície
orientada S, parametritzada per l’arc. La curvatura normal de � en el punt �(s) val

kn(s) = II�(s)(�
0
(s), � 0

(s)).

Definició. (Línies de curvatura) Sigui �(s) una corba continguda en una superfície S.
Direm que � és línia de curvatura si �0(s) és, per a tot s, vector propi de l’endomorfisme
de Weingarten. Dit d’una altra manera, la tangent a � en cada punt és una direcció
principal.

Definició. (Línies asimptòtiques) Sigui �(s) una corba continguda en una superfície
S. Direm que � és línia asimptòtica si �0(s) és, per a tot s, direcció asimptòtica. És a dir,
per a cada s, es compleix II(�0(s), �0(s)) = 0.

Una corba �(s), que s’escriu com �(s) = '(u(s), v(s)) respecte una certa carta local
(U,'), serà:
Una línia de curvatura si compleix l’equació diferencial������

(v0)2 �u0 v0 (u0
)

2

E F G
e f g

������
= 0. (5)

Una línia asimptòtica si compleix l’equació diferencial
e (u0

)

2

+ 2 f u0 v0 + g (v0)2 = 0 .

Naturalment, s’ha d’entendre que els coeficients de la primera i segona forma fonamentals
estan avaluats sobre els punts de la corba (E = E(u(s), v(s)), etc.).

Teorema egregi

Sigui (U,') una carta local d’una superfície S. Si s’escriuen les derivades segones de '
en el punt (u, v) respecte de la base 'u(u, v), 'v(u, v), ⌫(u, v), on ⌫ és la normal a la
superfície es tenen les igualtats de funcions vectorials definides a U següents:

'uu = �

1

11

'u + �
2

11

'v + e ⌫,

'uv = �
1

12

'u + �
2

12

'v + f ⌫,

'vv = �
1

22

'u + �
2

22

'v + g ⌫,

(6)

10J. B. Meusnier, Mémoire sur la courbure des surfaces, Mémoires de savants étrangers, París, 1785.
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on e, f , g són els coeficients de la segona forma fonamental.
Els coeficients �k

ij, funcions de u i v, s’anomenen símbols de Christoffel.

Multiplicant aquestes equacions per 'u i 'v i resolent els sistemes que es van obtenint
és fàcil obtenir el valor dels símbols de Christoffel en termes dels coeficients de la primera
forma fonamental i les seves derivades. Només s’ha d’observar que

Eu = 2 h'uu,'ui,
Ev = 2 h'uv,'ui,
Fu = h'uu,'vi+ h'u,'uvi .

Així s’obté 0

@
Eu/2 Fu � Ev/2
Ev/2 Gu/2

Fv �Gu/2 Gv/2

1

A
=

0

@
�

1

11

�

2

11

�

1

12

�

2

12

�

1

22

�

1

22

1

A
✓
E F
F G

◆
.

I, multiplicant per la dreta per la matriu inversa11 de la primera forma fonamental I,
s’arriba a

�

1

11

=

GEu � 2F Fu + F Ev

2 (E G� F 2

)

, �

2

11

=

2E Fu � E Ev � F Eu

2 (E G� F 2

)

,

�

1

12

=

GEv � F Gu

2 (E G� F 2

)

, �

2

12

=

E Gu � F Ev

2 (E G� F 2

)

,

�

1

22

=

2GFv �GGu � F Gv

2 (E G� F 2

)

, �

2

22

=

E Gv � 2F Fv + F Gu

2 (E G� F 2

)

.

La importància fonamental d’aquestes fórmules rau en què permeten veure que els
símbols de Chirstoffel es poden calcular coneixent només els coeficients de la primera
forma fonamental. I aquest fet és el germen del teorema egregi.

El teorema egregi i les equacions de Codazzi-Mainardi s’obtenen simplement en con-
siderar les parts tangent i normal de les equacions

('uu)v = ('uv)u, ('uv)v = ('vv)u.

Una de les igualtats que s’obté és

�E
e g � f 2

E G� F 2

=

�
�

2

12

�
u
�
�
�

2

11

�
v
+ �

1

12

�

2

11

� �1

11

�

2

12

+ �

2

12

�

2

12

� �2

11

�

2

22

que dona la curvatura de Gauss en termes dels símbols de Christoffel.

11
I

�1
=

1
E G�F

2

✓
G �F

�F E

◆
.
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Capítol 3

Superfícies

1. Parametritzacions. Espai tangent.

Exercici 87.

(a) Sigui S la superfície de R3 determinada per l’equació f(x, y, z) = 0, on 0 és un valor
regular de la funció f . Comproveu que el pla tangent a S en un punt p

0

= (x
0

, y
0

, z
0

)

qualsevol es pot escriure com
@f

@x
(p

0

) (x� x
0

) +

@f

@y
(p

0

) (y � y
0

) +

@f

@z
(p

0

) (z � z
0

) = 0 (1)

(b) Com serà l’equació del pla tangent a una superfície de R3 si és el gràfic d’una funció
de dues variables (z = h(x, y))?

Exercici 88. Sigui S el subespai de R3 determinat per l’equació x+ y = z3 + 1.
(a) Comproveu que S és una superfície regular.
(b) Doneu una parametrització de S.
(c) Determineu per a quin valor de a 2 R el vector v = (a, 3, 1) de R3 és tangent a S en

el punt P = (1, 1, 1).

Exercici 89. Demostreu que el subconjunt S de R3 determinat per la condició x3 �
3 x y2 = z és una superfície regular i determineu l’equació que té el seu pla tangent en un
punt qualsevol p

0

= (x
0

, y
0

, z
0

).

Exercici 90. Doneu parametritzacions regulars (definides en algun obert prou significa-
tiu) de les quàdriques:
(a) Cilindres:

35
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Cilindre el.líptic Cilindre parabòlic Cilindre hiperbòlic⇣x
a

⌘
2

+

⇣y
b

⌘
2

= 1 y = c x2

⇣x
a

⌘
2

�
⇣y
b

⌘
2

= 1

(b) El.lipsoides:

⇣x
a

⌘
2

+

⇣y
b

⌘
2

+

⇣z
c

⌘
2

= 1

(c) Hiperboloides:

Hiperboloide d’un full Hiperboloide de dos fulls⇣x
a

⌘
2

+

⇣y
b

⌘
2

�
⇣z
c

⌘
2

= 1

⇣x
a

⌘
2

+

⇣y
b

⌘
2

�
⇣z
c

⌘
2

= �1

(d) Paraboloides:

Paraboloide el.líptic Paraboloide hiperbòlic⇣x
a

⌘
2

+

⇣y
b

⌘
2

= c z
⇣x
a

⌘
2

�
⇣y
b

⌘
2

= c z

Exercici 91. (Quàdriques confocals)1 Proveu que tot punt de R3 es pot donar com
intersecció de tres quàdriques confocals.

Exercici 92. (L’helicoide)
(a) Comproveu que

'(u, v) = (u cos(v), u sin(v), a v)

és una parametrització regular de la superfície S de R3 determinada per l’equació

y cos(z/a)� x sin(z/a) = 0

1En aquest exercici i els 217, 218, 219, 220 i 221 s’està seguint Eisenhart.
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(b) Determineu el pla tangent (i la direcció normal) a S per a un punt arbitrari de la
superfície.

Exercici 93. Sigui S una superfície regular i connexa. Suposeu que totes les rectes
normals a la superfície passen pel mateix punt. Demostreu que S està continguda en una
esfera.

2. Primera forma fonamental.

Exercici 94. Determineu els coeficients de la primera forma fonamental del pla xy de
R3 quan es considera aquest pla parametritzat per les coordenades polars.

Exercici 95. Considerem l’aplicació ' : R2 �! S2 del pla a l’esfera unitat de centre
l’origen de R3, donada per '(u, v) = p 2 S2, on p és el punt d’intersecció amb l’esfera de la
recta que passa per (u, v, 0) i el pol nord (0, 0, 1) de l’esfera unitat tal i com es representa
en l’esquema següent

És clar que ' és una bijecció entre el pla R2 i S2 menys el pol nord. L’aplicació inversa
'�1, que va doncs de l’esfera unitat menys el pol nord al pla, es diu projecció estereogràfica
de l’esfera sobre el pla.
(a) Demostreu que la inversa ' de la projecció estereogràfica és una parametrització re-

gular de l’esfera.
(b) Calculeu els coeficients de la primera forma fonamental de l’esfera respecte aquesta

parametrització.
(c) Comproveu que aquesta parametrització conserva els angles (l’angle entre dues corbes,

o vectors, de R2 és el mateix que hi ha entre les seves imatges sobre l’esfera).
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Primera forma fonamental. 38

Exercici 96. Considereu la parametrització de l’esfera (llevat dels dos pols i un meridià)
donada per la longitud u i la latitud v:

' : (�⇡, ⇡)⇥(�⇡/2, ⇡/2) �! R3

(u, v) 7�!
�
cos(u) cos(v), sin(u) cos(v), sin(v)

�
.

(a) Comproveu que és una parametrització regular i determineu els coeficients de la pri-
mera forma fonamental respecte aquesta parametrització.

(b) Donades les corbes �
1

(t) = '(t, 0), �
2

(t) = '(⇡/4, t) i �
3

(t) = '(t, t) (en tots tres
casos t 2 [0, ⇡/4]), calculeu (aproximant, si cal) l’àrea del triangle que determinen, les
llargades de cada un dels segments i els angles que formen.

(c) Feu els mateixos càlculs que abans substituint la corba �
3

per l’arc de circumferència
que s’obté tallant l’esfera amb el pla y = z (que també apareix a l’esquema anterior),
determinant prèviament els nous punts de tall entre les corbes (en aquest cas, la
tercera corba talla el meridià en un punt de latitud més baixa que abans).

Exercici 97. Sigui � : I ! R3 una corba parametritzada per l’arc tal que k�(v)k = 1,
8v 2 I (el recorregut de � està sobre l’esfera unitat). Considereu la superfície parame-
tritzada per

'(u, v) = u �(v) ,

u > 0, v 2 I.
(a) Calculeu-ne la primera forma fonamental.
(b) Demostreu que és localment isomètrica al pla.

Exercici 98. Calculeu l’expressió de la primera forma fonamental de les superfícies
parametritzades per:
(a) '(u, v) =

�
u cos(v), u sin(v), u2

�

(b) '(u, v) =
�
u cosh(v), u sinh(v), u2

�

(c) '(u, v) =
�
a sinh(u) cos(v), b sinh(u) sin(v), c cosh(u)

�
(on a, b i c són constants).

Exercici 99. Calculeu la primera forma fonamental de la superfície de revolució

x = r cos(v),

y = r sin(v),

z = �(r).

Veieu que existeixen coordenades isotermals. Concretament trobeu coordenades (u, v)
(v la mateixa que anteriorment) tals que

ds2 = � (du2

+ dv2),
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amb � = �(u).2

Exercici 100. Demostreu que l’angle entre les corbes (parametritzades per l’arc) donades
per (u

1

(s), v
1

(s)) i (u
2

(s), v
2

(s)) (denotem igual els paràmetres arc) i que estan sobre la
superfície '(u, v) es pot calcular a partir de la fórmula

sin(✓) =
p
E G� F 2 |u0

1

v0
2

� u0
2

v0
1

| ,
on els coeficients de la primera forma fonamental estan valorats en el punt de tall. En
particular, l’angle que una corba parametritzada per l’arc (u(s), v(s)) forma amb la corba
coordenada v = ct. és

sin(✓) =

p
E G� F 2

p
E

|v0| , cos(✓) =
1p
E

(E u0
+ F v0).

Exercici 101.

(a) Proveu que l’equació general de les trajectòries ortogonals a una família de corbes
sobre una superfície parametritzada per ' : U ✓ R2 �! R3 donades en coordenades
per l’equació del tipus �(u, v) = c (� és doncs una funció sobre U) és

✓
E
@�

@v
� F

@�

@u

◆
du+

✓
F
@�

@v
�G

@�

@u

◆
dv = 0,

on, com sempre, E, F , G són els coeficients de la primera forma fonamental respecte '.
(b) Calculeu les trajectòries ortogonals a la família de cercles del pla de centre a l’eix x i

radi variable determinats per la fórmula

x2

+ y2 � 2� x = a2,

on � és el paràmetre de la família i a una constant.

2La notació ds

2 prové del fet que el paràmetre arc s(t) està donat per

s(t) =

Z
t

a

p
E (u

0
)

2
+ 2F u

0
v

0
+G (v

0
)

2
dt

d’on, derivant i elevant al quadrat, resulta
✓
ds

dt

◆2

= E

✓
du

dt

◆2

+ 2F

du

dt

dv

dt

+G

✓
dv

dt

◆2

que, per simplificar la notació, escriurem ometent els denominadors com

ds

2
= E du

2
+ 2F du dv +Gdv

2
.
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(c) Calculeu les trajectòries ortogonals a la família de corbes sobre l’helicoide
'(u, v) = (u cos(v), u sin(v), v)

donada per �(u, v) = v � 3 u = c.

Exercici 102. [Eisenhart3] Considerem sobre una superfície '(u, v) la família de corbes
donades per �(u, v) = c. Sigui P un punt de la superfície. Per a cada corba �(s) =

'(u(s), v(s)) parametritzada per l’arc amb �(0) = P definim el quocient diferencial com
la velocitat en què � varia al llarg de �.
(a) Proveu que

d�

ds
=

�u + k �vp
E + 2F k +Gk2

(2)

on k = v0(0)/u0
(0).

(b) Denotem A =

��d�
ds

��. Veieu, derivant respecte k, que el màxim es dóna quan
(E �v � F �u) + (F �v �G�u)k = 0, (3)

i que això es dona quan la direcció de � en P és perpendicular a les corbes de nivell
de �.

(c) Veieu que el valor màxim de A és
����
d�

ds

���� =
p

E �2

v � 2F�u �v +G�2

up
E G� F 2

.

Exercici 103. [Eisenhart] Demostreu que si en el pla tangent en un punt P d’una
superfície es tracen totes les semitangents corresponents a tots els valors de k, positius
o negatius (notació de l’exercici 102) i sobre elles les corresponents longituds A (valors
absoluts dels quocients diferencials) a partir de P , el lloc geomètric de les extremitats
d’aquests segments és una circumferència per P tangent a les corbes de nivell de �.

Exercici 104. Sigui H l’helicoide (exercici 92) parametritzat per x = u cos(v), y =

u sin(v) i z = v, on u, v 2 R. Calculeu:
(a) L’àrea del “triangle” T determinat per 0  u  sinh(v) i 0  v  v

0

.
(b) La longitud dels costats de la figura de l’apartat anterior.
(c) Els angles que formen aquests costats.

Exercici 105. Demostreu que les loxodromies de l’esfera (corbes que tallen amb angle
constant els meridians) estan donades per

log

⇣
tan

⇣'
2

⌘⌘
= (✓ + c) cot(�)

on ' és la colatitud, ✓ la longitud i � és l’angle constant.

Exercici 106. Demostreu que les loxodromies del con circular recte es projecten a
espirals equiangulars.

Exercici 107. (Volta de Viviani “revisited”). Sigui S l’esfera de radi 2 a centrada a
l’origen (d’equació x2

+ y2 + z2 = 4 a2) i sigui ¯S el cilindre d’equació x2

+ (y � a)2 = a2.
3L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, Ed. Gin and Com-

pany, 1909.
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(a) Calculeu la primera forma fonamental de S i ¯S.
(b) Parametritzeu la corba � obtinguda al fer la intersecció S\ ¯S. (Ampliem i modifiquem

lleugerament l’exercici 76 en el que a = 1/2).
(c) Calculeu l’angle que forma la corba � amb els paral.lels de l’esfera.
(d) Calculeu la seva longitud.
(e) Proveu que l’àrea de la volta de Viviani, que és la regió de la esfera x2

+y2+ z2 = 4 a2

delimitada pel cilindre (x � a)2 + y2  a2 dins el semiespai superior z � 0, val
4 a2 (⇡ � 2).

Exercici 108. Tallem una esfera de radi R per una esfera massissa de radi r, amb r < R,
i centre sobre la primera. Demostreu que l’àrea de la intersecció és ⇡ r2.

Exercici 109. La primera forma fonamental d’una superfície S parametritzada com
'(u, v) és ✓

1 0

0 u2

+ a2

◆

on a és una constant positiva.
(a) Calculeu el perímetre del triangle curvilini determinat per les corbes u = ±1

2

a v2 i
v = 1.

(b) Determineu els angles d’aquest triangle curvilini.
(c) Calculeu l’àrea del triangle determinat per les corbes u = ±a v i v = 1.

Exercici 110. (Equació de Beltrami-Laplace4) Sigui '(s, t) una parametrització d’u-
na certa superfície. Demostreu que si podem trobar coordenades u, v sobre S (una segona
parametrització  (u, v) que es denomina isoterma) tals que

E ds2 + 2F ds dt+Gdt2 = � (du2

+ dv2)

4El 1864 Beltrami generalitza els paràmetres diferencials de Lamé al cas de les superfícies. Veu que
el terme esquerra d’aquesta expressió és invariant enfront de canvis de coordenades i utilitza aquest fet
per estudiar l’existència de coordenades isotermes sobre la superfície. La mètrica es pot escriure com
� (du

2
+ dv

2
) si, i només si, l’expressió s’anul.la. Observeu que aquesta expressió per al cas de la mètrica

plana E = G = 1, F = 0, coincideix amb la laplaciana de u, per això d’aquesta equació s’en diu de
Beltrami-Laplace. El treball de Beltrami es titula Richerche di analisi applicata alla geometria, Giornali
di Matematiche II, (1864), 267–282, 297–306, 331–339, 355–375. També es pot trobar a Opere Mat 1.,
1902, pp. 107–198.

Gabriel Lamé té nombrosos treballs sobre paràmetres diferencials i coordenades curvilínies, molts d’ells
recollits en el llibre Leçons sur les coordonnées curvilignes et leur diverses applications, Mallet-Bachelier,
París, 1859.
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per a una certa funció � = �(u, v) llavors, considerant les coordenades (u, v) com funcions
diferenciables de (s, t), es compleix

@

@t

✓
F us � E utp
E G� F 2

◆
+

@

@s

✓
F ut �Gusp
E G� F 2

◆
= 0.

(us =
@u
@s , etc.)

3. Segona forma fonamental

Exercici 111. Determineu la primera i segona formes fonamentals, i les curvatures de
Gauss i mitjana, de la superfície parametritzada per

'(u, v) = (u+ v, u v, v)

Exercici 112. Donada una funció de dues variables h(x, y), calculeu en funció de les
derivades parcials de h, les expressions del vector normal, l’aplicació de Weingarten i la
curvatura de Gauss per a la superfície S que s’obté considerant el gràfic de h.

Exercici 113. Sigui S una superfície regular que és tangent a un pla fix per a tots els
punts d’una certa corba (regular). Què es pot dir de la curvatura de Gauss de S en
els punts d’questa corba? Preneu com exemple un tor de revolució com el de l’esquema
següent

Exercici 114. Sigui S una superfície regular de R3. Suposeu que S es connexa. De-
mostreu que són equivalents:
(a) La segona forma fonamental de S és constant igual a zero.

(b) L’aplicació de Gauss de S és constant.

(c) S està continguda en un pla.
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Exercici 115. Demostreu que la curvatura de Gauss K i la curvatura mitjana5 H d’una
superfície '(u, v) es poden calcular a partir de les fórmules

K
p
E G� F 2

= det(⌫, ⌫u, ⌫v),

�2H
p
E G� F 2

= det(⌫,'u, ⌫v) + det(⌫, ⌫u,'v),

on E, F , G són els coeficients de la primera forma fonamental i ⌫ és el camp normal
unitari en la direcció donada per 'u ^ 'v.

Exercici 116. Sigui S una superfície de R3 i F : R3 ! R3 l’homotècia de raó positiva
�. Comproveu que ¯S = F (S) és també una superfície i expresseu la curvatura de Gauss i
la curvatura mitjana de ¯S en termes de les de S.

Exercici 117. Considereu un helicoide parametritzat per
'(u, v) = (u cos(v), u sin(v), a v).

Calculeu-ne la curvatura de Gauss i la curvatura mitjana.

Exercici 118. (Superfícies paral.leles o semitubs).
Donada una parametrització '(u, v), d’una superfície S, es defineix la superfície paral-

lela o semitub a distància t, St, com la superfície donada per
't
(u, v) = '(u, v) + t ⌫(u, v),

on ⌫ = ⌫(u, v) és el vector normal unitari de S (escollim un dels dos).
(a) Trobeu, respecte de les coordenades u, v, l’expressió de l’element d’àrea de St.
(b) Proveu que la curvatura de Gauss Kt

= Kt
(u, v) està donada per

Kt
=

K

1� 2H t+K t2
,

on K = K(u, v) i H = H(u, v) són les curvatures de Gauss i mitjana de la superfície
inicial en el punt corresponent.

(c) Proveu que la curvatura mitjana H t
= H t

(u, v) de St està donada per

H t
=

H �K t

1� 2H t+K t2
.

(d) Si S és una superfície amb curvatura mitjana constant c 6= 0, demostreu que la
superfície tubular a distància

1

2 c
té curvatura de Gauss constant K = 4 c2.

(e) Si S és una superfície amb curvatura de Gauss constant a2 6= 0, demostreu que la
superfície tubular a distància

1

a
té curvatura mitjana constant H = �a/2.

Exercici 119. (Superfícies minimals) Demostreu que una superfície és minimal (en
el sentit de que té curvatura mitjana zero) si i només si tot petit domini de S és punt
crític de l’àrea respecte de les variacions normals.

Exercici 120. Demostreu que si l’aplicació de Gauss d’una superfície S és conforme,
llavors S és una esfera o una superfície minimal (curvatura mitjana zero).

Exercici 121. (La banda de Möbius) La imatge següent
5De la curvatura mitjana se’n diu també curvatura de Sophie Germain, en honor a aquesta matemàtica,

gran coneixedora de l’obra de Gauss que entre altres coses va publicar l’article Mémoire sur la courbure
des surfaces, Journal für die reine und angewandte Mathematik, 7, p.1-29, (1831).
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que s’obté considerant (u, v) 2 (0, 2 ⇡)⇥ (�1/4, 1/4) i definint la parametrització

'(u, v) =
⇣
(1 + v cos(u/2)) cos(u), (1 + v cos(u/2)) sin(u), v sin(u/2)

⌘

és el recorregut d’un segment de longitud 1/2 que es desplaça sobre la circumferència
unitat al mateix temps que gira sobre si mateix, a una velocitat igual a la meitat de la
velocitat que té sobre la circumferència, i determina una superfície homeomorfa a una
banda de Möbius. (En particular, és una superfície reglada).
(a) Calculeu el vector normal a la superfície i comproveu que quan u ! 0 i quan u ! 2 ⇡

els vectors normals tendeixen a dos vectors diferents.
(b) Calculeu l’àrea d’aquesta superfície.
(c) Doneu una expressió en funció dels paràmetres (u, v) per a la curvatura de Gauss.

Comproveu que no és 0 en cap punt (sempre és estrictament negativa).

Exercici 122. Sigui S una superfície connexa i suposem que tots els seus punts són
umbilicals (un punt es diu umbilical si les curvatures principals en aquest punt són iguals).
Demostreu que S està continguda en una esfera o en un pla.

Exercici 123. Descriviu la regió de S2 recoberta per la imatge de l’aplicació de Gauss
de les superfícies següents:
(a) Cilindre circular {(x, y, z) 2 R3 | x2

+ y2 = R2}.
(b) Con circular {(x, y, z) 2 R3 | x2

+ y2 � c2 z2 = 0}.
(c) Hiperboloide d’un full {(x, y, z) 2 R3 | x2

+ y2 � z2 = 1}.
(d) Paraboloide circular {(x, y, z) 2 R3 | z = x2

+ y2}.
(e) Tor {(x, y, z) 2 R3 | (

p
x2

+ y2 �R)

2

+ z2 = r2}.
(f) x2

+ y2 = cosh

2

(z).

Exercici 124. Dues direccions tangents en un punt d’una superfície es diuen conjugades
quan ho són respecte de la indicatriu de Dupin (veieu l’exercici 15). Demostreu que, si ✓
i ✓0 són els angles que formen dues direccions conjugades amb la direcció principal e

1

, es
compleix

tan(✓) tan(✓0) = �⇢2
⇢
1

,

on ⇢
1

, ⇢
2

són els radis de curvatura principals.

Exercici 125. Demostreu el teorema de Koenigs6:
Sobre qualsevol superfície s’hi pot traçar, sense efectuar cap integració, un
nombre il.limitat de sistemes conjugats.

6M. G. Koenigs va ser un dels joves geòmetres deixebles de Darboux que el va ajudar en la revisió de
les proves de les Leçons.
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Exercici 126. Sigui �(t) una corba sobre una superfície, i w(t) el vector unitari que
dona la direcció de la recta intersecció dels plans tangents a la superfície en els punts �(0)
i �(t). Llavors les direccions �0(0) i lim

t!0

w(t) són conjugades.

Exercici 127. Calculeu, a l’origen, l’aplicació de Weingarten, la primera i segona formes
fonamentals i les curvatures i direccions principals de les superfícies de R3:
(a) z = x2

+ y2 (paraboloide el.líptic).
(b) z = x2 � y2 (paraboloide hiperbòlic).
(c) Repetiu l’exercici per a l’esfera x2

+ y2 + z2 = R2, però ara feu els càlculs en un punt
arbitrari.

Exercici 128. Demostreu que la superfície z = a x y (hiperboloide) té, a l’origen, curva-
tura de Gauss K = �a2 i curvatura mitjana H = 0.

Exercici 129. Demostreu que un punt d’una superfície és umbilical si i només si la
segona forma fonamental en aquest punt és un múltiple de la primera.

Calculeu els punts umbilicals de l’el.lipsoide d’equació
x2

a2
+

y2

b2
+

z2

c2
= 1,

on 0 < c < b < a.
Demostreu que els plans tangents a l’el.lipsoide en els punts umbilicals són paral.lels a

les seccions cícliques (plans que tallen l’el.lipsoide en cercles).

Exercici 130. Sella de mico. Determineu la segona forma fonamental de la superfície
determinada per l’equació z = x3 � 3 x y2 (exercici 89). Expresseu la seva curvatura de
Gauss K en termes de r =

p
x2

+ y2 i decidiu si es tracta d’una superfície minimal.
Doneu una expressió per a l’equació diferencial de les línies asimptòtiques. Determineu

les línies asimptòtiques per (0, 0, 0).
Quins són els punts umbilicals?

Exercici 131. Determineu els punts umbilicals de les superfícies definides per
(a) z = x y.

(b) z =

x2

a2
+ "

y2

b2
, on " = ±1.

Exercici 132. Calculeu, directament a partir de la definició de curvatura de Gauss com
límit de quocient d’àrees, la curvatura de Gauss del tor

 (u, v) = ((R + r cos(u)) cos(v), (R + r cos(u)) sin(v), r sin(u))

en el punt P =  (0, 0) = (R + r, 0, 0).

Exercici 133. Sigui C ⇢ S una corba regular de la superfície S que té curvatura de
Gauss K positiva. Demostreu que la curvatura k de C en tot punt P 2 C ⇢ S satisfà:
k � min(|k

1

| , |k
2

|), on k
1

i k
2

són les curvatures principals de S en P .

Exercici 134. Estudieu les superfícies amb les dues curvatures principals constants.

Exercici 135. Demostreu que una superfície compacta té com a mínim un punt el-
líptic. Deduïu que una superfície minimal (i.e. amb curvatura mitjana H = 0) no pot ser
compacta.

Exercici 136. Sigui '(u, v) una carta isoterma.
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(a) Demostreu que h�','ui = h�','vi = 0.
(b) Demostreu que la superfície '(u, v) és minimal si i només si �'(u, v) = 0

Exercici 137. Suposem que projectem sobre una pantalla plana l’ombra que fa un
superfície quan la il.luminem amb una llum formada per raigs paral.lels a una direcció. La
frontera de l’ombra és el que s’anomena el contorn aparent de la superfície en la direcció
determinada per la llum. Cada punt d’aquesta corba plana correspon, com a mínim, a
un punt de la superfície. El conjunt d’aquest punts s’anomena generador del contorn, o
corba generatriu.7

(a) Demostreu que una condició necessària (en general no suficient) per tal que un punt
P d’una superfície S, pertanyi a la corba generatriu del contorn és h⌫(P ), wi = 0, on
⌫ és el camp normal unitari a la superfície S i w és el vector que ens dóna la direcció
dels raigs de llum.

(b) Demostreu que
II(T,w) = 0,

on T és el vector tangent a la corba generatriu en el punt P , i II és la segona forma
fonamental de la superfície.

(c) Si T i w són linealment independents (i, per tant, base de TPS) demostreu que l’apli-
cació de Weingarten està donada per

W =

1

sin

2

(✓)

✓
kn(T ) �kn(w) cos(✓)

�kn(T ) cos(✓) kn(w)

◆
,

on ✓ és l’angle entre T i w.
(d) Si el pla on veiem l’ombra és ortogonal a w, demostreu que

K(P ) = hk(Q), kn(w)i,
on K(P ) és la curvatura de Gauss de la superfície en el punt P , Q és l’ombra de P , i
k(Q) és la curvatura de la corba contorn aparent en Q.

Exercici 138. Estudieu les corbes �(t) sobre una superfície S tals que, donat un punt
fix F , es compleix h⌫(�(t)), �(t)� F i = 0, on ⌫ és el camp normal unitari a la superfície
S. Aquesta corba és la corba generatriu de la superfície il.luminada amb un focus situat
en el punt fix F .8

(a) Demostreu que
II(T, P � F ) = 0,

on T és el vector tangent a la corba generatriu en el punt P , i II és la segona forma
fonamental de la superfície.

(b) Trobeu la matriu de l’aplicació de Weingarten en la base T i w = P � F (en el cas
que aquests dos vectors formin efectivament una base).

(c) Demostreu que

K(P ) =

kn(T ) · kn(P � F )

sin

2

(✓)

on K(P ) és la curvatura de Gauss de la superfície en el punt P , i ✓ és l’angle entre T
i w = P � F .

Exercici 139. Sigui S ⇢ R3 l’hiperboloide d’equació x2

+ y2 = 1 + z2.
7Apunts J. Monterde
8Apunts J. Monterde
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(a) Determineu l’àrea de la regió de S limitada pels paral.lels z = z
0

i z = z
1

.
(b) Calculeu la curvatura de Gauss de S.

Exercici 140. Sigui u : R3 �! R una funció diferenciable amb gradient no nul. Sigui
S la superfície de nivell u = ↵, on ↵ és una constant. Denotem amb H(u) el Hessià de u
en un punt P 2 S, i sigui X 2 TPS. Llavors

H(u)X = kruk rXN + �N

on N és la normal unitària a la superfície en P i � un cert escalar. En particular, si Y
també pertany a TPS

hH(u)X, Y i = kruk II(X, Y ).

Es pot dir, doncs, que el hessià és, essencialment, la segona forma fonamental.9

4. Teorema egregi

Exercici 141. Considereu una superfície S de R3 amb una parametrització de la forma
(gràfic)

'(u, v) = (u, v, a(u, v)) ,

on a és una funció diferenciable.
Doneu, en termes de a i de les seves derivades, l’expressió dels símbols de Christoffel

de S.

Exercici 142. Doneu l’expressió de la curvatura de Gauss en un sistema de coordenades
ortogonals.

Exercici 143. Demostreu que les superfícies

'(t, s) = (t cos(s), t sin(s), s) Helicoide
 (t, s) = (t sin(s), t cos(s), log(t)) Logaritmoide

9Aquest resultat l’utilitza Bouquet a Note sur les surfaces orthogonales, Journal de Mathématiques
Pures et Appliquées, 1846, per donar un exemple d’una família uniparamètrica de superfícies que no pot
formar part d’un sistema triplement ortogonal.
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tenen, en punts corresponents (mateixes coordenades (t, s)), la mateixa curvatura de
Gauss, però l’aplicació que porta el punt de coordenades (t, s) de l’helicoide al punt de
coordenades (t, s) del logaritmoide no és una isometria. (La curvatura no determina la
mètrica).

Exercici 144. Sigui S la superfície de R3 donada pels punts del pla horitzontal (x, y, 0).
(a) Calculeu els símbols de Christoffel de S quan es parametritza S per les coordenades

cartesianes (x, y).
(b) Considereu la parametrització de S per les coordenades polars (de forma que x =

r cos(✓), y = r sin(✓)) i calculeu un altre cop els símbols de Christoffel respecte
aquesta parametrització.

(c) En els dos casos, apliqueu la fórmula de Gauss per a calcular la curvatura de S.

Exercici 145. Calculeu els símbols de Christoffel de l’esfera de radi r arbitrari en el
sistema de coordenades (esfèriques) naturals donades per la longitud (u) i la colatitud (v)

x = r cos(u) sin(v)

y = r sin(u) sin(v)

z = r cos(v)

Exercici 146. Justifiqueu per què les superfícies següents no són dues a dues localment
isomètriques:
(a) l’esfera,

(b) el cilindre,

(c) la sella definida per z = x2 � y2.

Exercici 147. Suposant ds2 = �(u, v) (du2

+ dv2), on �(u, v) és una funció positiva (u,
v són coordenades isotermes), proveu que la curvatura de gauss K està donada per

K = � 1

2�
� log(�),

on � =

@2

@u2 +
@2

@v2 és el Laplacià de R2.
Calculeu la curvatura de Gauss d’una superfície en la qual E = 1/(u2

+ v2 + c2)2 = G
i F = 0.

5. Superfícies de revolució

Exercici 148. Considereu una corba de la forma y = f(x) en el pla xy (pensat dins R3

com els punts amb z = 0), on f és una funció diferenciable amb f(x) > 0 per a tots els x.
Sigui S el subconjunt de R3 obtingut en fer girar la corba anterior al voltant de l’eix de
les x (y = z = 0).
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(a) Demostreu que S és una superfície regular veient que S = �

�1

(0) per a una submersió
� : R3 �! R.

(b) Doneu una parametrització (regular) de S.
(c) Comproveu que, per a cada punt p = (x, y, z) de S, el pla tangent és perpendicular al

vector N = (f(x) f 0
(x),�y,�z).

Exercici 149. El conjunt de punts descrit per una corba plana regular C ⇢ ⇧ girant
sobre un eix contingut en el pla ⇧ i que no talla a la corba C és una superfície regular
anomenada superfície de revolució generada per la corba C.
(a) Proveu que si C = {(x, 0, z) 2 ⇧ = {y = 0} ⇢ R3 | f(x, z) = 0} i es pren com

a eix de gir Oz aleshores la superfície de revolució generada per C ve donada per
S = {(x, y, z) 2 R3 | f(

p
x2

+ y2 , z) = 0}. Apliqueu-ho al cas particular en que C és
una circumferència que no conté en el seu interior l’origen de coordenades.

(b) Demostreu que si �(u) = (a(u), 0, b(u)) és una parametrització regular de C aleshores

'(u, v) = (a(u) cos(v), a(u) sin(v), b(u))

és una parametrització regular de S. Les corbes coordenades d’aquesta parametritza-
ció s’anomenen paral.lels si u = u

0

i meridians si v = v
0

. Doneu una parametrització
regular del tor de revolució.

(c) Calculeu la primera forma fonamental d’una superfície de revolució utilitzant la pa-
rametrització de l’apartat anterior (podeu suposar que u 2 [0, `] és el paràmetre arc
de C).

(d) Teorema de Pappus. Amb les mateixes notacions dels apartats (b) i (c), comproveu
que l’àrea de S està donada per

2⇡

Z `

0

a(u) du .

Exercici 150. (Un altre Teorema de Pappus). Demostreu que si una làmina d’àrea
A situada en el pla yz gira al voltant de l’eix de les y, genera una figura de volum V donat
per

V = 2 ⇡ z
0

A,

on z
0

és la coordenada z del centre de gravetat de la làmina. Calculeu el volum d’un tor
de revolució.
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Exercici 151. Determineu l’aplicació de Weingarten i calculeu la segona forma fonamen-
tal d’una superfície de revolució i apliqueu-ho a les superfícies següents:
(a) Esfera.

(b) Tor (exercici 149).

(c) Helicoide (exercici 92).

(d) La superfície parametritzada per

'(u, v) =
�p

u2

+ a2 cos(v),
p
u2

+ a2 sin(v), a log(u+

p
u2

+ a2 )

�
.

Exercici 152. Considerem la superfície de revolució que s’obté en girar la gràfica de la
funció y = x3 per a x 2 (�1, 1) al voltant de la recta x = 1. Trobeu els punts parabòlics,
hiperbòlics i el.líptics d’aquesta superfície.

Exercici 153. Trobeu les loxodromies del tor de revolució parametritzat per

'(u, v) =
⇣⇣

a+ r cos

⇣u
r

⌘⌘
cos(v),

⇣
a+ r cos

⇣u
r

⌘⌘
sin(v), r sin

⇣u
r

⌘⌘
.

Recordeu que les loxodromies d’una superfície de revolució són les corbes '(u(t), v(t))
que formen un angle constant ✓ amb els paral.lels u = ct. (O de forma equivalent amb els
meridians que són perpendiculars als anteriors).

Exercici 154. Considerem la superfície de revolució S donada per l’equació

z = cosh(

p
x2

+ y2 ).

(a) Calculeu la longitud r de l’arc de meridià que uneix els punts (0, 0, 1) i (a, 0, cosh(a)).
(b) Calculeu l’àrea A de la regió R de S donada per z  cosh(a) i expresseu-la en funció

de r (A = A(r)).
(c) Calculeu el cosinus de l’angle que forma el vector normal a S en el punt (a, 0, cosh(a))

amb el vector (0, 0, 1).
(d) Calculeu l’àrea del casquet esfèric obtingut com la imatge de R ⇢ S per l’aplicació de

Gauss de S. Aquest casquet el denotarem ⌫(R) i la seva àrea per A(⌫(R)). (L’àrea
d’un casquet esfèric d’amplitud ✓ 2 [0, ⇡], en una esfera de radi 1, és 2 ⇡ (1�cos(✓))).
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(e) Calculeu la curvatura de Gauss K de S en el punt (0, 0, 1) i comproveu que

lim

r!0

⇡ r2 � A(r)

r4
=

⇡

12

K.

(Tingueu en compte que arcsinh(x) = ln(x +

p
x2

+ 1 ) = x � x3

6

+ O(x5

) i que
(1 + x)� = 1 + � x+

� (��1)x2

2

+O(x3

)).
(f) Amb la mateixa notació que a l’apartat anterior, comproveu que

K = lim

r!0

A(⌫(R))

A(r)
.

Exercici 155. Demostreu que les úniques superfícies de revolució minimals són el pla i
la catenoide.

Exercici 156. [Fedenko] Demostreu que si una superfície té la propietat que les seves
rectes normals tallen totes una mateixa recta, llavors es tracta d’una superfície de revolució
al voltant d’aquesta recta.

Exercici 157. Considerem la superfície de revolució generada per una corba �(t), t 2 I,
del pla xz al girar al voltant de l’eix z. Sigui Zt1t2 la zona determinada per dos paral.lels
que passen pels punts �(t

1

) i �(t
2

). Demostreu que la curvatura total de Zt1t2 és igual a
2 ⇡ (sin(↵(t

1

))� sin(↵(t
2

))),

on ↵(t
1

), ↵(t
2

) són els angles que la tangent a �(t) en els punts t = t
1

, i t = t
2

forma amb
l’eix de gir.

6. Superfícies reglades

Exercici 158. Una superfície S de R3 s’anomena reglada si es pot parametritzar de la
forma

'(s, t) = �(s) + t v(s),

on �(s) i v(s) són corbes de R3 i kv(s)k = 1.
(a) Demostreu que una superfície reglada S té curvatura de Gauss K  0. A més, K = 0

si, i només si, el vector normal unitari ⌫ de S és constant al llarg de les rectes s = ct.
(b) Les superfíces reglades amb K = 0 s’anomenen desenvolupables. Proveu que en aquest

cas hi ha una corba t = t(s) on '(s, t) deixa de ser regular. Aquesta corba s’anomena
eix de regressió (no és pas una recta com podria suggerir la paraula “eix”). Proveu
que les rectes s = ct. són tangents a l’eix de regressió.

Exercici 159. Determineu els punts que realitzen la distància mínima entre dues rectes
consecutives d’una superfície reglada '(s, t) = �(s) + t ~u(s).

Exercici 160. Sigui S una superfície reglada tal que les generatrius són rectes senceres.
Suposem K < 0. Demostreu que la curvatura total és igual a �2L on L és la longitud de
la indicatriu unitària de les generatrius.

Useu aquest resultat per calcular la curvatura total de la sella de muntar (hiperboloide)
z = x y i determineu quin percentatge de l’esfera queda cobert per l’aplicació de Gauss.

Exercici 161. L’invers del paràmetre de distribució és la taxa de variació de l’angle
entre rectes respecte la seva distància.
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Exercici 162. Determineu la corba d’estricció de

'(s, t) = (cos(s) + s sin(s), sin(s)� s cos(s), s) +
tp
2

(sin(s),� cos(s), 1).

És una corba plana? De quina superfície es tracta?

Exercici 163. Trobeu la corba d’estricció de

'(s, t) =
⇣

1p
2

cos(s), sin(s), 0
⌘
+

tp
3 + cos

2

(s)

⇣
� sin(s),

p
2 cos(s),

p
2

⌘
.

És una corba plana? De quina superfície es tracta?

Exercici 164. (Desenvolupant tangencial) Sigui �(s) una corba parametritzada per
l’arc de curvatura no nul.la en tot punt.
(a) Comproveu que '(s, t) = �(s) + t �0(s), amb t 6= 0, defineix una superfície.
(b) Demostreu que aquesta superfície és desenvolupable.
(c) Proveu que els coeficients de la primera forma fonamental no depenen de la torsió

de �.
(d) Calculeu la curvatura de Gauss i la curvatura mitjana en termes de la curvatura i

torsió de la corba.
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(e) Considerant una corba plana amb la mateixa curvatura que �, deduïu que hi ha una
isometria d’un obert de la superfície anterior amb una regió del pla.

Exercici 165. (Desenvolupant de les normals) Sigui � = �(s) una corba de R3

parametritzada per l’arc amb curvatura k 6= 0 i torsió ⌧ . Calculeu la curvatura de Gauss
de la superfície parametritzada per

'(s, t) = �(s) + tN(s),

on N és el vector normal de la corba �.

Exercici 166. (Desenvolupant de les binormals) Sigui � = �(s) una corba de R3

parametritzada per l’arc amb curvatura k 6= 0 i torsió ⌧ . Calculeu la curvatura de Gauss
de la superfície parametritzada per

'(s, t) = �(s) + t B(s),

on B és el vector binormal de la corba �.

Exercici 167. (Superfície polar) Sigui � = �(t) una corba regular de R3 parametrit-
zada per l’arc. La superfície polar de � és la superfície reglada formada per les rectes
paral.leles a la binormal (en cada punt) que passen pel centre de curvatura (en aquest
punt). Concretament

'(t, s) = �(t) + ⇢(t)N(t) + sB(t),

on ⇢(t) és el radi de curvatura de �. La recta que obtenim en fixar t i variar s es diu eix
polar.
(a) Demostreu que aquesta definició coincideix amb la clàssica: La superfície polar de �

és l’envolupant dels plans normals. Recordem que l’envolupant d’una família unipa-
ràmetrica de plans (la nostra família és uniparamètrica perquè tenim un pla per a
cada valor del paràmetre t de la corba) és una superfície tangent en cada punt a un
d’aquests plans. Aquesta superfície es troba fàcilment resolent el sistema format per
l’equació dels plans (que depèn de t) i l’equació que s’obté derivant aquesta respecte
del paràmetre t.

(b) Trobeu els centres de les esferes osculatrius, que són aquelles amb contacte d’ordre 3

amb �(t). Comproveu que pertanyen a la superfície polar.
Indicació: L’esfera S donada per la condició h'� a,'� ai�R

2

= 0 té un contacte d’ordre

k amb �(t) en un punt t

0

si

d

i

dt

i
S(�(t

0

)) = 0, i = 0, . . . , k.

Comproveu que les esferes amb centre l’eix polar que passen pel punt corresponent de �

tenen contacte d’ordre dos amb la corba.

(c) Comproveu que la superfície polar és desenvolupable, amb eix de regressió format pels
centres de les esferes osculatrius.
Indicació: L’eix de regressió de la superfície polar és el lloc geomètric dels centres de les

esferes osculadores (no és pas una recta com podria suggerir la paraula “eix”). Recordem

que l’eix de regressió d’una família uniparamètrica de plans G(x, y, z, t) = 0 és la corba que

s’obté en resoldre el sistema

G(x, y, z, t) = 0,

d

dt

G(x, y, z, t) = 0,

d

2

dt

2

G(x, y, z, t) = 0 .
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Exercici 168. Considerem les superfícies reglades que es poden construir entre dues
corbes tancades dels plans z = 0 i z = h. Veieu que la que tanca volum màxim és
desenvolupable.

Exercici 169. [Fedenko] Sigui '(u, v) una parametrització principal (F = f = 0) d’una
certa superfície. Sigui '(u, v

0

) una de les línies de curvatura. Considerem la superfície
reglada formada per les rectes que tallen '(u, v

0

) tenint en el punt de contacte la direcció
de l’altra línia de curvatura, és a dir

 (u, t) = '(u, v
0

) + t
@'

@v
(u, v

0

).

Demostreu que aquesta superfície reglada és desenvolupable i cada punt de l’aresta de
retrocés està a distància 1/kg1(u, v0) de '(u, v

0

), on kg1 és la curvatura geodèsica de les
les línies coordenades v = v

0

i l’aresta de retrocés és una corba que té per tangents les
rectes de la superfície reglada (està formada pels punts on la parametrització deixa de ser
regular i per tant queda fora de la superfície).

Exercici 170. Demostreu que l’helicoide recte és la única superfície reglada minimal
(llevat del pla).

Exercici 171. (Desenvolupable osculadora10) Sigui �(s) una corba sobre una su-
perfície. Sigui Y (s) un camp tangent a la superfície al llarg de �(s) i suposem que
II(�0(s), Y (s)) = 0. Llavors la superfície reglada '(s, t) = �(s) + t Y (s) és desenvolupa-
ble.

7. Corbes sobre superfícies

7.1. Curvatura normal i curvatura geodèsica

Exercici 172. Doneu una fórmula per al càlcul de les curvatures normal i geodèsica per
a corbes no parametritzades per l’arc.

Exercici 173. Sigui f : S
1

�! S
2

una isometria local i sigui �(s) una corba a S
1

.
Demostreu que la curvatura geodèsica de �(s) coincideix, per a cada s, amb la curvatura
geodèsica de la corba f(�(s)).

Exercici 174. Sigui (U,') una parametrització ortogonal (F = 0) d’una superfície.
Denotem kg1 la curvatura geodèsica de les corbes v = constant i kg2 la curvatura geodèsica
de les corbes u = constant. Llavors tenim

kg1 = � Ev

2E
p
G

,

kg2 =
Gu

2G
p
E

.

Exercici 175. Sigui �(s) una corba sobre una superfície S (no necessàriament parame-
tritzada per l’arc). Demostreu que la seva curvatura normal kn es pot calcular com

kn(s) =
h�00(s), ⌫(�(s))i

|�0(s)|2
,

10Aquest és el nom que li dona Klingenberg.
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on ⌫ és el vector normal de la superfície11.

Exercici 176. Demostreu que la curvatura mitjana H en un punt d’una superfície es
pot calcular com

H =

1

⇡

Z ⇡

0

kn(✓) d✓ ,

on kn(✓) és la curvatura normal, en aquest punt, en la direcció que forma un angle ✓ amb
una direcció prefixada.

Exercici 177. Sigui �(t) = (u(t), v(t)) una corba regular de R2. Considereu la parame-
trització del cilindre '(u, v) = (cos(v), sin(v), u) i la corba �(t) = '(�(t)). Determineu,
en termes dels invariants de �, la curvatura geodèsica de �.

Exercici 178. Calculeu la curvatura geodèsica del paral.lel superior del tor de revolució
generat per revolució del cercle

(x� a)2 + z2 = r2, y = 0

al voltant de l’eix z (a > r > 0).

Exercici 179. Siguin S
1

i S
2

dues superfícies que es tallen al llarg d’una corba regular
C formant un angle ✓(P ) (angle entre les normals) en cada un dels punts P 2 C.

Demostreu que la curvatura k de C en P compleix
k2

sin

2

(✓) = �2
1

+ �2
2

� 2�
1

�
2

cos(✓),

on �
1

i �
2

són les curvatures normals en P en la direcció de la recta tangent a C, a S
1

i
S
2

respectivament.

7.2. Línies de curvatura

Exercici 180. Recordeu que una línia de curvatura d’una superfície és una corba tal
que el seu vector tangent és una direcció principal en cada punt.
(a) Demostreu que una corba � : I ! S és línia de curvatura de S si i només si (⌫ � �)0(t)

és múltiple de �0(t) 8t 2 I, on ⌫ és el normal a S.
(b) Teorema de Joachimstal.12 Suposem que dues superfícies S

1

i S
2

es tallen en una
corba C, que és línia de curvatura de S

1

. Demostreu que C és línia de curvatura de
S
2

si i només si l’angle entre S
1

i S
2

és constant al llarg de C.

Exercici 181. Considereu un helicoide parametritzat per
'(u, v) = (v cos(u), v sin(u), c u),

on c és una constant qualsevol. Determineu les seves línies de curvatura.

Exercici 182. (Superfície de Enneper)13 Sigui S la superfície parametritzada per
'(u, v) = (u+ u v2 � u3/3, v + u2 v � v3/3, u2 � v2) .

11En certs texts es pot trobar aquesta propietat com a definició de la curvatura normal.
12Demonstrationes theorematum ad superficies curvas spectantium, Journal für die reine und angewand-

te Mathematik 30 (1846), 347-350.
13Aquesta superfície, que té autointerseccions, va ser introduïda per Alfred Enneper el 1864 en l’estudi

de superfícies minimals a l’article Analytisch-geometrische Untersuchungen, Zeitschrift für Matematik
un Physik 9 (1864), 96–125). La parametrització que apareix a l’enunciat sembla una expressió compli-
cada però, utilitzant el que s’anomena representació d’Enneper-Weirstrass de les superfícies minimals,
correspon simplement a la que dona el parell de funcions holomorfes f(z) = 1, g(z) = z.
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(a) Calculeu els coeficients de la primera i la segona formes fonamentals.
(b) Comproveu que la curvatura mitjana és 0 (superfície minimal).
(c) Quines són les curvatures principals? Determineu les línies de curvatura.

Exercici 183. Sigui S la superfície de revolució generada per la corba del pla y = 0 que
s’escriu com �(u) = (a(u), 0, b(u)) (parametritzada per l’arc i amb a(u) > 0) donada per

'(u, v) =
�
a(u) cos(v), a(u) sin(v), b(u)

�
.

Determineu les curvatures principals i les línies de curvatura.

Exercici 184. Les línies de curvatura donen lloc, a través de les normals a la super-
fície, a corbes sobre les superfícies focals que tenen, en el punt d’intersecció, direccions
conjugades.

Exercici 185. Comproveu l’equació de les línies de curvatura donada per Darboux
(Leçons, p. 194), ������

dx du u
dy dv v
dz dw w

������
= 0,

on u, v, w són els cosinus directors de la normal, i que coincideix amb l’equació l’habitu-
al (5) quan la superfície està donada per z = z(x, y).

Exercici 186. Si el pla osculador al llarg d’una línia de curvatura (no asimptòtica en
cap punt) forma angle constant amb el pla tangent a la superfície, llavors la corba és
plana.

Exercici 187. Demostreu que una corba � sobre una superfície és línia de curvatura si,
i només si, la recta tangent a � i la recta tangent a la seva imatge esfèrica per l’aplicació
de Gauss són paral.leles en punts corresponents.

Exercici 188. (Teorema de Monge14) Demostreu que una corba d’una superfície S
és línia de curvatura si i només si les rectes normals a S al llarg de la corba formen una
superfície desenvolupable.

Exercici 189. Calculeu les línies de curvatura de les superfícies de revolució.

Exercici 190. Demostreu que les inversions conserven les línies de curvatura.

14Gaspard Monge tot estudiant el problema del transport de terres a Mémoire sur la théorie des
déblais et des remblais, Histoire de l’Académie Royale des Sciences. París (1781), 666–704, es troba amb
superfícies reglades que tallen normalment la superfície i li apareixen de manera natural les línies de
curvatura. Les curvatures principals ja havien estat estudiades per Euler, però no les línies de curvatura
principal.
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7.3. Línies asimptòtiques

Exercici 191. Demostreu que una corba és asimptòtica quan és ortogonal a la seva
imatge esfèrica.

Exercici 192. Sigui S ⇢ R3 una superfície regular, i sigui � : I ! S una corba regular
continguda a S. Suposem que � és una corba asimptòtica de S (i.e. que la seva curvatura
normal és zero).
(a) Demostreu que B = ⌫ � �, on B és el binormal a � i ⌫ és el normal a S.
(b) Calculeu II(T, T ) i II(N, T ), on T i N són respectivament el tangent i el normal

principal a �, i II és la segona forma fonamental. (Observeu que N és tangent a la
superfície, per l’apartat anterior, i per tant té sentit fer aquest càlcul).

(c) Demostreu que per tot t 2 I es compleix la igualtat K(�(t)) = �⌧(t)2, on ⌧ és la
torsió de � i K és la curvatura de Gauss de S.15

Exercici 193. Demostreu que les corbes coordenades de la superfície parametritzada
per

'(u, v) = (e

a
cos(b), ea sin(b), a), a = a(u, v) =

u� v

2

, b = b(u, v) =
u+ v

2

,

són línies asimptòtiques.
Comproveu que sobre la línia v = 0 es té ⌧ 2 = �K.

Exercici 194. Determineu les corbes asimptòtiques, les línies de curvatura, la curvatura
de Gauss i la curvatura mitjana de les superfícies següents:
(a) La catenoide: superfície de revolució que s’obté girant la catenària (exercici 151(d))

al voltant d’una recta que no la talli i sigui perpendicular al seu eix de simetria.
(b) L’helicoide (exercici 117)
(c) La pseudoesfera: superfície de revolució generada per la tractriu (exercici 16) al voltant

del seu eix.
(d) La uralita: Gràfic de z = 2 cos(y).

Exercici 195. [Shifrin] Demostreu que la trajectòria que descriu el focus d’una el.lipse
quan aquesta gira sense lliscar per sobre d’una recta és una corba tal que engendra per
rotació sobre aquesta recta una superfície de revolució de curvatura mitjana constant.

15Aquest resultat va ser publicat per A. Enneper, Uber asymptotische Linien, 1870, i també per E. Bel-
trami Dimostrazione di due formole del Sig. Bonnet, 1866, i per això es coneix com Teorema de Beltrami-
Enneper.

Toc

JJ II J I
Tornar

https://sagecell.sagemath.org/?z=eJx9VE1zmzAQvXvG_4HxxRIWBDv1IZnq2j_h8XgWIbCmQhBJpHE6_e-VEB9Jg8uBgX1v3-7TLryCRlu7xetVBXUNyGJ6-hazxiCbtOLhgMlxd4yNUOP7eb1ar2xPpoUoSzTmEYvTslPMisaRnWBhvJp50RYhO7Li6Qmn_K0FVSCMvWTBy0g2qnLI83oVuUtz22kVqa7mWjCQF6EsrzRIVBiSuXKn7DxmgmyvMKcCo6BZ72Is58gPfUc4UEQZ2e-0FUPGh4IJsBDj0vCvsEdD0de5YEXHOkMDFA1mkspVxqlCA5JTF9mf58AgewKST3ZYo3O4r86ot5aMpoeooX5M_0YlHRr5XG22JRMW-x53JkaHvjdMZtQEjE1YgD53mn0Z2migH9HE29_n7SdF07VvyBKzxMzCYgXW7R7Ll-lX2Mzk9_-S_cGZsIYi78O0BQ01t27zLq1s7GOBTqEFEtJIdiYoI4e4FdiFZKPpVvNiS-xVsJ-KG0Mfca9n9JKYt0m8C397_6A1PcxDmC8wLWf2osF9ZXRPbrVQNMnSI2laYMLeXGwpbeiv0aAqvl2klL5D-gPczi_iedOpAvTtYuxNcvp702tunqNNUN2QaDNZd-H9n2UDdS64sjRLsyOJ_A-kM3x48946CZqmTwup7jDNtfmFxgnt-qPFfwETnE4V&lang=sage&interacts=eJyLjgUAARUAuQ==


Corbes sobre superfícies 58

Exercici 196. Sigui S la superfície de R3 engendrada fent girar al voltant de l’eix y
la corba C continguda en el pla xy i parametritzada per �(t) = (2 + cos(t), 2 sin(t)) on
0  t  2 ⇡. Determineu les corbes de S que són asimptòtiques i, a la vegada, línies de
curvatura.

Exercici 197. Determineu les corbes asimptòtiques i les línies de curvatura de la super-
fície d’equació z = x y.

Exercici 198. Expliciteu la isometria entre la catenoide i l’helicoide tot veient que les
línies de curvatura de l’una van a parar a les línies asimptòtiques de l’altra i recíproca-
ment.

Exercici 199. Demostreu que quatre línies asimptòtiques qualssevol d’una superfície
reglada, diferents de les generatrius, tallen aquestes en quatre punts que tenen sempre la
mateixa raó doble.

Exercici 200. (Fórmula de Liouville16) Sigui (U,') una parametrització ortogonal
d’una superfície S i sigui �(s) = '(u(s), v(s)) una corba sobre S parametritzada per l’arc.
Demostreu que la curvatura geodèsica de �(s) ve donada per

kg = kg1 cos(✓) + kg2 sin(✓) + ✓0, (4)
on ✓ = ✓(s) és l’angle orientat entre 'u i �0(s) en el punt �(s) i kg1, kg2 són respectivament
les curvatures geodèsiques de les corbes v = constant i u = constant que passen pel punt
�(s).

7.4. Geodèsiques

Exercici 201. Doneu una parametrització del cercle màxim de l’esfera obtingut per
la intersecció amb el pla y = z en termes de les coordenades esfèriques (expresseu la
colatitud com funció de la longitud). Es compleix l’equació diferencial de les geodèsiques
per a aquesta corba (amb aquesta parametrització)?

Exercici 202. Quina condició (tipus equació diferencial) ha de complir una corba sobre
una superfície per tal de poder afirmar que, fent un canvi de paràmetre, s’obté una
geodèsica?

16Aquesta fórmula apareix per primer cop a la versió comentada per Liouville de Application de l’A-
nalyse à la Géométrie de Monge (Nota II), cinquena edició, el 1850.
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Exercici 203. Considereu l’helicoide parametritzat per

'(u, v) = (u cos(v), u sin(v), v) .

(a) Determineu les equacions diferencials que han de complir (u(s), v(s)) per tal que la
corba �(s) = '(u(s), v(s)) sigui una geodèsica.

(b) Comproveu que les corbes de la forma v = ct., convenientment parametritzades, són
geodèsiques.

(c) Si una corba sobre l’helicoide talla amb un angle constant les corbes de la forma
v = ct., pot ser una geodèsica?

Exercici 204.

(a) Suposem que dues superfícies són tangents al llarg d’una certa corba C. Demostreu
que si C és geodèsica en una de les dues superfícies també ho és a l’altra.

(b) Demostreu que tota corba �(s) de R3 és geodèsica d’alguna superfície.
(Nota: Si no veieu com obtenir aquesta superfície, proveu la superfície reglada
'(s, t) = �(s) + t B(s), on B(s) és el vector binormal de la corba).

(c) Descriviu un mètode per determinar les geodèsiques d’una superfície per medi d’una
banda adhesiva (cel.lo).

Exercici 205. Siguin S ⇢ R3 una superfície regular i C ⇢ S una corba regular contin-
guda a S. Demostreu les següents afirmacions.
(a) C és geodèsica de S i línia asimptòtica de S si i només si C està continguda en una

recta de R3.
(b) Suposem que C és geodèsica de S. Aleshores C és línia de curvatura de S si i només

si C és plana.
(c) Podeu donar un exemple de línia curvatura plana però que no sigui geodèsica?

Exercici 206. Sigui S una superfície connexa en la que totes les geodèsiques són corbes
planes. Demostreu que S està continguda en un pla o en una esfera.

Exercici 207. Demostreu que els plans osculadors d’una geodèsica sobre un con estan
a distància constant del vèrtex.

Exercici 208. [Struik p.154] Demostreu que les evolutes d’una corba són geodèsiques
de la superfície polar d’aquesta corba.

Exercici 209. Demostreu que les geodèsiques del tor de revolució

 (', ✓) = (r cos('), r sin('), a sin(✓)), r = p+ a cos(✓)

compleixen l’equació diferencial de primer ordre

d' =

c a d✓

r
p
r2 � c2

amb c constant.

Exercici 210. Sigui '(r,↵) un sistema de coordenades polars geodèsiques. Sabem, pel
lema de Gauss, que la primera forma fonamental s’escriu com

I =

✓
1 0

0 G

◆

amb G = G(r,↵).
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Demostreu que p
G = r + o(r), quan r ! 0.

Això vol dir que o(r) és una funció de r i ↵ tal, que

lim

r!0

o(r)

r
= 0.

Exercici 211. Demostreu que en un sistema de coordenades polars geodèsiques tenim,
amb la mateixa notació que a l’exercici 210,

m = r �K
0

r3

6

+ o(r3)

on m =

p
G , i K

0

= K(0, ✓) és la curvatura de Gauss a l’origen.

Exercici 212. Calculeu la longitud i l’àrea del cercle geodèsic de radi R.

Exercici 213. (Pseudoesfera) Calculeu les geodèsiques de la pseudoesfera.

Exercici 214. (Torsió geodèsica) Sigui �(s) una corba sobre una superfície S, para-
metritzada per l’arc. Sigui P = �(0) i (T, e) una base ortonormal positiva de TPS amb
T = �0(0). La torsió geodèsica17 de �(s) en P és

⌧g = h⌫ 0(0), ei,
on ⌫(s) representa el valor del vector normal a la superfície ⌫ en el punt �(s) i

⌫ 0(0) =
d⌫(s)

ds |s=0

.

Demostreu que
(a)

⌧g = (k
1

� k
2

) cos(↵) sin(↵),

on k
1

, k
2

són les curvatures principals i ↵ és l’angle entre la direcció principal e
1

i el
tangent a la corba T .

(b)
✓0(0) = ⌧ � ⌧g,

on ✓ és l’angle orientat entre el normal principal a la corba N i ⌫. Orientat vol
dir que hem de sortir de N en direcció B (binormal de la corba). En particular,
cos(✓(s)) = h⌫(s), N(s)i. També es compleix que ⌧g coincideix amb la torsió de la
geodèsica que passa pel punt P amb la mateixa tangent que la corba considerada.

(c) Les línies de curvatura tenen torsió geodèsica zero en tots els seus punts, i aquesta
condició les caracteritza.

Exercici 215. Sigui S la superfície de revolució de la corba del pla xz donada per
�(u) = (a(u), 0, b(u)), al voltant de l’eix de les z, parametritzada per

'(u, v) = (a(u) cos(v), a(u) sin(v), b(u)),

on a(u) > 0 i (a0)2 + (b0)2 = 1.
17Terme introduït per Bonnet, ja que coincideix amb la torsió de la geodèsica que passa pel punt amb la

mateixa tangent que la corba considerada. Però a diferència de la curvatura geodèsica la torsió geodèsica
no es conserva per deformacions (isometries) de la superfície.
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(a) Calculeu el símbols de Christoffel i les equacions de les geodèsiques de S.
(b) Comproveu que els meridians d’una superfície de revolució són geodèsiques.
(c) Proveu que un paral.lel és una geodèsica si, i només si, la recta tangent al meridià

que passa per cada un dels seus punts és paral.lela a l’eix de rotació de la superfície.
Apliqueu-ho al cas de l’esfera i del tor.

(d) Demostreu el Teorema de Clairaut:
Si �(s) és una geodèsica (parametritzada) de S i ✓(s) és l’angle que forma
� amb el paral.lel per �(s), aleshores el producte de la distància de �(s) a
l’eix de gir pel cosinus de ✓(s) és constant al llarg de la corba �.

(e) Veieu que el teorema de Clairaut sobre el con equival al teorema del sinus Euclidià i
sobre l’esfera equival al teorema del sinus esfèric.

(f) Calculeu la curvatura geodèsica dels paral.lels (u = u
0

) en funció de a(u).

Exercici 216. Sigui � : I ⇢ R �! C ⇢ R3 una corba regular parametritzada per
l’arc en el pla xy de la forma �(u) = (x(u), y(u), 0) i ~w = ±(0, 0, 1) un vector unitari
perpendicular al pla que conté la corba.

Sigui U = I ⇥ R i considerem l’aplicació ' : U ⇢ R2 �! S ⇢ R3 donada per
'(u, v) = cosh(v) �(u) + sinh(v) ~w.

(a) Proveu que ' : U �! S defineix una parametrització regular de S ⇢ R3.
(b) Determineu la primera forma fonamental de S i l’angle que formen les línies coor-

denades. Per a quines corbes � totes les línies coordenades de la superfície S són
ortogonals?

(c) Calculeu el vector normal a S al llarg de � en termes del vector tangent a la corba �
i del vector unitari ~w.

(d) Proveu que � és una geodèsica de S.
(e) És � una línia de curvatura de S?
(f) Si � és la parametrització d’una circumferència, quina és la superfície que estem

considerant?

Exercici 217. (Superfícies isotermes de Liouville 18) Demostreu que si l’element
de longitud d’una superfície es pot escriure com

ds2 = (U � V ) (U2

1

du2

+ V 2

1

dv2)

amb U = U(u), U
1

= U
1

(u), V = V (v), V
1

= V
1

(v) llavors les geodèsiques compleixen
l’equació diferencial (angle d’inclinació)

U sin

2

(✓) + V cos

2

(✓) = a,

on a és una constant i ✓ = ✓(u(s), v(s)) és l’angle que en cada punt de la geodèsica de
coordenades (u(s), v(s)) forma aquesta amb les corbes coordenades v = ct. que passen pel
punt.

Exercici 218. Comproveu que les quàdriques són superfícies isotermes de Liouville (217)
utilitzant la parametrització que es desprèn dels càlculs de l’exerci 91. Estudieu les línies
de curvatura de l’el.lipsoide.

Exercici 219. Demostreu que les geodèsiques de l’el.lipsoide que no passen pels punts
umbilicals es mantenen en una regió limitada per línies de curvatura. Si passen per un

18Les superfícies de Liouville apareixen a la Nota III de la versió comentada per Liouville, el 1850, de
l’obra de Monge Application de l’Analyse à la Géométrie.
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punt umbilical arriben al punt umbilical diametralment oposat i dues d’aquestes no es
tallen si no és en aquests mateixos punts umbilicals.

Exercici 220. Sigui ' : U ✓ R2 �! R3 una superfície i suposem que les corbes sobre
U donades per f(u, v) = c donen lloc a una família de geodèsiques sobre la superfície.
Demostreu que existeix una funció �(u, v) que és constant sobre les trajectòries ortogonals
a la família de geodèsiques anterior i tal que si (u(s), v(s)) són les coordenades d’una
d’aquestes geodèsiques (f(u(s), v(s)) = c) llavors �(u(s), v(s)) = s + ct. (La funció �
mesura distància sobre les geodèsiques).

Exercici 221. Demostreu que les línies de curvatura de l’el.lipsoide són el.lipses i hipèr-
boles geodèsiques.19

Exercici 222. Trobeu l’equació de l’angle d’inclinació de les geodèsiques a partir de la
fórmula de Liouville20.

8. Sense classificació clara

Exercici 223. Considerem dos meridians C
1

i C
2

d’una esfera que formen un angle ↵
en el punt P . Fem el transport paral.lel d’un vector w tangent a C

1

en P al llarg de C
1

i també al llarg de C
2

fins el punt Q on els meridians es tornen a trobar (Q és doncs
l’antipodal de P ). Siguin w

1

i w
2

els dos vectors tangents a l’esfera en Q així obtinguts.
Quin angle formen w

1

i w
2

?

Exercici 224. Sigui N un pol de l’esfera S2 i siguin P , Q dos punts del corresponent
equador tals que els meridians NQ i NQ formen un angle ↵ en P . Sigui w un vector
unitari tangent al meridià NP en N .
(a) Fem el transport paral.lel de w al llarg de la corba tancada NPQN (meridià-equador-

meridià). Determineu l’angle que forma w amb el seu transportat paral.lel al final de
la corba, és a dir, en N .

(b) Repetir l’exercici anterior quan P i Q són punts d’un paral.lel de colatitud '
0

(si
'
0

= ⇡/2 estem en el cas anterior).

Exercici 225. (Superfícies tubulars). Sigui � : I ! R3 una corba regular parame-
tritzada per l’arc i amb curvatura mai nul.la. Sigui ⇧u el pla normal a la corba en el punt
�(u). Sobre ⇧u considerem una circumferència Cu de centre �(u) i radi r(u). La reunió
S = [u2ICu d’aquestes circumferències s’anomena superfície tubular o tub al voltant de
la corba �(u) amb radi (variable) r(u). Moltes vegades es pren r(u) constant r

0

i es parla
del tub de radi r

0

.
(a) Proveu que

'(u, v) = �(u) + r(u) (cos(v)N(u) + sin(v)B(u)),

on N(u) i B(u) denoten els vectors normal principal i binormal de la corba �, para-
metritza S.

(b) Calculeu els coeficients de la primera forma fonamental de S i proveu que si 0 < r(u) <
1/k(u), on k(u) és la curvatura de �, aleshores ' és una parametrització regular.

(c) Demostreu que l’àrea de S no depèn de la torsió de �.
19Aquestes hipèrboles són corbes tancades.
20Problema 14, secció 4-8, Struik
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(d) Determineu les línies de curvatura si r és constant i la corba � és plana.
(e) Particularitzeu els resultats anteriors al cas del tor.

Exercici 226. Determineu l’equació diferencial dels cilindres i de les superfícies de revo-
lució.21

Exercici 227. [Weatherburn22] Considerem la família de superfícies u(x, y, z) = ct.

Sigui n el camp unitari normal a aquestes superfícies, n =

grad(u)

kgrad(u)k . Sigui �(s) una

corba integral de n parametritzada per l’arc. Demostreu que la magnitud del rotacional
de n és la curvatura de la corba trajectòria ortogonal � i la seva direcció és la de la
binormal a la corba, és a dir,

rot(n) = k B

on k = k(s) és la curvatura i B = B(s) la binormal de �(s).

Exercici 228. Calculeu la família de superfícies ortogonals al camp

X = (y z (y + z), x z (x+ z), x y (x+ y)).

Exercici 229. [Puig Adam] Determineu les superfícies tals que el seu pla tangent en
cada punt talli l’eix z en un punt d’ordenada z igual i de signe contrari a l’ordenada z
del punt de contacte. D’entre aquestes localitzeu la que conté la hipèrbola x2 � y2 = 1,
z = 1.

21Análisis Matemàtico, J. Rey Pastor, P. Pi Calleja, C. A. Trejo
22Differential geometry of three dimensions, Cambridge University Press, 1955.
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Solucions als Exercicis

Corbes planes

Parametritzacions i paràmetre arc

Exercici 1. La parametrització més natural de la circumferència unitat consisteix a
donar t 7! (cos(t), sin(t)), t 2 [0, 2 ⇡]. Amb aquesta parametrització la circumferència
es recorre en el sentit positiu dels angles, és a dir en contra de les agulles del rellotge,
començant pel punt (1, 0). Si volem recórrer-la en sentit contrari només hem d’invertir
la direcció del paràmetre t, és a dir, posar �t en lloc de t. Així, la parametrització
t 7! (cos(�t), sin(�t)) = (cos(t),� sin(t)), amb t 2 [0, 2 ⇡], comença també en el punt
(1, 0) però descriu la circumferència en el sentit de les agulles del rellotge.

Finalment, si volem una parametrització que comenci en un altre punt diferent del
(1, 0) només hem de fer una translació en el paràmetre t. Per exemple, per tal que �(0) =
(0, 1) ens podem quedar amb la mateixa parametrització que ja tenim (cos(t),� sin(t))
però amb t 2 [

3⇡
2

, 3⇡
2

+2 ⇡]. Si ho volem reparametritzar entre 0 i 2 ⇡ només hem de posar
T = t� 3⇡

2

2 [0, 2 ⇡], i tindrem

�(T ) = (cos(T +

3 ⇡

2

),� sin(T +

3 ⇡

2

)) = (sin(T ), cos(T )).

⇤
Exercici 2(a) Observem en primer lloc que �(t) = (t (t2 � 2), t2 � 2).

El punt (�1,�1) pertany a la imatge de �. En efecte, les equacions t2 � 2 = �1 i
t · (�1) = �1 tenen per solució el paràmetre t = 1, és a dir, �(1) = (�1,�1).

De la mateixa manera �(2) = (4, 2).
En canvi, el punt (1, 2) /2 Im � ja que el sistema d’equacions t2 � 2 = 2 i t · 2 = 1 no

té solució. ⇤
Exercici 2(b) La intersecció de la imatge de � amb l’eix de les x (y = 0) correspon als
valors del paràmetre t que fan que t2�2 = 0, és a dir, per a t = ±

p
2 , i �(±

p
2 ) = (0, 0).

D’altra banda, la intersecció amb l’eix de les y (x = 0) s’obté en resoldre t (t2 � 2) = 0 i
consisteix per tant en l’origen �(±

p
2 ) = (0, 0) i en �(0) = (0,�2). ⇤

Exercici 2(c) Es compleix x(t)
y(t) = t, d’on

⇣
x(t)
y(t)

⌘
2

� 2 = t2 � 2 = y(t). De manera que
la imatge està continguda en el conjunt C = {(x, y) 2 R2 | x2 � 2 y2 � y3 = 0}. D’altra
banda, tot punt (x, y) de C compleix automàticament que y � �2 ja que la condició
que compleixen els punts de C també es pot escriure com y2 (y + 2) = x2, de manera
que podem prendre t =

p
y + 2 i tenim �(t) = (x, y), i.e. la imatge de � no només està

continguda a C si no que és igual a C.
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⇤
Exercici 3. Cal veure si aquestes parametritzacions determinen un vector tangent a la
corba que no s’anul.la en cap punt.

Com que
�0
(t) = (�2 sin(2 t),� sin(t)),

la primera component s’anul.la en tots els valors de t que són múltiples enters de ⇡/2
(t = n ⇡/2) i la segona s’anul.la sempre que el valor de t sigui un múltiple enter de ⇡
(t = n0 ⇡). Això fa que les dues components s’anul.lin simultàniament en tots els múltiples
enters de ⇡, per tant la corba parametritzada � deixa de ser regular en els valors de t
múltiples enters de ⇡.

Si es fa un gràfic del seu recorregut s’obté un esquema com el següent:

Ll01Ex01-alpha
Autor: Gregori Guasp Balaguer

on es veu clarament que la corba correspon a un tros de paràbola, concretament la donada
per x = y2� 1. A l’enllaç23

https://ggbm.at/kkh3ePA9 (GeoGebra) hi ha una animació
d’aquesta corba amb el seu vector tangent, on es pot comprovar com el vector tangent
s’anul.la a les dues puntes de la dreta on el recorregut de la corba ha de tornar enrere.

Per a la corba � es compleix

�0(t) = (2 cos(2 t),� sin(t)).

La segona component (sin(t)) s’anul.la quan el valor del paràmetre t és un múltiple enter
de ⇡ (t = n ⇡), però en aquest cas la primera component és igual a 2 cos(2n ⇡) = 1 i, per
tant, mai s’anul.len simultàniament les dues components del vector tangent a la corba �.
Així, la corba parametritzada � és regular en tot el seu recorregut. El gràfic d’aquesta
corba serà com el següent (x = 2 y

p
1� y2 ):

23Els enllaços a fitxers GeoGebra que aniran apareixent són obra de Gregori Guasp.
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I podeu jugar amb una construcció dinàmica seguint l’enllaç https://ggbm.at/UDsznsCt.
⇤

Exercici 4. Prenem �(t) = (h(t), h(t)) si t � 0 i �(t) = (�h(t), h(t)) si t  0 on
h(t) = e

�1/t2 . Com que totes les derivades de h(t) quan t = 0 són zero, aquesta funció
és C1.

Si en tenim prou amb una parametrització C2 es pot prendre, per exemple, la funció
donada per h(t) = t� sin(t) (que té les dues primeres derivades en t = 0 nul.les). ⇤
Exercici 5(a) 4x

2
+ y

2
= 1

Observem que aquesta equació es pot escriure com

(2 x)2 + y2 = 1,

que suggereix escriure
2 x = cos(t), y = sin(t),

per a un cert paràmetre t. Així, els punts (x, y) que compleixen l’equació anterior es
poden escriure com

(x, y) =
⇣
1

2

cos(t), sin(t)
⌘
,
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amb t 2 [0, 2 ⇡]. Més formalment, tenim una parametrització � : [0, 2⇡] �! R2 donada
per

�(t) =
⇣
1

2

cos(t), sin(t)
⌘
.

Obtindreu una il.lustració de la situació a l’enllaç https://ggbm.at/WQrRAwuc. ⇤
Exercici 5(b) x

2/3
+ y

2/3
= 1

Serveix la mateixa estratègia que en el cas anterior. Concretament es posa
x2/3

= cos

2

(t), y2/3 = sin

2

(t)

de manera que es té
x2/3

+ y2/3 = cos

2

(t) + sin

2

(t) = 1.

Per tant, la corba s’obté per la parametrització � : [0, 2⇡] �! R2 donada per

�(t) =
⇣
cos

3

(t), sin3

(t)
⌘

L’enllaç https://ggbm.at/zF7QRe6h mostra la situació.
Noteu, per la forma de la corba, que serà impossible parametritzar-la de forma regular

i amb el vector tangent continu. La parametrització que es proposa té el vector tangent
continu però anul.lant-se als punts on apareixen les punxes. No obstant, cada una de les
quatre branques sí que acceptarà una parametrització regular (la que s’obté escrivint la
coordenada y en funció de la coordenada x). Segons el que es vulgui fer serà més útil una
parametrització o l’altra.

Envolupant.

L’envolupant24 de la família de rectes f(x, y,�) = 0 (una per a cada �) es troba resolent
el sistema

f(x, y,�) = 0,

@f

@�
(x, y,�) = 0.

Això és degut a que els punts de l’envolupant (una corba que té en cada punt per tangent
una recta de la família) es troben tallant cada recta amb una pròxima i passant al límit.
Concretament, si denotem (x✏, y✏) un punt solució de

f(x, y,�) = 0,

f(x, y,�+ ✏) = 0,

24A la secció 3 hi ha altres maneres de determinar envolupants i alguns exemples de corbes obtingudes
d’aquesta manera.
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els punts de l’envolupant són els punts límit lim

✏!0

(x✏, y✏) = (x
0

, y
0

) suposant que existeix
aquest límit. Així,

lim

✏!0

f(x✏, y✏,�) = f(x
0

, y
0

,�) = 0

lim

✏!0

@f

@�
(x✏, y✏,�) = lim

✏!0

lim

h!0

f(x✏, y✏,�+ h)� f(x✏, y✏,�)

h

= lim

h!0

lim

✏!0

f(x✏, y✏,�+ h)� f(x✏, y✏,�)

h

= lim

h!0

f(x
0

, y
0

,�+ h)� f(x
0

, y
0

,�)

h

=

@f

@�
(x

0

, y
0

,�) = 0 .

També es pot raonar escrivint les rectes de la família com a(t) x + b(t) y + c(t) = 0.
Per tallar amb una recta pròxima es resol el sistema

a(t) x+ b(t) y + c(t) = 0 ,

a(t+ ✏) x+ b(t+ ✏) y + c(t+ ✏) = 0 .

Restant i aplicant el teorema del valor mitjà

✏ a0(⌘
1

) x+ ✏ b0(⌘
2

) y + ✏ c0(⌘
3

) = 0, t < ⌘i < t+ ✏.

Simplificant ✏ i passant després al límit quan ✏! 0 es veu que s’ha de resoldre el sistema

a(t) x+ b(t) y + c(t) = 0 ,

a0(t) x+ b0(t) y + c0(t) = 0

com ja s’ha vist abans (però el mètode anterior funciona per a funcions f(x, y,�) encara
que no siguin lineals).

L’astroide és l’envolupant d’una escala de longitud a que s’aguanta en els eixos de
coordenades i va lliscant. És la família de rectes

y + tan(↵) x� a sin(↵) = 0 .

Derivant respecte ↵
x

cos

2

(↵)
� a cos(↵) = 0 ,

per tant
x = a cos

3

(↵),

d’on
y = �a tan(↵) cos3(↵) + a sin(↵) = a sin

3

(↵) ,

que coincideix amb la parametrització obtinguda abans.
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⇤
Exercici 5(c) x

3
+ y

3 � 3 ax y = 0

Un cop més, pensar en coordenades polars dona un camí clar per obtenir una solució
raonable. Pensem els punts del pla determinats per les seves coordenades polars (posen
(r, t)) i determinem en funció d’aquests paràmetres quins són els punts de la corba. Si
(x, y) = r (cos(t), sin(t)) l’equació de la corba s’escriu com

r3 (cos(t))3 + r3 (sin(t))3 � 3 a r2 cos(t) sin(t) = 0 .

Traient els factors comuns r2 (que són els que diuen que la corba passa per l’origen) queda
r
�
cos

3

(t) + sin

3

(t)
�
� 3 a cos(t) sin(t) = 0

i, per tant,

r =
3 a cos(t) sin(t)

cos

3

(t) + sin

3

(t)
.

Prenent, doncs,

(x, y) =
3 a cos(t) sin(t)

cos

3

(t) + sin

3

(t)
(cos(t), sin(t))

s’obté una parametrització de la corba. En aquesta expressió cal notar uns quants fets
importants:
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• Des del punt de vista geomètric, aquesta construcció està mostrant que en cada
direcció del pla hi ha un únic punt de la corba i és d’aquesta manera que parame-
tritzem la corba.

• Els punts apareixen associats a les direccions del pla no al raigs que surten de
l’origen, això es manifesta en el fet que hi ha valors de t per als quals la r corresponent
és negativa.

• En afegir mitja volta (⇡ radians) al paràmetre t els sinus i cosinus canvien de signe
i, per tant, apareix el mateix punt. Això significa que per descriure tota la corba
n’hi ha prou amb un interval de t que cobreixi només mitja volta. (Això no deixa
de ser una altra manifestació del mateix que apareix als punts anteriors).

• Quan t = �⇡/4 o t = 3 ⇡/4 el denominador de r es fa 0 i, per tant, l’expressió
tendeix a infinit. Això significa que el millor interval per descriure la corba serà el
que conté les t entre �⇡/4 i 3 ⇡/4.

Podeu experimentar la situació a l’enllaç https://ggbm.at/G3ZkvjTu.

Estudi analític del signe de r. Observem que el denominador és igual a (cos(t) +
sin(t)) (1� sin(t) cos(t)) (tenint en compte que a3+ b3 = (a+ b) (a2� a b+ b2)). Per tant,
té el signe de cos(t) + sin(t) =

p
2 cos(t � ⇡

4

). D’on resulta clar que el denominador és
positiu a (�⇡/4, 3⇡/4).

El numerador és essencialment sin(2 t) (considerant a > 0). Per tant és positiu a
(0, ⇡/2) [ (⇡, 3 ⇡/2).

D’aquí es dedueix que r és positiu a (0, ⇡/2)[ (3 ⇡/4, ⇡)[ (3 ⇡/2, 7 ⇡/4), com ja es veu
en el dibuix.

No obstant la parametrització

�(t) =
(3 a/2) sin(2 t)

cos

3

(t) + sin

3

(t)
(cos(t), sin(t)).

per a t 2 [0, ⇡] té perfecte sentit (encara que en alguns punts el signe de r sigui negatiu) i
ja parametritza tota la corba. Es pot pensar que “unim” els tres intervals anteriors restant
⇡ (que ja hem dit que no canvia els punts de la corba) al tercer interval (3 ⇡/2, 7 ⇡/4).

Recordatori sobre quart harmònic. Recordem que donats quatre punts alineats
A,B,C,D es defineix la seva raó doble com el quocient de raons simples

(A,B,C,D) =

(A,B,C)

(A,B,D)

.

Si fixem una referència afí (un punt i un vector) i prenem coordenades es compleix

(A,B,C,D) =

c� a

c� b
:

d� a

d� b
,

on a, b, c, d són respectivament les coordenades dels punts A,B,C,D.
El quart harmònic dels punts A,B,O és el punt X tal que

(A,B,O,X) = �1.

(L’ordre és molt important).
Si prenem la referència afí amb origen en O, la coordenada x del quart harmònic X

compleix, doncs,
(A,B,O,X) =

a

b
:

x� a

x� b
= �1,
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o equivalentment
x =

2

1

a
+

1

b

(5)

és a dir, la coordenada del quart harmònic és la mitjana harmònica de les coordenades
dels altres dos punts.

Definició geomètrica del Folium. Considerem les paràboles y =

1

a x
2, x =

1

a y
2. Diem

Au i Bu respectivament els punts en què la recta y = tan(u) x talla aquestes dues paràboles
i sigui O l’origen de coordenades. El Folium de Descartes és el lloc geomètric de punts X
del pla tals que (Au, Bu, O,X) = �1, és a dir, el lloc geomètric dels quarts harmònics de
Au, Bu, O.

Un càlcul fàcil diu que

Au = am (1,m), Bu =

a

m
(

1

m
, 1),

on m = tan(u).
Per tant, prenent sobre la recta y = tan(u) x la referència afí {O; (cos(u), sin(u))} les

coordenades de Au i Bu són respectivament

[Au] = am
p
1 +m2 , [Bu] =

a

m2

p
1 +m2 .

Ara bé, per la fórmula (5), la coordenada de X sobre la recta O,Au, Bu, respecte la
referència afí {O; (cos(u), sin(u))}, és

t =
2

1

[Au]
+

1

[Bu]

=

2 am
p
1 +m2

1 +m3

.

Així les coordenades en el pla del punt X són (recordem cos(u) = ±1/
p
1 +m2 ,

sin(u) = m± /
p
1 +m2 , on el signe es determina pel quadrant, de fet |t| = t a [0, ⇡/2] [

[3⇡/2, 7⇡/4], on cos(↵) � 0 i |t| = �t a [3⇡/4, ⇡], on cos(↵)  0)

X = (x
1

, y
1

) = (|t| cos(u), |t| sin(u)) =
✓

2ma

1 +m3

,
2m2a

1 +m3

◆
.

En funció de l’angle u,

X = (x
1

, y
1

) =

a sin(2u)

cos

3

(u) + sin

3

(u)
(cos(u), sin(u)) . (6)

Ara es veu fàcilment que
x3

1

+ y3
1

= 2 a x
1

y
1

,

que és l’equació del folium. (Així la constant a és 3/2 de la constant a que apareixia a la
fórmula inicial del folium).
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O

M

B

A

A

B

M

Una altra parametrització. Posem y = t x llavors

x3

+ t3 x3

= 3 a t x2

és a dir
x =

3 a t

1 + t3
, y =

3 a t2

1 + t3
.

Asímptota. Una manera enginyosa de trobar l’asímptota, és observar que un polinomi
té l’arrel doble z = 0 si el terme independent i el coeficient de z són zero. Per tant, posant
z = 1/x, un polinomi té l’arrel 1 doble si els dos coeficients de grau superior s’anul.len.

En tallar x3

+ y3 = 3 x y amb una recta arbitrària y = mx+ n obtenim

(1 +m3

) x3

+ 3m (mn� 1) x2

+ 3 k (mn� 1) x+ n3

= 0.

Per tant 1 +m3

= 0 i 3m (mn� 1) = 0. És a dir, l’asímptota és y = �x� 1. ⇤
Exercici 5(d) (x

2
+ y

2
)

2
= a

2
(x

2 � y

2
)

Com en els altres casos semblants, pensant (x, y) = r (cos(t), sin(t)), l’equació que defineix
la corba s’escriu en funció de (r, t) com

r4 = a2 r2
⇣
cos

2

(t)� sin

2

(t)
⌘

que es transforma immediatament en

r = a
p

cos(2 t)

i genera la parametrització

(x, y) = a
p

cos(2 t) (cos(t), sin(t)) .
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És clar que aquesta expressió només té sentit quan cos(2 t) � 0 i això no es produeix quan
t és a (⇡/4, 3 ⇡/4) o a (5 ⇡/4, 7 ⇡/4). Per tant, quan es pensa d’aquesta manera s’hauran
de considerar per separat la parametrització del llaç de la dreta (per a t 2 [�⇡/4, ⇡/4]) i
la del llaç de l’esquerra (t 2 [3 ⇡/4, 5 ⇡/4]).

Es pot definir en un sol interval traslladant el segon; tindríem � : [�⇡/4, 3⇡/4] �! R2

donada per

�(t) =

8
<

:

p
cos(2 t) (cos(t), sin(t)) si t 2 [�⇡/4, ⇡/4]

p
� cos(2 t) (� sin(t), cos(t)) si t 2 [⇡/4, 3⇡/4] .

Definició geomètrica de la Lemniscata.
Calculeu el lloc geomètric dels punts del pla tals que el producte de distàncies als

punts (1, 0) i (�1, 0) respectivament és 1. ⇤
Exercici 6.

Considerem els punts de l’eix de les x donats per x = 1/n (que corresponen als punts on
la corba travessa l’eix ja que sin(n ⇡) = 0) i enmig de cada parell consecutiu 1/(n + 1),
1/n afegim el punt 1/(n+

1

2

) = 2/(2n+ 1) on el valor del sinus és ±1. Observem que la
corba �(t) passa pels punts A, B, C següents:

A = �
�

1

n+ 1

�
=

�
1

n+ 1

, 0
�
,

B = �
�

1

n+

1

2

�
=

�
1

n+

1

2

,
1

n+

1

2

�
,

C = �
�
1

n

�
=

�
1

n
, 0
�
.

La longitud de la corba entre A i C és més gran o igual que la longitud de la poligonal
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ABC. Però per a aquesta poligonal es té

`(ABC) =

s✓
1

(n+ 1) (2n+ 1)

◆
2

+

✓
2

2n+ 1

◆
2

+

s✓
1

n (2n+ 1)

◆
2

+

✓
2

2n+ 1

◆
2

=

1

2n+ 1

 s
1

(n+ 1)

2

+ 4 +

r
1

n2

+ 4

!

>
4

2n+ 1

.

Resumint, la longitud de la corba a l’interval [0, 1] serà més gran o igual que la suma de
la sèrie

1X

n=1

4

2n+ 1

que és divergent. L’esquema següent mostra els elements que s’han utilitzat en aquest
raonament.

(1/n, 0)(1/(n+ 1), 0)

(1/(n+

1
2 ), 0)

(1/(n+

1
2 ), 1/(n+

1
2 ))

1

n (2n+ 1)

1

(n+ 1) (2n+ 1)

s✓
1

(n+ 1) (2n+ 1)

◆2

+

✓
2

2n+ 1

◆2
s✓

1

n (2n+ 1)

◆2

+

✓
2

2n+ 1

◆2

⇤
Exercici 7(a) y = log(x)
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La longitud s(x) de la corba des del punt (1, 0) fins al punt de coordenades (x, log(x))
serà

s(x) =

Z x

1

r
1 +

1

t2
dt

ja que el vector tangent s’expressa com (1, 1/x) per a un valor arbitrari x del paràmetre.
Amb una mica d’habilitat es pot veure que el valor d’aquesta integral serà

Z r
1 +

1

t2
dt =

p
t2 + 1 � 1

2

log

⇣p
t2 + 1 + 1

⌘
+

1

2

log

⇣p
t2 + 1 � 1

⌘

(la part dels logaritmes també es pot escriure en termes de arctanh(y) = log

⇣q
1+y
1�y

⌘
).

Això vol dir que la funció longitud s(x) serà

s(x) = �
p
2 +

1

2

log

 p
2 + 1p
2 � 1

!
+

p
x2

+ 1 +

1

2

log

 p
x2

+ 1 � 1p
x2

+ 1 + 1

!
.

No es podrà, doncs, donar una expressió de x en funció de s, encara que sí que es
pugui calcular de forma explícita la longitud. ⇤
Exercici 7(b) x

2/3
+ y

2/3
= a

2/3

Si parametritzem la corba per �(t) =
�
a (cos(t))3, a (sin(t))3

�
com es fa a l’exercici 5(b) el

vector tangent serà

�0(t) =
⇣
�3 a sin(t) (cos(t))2, 3 a cos(t) (sin(t))2

⌘
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i la seva norma (suposem a > 0)
k�0(t)k = 3 a |sin(t) cos(t)| .

Per simetria, i per no tenir problemes amb el valor absolut, ens podem limitar a
l’interval [0, ⇡/2] ja que la situació es va repetint en cadascuna de les quatre branques de
l’astroide.

Per tant, la longitud s(t) de l’astroide des del punt corresponent al valor 0 del parà-
metre (punt (1, 0)) fins al punt corresponent al valor t  ⇡/2 (punt (0, 1)) serà

s(t) =

Z t

0

3 a sin(x) cos(x) dx =

3 a

2

(sin(t))2

que proporciona la relació inversa

t(s) = arcsin

 r
2

3 a
s

!
.

Això fa que es pugui parametritzar aquesta branca de l’astroide en funció de l’arc s com

�̃(s) = �(t(s)) =

 
a (cos(arcsin

 r
2

3 a
s

!
))

3, a (sin(arcsin

 r
2

3 a
s

!
))

3

!
.

Tenint en compte les relacions entre sinus i cosinus

�̃(s) =

 
a

✓
1� 2

3 a
s

◆
3/2

, a

✓
2

3 a
s

◆
3/2
!
.

La longitud de l’astroide és doncs
L = 4 s (⇡/2) = 6 a.

⇤
Exercici 7(c) x

2
/a

2
+ y

2
/b

2
= 1

Utilitzant com a parametrització òbvia de la corba
�(t) = (a cos(t), b sin(t)),

el vector tangent serà
�0(t) = (�a sin(t), b cos(t))

amb norma
k�0(t)k =

q
a2 sin

2

(t)2 + b2 cos

2

(t)2 .

Per a calcular la longitud s(t) fins a un cert valor del paràmetre caldrà fer la integral

s(t) =

Z t

0

q
a2 sin

2

(x)) + b2 cos

2

(x) dx

que tampoc és expressable en termes de funcions elementals si no s’està en el cas a = b
(circumferència). Per tant, ja no es pot fer res més. ⇤
Exercici 8. Comencem buscant una parametrització de la trocoide. La parametrització
del centre de la circumferència és t 7! (b t, b). Naturalment el factor que multiplica la t
no és necessari però simplificarà els càlculs, el motiu és que d’aquesta forma t representa
l’angle de gir de la circumferència (vegeu el dibuix de més avall) i així quan t varia entre 0

i 2 ⇡ la circumferència ha fet una volta completa. Aleshores un punt P situat a distància
a del centre i fixat a aquest per mitjà d’un radi té una posició relativa al centre donada
per t 7! (�a sin(t),�a cos(t)). Així doncs la parametrització demanada és

�(t) = (b t� a sin(t), b� a cos(t)).
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Quan a = b tenim la cicloide

�(t) = a (t� sin(t), 1� cos(t)). (7)

t t

P

t

P

P

Paràmetre arc de la cicloide. Com que

�0(t) = a (1� cos(t), sin(t)),

k�0(t)k = a
p
2 (1� cos(t)) ,

el paràmetre arc és

s(t) = a

Z t

0

p
2 (1� cos(x)) dx = 2 a

Z t

0

r
sin

2

(

x

2

) dx = 4 a (1� cos(t/2)).

En particular, la longitud d’un arc de cicloide és s(2 ⇡) = 8 a, resultat obtingut per
Christoffer Wren el 1658. ⇤
Exercici 9(a) Tal com es veu directament a la figura (relacionem les coordenades (x, y)
de P amb les del centre de la circumferència)

a

P

P

t

a t

a t

a

la cicloide invertida està parametritzada per

x = a t� a sin(t),

y = a cos(t)� a

que escrivim �(t) = a (t�sin(t), cos(t)�1). Com era d’esperar no és més que l’equació (7)
canviant y per �y. ⇤
Exercici 9(b) Igualant en els punts �(t

0

) i �(t) la suma de les energies cinètica i potencial
es té

mg h = mv(t)2/2,

és a dir
v(t) =

p
2 g h ,
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on h és la distància vertical entre aquests punts (diferència d’alçades). Noteu que s’ha
usat que en �(t

0

) la velocitat inicial, i per tant l’energia cinètica en aquest punt, és zero.
Per tant,

h = a (cos(t
0

)� 1)� (cos(t)� 1)) = a(cos(t
0

)� cos(t)).

Així que
v(t) =

p
2 g a (cos(t

0

)� cos(t)) .

⇤
Exercici 9(c) La distància recorreguda pel cos entre els punts �(t

0

) i �(t) és

s(t) =

Z t

t0

a
q

1 + cos

2

(t)� 2 cos(t) + sin

2

(t) dt =

Z t

t0

a
p

2� 2 cos(t) dt

=

Z t

t0

2 a sin(

t

2

) dt = 4 a cos(

t
0

2

)� 4 a cos(

t

2

).

⇤
Exercici 9(d) La derivada respecte el temps de l’espai recorregut dona la velocitat:

ds(t(⌧))

d⌧
= 2 a sin(

t

2

)t=t(⌧)
dt

d⌧
= v(t(⌧)) =

p
2 g a (cos(t

0

)� cos(t(⌧)))

= 2

p
g a

r
cos

2

(

t
0

2

)� cos

2

(

t(⌧)

2

) .

És a dir, es té l’equació diferencial

2 a sin(

t(⌧)
2

)

2

p
g a
q

cos

2

(

t0
2

)� cos

2

(

t(⌧)
2

)

dt

d⌧
= 1.

Per tant, integrant respecte ⌧ , s’obté que el temps que tarda el cos en baixar des de la
posició �(t

0

) fins al punt més baix �(⇡) és

⌧(⇡) =

Z ⌧(⇡)

0

r
a

g

sin(

t(⌧)
2

)

q
cos

2

(

t0
2

)� cos

2

(

t(⌧)
2

)

dt

d⌧
d⌧ =

r
a

g

Z ⇡

t0

sin(

t
2

)

q
cos

2

(

t0
2

)� cos

2

(

t
2

)

dt

=

r
a

g

Z
0

cos(

t0
2 )

�2q
cos

2

(

t0
2

)� u2

du = 2

r
a

g

Z
cos(

t0
2 )

0

1r
1�

⇣
u

cos(

t0
2 )

⌘
2

du

cos(

t0
2

)

= 2

r
a

g

Z
1

0

dxp
1� x2

= ⇡

r
a

g
.

Com es veu, el temps de caiguda només depèn del radi de la circumferència que defineix
la cicloide i no depèn de la posició inicial del cos. ⇤
Exercici 10. Podeu veure un document GeoGebra amb la construcció d’una cardioide
amb l’enllaç següent (feu clic sobre el dibuix):
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Podreu manipular els paràmetres i prendre mesures.
En qualsevol cas, si es considera, com en l’animació, que la circumferència que va

rodant comença a la part de dalt de tot i es segueix el punt en el que coincideixen les
dues circumferències, la situació després d’haver recorregut un arc d’angle t sobre la
circumferència fixada serà com a l’esquema següent

x

t

t
t

y

On, potser, l’únic que cal explicar és que l’angle entre la recta que uneix els centres de
les circumferències i la direcció vertical també val t ja que es tracta de l’angle que forma
una secant entre dues paral.leles (angles alterns-interns).

Vist això, la posició del centre de la circumferència que roda, després del gir correspo-
nent a l’arc t, serà

C = (2 a cos(t+ ⇡/2), 2 a sin(t+ ⇡/2)) = (�2 a sin(t), 2 a cos(t)),

i el vector que va des del centre fins al punt que s’està seguint serà

v = (a cos(2 t� ⇡/2), a sin(2 t� ⇡/2)) = (a sin(2 t),�a cos(2 t)).
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De forma que la posició del punt vermell és
(x, y) = C + v = a (�2 sin(t) + sin(2 t), 2 cos(t)� cos(2 t)). (8)

Naturalment hi ha altres opcions que difereixen d’aquesta per la posició de les circumfe-
rències respecte els eixos, la posició relativa del punt inicial, etc. Per exemple, si passa
per l’origen, com indica la figura següent.

y

P

B

A
x

El centre B de la circumferència exterior que gira ve parametritzat per l’expressió
�(t) = (a + 2 a cos(t), 2 a sin(t)), suposant un sentit de gir antihorari, on t és l’angle
entre la recta AB i l’eix de les x0s. Ara cal parametritzar el gir del punt P respecte a
B. El que cal observar és (mireu els tres arcs de cercle més gruixuts de la figura) que
l’angle que forma la recta PB amb l’eix de les x0s és el doble de t, per tant el movi-
ment ve parametritzat, respecte d’uns eixos traslladats paral.lelament al nou origen B,
per �(t) = (a cos(2 t), a sin(2 t)).

B

A t

t

t

Així doncs, la parametrització de la cardioide és
�(t) = (a+ 2 a cos(t) + a cos(2 t), 2 a sin(t) + a sin(2 t)) = a (1 + 2 e

i t
+ e

i t
).

Equivalentment
�(t) = (2 a cos(t) (1 + cos(t)), 2 a sin(t) (1 + cos(t))).

La distància d’aquest punt a l’origen és
p

x(t)2 + y(t)2 = 2 a (1 + cos(t)).
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La cardioide és un cas particular d’epicicloide, vegeu l’exercici 12. ⇤
Exercici 11.

x(t) = r (k � 1) sin(t)� r sin((k � 1) t),

y(t) = r (k � 1) cos(t) + r cos((k � 1) t).

Posant k = m/n amb m,n coprimers, obtindrem una hipocicloide tancada de paràmetre
t que variarà a l’interval [0, 2n ⇡].

t

�

R

r

P

P
↵

Les coordenades del centre del cercle petit són ((R� r) sin(t), (R� r) cos(t)). Per trobar
les coordenades de P hem de sumar (r cos(�), r sin(�)). Però R t = r ↵ i �+↵ = ⇡/2+ t.

Observeu que per a k = 4 obtenim l’astroide. Recordeu que sin(3 t) = 3 sin(t) �
2 sin

3

(t). ⇤
Exercici 12.

Els mateixos arguments fets a l’exercici 11 per a les hipocicloides porten a que les equacions
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de les epicicloides són

x(t) = (R + r) sin(t)� r sin(

R + r

r
t) ,

y(t) = (R + r) cos(t)� r cos(

R + r

r
t) .

⇤
Exercici 13(a) No cal fer càlculs massa complicats per obtenir les expressions canòniques

x2

a2
± y2

b2
= 1 .

(+ en el cas de l’el.lipse i � en el de la hipèrbola). ⇤
Exercici 13(b) En les coordenades anteriors el focus era F

1

= (a e, 0) i la directriu
x = a/e. Considerem el punt F

2

= (�a e, 0) i la recta d
2

donada per x = �a/e. L’expressió
canònica mostra que, si (x, y) és un punt de la cònica, llavors (�x, y) també hi pertany.
Per tant,

d((x, y), F
1

)

d((x, y), d)
=

d((�x, y), F
1

)

d((�x, y), d)
=

d((x, y), F
2

)

d((x, y), d
2

)

= e

Així, el paper que juga (F
1

, d
1

) és el mateix que el jugat per (F
2

, d
2

). ⇤
Exercici 13(c) En el cas de l’el.lipse, si F

1

, F
2

són els focus i d
1

, d
2

les directrius, cadascun
dels seus punts P compleix

d(P, F
1

)

d(P, d
1

)

=

d(P, F
2

)

d(P, d
2

)

= e < 1

Observeu que d(P, d
1

) = d(P,Q
1

) on Q
1

és el peu de la perpendicular a d
1

des de P i
d(P, d

2

) = d(P,Q
2

), on Q
2

és el peu de la perpendicular a d
2

des de P (les directrius són
paral̇eles).

d1
d2

P

Q1
Q2

F2 F1

Llavors

d(P, F
1

) + d(P, F
2

) = e
�
d(P,Q

1

) + d(P,Q
2

)

�
= e d(Q

1

, Q
2

) = e d(d
1

, d
2

),

quantitat que no depén del punt P elegit sobre l’el.lipse.
Observeu també que la distància entre les directrius és

d(d
1

, d
2

) = 2a/e

(obvi si es recorden les equacions d’aquestes rectes en coordenades canòniques) de manera
que es té

d(P, F
1

) + d(P, F
2

) = 2a
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Recíprocament, el lloc geomètric dels punts del pla tals, que la suma de distàncies a
dos punts donats és constant és una el.lipse. En efecte, prenem coordenades de manera
que aquests punts siguin (c, 0) i (�c, 0). Sumem les distànces d’un punt (x, y) a aquests
punts. S’obté p

(x� c)2 + y2 +

p
(x+ c)2 + y2 = 2a.

Passant una arrel a la dreta, elevant al quadrat dos cops apareix immediatament l’expres-
sió canònica

x2

a2
+

y2

b2
= 1.

El cas de la hipèrbola es pot tractar de la mateixa manera. ⇤
Exercici 13(d) La situació correspon a l’esquema següent.

P

F1

r
2 a� r

2 a

2 c

✓ F2

Aleshores el Teorema del cosinus sobre el triangle F
1

F
2

P dóna la igualtat
(2 a� r)2 = (2 c)2 + r2 � 2 (2 c) r cos(✓)

que serà equivalent a
4 a2 � 4 a r + r2 = 4 c2 + r2 � 4 c r cos(✓)

(que és lineal respecte r) i permet escriure

r =
a2 � c2

a� c cos(✓)
=

(a2 � c2)/a

1� (c/a) cos(✓)
.

Tenint en compte les definicions de b, p i e

r =
p

1� e cos(✓)
.

El cas da la hipèrbola és similar, només que ara el triangle PF
1

F
2

té costats r, 2c i
r � 2a. ⇤
Exercici 13(e) És clar que aquestes parametritzacions compleixen les equacions canòni-
ques.

En el cas de l’el.lpse, el vector tangent a la corba respecte aquesta parametrització serà
�0(t) = (�a sin(t), b cos(t))

i les funcions sinus i cosinus mai s’anul.len simultàniament. Així doncs la parametrització
és regular.

Observeu, a més, que t no és la coordenada polar de P sinó la d’un punt Q situat a
la mateixa vertical que P sobre la circumferència de radi l’eix major a i centre l’origen. I
l’horitzontal per P talla la circumferència de radi l’eix menor b i centre l’origen justament
en el mateix punt en què aquesta circumferència talla la recta OQ.
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b

Q

P = (x, y)

t

y

a

a cos(t)

b sin(t)

xO

En el cas de la hipèrbola el vector tangent serà

�0(t) = (�a sinh(t), b cosh(t))

i, com abans, les funcions sinh i cosh no s’anul.len simultàniament. ⇤
Exercici 14. Càlcul directe o utilitzant que l’el.lipse de semiexos a i b es transforma en
la circumferència de radi a per l’aplicació f(u, v) = f(u, abv) (suposem a eix major i b eix
menor). Aquesta mateixa aplicació també permet veure que el diàmetre d

1

és conjugat al
diàmetre d

2

si i només si d
2

és el lloc geomètric dels punts mitjos de les cordes paral.leles
a d

1

. ⇤
Exercici 15. Sigui d

1

el diàmetre de direcció ~x i d
2

el diàmetre de direcció ~y.
Per la caracterització de diàmetres conjugats com punts mitjos de les cordes, existeix

una constant c tal que els punts ~y + c ~x, y � c ~x pertanyen tots dos a la cònica. Per tant,

�(~y + c ~x, ~y + c ~x) = p,

�(~y � c ~x, ~y � c ~x) = p.

Restant aquestes dues equacions obtenim

4 c�(~x, ~y) = 0,

com volíem.
En particular el problema anterior es pot resoldre simplement escrivint

�
1 m

�✓
1/a2 0

0 1/b2

◆✓
1

m0

◆
= 0.

⇤
Exercici 16.

Si la corba ve donada de la forma y = y(x) el pendent de la tangent a la corba en un
punt P de coordenada x és y0(x) i es té la situació de la figura, on R és la projecció de P
sobre l’eix de les x i Q és el punt d’intersecció de la tangent a la corba en P amb l’eix de
les x.
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P

y

↵

R Q

1

A partir de la figura es veu directament que

y0 = tan(⇡ � ↵) = � tan(↵) = �RP

RQ
= � yp

1� y2

Aquesta equació diferencial es resol pel mètode de separació de variables. És a dir,
s’integren els dos termes de

�
p
1� y2

y
dy = dx.

Per fer la integral de l’esquerra es pot utilitzar el canvi de variable y =

1

cosh(t) , dy =

� tanh(t)
cosh(t)dt. Aleshores

�
Z p

1� y2

y
dy =

Z
tanh

2

(t) dt = t� tanh(t) +C = arccosh

✓
1

y

◆
�
p

1� y2 = x+C.

Si s’imposa que la corba passi pel punt (0, 1) la constant d’integració ha de ser C = 0.
S’obté doncs una primera parametrització de la tractriu en funció de l’altura y:

x(y) = arccosh

⇣
1

y

⌘
�
p
1� y2

amb 0 < y  1.
Aprofitant els càlculs anteriors també es pot parametritzar la tractiu com

�(t) =
⇣
t� tanh(t), 1

cosh(t)

⌘

amb 0  t < 1.
Un altre canvi de variable que també resol la integral anterior és y = sin(t), amb

t 2 (0, ⇡/2]. Aleshores

�
Z p

1� y2

y
dy =

Z
sin(t)� 1

sin(t)
dt = � cos(t)�

Z
1

sin(t)
dt = x+ C.

A la segona integral s’introdueix el canvi s = tan

�
t
2

�
que, com és ben conegut, dona

t = 2 arctan(s),
dt

ds
=

2

1 + s2
, sin(t) =

2 s

1 + s2
, cos(t) =

1� s2

1 + s2
.

S’obté x = � cos(t)� ln(tan(t/2))+C, però C = 0 pel mateix motiu d’abans. De manera
que s’arriba a la parametrització, clàssica, de la tractriu següent:

�(t) = (� cos(t)� ln(tan(t/2)), sin(t))
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(per a t = ⇡/2 passa pel punt (0, 1)).
Si es vol començar en el punt (0, 1) i acabar a (1, 0) es posa T = �t+ ⇡

2

2 [0, ⇡/2), i
si abans t variava de ⇡/2 fins a 0 ara T varia de 0 fins a ⇡/2.

Canviant t per T s’obté una altra parametrització de la tractriu, amb �(0) = (0, 1):

�(T ) = (� sin(T )� ln(

1�tan(T/2)
1+tan(T/2)), cos(T ))

que es pot escriure com

�(T ) = (� sin(T )� ln(1� sin(T )) + ln(cos(T )), cos(T ))

Paràmetre arc. Es té

�0(t) =
⇣
sin

2

(T )

cos(T )
,� sinT

⌘
,

k�0(t)k = |tan(T )| = tan(T ), ja que T 2 [0, ⇡/2).

Aleshores el paràmetre arc, contat a partir del punt (0, 1) (és a dir, T = 0), és

s(T ) =

Z T

0

tan(x) dx = � ln(cos(T )) = ln

⇣
1

cos(T )

⌘
.

Suposant una parametrització del tipus �(x) = (x, y(x)) (que no s’ha pogut explicitar)
es tindria (denotant s(x) la longitud de la tractriu entre (0, 1) i (x, y(x)))

s(x) =

Z x

0

p
1 + y0(x)2 dx =

Z x

0

s

1 +

y(x)2

1� y(x)2
dx = �

Z x

0

y0(x)

y(x)
dx = ln

⇣
1

y(x)

⌘
.

Això vol dir que l’expressió de la tractriu respecte del paràmetre arc s és

�(s) =
�
arccosh(e

s
)�

p
1� e

�2s, e�s
�

Observem que les dues expressions s(T ) i s(x) que s’acaben d’obtenir per al paràmetre
arc diuen el mateix: la longitud d’arc és el logaritme neperià de l’invers de la segona
component. ⇤
Exercici 17.
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El vector tangent a una corba de la forma (x, cosh(x)) serà (1, sinh(x)) amb normap
1 + (sinh(x))2 = cosh(x).
Per tant, la funció longitud s(x) serà

s(x) =

Z x

0

cosh(t) dt = sinh(x)

de forma que la parametrització de l’arc s’obtindrà prenent x = arcsinh(s) i serà de la
forma

�(s) = (arcsinh(s),
p
1 + s2 )

(ja que cosh(t) =
p

1 + (sinh(t))2 ).

Deducció de l’equació de la catenària. Suposem una cadena amb extrems en els
punts (�a, b) i (a, b), a > 0, que penja sota l’acció de la gravetat. Considerem un petit
tros de cadena de longitud s comptat a partir del punt més baix de la cadena i cap a la
dreta. El pes d’aquest tros és “massa ⇥ gravetat”. Suposem densitat 1 per no arrossegar
constants, de manera que la massa és essencialment la longitud. Llavors el pes és g s o,
vectorialment, ~F = (0,�g s).

s

✓

T0

T

Aquesta força està compensada per les forces que actuen tangencialment en els extrems
del segment de cadena que s’està considerant. Concretament per la força T

0

= (�T
0

, 0),
amb T

0

> 0, que fa el cable en el punt més baix i per la força T = (T cos(✓), T sin(✓))
tangent al cable en el punt més alt del segment de longitud s. L’angle ✓ és doncs l’angle
que forma la tangent a la cadena en aquest punt i la condició d’equilibri serà

T
0

= T cos(✓),

g s = T sin(✓).

Dividint, s’obté
tan(✓) =

g s

T
0

.

Però tan(✓) = y0(x), on x és l’abscissa del punt extrem superior del segment de corda que
s’està considerant. De manera que, denotant per s(x) la longitud del segment de corba
entre els punt d’abscisses 0 i x,

y0(x) = � s(x), amb � =

g

T
0

.

Aquesta és l’equació diferencial de la catenària.
Derivant, es té

d2y

dx2

= �
ds

dx
= �

s

1 +

✓
dy

dx

◆
2

,
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(la darrera igualtat per definició de paràmetre arc).

Equivalentment, posant v(x) =
dy

dx
,

dv

dx
= �

p
1 + v2 ,

Aquesta equació diferencial de primer ordre és trivial i dona

arcsinh(v) = � x+ C.

Com que v(0) = 0 (en el mínim la tangent és horitzontal) es té

v(x) = sinh(� x),

que integrant dona
y(x) =

1

�
cosh(� x) + C

1

i tenint en compte la condició inicial es determina C
1

i s’obté

y(x) =
1

�
cosh(� x) + b� 1

�
cosh(� a).

Si � = 1 i b = cosh(a) resulta y(x) = cosh(x) que és l’expressió de la catenària donada
a l’enunciat.

Nota. L’equació diferencial de la catenària y0(x) = � s(x) també es pot deduir així:
Considerem el tros de corda o cadena que penja entre els punts (�a, b) i (a, b) però

ens fixem només en el tros que està està entre els punts (0, c) i (x, y(x)). Suposem que
aquest tros té longitud s. La massa serà doncs proporcional a aquesta longitud, posarem
M = ⇢ s, on ⇢ és una constant (la densitat). Ara substituïm aquest tros de corda per
un objecte ideal format per N + 1 boles, totes elles de la mateixa massa mN , unides
entre si per un cable rígid de massa negligible i longitud �N de manera que N �N = s, i
(N + 1)mN = M .

Sobre cada bola Bi actuen tres forces: el pes mN g, la tensió del fil per la dreta ~Ti+1

,
i la tensió del fil per l’esquerra ~Ti. Denotem Ti =

���~Ti

��� i ✓i l’angle que forma ~Ti amb
l’horitzontal. Totes aquestes quantitats depenen de N però posem més subíndexs per no
recarregar més la notació. La condició d’equilibri (suma de forces igual a zero) s’escriu
com

Ti+1

cos(✓i+1

) = Ti cos(✓i) ,

Ti+1

sin(✓i+1

)� Ti sin(✓i) = mN g .

Diem T al valor Ti cos(✓i), que hem vist que no depèn de i, és a dir T = Ti cos(✓i), i
sumem, des de i = 0 fins a i = N � 1 la segona igualtat. Els termes successius es van
cancel.lant (suma telescòpica) i queda només el primer i l’últim:

TN sin(✓N)� T
0

sin(✓
0

) = N mN g = (M �mN) g = s⇢ g �mN g.

Si la bola B
0

ocupa el punt més baix de la cadena, com en el dibuix anterior, ✓
0

= 0, i
l’expressió anterior, dividida per T , és

tan(✓N) = s
⇢ g

T
� mN g

T
.

Si ara prenem límits quan N ! 1, i recordant que la bola BN està en el punt de
coordenades (x, y), s’obté ( lim

N!1
mN = 0)

y0(x) = � s(x),
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on � és una constant, que és l’equació diferencial de la catenària. ⇤
Exercici 18(a) r(t) = R (t l’angle de les coordenades polars). ⇤
Exercici 18(b) L’equació de les coordenades cartesianes d’aquesta circumferència és

(x�R)

2

+ y2 = R2.

Desenvolupem x2

+ y2 � 2Rx = 0, fem la substitució x = r cos(t), y = r sin(t) i obtenim
que r2 � 2Rr cos(t) = 0, d’on

r (r � 2R cos(t)) = 0.

Com que el cas r = 0 correspon únicament al punt (0, 0), tenim que el recorregut de la
circumferència es pot parametritzar com

r(t) = 2R cos(t), �⇡/2  t  ⇡/2.

En realitat, aquest càlcul no és necessari ja que el resultat es veu directament mirant
la figura i tenint en compte que els punts d’una circumferència veuen el seu diàmetre sota
un angle recte. Dit d’una altra manera, els càlculs anteriors només són una constatació
del fet, ben conegut des de l’antiguitat, que el diàmetre d’una circumferència es veu sota
un angle recte des de qualsevol del seus punts.

P

(R, 0)

r

t

⇤
Exercici 18(c) Podem fer una representació gràfica (numèrica) i s’obtindrà un gràfic com
el de la figura següent (clicant a sobre anireu a una construcció dinàmica de GeoGebra).

Sembla clar, després de fer aparèixer els elements ocults de la construcció dinàmica,
que es tracta d’una cardioide obtinguda fent girar sobre la circumferència de radi 1/2 i
centre en (0,�1/2) una altra circumferència del mateix radi.
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B

✓

A

✓
O

C
✓

P

Observeu que aquesta cardioide es pot parametritzar, en funció de l’angle de gir ✓ com
↵(✓) = (x(✓), y(✓)) amb

x(✓) = � sin(✓) +
1

2

sin(2 ✓) ,

y(✓) = �1

2

+ cos(✓)� 1

2

cos(2 ✓)

(només cal recordar que quan la circumferència gira un angle ✓ el punt es separa un angle
2 ✓ de la vertical). Observeu que només hem posat a = 1/2 i hem traslladat segons el
vector (0,�1/2) les fórmules de la cardioide (8).

Equivalentment, observeu que amb la notació anterior tenim la configuració

EC

P

O

A

D

amb \DCA = 2 ✓�⇡/2, AC = OP = 1/2, de manera que les coordenades (x, y) del punt
A són

x = �(EC �DC) = � sin(✓) +
1

2

cos(2 ✓ � ⇡/2),

y = AD �OE =

1

2

sin(2 ✓ � ⇡/2)� (1/2� cos(✓)).

Si s’aplica una mica de trigonometria es veu que aquestes fórmules es poden compactar
a

x(✓) = � sin(✓) (1� cos(✓)) ,

y(✓) = cos(✓) (1� cos(✓))

de forma que és ben clar que la distància a l’origen dels punts d’aquesta cardioide és

r(✓) = 1� cos(✓) .

Pot semblar que encara no es té l’expressió en coordenades polars ja que l’angle no
està mesurat des de l’origen de coordenades sinó des del centre de la circumferència fixa
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i, a més, respecte l’eix vertical i no l’horitzontal. Però, tenint en compte que AO i CP
són paral.lels, l’angle ✓ que s’ha triat com a paràmetre és igual a t� ⇡/2 i la distància a
l’origen dels punts de la cardioide serà doncs

1� cos(✓) = 1� cos(t� ⇡/2) = 1� sin(t)

que és la fórmula de l’enunciat. ⇤
Exercici 18(d) Si es posa �(t) = (r(t) cos(t), r(t) sin(t)) es té

�0(t) = (r0 cos(t)� r sin(t), r0 sin(t) + r cos(t)) ,

on r0 =
dr

dt
. Així

k�0(s)k =

p
r2 + (r0)2

i per tant

L =

Z b

a

p
r2 + (r0)2 dt.

Nota: Observem que si denotem per s = s(t) el paràmetre arc (és a dir, s(t) és la longitud
entre un valor fixat a i t) llavors

ds

dt
=

p
r2 + (r0)2 .

⇤
Exercici 19(a) lim

t 7!1
�(t) = (0, 0) ja que b < 0. ⇤

Exercici 19(b) �0(t) = (a b eb t cos(t)� a eb t sin(t), a b eb t sin(t) + a eb t cos(t)), per tant,
lim

t 7!1
�0(t) = (0, 0) ja que b < 0. La norma de la derivada és

k�0(t)k =

p
a2 b2 e2 b t + a2 e2 b t = a eb t

p
1 + b2 ,

per tant

lim

t!1

Z t

t0

k�0(s)k ds = lim

t!1

Z t

t0

a eb t
p
1 + b2 ds = �a

b

p
1 + b2 e

b t0

que és un nombre finit positiu.

Espiral logarítmica amb a = 1, b = �0.1 i t 2 [�20, 100].
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De l’espiral logarítmica també se’n diu espiral equiangular ja que talla els radis vectors
sempre amb el mateix angle. Concretament,

h�(t), �0(t)i
k�(t)k k�0(t)k =

bp
1 + b2

.

Observeu que l’espiral anterior també es pot escriure com

y

x
= tan

✓
1

b
ln

⇣px2

+ y2

a

⌘◆

o, en polars (r, ✓),
✓ =

1

b
ln

�r
a

�
+ k ⇡ .

No s’ha de confondre amb l’espiral d’Arquímedes que s’expressa en coordenades polars com
r(✓) = a ✓ i caracteritzada pel fet que la distància entre dues interseccions consecutives
de la corba amb una recta per l’origen és constant (igual a 2 a ⇡).

Espiral d’Arquimedes amb a = 1 i ✓ 2 [0, 30]

Compareu els dos dibuixos. ⇤
Exercici 20. Fixem un punt P (t) = (t2, t) i fem un gir d’angle ⇡/2 � ↵(t) amb centre
aquest punt, on ↵(t) és l’angle que forma la tangent a la paràbola en P (t) amb l’eix de
les x, és a dir, tan(↵(t)) és el pendent de la recta tangent a la paràbola en el punt P (t).
Per tant,

tan(↵(t)) =
1

2 t
.

A continuació traslladem la paràbola girada fins el punt (0, s(t)) on s(t) és la longitud
de la paràbola entre els punts (0, 0) i (t2, t). És a dir, fem una translació de vector
(�t2, s(t) � t). D’aquesta manera el punt P (t) haurà anat a parar sobre el punt que
correspon al moviment de girar la paràbola sobre l’eix de les y.

Les equacions del gir compost amb la translació són
✓
x̄� t2

ȳ � t

◆
=

✓
sin(↵) � cos(↵)
cos(↵) sin(↵)

◆✓
x� t2

y � t

◆
+

✓
�t2

s(t)� t

◆
.

Simplificant ✓
x̄
ȳ

◆
=

✓
sin(↵) � cos(↵)
cos(↵) sin(↵)

◆✓
x� t2

y � t

◆
+

✓
0

s(t)

◆
.
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I posant ↵ en funció de t
✓
x̄
ȳ

◆
=

 
1p

1+4 t2
� 2 tp

1+4 t2
2 tp

1+4 t2
1p

1+4 t2

!✓
x� t2

y � t

◆
+

✓
0

s(t)

◆
.

Això dona, per a cada t, la posició de la paràbola girada. Per calcular el lloc geomètric
del focus només s’ha de substituir, en aquestes equacions, (x, y) per (

1

4

, 0). S’obté

x̄ =

1

4

p
1 + 4 t2 ,

ȳ = �1

2

t
p
1 + 4 t2 + s(t).

En el cas de la paràbola es pot calcular s(t) explícitament, però els arguments fets fins
aquí (abans de parlar de focus) servirien igualment per a l’el.lipse o altres corbes on no es
pot calcular s(t) explícitament.

En els nostre cas

s(t) =

Z t

0

p
1 + 4 u2 du =

1

4

sinh

�1

(2 t) +
1

2

t
p
1 + t2 .

Per tant

x̄ =

1

4

p
1 + 4 t2 ,

ȳ =

1

4

sinh

�1

(2 t)

Per tant
cosh(4 ȳ) =

p
1 + 4 t2 = 4 x̄,

com es volia veure.
La figura següent representa la posició de la paràbola girada per a t = 0.6. En

aquest cas s(0.6) ' 0.72 de manera que els dos punts de la figura, que es corresponen pel
moviment, són (0, 0.72) i (0.36, 0.6). Així mateix es veu el recorregut del focus (inicialment
el punt (1/4, 0)) en color vermell i la figura conté un enllaç cap a una animació de la
paràbola rodolant sobre l’eix.
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⇤
Exercici 21. Seguirem la mateixa tècnica que a l’exercici 20. Recordem que les equacions
d’un gir del pla d’angle ↵, en sentit contrari al rellotge, i centre P = (a, b) són

✓
x̄
ȳ

◆
=

✓
a
b

◆
+

✓
cos(↵) � sin(↵)
sin(↵) cos(↵)

◆ ✓
x� a
y � b

◆
. (9)

Suposem que un vèrtex de l’el.lipse està en el punt (0, 0) a l’inici del moviment. Su-
posem que �(s) és una parametrització per l’arc25 de l’el.lipse amb �(0) = (0, 0). Rotem
la el.lipse sobre l’eix x fins que �(s) passi a ser el punt (s, 0).

(s, 0)(0, 0)

F

�(s)

Aquest moviment es pot considerar com composició de dos moviments, un gir de centre
�(s) i angle �↵(s), on ↵(s) és l’angle26 entre la tangent a l’el.lipse en el punt �(s) i l’eix
de les x, i una translació de vector (s, 0)� �(s).

El motiu de girar �↵ és per fer coincidir la tangent amb l’eix de les x.
Per tant, segons la formula (9), la trajectòria �(s) del focus F serà

�(s) =
�
(s, 0)� �(s)

�
+ �(s) +G�↵(s)(F � �(s)) ,

on
G�↵(s) =

✓
cos(↵(s)) sin(↵(s))
� sin(↵(s)) cos(↵(s))

◆

i F = (0, f).
Equivalentment, si escrivim �(s) = (x(s), y(s)) i F = (0, f),

�(s) = (s, 0)+(�x(s) cos(↵(s))+(f�y(s)) sin(↵(s)), x(s) sin(↵(s))+(f�y(s)) cos(↵(s)))

Un càlcul directe, on caldrà utilitzar que x0
(s) = cos(↵(s)), y0(s) = sin(↵(s)) i que

(x0
)

2

(s) + (y0)2(s) = 1, mostra ara que

h�0
(s), �(s)� (s, 0)i = h�0

(s), G�↵(F � �(s))i = 0 .

Aquesta igualtat s’interpreta dient que el moviment és un gir infinitessimal al voltant del
punt de contacte. ⇤
Exercici 22. Suposem que el quadrat en la posició inicial és el quadrat de vèrtexs
(±1,±1). Denotem O = (0, 0) i C el centre del quadrat, que coincideix, doncs, amb O en

25Que la parametrització sigui per l’arc és, en aquest punt, irrellevant. L’únic que importa és que el
que avança la corba sobre l’eix de les x és el mateix recorregut sobre l’el.lipse entre el vèrtex (0, 0) i el
punt �(s) de forma que, si s no és el paràmetre arc de �, el punt sobre l’eix on toca l’el.lipse serà de la
forma (`(s), 0), on `(s) designa la longitud de l’arc de corba entre (0, 0) i �(s).

26Si �(s) parametritza per l’arc l’el.lipse es té �

0
(s) =

�
cos(↵(s)), sin(↵(s))

�
i aquesta igualtat permet

determinar de forma explícita el valor de ↵(s) en funció de �(s). Si la parametrització no és per l’arc
basta normalitzar el vector tangent per tal de tenir una expressió equivalent.
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la seva posició inicial. Sigui �(s) = (x(s), y(s)) una parametrització per l’arc del perfil de
la carretera. Sigui P = �(s) el punt de contacte en cada instant entre la roda quadrada i
el terra. Sigui Q el punt mitjà del costat del quadrat que està en contacte amb el terra.

O C

Q

P

Per a cada s tenim �!
OC =

�!
OP +

�!
PQ+

�!
QC.

Observem ara que
�!
QP = s �0(s) ja que és clar que aquest vector té la direcció de la tangent

però la seva longitud és exactament la longitud del tros de carretera que ha trepitjat la
roda, que és s.

Observem també que
�!
QC és un vector unitari ortogonal a

�!
QP , i per tant igual a

(�y0(s), x0
(s)). Així

�!
OC = �(s) = (x(s), y(s))� s (x0

(s), y0(s)) + (�y0(s), x0
(s)).

Imposant que la segona component sigui constant

y(s)� s y0(s) + x0
(s) = ct.

i derivant
s =

x00
(s)

y00(s)
= �y0(s)

x0
(s)

.

Si ara es pensa la trajectòria �(s) com una corba del tipus (x, y(x)), el paràmetre arc
compleix

ds

dx
=

s

1 +

✓
dy

dx

◆
2

=

p
1 + s2 ,

és a dir,
dsp
1 + s2

= dx

que resolent dona
x(s) = arcsinh(s) + C .

De forma equivalent s = sinh(x � C), però per la condició inicial ha de ser C = 0 i, per
tant, s = sinh(x).

Com que (x0
)

2

+ (y0)2 = 1 es compleix

y0(s) = ± sp
1 + s2

.
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Es tria el signe negatiu per les condicions del problema i integrant s’obté directament
y(s) = �

p
1 + s2 (la constant d’integració torna a ser 0). Per tant el perfil de la carretera

és, localment, la catenària
y = � cosh(x).

Cal afegir localment ja que s =
���
�!
PQ
���  1. A partir d’aquí cal traslladar la catenària per

tenir una carretera ondulada de catenàries.

⇤
Exercici 23. Suposem que A sigui l’origen de coordenades, la recta HB la recta y = a,
AB l’eix de les y0s i prenguem BD = 1. Les rectes per l’origen de pendent tan(t) tallen
y = a en el punt (a cot(t), a) i, per tant, el punt d’aquesta recta que pertany a la concoide
és

�(t) =
� a

sin(t)
+ 1

�
(cos(t), sin(t)) = (a+ sin(t)) (cot(t), 1).

Llavors
�0(t) = (� sin(t)� a

sin

2

(t)
, cos(t))

i, per tant, la recta normal és

�(t) + µ (cos(t), sin(t) +
a

sin

2

(t)
) .

Amb la notació de Descartes el paràmetre t correspon al punt C = �(t). Així d(C,H) =

sin(t), el punt F ha de ser de la forma F = � �(t) i � queda determinat per la condició
d(C, F ) = d(�(t),� �(t)) = sin(t).

S’obté
F = (a+ sin(t) + sin

2

(t)) (cot(t), 1).

Observem també que
d(A,E) = k�(t)k � 1 =

a

sin(t)
.

Finalment G és un punt sobre la normal amb la mateixa primera coordenada que F .
Posant, doncs,

�(t) + µ

✓
cos(t), sin(t) +

a

sin

2

(t)

◆
= ((a+ sin(t) + sin

2

(t)) cot(t), c
2

)

resulta µ = sin(t) i

c
2

= a+ sin(t) + sin(t)

✓
sin(t) +

a

sin

2

(t)

◆
.
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Així
d(F,G) =

a

sin(t)
= d(A,E)

com volíem. ⇤
Exercici 24. L’equació27 en polars centrades al punt mitjà de F

1

F
2

i amb aquesta recta
com eix de les x és

r2 = a2 �
✓
c sin(t)±

p
b2 � c2 cos2(t)

◆
2

(10)

amb a = F
1

A = F
2

B, 2 b = AB, 2 c = F
1

F
2

.
Per tal d’obtenir aquesta equació només cal escriure

A = (�c+ a cos(↵), a sin(↵)),

B = (c+ a cos(�), a sin(�)),

de forma que el punt mitjà serà

X =

a

2

(cos(↵) + cos(�), sin(↵) + sin(�)) = (r cos(t), r sin(t)).

Per les fórmules típiques de trigonometria, aquestes igualtats s’escriuen com

a cos(

↵ + �

2

) cos(

↵� �

2

) = r cos(t),

a sin(

↵ + �

2

) cos(

↵� �

2

) = r sin(t).

Dividint, s’obté tan(t) = tan(

↵+�
2

), d’on t = ↵+�
2

i substituint novament a les equacions
anteriors

cos(

↵� �

2

) =

r

a
.

Com que AB = 2 b es té

4 b2 = 4 c2 + 2 a2 (1� cos(� � ↵)) + 4 a c (cos(�)� cos(↵))

= 4 c2 + 2 a2 (1� cos(� � ↵))� 8 a c sin(t)

r
1� r2

a2

i com que r = kOXk, amb O = (0, 0),

r2 =
a2

2

(1 + cos(� � ↵))

i es pot escriure

4 b2 = 4 c2 + 2 a2 (2� 2 r2

a2
)� 8 c

p
a2 � r2 sin(t).

Resolent l’equació de segon grau

4 b2 = 4 c2 + 4w2 � 8 cw sin(t)

amb w =

p
a2 � r2 ja es té el resultat.

Observem finalment que en el cas particular b = c, a =

p
2 c l’equació (10) es redueix

a r2 = a2 cos(2 t) que és l’equació de la lemniscata (vegeu l’exercici 5 (d)).
⇤

27Les coordenades cartesianes (x, y) del punts d’una corba de Watt són zeros d’un polinomi de grau 6

en dues variables.
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Curvatura

Exercici 25. Quan la corba inicial �(t) no està parametritzada per l’arc, la indicatriu de
les tangents s’escriu com

�
1

(t) =
�0(t)

k�0(t)k =

d�(t(s))

ds |s=s(t)

on s és el paràmetre arc de �(t). En aquesta situació es té ds/dt = k�0(t)k. Les longituds
respectives venen donades per

L(t) =

Z t

t0

k�0(t)k dt,

L
1

(t) =

Z t

t0

k�0
1

(t)k dt.

Diguem s
1

al paràmetre arc de �
1

(t). Resultarà
ds

1

dt |t=t(s)
=

����
d�

1

dt |t=t(s)

���� =

����
d�

1

(t(s))

ds

ds

dt |t=t(s)

����

=

����
d

ds

d�(t(s))

ds

����

�����
0
(t)|t=t(s)

���� = k(t(s)) k�0(t(s))k .

Com que aquesta igualtat és certa per a tot s, també ho és per a tot valor de t de manera
que es compleix

k�0
1

(t)k = k(t) k�0(t)k .
Per tant

L
1

(t) =

Z t

t0

k�0
1

(t)k dt =

Z s

s0

k(t) k�0(t)k dt.

I pel teorema del valor mitjà per a integrals s’ha acabat. ⇤
Exercici 26. Suposem (x(t), y(t)) parametritzada per l’arc i f(x(t), y(t)) = 0. Derivant
s’obté

fx(x(t), y(t)) x
0
(t) + fy(x(t), y(t)) y

0
(t) = 0

i per tant (x0, y0) = � (fy,�fx) on � = �(t). Derivant les igualtats x0
= � fy, y0 = �� fx i

eliminant �0 es té

h(x00, y00), (fx, fy)i+
�
x0 y0

�✓fxx fxy
fxy fyy

◆✓
x0

y0

◆
= 0.

Per tant
x0 y00 � x00 y0 = h(x00, y00), (�y, x0

)i = h(x00, y00),� (fx, fy)i

= ��3
�
fy �fx

� ✓fxx fxy
fxy fyy

◆ ✓
fy
�fx

◆
.

Finalment

k =

x0 y00 � x00 y0
⇣q

�2 f 2

x + �2 f 2

y

⌘
3

= �

�
fy �fx

� ✓fxx fxy
fxy fyy

◆ ✓
fy
�fx

◆

kgrad(f)k3
.

En el cas de la hipèrbola x2 � 3 y2 = 1, la curvatura en el punt (2, 1) és

k = �

�
�6 �4

� ✓
2 0

0 �6

◆ ✓
�6

�4

◆

�p
52

�
3

=

3

13

p
13

.
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⇤
Exercici 27. Recordeu que una circumferència de radi r parametritzada per l’arc ↵(s) =
(r cos(s/r), r sin(s/r)) tindrà com derivada segona

↵00
(s) =

1

r
(� cos(s/r),� sin(s/r))

i, per tant, la curvatura és k =

1

r
(constant).

Tenint en compte l’anterior, donada una corba arbitrària parametritzada per l’arc �(s)
i de curvatura constant k (diferent de 0, és clar), considerem, per a cada punt de la corba,
el centre C(s) definit per

C(s) = �(s) +
1

k
N(s) .

Les fórmules de Frenet donen

C 0
(s) = �0(s) +

1

k
N 0

(s) = T (s) +
1

k
(k T (s)) = ~

0

de forma que C(s) = C
0

(constant) i, en particular, k�(s)� C
0

k =

1

k
. Dit d’una altra

manera, �(s) sempre és un punt de la circumferència de centre C
0

i radi
1

k
.

Naturalment, si la curvatura és nul.la els càlculs no tenen sentit. Però en aquest cas
és clar que la corba és un segment de recta (que, si es vol mantenir l’enunciat sense
afegir més detalls, es pot considerar una circumferència de radi infinit) ja que admet una
parametrització amb derivada segona nul.la. ⇤
Exercici 28. Les corbes planes es poden considerar com corbes de R3 contingudes en
un pla, però el seu tractament és lleugerament diferent quan les considerem com corbes
del pla R2. El motiu fonamental és que hi ha corbes que es poden fer coincidir per un
moviment directe de l’espai però no per un moviment directe del pla que les conté.

Per exemple les corbes (x(t), y(t), 0) i (x(t),�y(t), 0) es poden fer coincidir per un gir
(moviment directe) al voltant de l’eix de les x però l’únic moviment del pla z = 0 que les
fa coincidir és la simetria (moviment invers) respecte l’eix de les x.

Per a les corbes del pla R2 definirem dues normals, una involucrant la derivada segona
i l’altre no. Donada �(s) = (x(s), y(s)) parametritzada per l’arc definim

bN(s) = iT (s) ,

N(s) =
�00(s)

k�00(s)k =

T 0
(s)

kT 0
(s)k .

Observem que no cal introduir la notació complexa, només és una manera ràpida de
dir que bN(s) és l’únic vector que fa que (T (s), bN(s)) sigui una base ortonormal positiva
(respecte l’orientació canònica de R2). Clarament, si canviem s per �s, bN(s) també
canvia de signe.

Per definició de curvatura k(s) i curvatura amb signe (s) es compleix
T 0
(s) = k(s)N(s) ,

T 0
(s) = (s) bN(s) .

Equivalentment
(s) = det(T (s), T 0

(s)).

Per exemple, si recorrem la circumferència en contra de les agulles del rellotge �(s) =
(cos(s), sin(s)), 0  s  2 ⇡, (s) és positiva, però si recorrem la mateixa circumferència
seguint les agulles del rellotge (cos(s),� sin(s)) tindrem (s) negativa.
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Resumint, donada �(s) = (x(s), y(s)), sigui s paràmetre arc o no, sempre tindrem

bN(s) =
1

k�0(s)k (�y0(s), x0
(s))

i

N(s) = bN(s) si i només si (s) � 0,

N(s) = � bN(s) si i només si (s)  0.

I es compleixen el que podríem anomenar fórmules de Frenet per a la curvatura amb signe:

T 0
(s) = (s) bN(s),

bN 0
(s) = �(s)T (s).

Les fórmules de Frenet

T 0
(s) = k(s)N(s),

N 0
(s) = �k(s)T (s).

són igualment certes.
Per decidir el signe de (s) quan s no és el paràmetre arc observem que

det(T (s), T 0
(s)) = det(

�0

k�0k ,
✓

�0

k�0k

◆0

) =

1

k�0k2
det(�0, �00)

i el signe queda determinat doncs pel det(�0, �00), encara que la parametrització no sigui
per l’arc.

Finalment, a l’exercici 30 es veu que

(s) =
d↵(s)

ds
(sense valors absoluts), on s és el paràmetre arc de �(s) i ↵(s) és l’angle entre la tangent
�0(s) i l’eix de les x (de fet, una direcció fixada qualsevol). ⇤
Exercici 29. A partir de les equacions

x(t) = (R + r) sin(t)� r sin(

R + r

r
t) ,

y(t) = (R + r) cos(t)� r cos(

R + r

r
t) .

obtingudes a l’exercici 12, càlculs senzills diuen que

x0
(t)2 + y0(t)2 = 4 (R + r)2 sin

2

(

R t

2 r
)

d’on el paràmetre arc s(t) i el radi de curvatura ⇢(t) estan donats per

s(t) = 4

r (R + r)

R
cos(

R t

2 r
)

⇢(t) =
4 r (R + r)

R + 2 r
sin(

R t

2 r
)

d’on, clarament,
s2

A2

+

⇢(s)2

B2

= 1,

amb A =

4 r (R+r)
R , B =

4 r (R+r)
R+2 r . Com que la curvatura determina la corba, aquesta és

l’equació intrínseca de les epicicloides. ⇤
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Exercici 30(a) Abans de començar observem que ✓(s
0

) = 0 i que ✓0(s) = k(s). Observem
també que si podem escriure � com s’indica a l’enunciat, llavors tindríem �(s

1

) = (0,�),
�(s

2

) = (�, 0), i �0(s
0

) = (cos(✓(s
0

)), sin(✓(s
0

))) = (1, 0).
Amb això present tornem a l’enunciat. Sigui � : I ! R una corba parametritzada

per l’arc amb curvatura (s). Siguin A = �(s
1

) i B = �(s
2

). Considerem uns nous eixos
ortogonals de coordenades, que tinguin l’origen en �(s

0

) i eix de les x0s en la direcció
�0(s

0

). Més concretament situem en �(s
0

) la base ortonormal directa (T (s), bN(s)) prenent
aquestes direccions respectivament com les direccions positives dels nous eixos x, y.

A continuació els traslladem paral.lelament de manera que A estigui sobre el nou eix
de les y0s i B sobre el nou eix de les x0s.

A = �(s1)

B = �(s2)

�0(s0)

�(s0)

Llavors, respecte dels nous eixos, tenim: �(s) = (x(s), y(s)) amb x0
(s)2 + y0(s)2 = 1, de

manera que el vector normal és bN(s) = (�y0(s), x0
(s)), (vegeu l’exercici 28).

Sabem que en aquestes circumstàncies existeix una determinació de l’argument28, és
a dir, una funció ↵ : I �! R tal que

x0
(s) = cos(↵(s)),

y0(s) = sin(↵(s)).

Amb això x00
(s) = �↵0

(s) sin(↵(s)).
Com que �00(s) = (s) bN(s) (vegeu novament l’exercici 28) també es compleix x00

(s) =
�(s) y0(s) = �(s) sin(↵(s)), i per tant (s) = ↵0

(s), resultat ben conegut (la curvatura
és la velocitat de gir de la tangent respecte el paràmetre arc).29

Per tant, ↵0
(s) = ✓0(s), i com que ↵(s

0

) = ✓(s
0

) = 0, ha de ser ✓(s) = ↵(s).
Llavors tenim

�(s) = (x(s), y(s)) =

✓Z s

s1

x0
(u) du,

Z s

s2

y0(u) du

◆

ja que x(s
1

) = y(s
2

) = 0. Per tant

�(s) =

✓Z s

s1

x0
(u) du,

Z s

s2

y0(u) du

◆
=

✓Z s

s1

cos(↵(u)) du,

Z s

s2

sin(↵(u)) du

◆
,

i com que ↵(u) = ✓(u) hem acabat. ⇤

28Donades dues funcions a, b : I �! R diferenciables definides en un obert I de R, tals que a

2
+ b

2
= 1,

existeix ✓ : I �! R tal que a(t) = cos(✓(t)) i b(t) = sin(✓(t)), 8t 2 I.
29Si no s’introdueix la curvatura amb signe només podem dir k(s) = |↵0

(s)|.
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Exercici 30(b) En efecte, canviar s
0

vol dir canviar la direcció de l’eix de les x0s, és
a dir, fer una rotació. Aquests eixos després s’han de traslladar per tal que passin per
A = �(s

1

) i B = �(s
2

), punts que depenen, com es veu, de s
1

i s
2

. Hem demostrat, doncs,
que dues corbes planes amb la mateixa funció de curvatura difereixen en un moviment rígid
ja que totes dues es poden escriure exactament igual però sobre referències ortonormals
diferents. ⇤
Exercici 30(c) Si (s) és constant, tenim ✓(s) =  (s� s

0

) amb  el valor constant de la
curvatura (✓0 = ).

En particular

�(s) =

✓Z s

s1

cos( (u� s
0

)) du,

Z s

s2

sin( (u� s
0

)) du

◆
.

Integrant tenim

x(s) =
1


sin( (s� s

0

)) + a,

y(s) = �1


cos( (s� s

0

)) + b,

per a certes constants a, b 2 R.
Per tant la corba està continguda a la circumferència

(x� a)2 + (y � b)2 =

✓
1



◆
2

.

⇤
Exercici 30(d) Fent un gir i una translació podem suposar que ↵(0) = (0, 0) i ↵0

(0) =

(1, 0), de manera que la recta normal per ↵(0) és l’eix de les y. En el context d’aquest
exercici això és equivalent a agafar s

0

= s
1

= s
2

= 0. Calculem en primer lloc ✓(�s)
utilitzant que (�u) = (u).

✓(�s) =

Z �s

0

(u) du = �
Z

0

�s

(u) du = �
Z

0

�s

(�u) du,

fent el canvi de variable w = �u tenim

✓(�s) = �
Z

0

�s

(�u) du =

Z
0

s

(w) dw = �
Z s

0

(w) dw = �✓(s).

Ara s’obté

x(�s) =

Z �s

0

cos(✓(u)) du =

Z �s

0

cos(�✓(�u)) du

=

Z �s

0

cos(✓(�u)) du = �
Z s

0

cos(✓(w)) dw = �x(s) (w = �u),

y(�s) =

Z �s

0

sin(✓(u)) du =

Z �s

0

sin(�✓(�u)) du

= �
Z �s

0

sin(✓(�u)) du =

Z s

0

sin(✓(w)) dw = y(s) (w = �u).

Per tant, � és simètrica respecte de l’eix de les y. ⇤
Exercici 30(e) De la mateixa manera es veu que quan (�s) = �(s) aleshores ✓(�s) =
✓(s) i, per tant, x(�s) = �x(s) i y(�s) = �y(s), de manera que llavors � és simètrica
respecte de l’origen (0, 0) = �(0). ⇤
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Exercici 31. Utilitzarem el problema 30 amb s
0

= s
1

= s
2

= 0. Prenem

✓(s) =

Z s

0

k(s) ds = arctan(s)

i sabem directament que la corba és

�(s) =

✓Z s

0

cos(arctan(u)) du,

Z s

0

sin(arctan(u)) du

◆
= (arcsinh(s),

p
1 + s2 � 1).

És doncs la catenària, concretament l’estudiada en el problema 17, traslladada segons el
vector (0,�1). ⇤
Exercici 32(a) Si r = r(t), la corba en cartesianes és �(t) = (r(t) cos(t), r(t) sin(t)).
La curvatura amb signe d’una corba plana �(t) que no està parametritzada per l’arc es
calcula amb la fórmula30

k(t) =
det(�0(t), �00(t))

k�0(t)k3
.

En efecte, �0 = v T i �00 = v0 T + v T 0
= v0 T + v2 k N , d’on

det(�0, �00) = v3 k det(T,N) = v3 k.

Si escrivim �(t) = r(t) ei t tenim que

�0(t) = r0(t) ei t + r(t) i ei t,

�00(t) = r00(t) ei t + r0(t) i ei t + r0(t) i eit � r(t) eit = (r00(t)� r(t)) ei t + 2 r0(t) i ei t.

Per tant, com que e

i t, i ei t és una base ortonormal, det(�0, �00) =
����

r0 r
r00 � r 2 r0

���� = 2 (r0)2 �

r r00 + r2 i
k(t) =

2 (r0)2 � r r00 + r2

((r0)2 + r2)3/2
,

on, òbviament r, r0, r00 denoten r(t), r0(t), r00(t).

Nota: Puig-Adam31 ho fa així: Considerem la corba r = r(t) i denotem ↵ = ↵(t) l’angle
de la tangent amb l’eix de les x0s i per µ = µ(t) l’angle entre la tangent i el radi vector.

↵

✓

✓

µ

Fent el producte escalar del vector posició �(t) = (r(t) cos(t), r(t) sin(t)) i del vector
tangent �0(t) obtenim

µ = arctan

⇣ r
r0

⌘

i per tant
↵ = t+ µ = t+ arctan

⇣ r
r0

⌘
.

30El determinant de dos vectors és el determinant de la matriu que té per columnes les coordenades
d’aquests vectors respecte d’una base ortonormal. Noteu que això és essencialment el mateix que suposar
que la corba està en el pla xy de R3 i aplicar la fórmula de la curvatura per a les corbes de l’espai.

31Calculo Integral, p.291
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Finalment

k(t) =
d↵

ds
=

d↵

dt
· dt
ds

=

�
1 +

(r0)2 � r r00

r2 + (r0)2
�

1p
r2 + (r0)2

.

Nota de la nota: El càlcul de µ es pot fer a partir de la definició de derivada.
Aplicant el teorema del sinus al triangle OAB de la figura s’obté

B

�✓

�

O

µ

A
r

sin(�)

r
=

sin(�t)

AB
.

Prenent límits quan �t ! 0, i observant que � tendeix a µ (angle entre la tangent i el
radi vector) es té

sin(µ) = r lim

�t!0

sin(�t)

AB
= r lim

�t!0

�t

�s
= r

dt

ds
=

rp
r2 + (r0)2

.

on s és el paràmetre arc. Això ja diu que tan(µ) = r/r0. ⇤
Exercici 32(b) Si r(t) té un màxim en t = t

0

es complirà r0(t
0

) = 0 i r00(t
0

)  0, d’on

k(t
0

) =

�r(t
0

) r00(t
0

) + r(t
0

)

2

r(t
0

)

3

� 1

r(t
0

)

.

Observem també que en un dibuix l’acotació és clara: que r(t) tingui un màxim local a
t
0

implica que localment la corba �(t) passa per dins d’un circumferència de radi r(t
0

) i
per tant la seva curvatura serà més gran que la d’aquesta circumferència, que és 1/r(t

0

).

⇤
Exercici 33. Recordem que si es té una corba parametritzada en polars com r = r(✓) el
valor de la curvatura és

k(✓) =
2 (r0)2 � r r00 + r2
�
(r0)2 + r2

�
(3/2)

.
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Tenint en compte com s’expressa r en el cas de l’el.lipse, les derivades primera i segona
seràn

r0 = �p e
sin(✓)

(1� e cos(✓))2
,

r00 = �p e
cos(✓) + e cos

2

(✓)� 2 e

(1� e cos(✓))3

(hi ha un sin

2
(✓) = 1� cos

2
(✓)).

Els termes individuals del numerador de la fórmula seran

2 (r0)2 = 2 p2 e2
sin

2

(✓)

(1� e cos(✓))4
= 2 p2 e2

1� cos

2

(✓)

(1� e cos(✓))4
,

�r r00 = p2 e
cos(✓) + e cos

2

(✓)� 2 e

(1� e cos(✓))4
,

r2 = p2
1

(1� e cos(✓))2
= p2

(1� e cos(✓))2

(1� e cos(✓))4
,

que sumats donaran

2 (r0)2 � r r00 + r2 =
p2

(1� e cos(✓))4

0

B@
2 e2 � 2 e2 cos

2

(✓)

+ e (cos(✓) + e cos

2

(✓)� 2 e)

+ 1� 2 e cos(✓) + e2 cos

2

(✓)

1

CA

=

p2

(1� e cos(✓))4
(1� e cos(✓))

=

p2

(1� e cos(✓))3
.

Mentre que en el denominador hi haurà

(r0)2 + r2 =
p2

(1� e cos(✓))4
�
e2 � e2 cos

2

(✓) + 1� 2 e cos(✓) + e2 cos

2

(✓)
�

=

p2

(1� e cos(✓))4
�
1 + e2 � 2 e cos(✓)

�

de forma que
⇣
(r0)2 + r2

⌘
3/2

=

p3

(1� e cos(✓))6
�
1 + e2 � 2 e cos(✓)

�
3/2

.

Dividint, el resultat final serà

k(✓) =
(1� e cos(✓))3

p (1 + e2 � 2 e cos(✓))3/2
.

Comproveu que amb tot això hem demostrat el resultat de Newton32:

Teorema. La curvatura de l’el.lipse en un punt P està donada per

k =

n

q2
,

on n és la distància entre la tangent per P i el diàmetre paral.lel a ella, i 2 q és la longitud
d’aquest diàmetre.

32Philosophie Naturalis Principia Mathematica. Vegeu Curvatura de les còniques seguint Newton,
http://mat.uab.es/~agusti/docencia.html
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P

n

R

O

Q

S

F1 F2
2 q

Només cal observar que l’equació en cartesianes de l’el.lipse anterior és
(x� c)2

a2
+

y2

b2
= 1,

o bé
x(✓) = r(✓) cos(✓), y(✓) = r(✓) sin(✓).

El pendent de la tangent en un punt P de paràmetre ✓, és

m = m(✓) =
y0(✓)

x0
(✓)

=

e� cos(✓)

sin(✓)
.

La distància de P al diàmetre paral.lel a la tangent per P , que és doncs la recta y =

m (x� c) (observem que (c, 0) és el centre de l’el.lipse) és

n =

|mr(✓) cos(✓)� r(✓) sin(✓)�mc|p
1 +m2

=

a (1� e cos(✓))p
1 + e2 � 2 e cos(✓)

.

Per calcular q tallem l’el.lipse amb la recta y = m (x � c) i obtenim que les abscises
x
1

, x
2

dels dos punts de tall són

xi = c± a bp
b2 + a2 m2

i per tant les ordenades són yi = m(xi � c) i així

2 q =
p

(x
2

� x
1

)

2

+ (y
2

� y
1

)

2

=

2 b
p
1 + e2 � 2 e cos(✓)

1� e cos(✓)
.

Finalment doncs
n

q2
=

(1� e cos(✓))3

p (1 + e2 � 2 e cos(✓))3/2

com volíem veure.

Nota33: Aprofitant aquests càlculs es veu fàcilment que la normal a l’el.lipse en P talla
l’eix de les x en un punt Q de coordenades Q = (e r, 0), amb r = r(✓).

33Vegeu Puig-Adam, Calculo Integral, p.290.
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P

N

Q

Per tant, N = d(P,Q) = r
p
1 + e2 � 2e cos ✓ , i així

k(✓) =
n

q2
=

p2

N3

.

Càlculs més simples sense polars. A partir de la parametrització de l’el.lipse donada
per x = a cos(t), y = b sin(t) tenim

�0(t) = (�a sin(t), b cos(t)), �00(t) = (�a cos(t),�b sin(t)).

Per tant
k(t) =

a b

�

3/2
,

on � = a2 sin

2

(t) + b2 cos

2

(t).
Per calcular n, observem que n és la distància del punt (0, 0) a la recta tangent

x x
1

a2
+

y y
1

b2
= 1,

i per tant (x
1

= a cos(t), y
1

= b sin(t))

n =

1q�
x1
a2

�
2

+

�
y1
b2

�
2

=

a b

�

1/2
.

Per calcular 2 q, longitud de l’eix paral.lel a la tangent per P , només ens hem d’adonar
que si denotem (x

1

, y
1

), (x
2

, y
2

) els punts de tall de l’eix paral.lel a la tangent amb l’el.lipse,
tenim

2 q =
p

(x
2

� x
1

)

2

+ (y
2

� y
1

)

2

= |x
2

� x
1

|
p
1 +m2 ,

on m és el pendent de la tangent i per tant

m = �b cos(t)

a sin(t)
.

Per calcular x
1

, x
2

resolem
x2

a2
+

m2 x2

b2
= 1

i obtenim
xi = ± a bp

b2 + a2m2

= ±a sin(t).

Així |x
2

� x
1

| = 2 a |sin(t)|, d’on es dedueix

2 q = 2 a |sin(t)|
p
1 +m2

= 2�

1/2.
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Finalment
n

q2
=

a b

�

3/2
= k.

També és veu molt fàcilment que la subnormal N (longitud de la normal entre el punt
de contacte i l’eix de les x) val

N =

b

a
�

1/2

(l’equació de la normal és y � y
0

=

a2y0
b2 (

x
x0

� 1)) i per tant també podem escriure la
curvatura com

k =

p2

N3

.

Geodèsia. La mateixa expressió s’acostuma a escriure en geodèsia en funció de l’angle
' que la normal per P forma amb la part positiva de l’eix de les x, anomenat latitud
geodèsica. Aquest angle és justament el complementari de l’angle que forma la tangent
en P amb la part negativa de l’eix de les x. Si l’equació de l’el.lipse és

x2

a2
+

y2

b2
= 1

la tangent per P = (x
1

, y
1

) és
x x

1

a2
+

y y
1

b2
= 1 .

Per tant,

tan(') =
a2y

1

b2x
1

,

que permet escriure
cos(') =

b x
1p

a4 � c2x2

1

, c2 = a2 � b2,

d’on
x
1

=

a cos(')p
1� e2 sin

2

(')
.

Per altra banda, la tangent talla l’eix de les x en el punt (a2x1
, 0) de manera que

cos(') =
N

a2

x1
� (x

1

�N cos('))

P = (x1, y1)

Q = (a2/x1, 0)SRO

N

'

(amb la notació de la figura el denominador és RQ = OQ� (OS �RS)).
D’on

N =

(a2 � x2

1

) cos(')

x
1

sin

2

(')
.

Substituint el valor de x
1

s’obté

N =

pp
1� e2 sin

2

(')
, e = c/a, p = b2/a.
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Per tant tenim una altra expressió per a la curvatura de l’el.lipse en P :

k =

(1� e2 sin

2

('))3/2

p
.

⇤
Exercici 34. Calculem primerament la subnormal per a tota corba donada de la forma
(x, y(x)). Per a això observem que si ↵ és l’angle que forma la tangent a aquesta corba en
un punt P = (x, y(x)) amb l’eix x, llavors N cos(↵) = y(x) on N és la subnormal en P .

y

P

N

↵

↵

Q

Però 1/ cos(↵) =
p

1 + tan

2

(↵) i per tant N = y(x)
p

1 + (y0(x))2 .
Per altra banda, la fórmula de la curvatura quan la corba no està parametritzada per

l’arc aplicada a la corba (x, y(x)) dona

k(x) =
|y00|

(

p
1 + (y0)2 )

3/2

que es pot escriure com

k(x) =
y3 |y00|
N3

, (11)

fórmula vàlida, doncs, per a tota corba donada com a gràfica d’una funció y = y(x).
Apliquem ara aquests càlculs a l’el.lipse. Derivant dos cops l’equació de l’el.lipse s’obtenen
les equacions

x

a2
+

y y0

b2
= 0,

1

a2
+

1

b2
((y0)2 + y y00) = 0,

a partir de les quals, i de l’equació inicial de l’el.lipse, es pot aïllar y00 i obtenir

y00 = � b4

a2 y3
.

Substituint aquest valor de y00 a (11) s’obté l’expressió que volíem (hem assumit, per
seguir el dibuix y � 0).

Per a la hipèrbola i la paràbola val exactament el mateix resultat, k = p2/N3, però
observeu que p té un significat lleugerament diferent en el cas de la paràbola. ⇤
Exercici 35. Sigui �(s) la corba descrita per la roda posterior i �(s) la que descriu
la roda davantera. Suposem que s és el paràmetre arc de �(s). Sigui L la distància
constant entre �(s) i �(s). Observem que el vector velocitat de la roda del darrera tindrà
la mateixa direcció que �(s) � �(s). Això permet escriure �(s) = �(s) + L �0

(s) ja que
k�(s)� �(s)k = L.
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Derivant s’obté �0(s) = �0
(s) + Lk(s)N(s) on k(s) és la curvatura de �(s) i N(s) la

seva normal principal. Multiplicant per �0
(s) s’obté

h�0(s), �0
(s)i = h�0

(s), �0
(s)i = 1

i per tant
k�0(s)k cos(✓(s)) = 1,

on ✓(s) és l’angle entre �0
(s) i �0(s). Però per hipòtesi, en coincidir aquest angle amb

l’angle entre el quadre i el manillar de la bicicleta, aquest angle és constant ✓(s) = ✓.
Però clarament

k�0(s)k =

p
1 + L2 k2

(s) ,

de forma que p
1 + L2 k2

(s) cos ✓ = 1

i per tant k(s) és constant i �(s) és una circumferència (de radi r = L cot(✓)). A partir
d’aquí és immediat comprovar que el recorregut de �(s) estarà sobre la circumferència
concèntrica a l’anterior i de radi R =

p
r2 + L2 . (Clicant sobre l’esquema accedireu a una

construcció dinàmica on podreu modificar els paràmetres).

Observem finalment que l’àrea entre les dues circumferències és

A = ⇡R2 � ⇡ r2 = ⇡ (r2 + L2

)� ⇡ r2 = ⇡L2,

que no depèn de l’angle!! ⇤
Exercici 36. Recordem que la clotoide és la corba que es defineix imposant que la seva
curvatura varii linealment amb l’arc, és a dir,

k(s) = � s

per a una certa constant �. Si diem ↵(s) l’angle entre la tangent a aquesta corba i l’eix
de les x sabem que

k(s) = � s =
d↵

ds
i per tant (suposant ↵(0) = 0)

↵(s) =
� s2

2

.

Com que h(x0
(s), y0(s)), (1, 0)i = x0

(s) = cos(↵(s)) la clotoide és

�(s) =

✓Z s

0

cos(µ s2),

Z s

0

sin(µ s2)

◆
, 2µ = �.

La clotoide que busquem en aquest problema en particular és de la forma

�(s) =

✓
a+

Z s

0

cos(µ t2) dt,

Z s

0

sin(µ t2) dt

◆
.

Toc

JJ II J I
Tornar

https://ggbm.at/HZcffKgP


Solucions als Exercicis 111

La seva curvatura és
k(s) = k�00(s)k = 2µ s ,

de manera que k(s) = 2 (curvatura del cercle donat) quan s = 1/µ.
Per a aquest valor de s s’han de complir dues coses:

(a) k�(1/µ)� (1, 1)k = 1/2, (el punt de la clotoide està en el cercle donat),

(b) h�(1/µ)� (1, 1), (cos(µ s2), sin(µ s2))i = 0, (la clotoide és tangent al cercle en el punt
de contacte).
Aquestes dues equacions, amb les dues incògnites a, µ, són

✓
a+

Z
1/µ

0

cos(µ t2) dt� 1

◆
2

+

✓Z
1/µ

0

sin(µ t2) dt� 1

◆
2

=

1

4

,

✓
a+

Z
1/µ

0

cos(µ t2) dt� 1

◆
cos(1/µ) +

✓Z
1/µ

0

sin(µ t2) dt� 1

◆
sin(1/µ) = 0 .

D’aquí es dedueix

a =

1

2

sin(1/µ) + 1�
Z

1/µ

0

cos(µ t2) dt ,

Z
1/µ

0

sin(µ t2) dt� 1 = �1

2

cos(1/µ).

La segona equació només involucra µ i té solució µ = 0.356 . . . i per tant, substituint a la
primera equació, s’obté a = �0.106 . . .

En resum, la clotoide buscada és34

�(s) =

✓
� 0.106 +

Z s

0

cos(0.356 t2) dt,

Z s

0

sin(0.356 t2) dt

◆
.

Si es dibuixa aquesta funció s’obté

34Els valors dels paràmetres que apareixen a la fórmula són les aproximacions mencionades anteriorment
i són suficients per donar un gràfic prou precís.
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⇤
Exercici 37. Considerem un punt qualsevol del recorregut de la corba que no sigui
un extrem de la curvatura. Prenem, amb centre en aquest punt, la referència T (0),
N(0). D’aquesta manera la corba �(s) = (x(s), y(s)) compleix x(0) = y(0) = 0, x0

(0) =

1, y0(0) = 0, x00
(0) = 0, y00(0) = k(0) = 1/⇢, on ⇢ és el radi de curvatura en �(0).

(Parametritzem la corba de forma que s és el paràmetre arc).
Sigui D(s) la funció distància dels punts de la corba al centre de curvatura (0, ⇢). Es

compleix
D(s) =

p
x(s)2 + (y(s)� ⇢)2 .

Les derivades successives de D(s) queden bastant simplificades si es té en compte que
només interessa el seu valor en s = 0.

En efecte,

D0
(s) = (x(s) x0

(s) + (y(s)� ⇢) y0(s))D(s)�1,

D00
(s) =

�
x0
(s)2 + x(s) x00

(s) + y0(s)2 + (y(s)� ⇢) y00(s)
�
D(s)�1

+D0
(s)�(s),

D000
(s) =

�
x00
(s)2 + x0

(s) x00
(s) + x00

(s)2 + 2 y0(s) y00(s) + (y(s)� ⇢) y000(s)
�
D(s)�1

+D0
(s)µ(s) +D00

(s) ⌫(s),

on �(s), µ(s), ⌫(s) són certes funcions. Posant s = 0 s’obté

D(0) = ⇢,

D0
(0) = 0,

D00
(0) = 0,

D000
(0) = �y000(0).

És fàcil veure que k0
(0) = y000(0)/2, de manera que la hipòtesi de que el punt no sigui

extrem de la curvatura diu que y000(0) 6= 0.
Per tant, desenvolupant D(s) per Taylor s’obté

D(s) = ⇢+ a s3 + . . . ,

on a = �k0
(0)/3. Així a té signe oposat a k0

(0): positiu si la curvatura decreix i negatiu
si la curvatura creix.

Si a > 0, els punts de la corba amb s < 0 són interiors al cercle osculador, i els punts
de la corba amb s > 0 són exteriors al cercle osculador.

Si a < 0, els punts de la corba amb s < 0 són exteriors al cercle osculador, i els punts
de la corba amb s > 0 són interiors al cercle osculador.

Nota: Observeu que aquesta propietat no és gens fàcil de veure en un gràfic de la situació
ja que l’ordre de contacte entre les dues corbes fa que siguin indistingibles en un entorn
del punt que es consideri. ⇤
Exercici 38. Sigui �(s) una corba plana parametritzada per l’arc. La corba �(s) dels
centres de curvatura és la corba

�(s) = �(s) + ⇢(s)N(s),

on ⇢(s) i N(s) són, respectivament, el radi de curvatura i la normal de �(s).
Puntualitzarem l’enunciat suposant que ⇢0(0) > 0. En particular existeix un petit

entorn de 0 en el què ⇢0(s) > 0. Veurem que els cercles osculadors corresponents a aquests
valors de s no tallen el cercle osculador corresponent a s = 0.
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La longitud de � entre �(0) i �(s) és

`(�(0), �(s)) =

Z s

0

k�0
(s)k ds =

Z s

0

|⇢0(s) | ds = ⇢(s)� ⇢(0).

Sigui Q un punt qualsevol del cercle osculador en el punt �(0). Veurem que Q és
interior al cercle osculador en el punt �(s). En efecte,

d(Q, �(s))  d(Q, �(0)) + d(�(0), �(s))  ⇢(0) + `(�(0), �(s)) = ⇢(s).

Però el signe igual en aquesta igualtat només es pot donar si la corba de centres de
curvatura és una recta (en el petit interval que estem considerant). Però això vol dir
que el vector normal N(s) és constant, la qual cosa només es dona quan � és una recta,
situació implícitament no considerada ja que quan parlem de ⇢(s) entenem que k(s) 6= 0.
Per tant

d(Q, �(s)) < ⇢(s),

i tot punt del cercle osculador en el punt �(0) és interior al cercle osculador en el punt
�(s).

L’esquema està enllaçat a una construcció dinàmica en la que es pot comprovar com els
cercles osculadors (verd i blau) de la corba (vermella) en dos punts propers estan un
dins l’altre i quan un dels puts va més enllà d’un extrem de la curvatura (zeros de ⇢0) es
tallen. ⇤

Envolupants

Exercici 39. Encara que geomètricament és evident els càlculs explícits són un exercici
prou interessant.

Sigui �(s) una corba parametritzada per l’arc amb k(s) 6= 0 per a tot s. El cercle
osculador en el punt �(s) es pot parametritzar per (s fixat)

X(s, t) = �(s) + ⇢(s)N(s) + ⇢(s) (cos(t)T (s)� sin(t)N(s)), 0  t  2⇡.
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Cal fer les derivades
@X

@s
= T (s) + ⇢0(s)N(s) + ⇢(s)(�k(s)T (s)) + ⇢0(s) (cos(t)T (s)� sin(t)N(s)),

+ ⇢(s)

✓
cos(t) k(s)N(s)� sin(t) (�k(s)T (s))

◆

=

✓
⇢0(s) cos(t) + sin(t)

◆
T (s) +

✓
⇢0(s) (1� sin(t)) + cos(t)

◆
N(s)

@X

@t
= �⇢(s) sin(t)T (s)� ⇢(s) cos(t)N(s).

Ja que l’equació de l’envolupant s’obté substituint, a l’expressió de X(s, t), el paràmetre
t pel valor que es dedueix de la igualtat

det(

@X

@s
,
@X

@t
) = 0 .

Això és �����
⇢0(s) cos(t) + sin(t) ⇢0(s) (1� sin(t)) + cos(t)

�⇢(s) sin(t) �⇢(s) cos(t)

����� = 0.

Equivalent a ⇢0(s) (1 � sin(t)) = 0 que, si no estem en un punt crític, implica t = ⇡/2.
Substituint aquest valor a X(s, t) resulta

X(s, ⇡/2) = �(s) + ⇢(s)N(s) + ⇢(s) (�N(s)) = �(s)

com es volia veure. ⇤
Exercici 40.
Primer mètode. Calculem la relació entre � i t resolent el sistema�����

dx�(t)
dt

dx�(t)
d�

dy�(t)
dt

dy�(t)
d�

����� =

�����
1 0

�2 1 + 2� t

����� = 0,

per tant � = � 1

2 t
. La corba buscada és doncs

�(t) = �� 1
2 t
(t) = (t,� 1

4 t
)

que és una parametrització de la hipèrbola y = � 1

4 x
.

Toc

JJ II J I
Tornar



Solucions als Exercicis 115

Segon mètode. La família de rectes donada es pot escriure en forma implícita com

y � �� �2x = 0 .

Només s’ha de resoldre el sistema format per aquesta equació i la seva derivada respecte
�, �1 � 2�x = 0 (com a l’exercici 5(b)). Substituint a la primera � = � 1

2x s’obté
y = � 1

4x . ⇤
Exercici 41.
Primer mètode. L’equació d’aquestes cordes és y = mx + n i l’àrea determinada per
una d’aquestes rectes i la paràbola és

S =

Z x2

x1

(y � x2

) dx =


1

2

mx2

+ nx� 1

3

x3

�x2

x1

=

1

6

(m2

+ 4n)3/2,

on

xi =
m±

p
m2

+ 4n

2

són les abscisses dels punts d’intersecció de la recta i la paràbola. S’ha utilitzat que
x3

i = mx2

i+nxi per reduir la primitiva a una expressió de grau 2 i després que x2

i = mxi+n
per reduir-la a una expressió de grau 1.

Pel teorema de la funció implícita, pensant n = n(m), s’obté

0 =

1

6

(m2

+ 4n)1/2 (2m+ 4n0
)

d’on
n0

= �m

2

i per tant n = �m2

4

+ c.
Ara ja es pot utilitzar el mètode estàndard per trobar envolupants: resoldre el sistema

format per l’equació de la recta i la seva derivada respecte el paràmetre.
8
<

:

y = mx+ n

0 = x+ n0
= x� m

2

.

Per tant,

y = 2 x2

+ n = 2 x2 � (2 x)2

4

+ c = x2

+ c.

Es a dir, l’envolupant buscada és la paràbola y = x2 donada traslladada segons el vector
(0, c).

Aquesta constant d’integració c es pot determinar, en funció de S, calculant simple-
ment l’àrea determinada per la corda y = c, que ha de ser S. Aprofitant el càlcul anterior
amb m = 0, n = c s’obté

S =

1

6

(4 c)3/2,

i.e. c =

✓
3S

4

◆
2/3

.

Segon mètode (Fedenko)35. Comencem al revés i determinem una constant c tal que
la corda y = c talla la paràbola donant lloc a una regió d’àrea S. Obtenim com abans

35Problemas de Geometria Diferencial, bajo la dirección de A. S. Fedenko, Editorial Mir, 1991.
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c = (

3S
4

)

2/3. A continuació es fa una rotació parabòlica que deixi invariant (no punt a
punt) la paràbola y = x2.

És fàcil veure que aquesta “rotació” és la transformació (x, y) ! (x0, y0) determinada
per

x0
= x+ A,

y0 = 2Ax+ y + A2 .

Aquesta transformació també deixa invariant (no punt a punt) la paràbola y = x2

+ c i
porta la tangent en el punt (0, c) a la tangent en el punt imatge (A, c + A2

). Com que
el determinant de la part lineal és 1 aquesta transformació conserva àrees i per tant les
cordes buscades són les tangents a la paràbola y = x2

+ c, que és doncs l’envolupant
buscada.

⇤
Exercici 42. Sigui P = (1, 0) i � la circumferència x2

+ y2 = 1. El raig de llum que surt
del punt P = (1, 0) i arriba al punt �(t) = (cos(t), sin(t)) surt reflectit en una recta de
pendent ✓ = t�↵, on ↵ és l’angle a la base del triangle isòsceles (0, 0), (1, 0), (cos(t), sin(t)).

✓

↵ ↵

t ↵

Per tant 2↵ + t = ⇡, ✓ + ↵ = t, i així

✓ =
3 t

2

� ⇡

2

.

El raig reflectit és doncs la recta

y � sin(t) = tan(

3 t

2

� ⇡

2

) (x� cos t),
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que, simplificant, queda
cos(

3 t

2

) x+ sin(

3 t

2

) y = cos(

t

2

).

Per obtenir l’envolupant d’aquestes rectes només s’ha de resoldre el sistema format
per aquesta equació i per l’equació de les rectes que tenen per coeficients les derivades
dels coeficients respecte t, és a dir,

�3 sin(

3 t

2

) x+ 3 cos(

3 t

2

) y = � sin(

t

2

).

La solució d’aquest sistema serà

x =

2

3

(cos(t) + cos

2

(t))� 1

3

,

y =

2

3

(sin(t) + sin(t) cos(t)),

on s’ha utilitzat que 2 cos

2

(

t
2

) = 1 + cos(t), sin(t) = sin(

3 t
2

� t
2

), i similars. Aleshores és
clar que això és una cardioide, tal i com es veu directament comparant aquestes equacions
amb les equacions de la cardioide obtinguda a l’exercici 10.

⇤

Involutes i evolutes

Exercici 43(a) Sigui �(s) una corba regular plana parametritzada per l’arc. Mirem si
existeix una funció diferenciable �(s) tal que

�(s) = �(s) + �(s) �0(s),

sigui la involuta de �(s). Només hem d’imposar h�0(s), �0
(s)i = 0. Per tant

h�0(s), �0(s) + �0(s) �0(s) + �(s) k(s)N(s)i = 1 + �0(s) = 0,

i d’aquí en resulta que només hem d’agafar �(s) = �s+ c, on c és una constant.
Així doncs

�(s) = �(s) + (c� s) �0(s).

Per determinar aquesta constant imposem la condició de l’enunciat �(s
0

) = �(s
0

) que ens
diu c = s

0

, és a dir, la corba demanada és

�(s) = �(s) + (s
0

� s) �0(s).
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Observem que en el cas k ⌘ 0, i.e, una recta, qualsevol recta perpendicular és una
involuta i tanmateix no admet una parametrització d’aquest tipus. ⇤
Exercici 43(b) Observem que podem suposar sense pèrdua de generalitat que � està
parametritzada per l’arc. Aleshores la distància de �(s) a �(s) mesurada al llarg de la
recta tangent és |s

0

� s|, que és la longitud de la corba �(s) entre els punts de coordenades
s
0

i s. Per tant podem pensar que la involuta és la corba que s’obté desembolicant una
corda tibant que ha estat embolicada al llarg de �. ⇤
Exercici 43(c) Suposem ara que t no és paràmetre arc de �. Sigui s�(t) un paràmetre
arc corresponent a �. Aleshores �(t) = �(t) + �(t) �0(t) i es té

�(t) = �(t) + (s�(t0)� s�(t))
�0(t)

k�0(t)k (12)

⇤
Exercici 43(d) Només cal aplicar la fórmula de l’apartat (c) als càlculs de l’exercici 17.

�(t) = (t, cosh(t)),

�0(t) = (1, sinh(t)),

k�0(t)k = cosh(t),

s(t) = sinh(t).

Com que �(0) = (0, 1) i volem que � passi pel punt (0, 1) prenem t
0

= 0. Aleshores

�(t) =

✓
t� tanh(t),

1

cosh(t)

◆

que és una parametrització de la tractriu (recorreguda en sentit contrari al que s’havia
pres a l’exercici 16). ⇤
Exercici 43(e)
Circumferència. Sigui �(t) = (R cos(t), R sin(t)). Aleshores el vector tangent serà
�0(t) = (�R sin(t), R cos(t)), amb k�0(t)k = R i s(t) = R t + c. Per determinar la
constant c imposem s(0) = 0 (desemboliquem a partir del punt (1, 0)) i obtenim c = 0 de
manera que el paràmetre arc és s(t) = R t.

Per tant, aplicant la fórmula (12) s’obté

�(t) = R (cos(t) + t sin(t), sin(t)� t cos(t)).
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La longitud de cada tangent es igual a la longitud de la circumferència entre el punt de
contacte i el punt (1, 0).

Cicloide. Considerem la cicloide (vegeu també l’exercici 44)
�(t) = (t+ sin(t),�1 + cos(t)).

Es compleix �0(t) = (1 + cos(t),� sin(t)), k�0(t)k = 2 cos(t/2) i s(t) = 4 sin(

t
2

) + c. Per
determinar la constant c imposem s(2 ⇡) = 0 (vegeu figura) i s’obté c = 0, de manera que
el paràmetre arc és s(t) = 4 sin(

t
2

).
Aleshores, aplicant la fórmula (12) es té

�(t) = (t+ sin(t),�1 + cos(t))� 4 sin(

t

2

)

1

2 cos(t/2)
) (1 + cos(t),� sin(t))

= (t� sin(t), 1� cos(t)),

que és el mateix resultat que a l’exercici 44 esmentat abans.

Cicloide involuta

Cicloide evoluta

Observeu que el desenvolupament del cordill és només entre ⇡ i 2 ⇡ ja que el punt de
paràmetre ⇡ és singular. La longitud de cada tangent es igual a la longitud de la cicloide
(evoluta) entre el punt de contacte i el punt (2 ⇡, 0). ⇤
Exercici 44(a) Suposem que �(s) està parametritzada per l’arc. La família de rectes
normals es pot escriure com

�(s) + tN(s), t 2 R
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(una recta per a cada valor del paràmetre s).
Podem construir una corba que tingui un punt sobre cadascuna d’aquestes rectes i que

en aquest punt aquesta recta de la família de normals sigui la seva recta tangent? Si això
és possible serà la evoluta de �.

La pregunta anterior és equivalent a la següent: existeix una funció diferenciable �(s)
tal, que la corba �(s) = �(s) + �(s)N(s) compleix que �0

(s) té la mateixa direcció que
N(s)?

Només s’ha de derivar i obtenim

�0
(s) = T (s) + �0(s)N(s)� k(s)�(s)T (s)

= (1� k(s)�(s))T (s) + �0(s)N(s).

Per tant, ha de ser 1�k(s)�(s) = 0, és a dir, �(s) = 1

k(s) . En termes del radi de curvatura
⇢(s) = 1/k(s) l’evoluta de �(s) és doncs la corba

�(s) = �(s) + ⇢(s)N(s).

Observeu que, si es canvia el paràmetre, la fórmula anterior no canvia. La figura
representa l’evoluta E de l’el.lipse C.

E

C

⇤
Exercici 44(b) L’evoluta és el lloc geomètric dels centres de curvatura d’una corba
plana. ⇤
Exercici 44(c) Considerem la cicloide �(t) = a (t � sin(t), 1 � cos(t)). Aleshores, re-
cordant que la normal principal d’una corba plana (x(t), y(t)) que no està en principi
parametritzada per l’arc és N(t) = (�y0(t), x0

(t))/ k(�y0(t), x0
(t))k si det(�0(t), �00(t)) > 0

i N(t) = �(�y0(t), x0
(t))/ k(�y0(t), x0

(t))k si det(�0(t), �00(t)) < 0 (que és el que apareix
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en la situació actual) es té

�0(t) = a (1� cos(t), sin(t)),

�00(t) = a (sin(t), cos(t)),

N(t) = � 1

k�0(t)k a (� sin(t), 1� cos(t)) = � 1

2 a sin(

t
2

)

a (sin(t),�1 + cos(t)),

k�0(t)k2 = 2 a2 (1� cos(t)),

⇢(t) =
k�0(t)k3

|det(�0, �00)| = 4 a sin(

t

2

).

Per tant �(t) = �(t)+ ⇢(t)N(t) = a (t+sin(t), (�1+ cos(t))) = a (t+sin(t),�1+ cos(t)).
La figura següent mostra els gràfics de dues cicloides: �(t) = a (t� sin(t), 1� cos(t)) i

la seva evoluta �(t) = a (t+ sin(t),�1 + cos(t)) per a 0  t  6 ⇡.
Cicloide

Evoluta de la cicloide = Cicloide

Observem que es passa d’una a l’altra per la translació de vector (⇡,�2), és a dir, que si
considerem la transformació

x̄ = x+ ⇡,

ȳ = y � 2,

tenim

x̄(t) = t� sin(t) + ⇡

ȳ(t) = �1� cos(t)

i s’obté una reparametrització de �(t), ja que (x̄(t), ȳ(t)) = �(t + ⇡). L’evoluta de la
cicloide és la mateixa cicloide traslladada! ⇤
Exercici 45. Recordem que la tractriu té la propietat de que la longitud de la subtangent
és constant. (La subtangent és el segment de la tangent a la corba en un punt, determinat
per aquest punt i el punt de tall de la recta amb l’eix de les x).

És el mateix veure que l’evoluta de la tractriu és la catenària, que veure que una
involuta de la catenària és la tractriu (exercicis 43 i 44).
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P = (t, cosh(t))

R = (t, 0)(0, 0)

Q

↵

Hem vist a l’exercici 17 que el paràmetre arc de la catenària (t, cosh(t)) està donat
per s(t) = sinh(t). Observem que s(0) = 0, és a dir que mesurem longituds a partir del
punt (0, 1).

Prenem sobre la tangent a la catenària per P la longitud sinh(t), és a dir, la longitud
de la catenària entre els punts (0, 1) i P = (t, cosh(t)), de manera que la distància entre
P i Q és també sinh(t).

L’angle ↵ = \RPQ és el complementari de l’angle que forma la tangent PQ amb l’eix
de les x0s. Com que el pendent de la tangent és sinh(t), tenim

tan(↵) =
1

sinh(t)
.

En particular
cos(↵) = tanh(t), sin(↵) =

1

cosh(t)
.

Per altra banda és clar que

Q = (t� sinh(t) sin(↵), cosh(t)� sinh(t) cos(↵))

de manera que
Q = (t� tanh(t),

1

cosh(t)
).

En particular
d(Q,R) = 1.

Com que cosh

2

(t)� sinh

2

(t) = 1, el triangle 4PQR ha de ser rectangle en Q.
Així, la corba descrita per Q té subtangent 1 de forma que és la tractriu i, per un altre

costat, talla ortogonalment les tangents de la catenària, és a dir, és la seva involuta. ⇤
Exercici 46. L’equació d’una homotècia de centre P i raó � és X 0

= P + � (X � P ) i la
simetria de centre Q és X 0

= 2Q�X.
Partim de la parametrització de la cardioide, donada a l’exercici 10,

�(t) = (2 a cos(t) (1 + cos(t)), 2 a sin(t) (1 + cos(t))).

Un càlcul directe dona

det(�0(t), �00(t)) = 12 a2 (1 + cos(t))
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(convé recordar que cos(t) = cos(2 t� t) = cos(2 t) cos(t) + sin(2 t) sin(t)) i

k�0(t)k2 = 8 a2 (1 + cos(t)).

Per tant la curvatura està donada per

k(t) =
3

4 a
p
2

p
1 + cos(t)

.

Així l’equació de l’evoluta és

�(t) = �(t) +
4 a

p
2

p
1 + cos(t)

3

N(t),

on N(t) és la normal unitària donada per

N(t) =
1

k�0(t)k (�y0(t), x0
(t))

=

1

2 a
p
2

p
1 + cos(t)

(�2 a cos(t)� 2 a cos(2 t),�2 a sin(t)� 2 a sin(2 t))

(com que la parametrització gira deixant l’interior de la cardioide a l’esquerra s’ha d’agafar
N(t) de manera que la base (�0(t), N(t)) sigui positiva).

Substituint N(t) a la fórmula anterior s’obté que l’equació de l’evoluta és

�(t) = �1

3

�(t) + (

4 a

3

, 0).

S’obté el mateix resultat si s’aplica una homotècia de raó 1/3 i centre (a, 0) a la
cardioide �(t) i a continuació es fa una simetria respecte aquest mateix punt (a, 0). ⇤
Exercici 47.
Primera part.

Vegem primerament que la ortotòmica de � respecte P coincideix amb la corba �(t)
dels simètrics de P respecte de les tangents a �. És a dir, �(t) i P són simètrics respecte
de la tangent a � en el punt �(t) = (x(t), y(t)).

En efecte, les circumferències que generen l’ortotòmica són

Ct(u) = (X(t, u), Y (t, u)) = (x(t) + r(t) cos(u), y(t) + r(t) sin(u)), u 2 [0, 2 ⇡],

amb r(t) =
���
���!
�(t)P

���.
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En particular,

r0 =
x0
(x� p

1

) + y0 (y � p
2

)

r
, P = (p

1

, p
2

).

L’equació de l’envolupant s’obté substituint a l’expressió de Ct(u), el paràmetre u pel
valor que es dedueix de la igualtat

��������

@X

@t

@Y

@t

@X

@u

@Y

@u

��������
=

�����
x0

+ r0 cos(u) y0 + r0 sin(u)

�r sin(u) r cos(u)

����� = 0.

És a dir,
x0

cos(u) + y0 sin(u) + r0 = 0. (13)
Així doncs �(t) = (x(t) + r(t) cos(u), y(t) + r(t) sin(u)), amb u donada per (13).

La comprovació que �(t) és el simètric de P respecte de la tangent s’obté a partir de
l’esquema següent

↵

�(t)

↵ = �2
�0/t)

↵ = �1

�(t)

P

D’on es desprèn
(1)

h
���!
P�(t), �0(t)i = h(x+ r cos(u)� p

1

, y + r sin(u)� p
2

), (x0, y0)i
= x x0

+ r x0
cos(u)� p

1

x0
+ y y0 + r y0 sin(u)� p

2

y0

= r x0
cos(u) + r y0 sin(u) + r r0 = 0.

(2) Angle �
1

= \���!�(t)P , �0(t).

h
���!
�(t)P , �0i = r cos(�

1

) = �(x� p
1

) x0 � (y � p
2

) y0 = �r r0.

(3) Angle �
2

= \�����!�(t)�(t), �0(t).

h
�����!
�(t)�(t), �0(t)i = r cos(�

2

) = h(r cos(u), r sin(u)), (x0, y0)i = �r r0.
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Per tant �
1

= �
2

i hem acabat.

Nota. Això es pot veure sense cap càlcul així: Si prenem dues circumferències de la
família, pròximes, una amb centre �(t) i l’altre amb centre �(t + ✏), les dues per P , la
recta que uneix els punts de tall P , P 0 és perpendicular a la línia que uneix els centres, i
P i P 0 són simètrics respecte d’aquesta recta. En el límit, quan ✏ ! 0, aquesta recta és
la tangent i P 0 és el punt de l’envolupant.

Segona part. Per definició de corba envolupant, en el punt de paràmetre t la tangent a la
corba ortotòmica �(t) i la tangent a la circumferència de centre �(t) per P (que passa per
�(t)) coincideixen , i per tant les normals també. Però la normal a la tangent en un punt
d’una circumferència és un diàmetre, de manera que podem afirmar que les rectes �(t)�(t)
són les rectes normals a la corba ortotòmica. La seva envolupant és doncs l’evoluta de
l’ortotòmica, però com que les rectes �(t)�(t) són també les rectes reflectides de les rectes
P�(t), podem dir que la càustica de � respecte de P és l’evoluta de l’ortotòmica de �
respecte de P . ⇤
Exercici 48(a) Reprenem els càlculs de l’exercici 17. Respecte el paràmetre “natural” t,
la catenària està donada per ↵(t) = (t, cosh(t)). Aleshores:

↵0
(t) = (1, sinh(t)),

↵00
(t) = (0, cosh(t)),

k(t) =
|det(↵0,↵00

)|
k↵0k3

=

1

cosh

2

(t)
.

La parametrització de la catenària respecte el paràmetre arc és

�(s) = (arcsinh(s),
p
1 + s2 ),

i el paràmetre arc està donat per s(t) = sinh(t) (recordeu que s és la integral de la norma
del vector tangent). Aleshores

�0
(s) =

✓
1p

s2 + 1

,
sp

s2 + 1

◆
,

�00
(s) =

✓
�s

(s2 + 1)

3/2
,

1

(s2 + 1)

3/2

◆
.

Per tant
k(s) = k�00

(s)k =

1

1 + s2
.

Observem que si en aquesta fórmula canviem s pel seu valor s(t) = sinh(t) s’obté el
valor de k(t) d’abans. ⇤
Exercici 48(b) L’expressió de la tractriu en el paràmetre “natural” de la catenària és
(vegeu l’exercici 16).

�(t) = (t� tanh(t),
1

cosh(t)
).

Per tant

�0(t) = (

sinh

2

(t)

cosh

2

(t)
,� sinh(t)

cosh

2

(t)
),

�00(t) = (

2 sinh(t) cosh(t)

cosh

4

(t)
,
cosh(t)(sinh2

(t)� 1)

cosh

4

(t)
).
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La curvatura és doncs
k(t) =

det(�0(t), �00(t))

k�0(t)k3
=

1

sinh(t)
.

Però s(t) = sinh(t) és el paràmetre arc de la catenària, comptades les longituds a partir
del punt (0, 1) comú a la catenària i a la tractriu, s(0) = 0, així que

k(t) =
1

s(t)
,

és a dir, la curvatura de la tractiu és l’invers del paràmetre arc de la catenària, més
concretament, la curvatura de la tractriu en el punt corresponent al punt de la catenària
que dista s de l’origen és 1/s. En general serà (vegeu l’apartat (c) següent): la curvatura
de la involuta en el punt que s’obté quan s’ha desembolicat una longitud s del cordill
inicialment sobre la evoluta, és 1/s.

Nota: Si pensem la tractriu com �(x) = (x, y(x)) on y(x) és la solució de l’equació
diferencial

y0 = � yp
1� y2

tenim �0(x) = (1, y0(x)), �00(x) = (0, y00(x)). Però és fàcil veure que

k�0(x)k =

1p
1� y2

,

y00(x) = � y0(x)

(1� y2)3/2
.

Per tant la curvatura val

k(x) =
det(�0(x), �00(x))

k�0(x)k3
= �y0(x).

La curvatura és simplement la derivada (canviada de signe). ⇤
Exercici 48(c) Sigui ↵(s) una corba parametritzada per l’arc. Les seves involutes s’es-
criuen com �(s) = ↵(s) + (s

0

� s)↵0
(s) com es veu a l’exercici 43. El punt on es comença

a desembolicar el cordill és, doncs, ↵(s
0

) = �(s
0

). Així

�0
(s) = (s

0

� s) k(s)N(s),

�00
(s) = (�k(s) + (s

0

� s) k0
(s))N(s)� k2

(s) (s
0

� s)T (s).

Per tant la curvatura k�(s) de la corba � és

k�(s) =
1

|s� s
0

| ,

d’acord amb el que s’ha vist a l’apartat (b). ⇤
Exercici 49. El vector tangent és �0(t) = a (1 � cos(t),� sin(t)) i té norma k�0(t)k =

2 a sin(t/2). La longitud de la cicloide des del vèrtex O fins un punt �(t) ve donada per
L(t) = 4 a (1� cos(t/2)) (fórmula obtinguda en el problema 9, apartat (c), amb t

0

= 0).
Si el cordill té longitud 4 a vol dir que la parametrització de la corba descrita per
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l’extrem del pèndol ve donada per

�(t) = �(t) +
�0(t)

k�0(t)k(4 a� L(t))

= a (t� sin(t), cos(t)� 1) +

2 a cos(t/2)

sin(t/2)
(1� cos(t),� sin(t))

= a (t� sin(t), cos(t)� 1) + 2 a
cos(t/2)

sin(t/2)
(2 sin

2

(t/2),�2 sin(t/2) cos(t/2))

= a (t+ sin(t),�3� cos(t)),

que és clarament la cicloide de la figura.

a t

a

a

a

a

a

t

P

P

x
y

⇤
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Corbes a l’espai

Parametritzacions i paràmetre arc

Exercici 50. Aquesta corba està continguda en el con x2

+ y2 � z2 = 0. �(0) és el vèrtex
del con. Es compleix �0(0) = (1, 0, 1) i �00(0) = (0, 2, 0).

⇤
Exercici 51(a) �(t) = (e

t
sin(t), 1, e

t
cos(t))

El vector tangent és

�0(t) =
�
cos (t) et + e

t
sin (t) , 0, cos (t) et � e

t
sin (t)

�
,

i la seva norma
k�0(t)k =

p
2 e

t.

Per tant, la longitud s(t) de la corba entre els valors del paràmetre 0 i t serà

s(t) =

Z t

0

p
2 e

x dx =

p
2

�
e

t � 1

�
,

de forma que el paràmetre t serà, en funció de la longitud s,

t = log(

p
2 s

2

+ 1),
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i la corba es pot reparametritzar per l’arc com

�(s) =

  p
2 s

2

+ 1

!
sin(log(

p
2 s

2

+ 1)), 1,

 p
2 s

2

+ 1

!
cos(log(

p
2 s

2

+ 1))

!
.

⇤
Exercici 51(b) �(t) = (cosh(t), sinh(t), t)

El vector tangent és
�0(t) = (sinh(t), cosh(t), 1) ,

i la seva norma

k�0(t)k =

p
(cosh(t))2 + (sinh(t))2 + 1 =

p
2 cosh(t).

Per tant, la longitud s(t) de la corba entre els valors del paràmetre 0 i t serà

s(t) =

Z t

0

p
2 cosh(x) dx =

p
2 sinh(t),

de forma que el paràmetre t serà, en funció de la longitud s,

t(s) = arcsinh

 p
2

2

s

!
,

i la corba es pot reparametritzar per l’arc com

�(s) =

 r
1 +

s2

2

,

p
2

2

s, arcsinh

 p
2

2

s

!
.

!

⇤
Exercici 51(c) �(t) = (t, t

2
, t

3
)
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El vector tangent és
�0(t) = (1, 2 t, 3 t2),

i la seva norma
k�0(t)k =

p
1 + 4 t2 + 9 t4 .

Per tant, la longitud s(t) de la corba entre els valors del paràmetre 0 i t serà

s(t) =

Z t

0

p
1 + 4 x2

+ 9 x4 dx,

integral que no es pot expressar en termes de funcions elementals. Això significa que en
aquest cas no hi ha manera donar de forma explícita el paràmetre inicial t en funció del
paràmetre arc. ⇤
Exercici 52. Considerem la funció f(s) = h(�(s) � �(s

0

)),~vi. Clarament f(s
0

) = 0 i
f 0
(s) = 0 per a tot s. Això implica f(s) = 0 per a tot s, i hem acabat (la corba està

inclosa en el pla que passa per �(s
0

) amb vector normal ~v). ⇤
Exercici 53. S’ha de veure que el producte escalar h�(t),~vi és idènticament zero. Per a
això definim la funció f(t) = h�(t),~vi i veiem que s’anul.la idènticament. Com que f(t)
és diferenciable n’hi ha prou amb veient que la seva derivada, f 0

(t), és idènticament zero,
amb la qual cosa f(t) és constant i, com que per hipòtesis f(t

0

) = 0, ha de ser f(t) = 0

per a tot t. Derivant s’obté
df

dt
=

d

dt
h�(t),~v i = h�0(t),~v i+ h�(t), (~v)0i = h�0(t),~v i

que és idènticament zero ja que s’està suposant que �0(t) és ortogonal a ~v per a tot t 2 I.
Observeu que qualsevol corba del tipus �(t) = (x(t), y(t), 0) està en les hipòtesis de

l’exercici amb v = (0, 0, 1). ⇤
Exercici 54. Considerem la funció

h(s) = h(�(s)� P ), (�(s)� P )i.
Per hipòtesi, h0

(s
0

) = 0. Però aquesta derivada val

h0
(s

0

) = 2 h�0(s
0

), (�(s
0

)� P )i = 0

i s’ha acabat. ⇤
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Triedre de Frenet. Curvatura i torsió

Exercici 55. Sigui s = s(t) el paràmetre arc de �(t). Quan derivem �(t) respecte t i
escrivim el resultat en funció de s s’obté36

d�(t)

dt |t=t(s)
=

d�(t(s))

ds

ds

dt |t=t(s)
=

ds

dt |t=t(s)
T (s) , (14)

on T (s) és el vector unitari tangent a la corba en el punt de coordenada s = s(t).
Per alleugerir la notació s’escriu habitualment

�0 =
d�

dt
=

d�

ds

ds

dt
=

ds

dt
T.

Es deueix en particular que
k�0k =

ds

dt
.

Per trobar la curvatura es fa la segona derivada respecte t (i s’aplica la fórmula de Frenet
de la derivada del vector tangent):

�00 =
d2�

dt2
=

d2s

dt2
T +

✓
ds

dt

◆
2

k N =

d2s

dt2
T + k�0k2 k N. (15)

Fent producte vectorial amb �0 (que és múltiple de T ) s’obté l’expressió per a la curvatura
ja que

�0 ^ �00 = (k�0k T ) ^
✓
d2s

dt2
T + k�0k2 k N

◆
= k�0k3 k B, (16)

d’on queda clar que
k�0 ^ �00k = k�0k3 k,

i en conseqüència

k =

k�0 ^ �00k
k�0k3

.

Quan es fa la tercera derivada respecte t (i ens despreocupem dels termes en T o N ,
que no importaran per a més endavant) s’obté

�000 = (· · · )T + (· · · )N + k�0k2 k
ds

dt

dN

ds
= (· · · )T + (· · · )N + k�0k3 k (�k T � ⌧ B)

que, agrupant en funció de T , N , B, serà
�000 = (· · · )T + (· · · )N � k�0k3 k ⌧ B ,

i fent el producte escalar amb �0 ^ �00 quedarà com
h�0 ^ �00, �000i = �k�0 ^ �00k k�0k3 k ⌧.

Però com que k�0 ^ �00k = k�0k3 k es pot dir que

⌧ = �h�0 ^ �00, �000i
k�0 ^ �00k2

= �det(�0, �00, �000)

k�0 ^ �00k2
,

36Utilitzant el teorema de la funció inversa i la regla de la cadena

df(t(s))

ds

=

df(t)

dt

|
t=t(s)

dt

ds

que es pot escriure com
df(t)

dt

|
t=t(s)

=

df(t(s))

ds

ds

dt

|
t=t(s)

.
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que és el que es volia veure. ⇤
Exercici 56. Com que aquestes corbes no estan parametritzades per l’arc utilitzarem les
fórmules (14), (15) i (16) de l’exercici anterior 55. A partir d’elles s’obté directament

T (t) =
1

k�0(t)k �
0
(t),

B(t) =
1

k�0(t) ^ �00(t)k (�0(t) ^ �00(t)) = 1

k�0(t)k3 k(t)
(�0(t) ^ �00(t)),

N(t) = B(t) ^ T (t) = �T (t) ^B(t).

Aquestes fórmules són molt útils ja que donen directament el triedre de Frenet per a
corbes que no estan parametritzades per l’arc.

Això vol dir que tot el que s’haurà de fer en cada apartat serà calcular �0, �00, �0^�00, �000,
el determinant de les tres derivades i les normes corresponents a les fórmules. Observeu
doncs que, a la pràctica, es calcula abans el vector binormal B(t) que la normal principal
N(t). ⇤
Exercici 56(a) �(t) = (t, t

2
, t

3
).

Si es van calculant els elements necessaris per aplicar les fórmules:

�0(t) = (1, 2 t, 3 t2),

�00(t) = (0, 2, 6 t),

�000(t) = (0, 0, 6),

�0(t) ^ �00(t) = (6 t2,�6 t, 2),

k�0(t)k =

p
1 + 4 t2 + 9 t4 ,

k�0(t) ^ �00(t)k =

p
36 t4 + 36 t2 + 4 ,

h�0(t) ^ �00(t), �000(t)i = 12.

De forma que la curvatura i la torsió seran:

k(t) =

p
36 t4 + 36 t2 + 4

(9 t4 + 4 t2 + 1)

3/2
,

⌧(t) = � 3

9 t4 + 9 t2 + 1

.
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I el triedre de Frenet serà

T (t) =
1p

1 + 4 t2 + 9 t4
(1, 2 t, 3 t2),

B(t) =
1p

9 t4 + 9 t2 + 1

(3 t4,�3 t, 1),

N(t) =
1p

1 + 4 t2 + 9 t4
p
9 t4 + 9 t2 + 1

(�9 t3 � 2 t,�9 t4 + 1, 6 t3 + 3 t).

⇤

Exercici 56(b) �(t) = (t,

1 � t

t

,

1 � t

2

t

).

Amb una mica de vista es pot comprovar que la corba queda sobre el pla x� y + z = 1.
(Per tant, el seu binormal hauria de ser múltiple de (1,�1, 1)).

Si es fan els càlculs per determinar curvatura, torsió i triedre de Frenet:

�0(t) =

✓
1, � 1

t2
, � 1

t2
� 1

◆
,

�00(t) =

✓
0,

2

t3
,
2

t3

◆
,

�000(t) =

✓
0, � 6

t4
, � 6

t4

◆
,

�0(t) ^ �00(t) =
✓
2

t3
, � 2

t3
,
2

t3

◆
,

k�0(t)k =

r
2

t2
+

2

t4
+ 2 =

p
2

p
t4 + t2 + 1

t2
,

k�0(t) ^ �00(t)k =

2

p
3

t3
,

h�0(t) ^ �00(t), �000(t)i = 0.

De forma que la curvatura i la torsió seran:

k(t) =

r
3

2

t3

(t4 + t2 + 1)

3/2
,

⌧(t) = 0.

Toc

JJ II J I
Tornar

https://ggbm.at/CX6mB6ty


Solucions als Exercicis 134

I el triedre de Frenet serà

T (t) =
t2p

2

p
t4 + t2 + 1

✓
1, � 1

t2
, � 1

t2
� 1

◆
=

1p
2

p
t4 + t2 + 1

(t2,�1,�1� t2),

B(t) =
t3

2

p
3

✓
2

t3
, � 2

t3
,
2

t3

◆
=

1p
3

(1,�1, 1),

N(t) =
1p

6

p
t4 + t2 + 1

(t2 + 2, 2 t2 + 1, t2 � 1).

⇤
Exercici 56(c) �(t) = (e

t
, e

�t
,

p
2 t).

�0(t) =
⇣
e

t, �e

�t,
p
2

⌘
,

�00(t) =
�
e

t, e�t, 0
�
,

�000(t) =
�
e

t, �e

�t, 0
�
,

�0(t) ^ �00(t) =
⇣
�
p
2 e

�t,
p
2 e

t, 2
⌘
,

k�0(t)k =

p
e

2 t
+ e

�2 t
+ 2 = (e

t
+ e

�t
),

k�0(t) ^ �00(t)k =

p
2 e

2 t
+ 2 e

�2 t
+ 4 =

p
2

p
e

2 t
+ e

�2 t
+ 2 =

p
2 (e

t
+ e

�t
),

h�0(t) ^ �00(t), �000(t)i = �2

p
2 .

De forma que la curvatura i la torsió seran:

k(t) =

p
2 e

2 t

e

4 t
+ 2 e

2 t
+ 1

=

p
2

(e

2 t
+ e

�2 t
)

2

,

⌧(t) =

p
2

e

2 t
+ e

�2 t
+ 2

=

p
2

(e

2 t
+ e

�2 t
)

2

.

I el triedre de Frenet

T (t) =
1

et + e�t

⇣
e

t, �e

�t,
p
2

⌘
,

B(t) =
1

et + e�t

⇣
�e

�t, et,
p
2

⌘
,

N(t) =
1

1 + e

2 t

⇣p
2 e

2 t,
p
2 e

2 t, 1� e

2 t
⌘
.

⇤
Exercici 56(d) �(t) = (2 t, log(t), t

2
).
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�0(t) =

✓
2,

1

t
, 2 t

◆
,

�00(t) =

✓
0, � 1

t2
, 2

◆
,

�000(t) =

✓
0,

2

t3
, 0

◆
,

�0(t) ^ �00(t) =
✓
4

t
, �4, � 2

t2

◆
,

k�0(t)k =

r
4 t2 +

1

t2
+ 4 =

2 t2 + 1

t
,

k�0(t) ^ �00(t)k =

r
16

t2
+

4

t4
+ 16 =

2 (2 t2 + 1)

t2
,

h�0(t) ^ �00(t), �000(t)i = � 8

t3
.

De forma que la curvatura i la torsió seran:

k(t) =
2 t

4 t4 + 4 t2 + 1

=

2 t

(2 t2 + 1)

2

,

⌧(t) =
2 t

4 t4 + 4 t2 + 1

=

2 t

(2 t2 + 1)

2

,
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I el triedre de Frenet

T (t) =

✓
2 t

2 t2 + 1

,
1

2 t2 + 1

,
2 t2

2 t2 + 1

◆
,

B(t) =

✓
2 t

2 t2 + 1

, � 2 t2

2 t2 + 1

, � 1

2 t2 + 1

◆
,

N(t) =

✓
�2 t2 � 1

2 t2 + 1

, � 2 t

2 t2 + 1

,
2 t

2 t2 + 1

◆
.

⇤
Exercici 56(e) �(t) = (3 t � t

3
, 3 t

2
, 3 t + t

3
).

�0(t) =
�
�3 t2 + 3, 6 t, 3 t2 + 3

�
= 3 (1� t2, 2 t, t2 + 1),

�00(t) = (�6 t, 6, 6 t) = 6 (�t, 1, t),

�000(t) = (�6, 0, 6) = 6 (�1, 0, 1),

�0(t) ^ �00(t) =
�
18 t2 � 18, �36 t, 18 t2 + 18

�
= 18 (t2 � 1,�2 t, t2 + 1),

k�0(t)k =

p
18 t4 + 36 t2 + 18 = 3

p
2

�
t2 + 1

�
,

k�0(t) ^ �00(t)k =

p
648 t4 + 1296 t2 + 648 = 18

p
2

�
t2 + 1

�
,

h�0(t) ^ �00(t), �000(t)i = 216.

De forma que la curvatura i la torsió seran:

k(t) =
1

3 (t2 + 1)

2

,

⌧(t) = � 1

3 (t2 + 1)

2

.

I el triedre de Frenet

T (t) =

✓
� 1p

2

t2 � 1

t2 + 1

,
p
2

t

t2 + 1

,
1p
2

◆
,

B(t) =

✓
1p
2

t2 � 1

t2 + 1

,�
p
2

t

t2 + 1

,
1p
2

◆
,

N(t) =

✓
� 2 t

t2 + 1

, �t2 � 1

t2 + 1

, 0

◆
.
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⇤
Exercici 57. El grafic d’aquesta corba serà

Clicant a sobre s’accedeix a un full de GeoGebra on es poden fer les comprovacions. ⇤
Exercici 58. Com que és regular es pot reparametritzar per l’arc. Diguem s a aquest
paràmetre. Com que �00(s) = k(s)N(s), tenim �00(s) = 0, que implica, integrant dos cops
cada component, �(s) = (a

1

+ s a
2

, b
1

+ s b
2

, c
1

+ s c
2

) = (a
1

, b
1

, c
1

) + s (a
2

, b
2

, c
2

), que és
una recta. ⇤
Exercici 59. En primer lloc, reparametritzem �(s) per l’arc. Fent una translació si és
necessari es pot suposar que totes les rectes tangents passen per l’origen, és a dir, que per
a tot s 2 I existeix (un únic) �(s) 2 R tal que �(s) + �(s) �0(s) = 0. Observem que la
funció �(s) (que està ben definida) és diferenciable, ja que �(s) = �h�(s), �0(s)i.

Derivant s’obté
�0(s) + �0(s) �0(s) + �(s) �00(s) = 0.

Si la curvatura k(s) de �(s) fos diferent de zero en un punt, seria diferent de zero en
un entorn d’aquest punt, i en aquest entorn es compliria

(1 + �0(s))T (s) + �(s) k(s)N(s) = 0,

on T (s) i N(s) són els vectors tangent i normal principal unitaris. (Recordem que per
poder definir la normal principal cal que k(s) 6= 0).

Com que T (s) i N(s) són linealment independents es té

1 + �0(s) = 0, �(s) k(s) = 0,

que, amb k(s) 6= 0, són dues equacions incompatibles. Per tant k(s) = 0 en tot punt i
� és una recta. ⇤
Exercici 60. Suposem inicialment que �(t) està continguda en una recta. Això vol dir
que es pot escriure

�(t) = �(t
0

) + f(t)~v

on f(t) és una certa funció i ~v és el vector director de la recta. Llavors �0(t) = f 0
(t)~v, la

qual cosa implica en particular que f 0
(t) 6= 0 per a tot t, ja que s’està suposant que �(t)
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és regular. Tornant a derivar

�00(t) = f 00
(t)~v = f 00

(t)
�0(t)

f 0
(t)

=

f 00
(t)

f 0
(t)

�0(t),

és a dir, la derivada segona és proporcional a la derivada primera, com volíem veure.
Recíprocament, si �00(t) = �(t) �0(t), per a una certa funció �(t), es complirà �0(t) ^

�00(t) = 0 i per tant (utilitzant la fórmula de la curvatura k(t) respecte una paràmetre
arbitrari), k(t) = 0. I ja es veu a l’exercici 58 que les corbes amb curvatura nul.la estan
sobre una recta. ⇤
Exercici 61. Recordem primer que per poder parlar de pla osculador necessitem la
condició de curvatura no nul.la.

Si la corba és plana, el pla que la conté és el pla osculador i s’ha acabat.
Recíprocament, suposem que tots els plans osculadors són paral.lels, és a dir, que el

vector binormal B(s) és constant B(0) (suposem que s és el paràmetre arc) i definim

f(s) = h�(s)� �(0), B(0)i.
Es compleix f(0) = 0 i

f 0
(s) = h�0(s), B(0)i = hT (s), B(s)i = 0.

De manera que f ⌘ 0 i � està continguda en el pla osculador de � pel punt �(0).
La tercera equació de Frenet diu que B(t) és constant si, i només si ⌧(s) = 0.
D’altra banda, la hipòtesi sobre la curvatura (vegeu on s’ha utilitzat) és necessària

ja que existeixen exemples de corbes regulars que són localment planes sense estar con-
tingudes en un únic pla, per exemple, dues corbes planes unides per un segment recte
(observem que sobre aquest segment la curvatura és zero i que, en realitat, podria ser un
únic punt). Vegeu l’exercici 62. ⇤
Exercici 62. És fàcil veure que

lim

t 7!0

+
�0(t) = lim

t 7!0

�
�0(t) = (1, 0, 0).

Per tant, la corba és regular. De fet és C1 ja que la funció e

�1/t2 té la propietat de que
ella i totes les seves derivades s’anul.len en t = 0. Així

lim

t 7!0

+
�(k)(t) = lim

t 7!0

�
�(k)(t) = (0, 0, 0), k > 1 .

Per un altre costat, en tot el recorregut corresponent a t > 0 la corba està continguda en
el pla xz, mentre que en el recorregut de t < 0 està dins el pla xy i, per tant, en tots els
punts del recorregut amb t 6= 0, ⌧(t) = 0. Però, com que la corba és diferenciable, la seva
torsió també ho és i per tant ⌧(0) = 0. Així �(t) té torsió nul.la a tot arreu i no es plana.
I no és contradicció amb el problema anterior perquè la curvatura de �(t) en t = 0 és 0.

Totes aquestes característiques es poden observar sense problemes al gràfic següent
sense cap càlcul addicional
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⇤
Exercici 63. Parametritzem � per l’arc. El fet de suposar que la curvatura k(s) de
�(s) no s’anul.la mai implica que el vector normal N(s) està definit per a tot s 2 I.
Després de fer una translació, si s’escau, es pot considerar que totes les rectes normals
passen per l’origen, és a dir, que per a tot s 2 I existeix un únic �(s) 2 R tal que
�(s)+�(s)N(s) = 0. De la mateixa manera que al problema 59 es veu que la funció �(s)
és diferenciable. Derivant l’expressió anterior s’obté que �0(s)+�(s)N 0

(s)+�0(s)N(s) = 0,
és a dir,

(1� �(s) k(s))T (s) + �0(s)N(s)� �(s) ⌧(s)B(s) = 0.

Per tant, igualant a zero els tres coeficients, es veu que �(s) és una constant no nul.la,
k(s) = 1/�(s), i ⌧(s) ⌘ 0. Com que la torsió és zero la corba és plana (exercici 61). I les
corbes planes de curvatura constant són circumferències (exercici 27). ⇤
Exercici 64. Per hipòtesi, existeixen funcions �(s) i µ(s), que suposarem diferenciables,
tals que

P = �(s) + �(s)T (s) + µ(s)N(s).

Derivant
~
0 = T + �(s) k(s)N(s) + �0(s)T (s) + µ0

(s)N(s) + µ(s) (�k(s)T + ⌧(s)B(s)).

Aquesta igualtat és equivalent al sistema
1 + �0(s)� k(s)µ(s) = 0

�(s) k(s) + µ0
(s) = 0

µ(s) ⌧(s) = 0

D’aquí es dedueix que ⌧(s) = 0 per a tot s, i per tant la corba és plana. En efecte,
si ⌧(s

0

) 6= 0, llavors ⌧(s) 6= 0 en un petit entorn obert de s
0

. En aquest entorna ha de
ser, per la tercera equació, µ(s) = 0. I, per tant, també µ0

(s) = 0 en aquest entorn. Però
llavors la segona equació diu �(s) = 0 i la primera 1 + �0(s) = 0, contradicció. ⇤
Exercici 65. Reparametritzem �(t) pel paràmetre arc s, amb s = 0 en el punt �(t

0

). És
molt fàcil veure que, respecte la referència de Frenet en s = 0, la corba és

x(s) = s� k2

6

s3 + . . .

y(s) =
k

2

s2 +
k0

6

s3 + . . .

z(s) =
k ⌧

6

s3 + . . .
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on k, ⌧ són la curvatura i la torsió de la corba en s = 0, i k0 és la derivada de la curvatura en
s = 0. En aquestes condicions, projectar sobre el pla osculador vol dir considerar la corba
�̃(s) = (x(s), y(s)) = (s � k2

6

s3 + . . . , k
2

s2 + k0

6

s3 + . . . ). Però clarament �̃0(0) = (1, 0)
i �̃00(0) = (0, k) de manera que la curvatura en s = 0 de �̃ és igual a k, justament la
curvatura de � en s = 0.

Es pot interpretar doncs la torsió de la corba � com el que fa pujar (torsió negativa
o moviment dextrogir) o baixar (torsió positiva o moviment levogir) la corba des del pla
osculador (respecte al vector binormal). Observem també que quan es reparametritza
una corba canviant-li el sentit els vectors tangent i binormal canvien de signe i el vector
normal continua sent el mateix. ⇤
Exercici 66(a) Suposem que t és el paràmetre arc de �. Això implicarà, en general, que
t no és el paràmetre arc de �.

Per hipòtesi es té N�(t) = ±N�(t), on N�(t) és el vector normal principal de �(t), i
per tant, �(t) = �(t) + �(t)N�(t). Cal veure doncs que �(t) és constant. Derivant

�0(t) = �0
(t) + �0(t)N�(t) + �(t)N 0

�(t)

= (1� k�(t)�(t))T�(t) + �0(t)N�(t)� �(t) ⌧�(t)B�(t).

on k�(t) i ⌧�(t) són la curvatura i la torsió de �(t), i T�(t), N�(t), B�(t) és la referència de
Frenet de �(t).

Multiplicant per N�(t) s’obté 0 = �0(t) i això implica �(t) = r 2 R. ⇤
Exercici 66(b) Derivant el producte hT�(t), T�(t)i respecte t i denotant s = s(t) el
paràmetre arc de � es té,

hT�(t), T�(t)i0 = hT�(t)0, T�(t)i+ hT�(t), T�(t)0i

= hk�(t)N�(t), T�(t)i+ hT�(t), k�(t)
ds

dt
N�(t)i = 0,

ja que N�(t) = ±N�(t). Noteu que per obtenir aquestes igualtats cal utilitzar la regla de
la cadena i que

T�(t) =
d�̃(s)

ds |s=t
,

on �̃(s) = �(t(s)) és la reparametrització per l’arc de �(t).
Així doncs hT�(t), T�(t)i és constant. Com que són unitaris, això diu que l’angle que

formen és constant. ⇤

Exercici 66(c) Com que T�(t) =

�0(t)

k�0(t)k , usant el càlcul de l’apartat (a) i tenint en

compte que l’angle entre els tangents a les corbes és constant (apartat (b)), s’obté

c = hT�(t), T�(t)i = hT�(t),
�0(t)

k�0(t)ki =
1� k�(t) rp

(1� k�(t) r)2 + r2 ⌧�(t)2

Aleshores (1 � k�(t) r)2 (1 � c2) = c2 r2 ⌧�(t)2 amb c i r constants. Com que ⌧� 6= 0,
(1� c2) tampoc pot ser 0 ja que

(1� c2) =
r2 ⌧�(t)2

(1� k�(t) r)2 + r2 ⌧�(t)2
.

De manera que
1� k�(t) r

⌧�(t)
=

c rp
1� c2

.

Prenent b = c r/
p
1� c2 (constant) i a = r s’ha arribat a 1 � a k�(t) = b ⌧�(s) com es

volia.
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Observem que quan c = 0 (tangents ortogonals), b = 0 i la torsió no té cap rellevàn-
cia a la fórmula. També és clar que les úniques corbes de Bertrand planes són cercles
concèntrics.

Observem també que, si diem ✓ l’angle entre les tangents, es compleix c = cos(✓) de
manera que la relació entre curvatura i torsió es pot escriure com

k� + cot(✓) ⌧� =

1

r

Per altra banda, la igualtat que s’obté a l’apartat (a)

�0(t) = (1� k�(t) r)T�(t)� r ⌧�(t)B�(t)

es pot escriure en termes del paràmetre arc s de �(t) com
d�

ds

ds

dt
= (1� k�(t) r)T�(t)� r ⌧�(t)B�(t)

i com que clarament
d�

ds
= cos(✓)T� + sin(✓)B�,

comparant les dues fórmules anteriors, s’obté

cos(✓) = (1� k�(t) r)
dt

ds
,

sin(✓) = �r ⌧�(t)
dt

ds
.

Ara bé, el paper jugat en aquest exercici per les corbes � i � és recíproc. Per refer
el problema començant per � en lloc de � només s’ha de canviar A per �A (si �(t) =

�(t) + AN(t) llavors �(t) = �(t) � AN(t)) i ✓ per �✓ ja que són angles orientats. Més
específicament, per passar de la base T�, B� a la base T�, B� es fa un gir d’angle ✓ i per
tant per passar de T�, B� a T�, B� s’ha de fer un gir d’angle �✓.

Per tant les fórmules anteriors donen lloc a

cos(✓) = (1 + Ak�(t))
ds

dt

sin(✓) = �A ⌧�(t)
ds

dt
que multiplicant-les donen

⌧�(t) ⌧�(t) =
1

A2

sin

2

(✓)

(1� Ak�(t)) (1 + Ak�(t)) = cos

2

(✓)
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La primera diu que les torsions de dues corbes de Bertrand en punts corresponents
tenen el mateix signe i el seu producte és constant (resultat de Schell); i la segona diu que
si P i P

1

són punts corresponents en dues corbes de Bertrand i O, O
1

són els seus centres
de curvatura, llavors la raó doble (P, P 0, O,O0

) és constat i igual a sec

2

(✓) (resultat de
Mannheim). Per tal d’obtenir aquest resultat cal recordar que

(P, P 0, O,O0
) =

O � P

O � P 0 :
O0 � P 0

O0 � P
=

⇢�
⇢� � A

· ⇢�
⇢� � A

⇢�

PP 0

A

⇢�

O O0

⇤
Exercici 67. Siguin �

1

(t) i �
2

(s) dues corbes que podem suposar parametritzades per
l’arc. Suposem que hi ha una aplicació diferenciable bijectiva � entre els intervals de
definició d’aquestes corbes. Aquesta � dóna lloc a la transformació entre les corbes que
aplica el punt �

1

(t) al punt �
2

(�(t)). Equivalentment i per simplificar, posem s com funció
de t, s = s(t). La hipòtesi de l’exercici és que aquesta transformació és de Combescure,
és a dir,

d�
1

dt |t =
d�

2

ds |s=s(t)
,

que escriurem simplement
d�

1

(t)

dt
=

d�
2

(s)

ds
,

donant per descomptat que s = s(t) o t = t(s) quan convingui.
Ara, per la regla de la cadena,

k
2

(s)N
2

(s) =
d

ds
(

d�
2

(s)

ds
) =

d

ds
(

d�
1

(t)

dt
) =

d2�
1

dt2
dt

ds
= k

1

(t)N
1

(t)
dt

ds
.

De forma que N
1

(t) = N
2

(s) i
k
2

(s)

k
1

(t)
=

dt

ds
.

Per veure la relació entre les torsions només s’ha de derivar i s’obté (sempre amb la relació
s = s(t))

dN
1

dt
= �k

1

(t)T
1

(t)� ⌧
1

(t)B
1

(t)

= �k
1

(t)T
2

(s)� ⌧
1

(t)B
2

(s)

=

dN
2

ds

ds

dt
=

✓
� k

2

(s)T
2

(s)� ⌧
2

(s)B
2

(s)

◆
ds

dt
.

Igualant coeficients ja es té el resultat. ⇤
Exercici 68. Considerant � parametitzada per l’arc s, la corba dels centres de curvatura
de �(s) és �(s) = �(s) + ⇢N(s), amb ⇢ el radi de curvatura constant. Observem que

�0
(s) = �0(s) + ⇢ (�k T (s)� ⌧(s)B(s)) = �⇢ ⌧(s)B(s)

i
�00

(s) = ⇢ ⌧ 0(s)B(s)� ⇢ ⌧(s)2 N(s)
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Així
k� =

k�0
(s) ^ �00

(s)k
k�0

(s)k3
= k�

La binormal de � és
B� =

�0
(s) ^ �00

(s)

k�0
(s) ^ �00

(s)k = �T.

I així
N� = B� ^ T� = �N.

En particular, aquestes dues corbes són corbes de Bertrand.
Finalment, quan es calcula la corba dels centres de curvatura de �, s’obté

�(s) + ⇢N�(s) = �(s) + ⇢N(s)� ⇢N(s) = �(s)

és a dir, la corba inicial.
Nota: Observeu que, en aquesta situació les tangents entre les dues corbes són perpendi-
culars i, per tant, la cotangent de l’angle ✓ que formen és nul.la. Això significa que la relació
lineal entre la curvatura i la torsió quan es tenen corbes de Bertrand k+cot(✓) ⌧ =

1

r no té
com a conseqüència que la torsió sigui constant, ja que es redueix a la igualtat k =

1

r =

1

⇢

(la distància r entre les corbes és el radi de curvatura ⇢). ⇤
Exercici 69. Parametritzem � pel paràmetre arc s i definim la corba dels centres dels
cercles osculadors �(s) = �(s) + ⇢(s)N(s) on ⇢(s) = 1/k(s) és el radi de curvatura. La
hipòtesi de que �(s) està continguda en una recta es pot traduir en el fet que la curvatura
de �(s) és zero, o equivalentment que �0

(s)^ �00
(s) = 0. Utilitzant les fórmules de Frenet

de � s’obté (totes les funcions valorades en s, que ometem per comoditat)
�0

= �0 � ⇢0 N + ⇢N 0
= T � ⇢0 N + ⇢ (�k T � ⌧ B)

= �⇢0 N � ⇢ ⌧ B,

�00
= �⇢00 N + ⇢0 (k T + ⌧ B)� (⇢ ⌧)0 B � ⇢ ⌧ 2 N

= ⇢0 k T � (⇢00 + ⇢ ⌧ 2)N +

⇣
⇢0 ⌧ � (⇢ ⌧)0

⌘
B,

�0 ^ �00
=

⇣
�⇢0 (⇢0 ⌧ � (⇢ ⌧)0)� ⇢ ⌧ (⇢00 + ⇢ ⌧ 2)

⌘
T � ⇢ ⇢0 k ⌧ N � (⇢0)2 k B .

Imposant ara �0
(s) ^ �00

(s) = 0 obtenim tres equacions que impliquen ⇢0(s) = 0 (i per
tant k(s) és constant) i ⌧(s) = 0 (i per tant, exercici 61, la corba � és plana). Així es
dedueix que � és una circumferència (exercici 27). ⇤
Exercici 70. La corba �(s), lloc geomètric dels centres de curvatura de la corba �(s)
(parametritzada per l’arc), s’escriu com

�(s) = �(s) + ⇢(s)N(s),

on ⇢(s) és el radi de curvatura i N(s) la normal principal. Derivant respecte s tenim
�0
(s) = T (s) + ⇢0(s)N(s) + ⇢(s) (�k(s)T (s)� ⌧(s)B(s)),

on ⌧(s) és la torsió i B(s) el vector binormal.
Com que ⇢(s) k(s) = 1, �0

(s) és combinació lineal de N(s) i B(s), i per tant és ortogonal
a T (s), per a tot s. ⇤
Exercici 71. Podem suposar que la corba està parametritzada per l’arc. Fent servir el
triedre de Frenet sabem que B0

= ⌧ N (sobreentenem en el punt s) i per tant |⌧ | = kB0k.
Derivant un altre cop

B00
= ⌧ 0 N + ⌧ (�k T � ⌧ B) = �k ⌧ T + ⌧ 0 N � ⌧ 2 B.
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Aleshores, com que B ^ B0
= ⌧ T , es compleix

⌧
B00,

B ^ B0

kB ^ B0k

�
= ±k ⌧, k =

����
1

⌧

⌧
B00,

B ^B0

kB ^B0k

����� .

És a dir, es pot calcular k i |⌧ | usant el vector binormal B i les seves derivades. ⇤
Exercici 72(a) Veiem primer que quan �(s) està parametritzada per l’arc la fórmula és
certa. Després estendrem el resultat per a un paràmetre qualsevol.

Per les fórmules de Frenet es té

N 0
(s) = �k(s)T (s)� ⌧(s)B(s)

N 00
(s) = �k0

(s)T (s)� (k(s)2 + ⌧(s)2)N(s)� ⌧ 0(s)B(s) .

Llavors

kN 0
(s)k2 = k(s)2 + ⌧(s)2,

N(s) ^N 0
(s) = k(s)B(s)� ⌧(s)T (s),

hN(s) ^N 0
(s), N 00

(s)i = k0
(s) ⌧(s)� ⌧ 0(s) k(s) .

Així

hN(s) ^N 0
(s), N 00

(s)i
kN 0

(s)k2
=

⇣
k(s)
⌧(s)

⌘0

1 +

⇣
k(s)
⌧(s)

⌘
2

.

D’altra banda, quan la corba �(t) no està parametritzada per l’arc es reparametritzar
per l’arc s = s(t), i denotant v = ds/dt i aplicant la regla de la cadena es compleix

N 0
(t) = v ˙N,

N 00
(t) = v0 ˙N + v2 ¨N,

hN(t) ^N 0
(t), N 00

(t)i = v3 hN ^ ˙N, ¨Ni,
⇣k(t)
⌧(t)

⌘0
= v

⇣k
⌧

⌘
˙

,

on el punt denota la derivada respecte del paràmetre arc s i la prima la derivada respecte
del paràmetre t. Així ˙N =

dN(t(s))
ds , etc. En particular, doncs,

hN(t) ^N 0
(t), N 00

(t)i
kN 0

(t)k2
=

vhN ^ ˙N, ¨Ni
��� ˙N
���
2

=

v
⇣

k
⌧

⌘
˙

1 +

⇣
k
⌧

⌘
2

=

⇣
k
⌧

⌘0

1 +

⇣
k
⌧

⌘
2

.

⇤
Exercici 72(b) Sigui s el paràmetre arc. Conèixer N(s) per a tot s, vol dir conèixer el
primer terme de l’equació (1). Diguem-li f(s). Llavors la funció y(s) = k(s)/⌧(s) verifica
l’equació diferencial

y0

1 + y2
= f(s)

d’integració immediata i que dona y(s) = tan(

R
f(s) + C), on la constant d’integració C

queda determinada per la condició inicial (el valor y(s
0

) és conegut).
Coneixem doncs el quocient k(s)/⌧(s). Però, a més, sabem que kN 0

(s)k2 = k(s)2 +
⌧(s)2. De manera que també coneixem la suma k(s)2 + ⌧(s)2, per a tot s. Aquests dos
valors (el quocient i la suma de quadrats) determinen totalment k(s) i ⌧(s), i per tant,
llevat de moviments rígids, la corba. ⇤
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Exercici 73. Com que la corba és plana (torsió nul.la) sabem que k(s) = |✓0(s)| on ✓(s)
és l’angle que forma la tangent a la corba amb la direcció (1, 0).

Més concretament, ✓(s) és una determinació de l’argument, vegeu exercici 30, o dit
d’una altra manera una funció ✓ : I �! R (on I és l’interval on està definida la corba)
tal, que �0(s) = (cos(✓(s)), sin(✓(s))).

D’aquesta manera h�0(s), (1, 0)i = x0
(s) = cos(✓).

En el nostre cas, doncs, ✓0(s) = 1/s. Integrant i tenint en compte que ✓(1) = 0 aquesta
condició diu que

✓(s) = ln(s).

Finalment, integrant les expressions x0
(s) = cos(ln(s)) i y0(s) = sin(ln(s)), i tenint en

compte les condicions inicials s’obté

�(s) =

✓
s

2

�
sin(ln(s)) + cos(ln(s))

�
+

1

2

,
s

2

�
sin(ln(s))� cos(ln(s))

�
� 1

2

, 0

◆
.

⇤
Exercici 74. Abans de començar observem que, donat que sempre es compleix k(s) � 0,
només es pot considerar s 2 [0, L] i per tant en el 0 només hi ha derivades per la dreta.
A més, tot i que k(0) = 0, es podrà definir N(0) per obtenir el resultat de l’enunciat.

Com que la corba és plana el vector binormal és constant i es compleix B(s) =

(0, 0,�1) per a tot s, de manera que la corba està continguda en el pla xy. I la base
T (s), N(s) és negativa respecte la base canònica de xy ja que T (s)^N(s) = B(s) mentre
que (1, 0, 0) ^ (0, 1, 0) = (0, 0, 1).

Sabem que k(s) = |✓0(s)| on ✓(s) és l’angle que forma la tangent a la corba amb la
direcció (1, 0, 0). Així, h�0(s), (1, 0, 0)i = x0

(s) = cos(✓(s)).
En el nostre cas, doncs, |✓0(s)| = s i, per tant, ✓(s) = ± s2

2

+ C, amb el signe + per a
tota s o amb el signe � per a tota s.

Com que ✓(0) = ⇡/4, per la condició inicial que es dona, la constant C queda deter-
minada i es té

✓(s) = ±s2

2

+

⇡

4

, s � 0.

Per tant
x(s) =

Z s

0

cos(±t2

2

+

⇡

4

) dt,

y(s) =

Z s

0

sin(±t2

2

+

⇡

4

) dt.

(17)

Per controlar el signe, calculem N(0), que ha de ser igual a (

p
2

2

,�
p
2

2

, 0). Així es ve
que s’ha d’agafar el signe menys, i per tant la solució és

x(s) =

Z s

0

cos(�t2

2

+

⇡

4

) dt,

y(s) =

Z s

0

sin(�t2

2

+

⇡

4

) dt.

Aquestes integrals no són expressables en termes de funcions elementals.

Un altre mètode. Podem procedir integrant directament les equacions de Frenet. Po-
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sant T (s) = (x
1

, x
2

, x
3

), N(s) = (x
4

, x
5

, x
6

) les equacions de Frenet són
x0
1

= s x
4

,

x0
2

= s x
5

,

x0
3

= s x
6

,

x0
4

= �s x
1

,

x0
5

= �s x
2

,

x0
6

= �s x
3

.

Per tant
x000
4

= �3 s x
4

� s2 x0
4

.

I expressions anàlogues per a x
5

i x
6

.
Aquesta equació diferencial és difícil de resoldre, però es pot comprovar que la solució

donada anteriorment n’és una solució.
Com que x

4

és la primera component de N(s), i la corba (x(s), y(s)) donada per les
equacions (17) està parametritzada per l’arc,

x
4

(s) = sin(�s2

2

+

⇡

4

),

funció que compleix efectivament l’equació diferencial anterior. ⇤
Exercici 75.
Cas particular previ. Suposem un punt Q que gira al voltant d’un eix, descrivint doncs
una circumferència en un pla perpendicular a aquest eix. Si r(t) és el vector posició, per
ser kr(t)k = constant, obtenim hr0(t), r(t)i = 0. Per altra banda, si denotem per e el
vector unitari director de l’eix, obtenim hr(t), ei = kr(t)k cos(↵) = constant, i per tant
hr0(t), ei = 0. Com que r0(t) és perpendicular a r(t) i a e tenim

r0(t) = �(t) e ^ r(t). (18)
Igualant els mòduls

kr0(t)k = �(t) kr(t)k sin(↵) = �(t) a,

on a és el radi de gir.

r(t)

P

a

d

↵

Q

Però kr0(t)k és la velocitat v(t) del punt i per definició de velocitat angular tenim
v(t) = !(t) a

de manera que �(t) = !(t). Definim aleshores el vector de Darboux com
d(t) = !(t) e (19)
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i l’equació del moviment (18) s’escriu
r0(t) = d(t) ^ r(t) .

Cas general. Considerem una corba i les seves equacions de Frenet. Els tres vectors
T 0
(t), N 0

(t), B0
(t) pertanyen, en cada punt, al pla E(t) donat per

E(t) = hN(t),�k(t)T (t)� ⌧(t)B(t)i.
El vector director d’aquest pla, que denotem d(t) per analogia amb el cas anterior (però
ara varia amb t també la direcció), és

d(t) = N(t) ^ (�k(t)T (t)� ⌧(t)B(t)) = k(t)B(t)� ⌧(t)T (t)

de manera que
T 0
(t) és ortogonal a T (t) i a d(t). Per tant, T 0

(t) = �(t) d(t) ^ T (t).
N 0

(t) és ortogonal a N(t) i a d(t). Per tant, N 0
= µ(t) d(t) ^N(t).

B0
(t) és ortogonal a B(t) i a d(t). Per tant, B0

= ⌫(t) d(t) ^ B(t).
Comparant amb les fórmules de Frenet es veu que � = µ = ⌫ = 1. En efecte,

T 0
(t) = k(t)N(t) = �(t) (k(t)B(t)� ⌧(t)T (t)) ^ T (t) = �(t) k(t)N(t),

per tant �(t) = 1. Anàlogament
B0

(t) = ⌧(t)N(t) = ⌫(t) (k(t)B(t)� ⌧(t)T (t)) ^B(t) = ⌫(t) ⌧(t)N(t),

per tant ⌫(t) = 1. I

N 0
(t) = �k(t)T (t)� ⌧(t)B(t) = µ(t) (k(t)B(t)� ⌧(t)T (t)) ^N(t)

= �µ(t) k(t)T (t)� µ(t) ⌧(t)B(t),

per tant µ(t) = 1.
En particular, les fórmules de Frenet es poden reescriure com

T 0
(t) = d(t) ^ T (t),

N 0
(t) = d(t) ^N(t),

B0
(t) = d(t) ^B(t).

de manera que, per a qualsevol punt P , solidari al triedre de Frenet, és a dir, tal que el
seu vector posició r(t) respecte del triedre de Frenet sigui de la forma r(t) = a T (t) +
bN(t) + cB(T ), amb a, b, c constants, es compleix

r0(t) = a d(t) ^ T (t) + b d(t) ^N(t) + c d(t) ^ B(t)

= d(t) ^ (a T (t)) + d(t) ^ (bN(t)) + d(t) ^ (cB(t)) = d(t) ^ r(t).

La comparació d’aquesta fórmula r0(t) = d(t) ^ r(t) amb (19), que representa un gir,
és el motiu pel qual es diu que tot moviment d’un sòlid rígid amb un punt fix és un gir
infinitesimal.

Si definim la velocitat angular !(t), a l’instant t, com el quocient entre la velocitat
lineal kr0(t)k i el radi (instantani) de gir

a(t) = kr(t)k sin(↵(t))

amb ↵(t) l’angle entre r(t) i d(t), tenim
kr0(t)k = !(t) a(t) = kd(t)k kr(t)k sin(↵(t)),

és a dir
!(t) = kd(t)k =

p
k(t)2 + ⌧(t)2 .
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Aquesta és la velocitat angular en la que gira el triedre de Frenet.

Observem que hem demostrat el següent resultat ben conegut des de fa uns 300 anys:

Teorema. Tot moviment d’un sòlid rígid amb un punt fix és un gir infinitesimal.

Demostració. Pensem que aquest sòlid rígid té una referència ortonormal solidària amb
ell, amb origen el punt fix. Si d’aquesta referència en diem T (t), N(t), B(t), com que, per
hipòtesi, coneixem T (t), N(t), B(t) en tot instant t també coneixem les seves derivades.
En particular podem pensar que és la referència de Frenet d’una corba de curvatura
kT 0

(t)k i torsió kB0
(t)k (suposem ⌧ 6= 0 i treballem localment amb ⌧ sempre positiu o

sempre negatiu). Les fórmules de Frenet d’aquesta corba que hem vist que es poden
escriure com producte exterior amb un eix de gir d(t) que varia amb el temps resolen el
problema.

⇤

Corbes esfèriques i hèlixs

Exercici 76. Observem, completant quadrats, que l’equació del cilindre donat es pot
escriure com x2

+ (y � 1/2)2 = 1/4, i és doncs un cilindre vertical de radi 1/2 amb l’eix
donat per x = 0, y = 1/2. Per tant, prenent coordenades polars en el pla xy centrades al
punt (0, 1/2, 0) el cilindre té equació

x =

1

2

sin(t),

y =

1

2

+

1

2

cos(t),

z = z .

Substituint aquest valors a l’equació de l’esfera i aïllant z s’obté

z =

r
1� cos(t)

2

= ± sin(t/2).

El que queda és un càlcul simple on s’apliquen les fórmules de la curvatura i torsió per
a corbes amb paràmetre arbitrari de l’exercici 55:

�(t) =

✓
1

2

sin(t),
1

2

+

1

2

cos(t), sin(t/2)

◆
,

�0(t) =

✓
cos(t)

2

,�sin(t)

2

,
cos(t/2)

2

◆
,

k�0(t)k =

1

2

p
1 + cos

2

(t/2),

�00(t) =

✓
�sin(t)

2

,�cos(t)

2

,�sin(t/2)

4

◆
,

�0(t) ^ �00(t) =
 

sin(t) sin(t/2)

8

+

cos(t) cos(t/2)

4

,

cos(t) sin(t/2)

8

� sin(t) cos(t/2)

4

,�1

4

!
,
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k�0(t) ^ �00(t)k =

1

8

q
8� 3 sin

2

(t/2) ,

k(t) =

p
8� 3 sin

2

(t/2)

(1 + cos

2

(t/2))3/2
,

�000(t) =

✓
�cos(t)

2

,
sin(t)

2

,�cos(t/2)

8

◆
,

det(�0(t), �00(t), �000(t)) = �3 cos(t/2)

32

,

⌧(t) =
�6 cos(t/2)

8� 3 sin

2

(t/2)
.

⇤
Exercici 77(a) Suposem primerament que �(s), que suposem parametritzada per l’arc
per comoditat, està sobre una esfera de centre c

0

i radi R. Per tant

h�(s)� c
0

, �(s)� c
0

i = R2.

Derivant tenim
h�0(s), �(s)� c

0

i = 0 (20)
i això és dir que el vector radi �(s)� c

0

i la corba són perpendiculars per a cada s.
Recíprocament, suposem que existeix un punt c

0

tal que

h�0(s), �(s)� c
0

i = 0 .

Pel que acabem de veure la funció h(s) = h�(s)� c
0

, �(s)� c
0

i té derivada zero i per tant
és constant c. En conseqüència la corba està sobre l’esfera de centre c

0

i radi
p
c . ⇤

Exercici 77(b) Tornant a derivar la igualtat (20) obtenim

0 = h�00(s), �(s)� c
0

i+ h�0(s), �0(s)i = h�00(s), �(s)� c
0

i+ 1 .

Observem que en particular aquesta igualtat implica �00(s) 6= 0, que vol dir, geomètrica-
ment, que una corba, pel fet d’estar sobre l’esfera, ja té curvatura estrictament positiva.

⇤
Exercici 77(c) Com que �00(s) = k(s)N(s) tenim

hN(s), �(s)� c
0

i = � 1

k(s)
.

Derivant un cop més

hN 0
(s), �(s)� c

0

i+ hN(s), T (s)i = k0
(s)

(k(s))2
,

i com que hN(s), T (s)i = 0 i N 0
(s) = �k(s)T (s)� ⌧(s)B(s), aquesta igualtat es redueix

a
�⌧(s) hB(s), �(s)� c

0

i = k0
(s)

(k(s))2

que ja ens diu que ⌧(s) = 0 implica k0
(s) = 0.37

Com que hem fet la hipòtesi ⌧(s) 6= 0 es pot escriure

hB(s), �(s)� c
0

i = � k0
(s)

(k(s))2 ⌧(s)
.

37En particular si ⌧(s) = 0 per tot s, la curvatura és constant, i tenim un cercle (les corbes planes de
l’esfera són cercles).
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Tenint en compte que T (s), N(s), B(s) és una base ortonormal de l’espai per a cada
s, els resultats anteriors es poden resumir en la igualtat

�(s)� c
0

= � 1

k(s)
N(s)� k0

(s)

(k(s))2 ⌧(s)
B(s)

que és el que es volia comprovar. ⇤
Exercici 77(d) Per tal de simplificar les expressions, denotem ⇢ = 1/k i ⇥ = 1/⌧ . Notem
que, amb aquesta notació, el vector radi �(s) � c

0

d’una corba esfèrica parametritzada
per l’arc s’escriu com

�(s)� c
0

= �⇢(s)N(s) + ⇢0(s)⇥(s)B(s) .

Llavors, donada una corba �(s) per a la qual ⇢2(s)+ (⇢0⇥)(s)2 sigui constant, i guiats
per l’anterior expressió considerem

c(s) = �(s) + ⇢(s)N(s)� ⇢0(s)⇥(s)B(s) .

Ara només cal provar que c(s) és constant. Derivant aquesta l’expressió s’obté (totes
les funcions valorades en s)

c0 = T + ⇢0 N + ⇢ (�k T � ⌧ B)� (⇢0⇥)0 B � ⌧ ⇢0⇥N

= �(⇢ ⌧ + (⇢0⇥)0)B

= �(⇢⇥�1

+ (⇢0⇥)0)B,

on hem usat ⇢ k = ⇥ ⌧ = 1. Per un altre costat, derivant la condició ⇢2 + (⇢0⇥)2 = ct.
s’obté

⇢ ⇢0 + ⇢0⇥ (⇢0⇥)0 = 0

d’on, dividint per ⇢0⇥,
⇢⇥�1

+ (⇢0⇥)0 = 0

i per tant c0 = 0 i c(s) és constant, com volíem. ⇤
Exercici 78(a) Sigui ↵(s) una corba parametritzada per l’arc (la definició d’hèlix no
depèn de la parametrització). Sigui ~v un vector unitari arbitrari i fix. Aleshores es
compleix

hT (s),~vi0 = k(s) hN(s),~v i .
De forma que:
Si ↵(s) és una hèlix i ~v el vector director unitari del seu eix, el valor de hT (s),~vi és

constant i la seva derivada nul.la. Per tant, hN(s),~vi = 0 (cal que k 6= 0 si es vol
parlar de vector normal) i N(s) és, per a tot s, paral.lel al pla perpendicular a l’eix.

Recíprocament, si N(s) és paral.lel per a tot s a un pla fix i ~v és el vector unitari per-
pendicular a aquest pla, la mateixa fórmula dirà que l’angle entre el vector tangent
i la direcció determinada per aquest vector és constant. I això és dir que ↵(s) és
una hèlix amb eix determinat per ~v.

⇤
Exercici 78(b) Suposem primerament que � és una hèlix parametritzada per l’arc i
designem per ~v el vector director del seu eix. La condició hN(s),~v i = 0 implica que ~v
s’ha d’escriure com

~v = a(s)T (s) + b(s)B(s).

Derivant aquesta igualtat

~
0 =

✓
a(s) k(s) + b(s) ⌧(s)

◆
N(s) + a0(s)T (s) + b0(s)B(s).
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Per tant a i b són constants i
k(s)

⌧(s)
= � b

a
que és una constant.

(Notem que, si ✓ és l’angle entre la tangent a la corba i l’eix, el valor de b/a és tan(✓)).
Recíprocament, suposem que k(s)/⌧(s) és constant i prenem l’angle donat per ✓ =

arctan(�k(s)/⌧(s)). Definim el vector

~v(s) = cos(✓)T (s) + sin(✓)B(s)

que forma un angle constant ✓ amb T (s) al llarg de tota la corba. Derivant,

~v(s)0 = (k cos(✓) + ⌧ sin(✓))N =

~
0

(ja que
sin(✓)

cos(✓)
= �k

⌧
) i per tant el vector ~v és constant i s’ha acabat. ⇤

Exercici 78(c) La torsió. ⇤
Exercici 78(d) Notem en primer lloc que si h~v, T (s)i = 0, és a dir, quan estem en el cas
particular d’hèlix en què l’angle entre T (s) i una direcció donada no és només constant
sinó que és igual a ⇡/2, la corba serà plana i continguda en un pla perpendicular a ~v. En
efecte, derivant la funció h(s) = h~v, �(s)� �(s

0

)i, que compleix h(s
0

) = 0 es té

h0
(s) = h~v, �(s)� �(s

0

)i0 = h~v, T (s)i = 0,

igualtat d’on es desprèn que h(s) és constant, i per tant h(s) = 0 per a tot s, de manera
que �(s) � �(s

0

) és perpendicular a v, i en conseqüència �(s) està continguda en el pla
ortogonal a v que passa per �(s

0

). Ja s’ha comentat en el peu de pàgina anterior que,
normalment, s’exclouen les corbes planes de la definició d’hèlix.

Suposem doncs que h~v, T (s)i = c 6= 0 i projectem �(s), que suposem parametritzada
per l’arc, sobre el pla perpendicular a l’eix que passa per un punt qualsevol (�(s

0

)) del
seu recorregut de forma que s’obtingui una corba �(s) sobre aquest pla i de la forma

�(s) = �(s) + �(s)~v ,

on �(s) és una funció tal que �(s
0

) = 0. Com que �0
(s) serà perpendicular al vector ~v

(unitari) s’obtindrà

0 = h~v, �0
(s)i = h~v, T (s)i+ �0(s) = c+ �0(s)

de forma que �0(s) = �c i, tenint en compte que en �(s
0

) = 0, �(s) = �c (s � s
0

). Per
tant,

�(s) = �(s) + c (s� s
0

)~v = �(s) + (s� s
0

) ~w

amb ~w = c~v.
Si 0 pertany a l’interval de definició del paràmetre arc s i tenim la precaució de tallar

pel pla que passa per �(0) (càlculs anteriors amb s
0

= 0) s’obté

�(s) = �(s) + s ~w

com demana l’enunciat del problema. Suposarem que aquesta és la situació.
Per calcular la curvatura de �(s) podem procedir de dues maneres.
Primer de tot observem que si escrivim la condició d’hèlix com h~v, T (s)i = c = cos(↵),

llavors h~w, ~w i = cos

2 ↵ i h�0(s), ~w i = c hT (s),~vi = cos

2

(↵). Així, denotant per u el
paràmetre arc de �(s) es té

✓
du

ds

◆
2

= h�0
(s), �0

(s)i = h�0(s)� ~w, �0(s)� ~wi = sin

2

(↵) .
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Així
T�(u) =

d�(s(u))

du
=

d�(s)

ds |s=s(u)
· ds
du

=

1

sin↵
(�0(s(u))� cos(↵)~v),

i per tant

k�(s(u))N�(s(u)) =
dT�(u)

du
=

1

sin(↵)

d

du
(�0(s(u))� cos(↵)~v ) =

1

sin(↵)

✓
d

du
�0(s(u)

◆

=

1

sin(↵)

✓
d�0(s)

ds |s=s(u)

ds

du

◆
=

1

sin

2

(↵)
k�(s(u))N(s(u))

i com que aquesta igualtat és certa per a tot u és certa per a tot valor del paràmetre s de
manera que

k�(s) =
1

sin

2 ↵
k�(s).

També es pot procedir directament aplicant les fórmules conegudes. Calculant d’aquesta
manera

k�(s) =
k(�0(s)� cos(↵) v) ^ �00(s)k

sin

3

(↵)
=

k�(s)

sin

3

(↵)
kB�(s)� cos(↵)~v ^N�(s)k =

k�(s)

sin

2

(↵)

ja que, tal com es veu a la figura (recordem que h~v,N(s)i = 0), hB,~v ^Ni = cos(↵).

T

B

~v
~v ^N

↵

N

↵

⇤
Exercici 78(e) Per relacionar aquest apartat amb l’apartat anterior reparametritzem per
l’arc. Dient c2 = a2+b2, tenim k�0(t)k = c, de manera que ds/dt = c, on s és el paràmetre
arc de �(t). Així

�(t(s)) = (a cos

⇣s
c

⌘
, a sin

⇣s
c

⌘
,
b s

c
).

En particular

h(0, 0, 1), d�(t(s))
ds

i = b

c
.

Per tant, a la vista del paràgraf anterior,

�(s) = �(s)� s
b

c
(0, 0, 1) = (a cos

⇣s
c

⌘
, a sin

⇣s
c

⌘
, 0).

Desfent el canvi de paràmetre s = c t tenim

�(t) = (a cos(t), a sin(t), 0) + t(0, 0, b)

de manera que, encara que t no és paràmetre arc, hem pogut escriure la corba com a
l’apartat anterior. Això és degut a que el canvi de paràmetre ha estat lineal. En general
això no es podrà fer. Pensem per exemple en l’hèlix �(t) = (cos(t2), sin(t2), t2) (el vector
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tangent forma angle constant amb (0, 0, 1)). No podem escriure �(t) = �(t) + t w amb
�(t) plana (sobre un pla de vector director (0, 0, 1)).

⇤
Exercici 78(f) Calculem en primer lloc la curvatura de �(t) = (a cos(t), a sin(t), b t).

�0(t) = (�a sin(t), a cos(t), b),

�00(t) = (�a cos(t),�a sin(t), 0),

�0(t) ^ �00(t) = (a b sin(t),�a b cos(t), a2),

k�0(t)k =

p
a2 + b2 ,

k(t) =
a

a2 + b2
.

Podem calcular la normal principal pel mètode habitual però com k i k�0(t)k són
constants tenim T (t) = 1

c �
0
(t), d’on

dT

ds
=

dT

dt

dt

ds
=

k

c2
N

i per tant N =

1

a �
00
(t).

Això fa que la corba dels centres de curvatura sigui

�(t) = �(t) +
a2 + b2

a
(� cos(t),� sin(t), 0) = (�b2

a
cos(t),�b2

a
sin(t), b t),

que és una hèlix sobre el cilindre x2

+ y2 = b4/a2, del mateix pas de rosca b que l’hèlix
inicial. ⇤
Exercici 78(g) Estudiem els exemples (c), (d) i (e) de l’exercici 56.

I) ↵(t) = (e

t, e�t,
p
2 t) que té curvatura i torsió iguals

k(t) = ⌧(t) =

p
2

(e

2 t
+ e

�2 t
)

2

,

(k(t)/⌧(t) = 1 i per tant hèlix).

II) ↵(t) = (2 t, log(t), t2) que té curvatura i torsió iguals

k(t) = ⌧(t) =
2 t

(2 t + 1)

2

,

(k(t)/⌧(t) = 1 i per tant hèlix).

III) ↵(t) = (3 t� t3, 3 t2, 3 t+ t3) que té curvatura i torsió iguals però canviades de signe

k(t) = �⌧(t) = 1

3 (t2 + 1)

2

,

(k/⌧ = �1 i per tant hèlix).
A l’apartat (b) d’aquest mateix exercici hem vist que el vector director de l’eix d’una

hèlix es pot escriure com ~v = a T (t) + bB(t), on a i b són constants tals que k(t)/⌧(t) =
�b/a. Observem que ~v es pot escriure com

~v = a (T (t) +
b

a
B(t)) = a (T (t)� k(t)

⌧(t)
B(t)).

Per tant, la direcció de l’eix de cada una d’aquestes corbes vindrà donada respectivament
per:
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I) ~v = T (t)� B(t) = (1,�1, 0) ja que

T (t) =
1

et + e�t

⇣
e

t, �e

�t,
p
2

⌘
,

B(t) =
1

et + e�t

⇣
�e

�t, et,
p
2

⌘
.

II) ~v = T (t)� B(t) = (0, 1, 1) ja que

T (t) =

✓
2 t

2 t2 + 1

,
1

2 t2 + 1

,
2 t2

2 t2 + 1

◆
,

B(t) =

✓
2 t

2 t2 + 1

, � 2 t2

2 t2 + 1

, � 1

2 t2 + 1

◆
.

III) ~v = T (t) + B(t) = (0, 0, 2/
p
2 ) ja que

T (t) =

✓
� 1p

2

t2 � 1

t2 + 1

,
p
2

t

t2 + 1

,
1p
2

◆
,

B(t) =

✓
1p
2

t2 � 1

t2 + 1

,�
p
2

t

t2 + 1

,
1p
2

◆
.

Per tal de determinar la corba associada només caldrà projectar sobre el/un pla per-
pendicular a l’eix. Tenint en compte que la component vertical del punt de la corba
respecte aquest pla de projecció s’obtindrà fent el producte escalar d’aquest punt amb el
vector unitari que determina l’eix, s’obté la fórmula general

�(t) = ↵(t)� h↵(t), ~v

k~vki
~v

k~vk

~v

↵(t)

�(t)

que ens dona �(t) quan projectem sobre un pla que passa per l’origen. En cada cas
tindrem doncs:

I) h↵(t), 1p
2

(1,�1, 0)i =

e

t � e

�t

p
2

. De forma que la projecció sobre el pla x � y = 0

(perpendicular a l’eix per l’origen) serà

�(t) = ↵(t)� e

t � e

�t

p
2

1p
2

(1,�1, 0) = (

e

t
+ e

�t

2

,
e

t
+ e

�t

2

,
p
2 t)

= (cosh(t), cosh(t),
p
2 t) .
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II) h↵(t), 1p
2

(0, 1, 1)i = 1p
2

(log(t) + t2). I la projecció sobre y + z = 0 serà

�(t) = ↵(t)� log(t) + t2p
2

1p
2

(0, 1, 1) = (2 t,
1

2

(log(t)� t2),
1

2

(� log(t) + t2)) .

III) h↵(t), (0, 0, 1)i = t3 + 3 t. Amb la projecció sobre el pla z = 0

�(t) = ↵(t)� (t3 + 3 t) (0, 0, 1) = (3 t� t3, 3 t2, 0) .

⇤
Exercici 79(a) Com que

�0(s) =

✓
�a

c
sin(s/c),

a

c
cos(s/c),

b

c

◆

tenim

k�0(s)k =

r
a2 + b2

c2
= 1 .

Per tant �(s) està parametritzada per l’arc. ⇤
Exercici 79(b) D’altra banda

k(s)N(s) = �00(s) =

✓
� a

c2
cos(s/c),� a

c2
sin(s/c), 0

◆
.

Per tant, k(s) =
|a|
c2

i N(s) = � sgn(a) (cos(s/c), sin(s/c), 0).

El vector binormal serà B(s) = T (s) ⇥ N(s) = sgn(a)

✓
b

c
sin(s/c),�b

c
cos(s/c),

a

c

◆
,

d’on
⌧(s)N(s) = B0

(s) = sgn(a)
b

c2
(cos(s/c), sin(s/c), 0) ,

i ⌧(s) = � b

c2
. ⇤

Exercici 79(c) El pla osculador en el punt �(s) és el que passa per �(s) i el seu espai
director està generat per T (s) i N(s) o, equivalentment, és perpendicular a B(s). Per
tant té per equació

b sin(s/c) (x� a cos(s/c))� b cos(s/c) (y � a sin(s/c)) + a (z � b (s/c)) = 0 .

⇤
Exercici 79(d) El cosinus de l’angle ✓(s) que forma el vector N(s) amb (0, 0, 1) és el
producte escalar hN(s), (0, 0, 1)i ⌘ 0, per la qual cosa ✓(s) ⌘ ⇡/2. A més, aquesta recta,
que ve donada pels punts (x, y, z) = (a cos(s/c), a sin(s/c), b s/c)+� (cos(s/c), sin(s/c), 0)
(per escriure la recta, el signe del vector director és irrellevant), passa pel punt (0, 0, b s/c)
de l’eix Oz (� = �a). ⇤
Exercici 80. Sabem que per recuperar la corba a partir de la curvatura i la torsió hem
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de resoldre el sistema de 9 equacions i 9 incògnites següent
x
1

0
= 3 x

4

,

x
2

0
= 3 x

5

,

x
3

0
= 3 x

6

,

x
4

0
= �3 x

1

� 4 x
7

,

x
5

0
= �3 x

2

� 4 x
8

,

x
6

0
= �3 x

3

� 4 x
9

,

x
7

0
= 4 x

4

,

x
8

0
= 4 x

5

,

x
9

0
= 4 x

6

,

amb xi = xi(s), etc. Aquest sistema prové d’escriure
T (s) = (x

1

(s), x
2

(s), x
3

(s)),

N(s) = (x
4

(s), x
5

(s), x
6

(s)),

B(s) = (x
7

(s), x
8

(s), x
9

(s)) .

Així
x
4

00
= �9 x

4

� 16 x
4

= �25 x
4

,

d’on x
4

(s) = A
4

cos(5 s) + B
4

sin(5 s), amb la condició inicial x
4

(0) = 0, és a dir, x
4

(s) =
B

4

sin(5 s). Però com x
4

0
(0) = �3 x

1

(0)� 4 x
7

(0) = �3, ha de ser B
4

= �3/5. Per tant

x
1

(s) = 3

Z
x
4

(s) ds =
9

25

cos(5 s) + C ,

que ajustant la constant ens dóna x
1

(s) =
9

25

cos(5 s) +
16

25

; finalment la coordenada x(s)

de la corba �(s) = (x(s), y(s), z(s)) buscada és

x(s) =

Z
x
1

(s) ds =
9

125

sin(5 s) +
16 s

25

.

Anàlogament
x
5

00
= �9 x

5

� 16 x
5

= �25 x
5

d’on x
5

(s) = A
5

cos(5 s) + B
5

sin(5 s), amb la condició inicial x
5

(0) = 1, és a dir, x
5

(s) =
cos(5 s) + B

5

sin(5 s). Però com x
5

0
(0) = �3 x

2

(0) � 4 x
8

(s) = 0, ha de ser B
5

= 0. Per
tant

x
2

(s) = 3

Z
x
5

(s) ds =
3

5

sin(5 s) ,

i finalment la coordenada y(s) de la corba buscada és

y(s) =

Z
x
2

(s) ds = � 3

25

cos(5 s) +
3

25

.

Per acabar,
x
6

00
(s) = �9 x

6

� 16 x
6

= �25 x
6

,

d’on x
6

(s) = A
6

cos(5 s) + B
6

sin(5 s), amb la condició inicial x
6

(0) = 0, és a dir, x
6

(s) =
B

6

sin(5 s). Però com x
6

0
(0) = �3 x

3

(0)� 4 x
9

(0) = �4, ha de ser B
6

= �4/5. Per tant

x
3

(s) = 3

Z
x
6

(s) ds =
12

25

cos(5 s)� 12

25

,

i finalment la coordenada z(s) de la corba buscada és

z(s) =

Z
x
3

(s) ds =
12

125

sin(5 s)� 12 s

25

.
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Resumint, la corba buscada és

�(s) =
1

125

(9 sin(5 s) + 80 s,�15 cos(5 s) + 15, 12 sin(5 s)� 60 s) .

Segon mètode, només vàlid si es té en compte que ha de ser una hèlix. (Consi-
deració raonable a partir de l’exercici (78) ja que estem parlant d’una corba amb curvatura
i torsió constants).

Sabem que l’hèlix
�(t) = (a cos(t), a sin(t), b t)

té curvatura i torsió
k =

a

a2 + b2
, ⌧ = � b

a2 + b2
.

Per tant, prenent a = 3/25, b = �4/25 tenim una hèlix amb curvatura k = 3 i ⌧ = 4 com
es buscava. Ara bé, en t = 0 la referència de Frenet d’aquesta corba és

T (0) = (0, 3/5,�4/5)

N(0) = (�1, 0, 0)

B(0) = (0, 4/5, 3/5)

i no pas la demanada (ha de ser la base canònica) i tampoc passa per l’origen quan
t = 0 ja que �(0) = (3/25, 0, 0) (però això es pot arreglar fàcilment fent una translació i
considerant la corba (a cos(t)� 3/25, a sin(t), b t)).

Per tal que es compleixin tots els requeriments considerem el moviment rígid donat
per la matriu M tal que

M ·

0

@
0 �1 0

3/5 0 4/5
�4/5 0 3/5

1

A
=

0

@
1 0 0

0 1 0

0 0 1

1

A .

D’aquesta igualtat es dedueix directament (calculant la inversa, que és igual a la trans-
posada, ja que s’estan manipulant matrius ortogonals)

M =

0

@
0 3/5 �4/5
�1 0 0

0 4/5 3/5

1

A .

Apliquem ara M a la hèlix i s’obtindrà la corba demanada

�(t) = M

0

BBBB@

3

25

cos(t)� 3

25

3

25

sin(t)

� 4

25

t

1

CCCCA
=

1

125

0

@
9 sin(t) + 16 t
�15 cos(t) + 15

12 sin(t)� 12 t

1

A .

De fet, un cop reparametritzada per l’arc, és a dir posant t = 5 s, dona exactament la
corba que ha aparegut abans. ⇤
Exercici 81. Utilitzem el triedre de Frenet. Tenim

dB

ds
=

1

2

✓
cos(

sp
2

), sin(
sp
2

), 0

◆
= ⌧(s) ·N(s),

d’on ⌧(s) = 1/2 (ja que imposem que sigui positiva) i N(s) = (cos(

sp
2

), sin( sp
2

), 0).
Aleshores

dN

ds
=

1p
2

✓
� sin(

sp
2

), cos(
sp
2

), 0

◆
= �k(s) · T (s)� 1

2

B(s),
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d’on

k(s) · T (s) =
p
2

4

✓
sin(

sp
2

),� cos(

sp
2

),�1

◆
.

Per tant T (s) = 1p
2

(sin(

sp
2

),� cos(

sp
2

),�1) i k =

1

2

. Així, doncs, la corba demanada és
l’hèlix

�(s) =

✓
� cos(

sp
2

),� sin(

sp
2

),� sp
2

◆
+ (x

0

, y
0

, z
0

),

on �(0) = (x
0

, y
0

, z
0

). ⇤
Exercici 82. Utilitzarem la notació següent: les lletres sense subíndex es referiran a la
corba � i en canvi les lletres amb subíndex 1 a la corba �

1

. Totes elles valorades en el
punt de paràmetre s que ometem. A partir de les fórmules de Frenet de � obtenim

�0
1

= �00 = k N,

v
1

= k,

�00
1

= k0 N + k N 0
= �k2 T + k0 N � k ⌧ B,

�000
1

= (�k2

)

0 T � k2 T 0
+ k00 N + k0 N 0 � (k ⌧)0 B � k ⌧ B0

= �3 k k0 T +

⇣
k00 � k3 � k ⌧ 2

⌘
N �

⇣
2 k0 ⌧ + k ⌧ 0

⌘
B,

�0
1

^ �00
1

= k3 B � k2 ⌧T,

k�0
1

^ �00
1

k2 = k4

(k2

+ ⌧ 2),

h�0
1

^ �00
1

, �000
1

i = k k0 ⌧ � k2 ⌧ 0 .

Així, la curvatura i la torsió de �
1

són

k
1

=

p
k2

+ ⌧ 2

k
,

⌧
1

=

1

k

⇣
⌧
k

⌘0

1 +

⇣
⌧
k

⌘
2

.

En particular, �
1

és plana si i només si ⌧
1

⌘ 0, o equivalentment si ⌧
k és constant, és a dir,

si, i només si � és una hèlix.

De la mateixa manera, definim la indicatriu binormal de � com �
2

(s) = B(s). Seguirem
denotant sense subíndex els elements de � i amb un subíndex 2 el corresponents a �

2

.
I ometem la referència al paràmetre s on estan valorades totes les funcions.

Un altre cop a partir de les fórmules de Frenet de � es pot escriure

�0
2

= B0
= ⌧ N,

v
2

= |⌧ | ,
�00
2

= ⌧ 0 N + ⌧ N 0
= �k ⌧ T + ⌧ 0 N � ⌧ 2 B,

�000
2

= (�k ⌧)0 T � k ⌧ T 0
+ ⌧ 00 N + ⌧ 0 N 0 � (⌧ 2)0 B � ⌧ 2 B0

=

⇣
� k0 ⌧ � 2 k ⌧ 0

⌘
T �

⇣
k2 ⌧ � ⌧ 3

⌘
N � 3 ⌧ ⌧ 0 B,

�0
2

^ �00
2

= k ⌧ 2 B � ⌧ 3 T,

k�0
2

^ �00
2

k2 = ⌧ 4(k2

+ ⌧ 2),

h�0
2

^ �00
2

, �000
2

i = ⌧ 3 (k0 ⌧ � k ⌧ 0) .
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Així, la curvatura i la torsió de �
2

són

k
2

=

p
k2

+ ⌧ 2

|⌧ | ,

⌧
2

=

k2

⌧

⇣⌧
k

⌘0
1

k2

+ ⌧ 2
.

També tenim que �
2

és plana (⌧
2

⌘ 0) si, i només si, ⌧
k és constant, és a dir, si, i només

si, � és una hèlix. ⇤
Exercici 83. Per estar sobre una esfera de radi a,

1

k2

+

(k0
)

2

k4 ⌧ 2
= a2,

amb k = k(s), ⌧ = ⌧(s) (exercici 77). O, en funció del radi de curvatura ⇢ = 1/k,

⇢2 +
(⇢0)2

⌧ 2
= a2.

Pel fet de ser hèlix, 1/⌧ = ⇢ tan(↵) per a una certa constant ↵. Substituint ⌧ pel seu
equivalent en funció de ⇢, l’equació diferencial es pot escriure com

tan(↵)
⇢ d⇢p
a2 � ⇢2

= ds .

Integrant s’obté
�
p
a2 � ⇢2 tan(↵) = s+ C.

Si es considera s = 0 en el punt on ⇢ = a apareixen les equacions intrínseques de les
hèlixs esfèriques

a2 � 1

k2

= s2 cot

2

(↵),

s2 +
1

⌧ 2
= a2 tan

2

(↵).

Observem que la primera d’aquestes equacions és (si la corba fos plana) l’equació
intrínseca de les epicicloides (exercici 12). Això suggereix projectar l’hèlix sobre un pla
per tal de donar una fórmula explícita d’aquestes corbes.

Considerem l’hèlix esfèrica �(s), parametritzada per l’arc, amb eix l’eix de les z, és a
dir,

h�0(s), ei = cos(↵) = constant, e = (0, 0, 1).

Si es projecta sobre el pla z = 0 s’obté la corba

�
1

(s) = �(s)� h�(s), ei e.
D’aquí es dedueix que

k�0
1

(s)k = sin(↵)

i, en conseqüència, el paràmetre arc s
1

de �
1

(s) és

s
1

(s) = sin(↵) s

i el radi de curvatura ⇢
1

resulta

⇢
1

(s) = ⇢(s) sin2

(↵) .

Per tant es compleix
(⇢

1

)

2

(s) + (s
1

)

2

cos

2

(↵) = a2 sin

4

(↵),
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d’on es desprèn que la corba projectada és una epicicloide. Com que tenim l’expressió
explícita de les epicicloides (exercici 12) es pot trobar l’equació explícita de les hèlixs sense
cap altre càlcul que pujar aquestes equacions a l’esfera z2 = a2 � x2 � y2.

Amb la notació de l’exercici 12 l’expressió anterior s’escriu

(s
1

)

2

A2

+

(⇢
1

)

2

B2

= 1

amb
A = a tan(↵) sin(↵), B = a sin

2

(↵).

I eliminant R i r en funció de A i B a les fórmules de l’exercici 12 resulta

R =

AB2

A2 � B2

= a cos(↵)

i aquest és el radi de la circumferència que genera la epicicloide. Geomètricament ja es veu
aquest resultat donat que aquest cercle ha de ser la projecció del paral.lel on arriben les
hèlixs esfèriques. Que les hèlixs esfèriques no superen aquest paral.lel es veu directament
descomponent el vector unitari tangent a l’hèlix �0(s) com �0(s) = � v✓ + µ v', on v✓, v'
són els vectors unitaris en les direccions del paral.lel i del meridià en el punt �(s). Es
compleix �2 + µ2

= 1, llavors cos(↵) = h�0(s), ei = µ cos(⇡/2 � ') on ' és la col.latitud
del punt. Per tant ' ha de ser més gran que ⇡/2� ↵. De forma que les hèlixs esfèriques
no poden supera el paral.lel de latitud ↵ que és de radi a cos(↵). ⇤
Exercici 84(a) Fent els càlculs, tenim:

�0(t) = (sinh(t), cosh(t), 1),

�00(t) = (cosh(t), sinh(t), 0),

�000(t) = (sinh(t), cosh(t), 0),

k�0(t)k =

p
cosh(2 t) + 1 =

p
2 cosh(t),

�0(t) ^ �00(t) = (� sinh(t), cosh(t),�1),

k�0(t) ^ �00(t)k =

p
2 cosh(t),

k(t) =
k�0(t) ^ �00(t)k

k�0(t)k3
=

1

2 cosh

2

(t)
,

⌧(t) = �det(�0(t), �00(t), �000(t))

k�0(t) ^ �00(t)k2
=

�1

2 cosh

2

(t)
.

Observem que k(t)/⌧(t) = �1, i per tant la corba és una hèlix.
També es pot comprovar directament utilitzant la definició d’hèlix. En efecte, si

prenem la direcció ~v = (0, 1, 0), l’angle entre �0(s) i ~v és constant i igual a arccos(1/
p
2 ) =

⇡/4. ⇤
Exercici 84(b) El paràmetre arc s de � serà

s(t) =

Z t

0

k�0(x)k dx =

Z t

0

p
2 cosh(x) dx =

p
2 sinh(t)

o, de forma equivalent, t = arcsinh(s/
p
2 ). ⇤

Exercici 85. Observem que

�0(s) = (

a

c
sin(✓(s)),

a

c
cos(✓(s)),

b

c
),

k�0(s)k = 1 ,
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�00(s) =
a

c
(✓0(s) cos(✓(s)),�✓0(s) sin(✓(s)), 0),

�000(s) =
a

c
(�✓0(s)2 sin(✓(s)) + ✓00(s) cos(✓(s)),

� ✓0(s)2 cos(✓(s))� ✓00(s) sin(✓(s)), 0),

�0(s) ^ �00(s) = a ✓0(s)

c2
(b sin(✓(s)), b cos(✓(s)),�a),

k�0(s) ^ �00(s)k =

a

c
|✓0(s)| ,

k(s) =
a

c
|✓0(s)| ,

⌧(s) =
det(�0(s), �00(s), �000(s))

k�0(s) ^ �00(s)k2
=

�a2 b ✓0(s)3

c3
a ✓0(s)

c

= �b

c
✓0(s) .

Així, k(s)
⌧(s) = �a

b
|✓0(s)|
✓0(s) . Com que ✓0(s) 6= 0 tindrem: o bé sempre ✓0(s) < 0, i el quocient

entre curvatura i torsió és positiu, o bé sempre ✓0(s) > 0, i el quocient entre curvatura i
torsió és negatiu. ⇤
Exercici 86. Suposem �(s) parametritzada per l’arc. Si una tal corba �(s) existeix es
podrà escriure com

�(s) = �(s) + q(s)V (s),

on V (s) =
1

k�0
(sk �

0
(s), i q(s) és una funció desconeguda.

Derivant es té

k�0
(s)k V (s) = T (s) + q0(s)V (s) + q(s)V 0

(s).

Com que hV (s), V 0
(s)i = 0, per ser V (s) unitari i hT (s), V (s)i = 0 per hipòtesi, la

igualtat anterior només es pot donar si

T (s) + q(s)V 0
(s) = 0. (21)

Ara bé, per hipòtesi,

V (s) = sin(↵(s)) N(s) + cos(↵(s))B(s).

Derivant i substituint a (21) s’obté

0 = T (s) + q(s)

✓
sin(↵(s)) (�k(s)T (s)� ⌧(s)B(s)) + ↵0

(s) cos(↵(s))N(s)

+ ⌧(s) cos(↵(s))N(s)� ↵0
(s) sin↵(s)B(s)

◆
.

Això implica (coeficient de T (s))

q(s) sin(↵(s)) = ⇢(s),

i (coeficients de N(s) i B(s))

(↵0
(s) + ⌧(s)) cos(↵(s)) = 0, (↵0

(s) + ⌧(s)) sin(↵(s)) = 0.

Aquestes dues igualtats impliquen ↵0
(s) = �⌧(s), és a dir

↵(s) = �
Z s

0

⌧(u) du+ c,

on c és una constant.
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Finalment doncs (canviant el signe a la definició de ↵(s))

�(s) = �(s) + ⇢(s)
�
N(s)� cot(↵(s))B(s)

�
, ↵(s) =

Z s

0

⌧(u) du+ c. (22)

Cada valor de c correspon a una de les infinites evolutes de la corba �(s).
Si ⌧ = 0, una de les evolutes és plana i les altres són hèlixs sobre el cilindre ortogonal

al pla de la corba. ⇤
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Superfícies

Parametritzacions. Espai tangent.

Exercici 87(a) L’espai tangent a S en p
0

, Tp0S, és l’espai vectorial format per tots els
vectors tangents en p

0

a corbes �(t) que, passant per p
0

, estan contingudes a S. El pla
de l’espai afí R3 que passa pel punt p

0

i té espai vectorial director Tp0S es diu pla (afí)
tangent a la superfície en p

0

.
Sigui, doncs, �(t) una d’aquestes corbes. Suposarem �(t

0

) = p
0

i t variant en un
entorn obert de t

0

. En aquest entorn tenim f(�(t)) = 0 per estar la corba continguda a la
superfície. Derivant i aplicant la regla de la cadena tenim (posem �(t) = (x(t), y(t), z(t)))

(df)p0(�
0
(t

0

)) =

@f

@x
(p

0

)x0
(t

0

) +

@f

@y
(p

0

)y0(t
0

) +

@f

@z
(p

0

)z0(t
0

) = 0,

i aquesta expressió es pot escriure com

h
✓
@f

@x
(p

0

),
@f

@y
(p

0

),
@f

@z
(p

0

)

◆
, (x0

(t
0

), y0(t
0

), z0(t
0

)i = hrf(p
0

), �0(t
0

)i = 0.

Per tant rf(p
0

) és el vector normal del pla tangent. Així, un punt (x, y, z) 2 R3 pertany
al pla (afí) tangent a S en el punt p

0

si el vector (x � x
0

, y � y
0

, z � z
0

) és ortogonal al
gradient rf(p

0

), és a dir,

hrf(p
0

), (x� x
0

, y � y
0

, z � z
0

)i = 0

que és justament l’equació 1.
De fet, l’observació anterior només demostraria que l’espai tangent està contingut en

el pla que té com a vector normal rf però, com que les dimensions dels dos espais
coincideixen, la igualtat es dona sense haver de fer més consideracions. ⇤
Exercici 87(b) Si es pensa com en el cas anterior, la superfície definida com el gràfic
de h(x, y) també serà la que ve determinada per l’equació f(x, y, z) = h(x, y) � z = 0.
Aleshores, com que

rf =

✓
@h

@x
,
@h

@y
,�1

◆
,

l’equació del pla tangent serà
@h

@x
(p

0

) (x� x
0

) +

@h

@y
(p

0

) (y � y
0

)� (z � z
0

) = 0

(tenint en compte que z
0

= h(x
0

, y
0

)).
Naturalment, s’arriba al mateix resultat si es considera la superfície parametritzada per

'(x, y) = (x, y, h(x, y)). Com que el pla tangent té per direcció l’espai vectorial generat
pels vectors 'x = (1, 0, hx) i 'y = (0, 1, hy), el seu vector normal és 'x^'y = (�hx,�hy, 1)
i obtenim el mateix resultat. ⇤
Exercici 88(a) Com que es pot aïllar x o y en funció de les altres dues variables, es té
un gràfic i, per tant, una superfície regular de forma automàtica. ⇤
Exercici 88(b) N’hi ha prou posant

'(y, z) = (z3 � y + 1, y, z),

parametrització definida a tot R2. Recordem que ' : R2 �! R3 ha de ser homeomorfisme
quan posem a '(R2

) la topologia induïda per S (ha de ser contínua, bijectiva i oberta,
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és a dir, per cada obert U ✓ R2, ha de ser '(U) = S \ W amb W obert de R3), i la
diferencial de ' ha de ser, en cada punt injectiva.38

Aquesta segona condició és fàcil de comprovar ja que el rang de la matriu associada a
(d')P , P = (y, z), 0

@
�1 3z2

1 0

0 1

1

A

és 2, i per tant (d')P és injectiva.
Respecte la primera condició observem que ' és clarament contínua i injectiva. Per

demostrar que també és oberta observem que per tot obert U ✓ R2 tenim '(U) =

S \ (R⇥ U).

⇤
Exercici 88(c) El vector perpendicular al pla tangent a S en el punt X = (x, y, z) és el
gradient de f(x, y, z) = x+ y� z3� 1 en aquest punt, és a dir, rf(X) = (1, 1,�3 z2). En
P = (1, 1, 1) (que pertany a S ja que 1 + 1 = 1

3

+ 1) serà rf(P ) = (1, 1,�3), de forma
que, imposant h(1, 1,�3), (a, 3, 1)i = 0, obtenim a+ 3� 3 = 0 i per tant a = 0.

38Si sabem que S és una superfície no cal comprovar que la candidata a parametrització és oberta.
Tenim el resultat següent: Sigui S una superfície. Sigui ' : U ⇢ R2 �! S, amb U obert de R2,
una aplicació ‘candidata’ a carta local, de la qual sabem que és diferenciable, injectiva, amb diferencial
injectiva en tot punt de U . Llavors (U,') és carta local, és a dir, que ' és oberta (única condició que ens
faltava). Vegeu Notes sobre corbes i superfícies, A. Reventós, 2018.
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⇤
Exercici 89. Utilitzem el resultat que diu que si f : W ⇢ R3 �! R és una funció
diferenciable sobre un obert W , i a 2 R és tal que dfP 6= 0 per a tot P 2 f�1

(a), llavors
S = f�1

(a) és una superfície.
En el nostre cas prenem f(x, y, z) = x3 � 3 x y2 � z i hem de veure que f�1

(0) és una
superfície. Només cal veure doncs que dfP 6= 0 per a tot P 2 f�1

(0), però

df = (3 x2 � 3 y2,�6 x y,�1)

que sempre és diferent de 0, perquè la tercera component és �1.
Per altra banda, el vector normal al pla tangent (i a la superfície) serà aquest rf =

(3 x2 � 3 y2,�6 x y,�1), i per tant el pla tangent és

(3 x2

0

� 3 y2
0

)(x� x
0

) + (�6 x
0

y
0

)(y � y
0

)� (z � z
0

) = 0.

Alternativament, S és el gràfic de la funció h(x, y) = x3�3 x y2. Podem prendre, doncs,
la parametrització '(x, y) = (x, y, h(x, y)), de manera que la base de la direcció del pla
tangent serà la donada en cada punt (x, y, h(x, y)) pels vectors 'x(x, y) = (1, 0, 3 x2�3 y2)
i 'y(x, y) = (0, 1,�6 x y). Podem escriure l’equació vectorial d’aquest pla com

(x, y, z) = (x
0

, y
0

, z
0

) + �(1, 0, 3 x2

0

� 3 y2
0

) + µ(0, 1,�6 x
0

y
0

), �, µ 2 R.
⇤

Exercici 90. És fàcil veure, pel teorema del valor regular, que totes aquestes quàdriques
són superfícies. Això fa que per veure si una aplicació ' : U ✓ R2 �! R3 és una para-
metrització d’una d’aquestes quàdriques només hem de veure que és contínua, injectiva
amb diferencial injectiva (no cal veure que és oberta). En els casos que segueixen les
aplicacions considerades són clarament contínues i injectives i només estudiarem la seva
diferencial.

Com que '�1 es contínua i la imatge contínua d’un compacte és un compacte no podem
aspirar a cobrir amb una sola carta les quàdriques compactes considerades a continuació.
Donarem una carta que les cobreix quasi totalment (excepte un conjunt de mesura zero)
cosa que acostuma a ser suficient per als problemes d’integració, etc. No obstant, es poden
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tapar totes elles amb dues o tres cartes39. En el que segueix suposarem sempre a > 0,
b > 0, c > 0. ⇤
Exercici 90(a)

Cilindre el.líptic:
⇣x
a

⌘
2

+

⇣y
b

⌘
2

= 1. Definim ' : (0, 2 ⇡)⇥ R �! R3 per

'(u, v) = (a cos(u), b sin(u), v)

La diferencial d’aquesta parametrització és:
0

@
�a sin(u) 0

b cos(u) 0

0 1

1

A ,

que, clarament, és de rang 2 per a tots els valors dels paràmetres (u, v).
Observem que els punts del cilindre amb x = a no pertanyen a la imatge d’aquesta

carta.40

Cilindre parabòlic: y = c x2. Definim ' : R2 �! R3 per
'(u, v) = (u, c u2, v)

La diferencial d’aquesta parametrització és:
0

@
1 0

2 c u 0

0 1

1

A

que, clarament, és de rang 2 per a tots els valors dels paràmetres (u, v).

Cilindre hiperbòlic:
⇣x
a

⌘
2

�
⇣y
b

⌘
2

= 1. Definim ' : R2 �! R3 per

'(u, v) = (a cosh(u), b sinh(u), v)

Com que cosh(u) � 1, amb aquesta parametrització només obtenim punts amb x � a,
que corresponen a una de les branques de la hipèrbola. Per obtenir l’altra branca x  �a
hem de posar '(u, v) = (�a cosh(u), b sinh(u), v) i parametritzar per separat les dues
branques.

Les diferencials corresponents a cada una de les branques s’escriuran com:
0

@
±a sinh(u) 0

b cosh(u) 0

0 1

1

A

I, tenint en compte que el cosh(u) sempre és més gran que 1, queda clar que el rang
és 2. ⇤
Exercici 90(b)

El.lipsoide:
⇣x
a

⌘
2

+

⇣y
b

⌘
2

+

⇣z
c

⌘
2

= 1.

Es pot pensar en coordenades esfèriques. Posant (x/a)2 + (y/b)2 = w2, l’equació de
l’el.lipsoide és w2

+

z2

c2 = 1 que suggereix posar w = sin(u) i z = c cos(u). Aquesta u
correspon a la col.latitud que usem en l’esfera.

39Es pot provar que si una superfície compacta de R3 es pot recobrir amb dues cartes definides sobre
oberts connexos i simplement connexos llavors és una esfera.

40El cilindre el.líptic no és compacte. Es pot recobrir amb una sola carta? Si U es simplement connex,
no. Però es pot agafar com U la corona circular oberta formada per dues circumferències concèntriques
de radis 1 i 2 respectivament. És fàcil construir una bijecció diferenciable f entre (1, 2) i R. Llavors
podem recobrir el cilindre el.líptic per la carta definida a U per '(x, y) = (

x

k(x,y)k ,
y

k(x,y)k , f(k(x, y)k)).
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De la primera igualtat deduïm (x/a) = w cos(v), (y/b) = w sin(v), que permet definir
 : (0, ⇡)⇥ (0, 2⇡) �! R3 per

 (u, v) = (a sin(u) cos(v), b sin(u) sin(v), c cos(u)).

El paràmetre v correspon a la longitud que usem en l’esfera.
La necessitat de fer variar u en (0, ⇡) apareix en voler demostrar la injectivitat de  .

Aleshores la diferencial s’escriu com:0

@
a cos(u) cos(v) �a sin(u) sin(v)
b cos(u) sin(v) b sin(u) cos(v)

�c sin(u) 0

1

A .

Com que el determinant de les dues primeres files és a b cos(u) sin(u) =

1

2

a b sin(2u),
només s’anul.la quan 2 u = k ⇡, però com que u 2 (0, ⇡) només s’anul.la quan u = ⇡/2.
En tots aquests casos, doncs, ja tenim rang 2. Si u = ⇡/2 la diferencial és

0

@
0 �a sin(v)
0 b cos(v)
�c 0

1

A .

que té també rang 2.
Els punts de l’el.lipse

⇣x
a

⌘
2

+

⇣z
c

⌘
2

= 1, del pla y = 0, amb x � 0, no pertanyen a
 (U).

Naturalment, també es podria aïllar una de les coordenades en funció de les altres
dues i considerar, per exemple,

(x, y) �!
⇣
x, y,±c

p
1� (x/a)2 � (y/b)2

⌘

Aquesta parametrització dona una diferencial de la forma
0

@
1 0

0 1

⇤ ⇤

1

A

(gràfic d’una funció) i, per tant, sempre serà regular. (Noteu, però, que quan (x/a)2 +
(y/b)2 ! 1 l’arrel quadrada perd la diferenciabilitat i també cal restringit el rang dels
paràmetres a l’obert on (x/a)2 + (y/b)2 < 1). ⇤
Exercici 90(c)

Hiperboloide d’un full:
⇣x
a

⌘
2

+

⇣y
b

⌘
2

�
⇣z
c

⌘
2

= 1.
Raonant de la mateixa forma que en el cas anterior, però amb funcions hiperbòliques,

podem definir ' : (0, 2⇡)⇥ R �! R3 per
'(u, v) = (a cos(u) cosh(v), b sin(u) cosh(v), c sinh(v)).

Com en el cas anterior, la diferencial és de la forma
0

@
�a sin(u) cosh(v) a cos(u) sinh(v)
b cos(u) cosh(v) b sin(u) sinh(v)

0 c cosh(v)

1

A

El determinat de les dues primeres files val �a b cosh(v) sinh(v) = �1

2

a b sinh(2v), només
s’anul.la quan v = 0 i llavors la diferencial seria de la forma

0

@
�a sin(u) 0

b cos(u) 0

0 c

1

A
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que també és de rang 2.
Els punts de l’hipèrbola

⇣x
a

⌘
2

�
⇣z
c

⌘
2

= 1, del pla y = 0, amb x � 0, no pertanyen a
'(U).

Hiperboloide de dos fulls:
⇣x
a

⌘
2

+

⇣y
b

⌘
2

�
⇣z
c

⌘
2

= �1.
Com que cap punt amb z = 0 és solució d’aquesta equació tenim un full amb z > 0 i

un altre amb z < 0. Podem fer, en cadascun d’aquests fulls, el mateix raonament que en
el cas anterior i definir ' : (0, 2⇡)⇥ (0,1) �! R3 per

'(u, v) = (a cos(u) sinh(v), b sin(u) sinh(v),±c cosh(v)).

Restringir v als reals positius és necessari per a la injectivitat de ' (recordem cosh(v) =
cosh(�v)). La diferencial d’aquesta parametrització serà:

0

@
�a sin(u) sinh(v) a cos(u) cosh(v)
b cos(u) sinh(v) b sin(u) cosh(v)

0 c sinh(v)

1

A

I es veu ràpidament, fent càlculs similars als anteriors, que el rang d’aquesta matriu és 2

excepte si v = 0 cas exclòs ja que prenem v > 0.
Observem que els punts (0, 0,±c) no pertanyen a la imatge d’aquesta parametrització.

Podem construir, però, fàcilment una parametrització que sí que els contingui, per exemple
aïllant z en funció de x, y tenim una aplicació ' : R2 �! R3 donada per

'(u, v) =
⇣
u, v,±c

p
(u/a)2 + (v/b)2 + 1

⌘

La diferencial és 0

B@
1 0

0 1

c u

a2
q

u2

a2
+

v2

b2
+1

c v

b2
q

u2

a2
+

v2

b2
+1

1

CA ,

que està ben definida per a qualsevol valor de (u, v) i sempre té rang 2. ⇤
Exercici 90(d)

Paraboloide el.líptic:
⇣x
a

⌘
2

+

⇣y
b

⌘
2

= c z.

Prenent coordenades polars en el pla xy tenim ' : (0,1)⇥ (0, 2⇡) �! R3 donada per

'(u, v) = (a u cos(v), b u sin(v), u2/c).

La diferencial 0

@
a cos(v) �a u sin(v)
b sin(v) b u cos(v)
2 u/c 0

1

A

té rang 2 ja que el menor definit per les dues primeres files és igual a a b u que només
s’anul.la si u = 0 cas que hem exclòs. El punt (0, 0, 0), que pertany al paraboloide, no
queda cobert per aquesta carta.

Alternativament, podem definir ' : R2 �! R3 per

'(u, v) =

✓
u, v,

(u/a)2 + (v/b)2

c

◆
,

que també té diferencial de rang 2 ja que el menor definit per les dues primeres files és
igual a a b u que només s’anul.la si u = 0 cas que hem exclòs.
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Paraboloide hiperbòlic:
⇣x
a

⌘
2

�
⇣y
b

⌘
2

= c z.

Utilitzant funcions hiperbòliques podem definir ' : (0,1)⇥ R �! R3 per
'(u, v) = (a u cosh(v), b u sinh(v), u2/c)

que té diferencial 0

@
a cosh(v) a u sinh(v)
b sinh(v) b u cosh(v)
2 u/c 0

1

A

de rang 2 ja que el menor definit per les dues primeres files és igual a a b u que només
s’anul.la si u = 0 cas que hem exclòs.

Però d’aquesta manera només obtenim punts amb z > 0 (suposem c > 0). Per tal
d’obtenir la part amb z < 0 caldrà intercanviar el paper del sinus i el cosinus hiperbòlics
i obtindrem

'(u, v) = (a u sinh(v), b u cosh(v),�u2/c).

El punts del paraboloide amb z = 0 no queden coberts per aquestes cartes.
Utilitzant x, y com a paràmetres (en aquest cas és, potser, més natural) podem definir

' : R2 �! R3 per

'(u, v) =

✓
u, v,

(u/a)2 � (v/b)2

c

◆
,

que també té diferencial de rang 2, i no té problemes en z = 0 (recobrim el paraboloide
hiperbòlic amb una sola carta). ⇤
Exercici 91. Recordem abans de començar que els focus de l’el.lipse

x2

a2
+

y2

b2
= 1, a2 � b2

són els punts (±f, 0) amb f 2

= a2 � b2 i que, per tant, totes les el.lipses de la forma
x2

a2 � �
+

y2

b2 � �
= 1,

on � pren valors entre �1 i b2, són confocals.
Per aquest motiu la família de quàdriques

x2

a2 � �
+

y2

b2 � �
+

z2

c2 � �
= 1, a2 � b2 � c2

es diu confocal. Quan es talla pel pla z = 0 s’obté la família d’el.lipses confocals d’abans.
De fet la quàdrica anterior és:

un el.lipsoide si �1 < � < c2,
un hiperboloide d’un full si c2 < � < b2,
un hiperboloide de dos fulls si b2 < � < a2.

Veurem que per cada punt (x, y, z) 2 R3 donat passen tres quàdriques de la família,
una de cada tipus. En efecte, si fixem (x, y, z) i a, b, c i busquem � a partir de l’equació
anterior trobem que � ha de ser arrel del polinomi de tercer grau
�(�) = (a2��) (b2��) (c2��)�x2

(b2��) (c2��)�y2 (a2��) (c2��)�z2 (a2��) (b2��).
Però és clar que aquest polinomi té tres arrels reals diferents ja que

�(�1) > 0, �(c2) < 0, �(b2) > 0, �(a2) < 0.

Tenim doncs, per a cada (x, y, z) fixat, �
1

, �
2

, �
3

tals que �(�i) = 0 (les quàdriques passen
per (x, y, z)) i amb
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b2 < �
1

< a2, , la quàdrica corresponent és un hiperboloide de dos fulls,
c2 < �

2

< b2, , la quàdrica corresponent és un hiperbolide d’un full,
�1 < �

3

< c2, , la quàdrica corresponent és un el.lipsoide.
A partir d’aquestes tres arrels es pot descompondre el polinomi en factors irreductibles

com
�(�) = �(�� �

1

)(�� �
2

)(�� �
3

)

de manera que
�(a2) = �(a2 � �

1

) (a2 � �
2

) (a2 � �
3

) = �x2

(b2 � a2) (c2 � a2),

�(b2) = �(b2 � �
1

) (b2 � �
2

) (b2 � �
3

) = �y2 (a2 � b2) (c2 � b2),

�(c2) = �(c2 � �
1

) (c2 � �
2

) (c2 � �
3

) = �z2 (a2 � c2) (b2 � c2),

d’on

x2

=

(a2 � �
1

) (a2 � �
2

) (a2 � �
3

)

(a2 � b2) (a2 � c2)

y2 =
(b2 � �

1

) (b2 � �
2

) (b2 � �
3

)

(b2 � a2) (b2 � c2)

z2 =
(c2 � �

1

) (c2 � �
2

) (c2 � �
3

)

(c2 � a2) (c2 � b2)

Es diu que els �i són les coordenades el.líptiques del punt i descriuen el punt (x, y, z)
com la intersecció de les tres quàdriques que passen per ell.

A més, reanomenant a2 � �
1

simplement per a, b2 � �
1

per b i c2 � �
1

per c, l’equació
de la quàdrica corresponent a �

1

serà
x2

a
+

y2

b
+

z2

c
= 1.

Si també es posa u = �
2

� �
1

i v = �
3

� �
1

queda

x =

s
a (a� u) (a� v)

(a� b) (a� c)

y =

s
b (b� u) (b� v)

(b� c) (b� a)

z =

s
c (c� u) (c� v)

(c� a) (c� b)

Per les relacions que s’han obtingut abans, quan es considera �
1

fix i �
2

, �
3

variables
els punts (x, y, z) corresponents van passant per tota la quàdrica i, per tant, els (u, v) i
aquestes fórmules parametritzen aquesta quàdrica (de fet les vuit parametritzacions que
apareixen combinant els signes ± de les arrels quadrades) que correspon a

un el.lipsoide quan 0 < c < v < b < u < a,
un hiperboloide d’un full quan v < c < 0 < b < u < a,
un hiperboloide de dos full quan v < c < u < b < 0 < a.

⇤
Exercici 92(a) Noteu en primer lloc que la funció f(x, y, z) = y cos(z/a) � x sin(z/a)
té la diferencial de la forma

df = (� sin(z/a), cos(z/a),�(y sin(z/a) + x cos(z/a))/a)
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i, per tant, sempre diferent de 0. Això assegura que S és regular.
A més, la parametrització ' cobreix S i es pot observar que totes dues aproximacions

descriuen el recorregut d’una recta que va girant al mateix temps que puja sobre l’eix de
les z.

En efecte, només cal escriure les equacions anteriors com
(0, 0, a v) + u (cos(v), sin(v), 0)

y = x tan(z/a)

que, respectivament, diuen directament que per a cada v tenim la recta de vector director
(cos(v), sin(v), 0) i que per a cada z tenim una recta de pendent tan(z/a), que és la
mateixa evidentment. ⇤
Exercici 92(b) Si es pren un punt p

0

en S corresponent a les coordenades (u
0

, v
0

) (és
a dir p

0

= '(u
0

, v
0

)) el pla tangent en aquest punt serà el que té la direcció generada
per 'u = (cos(v

0

), sin(v
0

), 0) i 'v = (�u
0

sin(v
0

), u
0

cos(v
0

), a) de forma que el seu vector
normal serà (a sin(v

0

),�a cos(v
0

), u
0

).
Això coincideix (llevat de múltiples) amb el que apareix si es considera (df)p0 com a

vector normal a la superfície (només hem de posar x = u
0

cos(v
0

), y = u
0

sin(v
0

), z = a v
0

en l’expressió de df obtinguda a l’apartat anterior).
El pla tangent pel punt (x

0

, y
0

, z
0

) de l’helicoide és doncs
a sin(v

0

) (x� x
0

)� a cos(v
0

) (y � y
0

) + u
0

(z � z
0

) = 0.

⇤
Exercici 93. Sigui ' una parametrització de S (no cal que el seu recorregut sigui tota la
superfície). La condició que s’ha imposat diu que existeix un punt c

0

tal que '(u, v)� c
0

és normal a la superfície. En particular
h'� c

0

,'ui = h'� c
0

,'vi = 0

Però això diu que la funció de (u, v) donada per
r(u, v) = h'(u, v)� c

0

,'(u, v)� c
0

i
té les dues derivades parcials ru i rv iguals a 0 i, per tant, que és una funció constant
r
0

. Com que S és connexa, això demostra que la superfície està continguda en l’esfera de
centre c

0

i radi r
0

. (L’argument mostra que el conjunt de punts a una distància fixada de
c
0

és obert ja que inclou el recorregut d’una parametrització al voltant de qualsevol del
seus punts). ⇤

Primera forma fonamental.

Exercici 94. Tenint en compte que la parametrització en polars del pla z = 0 vindrà
determinada per

'(r, ✓) =
�
r cos(✓), r sin(✓), 0

�

la base de l’espai tangent serà
'r =

�
cos(✓), sin(✓), 0

�
, '✓ =

�
�r sin(✓), r cos(✓), 0

�
.

Fent els productes escalars corresponents
E = 1

G = r2

F = 0
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I posat en forma de matriu simètrica

I =

✓
1 0

0 r2

◆
.

⇤
Exercici 95. Per tal de fer els càlculs de l’exercici caldrà explicitar, en primer lloc,
l’expressió de '. Considerem, doncs, un punt qualsevol (u, v, 0) del pla z = 0. La recta
que passa per aquest punt i el pol nord de l’esfera (0, 0, 1) es pot parametritzar com

(0, 0, 1) + � (u, v,�1)

i els punts sobre l’esfera seran aquells que compleixin

(� u)2 + (� v)2 + (1� �)2 = 1.

Com que l’equació anterior es pot posar com

�2 (u2

+ v2 + 1)� 2� = 0 ,

si es descarta la solució � = 0 que correspon al pol nord, el punt '(u, v) haurà de ser el
que correspongui a � =

2

u2

+ v2 + 1

. Resumint, l’expressió de ' serà

'(u, v) =

✓
2 u

u2

+ v2 + 1

,
2 v

u2

+ v2 + 1

,
u2

+ v2 � 1

u2

+ v2 + 1

◆
.

(Noteu que ' està definida en tot el pla i que quan (u, v) va cap 1 és quan els seus
valors tendeixen al pol nord (0, 0, 1). En particular, ' parametritza l’esfera menys el pol
nord). ⇤
Exercici 95(a) Un càlcul directe mostra que:

'u =

✓
2 (�u2

+ v2 + 1)

(u2

+ v2 + 1)

2

,
�4 u v

(u2

+ v2 + 1)

2

,
4 u

(u2

+ v2 + 1)

2

◆
,

'v =

✓
�4 u v

(u2

+ v2 + 1)

2

,
2 (u2 � v2 + 1)

(u2

+ v2 + 1)

2

,
4 v

(u2

+ v2 + 1)

2

◆
.

Veurem a l’apartat següent que la primera forma fonamental és no degenerada i, per tant,
' és regular.41 ⇤
Exercici 95(b) Fent els productes escalars corresponents (i més càlculs):

E = h'u,'ui =
4

(u2

+ v2 + 1)

2

,

F = h'u,'vi = 0,

G = h'v,'vi =
4

(u2

+ v2 + 1)

2

,

i en forma matricial

I =

 
4

(u2
+v2+1)

2 0

0

4

(u2
+v2+1)

2

!
=

4

(u2

+ v2 + 1)

2

✓
1 0

0 1

◆
.

Que, clarament, és no degenerada. ⇤

41Recordem que k'
u

^ '

v

k =

p
EG� F

2 .
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Exercici 95(c) L’expressió de la primera forma fonamental deixa clar que les mesures
d’angles coincideixen: La primera forma fonamental de l’esfera respecte la carta '(u, v)
i la primera forma fonamental del pla són múltiples una de l’altra. En aquestes casos la
fórmula per al càlcul dels (cosinus dels) angles té la constant de proporcionalitat com a
factor comú al numerador i el denominador. ⇤
Exercici 96(a) Calculant les derivades

'u = (� sin(u) cos(v), cos(u) cos(v), 0) ,

'v = (� cos(u) sin(v),� sin(u) sin(v), cos(v)) .

Fent els productes escalars corresponents:
E = h'u,'ui = cos

2

(v),

F = h'u,'vi = 0,

G = h'v,'vi = 1.

Com que el domini per a les v no conté els valors ±⇡/2 (que són els que anul.larien
el determinant) la primera forma fonamental és no degenerada i la parametrització és
regular. ⇤
Exercici 96(b) L’element d’àrea de l’esfera, respecte aquesta parametrització, serà

dS = cos(v) du dv.

(Noteu que cos(v) > 0 en el domini que s’està considerant). Així, l’àrea T del triangle es
pot calcular amb la integral

T =

Z ⇡/4

0

Z u

0

cos(v) dv du.

Aquesta integració és immediata i dóna

T =

Z ⇡/4

0

sin(u) dv = 1�
p
2

2

⇡ 0.292893218813452 . . .

Per a calcular les longituds notem, en primer lloc, que es compleix
�
1

0
= 'u (= (1, 0))

�
2

0
= 'v (= (0, 1))

�
3

0
= 'u + 'v (= (1, 1))

al llarg del seu recorregut. De forma que les velocitats d’aquestes tres corbes seran
k�

1

0k = cos(0) = 1,

(recordeu que �
1

correspon a v = 0)

k�
2

0k = 1,

k�
3

0k =

p
cos

2

(t) + 1 .

A partir d’aquí les llargades respectives `
1

, `
2

i `
3

seran

`
1

= �t =
⇡

4

,

`
2

= �t =
⇡

4

,

(�
1

i �
2

estan parametritzades per l’arc).

`
3

=

Z ⇡/4

0

p
cos

2

(t) + 1 dt ⇡ 1.058095501392563 . . .
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(No hi ha expressió elemental per a la integral corresponent a `
3

).
Siguin ✓

12

, ✓
23

i ✓
13

els angles que formen, respectivament, �
1

i �
2

, �
2

i �
3

, i �
1

i �
3

.
Aleshores

cos(✓
12

) = h'u,'vi = 0 =) ✓
12

=

⇡

2

(�
1

0 i �
2

0 són unitaris),

cos(✓
13

) =

h'u,'u + 'vip
2

=

1p
2

=) ✓
13

=

⇡

4

(recordeu que en aquest cas la intersecció es produeix en el punt amb 0 = t = u = v),

cos(✓
23

) =

h'v,'u + 'vip
3/2

=

p
2/3 =) ✓

23

⇡ 0.615479708670387 . . .

(el punt de tall correspon a ⇡/4 = t = u = v, per tant k�
3

0k =

p
cos

2

(⇡/4) + 1 =q
1 +

1

2

). ⇤
Exercici 96(c) El recorregut del pla y = z sobre l’esfera es pot parametritzar com

�
4

(t) =

 
cos(t),

p
2

2

sin(t),

p
2

2

sin(t)

!

però d’aquesta forma el paràmetre t no té relació directa amb les coordenades (u, v) de
l’esfera corresponents a la longitud i latitud. Si interessa relacionar la corba amb la
parametrització de l’esfera serà millor considerar

�
4

(u) = '(u, v), amb v = arctan(sin(u))

(que és el resultat d’imposar y = z en l’expressió de '(u, v)).
En qualsevol cas, és clar que el punt de tall de �

1

amb �
4

és (1, 0, 0) i el de �
2

amb �
4

és (1/
p
3 , 1/

p
3 , 1/

p
3 ) (ja que el meridià u = ⇡/4 està sobre el pla x = y).

Tenint en compte la parametrització de �
4

en termes de la longitud u, l’àrea T
2

del
triangle que delimiten �

1

, �
2

i �
4

es calcularà amb la integral

T
2

=

Z ⇡/4

0

Z
arctan(sin(u))

0

cos(v) dv du

que no és tan difícil com sembla ja que es pot deixar com

T
2

=

Z ⇡/4

0

sin(u)p
1 + sin

2

(u)
du

(l’únic truc que hi ha aquí és recordar que sin(arctan(a)) =

ap
1 + a2

per a qualsevol

valor a) i aquesta integral és gairebé immediata (teniu en compte que 1 + sin

2

(u) =

2� cos

2

(u)). S’obté, finalment,

T
2

=


arcsin(

cos(u)p
2

)

�⇡/4

0

=

⇡

12

.

Respecte la llargada dels segments corresponents a aquest segon triangle es té:
• El segment corresponent a �

1

és el mateix que abans i té llargada ⇡/4.
• El segment corresponent a �

2

arribarà fins un valor t = v del paràmetre (arc)
que correspon a

1p
3

= z = sin(t) de forma que la llargada serà arcsin(1/
p
3 ) ⇡

0.615479708670387 . . .
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• Com que la parametrització de �
4

donada per

�
4

(t) =

 
cos(t),

p
2

2

sin(t),

p
2

2

sin(t)

!

tenim que

�
4

0
(t) =

 
� sin(t),

p
2

2

cos(t),

p
2

2

cos(t)

!
.

És clar que k�
4

0k = 1 i, per tant, el paràmetre t correspon a la llargada d’aques-
ta corba. Com que el punt inicial correspon a t = 0 i el punt final correspon a
1p
3

= x = cos(t) la llargada d’aquest segment vindrà donada, en conseqüència, per

arccos(1/
p
3 ) ⇡ 0.955316618124509 . . .

Finalment, per a calcular els angles entre aquestes tres corbes caldrà tenir en compte:
• L’angle ✓

12

entre �
1

i �
2

és el mateix que abans (⇡/2).

• El punt de tall entre �
1

i �
4

és (1, 0, 0) i els vectors tangents són, respectivament,
�
1

0
= (0, 1, 0) i �

4

0
= (0,

p
2 /2,

p
2 /2) (tots dos unitaris) de forma que l’angle ✓

14

entre aquestes dues corbes complirà cos(✓
14

) =

p
2 /2 i, per tant, ✓

14

= ⇡/4 .

• El punt de tall entre �
2

i �
4

és (1/
p
3 , 1/

p
3 , 1/

p
3 ). Això determina que els vectors

tangents siguin

�
2

0
= 'v =

 
�
p
2

2

sin(v),�
p
2

2

sin(v), cos(v)

!

(però estem en un punt on 1/
p
3 = z = sin(v))

=

 
�1

2

r
2

3

,�1

2

r
2

3

,

r
2

3

!
;

�
4

0
=

 
� sin(t),

p
2

2

cos(t),

p
2

2

cos(t)

!

(i estem en un punt on 1/
p
3 = x = cos(t))

=

 
�
r

2

3

,
1

2

r
2

3

,
1

2

r
2

3

!
.

Com que els vectors són unitaris,

cos(✓
24

) =

1

2

⇥ 2

3

� 1

4

⇥ 2

3

+

1

2

⇥ 2

3

=

1

2

.

I per tant ✓
24

= ⇡/3 .
Com observació final, noteu que la suma dels tres angles del triangle val 13 ⇡/12 i

aquest valor supera ⇡ en ⇡/12 que (per casualitat?) és exactament el valor de l’àrea T
2

.

Càlcul alternatiu de ✓
24

. Les corbes �
4

(u) = '(u, arctan(sin(u))) i �
2

(t) = '(⇡/4, t) es
tallen en u = ⇡/4.

Les components, respecte la base de l’espai tangent a la superfície determinada per
'u, 'v, dels vectors tangents de �

4

0 són (1, cos(u)
1+sin

2
(u) |u=⇡/4) = (1,

p
2

3

), i les components dels
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vectors tangents de �
2

0 són (0, 1). Així

cos(✓
24

) =

�
1

p
2 /3

�
 
cos

2

(v)
cos(v)=

p
2/3

0

0 1

!✓
0

1

◆

s
�
1

p
2 /3

�✓
2/3 0

0 1

◆✓
1p
2 /3

◆ = 1/2 .

i torna a quedar clar que ✓
24

= ⇡/3 . ⇤
Exercici 97(a) Tenint en compte la definició de ' i posant 'u = 'u(u, v), 'v = 'v(u, v)
per simplificar la notació tenim

'u = �(v),

'v = u �0(v).

Per a calcular els coeficients de la primera forma fonamental caldrà tenir en compte que
• h�(v), �(v)i = k�(v)k2 = 1 .

• h�0(v), �(v)i = 0 (derivant la igualtat anterior).
Aleshores,

E = h'u,'ui = 1,

F = h'u,'vi = h�(v), u �0(v)i = 0,

G = h'v,'vi = hu �0(v), u �0(v)i = u2.

⇤
Exercici 97(b) Si es recorda l’expressió de la primera forma fonamental del pla en
coordenades polars es veu que és equivalent a la d’aquesta superfície, on el paper del
mòdul el fa la coordenada u i el de l’argument la coordenada v.

Dit d’una altra manera, la transformació que fa correspondre al punt p = u �(v) (de
paràmetres (u, v)) el punt del pla donat per (u cos(v), u sin(v), 0) és una isometria local.
En efecte, si f : S �! R2 ve donada per f('(u, v)) = (u cos(v), u sin(v)) i prenem com
nova carta local del pla  = f � ' és clar que I' = I (primeres formes fonamentals
coincideixen). ⇤
Exercici 98(a)

'u = (cos(v), sin(v), 2 u),

'v = (�u sin(v), u cos(v), 0),

de forma que

E = 1 + 4 u2,

F = 0,

G = u2.

⇤
Exercici 98(b)

'u = (cosh(v), sinh(v), 2 u),

'v = (u sinh(v), u cosh(v), 0),
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de forma que

E = cosh

2

(v) + sinh

2

(v) + 4 u2

= cosh(2 v) + 4 u2,

F = 2u cosh(v) sinh(v) = u sinh(2 v),

G = u2

(sinh

2

(v) + cosh

2

(v)) = u2

cosh(2 v).

⇤
Exercici 98(c)

'u =

�
a cosh(u) cos(v), b cosh(u) sin(v), c sinh(u)

�
,

'v =
�
�a sinh(u) sin(v), b sinh(u) cos(v), 0

�
,

de forma que

E = a2 cosh

2

(u) cos2(v) + b2 cosh

2

(u) sin2

(v) + c2 sinh

2

(u),

F = (b2 � a2) cosh(u) sinh(u) sin(v) cos(v),

G = a2 sinh

2

(u) sin2

(v) + b2 sinh

2

(u) cos2(v).

⇤
Exercici 99. Escrivint la superfície com '(r, v) = (r cos(v), r sin(v),�(r)) veiem que

'r = (cos(v), sin(v),�0
(r)),

'v = (�r sin(v), r cos(v), 0),

i per tant ds2 = (1 + (�0
)

2

) dr2 + r2 dv2.
Busquem una funció u = u(r) tal que

ds2 = (1 + (�0
)

2

) dr2 + r2 dv2 = � (du2

+ dv2).

Necessitem doncs (du = u0 dr) que

1 + (�0
)

2

= r2 u02.

Només hem de prendre

u =

Z p
1 + (�0

)

2

r
dr.

Prenem ara com nova carta  (u, v) = '(r(u), v) on r(u) queda determinada, pel
teorema de la funció inversa, per l’expressió de u anterior. Tenim

 u(u, v) = 'u(r(u), v) r
0
(u),

 v(u, v) = 'v,

i per tant, usant que r0(u) = 1

u0
(r) =

rp
1+(�0)2

, tenim

I' =

✓
1 + (�0

)

2

0

0 r2

◆
, I =

 
r2

1+(�0)2 (1 + (�0
)

2

) 0

0 r2

!
=

✓
r2 0

0 r2

◆
.

Observem que l’aplicació que envia el punt de la superfície de coordenades (u, v) al
punt del pla (x, y) = (u, v) és conforme (la primera forma fonamental de la superfície
respecte la carta isotermal '(u, v) i la primera forma fonamental del pla respecte la carta
f � ' són múltiples una de l’altra).

Segon mètode.
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La fórmula del canvi de base per a aplicacions bilineals ens diu que

I' = M t I M,

on I' és la matriu de la primera forma fonamental respecte la base @'
@u , @'

@v , I és la matriu
de la primera forma fonamental respecte la base @ 

@x �h, @ 
@y �h), i M és la matriu del canvi

de base, que en el nostre cas és

M =

0

BB@

@h1

@u

@h1

@v

@h2

@u

@h2

@v

1

CCA .

Observem que h = (h1, h2

) és l’aplicació del canvi de coordenades, és a dir, ' =  � h.
Habitualment escrivim h(u, v) = (ū, v̄) amb ū = ū(u, v) i v̄ = v̄(u, v). D’aquesta manera

M =

0

BB@

@ū

@u

@ū

@v
@v̄

@u

@v̄

@v

1

CCA .

En el cas que ens ocupa podem aplicar aquesta fórmula amb ū = ū(r), v̄ = v de manera
que

M =

0

@
@ū

@r
0

0 1

1

A

i tindrem
✓
1 + (�0

)

2

0

0 r2

◆
=

0

@
@ū

@r
0

0 1

1

A I 

0

@
@ū

@r
0

0 1

1

A ,

d’on
I = M�1

✓
1 + (�0

)

2

0

0 r2

◆
M�1

és a dir,

I =

0

@
1 + (�0

)

2

ū2

r

0

0 r2

1

A .

Hem d’imposar doncs
1 + (�0

)

2

= r2 ū2

r

com abans. ⇤
Exercici 100. Calculem primer el cosinus de ✓. Com que les corbes estan parametritzades
per l’arc tenim

cos(✓) =
�
u0
1

v0
1

� ✓E F
F G

◆ ✓
u0
2

v0
2

◆
= E u0

1

v0
1

+ F (u0
1

v0
2

+ u0
2

v0
1

) +Gu0
2

v0
2

.

Per tant
sin

2

(✓) = 1� (E u0
1

v0
1

+ F (u0
1

v0
2

+ u0
2

v0
1

) +Gu0
2

v0
2

)

2,

però com que E (u0
1

)

2

+ 2F u0
1

v0
1

+G (v0
1

)

2

= E (u0
2

)

2

+ 2F u0
2

v0
2

+G (v0
2

)

2

= 1 tenim

sin

2

(✓) = (E (u0
1

)

2

+ 2F u0
1

v0
1

+G (v0
1

)

2

) (E (u0
2

)

2

+ 2F u0
2

v0
2

+G (v0
2

)

2

)

� (E u0
1

v0
1

+ F (u0
1

v0
2

+ u0
2

v0
1

) +Gu0
2

v0
2

)

2,
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i simplificant termes s’obté el resultat. ⇤
Exercici 101(a) Només hem d’imposar la condició d’ortogonalitat

�
�v ��u

� ✓E F
F G

◆ ✓
u0

v0

◆
= 0.

⇤
Exercici 101(b) Utilitzant la fórmula general de (101)42 aplicada al cas del pla, és a dir
E = G = 1, F = 0, amb

�(x, y) = x+

1

x
(y2 � a2) = 2�

s’obté
2 x y dx� (x2 � y2 + a2) dy = 0,

que admet el factor integrant 1

y2 . Això vol dir que hi ha una funció f(x, y) tal que

@f

@x
=

2 x

y
@f

@y
= 1� a2 + x2

y2

o equivalentment
df =

1

y2
(2 x y dx� (x2 � y2 + a2) dy).

de manera que un cop trobem f la solució buscada és f = ct.
Per trobar f només s’ha d’integrar respecte x i s’obté f(x, y) = x2

y +C(y), que derivant
i usant l’expressió anterior de fy dona

f(x, y) =
x2

+ a2

y
+ y + C.

Per tant la solució és la família uniparamètrica
x2

+ a2

y
+ y = 2 c,

que són cercles de centre els punts (0, c) i radi
p
c2 � a2 (noteu que, en particular, ha

de ser c2 � a2) com es pot veure a la figura següent on els cercles vermells són els de la
família de l’enunciat i els blaus la família ortogonal.

42En el cas del pla no cal usar aquesta fórmula ja que és evident que les trajectòries ortogonals a
�(x, y) = c són les que tenen la direcció del gradient, i per tant (x

0
, y

0
) = µ (�

u

,�

v

).
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Això vol dir que si fixem un punt (x
1

, y
1

) amb x
1

6= 0 i y
1

6= 0 per aquest punt hi passa
la circumferència de la primera família x2

+ y2 � 2� x = a2 corresponent a

� =

x2

1

+ y2
1

� a2

2 x
1

,

i la circumferència de la segona família (x2

+ a2)/y + y = 2 c corresponent a

2 c =
x2

1

+ a2

y
1

+ y
1

i aquestes circumferències en el punt (x
1

, y
1

) es tallen ortogonalment. ⇤
Exercici 101(c) Els coeficients de la primera forma fonamental de l’helicoide respecte la
parametrització donada són (exercici 117)

E = 1, F = 0, G = 1 + u2,

de manera que la condició d’ortogonalitat de l’apartat (a) és

du+ 3 (1 + u2

) dv = 0

que admet el factor integrant
µ =

1p
1 + u2

,

de manera que s’ha de resoldre els sistema
@f

@u
=

1p
1 + u2

,

@f

@v
= 3

p
1 + u2 .

Integrant la primera, amb una constant d’integració que dependrà en principi de v, i
substituint a la segona s’obté

f(u, v) = sinh

�1

(u) + 3 v
p
1 + u2

+ C.

L’equació f(u, v) = b, amb b constant, defineix implícitament la família uniparamètrica
de corbes que, considerades sobre l’helicoide, són ortogonals a les corbes donades per
v � 3 u = c. ⇤
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Exercici 102(a) Per la regla de la cadena i tenint en compte la definició de paràmetre
arc de la corba (u, v(u))

ds

du
=

s
�
1 v0

� ✓E F
F G

◆ ✓
1

v0

◆
=

p
E + 2F k +Gk2

tenim
d�

ds
=

d�

du

du

ds
=

�u + k �vp
E + 2F k +Gk2

.

⇤
Exercici 102(b) Derivant (2) respecte k obtenim el resultat. Observem que és la condició
d’ortogonalitat obtinguda a l’exercici 101 (a). ⇤
Exercici 102(c) Només s’ha de substituir el valor de k obtingut a (3) a (2). ⇤
Exercici 103. Prenem noves coordenades sobre la superfície. Suposem per simplificar que
P pertany a la corba de nivell �(u, v) = 0. Direm que un punt Q té coordenades (u

1

, v
1

)

si Q està a la corba de nivell �(u, v) = u
1

i la longitud sobre �(u, v) = 0 des de P fins
l’inici de la trajectòria ortogonal a �(u, v) = c que passa per Q és u

2

. Equivalentment,
tenim noves coordenades (u

1

, v
1

) tals que u
1

= c són les corbes de nivell de �(u, v) i
v
1

= c són les trajectòries ortogonals a les anteriors corbes de nivell. Denotem E
1

, F
1

, G
1

els coeficients de la primera forma fonamental en aquestes coordenades. Per construcció
F
1

= 0. La fórmula de l’apartat (a) del problema 102 diu

A =

����
du

1

ds

���� =
1p

E
1

+G
1

k2

1

amb k
1

= v0
1

/u0
1

, ja que �u1 = 1 i �v1 = 0. Per l’apartat (c) del problema 102 el màxim
valor de A és

1p
E

.

Pel problema 100 tenim

sin(✓
0

) =

p
G

1

k
1p

E
1

+G
1

k2

1

, cos(✓
0

) =

p
E

1p
E

1

+G
1

k2

1

on ✓
0

és l’angle que forma la direcció donada (i.e., la determinada per k
1

) amb les corbes
v
1

= c. Per tant, si pensem les tangents en el punt P a les corbes u
1

= 0 i v
1

= 0 com eixos
de coordenades del pla tangent, les coordenades dels extrems dels segments de longitud
A són

A sin(✓
0

) =

p
G

1

k
1

E
1

+G
1

k2

1

, A cos(✓
0

) =

p
E

1

E
1

+G
1

k2

1

.

La distància d’aquest punt al punt mig del segment màxim (

1

2

p
E
, 0) mesurada sobre la

tangent a v
1

= 0, val
1

2

p
E

1

(valor constant que no depèn de k). ⇤

Exercici 104. Definim els costats del “triangle” T
1

de l’espai de paràmetres {(u, v) 2 R2}
per ci(t) = (ui(t), vi(t)) amb t 2 [0, 1] mitjançant

u
1

(t) = 0, v
1

(t) = v
0

t,

u
2

(t) = sinh(v
0

) t, v
2

(t) = v
0

,

u
3

(t) = sinh(v
0

t), v
3

(t) = v
0

t.
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Llavors els costats del “triangle” T sobre l’helicoide són les corbes �i = '(ci), amb '(u, v) =
(u cos(v), u sin(v), v).

Calculem en primer lloc l’àrea de T utilitzant l’element d’àrea de l’hiperboloide H

dA =

p
EG� F 2 du dv =

p
1 + u2 du dv.

S’obté

A(T ) =

Z

T1

dA =

Z v=v0

v=0

dv
⇣Z u=sinh(v)

u=0

p
1 + u2 du

⌘
=

1

2

Z v0

0

(v + cosh(v) sinh(v)) dv

=

1

4

(v2
0

+ cosh

2

(v
0

)� 1).

Ara les longituds dels costats �i. Per fer això, escrivim

�0i(t) =
d'(ci(t))

dt
=

@'(ui(t), vi(t))

@u
u0
i(t) +

@'(ui(t), vi(t))

@v
v0i(t),

és a dir, �0i = u0
i 'u + v0i 'v té coordenades (u0

i(t), v
0
i(t)) en la base 'u, 'v del pla tangent

de H en el punt �i(t). Així tenim

k�0i(t)k
2

=

�
u0
i(t) v0i(t)

� ✓
1 0

0 1 + ui(t)2

◆ ✓
u0
i(t)

v0i(t)

◆

i d’altra banda, la longitud de �i ve donada per

Li = L(�i) =

Z
1

0

k�0i(t)k dt,

de forma que

L
1

=

Z
1

0

v
0

dt = v
0

,

L
2

=

Z
1

0

sinh(v
0

) dt = sinh(v
0

),

L
3

=

Z
1

0

v
0

q
2 + 2 sinh

2

(v
0

t) dt

=

p
2

Z
1

0

v
0

cosh(v
0

t) dt =
p
2 sinh(v

0

).

Finalment, si denotem per ↵i l’angle oposat al costat �i de T , tenim

cos(↵
1

) =

h�0
2

(1), �0
3

(1)i
k�0

2

(1)k k�0
3

(1)k

=

�
sinh(v

0

) 0

� ✓
1 0

0 1 + sinh

2

(v
0

)

◆ ✓
v
0

cosh(v
0

)

v
0

◆

sinh(v
0

)

q
v2
0

+ v2
0

cosh

2

(v
0

) (1 + sinh

2

(v
0

))

=

cosh(v
0

)q
1 + cosh

4

(v
0

)

,

cos(↵
2

) =

h�0
1

(0), �0
3

(0)i
k�0

1

(0)k k�0
3

(0)k

=

�
0 v

0

� ✓
1 0

0 1 + 0

2

◆ ✓
v
0

cosh(0)

v
0

◆

v
0

p
2 v2

0

=

1p
2

,
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cos(↵
3

) =

h�0
1

(1), �0
2

(0)i
k�0

1

(1)k k�0
2

(0)k

=

�
0 v

0

� ✓
1 0

0 1 + 0

2

◆ ✓
sinh(v

0

)

0

◆

v
0

sinh(v
0

)

= 0.

Per tant ↵
1

= arccos

✓
cosh(v0)p
1+cosh

4
(v0)

◆
, ↵

2

=

⇡
4

i ↵
3

=

⇡
2

. ⇤

Exercici 105. La parametrització de l’esfera de radi 1 donada per la longitud i la colatiud
és

 (', ✓) = (sin(') cos(✓), sin(') sin(✓), cos(')).

corresponent a l’esquema del gràfic següent

y

z

✓

'

x

(x, y, z)

La primera forma fonamental és llavors

I =

✓
1 0

0 sin

2

(')

◆
.

Per tant, suposant que la corba que busquem té coordenades ('(s), ✓(s)), tenim

cos(�) =

�
'0 ✓0

� ✓
1 0

0 sin

2

(')

◆ ✓
1

0

◆

q
('0

)

2

+ (✓0)2 sin

2

(')
.

Multiplicant les matrius i elevant al quadrat

('0
)

2

sin

2

(�) = (✓0)2 sin

2

(') cos2(�).

Si posem ' = '(✓), usant la regla de la cadena, tenim
d'

d✓
= sin(') cot(�)

que s’integra fàcilment separant les variables i obtenim

log

⇣
tan

⇣'
2

⌘⌘
= cot(�) (✓ + c).
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⇤
Exercici 106. Parametritzem el con z2 = x2

+ y2 en polars per
'(r, ✓) = (r cos(✓), r sin(✓), r).

D’aquesta manera la primera forma fonamental és

I =

✓
2 0

0 r2

◆

i les generatrius (rectes per l’origen) en aquestes coordenades estan donades per ✓ = ct.
Per tant, la corba buscada ha de tenir coordenades (r(t), ✓(t)) tals que

�
r0 ✓0

� ✓
2 0

0 r2

◆ ✓
1

0

◆

p
2 (r0)2 + r2 (✓0)2

p
2

= ct.

d’on
(r0)2 = a (2 (r0)2 + r2 (✓0)2)

per a una certa constant a amb 0  a  1/2. Per tant

c
r0

r
= ✓0

amb c =
p
(1� 2 a)/a . Integrant tenim

✓ = c ln(r) + C

que és la fórmula de les espirals equiangulars donada a l’exercici 19.
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⇤
Exercici 107(a) Parametritzem l’esfera com és habitual amb la longitud ✓ i la col.latitud
' (com a l’exercici 105). Prenem ✓ = 0 sobre l’eix de les x, augmentant cap a la part
positiva de l’eix de les y.

 (✓,') = (2 a sin(') cos(✓), 2 a sin(') sin(✓), 2 a cos('))

amb ✓ 2 (0, 2⇡) i ' 2 (0, ⇡). Per tant
 ✓ = (�2 a sin(') sin(✓), 2 a sin(') sin(✓), 0)

 ' = (2 a cos(') cos(✓), 2 a cos(') sin(✓),�2 a sin('))

i els coeficients de la primera forma fonamental són
E = 4 a2 sin

2

('), F = 0, G = 4 a2.

En particular, l’element d’àrea és
dA = k ✓ ^ 'k d✓ d' = 4 a2 sin(') d✓ d'.

El cilindre es pot parametritzar per
�(↵, z) = (a cos(↵), a+ a sin(↵), z)

de forma que
�↵ = (�a sin(↵), a cos(↵), 0)

�z = (0, 0, 1)

i els coeficients de la primera forma fonamental són
E = a2, F = 0, G = 1.

⇤
Exercici 107(b) La parametrització equivalent a la de l’exercici 76 (multiplicant conve-
nientment pel radi) és

�(t) = 2 a
�
1

2

sin(t),
1

2

+

1

2

cos(t), sin(
t

2

)

�
, 0  t  2⇡. (23)

Com que són punts de l’esfera es compleix

2 a (
1

2

sin(t),
1

2

+

1

2

cos(t), sin(
t

2

)) = 2 a (sin(') cos(✓), sin(') sin(✓), cos('))

amb 0  '  ⇡/2 si ens preocupem de l’hemisferi nord. Per tant

cos(') = sin(

t

2

)

tan(✓) =
1 + cos(t)

sin(t)
= cot(

t

2

) = ± tan(')

i això és equivalent a dir
✓ = ' si 0  ✓  ⇡/2,

✓ = ⇡ � ' si ⇡/2  ✓  ⇡.

S’obté d’aquesta manera una segona parametrització en funció de ✓, però s’ha de
definir la funció com a funció contínua troços, com

�(✓) =

8
<

:

(sin(✓) cos(✓), sin2

(✓), cos(✓)) 0  ✓  ⇡/2,

(sin(✓) cos(✓), sin2

(✓),� cos(✓)) ⇡/2  ✓  ⇡.
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⇤
Exercici 107(c) S’ha de calcular, quan 0  ✓  ⇡/2, l’angle entre les corbes esfèriques
✓ = ' i ' = '

0

= ct. I l’angle entre les corbes esfèriques ✓ = ⇡�' i ' = ct. quan ⇡/2  ✓.
Fem el prime cas, desprès només s’ha de canviar el signe.

Els vectors tangents a aquestes corbes (que es tallen en el punt de coordenades ('
0

,'
0

))
en la base  ', ✓ són respectivament (1, 1) i (0, 1) de manera que l’angle ↵ que s’està
calculant compleix

cos(↵) =

�
1 1

� ✓
1 0

0 sin

2

('
0

)

◆ ✓
0

1

◆

s
�
1 1

� ✓
1 0

0 sin

2

('
0

)

◆ ✓
1

1

◆ s�
0 1

� ✓
1 0

0 sin

2

('
0

)

◆ ✓
0

1

◆ .

Per tant
cos(↵) =

sin('
0

)p
1 + sin

2

('
0

)

.

També es podria fer aquest càlcul pensant les corbes com corbes de l’espai oblidant
que són corbes sobre l’esfera. Concretament l’angle entre la corba �(t) donada per la
parametrització de (23) i la corba (el paral.lel) que tindrà una expressió de la forma
(sin('

0

) sin(t/2), sin('
0

) cos(t/2), cos('
0

)). ⇤
Exercici 107(d) Per tal de poder donar un resultat numèric, considerem el cas a =

1/2 en el que la vora de la volta de Viviani es pot escriure com �(t) = (

1

2

sin(t), 1
2

+

1

2

cos(t), sin(t/2)).
La longitud dóna lloc a una integral el.líptica

Z
2⇡

0

r
1

4

+

1

4

cos

2

(t/2) dt = 2

p
2 E(1/2).

Recordem que E(1/2) = 1

2

Z ⇡/2

0

p
3 + cos(2 t)) dt ' 1.350. Podeu veure com reacciona un

programa de càlcul simbòlic i numèric amb aquestes integrals utilitzant aquest enllaç. ⇤
Exercici 107(e) La regió V ⇢ (0, ⇡) ⇥ (0, ⇡

2

) sobre la qual cal integrar l’element d’àrea
dA és

V =

⇢
(✓,') 2

�
0, ⇡
�
⇥
�
0,
⇡

2

�
;'  ✓ si 0  ✓  ⇡/2, ✓  ⇡ � ' si ⇡/2  ✓  ⇡

�
.

✓

⇡/2

⇡/2 ⇡

'
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que també es pot descriure per les condicions
'  ✓  ⇡ � ' amb 0  '  ⇡/2

Així l’àrea de la volta de Viviani és igual a
Z

V

dA = 4 a2
Z '=⇡

2

'=0

Z ✓=⇡�'

✓='

sin(') d✓ d'

= 8 a2
Z '=⇡

2

'=0

sin(') (⇡ � 2') d'

= 4 a2 (⇡ � 2).

⇤
Exercici 108. Podem pensar, sense perdre generalitat, que el centre de l’esfera petita
és el pol nord, de manera que els punts de la intersecció estan caracteritzats, en les
coordenades longitud ✓ i col.latitud ', per la condició 0 < ✓ < 2 ⇡ i 0 < ' < ↵, on ↵ està
caracteritzat per la fórmula

sin(↵/2) =
r

2R
com es veu a la figura

↵

R

R

r

Per altra banda a l’exercici 107 es veu que l’element d’àrea de l’esfera de radi R,
respecte aquestes coordenades, és

dS = R2

sin(') d✓ d'

de manera que l’àrea demanda val

Àrea = 2 ⇡

Z ↵

0

R2

sin(') d' = 2 ⇡R2

(1� cos(↵)) = 2 ⇡R2

2 sin

2

(↵/2) = ⇡ r2.

⇤
Exercici 109(a) Considerem el costat u =

1

2

a v2 com la imatge per ' de la corba
(

1

2

a v2, v). El vector tangent té components (a v, 1) respecte de la base ('u,'v), i per tant
la longitud de la corba entre v = 0 i v = 1 està donada per

Z
1

0

s
�
a v 1

� ✓
1 0

0 a2 + u(v)2

◆ ✓
a v
1

◆
dv = a

Z
1

0

(1 +

v2

2

) =

7 a

6

.
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Observis que restringint la mètrica als punts de la corba on estem multiplicant el terme
a2 + u2 es converteix en a2 + 1

4

a2 v4. S’obtindria el mateix resultat per a la corba u =

�1

2

a v2.
La corba v = 1 és la imatge per ' de la corba (u, 1) en el pla de paràmetres, amb

�1

2

a < u < 1

2

a. Per tant, la seva longitud és
Z 1

2 a

� 1
2 a

s
�
1 0

� ✓
1 0

0 a2 + u2

◆ ✓
1

0

◆
dv = a.

El perímetre és doncs 10 a/3. ⇤
Exercici 109(b) Els vèrtexs d’aquest triangle curvilini són els punts A = (0, 0), B =

(

1

2

a, 1) i C = (�1

2

a, 1). Els vectors tangents a les corbes que es tallen en A estan donats
per (±a v, 1), que en A (v = 0) valen tots dos (0, 1), per tant l’angle en el vèrtex A és
zero.

Els vectors tangents que concorren en el punt B són (1, 0) i (a, 1). Per tant

cosB =

�
1 0

� ✓
1 0

0 5 a2/4

◆ ✓
a
1

◆

k(1, 0)k k(a, 1)k =

as
�
a 1

� ✓
1 0

0 5 a2/4

◆ ✓
a
1

◆ =

2

3

.

Els vectors tangents que concorren en el punt C són (1, 0) i (a,�1). Per tant

cosC =

�
1 0

� ✓
1 0

0 5 a2/4

◆ ✓
a
�1

◆

k(1, 0)k k(a,�1)k =

as
�
a �1

� ✓
1 0

0 5 a2/4

◆ ✓
a
�1

◆ =

2

3

.

⇤
Exercici 109(c) L’element d’àrea és dA =

p
u2

+ a2 du ^ dv.
Per tant,

Àrea =

Z
1

0

✓Z a v

�a v

p
u2

+ a2 du

◆
dv

=

Z
1

0


1

2

u
p
u2

+ a2 +

1

2

a2 ln

⇣
u+

p
u2

+ a2
⌘�a v

�a v

dv

=

Z
1

0

a2 v
p
1 + v2 dv +

a2

2

Z
1

0

ln(a v + a
p
1 + v2 ) dv

� a2

2

Z
1

0

ln(�a v + a
p
1 + v2 ) dv

= a2 (�1

3

+

2

3

p
2 ) +

a2

2

(1�
p
2 + ln(1 +

p
2 ))

� a2

2

(1 +

p
2 + ln(1 +

p
2 ))

=

a2 (2�
p
2 )

3

.

⇤
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Exercici 110. Si tenim la igualtat anterior de formes quadràtiques llavors

µE = u2

s + v2s
µF = usut + vsvt
µG = u2

t + v2t

amb µ = ��1. Aquestes igualtats que equivalen a la igualtat matricial
✓
us vs
ut vt

◆ ✓
� 0

0 �

◆ ✓
us vs
ut vt

◆t

=

✓
E F
F G

◆

diuen que p
E G� F 2

= � (us vt � ut vs).

Calculant,

µ (Fus � E ut) = u2

s ut + us vs vt � u2

s ut � v2s ut = vs µ
p
E G� F 2 .

Per tant
vs =

F us � E utp
E G� F 2

.

Anàlogament es veu que
vt =

Gus � F utp
E G� F 2

i, per la igualtat d’Schwarz sobre les derivades segones creuades, hem acabat. De fet
aquesta condició es compleix sempre i sempre existeixen coordenades isotermes, però és
difícil de demostrar en el cas C1, i fàcil en el cas analític real. ⇤

Segona forma fonamental

Exercici 111. Si43 es comença calculant els vectors tangents a les corbes coordenades
s’obté:

'u = (1, v, 0),

'v = (1, u, 1).

Els productes escalars que determinen la primera forma fonamental seran:

E = h'u,'ui = 1 + v2,

F = h'u,'vi = 1 + u v,

G = h'v,'vi = 2 + u2.

Agrupat matricialment

I =

✓
1 + v2 1 + u v
1 + u v 2 + u2

◆
.

Per tal de determinar la segona forma fonamental caldrà calcular el vector normal a
la superfície i les derivades segones de la parametrització. La direcció del vector normal
és la del producte vectorial 'u ^ 'v = (v,�1, u� v) de forma que el vector normal serà

⌫ =

1p
v2 + 1 + (u� v)2

(v,�1, u� v) =
1p

1 + u2

+ 2 v2 � 2 u v
(v,�1, u� v).

43Noteu que es tracta de la quàdrica y = z (x� z) i, per tant, els càlculs també es podran fer utilitzant
les fórmules corresponents al gràfic d’una funció que es donen a l’exercici 112).
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Els coeficients de la segona forma fonamental es poden calcular fent el producte escalar
de les derivades segones de la parametrització

'uu = (0, 0, 0),

'uv = (0, 1, 0),

'vv = (0, 0, 0),

amb aquest vector normal, així s’obtindrà:

e = h⌫,'uui = 0,

f = h⌫,'uvi =
�1p

1 + u2

+ 2 v2 � 2 u v
,

g = h⌫,'vvi = 0.

Expressat en forma de matriu:

II =

�1p
1 + u2

+ 2 v2 � 2 u v

✓
0 1

1 0

◆
.

Amb les dades dels càlculs que s’han fet fins ara, es pot calcular immediatament la
curvatura de Gauss com:

K =

e g � f 2

E G� F 2

=

�1/(1 + u2

+ 2 v2 � 2 u v)

1 + u2

+ 2 v2 � 2 u v
=

�1

(1 + u2

+ 2 v2 � 2 u v)2
.

Finalment, per tal d’obtenir la curvatura mitjana H caldrà calcular la traça de W =

�d⌫ = I�1 · II. Fent unes quantes operacions

W =

1

(1 + u2

+ 2 v2 � 2 u v)3/2

✓
u v + 1 �(u2

+ 2)

�(v2 + 1) u v + 1

◆
.

De forma que la curvatura mitjana serà

H =

1

2

traça(W ) =

u v + 1

(1 + u2

+ 2 v2 � 2 u v)3/2
.

Alternativament es pot usar la fórmula que dóna la curvatura mitjana directament a
partir dels coeficients de la primera i segona formes fonamentals

H =

1

2

E g � 2F f +Ge

E G� F 2

=

1

2

�2 (1 + u v) �1p
1+u2

+2 v2�2u v

1 + u2

+ 2 v2 � 2 u v
=

u v + 1

(1 + u2

+ 2 v2 � 2 u v)3/2
.

⇤
Exercici 112. Quan es defineix una superfície S prenent el gràfic d’una funció de dues
variables h(x, y), la parametrització natural consisteix a prendre

'(x, y) = (x, y, h(x, y))

de forma que els vectors tangents corresponents seran

'x = (1, 0, hx),

'y = (0, 1, hy),

(on els subíndex denoten, com és habitual en aquests casos, derivades parcials respecte les
variables). Aleshores la direcció del vector normal és la del producte vectorial 'x ^ 'y =

(�hx,�hy, 1) i el vector normal unitari serà

⌫ =

1p
1 + (hx)

2

+ (hy)
2

(�hx,�hy, 1).
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Per tal d’obtenir la curvatura de Gauss i l’expressió de W , el més pràctic serà considerar

I =

✓
1 + (hx)

2 hx hy

hx hy 1 + (hy)
2

◆

(que té determinant donat per 1 + (hx)
2

+ (hy)
2) i calcular la segona forma fonamental a

partir de les derivades segones
'xx = (0, 0, hxx),

'xy = (0, 0, hxy),

'yy = (0, 0, hyy),

de forma que s’obtenen els coeficients

e = h⌫,'xxi =
hxxp

1 + (hx)
2

+ (hy)
2

,

f = h⌫,'xyi =
hxyp

1 + (hx)
2

+ (hy)
2

,

g = h⌫,'yyi =
hyyp

1 + (hx)
2

+ (hy)
2

,

i la matriu de W serà

W = I�1 · II =

1

(1 + (hx)
2

+ (hy)
2

)

3/2

✓
1 + (hy)

2 �hx hy

�hx hy 1 + (hx)
2

◆ ✓
hxx hxy

hxy hyy

◆

=

1

(1 + (hx)
2

+ (hy)
2

)

3/2

✓
hxx (1 + (hy)

2

)� hxy hx hy hxy (1 + (hy)
2

)� hyy hx hy

hxy (1 + (hx)
2

)� hxx hx hy hyy (1 + (hx)
2

)� hxy hx hy

◆
.

Per un altre costat, la fórmula per a la curvatura de Gauss serà

K =

e g � f 2

E G� F 2

=

(hxx hyy � (hxy)
2

)/(1 + (hx)
2

+ (hy)
2

)

1 + (hx)
2

+ (hy)
2

=

hxx hyy � (hxy)
2

(1 + (hx)
2

+ (hy)
2

)

2

.

⇤
Exercici 113. Sigui p un punt qualsevol de la corba en S on la superfície és tangent
al pla fix. Si la corba és regular, el seu vector tangent ~v en p serà un vector tangent a
la superfície i diferent de ~0. Com que el vector normal a la superfície serà constant al
llarg de la corba (ja que coincideix amb el vector normal al pla amb el que es produeix la
tangència) es compleix, per la definició general de diferencial d’una aplicació,

d⌫(~v) = ~
0

(es restringeix l’aplicació a una corba tangent qualsevol al vector i es busca el vector
tangent a aquesta restricció, que és una corba en el espai imatge de l’aplicació).

Tenint en compte que la curvatura de Gauss K d’una superfície és el determinant de
W = �d⌫ i que s’acaba de trobar un vector no nul en el nucli de W (W (~v) = ~

0), és clar
que s’acaba de veure que K = 0 en p. ⇤
Exercici 114.

(a) () (b)
Tenint en compte les definicions, el valor de la segona forma fonamental II actuant
sobre un parell de vectors ~u, ~v s’obté amb

II(~u,~v) = h�d⌫(~u),~vi.
Aleshores, dir que aquesta segona forma fonamental és nul.la és equivalent a dir que
la diferencial de l’aplicació de Gauss d⌫ és 0 en tots els punts i, per tant, que ⌫ és
una aplicació constant.
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(b) () (c)
És clar que quan la superfície està continguda en un pla el seu vector normal serà
constant.
Recíprocament, si ⌫ és constant, es considera un punt qualsevol p

0

en S i una
parametrització '(u, v) al voltant de p

0

, es complirà
@

@u
h'(u, v)� p

0

, ⌫i = h'u, ⌫i+ h'� p
0

, ⌫ui = 0

(i el mateix respecte v) ja que 'u és un vector tangent a la superfície (perpendicular
a ⌫) i ⌫ és constant. Així es té que h'(u, v)�p

0

, ⌫i = 0 i, per tant, el recorregut de '
és al pla que passa per p

0

i té ⌫ com a vector perpendicular. Com que s’ha suposat
des del principi que S és connexa, tots els seus punts compleixen aquesta propietat.
(L’argument mostra que el conjunt de punts de S i en aquest pla és obert).

⇤
Exercici 115. Si escrivim

⌫u = a
11

'u + a
12

'v,

⌫v = a
21

'u + a
22

'v,

veiem directament que
det(⌫, ⌫u, ⌫v) = det(aij) det(⌫,'u,'v)

= K h⌫,'u ^ 'vi
= K k'u ^ 'vk = K

p
E G� F 2 .

Anàlogament,
det(⌫,'u, ⌫v) + det(⌫, ⌫u,'v) = a

22

det(⌫,'u,'v) + a
11

det(⌫,'u,'v)

= (a
11

+ a
22

)

p
E G� F 2

i com que la traça de l’endomorfisme de Weingarten és menys el doble de la curvatura
mitjana hem acabat. Recordeu que l’endomorfisme de Weingarten és igual a menys la
diferencial de la normal, W = �d⌫. ⇤
Exercici 116. Com que les homotècies F són difeomorfismes de R3, cada parametrització
'(u, v) de S dóna, fent la composició, una parametrització de ¯S = F (S) que es podrà
escriure com

'̄(u, v) = �'(u, v).
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Aleshores les derivades parcial d’aquesta parametrització que generen l’espai tangent seran

'̄u = �'u, '̄v = �'v,

de forma que el vector normal ⌫̄ de ¯S coincidirà amb el vector normal ⌫ de S (en els punts
corresponents) ja que '̄u ^ '̄v = �2 'u ^ 'v.

A partir d’aquí s’obté de forma immediata que les primeres formes fonamentals I i ¯I
de S i ¯S respectivament s’obtenen una a partir de l’altre per la relació

¯I = �2 I,

mentre que la relació entre les segones formes fonamentals II i ¯II vindrà donada per
(productes escalars de les derivades segones amb el mateix vector normal)

¯II = � II.

D’aquí es dedueix que la relació entre curvatures de Gauss serà (quocient de determinants)

¯K =

�2

�4
K =

1

�2
K

i la relació entre curvatures mitjanes (traça del producte I�1 · II)

¯H =

1

�
H

(¯I�1

= (1/�2) I�1 i els escalars surten fora en els productes de matrius i en el càlcul de
les traces). ⇤
Exercici 117. Per a aquesta parametrització de la superfície

'u = (cos(v), sin(v), 0),

'v = (�u sin(v), u cos(v), a),

'u ^ 'v = (a sin(v),�a cos(v), u),

⌫ =

1p
u2

+ a2
(a sin(v),�a cos(v), u),

I =

✓
1 0

0 u2

+ a2

◆
,

'uu = (0, 0, 0),

'uv = (� sin(v), cos(v), 0),

'vv = (�u cos(v),�u sin(v), 0),

II =

1p
u2

+ a2

✓
0 �a
�a 0

◆
,

K =

�a2/(u2

+ a2)

u2

+ a2
= � a2

(u2

+ a2)2
= �

✓
a

u2

+ a2

◆
2

,

I�1 · II =

✓
1 0

0 1/(u2

+ a2)

◆
·
✓

0 �a/
p
u2

+ a2

�a/
p
u2

+ a2 0

◆

=

✓
0 �a/

p
u2

+ a2

�a/(u2

+ a2)3/2 0

◆
,

H = 0.

⇤
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Exercici 118(a) Tenint en compte que les relacions entre els vectors tangents a les dues
superfícies corresponents a les parametritzacions respectives són

('t
)u = 'u + t ⌫u,

('t
)v = 'v + t ⌫v,

escriurem (aplicació de Weingarten canviada de signe)

⌫u = a
11

'u + a
12

'v,

⌫v = a
21

'u + a
22

'v,

de forma que

'u ^ ⌫v = a
22

'u ^ 'v,

⌫u ^ 'v = a
11

'u ^ 'v,

⌫u ^ ⌫v = K 'u ^ 'v (K és el determinant),

i aleshores

('t
)u ^ ('t

)v = (1� 2H t+K t2)'u ^ 'v

(a
11

+ a
22

= �2H).
Aquest càlcul mostra que, si dS és l’element d’àrea de la superfície original, es complirà

dSt
=

��
1� 2H t+K t2

�� dS.
Noteu que, com a propina, també es veu que els vectors normals ⌫ i ⌫t coincideixen

en els punts corresponents als mateixos paràmetres (u, v) de les dues superfícies. Com
que 1 � 2H t + K t2 = K (t � ⇢

1

) (t � ⇢
2

) queda clar que quan t estigui entre ⇢
1

i ⇢
2

la
normal del tub serà de direcció oposada a la normal de la superfície. En general pensem
tubs pròxims a la superfície donada (t petit) i en aquest cas 1� 2H t+K t2 és pròxim a
1 i per tant positiu, i.e. per a valors petits de t les normals coincideixen. ⇤

La superfície determinada per '(u, v) = (v, v u

3
+ (1� v)u, u) i la seva paral.lela a distància t = 0.08. A

distàncies més grans, la paral.lela degenera ràpidament.
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Exercici 118(b) Per tal d’establir la relació entre les curvatures de Gauss K i Kt es pot
partir del fet general (que ja ha aparegut en els càlculs anterior) donat per les igualtats

⌫u ^ ⌫v = K 'u ^ 'v, (⌫t)u ^ (⌫t)v = Kt
('t

)u ^ ('t
)v

tenint en compte que els vectors normals de les dues superfícies coincideixen. Així s’ob-
tindrà:
K 'u ^ 'v = ⌫u ^ ⌫v = (⌫t)u ^ (⌫t)v = Kt

('t
)u ^ ('t

)v = Kt
(1� 2H t+K t2)'u ^ 'v .

De forma que
Kt

=

K

1� 2H t+K t2
,

tal i com diu l’enunciat. ⇤
Exercici 118(c) Partint de les relacions

('t
)u = 'u + t ⌫u,

('t
)v = 'v + t ⌫v,

i tenint en compte

⌫u = a
11

'u + a
12

'v,

⌫v = a
21

'u + a
22

'v,

s’obtenen les equacions del canvi de base (els plans tangents a S i St són paral.lels)

('t
)u = (1 + t a

11

)'u + t a
12

'v,

('t
)v = t a

21

'u + (1 + t a
22

)'v .

Fent els càlculs de la matriu inversa corresponent, i incorporant K = a
11

a
22

� a
12

a
21

(determinant), �2H = a
11

+ a
22

(traça)

'u =

1

1� 2H t+K t2
�
(1 + t a

22

) ('t
)u � t a

12

('t
)v

�
,

'v =
1

1� 2H t+K t2
�
�t a

21

('t
)u + (1 + t a

11

) ('t
)v

�
.

Com que els vectors normals coincideixen, les relacions anteriors permeten obtenir

(⌫t)u = ⌫u =

1

1� 2H t+K t2
�
(a

11

+ tK) ('t
)u + a

12

('t
)v

�
,

(⌫t)v = ⌫v =
1

1� 2H t+K t2
�
a
21

('t
)u + (a

22

+ tK) ('t
)v

�
.

Ara només cal tenir en compte que la curvatura mitjana de St serà igual a la meitat
de la traça d’aquesta relació (matriu) canviada de signe. És a dir

H t
=

H �K t

1� 2H t+K t2
.

Nota: L’argument també es pot fer utilitzant productes vectorials i les relacions entre
els vectors tangents a les dues superfícies com en el cas anterior.

En el sentit contrari, la relació entre les curvatures de Gauss també surt amb els càlculs
fets com en aquest apartat, encara que resulti una mica més carregòs que tal i com s’ha
vist abans amb els productes vectorials. ⇤
Exercici 118(d) Aplicar la fórmula anterior amb H = c i t = 1/(2 c) serà

K1/(2c)
=

K

1� 2 c (1/(2 c)) +K (1/(4 c2))
= 4 c2.
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⇤
Exercici 118(e) Com en l’apartat anterior, aplicant la fórmula corresponent amb K = a2

i t = 1/a donarà

H1/a
=

H � a2 (1/a)

1� 2H (1/a) + a2 (1/a2)
=

H � a

2� 2H/a
= �a

2

.

Nota: El signe de la curvatura mitjana depèn del signe del vector normal. Si es canvia
⌫t per �⌫t el signe � de la fórmula desapareix.

Nota final: La parametrització 't deixa de ser regular si t no és prou petit per tal que
l’expressió 1� 2H t+K t2 sigui diferent de 0. Es pot construir sempre alguna superfície
paral.lela? Com hauria de ser una superfície sense cap superfície paral.lela? ⇤
Exercici 119. Sigui (U,') una carta de S i h una funció arbitrària sobre U . Per a cada
t 2 (�✏, ✏) definim

 

t
(u, v) = '(u, v) + t h(u, v) ⌫(u, v)

on ⌫ és el camp normal a S.

'(u, v) + t h(u, v) ⌫(u, v)

'(u, v)

'(u, v)� t h(u, v) ⌫(u, v)

Llavors tenim,
 

t
u = 'u + t hu ⌫ + t h ⌫u,

 

t
v = 'v + t hv ⌫ + t h ⌫v,

i per tant els coeficients de la primera forma fonamental de cada una de les suèrfícies  t

són
Et

= E � 2 t h e+ o(t2),

F t
= F � 2 t h f + o(t2),

Gt
= G� 2 t h g + o(t2),

ja que h'u, ⌫ui = �e, etc.
Per tant, recordant la fórmula (2) per a la curvatura mitjana,

Et Gt � (F t
)

2

= (E G� F 2

) (1� 4 t hH + o(t2)).

Per a tot domini D contingut a U denotem At l’àrea de  t
(D) i tenim

At
=

Z

D

p
(E G� F 2

) (1� 4 t hH + o(t2)) du dv.

Derivant respecte t en t = 0 i recordant que podem derivar sota el signe integral, tenim
dAt

dt |t=0

= �
Z

D

2hH
p
E G� F 2 du dv.

Ara es conclou sense masses dificultats ja que quan H = 0 la integral és 0 i, recí-
procament, si la integral és nul.la per a tota variació normal (h) només pot ser que H
s’anul.li. ⇤
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Exercici 120. Prenem una parametrització '(u, v) i en un punt arbitrari P prenem la
base ortonormal de TPS formada pels vectors propis de l’endomorfisme de Weingarten,
és a dir, vectors unitaris que donen les direccions principals.

Així, en P , tindrem

d⌫(e
1

) = �k
1

e
1

,

d⌫(e
2

) = �k
2

e
2

.

Per a tota ⌘ 2 R considerem el vector v 2 TPS donat per v = e
1

+ ⌘ e
2

.
El cosinus de l’angle entre e

1

i v està donat per
he

1

, vi
ke

1

k kvk =

1p
1 + ⌘2

.

Per altra banda
d⌫(v) = �k

1

e
1

� ⌘ k
2

e
2

,

de manera que el cosinus de l’angle format entre d⌫(e
1

) i d⌫(v) és
hd⌫(e

1

), d⌫(v)i
kd⌫(e

1

)k kd⌫(v)k =

k2

1

|k
1

|
p
k2

1

+ k2

2

⌘2
=

1q
1 + ⌘2 (k2k1 )

2

.

Igualant els valors d’aquests cosinus obtenim
✓
k
2

k
1

◆
2

= 1.

Si k
1

= k
2

estem en el cas d’una esfera i si k
1

= �k
2

en el cas d’una superfície minimal. ⇤
Exercici 121(a)

'u =

0

BBBB@

�1

2

v cos (u) sin
�
1

2

u
�
�
�
v cos

�
1

2

u
�
+ 1

�
sin (u)

�1

2

v sin
�
1

2

u
�
sin (u) +

�
v cos

�
1

2

u
�
+ 1

�
cos (u)

1

2

v cos
�
1

2

u
�

1

CCCCA
,

'v =

0

BBBB@

cos

�
1

2

u
�
cos (u)

cos

�
1

2

u
�
sin (u)

sin

�
1

2

u
�

1

CCCCA
,

E =

1

4

✓
4 cos

2

✓
1

2

u

◆
+ 1

◆
v2 + 2 v cos

✓
1

2

u

◆
+ 1

=

✓
5

4

� sin

2

✓
1

2

u

◆◆
v2 + 2 v cos

✓
1

2

u

◆
+ 1,

F = 0,

G = 1,
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'u ^ 'v =

0

BBBB@

1

2

�
2 cos

�
1

2

u
�
cos (u) sin

�
1

2

u
�
� sin (u)

�
v + cos (u) sin

�
1

2

u
�

1

2

�
2 cos

�
1

2

u
�
sin

�
1

2

u
�
sin (u) + cos (u)

�
v + sin

�
1

2

u
�
sin (u)

�v cos2
�
1

2

u
�
� cos

�
1

2

u
�

1

CCCCA
,

⌫ =

1q�
5

4

� sin

2

�
1

2

u
��

v2 + 2 v cos
�
1

2

u
�
+ 1

('u ^ 'v).

Ara queda clar que, quan u ! 0 i quan u ! 2 ⇡, la direcció de ⌫ tendirà en el primer
cas a la direcció de (0, v/2,�v � 1) i en el segon cap a la del vector (0, v/2,�v + 1) (que
si es mira sobre v = 0 són (0, 0,�1) i (0, 0, 1)). ⇤
Exercici 121(b) Tot i que aquesta superfície no és orientable, traient un segment (que
té mesura nul.la) ja ho és i, per tant, té sentit integrar i calcular-ne l’àrea.

Ara s’ha de calcular, usant qualsevol eina de càlcul simbòlic/numèric la integral,44

Àrea =

Z
2⇡

0

Z
1/4

�1/4

s✓
5

4

� sin

2

✓
1

2

u

◆◆
v2 + 2 v cos

✓
1

2

u

◆
+ 1 dv du.

⇤
Exercici 121(c) Tenint en compte que F = 0 i G = 1, el determinant de la primera
forma fonamental coincideix amb el valor del coeficient E. Per un altre costat, és clar que
'vv = 0 (això implica que g = 0) i, per tant, per a calcular la curvatura de la superfície
(K = (e g � f 2

)/(E G� F 2

)) només es necessitarà calcular el valor del coeficient f de la
segona forma fonamental.

Si es calcula la derivada segona corresponent obtenim

'uv =

0

BBBB@

�1

2

cos (u) sin
�
1

2

u
�
� cos

�
1

2

u
�
sin (u)

cos

�
1

2

u
�
cos (u)� 1

2

sin

�
1

2

u
�
sin (u)

1

2

cos

�
1

2

u
�

1

CCCCA
,

de forma que

f = h⌫,'uvi =
�1

2

q�
5

4

� sin

2

�
1

2

u
��

v2 + 2 v cos
�
1

2

u
�
+ 1

,

i la curvatura serà

K =

�f 2

E
=

� 1

4

((

5
4�sin

2
(

1
2 u
))

v2+2 v cos
(

1
2 u
)

+1

)�
5

4

� sin

2

�
1

2

u
��

v2 + 2 v cos
�
1

2

u
�
+ 1

=

�1

4

��
5

4

� sin

2

�
1

2

u
��

v2 + 2 v cos
�
1

2

u
�
+ 1

�
2

.

Que resulta estrictament negativa en tots els punts del recorregut (i amb valor �1/4 sobre
la corba v = 0). ⇤

44Veureu que les eines de càlcul simbòlic tenen problemes per avaluar la integral. Independent d’això,
la parametrització de la banda de Moebius donada aquí correspon a una superfície que NO té curvatura
de Gauss zero. Per tant, no es correspon amb la banda de Moebius que obtenim habitualment doblegant
el paper. La Flat Moebius band és la superfície de les normals principals de la corba (sin(t), (1 �
cos(t))

3
, sin(t) (1� cos(t))), vegeu A pretender to the title ‘canonical Moebius Strip’, G. Schwarz, Pacific

J.M., 143, 1990.

Toc

JJ II J I
Tornar

https://sagecell.sagemath.org/?z=eJyNkrFugzAURfdI-Qc2bOqkAbZWDBlCfqBblCIX7MSSwdTgV_XvaxtwWjVDtsv1PffZ6AHVKDYRxHi94ikyBHAR1WpAkcFPkDhlnjOczFZkU9mcGkSH_oacY0M2k08Z8JY7W6-Gq_pCPdW0ZaMWddVLNeYNOvGU8Izw_EzQjmRJLzBBm5SkmNRKKl3EStPuwmLSsuFavGnDCHclRUnlwLC_d2WKRnCObJcfnwUjm4w8GPlkpBUEBCYEAgITAgHxhq0AVo9KuztXxr-QuFGzymd19mH4HYYQhhCGEPZ_xtbfpJt3KJyXOH87iLaXgn9X3EiJ8Jabrh6F6nzFq4cOXlvu6DhIXMkj3HHhyoV7bF65cM2-GD71iNAhOW7K9-wffRdv9gvvP0U3soum8ibmADFk2Qogfi0WpDMts3tEZRUYSduPhkbwcuds6ZvbTrvzVGcF_gHFKfB1&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJyNkrFugzAURfdI-Qc2bOqkAbZWDBlCfqBblCIX7MSSwdTgV_XvaxtwWjVDtsv1PffZ6AHVKDYRxHi94ikyBHAR1WpAkcFPkDhlnjOczFZkU9mcGkSH_oacY0M2k08Z8JY7W6-Gq_pCPdW0ZaMWddVLNeYNOvGU8Izw_EzQjmRJLzBBm5SkmNRKKl3EStPuwmLSsuFavGnDCHclRUnlwLC_d2WKRnCObJcfnwUjm4w8GPlkpBUEBCYEAgITAgHxhq0AVo9KuztXxr-QuFGzymd19mH4HYYQhhCGEPZ_xtbfpJt3KJyXOH87iLaXgn9X3EiJ8Jabrh6F6nzFq4cOXlvu6DhIXMkj3HHhyoV7bF65cM2-GD71iNAhOW7K9-wffRdv9gvvP0U3soum8ibmADFk2Qogfi0WpDMts3tEZRUYSduPhkbwcuds6ZvbTrvzVGcF_gHFKfB1&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJyNkrFugzAURfdI-Qc2bOqkAbZWDBlCfqBblCIX7MSSwdTgV_XvaxtwWjVDtsv1PffZ6AHVKDYRxHi94ikyBHAR1WpAkcFPkDhlnjOczFZkU9mcGkSH_oacY0M2k08Z8JY7W6-Gq_pCPdW0ZaMWddVLNeYNOvGU8Izw_EzQjmRJLzBBm5SkmNRKKl3EStPuwmLSsuFavGnDCHclRUnlwLC_d2WKRnCObJcfnwUjm4w8GPlkpBUEBCYEAgITAgHxhq0AVo9KuztXxr-QuFGzymd19mH4HYYQhhCGEPZ_xtbfpJt3KJyXOH87iLaXgn9X3EiJ8Jabrh6F6nzFq4cOXlvu6DhIXMkj3HHhyoV7bF65cM2-GD71iNAhOW7K9-wffRdv9gvvP0U3soum8ibmADFk2Qogfi0WpDMts3tEZRUYSduPhkbwcuds6ZvbTrvzVGcF_gHFKfB1&lang=sage&interacts=eJyLjgUAARUAuQ==


Solucions als Exercicis 199

Exercici 122. En aquestes hipòtesis tota corba sobre la superfície és línia de curvatura.
En particular, les línies coordenades són línies de curvatura. Apliquem el teorema d’O-
linde45 a les corbes u = ct. i v = ct. (suposem '(u, v) una parametrització local d’aquesta
superfície).

⌫u(u, v) = �(u, v)'u(u, v),

, ⌫v(u, v) = �(u, v)'v(u, v).

Observem que la hipòtesi que tots els punts són umbilicals és la que ens ha permès posar
la mateixa funció �(u, v) tant a ⌫u(u, v) com a ⌫v(u, v). Escriurem abreujadament

⌫u = �'u,

⌫v = �'v.

Imposant ⌫uv = ⌫vu obtenim
�u 'v = �v 'u.

Però com que 'u i 'v són linealment independents, ha de ser �u = �v = 0, i per tant
� = ct.. Si aquesta constant és zero estem en el cas del pla. Suposem a partir d’ara que
� 6= 0. Integrant obtenim

⌫ = �'+ ~a

on ~a és un vector constant. Com que h⌫, ⌫i = 1 tenim

1 = �2 h','i+ 2� h',~ai+ h~a,~ai.
Així

h'+

1

�
~a,'+

1

�
~ai = 1

�2
.

Per tant, tots els punts de la forma '(u, v) pertanyen a l’esfera de centre �(1/�)~a i
radi 1/�. ⇤
Exercici 123. Abans de començar amb el problema farem dues observacions sobre l’a-
plicació de Gauss d’una superfície de revolució S, que es dedueixen de l’expressió del
vector normal ⌫ de la parametrització habitual '(u, v) = (x(u) cos(v), x(u) sin(v), z(u))
on (x(u), 0, z(u)) és una corba del pla xz que gira al voltant de l’eix z (veieu el proble-
ma 149)

⌫(u, v) =
1p

(x0
)

2

+ (z0)2
(�z0(u) cos(v),�z0(u) sin(v), x0

(u)).

(i) La imatge per l’aplicació de Gauss d’un meridià (v = ct.) de S està continguda en
un meridià de l’esfera S2, ja que aquests meridians estan caracteritzats per ser la
intersecció amb l’esfera dels plans y = � x, amb � 2 R, i en el nostre cas

y

x
=

�z0 sin(v)

�z0 cos(v)
= tan(v) = ct.

És a dir, la imatge del meridià v = ct. és el meridià de l’esfera que s’obté tallant-la
pel pla y = � x amb � = tan(v).

45Condició necessària i suficient per a què una corba C sobre una superfície sigui línia de curvatura és
que

⌫

0
(t) = �(t)�

0
(t)

on ⌫(t) = ⌫(�(t)), essent �(t) qualsevol parametrització de C. En aquest cas, ��(t) és la curvatura
principal de la superfície al llarg de �(t).
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(ii) La imatge per l’aplicació de Gauss d’un paral.lel (u = ct.) de S descriu tot un paral-
lel de l’esfera S2, ja que aquests paral.lels estan caracteritzats per ser la intersecció
amb l’esfera dels plans z = ct.. En el nostre cas la tercera component z de ⌫ és
x0/
p
(x0

)

2

+ (z0)2 que, com que depèn només de u, és constant quan u = ct.

No oblidem que ⌫ està determinat llevat del signe. A l’anterior expressió hem pres
com sentit positiu de ⌫ el donat per la direcció de 'u ^'v, i depèn doncs de l’ordre de les
variables (u, v).

Observem que en el punt (i) anterior diem que la imatge d’un meridià està continguda
en un meridià (en general no serà igual a tot el meridià) i en canvi en el punt (ii) diem que
la imatge del paral.lel és tot el paral.lel. Així, per veure quina és la imatge de l’aplicació
de Gauss de S només hem d’estudiar la imatge de la seva restricció a un meridià de S,
per exemple, sobre la corba generatriu (x(u), 0, z(u)). Les superfícies de l’enunciat són
totes de revolució, per tant, en cada cas la imatge de l’aplicació de Gauss és
(a) L’equador de S2.
(b) Un paral.lel de S2 que depèn de c, ja que en aquest cas x(u) = c u, z(u) = u, i per

tant, recordant que si ' és la colatitud d’un punt (x, y, z) sobre l’esfera tenim

cot(') =
zp

x2

+ y2
,

en el nostre cas, mirant l’expressió de ⌫(u, v) que hem obtingut abans, serà

cot(') =
x0
(u)

|z0(u)| = c.

Es tracta doncs del paral.lel de colatitud ' = arccot(c).
(c) Una banda oberta d’amplada ⇡

2

centrada a l’equador de S2, ja que en aquest cas
x(u) = cosh(u), z(u) = sinh(u) (només hem de posar y = 0 a l’equació donada i
parametritzar), i per tant tenim

cot(') =
x0
(u)

|z0(u)| = tanh(u).

Com que �1 < tanh(u) < 1, tenim �⇡/4 < ' < ⇡/4. Després fem variar v entre 0 i
2 ⇡.

(d) L’hemisferi nord obert, ja que en aquest cas x(u) = u, z(u) = u2, i per tant,

cot(') =
x0
(u)

|z0(u)| =
1

2 |u| .

Així 0 < cot(') < 1, i per tant 0 < '  ⇡/2, que descriu tot l’hemisferi nord.
Aquesta és la normal que apunta cap dins en el paraboloide.

(e) Tota l’esfera dos cops. En aquest cas x(u) = R + r cos(u), z(u) = r sin(u). Per
tant cot(') = � sin(u)

|cos(u)| , cosa que vol dir que ' pot prendre qualsevol valor, és a dir,
per a cada v fixada tenim tot el meridià. Però els meridians estan caracteritzats per
y = � x amb � = tan(v), per tant per als valors v i v + ⇡ estem en el mateix meridià.
Amb això resulta que aquest meridià està recorregut dues vegades. Variant v s’agafen
tots els meridians dos cops, és a dir la imatge de l’aplicació de Gauss del tor és S2

recorreguda dos cops.
(f) En aquest cas x(u) = cosh(u), z(u) = u, i per tant cot(') = sinh(u), cosa que

vol dir que la imatge de l’aplicació de Gauss és tot S2, excepte els pols, ja que
�1 < sinh(u) < 1.

Toc

JJ II J I
Tornar



Solucions als Exercicis 201

⇤
Exercici 124. Si e

1

, e
2

és la base ortonormal de direccions principals de TPS i ~u =

u
1

e
1

+ u
2

e
2

i ~v = v
1

e
1

+ v
2

e
2

llavors ~u i ~v són direccions conjugades si i només si
�
u
1

u
2

� ✓k
1

0

0 k
2

◆ ✓
v
1

v
2

◆
= k

1

u
1

v
1

+ k
2

u
2

v
2

= 0

que s’acostuma a escriure com

tan(✓) tan(✓0) = �⇢2
⇢
1

,

on ⇢i = 1/ki són els radis de curvatura principals. ⇤
Exercici 125. Vol dir que podem trobar coordenades locals u, v tals que en elles f = 0,
és a dir, II('u,'v) = 0.

Considerem una recta arbitrària D. Les seccions de la superfície amb el feix de plans
per D formen un sistema de corbes que podem pensar com les v = ct. Les corbes con-
jugades d’aquestes són les corbes intersecció de la superfície amb els cons de vèrtex a
D.

En efecte, si fixem un punt M sobre la superfície el pla tangent a la superfície en
M tallarà D en un punt A. El con circumscrit a la superfície de vèrtex A té AM com
generatriu i aquesta recta que és évidemment (Darboux, Leçons p.112) la conjugada de la
tangent en M a la corba de contacte, és tangent a la secció determinada per la superfície
i el pla per D i M .

Per aclarir una mica el que és evident per Darboux, i per a qualsevol familiaritzat amb
el concepte de conjugat, observem que si denotem �(s) la corba intersecció del con amb
la superfície es compleix

h�(s)� A, ⌫(s)i = 0,

on ⌫(s) denota la normal a la superfície en el punt �(s). Simplement derivant en s = 0

tenim
h�0

(0), ⌫(0)i+ h��!MA, ⌫ 0(0)i = 0,

on ⌫ 0 és la derivada del normal sobre �(s). I com que el primer terme és zero tenim el
resultat, ja que per definició de segona forma fonamental

II(
��!
MA,�0

(0)) = h��!MA, ⌫ 0(0)i = 0.

⇤
Exercici 126.
Primer mètode. Sigui (t, y(t)) una corba sobre una superfície z = z(x, y). Suposem
y(0) = 0, z(0, 0) = 0 i zx(0, 0) = zy(0, 0) = 0. D’aquesta manera la segona forma
fonamental a l’origen està formada per les derivades segones en aquest punt. Tot això són
simplificacions que no afecten la natura del problema.

Tallem el pla tangent a la superfície en el punt �(t) = (t, y(t), z(t, y(t))) amb el pla
tangent a la superfície en el punt �(0). Denotem z(t) = z(t, y(t)). El pla tangent en el
punt �(t) és

p (x� t) + q (y � y(t))� (z � z(t)) = 0,

amb p = p(t) = zx(t, y(t)) i q = q(t) = zy(t, y(t)). Tallant amb z = 0 obtenim la recta
p (x� t) + q (y � y(t)) + z(t) = 0,

que té vector director unitari

w(t) =
1p

p2 + q2
(q,�p, 0).
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Ara s’ha de calcular lim
t!0

w(t). Per a això calculem inicialment lim
t!0

p
q . Aplicant l’Hôpital

i la regla de la cadena tenim

lim

t!0

p

q
=

r + s y0

s+ t y0
,

on r, s, t són les derivades segones a l’origen i y0 = y0(0). Substituint a cadascuna de les
coordenades de w(t) tenim

lim

t!0

qp
p2 + q2

= lim

t!0

1p
(p/q)2 + 1

=

s+ t y0p
(r + s y0)2 + (s+ t y0)2

i
lim

t!0

�pp
p2 + q2

= lim

t!0

�1p
(q/p)2 + 1

=

�r � s y0p
(r + s y0)2 + (s+ t y0)2

.

Així,
lim

t!0

w(t) =
1p

(r + s y0)2 + (s+ t y0)2
(s+ t y0,�r � s y0).

Però aquesta direcció és conjugada, respecte la segona forma fonamental, de la direcció
de la corba en t = 0, ja que

(1, y0)

✓
r s
s t

◆ ✓
s+ t y0

�r � s y0

◆
= 0.

Segon mètode. La direcció de la recta intersecció dels plans de vectors normals ⌫
0

(vector normal a la superfície en �(0)) i ⌫(t) (vector normal a la superfície en �(t)) és
⌫
0

^ ⌫(t). Volem calcular

lim

t!0

w(t) = lim

t!0

⌫
0

^ ⌫(t)
k⌫

0

^ ⌫(t)k
(observeu la importància de normalitzar, ja que el límit del numerador és zero).

Aplicant l’Hôpital46

lim

t!0

⌫
0

^ ⌫(t)
k⌫

0

^ ⌫(t)k =

⌫
0

^ ⌫ 0(0)
k⌫ ^ ⌫ 0(0)k .

Així

II(�0(0), ⌫
0

^ ⌫ 0(0)) = hW (�0(0), ⌫
0

^ ⌫ 0(0))i = h⌫ 0(0), ⌫
0

^ ⌫ 0(0)i = 0.

També es pot calcular aquest límit aplicant Taylor considerant ⌫(t) = ⌫
0

+ t ⌫ 0(0)+ . . .
d’on ⌫

0

^ ⌫(t) = t ⌫
0

^ ⌫ 0(0) + . . . i per tant

lim

t!0

⌫
0

^ ⌫(t)
k⌫

0

^ ⌫(t)k = lim

t!0

t ⌫
0

^ ⌫ 0(0) + . . .

kt ⌫
0

^ ⌫ 0(0) + . . .k =

⌫
0

^ ⌫ 0(0)
k⌫

0

^ ⌫ 0(0)k .

⇤
46Per calcular la derivada del denominador posem f(t) = k⌫0 ^ ⌫(t)k i observem que

f

0
(t) =

h⌫0 ^ ⌫

0
(t), ⌫0 ^ ⌫(t)i
f(t)

i, novament per l’Hôpital

f

0
(0) =

h⌫0 ^ ⌫

0
(0), ⌫0 ^ ⌫

0
(0)i

f

0
(0)

que dona f

0
(0).
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Exercici 127(a) Parametritzem el paraboloide el.líptic com '(x, y) = (x, y, x2

+ y2) de
manera que tenim

'x = (1, 0, 2 x),

'y = (0, 1, 2 y),

'x ^ 'y = (�2 x,�2 y, 1),

⌫(x, y) =
1p

1 + 4 r2
(�2 x,�2 y, 1), r2 = x2

+ y2,

'xx = (0, 0, 2), ,

'xy = (0, 0, 0),

'yy = (0, 0, 2).

Per tant, en (x, y) = (0, 0), tenim

I =

✓
1 0

0 1

◆
, II =

✓
2 0

0 2

◆
.

L’origen és, doncs, un punt umbilical. Totes les direccions són direccions de curvatura
amb curvatura principal 2. ⇤
Exercici 127(b) Considerem la parametrització '(x, y) = (x, y, x2 � y2). Tindrem

'x(x, y) = (1, 0, 2 x),

'y(x, y) = (0, 1,�2 y),

'x(x, y) ^ 'y(x, y) = (�2 x, 2 y, 1),

'xx(x, y) = (0, 0, 2),

'xy(x, y) = (0, 0, 0),

'yy(x, y) = (0, 0,�2).

Per tant,

E = 1 + 4 x2, F = �4 x y, G = 1 + 4 y2,

e =
2p

1 + 4 x2

+ 4 y2
, f = 0, g =

�2p
1 + 4 x2

+ 4 y2

i l’endomorfisme de Weingarten a l’orígen és

W = I�1 II =

✓
2 0

0 �2

◆
,

de manera que a l’orígen les curvatures principals són k
1

= 2, k
2

= �2 i les direccions
principals 'x(0, 0) = (1, 0, 0) i 'y(0, 0) = (0, 1, 0) ja que W està ja diagonalitzada en
aquesta base. ⇤
Exercici 127(c) Els càlculs a l’esfera són especialment simples ja que, com es veurà,
tots els punts són umbilicals amb el mateix valor de les curvatures principals en tots
els punts. En particular, no hi gaire diferència entre prendre una parametrització a
una altra. Per exemple, si es parametritza l’esfera (de fet la semiesfera superior) per
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'(x, y) = (x, y,
p

R2 � x2 � y2 ) s’obté

'x = (1, 0,�x/z), on z =

p
R2 � x2 � y2 ,

'y = (0, 1,�y/z),

'x ^ 'y =
1

z
(x, y, z),

⌫(x, y) =
1

R
(x, y, z),

⌫x =

1

R
(1, 0, zx) =

1

R
(1, 0,�x/z) =

1

R
'x,

⌫y =
1

R
(0, 1, zy) =

1

R
(1, 0,�y/z) =

1

R
'y.

Per tant (tenint en compte un altre cop que zx = �x/z i zy = �y/z)

I =

1

z2

✓
R2 � y2 x y

x y R2 � x2

◆
.

i, a més,
W = �d⌫ =

�1

R
Id .

De forma que totes les direccions són principals amb curvatures principals iguals a �1/R
(són negatives perquè hem considerat la normal exterior de l’esfera). Finalment, és clar
que la matriu de la segona forma fonamental serà

II =

�1

R
I =

�1

Rz2

✓
R2 � y2 x y

x y R2 � x2

◆
.

Noteu que la clau en els càlculs de W i II és que el vector normal ⌫ és un múltiple
constant del vector posició i això és independent de la parametrització que s’hagi triat.
Podeu veure com s’arriba al mateix resultat quan es considera la parametrització, més
usual a l’esfera, per les coordenades longitud ✓ i colatitud '

x = R sin(') cos(✓),

y = R sin(') sin(✓),

z = R cos('),

(que tenen l’avantatge de ser ortogonals). ⇤
Exercici 128. Considerem la parametrització '(x, y) = (x, y, a x y).

'x = (1, 0, a y),

'y = (0, 1, a x),

E = 1 + a2 y2,

F = a2 x y,

G = 1 + a2 x2,

⌫ =

1p
1 + a2 x2

+ a2 y2
(�a y,�a x, 1),

'xx = (0, 0, 0),

'xy = (0, 0, a),

'yy = (0, 0, 0),

e = 0,

Toc

JJ II J I
Tornar



Solucions als Exercicis 205

f = h'xy, ⌫i =
ap

1 + a2 x2

+ a2 y2
,

g = 0,

K =

det(II)

det(I)
= � a2

1 + a2 x2

+ a2 y2
.

Per tant, a l’origen (x, y) = (0, 0) tenim K = �a2. A l’origen la primera forma fonamental
és la identitat, de manera que la traça de l’endomorfisme de Weingarten coincideix amb
la traça de la segona forma fonamental II (a l’origen), que és zero. Per tant H = 0. ⇤
Exercici 129. Un punt P 2 S es diu umbilical si l’endomorfisme de Weingarten en aquest
punt és múltiple de la identitat, WP = � Id. Equivalentment, P és un punt umbilical si,
i només si les curvatures principals en P coincideixen, k

1

= k
2

. En efecte, només hem
d’escriure W (ei) = ki ei = � ei per veure que � = k

1

= k
2

.
Ara bé, tenim II(w

1

, w
2

) = I(W (w
1

), w
2

) = � I(w
1

, w
2

) per definició de la segona
forma fonamental. És a dir, en els punts umbilicals la primera i segona formes fonamentals
són proporcionals.

Recíprocament, si en el punt P 2 S tenim II = � I llavors per a cada parell de vectors
w

1

, w
2

tindrem II(w
1

, w
2

) = I(W (w
1

), w
2

) = � I(w
1

, w
2

) = I(�w
1

, w
2

) i aquesta igualtat
implica, per ser I no degenerada, W (w

1

) = �w
1

, és a dir, W = � Id en P , com volíem.
Observem que en termes dels coeficients de les matrius de I i II respecte la base

donada per una carta local aquesta condició equival a
e

E
=

f

F
=

g

G
.

Parametritzem l’el.lipsoide per '(u, v) = (x(u, v), y(u, v), z(u, v)),47 amb

x = a cos(u) sin(v),

y = b cos(u) cos(v),

z = c sin(u).

Obtenim

'u = (�a sin(u) sin(v),�b sin(u) cos(v), c cos(u)),

'v = (a cos(u) cos(v),�b cos(u) sin(v), 0),

'u ^ 'v = (b c cos

2

(u) sin(v), a c cos

2

(u) cos(v), a b sin(u) cos(u)),

⌫ =

'u ^ 'v

k'u ^ 'vk
,

'uu = (�a cos(u) sin(v),�b cos(u) cos(v),�c sin(u)),

'uv = (�a sin(u) cos(v), b sin(u) sin(v), 0),

'vv = (�a cos(u) sin(v),�b cos(u) cos(v), 0).

El coeficient F de la primera forma fonamental val

F = h'u,'vi = (b2 � a2) sin(u) cos(u) sin(v) cos(v).

El coeficient f de la segona forma fonamental val

f = h'uv, ⌫i = 0.

47Depenent de la parametrització que es triï els càlculs poden ser més o menys directes. Es pot provar
també amb la parametrització que s’introdueix a l’exercici 218.
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Com que en els punts umbilicals la primera i la segona forma fonamentals són propor-
cionals ha de ser F = 0, i per tant tenim quatre possibilitats: u = 0, v = ⇡/2, v = ⇡ i
v = 3 ⇡/2, ja que estem assumint �⇡/2 < u < ⇡/2, 0 < v < 2⇡.
Primer cas: u = 0. La primera forma fonamental val

I =

✓
c2 0

0 a2 cos

2

(v) + b2 sin

2

(v)

◆

i la segona

II =

�a b c

k'u ^ 'vk

✓
1 0

0 1

◆

ja que, en general tenim,

e = h'uu, ⌫i =
�a b c cos(u)

k'u ^ 'vk
,

g = h'vv, ⌫i =
�a b c cos

3

(u)

k'u ^ 'vk
.

Per tal de que la primera i la segona forma fonamentals siguin proporcionals ha de ser

a2 cos

2

(v) + b2 sin

2

(v) = c2,

equivalentment

cos

2

(v) =
c2 � b2

a2 � b2
,

cosa impossible, ja que 0 < c < b < a.
Segon cas: v = ⇡/2. La primera forma fonamental val

I =

✓
a2 sin

2

(u) + c2 cos

2

(u) 0

0 b2 cos

2

(u)

◆

i la segona

II =

�a b c cos(u)

k'u ^ 'vk

✓
1 0

0 cos

2

(u)

◆
.

Per tal de que la primera i la segona forma fonamentals siguin proporcionals ha de ser

(a2 sin

2

(u) + c2 cos

2

(u)) cos2(u) = b2 cos

2

(u),

és a dir,

cos

2

(u) =
b2 � a2

c2 � a2
,

o bé,

cos(u) =

p
a2 � b2p
a2 � c2

.

Observem que hi ha dos angles u
1

, u
2

= �u
1

, entre �⇡/2 i ⇡/2, amb aquest cosinus.
Tenim doncs dos punts umbilicals

Ui = (a cos(ui), 0, c sin(ui)), i = 1, 2,

és a dir,

U
1

= (a

p
a2 � b2p
a2 � c2

, 0, c

p
b2 � c2p
a2 � c2

),

U
2

= (a

p
a2 � b2p
a2 � c2

, 0,�c

p
b2 � c2p
a2 � c2

).
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El pla tangent a l’el.lipsoide en Ui és

(x� a cos(ui)) b c cos(ui) + (z � c sin(ui)) a b sin(ui) = 0,

que es pot escriure com
z = � c

a
cot(ui) x+ di

per a una certa constant di. Són doncs paral.lels a les seccions cícliques (veure el Lema
més endavant).
Tercer cas: v = ⇡. La primera forma fonamental val

I =

✓
b2 sin

2

(u) + c2 cos

2

(u) 0

0 a2 cos

2

(u)

◆

i la segona

II =

�a b c cos(u)

k'u ^ 'v|k

✓
1 0

0 cos

2

(u)

◆
.

Per tal que la primera i la segona forma fonamentals siguin proporcionals ha de ser

(b2 sin

2

(u) + c2 cos

2

(u)) cos2(u) = a2 cos

2

(u),

equivalentment

cos

2

(v) =
a2 � b2

c2 � b2
,

cosa impossible, ja que 0 < c < b < a.
Quart cas: v = 3⇡/2. És igual al cas v = ⇡/2, només canvia el signe de la x, de manera
que els quatre punts umbilicals de l’el.lipsoide són

(±a

p
a2 � b2p
a2 � c2

, 0,±c

p
b2 � c2p
a2 � c2

).

Lema. El pla z = � x, amb

� = ±c
p
a2 � b2

a
p
b2 � c2

talla l’el.lipsoide donat en circumferències.

Demostració. Substituint z = � x a l’equació de l’el.lipsoide obtenim

y = b
p
1� Ax2 , amb A =

c2 + a2 �2

a2c2
.

Així, la corba solució és
�(x) = (x, b

p
1� Ax2 ,�x).

Com que

�0(x) = (1,
�bAxp
1� Ax2

,�)

�00(x) = (0,
�bA

(

p
1� Ax2

)

3

, 0)

la curvatura val

k =

bA
p
1 + �2

(

p
(1 + �2) (1� Ax2

) + A2 b2 x2

)

3

.

Per tal que sigui constant (i així �(x) sigui un cercle) el coeficient de x2 ha de ser zero.
És a dir,

Ab2 = 1 + �2.
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Substituint A pel seu valor i simplificant obtenim

� = ±c
p
a2 � b2

a
p
b2 � c2

,

com volíem.
⇤

Exercici 130. Amb la parametrització '(x, y) = (x, y, x3 � 3 x y2) podem calcular

'x(x, y) = (1, 0, 3 x2 � 3 y2),

'y(x, y) = (0, 1,�6 x y),

'xx(x, y) = (0, 0, 6 x),

'xy(x, y) = (0, 0,�6 y),

'yy(x, y) = (0, 0,�6 x),

'x ⇥ 'y = (3 (y2 � x2

), 6 x y, 1),

k'x ⇥ 'yk2 = 1 + 36 x2 y2 + 9 (y2 � x2

)

2

= 1 + 9 (x2

+ y2)2 = 1 + 9 r4.

I aleshores

I =

✓
1 + 9 (x2 � y2)2 �18 x y (x2 � y2)
�18 x y (x2 � y2) 1 + 36x2 y2

◆
, II =

6p
1 + 9 r4

✓
x �y
�y �x

◆
.

En polars,

I =

✓
1 + 9 r4 cos

2

(2↵) �9 r4 sin(2↵) cos(2↵)
�9 r4 sin(2↵) cos(2↵) 1 + 9 r4 sin

2

(2↵)

◆
,

II =

6 rp
1 + 9 r4

✓
cos(↵) � sin(↵)
� sin(↵) � cos(↵)

◆
.

Per tant, l’aplicació de Weingarten té per matriu

W = I�1 II =

6 r

(1 + 9 r4)3/2

✓
cos(↵) (1 + 18 r4 sin

2

(↵)) � sin(↵) (1 + 18 r4 cos

2

(↵))
� sin(↵) (1� 9 r4 cos(2↵)) � cos(↵) (1 + 9 r4 cos(2↵))

◆
.

La curvatura de Gauss és igual a

K(x, y) = det(W ) =

36 r2

(1 + 9 r4)3

⇣
�(1 + 9 r4)

⌘
=

�36 r2

(1 + 9 r4)2
,

expressió que només depèn de r2.
Observem que S no és una superfície minimal ja que la traça de W no és zero.
Per calcular les direccions asimptòtiques hem de determinar els vectors v = a'x+b'y,

(amb I(v, v) = 1), tals que II(v, v) = 0, és a dir, tals que
�
a b

� ✓ x �y
�y �x

◆ ✓
a
b

◆
= 0,

d’on resulta que s’ha de complir

(a2 � b2) x = 2 a b y.

Així, per a cada punt de coordenades (x, y) fixat, tenim dues equacions amb dues
incògnites, a i b, de la forma

E a2 + 2F a b+Gb2 = 1

(a2 � b2) x = 2 a b y

)
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Per exemple, si x = 0, (recta (0, y, 0) continguda a la sella de Mico) tenim

(1 + 9 y4) a2 + b2 = 1

0 = 2 a b y

)

que implica, quan y 6= 0, a = 0, b = 1 ('y direcció asimptòtica) o bé b = 0, a =

1

1+9 y4 ('x

direcció asimptòtica). En un punt arbitrari és difícil aïllar a i b d’aquesta equació.
En el (0, 0) tota direcció és asimptòtica. Però només hi passen dues línies asimptòti-

ques, les línies coordenades. L’equació diferencial de les línies asimptòtiques és

(x0
(t)2 � y0(t)2) x(t) = 2 x0

(t) y0(t) y(t).

Posant dy/dt = (dy/dx) (dx/dt) l’equació anterior s’escriu

(1� ẏ2) x = 2 ẏ y, ẏ = dy/dx

i aquesta equació diferencial admet la solució y = ± 1p
3

x. És a dir, les línies asimptòtiques
per l’origen són

'(x,± 1p
3

x) = (x,± 1p
3

x, 0).

La curvatura de Gauss és estrictament negativa en tots els punts, excepte a l’origen,
on val zero. A l’origen l’endomorfisme de Weingarten s’anul.la, de manera que és un punt
umbilical amb k

1

= k
2

= 0. Cap dels altres punts pot ser un punt umbilical. ⇤
Exercici 131. Recordem que la curvatura de Gauss K compleix que K = k

1

k
2

, on k
1

,
k
2

són les curvatures principals. En els punts umbilicals, K = k2 � 0.
(a) A l’exercici 128 es veu que la curvatura de Gauss de l’hiperboloide z = x y és estric-

tament negativa en tots els punts. Per tant, no hi ha punts umbilicals.
(b) Prenem la parametrització '(u, v) = (u, v, u

2

a2 + " v2

b2 ). Les derivades parcials són

'u(u, v) = (1, 0,
2 u

a2
),

'v(u, v) = (0, 1,
2 " v

b2
),

'uu(u, v) = (0, 0,
2

a2
),

'uv(u, v) = (0, 0, 0),

'vv(u, v) = (0, 0,
2 "

b2
),

i per tant els coeficients de la primera forma fonamentals són

E = 1 +

4 u2

a4
, F =

4 " u v

a2 b2
, G = 1 +

4 v2

b4
.

La normal és
⌫ =

a2 b2p
4 u2 b4 + 4 a4 v2 + a4 b4

(�2 u

a2
,�2 " v

b2
, 1),

i per tant els coeficients de la segona forma fonamental són

e =
2 b2p

4 u2 b4 + 4 a4 v2 + a4 b4
, f = 0, g =

2 " a2p
4 u2 b4 + 4 a4 v2 + a4 b4

.

Per tant, la curvatura de Gauss serà

K =

4 " a6 b6

�

2
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amb
� = a4 b4 + 4 u2 b4 + 4 v2 a4.

Així, si " = �1 no hi ha punts umbilicals. Suposem, doncs, a partir d’ara " = 1.
La curvatura mitjana és

H =

1

2

eG� 2 f F + g E

E G� F 2

=

�
a2 b4 + 4 a2 v2 + b2 a4 + 4 b2 u2

� a2 b2

�

3/2
.

La condició d’umbilical es pot escriure com H2 �K = 0. Substituint tenim

H2 �K =

a4 b4

�

3

✓�
a2b2(b2 + a2) + 4a2v2 + 4u2b2

�
2

� 4 a2 b2 (a4 b4 + 4 u2 b4 + 4 v2 a4)

◆

=

a4 b4

�

3

✓
a4 b4

�
b2 � a2

�
2

+ 8 a2 b4 (a2 � b2) u2

+ 8 a4 b2 (b2 � a2) v2

+ 16 a4 v4 + 16 u4 b4 + 32 a2 b2 u2 v2
◆
.

Els termes d’aquest parèntesi es poden agrupar segons ens convingui per veure que
sempre és una quantitat positiva. En efecte, si a > b els podem agrupar així:

�
4 a2 v2 + b2 a2 (b2 � a2)

�
2

+ 8 a2 b4 u2

(a2 � b2) + 32 a2 b2 u2 v2 + 16 b4 u4

que és una suma de quadrats que no s’anul.la mai.
Si a < b l’agrupació pot ser la següent: El parèntesis del numerador es pot escriure
com

�
4 b2 u2

+ b2 a2 (a2 � b2)
�
2

+ 8 a4 b2 v2 (b2 � a2) + 32 a2 b2 u2 v2 + 16 a4 v4

que torna a ser una suma de quadrats que no s’anul.la mai.
Per tant, en cap dels dos casos hi ha punts umbilicals.
Finalment, si a = b, es veu que el punt de coordenades (u, v) = (0, 0) és un punt
umbilical.

⇤
Exercici 132. Com que

 u(u, v) = (�r sin(u) cos(v),�r sin(u) sin(v), r cos(u)),

 v(u, v) = (�(R + r cos(u)) sin(v), (R + r cos(u)) cos(v), 0),

la mètrica és ✓
r2 0

0 (R + r cos(u))2

◆
.

L’àrea de la regió R del tor donada per �✏ < u < ✏, �� < v < � és

A(R) =

Z �

��

Z ✏

�✏
r (R + r cos(u)) du dv = 4Rr � ✏+ 4 r2 � sin(✏).

Calculem ara l’àrea de la regió ⌫(R), on ⌫ : Tor �! S2 és l’aplicació de Gauss. La
normal al tor és

⌫(u, v) = (� cos(u) cos(v),� cos(u) sin(v),� sin u)
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per tant, ⌫(R) és la regió sobre l’esfera S2 determinada pels vectors ⌫(u, v) quan �✏ <
u < ✏, �� < v < �.

Si pensem, com és habitual, S2 parametritzada per la longitud ✓ i la colatitud ' de
manera que els seus punts són (sin(') cos(✓), sin(') sin(✓), cos(')), la mètrica és

ds2 = d'2

+ sin

2

(') d✓2,

i la relació entre les coordenades (u, v) d’un punt del tor i els valors (✓,') que corresponen
a ⌫(u, v) és cos(') = � sin(u), ✓ = v (com es veu comparant l’expressió de ⌫(u, v) amb
l’expressió dels punts de S2 en coordenades (✓,') que acabem de donar).

Per tant, la regió ⌫(R) està caracteritzada per �✏+ ⇡/2 < ' < ✏+ ⇡/2, �� < ✓ < �.
I l’àrea de ⌫(R) és

A(⌫(R)) =

Z ✏+⇡/2

�✏+⇡/2

Z �

��
sin(') d✓ d' = 2 �

h
� cos(')

i✏+⇡/2
�✏+⇡/2

= 4 � sin(✏).

Finalment

lim

✏!0

A(⌫(R))

A(R)

= lim

✏!0

4 � sin(✏)

4Rr � ✏+ 4 r2 � sin(✏)
=

1

r (R + r)
.

Aquest resultat és obvi sense fer cap càlcul ja que en el punt P les direccions principals
venen donades per dues circumferències ortogonals de radis respectius r i R + r. ⇤
Exercici 133. Sabem que la relació entre la curvatura k de C i la curvatura de la
corresponent secció normal és

kn = k cos(↵),

on ↵ és l’angle entre la normal a la corba i la normal a la superfície.
Per altra banda l’equació d’Euler diu que

kn = k
1

cos

2

(✓) + k
2

sin

2

(✓),

on ✓ és l’angle entre el vector tangent a la corba en P i la primera direcció principal.
La hipòtesis sobre la curvatura de Gauss diu que k

1

i k
2

tenen el mateix signe.
Si k

1

i k
2

són positius,

k � k cos(↵) = k
1

cos

2

(✓) + k
2

sin

2

(✓) � min(k
1

, k
2

) (cos

2

(✓) + sin

2

(✓)) = min(k
1

, k
2

).

Si k
1

i k
2

són negatius,

k
1

cos

2

(✓) + k
2

sin

2

(✓) = k cos(↵) � �k

que, canviant de signe dona,

�k
1

cos

2

(✓)� k
2

sin

2

(✓) = �k cos(↵)  k

i per tant

min(|k
1

| , |k
2

|) = min(�k
1

,�k
2

) (cos

2

(✓) + sin

2

(✓))

 �k
1

cos

2

(✓)� k
2

sin

2

(✓) = �k cos(↵)  k.

⇤
Exercici 134. Si són constants i iguals tots els punts són umbilicals i estem en una esfera
o un pla (exercici 122). Si són constants i diferents prenem una parametrització principal
(U,') i apliquem la igualtat de Schwarz a

⌫u = �k
1

'u,

⌫v = �k
2

'v.
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Per ser k
1

6= k
2

obtenim 'uv = 0, i per tant �1

12

= �

2

12

= 0.
Com que h'u,'vi = 0 tenim

h'uv,'vi+ h'u,'vvi = 0,

h'uu,'vi+ h'u,'uvi = 0

i per tant �1

22

= �

2

11

= 0.
Llavors, per la fórmula de la curvatura en funció dels símbols de Christoffel (que també

s’utilitza a l’exercici 144) es té K = 0.
Només queda considerar, doncs, k

1

= 0 i k
2

constant diferent de zero. Com que
k
1

= e/E també tenim e = 0.
Així

'uu = �

1

11

'u

però, per l’expressió dels símbols de Christoffel en funció dels coeficients de la mètrica, es
compleix

�

1

11

=

(

p
E )up
E

I observem també, abans de continuar l’exercici, que Ev = 0, ja que

Ev = (h'u,'ui)v = 2 h'uv,'ui = 0

donat que 'uv = 0.
Aquestes consideracions permeten demostrar que el vector unitari

a =

'up
E

és constant.
En efecte, ✓

'up
E

◆

u

=

'uu

p
E � (

p
E )u 'u

E
= 0,

i ✓
'up
E

◆

v

=

'uv

p
E � (

p
E )v 'u

E
= 0.

Considerem ara l’aplicació diferenciable G : U ! R3 donada per

G(u, v) = '(u, v)� h'(u, v), ai a+ 1

k
2

⌫(u, v)

Aquesta funció és constant ja que les seves derivades parcials són

Gu = 'u � h'u, ai a+
1

k
2

⌫u = 0,

Gv = 'v � h'v, ai a+
1

k
2

⌫v = 0,

ja que ⌫u = 0, h'v, ai = 0 i ⌫v = �k
2

'v. Si c 2 R3 és el valor constant de G(u, v) tenim

'(u, v)� h'(u, v), ai a� c = � 1

k
2

⌫(u, v) (24)

Ara bé, com que clarament hG(u, v), ai = 0, tenim hc, ai = 0. Per tant, prenent normes
(al quadrat) a (24) es compleix

k'(u, v)� ck2 � h'(u, v)� c, ai2 = 1

k2

2
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La part esquerra d’aquesta igualtat és exactament la fórmula de la distància del punt
'(u, v) a la recta que passa per c amb vector director a (no és més que el teorema de
Pitàgores). Per tant, tots els punts de la superfície pertanyen al cilindre circular recte
d’eix la recta c+ hai i radi 1/k

2

.
Resumint:

Una superfície connexa amb curvatures principals constants o, equivalentment,
amb curvatura mitjana i de Gauss constant és un obert d’una esfera, d’un pla
o d’un cilindre circular recte.

⇤
Exercici 135. Si S és compacta aleshores la aplicació f : S ! R definida per f(x, y, z) =
k(x, y, z)k2 = x2

+ y2 + z2 pren un valor màxim R2 en un cert punt p 2 S. Vegem en
primer lloc que el vector normal de S en p és ⌫(p) =

1

R p. En efecte, per a tot vector
tangent v 2 TpS prenem una corba � ⇢ S tal que �(0) = p i �0

(0) = v. Com que
g(s) = f(�(s)) té un màxim en s = 0 deduïm que g0(0) = h�0

(0), �(0)i = hv, pi = 0, i per
tant p és ortogonal a tot vector tangent. Considerem ara un vector propi de l’aplicació
de Weingarten en p unitari w 2 TpS, amb valor propi k i �(s) una corba parametritzada
per l’arc amb �(0) = p i �0(0) = w Com que w és unitari tenim

k = kn(w) = II(w) = h�d⌫(w), wi = h�⌫ 0(0), �0(0)i = h⌫(p), �00(0)i.
D’altra banda, la funció g(s) = f(�(s)) = h�(s), �(s)i té un màxim en s = 0, per tant no
tan sols g0(0) = 0 sinó que, a més, g00(0)  0. Si es calcula g00(0) s!’obté

g00(0) = 2 (h�00(0), �(0)i+ h�0(0), �0(0)i)
= 2 (h�00(0), pi+ hw,wi)
= 2 (R h�00(0), ⌫(p)i+ 1) = 2 (Rk + 1).

D’on Rk + 1  0, és a dir, k  �1

R . I per tant, K(p) � 1

R2 > 0. Això implica clarament
que una superfície mínima no pot ser compacta. ⇤
Exercici 136(a) Observem que el laplacià es pot escriure com

�' = 'uu + 'vv.

Derivant les relacions

h'u,'vi = 0

h'u,'ui = h'v,'vi = �

obtenim

2 h'uu,'ui = �u
2 h'uv,'vi = �u

h'uu,'vi+ h'u,'uvi = 0

i, per tant,
h'uu + 'vv,'ui =

�u
2

� �u
2

= 0.

I anàlogament quan multipliquem el laplacià per 'v. ⇤
Exercici 136(b) Si el laplacià és zero, els termes de la diagonal de la segona forma
fonamental són

e = �h'uu, ⌫i = h'vv, ⌫i = �g.

Toc

JJ II J I
Tornar



Solucions als Exercicis 214

La matriu de l’endomorfisme associat (endomorfisme de Weingarten) és el producte de
matrius L = I�1 II. Aquesta matriu té traça zero, ja que la segona forma fonamental
té traça zero i la primera forma fonamental és un múltiple de la identitat. Com que la
curvatura mitjana és la traça de l’endomorfisme associat, hem acabat. ⇤
Exercici 137(a) Considerem el pla que passa per P amb espai director generat per w,
⌫(P ). La intersecció d’aquest pla amb la superfície és una corba i aquesta corba només
pot tenir un punt en comú amb la recta ` : P + hwi. Per tant, aquesta recta ` és tangent
a la corba. Com que ⌫(P ) és normal a les tangents en P de tots les corbes contingudes a
la superfície, en particular ⌫(P ) és ortogonal a w. ⇤
Exercici 137(b) Per definició

II(T,w) = I(�d⌫

ds
, w) = h�d⌫

ds
, wi,

on ⌫(s) és la restricció del normal a la superfície a la generatriu �(s) (corba integral de
T ). ⇤
Exercici 137(c) En aquesta base

I =

✓
1 cos(✓)

cos(✓) 1

◆

i per tant

W = I�1 II =

1

sin

2

(✓)

✓
1 � cos(✓)

� cos(✓) 1

◆ ✓
kn(T ) 0

0 kn(w)

◆

com volíem. ⇤
Exercici 137(d) Observem que

K(P ) = detW (P ) =

1

sin

2

(✓)
hkn(T ), kn(w)i

Per tant, només cal demostra que

kn(T ) = hk(Q), sin2

(✓).

Denotem �(s) la corba generatriu del contorn. Llavors la corba contorn aparent és la
corba

�(s) = �(s) + �(s)w

amb �0(s) = � cos(✓) (només cal imposar h�0
(s), wi = 0).

L’observació important és que ⌫(�(s)) = N(s), on N(s) el el vector normal a �(s).
Això és degut a que tant ⌫(�(s)) com N(s) són ortogonals a w i �0

(s).
Així,

kn(T ) = II(T, T ) = h�d⌫

ds
, T i = h⌫, �00(s)i = h⌫, �00

(s) + (cos(✓))0 wi = h⌫, �00
(s)i

Però s no és paràmetre arc de �. Si posem

T� =

�0
(s)

k�0
(s)k =

�0
(s)

sin(✓)

tenim

�0
(s) = k�0

(s)k T�

�00
(s) = k�0

(s)k0 T� + k�0
(s)k d

d⌧

d⌧

ds
T�

Toc

JJ II J I
Tornar



Solucions als Exercicis 215

on ⌧ és el paràmetre arc de � (en particular d⌧/ds = k�0
(s)k = sin(✓)).

Per tant tenim

kn(T ) = h⌫, �00
(s)i = h⌫, sin2

(✓) k�(s)N(s)i = k(Q) sin

2

(✓)

com volíem. ⇤
Exercici 138(a) Derivant

h⌫(�(t)), �(t)� F i = 0

s’obté el resultat de forma immediata. ⇤
Exercici 138(b)

II =

✓
kn(T ) 0

0 kn(w) kwk2
◆

Per tant,

W = I�1 II =

1

kwk2 sin

2

(✓)

✓
|w|2 �kwk cos(✓)

�kwk cos(✓) 1

◆ ✓
kn(T ) 0

0 kn(w) kwk2
◆

Operant obtenim

W =

1

kwk2 sin

2

(✓)

✓
kwk2 kn(T ) �kn(w) kwk3 cos(✓)

�kn(T ) kwk cos(✓) kn(w) kwk2
◆

⇤
Exercici 138(c) De l’apartat anterior es dedueix

K = detW = K(P ) =

kn(T ) kn(P � F )

sin

2

(✓)
.

⇤
Exercici 139(a) Prenem la parametrització

'(u, v) = (cosh(u) cos(v), cosh(u) sin(v), sinh(u))

Llavors

'u = (sinh(u) cos(v), sinh(u) sin(v), cosh(u))

'v = (� cosh(u) sin(v), cosh(u) cos(v), 0),

la primera forma fonamental està determinada per

E = sinh

2

(u) + cosh

2

(u), F = 0, G = cosh

2

(u)

i l’element d’àrea és d� =

p
E G� F 2

= cosh(u)
q

1 + 2 sinh

2

(u) .
Per tant

Area(R) = 2 ⇡

Z
arcsinh(z1)

arcsinh(z0)

cosh(u)
q

1 + 2 sinh

2

(u) du

= 2 ⇡

✓
1 + 2 sinh

2

(u)

◆
3/2

1

6

�
arcsinh(z1)

arcsinh(z0)

=

⇡

3

✓
(1 + 2 z2

1

)

3/2 � (1 + 2 z2
0

)

3/2

◆
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⇤
Exercici 139(b)

'uu = (cosh(u) cos(v), cosh(u) sin(v), sinh(u))

'uv = (� sinh(u) sin(v), sinh(u) cos(v), 0)

'vv = (� cosh(u) cos(v),� cosh(u) sin(v), 0)

'u ^ 'v = (� cosh

2

(u) cos(v),� cosh

2

(u) sin(v), sinh(u) cosh(v))

k'u ^ 'vk = cosh(u)
q

cosh

2

(u) + sinh

2

(u)

⌫ =

1p
cosh(2u)

(� cosh(u) cos(v),� cosh(u) sin(v), sinh(u))

e = h⌫,'uui =
�1p

cosh(2u)

f = h⌫,'uvi = 0

g = h⌫,'vvi =
cosh

2

(u)p
cosh(2u)

K =

e g � f 2

E G� F 2

=

�1

cosh

2

(2 u)
⇤

Exercici 140. Recordem que la derivada covariant rXN està definida com la projecció
sobre la superfície de la derivada direccional, és a dir,

rXN = ⇡

✓
DN

dt |t=0

◆
.

Recordem que
DN

dt |t=0

=

dN(�(t))

dt |t=0

,

on �(t) és una corba integral de X, és a dir, �(0) = P i �0(0) = X.
Com que el camp normal a u = ↵ és el gradient normalitzat

N =

1

kruk grad(u)

tenim
DN

dt |t=0

=

✓
1

kruk

◆0

grad(u) +
1

kruk
d

dt

�@u
@x

,
@u

@y
,
@u

@z

�
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Com que el gradient és ortogonal a la superfície, en projectar passa a zero i tenim

⇡

✓
DN

dt |t=0

◆
= ⇡

✓
1

kruk
d

dt

�@u
@x

,
@u

@y
,
@u

@z

�◆

Però
d

dt

✓
@u

@x

◆
=

@2u

@x2

@x

@t
+

@2u

@x@y

@y

@t
+

@2u

@x@z

@z

@t
i anàlogament per les derivades de u respecte y i z, de manera que tenim

⇡

✓
DN

dt |t=0

◆
= ⇡

✓
1

kruk H(u)X

◆
,

i ja hem acabat ja que ara tenim
1

kruk H(u)X = ⇡

✓
DN

dt |t=0

◆
+ µN = rXN + µN

per un cert µ 2 R, i per tant
H(u)X = kruk rXN + �N

amb � = µ kruk com volíem.
Observem que tenim doncs

hH(u)X, Y i = kruk II(X, Y )

que expressa la relació entre la segona forma fonamental i el Hessià. ⇤

Teorema egregi

Exercici 141. Com que
'u = (1, 0, au)

'v = (0, 1, av)

⌫ =

1p
1 + (au)2 + (av)2

(�au,�av, 1)

'uu = (0, 0, auu)

'uv = (0, 0, auv)

'vv = (0, 0, avv)

Les parts normals de les segones derivades queden determinades per

h'uu, ⌫i =
auup

1 + (au)2 + (av)2
= e

h'uv, ⌫i =
auvp

1 + (au)2 + (av)2
= f

h'vv, ⌫i =
avvp

1 + (au)2 + (av)2
= g

De forma que, per a les parts tangents,

'uu � e ⌫ =

auu
1 + (au)2 + (av)2

(au 'u + av 'v)

'uv � f ⌫ =

auv
1 + (au)2 + (av)2

(au 'u + av 'v)

'vv � g ⌫ =

avv
1 + (au)2 + (av)2

(au 'u + av 'v)
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Això dóna els símbols de Christoffel

�

1

11

=

auu au
1 + (au)2 + (av)2

�

2

11

=

auu av
1 + (au)2 + (av)2

�

1

12

=

auv au
1 + (au)2 + (av)2

�

2

12

=

auv av
1 + (au)2 + (av)2

�

1

22

=

avv au
1 + (au)2 + (av)2

�

2

22

=

avv av
1 + (au)2 + (av)2

⇤
Exercici 142. El teorema egregi de Gauss es dedueix directament de la fórmula

�EK = (�

2

12

)u � (�

2

11

)v + �
1

12

�

2

11

+ �

2

12

�

2

12

� �2

11

�

2

22

� �1

11

�

2

12

de la qual s’en desprèn que la curvatura de Gauss K es pot calcular a partir de E i dels
símbols de Christoffel. Com que aquests es poden calcular a partir dels coeficients E, F ,
G de la primera forma fonamental i les seves derivades, K queda determinada, doncs, per
la primera forma fonamental48.

L’expressió dels símbols de Christoffel en funció dels coeficients de la primera forma
fonamental i les seves derivades és

�

1

11

=

GEu � 2F Fu + F Ev

2 (E G� F 2

)

�

2

11

=

2E Fu � E Ev � F Eu

2 (E G� F 2

)

�

1

12

=

GEv � F Gu

2 (E G� F 2

)

�

2

12

=

E Gu � F Ev

2 (E G� F 2

)

�

1

22

=

2GFv �GGu � F Gv

2 (E G� F 2

)

�

2

22

=

E Gv � 2F Fv + F Gu

2 (E G� F 2

)

.

que, quan F = 0 (coordenades ortogonals), es redueixen a

�

1

11

=

Eu

2E
�

2

11

=

�Ev

2G

�

1

12

=

Ev

2E
�

2

12

=

Gu

2G

�

1

22

=

�Gu

2E
�

2

22

=

Gv

2G
De manera que

�EK =

⇣Gu

2G

⌘

u
+

⇣ Ev

2G

⌘

v
� Ev

2E

Ev

2G
+

⇣Gu

2G

⌘
2

+

Ev

2G

Gv

2G
� Eu

2E

Gu

2G
.

D’on es dedueix
K = � 1

2

p
E G

✓✓
Gup
E G

◆

u

+

✓
Evp
E G

◆

v

◆
.

Observem que quan E = 1, que és la situació que es dona quan s’utilitzen coordenades
geodèsiques, aquesta fórmula diu simplement que

K = � 1p
G

⇣p
G
⌘

uu

⇤
Exercici 143. Calculem la curvatura de Gauss.

't = (cos(s), sin(s), 0)

48Podeu trobar aquesta expressió per exemple a Notes sobre corbes i superfícies, A. Reventós, 2018.
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's = (�t sin(s), t cos(s), 1)

E = 1

F = 0

G = 1 + t2

⌫ =

1p
1 + t2

(sin(s),� cos(s), t)

'tt = (0, 0, 0)

'ts = (� sin(s), cos(s), 0)

'ss = (�t cos(s),�t sin(s), 0)

e = 0

f = � 1p
1 + t2

g = 0

K = � 1

(1 + t2)2

Anàlogament

 t = (sin(s), cos(s),
1

t
)

 s = (t cos(s),�t sin(s), 0)

E = 1 +

1

t2

F = 0

G = t2

⌫ =

1p
1 + t2

(sin(s), cos(s),�t)

 tt = (0, 0,� 1

t2
)

 ts = (cos(s),� sin(s), 0)

 ss = (�t sin(s),�t cos(s), 0)

e =
1

t
p
1 + t2

f = 0

g = � tp
1 + t2

K = � 1

(1 + t2)2

Per veure que l’aplicació f : helicoide �! logaritmoide donada per f('(t, s)) =  (t, s)
no és isometria hem de veure si la matriu de la primera forma fonamental de l’helicoide
respecte de la base 't, 's coincideix amb la matriu de la primera forma fonamental del
logaritmoide respecte de la base f⇤'t, f⇤'s.

Però
f⇤'t =

d

dt |t=0

f('(t, s
0

)) =

d

dt |t=0

 (t, s
0

) =  t.

Anàlogament f⇤'v =  v. Però en els càlculs anteriors es veu que la matriu de la primera
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forma fonamental de l’helicoide respecte de la base 't, 's no coincideix amb la matriu de
la primera forma fonamental del logaritmoide respecte de la base  t,  s.

A més podem veure fàcilment, no únicament que f no és isometria, sinó que no hi ha
cap isometria entre l’helicoide H i el logaritmoide L. En efecte, qualsevol isometria F
entre H i L ha de portar el punt de coordenades (t, s) al punt de coordenades (±t, u(t, s)),
on u = u(t, s) és una funció desconeguda que ens determina F . Això és degut a que F
conserva la curvatura de Gauss, la qual, com hem vist, només depèn de t2. Així, doncs,
tenim F ('(t, s)) =  (±t, u(t, s)). En particular,

dF ('t) = ± t +  s
@u

@t
.

Per ser F isometria
hdF ('t), dF ('t)i = h't,'ti = 1,

però

hdF ('t), dF ('t)i = h± t +  s
@u

@t
,± t +  s

@u

@t
i = 1 +

1

t2
+

✓
@u

@t

◆
2

t2.

Igualant les dues darreres igualtats s’arriba a una contradicció. ⇤
Exercici 144(a) Tenint en compte que les derivades segones de la parametrització són
nul.les, tots els símbols de Christoffel són 0. ⇤
Exercici 144(b) La parametrització per les coordenades polars del pla z = 0 serà

'(r, ✓) = (r cos(✓), r sin(✓), 0)

de forma que els vectors tangents són
'r = (cos(✓), sin(✓), 0)

'✓ = (�r sin(✓), r cos(✓), 0)

i, òbviament, el vector normal serà
⌫ = (0, 0, 1)

Les derivades segones són
'rr = (0, 0, 0)

'r✓ = (� sin(✓), cos(✓), 0)

'✓✓ = (�r cos(✓),�r sin(✓), 0)

Sense més càlculs es pot veure que

'r✓ =
1

r
'✓

'✓✓ = �r 'r

de forma que
�

1

11

= 0 �

2

11

= 0

�

1

12

= 0 �

2

12

=

1

r
�

1

22

= �r �

2

22

= 0

(associant l’índex 1 a les derivades respecte r i el 2 a les derivades respecte ✓). ⇤
Exercici 144(c) La fórmula de Gauss de la curvatura en termes dels símbols de Christoffel
és

EK = (�

2

11

)✓ � (�

2

12

)r + �
1

11

�

2

12

� �1

12

�

2

11

+ �

2

11

�

2

22

� �2

12

�

2

12
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És clar que en el cas de les coordenades cartesianes no hi ha cap càlcul a fer per a
comprovar que surt K = 0.

En el cas de les coordenades polars, hi ha coeficients diferents de 0 i, per tant, caldrà
veure que hi ha compensacions per tal d’obtenir el mateix resultat. En concret

(�

2

11

)✓ = 0

(�

2

12

)r = � 1

r2

�

1

11

�

2

12

= 0

�

1

12

�

2

11

= 0

�

2

11

�

2

22

= 0

�

2

12

�

2

12

=

1

r2

⇤
Exercici 145. Diem X(u, v) = (x, y, z) a la parametrització corresponent. Aleshores

Xu = r (� sin(u) sin(v), cos(u) sin(v), 0)

Xv = r (cos(u) cos(v), sin(u) cos(v),� sin(v))

⌫ = �(cos(u) sin(v), sin(u) sin(v), cos(v))

(⌫ és el vector unitari en la direcció del vector posició)

Xuu = r (� cos(u) sin(v),� sin(u) sin(v), 0)

Xuv = r (� sin(u) cos(v), cos(u) cos(v), 0)

Xvv = r (� cos(u) sin(v),� sin(u) sin(v),� cos(v))

D’aquestes igualtats es dedueixen, de forma immediata, les relacions

Xuv =
cos(v)

sin(v)
Xu

Xvv = r ⌫

que corresponen als valors dels símbols de Christoffel

�

1

12

= cot(v), �

2

12

= �

1

22

= �

2

22

= 0

Com que
hXuu, ⌫i = r sin

2

(v)

la seva part tangent serà

Xuu � r sin

2

(v) ⌫ = (�r cos2(v) cos(u) sin(v),�r cos

2

(v) sin(v) sin(u), r cos(v) sin2

(v))

des d’on no costa gaire veure (traient els factors comuns adequats) que també es compleix

Xuu � r sin

2

(v) ⌫ = � cos(v) sin(v)Xv

I aquesta igualtat dóna els símbols de Christoffel que faltaven

�

1

11

= 0, �

2

11

= � cos(v) sin(v)

⇤
Exercici 146. El Teorema Egregi de Gauss ens diu que si dues superfícies S

1

i S
2

són
localment isomètriques aleshores les seves curvatures de Gauss són iguals en els punts
corresponents per una isometria, és a dir, existeix una aplicació F : S

1

! S
2

tal que
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KS2 = KS1 � F . Ja sabem que la curvatura de Gauss de l’esfera és constant i positiva,
la del cilindre idènticament nul.la i finalment, la de la sella z = x2 � y2 no és constant
en (x, y). Per tant, no hi ha cap parella d’aquestes tres superfícies on siguin localment
isomètriques. ⇤
Exercici 147. Posant E = G = � a l’expressió de la curvatura de Gauss en coordenades
ortogonals (F = 0) de l’exercici 142 s’obté

K = � 1

2�

✓✓
�u
�

◆

u

+

✓
�v
�

◆

v

◆
= � 1

2�

✓✓
@ log(�)

@u

◆

u

+

✓
@ log(�)

@v

◆

v

◆

= � 1

2�

✓
@2 log(�)

@u2

+

@2 log(�)

@v2

◆
= � 1

2�
� log(�).

En particular, si � =

1

(u2
+v2+c2)2 aleshores �1

2

log(�) = log(u2

+ v2 + c2) i per tant,

K =

�
2u

u2
+v2+c2

�
u
+

�
2 v

u2
+v2+c2

�
v

1

(u2
+v2+c2)2

= 2 (u2

+ v2 + c2)� 4 u2

+ 2 (u2

+ v2 + c2)� 4 v2 = 4 c2.

⇤

Superfícies de revolució

Exercici 148(a) Observem que, per a cada x fix, els punts (x, y, z) de la superfície
corresponen a una circumferència de centre (x, 0, 0) i radi f(x) i per tant compleixen que
y2 + z2 = (f(x))2. Per tant, només cal considerar

�(x, y, z) = y2 + z2 � (f(x))2 .

x v

f(x)
(x, f(x))

Com que f(x) > 0, les coordenades y i z sobre S no es poden anular simultàniament, per
tant la diferencial (gradient) de � donada per

d� = (�2 f(x) f 0
(x), 2 y, 2 z)

sempre és diferent de 0 sobre ��1

(0) i, per tant, exhaustiva. ⇤
Exercici 148(b) Prenent coordenades polars en cada un dels plans x = ct. es pot para-
metritzar S posant

'(u, v) = (u, f(u) cos(v), f(u) sin(v)) .

Com que
'u = (1, f 0

(u) cos(v), f 0
(u) sin(v)),

'v = (0,�f(u) sin(v), f(u) cos(v))
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són sempre linealment independents ja que 'u ^ 'v = f(u)(f 0
(u),� cos(u),� sin(u))

(f(u) > 0 i el sinus i el cosinus mai s’anul.len simultàniament) no cal fer més càlculs. ⇤
Exercici 148(c) El càlcul de d� ja dóna el resultat. ⇤
Exercici 149(a) En coordenades cilíndriques (⇢, ✓, z) de R3, C té equacions ✓ = 0 i
f(⇢, z) = 0. Quan C gira, ⇢ es manté constant i com que ⇢ =

p
x2

+ y2 , tenim que, en
coordenades cartesianes, S té per equació f(

p
x2

+ y2 , z) = 0, amb ✓ arbitrària.

f(x, z) = 0

Superfície de revolució obtinguda a partir de la corba f(x, z) = 0 .

Si es vol estudiar el cas d’una circumferència, siguin 0 < r < R i considerem la
circumferència del pla y = 0 de radi r amb centre (R, 0, 0). Aquesta circumferència té
equació en el pla y = 0 donada per 0 = f(x, z) = (x � R)

2

+ z2 � r2, per tant, pel que
acabem de veure (només cal substituir x per ⇢), la superfície de revolució corresponent
(tor) té per equació 0 = f(

p
x2

+ y2 , z) = (

p
x2

+ y2 �R)

2

+ z2 � r2.

Segona manera de pensar: (com a l’exercici 226 on es pensen les superfícies com famí-
lies uniparamètriques de corbes però sense equacions en derivades parcials). La superfície
de revolució al voltant de l’eix de les z, es pot pensar formada per circumferències de
diferents radis situades en els plans z = cte.

Equivalentment, com es fa a l’exercici 226, considerem la família biparamètrica de
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superfícies

z = ↵,

x2

+ y2 + z2 = �2,

i transformem aquesta família biparamètrica en una uniparamètrica (que així produeix
una superfície) donant una relació entre ↵ i �. Aquesta relació serà la que lliga l’altura
sobre z = 0 i el radi de gir, i vindrà determinada justament per la corba del pla y = 0

que fem girar.
La corba que fem girar és la determinada per l’equació f(x, z) = 0 del pla y = 0 i

com que � és la distància a l’origen, en aquest pla tenim x2

+ z2 = �2. De manera que
l’equació de la corba genera la relació f(

p
�2 � ↵2 ,↵) = 0 entre ↵ i �.

x2
+ z2 = �2

x2
+ y2 + z2 = �2

z = ↵

(x, 0, z)

Finalment, substituint ↵ i � pel seu valor, l’equació buscada serà

f(
p
x2

+ y2 , z) = 0.

En el cas del tor, la relació entre ↵ i � prové de l’equació (x�R)

2

+ z2 � r2 = 0. Com
que � és la distància a l’origen � =

p
x2

+ z2 , d’on x2

= �2 � z2 = �2 � ↵2 que dona
(

p
�2 � ↵2 �R)

2

+ ↵2

= r2, d’on substituint ↵ i � pel seu valor s’obté

(

p
x2

+ y2 �R)

2

+ z2 � r2 = 0.

⇤
Exercici 149(b) Per construcció està clar que la imatge de ' està continguda en la
superfície de revolució generada per la corba C. Observem que, com que girem al voltat
de l’eix z, la tercera component b(u) dels punts de ↵(u) no varia. I a(u) és el radi de gir.
Vegem que aquesta parametrització és regular. Calculem els vectors tangents

'u(u, v) = (a0(u) cos(v), a0(u) sin(v), b0(u)),

'v(u, v) = (�a(u) sin(v), a(u) cos(v), 0) .

Per veure que el rang de la matriu
0

@
a0(u) cos(v) �a(u) sin(v)
a0(u) sin(v) a(u) cos(v)

b0(u) 0

1

A
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és 2 només cal observar que els tres menors 2⇥ 2 són a a0, �a b0 sin(v), �a b0 cos(v) i no
es poden anul.lar tots tres a la vegada ja que, per ser �(u) regular, a0(u)2 + b0(u)2 6= 0 i
per tant a0(u) i b0(u) no poden anul.larse simultàniament. Així doncs, la parametrització
és regular.

En el cas del tor es pot prendre �(u) = (R + r cos(u), 0, r sin(u)), amb la qual cosa

'(u, v) =
⇣
(R + r cos(u)) cos(v), (R + r cos(u)) sin(v), r sin(u)

⌘
,

(u, v) 2 (0, 2 ⇡)⇥ (0, 2 ⇡)

és una parametrització regular del tor. ⇤
Exercici 149(c) A partir dels càlculs de 'u,'v de l’apartat anterior es veu que la primera
forma fonamental ve donada per E(u, v) = a0(u)2 + b0(u)2 = k�0(u)k2 6= 0, F (u, v) = 0 i
G(u, v) = a(u)2 > 0 ja que C no pot tallar a l’eix Oz. Matricialment,

I =

✓
(a0)2 + (b0)2 0

0 a2

◆
.

El seu determinat és E G� F 2

= a2 k�0k2 6= 0. Això demostra també que la parametrit-
zació es regular.

Si u és el paràmetre arc de � aleshores la primera forma fonamental de S té per matriu

I =

✓
1 0

0 a2

◆
.

⇤
Exercici 149(d) L’element d’àrea és doncs dA = a(u)

p
(a0)2 + (b0)2 du dv i l’àrea de S

(del troç de S generat per �(s) amb u
1

 s  u
2

) és igual a

A =

Z
2⇡

0

dv

Z u2

u1

a
p

(a0)2 + (b0)2 du = 2 ⇡

Z `

0

a(s) ds,

on s és el paràmetre arc de � (hem fet el canvi de variable u = u(s), du = u0
(s) ds

recordant que ds/du = k�0(u)k =

p
(a0)2 + (b0)2 ).

Observem que la coordenada x del centre de gravetat de �(u) (u paràmetre arc) és

x̄ =

Z `

0

a(u) du

`
,

per tant l’àrea generada per rotació d’una corba de longitud ` està donada per

A = 2 ⇡ ` x̄ = longitud de la corba ⇥ longitud trajectòria centre de masses

igualtat coneguda com Teorema de Pappus.
En particular, l’àrea del tor (el tor s’obté girant una circumferència de radi r situada

al pla y = 0 amb centre el punt (R, 0, 0) al voltant de l’eix z; el centre de masses és el
centre de la circumferència) és igual a

2 ⇡R (2 ⇡ r) = 4 ⇡2 Rr.

La fórmula estàtica de Meusnier. Per trobar el centre de masses d’un arc de cercle, i
poder així calcular l’àrea d’un troç de tor, podem usar la fórmula estàtica de Meusnier49.

49Mémoire sur la courbure des surfaces, Mémoires de savants étrangers, París, 1785.
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g
R

B

C
↵

A

Amb la notació de la figura en la que AB és un arc de cercle de la circumferència de
centre C es compleix que

(Longitud de l’arc AB)⇥ gC = AB ⇥ CR

on g és el centre de gravetat de l’arc AB.
En efecte, l’abscissa x̄ de g és

x̄ =

Z ↵

�↵
x ds

Z ↵

�↵
ds

,

on (x, y) = (r cos(t), r sin(t)) és una parametrització de l’arc AB (r = CA).
Com que ds = r dt tenim

x̄ =

Z ↵

�↵
r cos(t) r dt
Z ↵

�↵
r dt

=

r sin(↵)

↵
.

Així,

(Longitud de l’arc AB)⇥ gC = r 2↵
r sin(↵)

↵
= 2 r sin(↵) r = AB ⇥ CR. ⇤

Calculeu l’àrea interior i exterior del tor. ⇤
Exercici 150. Suposem que la làmina està limitada entre la gràfica de dues funcions
z = f(y), z = g(y), amb a  y  b. La coordenada z del centre de gravetat està donada
per

z
0

=

1

A

Z

L

z dy dz =

1

A

Z b

a

 Z f(y)

g(y)

z dz

!
dy =

1

2A

Z b

a

(f(y)2 � g(y)2) dy =

V

2 ⇡A
,

on A és l’àrea de la làmina i V el volum del cos de revolució. Recordem que el volum del
cos de revolució generat per la gràfica de z = f(y) és

Volum = ⇡

Z b

a

f(y)2 dy.

El volum del tor de revolució val doncs

V = 2 ⇡R ⇡ r2 = 2 ⇡2 Rr2.

⇤
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Exercici 151. Calculem primer l’aplicació de Weingarten d’una superfície de revolució
en general. Les superfícies dels apartats (a), (b) i (d) en són casos particulars. Si prenem
la parametrització de la corba generatriu �(u) = (a(u), 0, b(u)) pel paràmetre arc, llavors
el vector normal de S és

⌫(u, v) = (�b0(u) cos(v),�b0(u) sin(v), a0(u))

i aleshores
W ('u) = �d⌫('u) = �⌫u = (b00(u) cos(v), b00(u) sin(v),�a00(u))

= (k(u) a0(u) cos(v), k(u) a0(u) sin(v), k(u) b0(u)) = k(u)'u,

W ('v) = �d⌫('v) = �⌫v = (�b0(u) sin(v),�b0(u) cos(v), 0) =

=

b0(u)

a(u)
(�a(u) sin(v), a(u) cos(v), 0) =

b0(u)

a(u)
'v,

on k(u) és la curvatura de �(u). Per tant, la matriu de l’aplicació de Weingarten W en
la base 'u, 'v és diagonal i té com a valors propis (curvatures principals) k(u) i b0(u)

a(u) . En

particular, la curvatura de Gauss és igual a K(u, v) =
k(u) b0(u)

a(u)
. Les línies de curvatura

són els meridians i els paral.lels.
Nota. Els dos elements de la diagonal de l’aplicació de Weingarten representen les curva-
tures normals màxima i mínima. Per a superfícies de revolució aquests extrems s’agafen
en els meridians i paral.lels. De manera que podem dir que els elements de la diagonal
de l’aplicació de Weingarten representen les curvatures normals de meridians i paral.lels.
Però la curvatura normal dels meridians coincideix amb la curvatura dels meridians, de
manera que sense fer càlculs podem dir que els elements de la diagonal de l’aplicació de
Weingarten són la curvatura de la corba original que gira i la curvatura normal del paral.lel
corresponent (b0/a amb la notació del problema).

També podríem haver calculat la matriu de l’aplicació de Weingarten mitjançant la
multiplicació de matrius W = I�1 · II, on I denota la matriu de la primera forma fona-
mental i II la matriu de la segona forma fonamental. Aquest és un resultat de teoria que
de vegades és molt útil ja que en general és molt més fàcil calcular II que d⌫. Si s’escriu

II =

✓
e f
f g

◆
,

en el cas de les superfícies de revolució, amb corba generatriu parametritzada per l’arc,
resulta

e = h⌫,'uui = a0 b00 � a00 b0,

f = h⌫,'uvi = 0,

g = h⌫,'vvi = b0 a .

Particularitzant tot això als casos (a)–(d):
(a) L’esfera: '(u, v) = (R cos(u) cos(v), R sin(u) cos(v)), aleshores

I =

✓
R2

cos

2

(v) 0

0 R2

◆
, II =

✓
�R cos

2

(v) 0

0 �R

◆
, W = I�1 II =

✓
� 1

R 0

0 � 1

R

◆
.

(b) El tor: '(u, v) = ((a+ b cos(v)) cos(u), (a+ b cos(v)) sin(u), b sin(v)), llavors

I =

✓
(a+ b cos(v))2 0

0 b2

◆
, II =

✓
(a+ b cos(v)) cos(v) 0

0 �b

◆
, W =

 
� cos(v)

a+b cos(v) 0

0

�1

b

!
.
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(c) L’helicoide: '(u, v) = (u cos(v), u sin(v), a u), aleshores

I =

✓
1 0

0 a2 + u2

◆
, II =

 
0

�ap
a2+u2

�ap
a2+u2 0

!
, W =

 
0

�ap
a2+u2

�a
(a2+u2

)

3/2 0

!
.

(d) Per a la superfície parametritzada per

'(u, v) = (

p
u2

+ a2 cos(v),
p
u2

+ a2 sin(v), a log(u+

p
u2

+ a2 ))

es té

I =

✓
1 0

0 a2 + u2

◆
, II =

✓ �a
a2+u2 0

0 a

◆
, W = I�1 II =

✓ �a
a2+u2 0

0

a
a2+u2

◆
.

Observem que aquesta última superfície també és de revolució, la seva corba generatriu
és �(u) = (

p
a2 + u2 , a log(u +

p
a2 + u2

)) i és una catenària (exercici 17). La
superfície de revolució que genera es diu catenoide.

⇤
Exercici 152. Mirant el dibuix, on hem de suposar una y fixada (pla paral.lel al xz on
té lloc la rotació) veiem que les equacions d’aquesta superfície són

x = 1� (1� y1/3) cos(t),

y = y,

z = (1� y1/3) sin(t) .

x

(x, x3
)

z

y

x = 1

t

Dient '(y, t) a la parametrització que resulta de l’expressió anterior tenim

'y =
1

3

y�2/3
(cos(t), 3 y2/3,� sin(t)),

't = (1� y1/3) (sin(t), 0, cos(t)),

⌫(y, t) =
1q

1 +

1

9

y�4/3
(cos(t),�1

3

y�2/3,� sin(t)),
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'yy =
2

9

y�5/3
(� cos(t), 0, sin(t)),

'yt = �1

3

y2/3 (sin(t), 0, cos(t)),

'tt = (1� y1/3) (cos(t), 0,� sin(t)),

e = h'yy, ⌫i = �2

9

y�5/3 1q
1 +

1

9

y�4/3
,

f = h'yt, ⌫i = 0,

g = h'tt, ⌫i = (1� y1/3)
1q

1 +

1

9

y�4/3
.

El determinant de la segona forma fonamental és, doncs, igual a e g. Ara observem
que g és sempre positiva i que e, i per tant el determinant, té el signe de �y.

Resumint, els punts on y < 0 són el.líptics, els punts on y > 0 són hiperbòlics, i els
punts on y = 0 són parabòlics, cosa que es veia, o almenys s’intuïa, mirant només el
dibuix. ⇤
Exercici 153. La mètrica del tor respecte d’aquesta parametrització és

I =

✓
1 0

0 (a+ r cos(ur ))
2

◆
.

Busquem corbes (u, v(u)) tals que el seu vector tangent en cada punt (u
0

, v(u
0

)) formi
angle constant amb el vector tangent a les corbes (u

0

, v) en aquest punt. Com que això
ha de ser cert per a tot valor u

0

, traiem aquest subindex i la condició és
�
0 1

� ✓
1 0

0 (a+ r cos(ur ))
2

◆ ✓
1

v0

◆

s
�
0 1

� ✓
1 0

0 (a+ r cos(

u
r ))

2

◆ ✓
0

1

◆ s�
1 v0

� ✓
1 0

0 (a+ r cos(

u
r ))

2

◆ ✓
1

v0

◆ = cos(✓).

És a dir,
v0(a+ r cos(

u
r ))p

1 + (v0)2 (a+ r cos(

u
r ))

2

= cos(✓).

Que, elevant al quadrat i agrupant els termes en (v0)2, queda

v0 = cot(✓)
1

a+ r cos(

u
r )

o bé
dv = cot(✓)

du

a+ r cos(

u
r )
.

Integrant terme a terme

v = cot(✓)

Z
du

a+ r cos(

u
r )

=

2 r cot(✓)p
a2 � r2

arctan

 
(a� r) tan

�
u
2 r

�
p
a2 � r2

!
+ C

i hem acabat.
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⇤
Exercici 154(a) Aquest meridià està parametritzat per �(x) = (x, 0, cosh(x)), amb 0 
x  a. Per tant �0(x) = (1, 0, sinh(x)), k�0(x)k =

q
1 + sinh

2

(x) = cosh(x) i

r =

Z a

0

k�0(x)k dx =

Z a

0

cosh(x) dx = sinh(a).

⇤
Exercici 154(b) Parametritzem en polars '(⇢,↵) = (⇢ cos(↵), ⇢ sin(↵), cosh(⇢)). Així

'⇢ = (cos(↵), sin(↵), sinh(⇢)),

'↵ = (�⇢ sin(↵), ⇢ cos(↵), 0),

de forma que la primera forma fonamental resulta

I =

✓
cosh

2

(⇢) 0

0 ⇢2

◆
.

L’àrea demanada és doncs

A(r) =

Z
2⇡

0

Z a

0

⇢ cosh(⇢) d⇢ d↵

= 2 ⇡ (a sinh(a)� cosh(a) + 1) = 2⇡ (r arcsinh(r)�
p
1 + r2 + 1).

⇤
Exercici 154(c) El normal en un punt de coordenades (⇢,↵) és

⌫ = (� tanh(⇢) cos(↵),� tanh(⇢) sin(↵),
1

cosh(⇢)
).

En el punt ⇢ = a i ↵ = 0, el producte escalar de ⌫ per (0, 0, 1) és 1/ cosh(a), de manera
que si diem ✓ a l’angle que formen en aquest punt aquests dos vectors tenim

cos(✓) =
1

cosh(a)
.

⇤
Exercici 154(d) Només hem d’aplicar la fórmula de l’àrea del casquet i tenir en compte
l’apartat anterior.

A(⌫(R)) = 2 ⇡ (1� cos(✓)) = 2 ⇡ (1� 1p
1 + r2

).
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⇤
Exercici 154(e) Tenint en compte que S és també un gràfic podem aplicar les fórmules
de l’exercici 112 i amb l’ajuda d’un sistema de càlcul simbòlic s’obtindrà que la curvatura
de Gauss K en un punt de coordenades (x, y) està donada per

K =

sinh

⇣p
x2

+ y2
⌘

p
x2

+ y2
⇣
cosh

⇣p
x2

+ y2
⌘⌘

3

.

Per tant, prenent límits quan (x, y) ! (0, 0) tenim que, a l’origen, K = 1 .
Per altra banda, desenvolupant fins quart ordre

A(r) = 2 ⇡ (r (r � r3

6

+ · · · )� (1 +

r2

2

� r4

8

+ · · ·+ 1)) = ⇡ r2 � ⇡ r4

12

+ · · ·

Ara el resultat és clar. ⇤
Exercici 154(f)

lim

r!0

A(⌫(R))

A(r)
= lim

r!0

2 ⇡ (1� 1p
1+r2

)

⇡ r2 � ⇡ r4

12

+ · · ·

= lim

r!0

2 ⇡ (1 + r2

2

� r4

8

+ · · ·� 1)

(1 +

r2

2

� r4

8

+ · · · ) (⇡ r2 � ⇡ r4

12

+ · · · )
= 1 .

⇤
Exercici 155. Ja hem vist a l’exercici 194 que la catenoide té curvatura mitjana zero.
Considerem una corba de la forma (x(z), 0, z) i la fem girar al voltant de l’eix z. Obtindrem
la superfície de revolució que es pot parametritzar per

'(z, u) = (x(z) cos(u), x(z) sin(u), z),

i per tant

'z = (x0
(z) cos(u), x0

(z) sin(u), 1),

'u = (�x(z) sin(u), x(z) cos(u), 0),

'zz = (x00
(z) cos(u), x00

(z) sin(u), 0),

'zu = (�x0
(z) sin(u), x0

(z) cos(u), 0),

'uu = (�x(z) cos(u),�x(z) sin(u), 0),

E = 1 + x0
(z)2,

F = 0,

G = x(z)2,

'u ^ 'v = (�x cos(u),�x sin(u), x x0
),

k'u ^ 'vk = x
p

1 + (x0
)

2 ,

⌫ =

1p
1 + (x0

)

2

(� cos(u),� sin(u), x0
),

e = � x00
p

1 + (x0
)

2

,

g =

xp
1 + (x0

)

2

.
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Com que F = 0 l’equació de curvatura mitjana zero es redueix a

0 = H = E g + eG = x
p
1 + (x0

)

2 � x2 x00
p
1 + (x0

)

2

.

Per tant
1 + (x0

)

2

= x x00.

S’ha de resoldre, doncs, aquesta equació diferencial. És clar que admet la solució x =

cosh(z) però cal veure que no n’hi ha més. Considerem p = x0 com és habitual. Tindrem,
aplicant la regla de la cadena considerant x com variable,

1 + p2 � x
dp

dz
= 1 + p2 � x

dp

dx

dx

dz
= 1 + p2 � x p

dp

dx
= 0 .

I ara aquesta equació diferencial és fàcil ja que es pot escriure com
dx

x
=

p dp

1 + p2
=

1

2

d(ln(1 + p2)).

Integrant als dos costats s’obté

c2
1

x2

= 1 + p2

per a una certa constant d’integració c
1

. Desfent el canvi p = dx/dz, queda l’equació
diferencial

dxp
c2
1

x2 � 1

= dz.

Integrant als dos costats s’obté
1

c
1

ln

✓
c
1

(

q
c2
1

x2 � 1 + c
1

x)

◆
= z + c

2

,

per a una certa constant d’integració c
2

. Aïllant x,

x =

1

c
1

cosh(c
1

z + c
3

),

on c
3

= c
1

c
2

� ln(c
1

). Com que això és l’equació de la catenària hem acabat. ⇤
Exercici 156. Observem primerament que dels càlculs del problema 183 es dedueix
fàcilment que les superfícies de revolució tenen aquesta propietat: les seves rectes normals
tallen l’eix de gir.

Sigui a el vector director de la recta donada. Prenent l’origen de coordenades sobre
aquesta recta, la hipòtesi implica que els vectors a, '(u, v), ⌫(u, v) són coplanars (⌫(u, v)
denota el vector normal a la superfície en el punt '(u, v)). Per tant, posant per simplificar
la notació ' = '(u, v), ⌫ = ⌫(u, v), es complirà

h', a ^ ⌫i = 0,

que implica
h', a ^ ('u ^ 'v)i = 0 .

Utilitzant la fórmula general a ^ (b ^ c) = ha, bi c� ha, ci b tenim
⌦
', ha,'ui'v � ha,'vi'u

↵
= 0,

que es pot escriure com ����
ha,'ui ha,'vi
h','ui h','vi

���� = 0 .
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Però això es pot interpretar com un jacobià. En efecte, és clar que coincideix amb
����
ha,'iu ha,'iv
h','iu h','iv

���� = 0.

Per tant, pel teorema de la dependència funcional, existeix una funció f d’una variable
tal que50

h','i = f(ha,'i).
Si es considera a = (0, 0, 1) i s’escriu '(u, v) = (x(u, v), y(u, v), z(u, v)), l’equació

anterior diu
x2

(u, v) + y2(u, v) + z2(u, v) = f(z(u, v))

i per tant els punts (x, y, z) de la superfície compleixen

x2

+ y2 = h(z)

per a una certa funció h, i aquesta darrera igualtat caracteritza les superfícies de revolució.

Segon mètode. (Evitant l’ús del teorema de la dependència funcional). Suposem
que la recta és l’eix de les y0s. La condició donada és equivalent a que existeixi una funció
� = �(u, v) tal que

'(u, v) + �(u, v)'u(u, v) ^ 'v(u, v) = (0, ⇤, 0).
Si ometem, per simplificar, la referència al punt (u, v) escriurem només

'+ �'u ^ 'v = (0, ⇤, 0).
De forma equivalent,

x+ �(yu zv � yv zu) = 0,

z + �(xu yv � xv yu) = 0 .

Tallem ara la superfície en qüestió pel pla y = y
0

. És a dir, fem y(u, v) = y
0

. Aquesta
igualtat defineix v = v(u) de tal manera que y(u, v(u)) = 0. Derivant tenim

dy

du
= yu + yv v

0
= 0.

A continuació restringim la funció x2

+ z2 = x(u, v)2 + z(u, v)2, al pla y = y
0

, de
manera que tindrem una funció només de u, x(u, v(u))2 + z(u, v(u))2, i derivem

d(x2

+ y2)

du
= 2 x (xu + xv v

0
) + 2 z (zu + zv v

0
)

= 2 x (xu + xv
�yu
yv

) + 2 z (zu + zv
�yu
yv

)

= 2 x
�z

� yv
+ 2 z

x

� yv
= 0.

El fet que aquesta funció sigui constant vol dir que la superfície és de revolució al
voltant de l’eix de les y0s. El radi de gir en el pla y = y

0

és justament
p
x2

+ z2 . ⇤

50Vegeu per exemple Análisis Matemàtico, J. Rey Pastor, P. Pi Calleja, C. A. Trejo. En el nostre cas
és clar, ja que els vectors fila de la matriu són el gradient de les dues funcions i funcions amb gradients
proporcionals tenen les mateixes corbes de nivell, corresponent però a constants diferents; aquesta relació
entre les constants és justament el paper de la funció f que les relaciona.
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Exercici 157. Amb la notació i els càlculs que es fan a l’exercici 189 es veu que la
curvatura de Gauss de la superfície '(u, v) = (a(u) cos(v), a(u) sin(v), b(u)) no depèn de
v i està donada per

K = �b0

a
(a00 b0 � a0 b00)

Ara bé, en els càlculs de l’exercici 189 se suposa que la corba inicial està parametritzada
per l’arc, és a dir, (a0)2+(b0)2 = 1. Derivant, s’obté a0 a00+ b0 b00 = 0 i això permet escriure
(a0, b0) = µ (b00,�a00) per a una certa funció µ. D’aquesta forma la curvatura de Gauss
resulta ser

K = �a00

a
.

En el mateix exercici 189 es veu que l’element d’àrea està donat per
dS = a du dv

de manera que la curvatura total (integral de la curvatura de Gauss) és
Z

[a,b]⇥[0,2⇡]

K dS = �
Z

2⇡

0

Z b

a

a00(u) du dv = �2 ⇡ [a0(u)]t2t1 = 2 ⇡ (a0(t
1

)� a0(t
2

)).

Però com que h(a0(t), 0, b0(t)), (0, 0, 1)i = b0(t) = cos(↵(t)) ha de ser a0(t) = sin(↵(t)) i
per tant Z

[a,b]⇥[0,2⇡]

K dS = 2 ⇡ (sin(↵(t
1

))� sin(↵(t
2

)),

com volíem. ⇤

Superfícies reglades

Exercici 158(a) Observem que
's = �0(s) + t v0(s),

't = v(s),

'tt = 0 .

Per tant, el coeficient g de la segona forma fonamental (g = h⌫,'tti) és zero. Això implica
que el determinant de la segona forma fonamental és negatiu o zero (�f 2) i, per tant,
K  0. El cas K = 0 correspon, doncs, al cas f = h⌫,'sti = �hd⌫dt ,'si = 0. Com que
també hd⌫dt ,'ti = �h⌫,'tti = 0, resulta que d⌫

dt = 0 i ⌫ és constant sobre les generatrius. ⇤
Exercici 158(b) Escrivim ⌫ = f ('s ^ 't) amb f = f(s, t) = 1

k's^'tk . Tenim

0 = ⌫t = ft ('s ^ 't) + f ('st ^ 't).

Això és equivalent, substituint, a
ft (�

0
(s) ^ v(s)) + (t ft + f) (v0(s) ^ v(s)) = 0.

Si v0(s) i �0(s) fossin linealment independents obtindríem ft = 0 i t ft+f = 0, i per tant
f = 0, que és una contradicció. Existeix, doncs, una funció µ(s) tal que v0(s) = µ(s) �0(s).

Busquem ara una corba �(s) = �(s) + t(s) v(s) tal que
�0
(s) = �0(s) + t0(s) v(s) + t(s) v0(s) = �(s) v(s)

per a una certa funció �. Com que v(s) és ortogonal a v0(s) (derivant hv(s), v(s)i = 1)
l’anterior igualtat, juntament amb v0(s) = µ(s) �0(s), implica

1 + µ(s) t(s) = 0,
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és a dir, la corba �(s) amb t(s) = �1/µ(s), és tangent a les generatrius.
Observem finalment que 's = �0(s) + t v0(s), de manera que sobre els punts de �(s),

on t(s) = �1/µ(s)), tenim 's = �0(s)� 1

µ(s) v
0
(s) = 0. És a dir, la superfície deixa de ser

regular sobre l’eix de regressió. ⇤
Exercici 159. Recordem que els punts que realitzen la distància mínima entre les rectes
P + �~u, Q + µ~v son X = P + a ~u i Y = Q � b~v on a i b estan donats per

�!
PQ =

a ~u+ b~v + c ~u^~v
k~u^~vk .

Considerem la superfície '(s, t) = �(s) + t ~u(s) on s és el paràmetre arc de la corba
�(s), i ~u(s) és un vector unitari.

Fixem la recta r : �(0) + t ~u(0). Denotem, per simplificar la notació, P = �(0) i
~u = ~u(0), de manera que r : P + t ~u.

Calculem el punt X(s) sobre r que realitza la distància mínima entre r i rs : �(s) +
t ~u(s). Per les fórmules anteriors

X(s) = P + a ~u,

on a = a(s) està determinat per la fórmula
���!
P�(s) = a ~u+ b ~u(s) + c

~u ^ ~u(s)
k~u ^ ~u(s)k ,

amb b = b(s), c = c(s).
Les funcions a i b són solucions del sistema

h
���!
P�(s), ~ui = a+ b h~u, ~u(s)i,

h
���!
P�(s), ~u(s)i = a h~u, ~u(s)i+ b,

i així s’obté

a(s) =
h
���!
P�(s), ~ui � h~u, ~u(s)i h

���!
P�(s), ~u(s)i

1� h~u, ~u(s)i2 .

Per tal de calcular lim

s!0

a(s), i obtenir així el punt X(0) que es demana a l’enunciat,
apliquem dos cops la regla de Bernouilli-l’Hôpital. En el primer pas s’obté

lim

s!0

a(s) = lim

s!0

 
h�0(s), ~ui � h~u, ~u 0

(s)i h
���!
P�(s), ~u(s)i

� h~u, ~u(s)i (h�0(s), ~u(s)i+ h
���!
P�(s), ~u 0

(s)i)

!

�2 h~u, ~u(s)i h~u, ~u 0
(s)i .

Quan tornem a derivar numerador i denominador i avaluem en el punt s = 0 (cosa
que simplifica els càlculs ja que h~u, ~ui = 1, i h~u, ~u 0

(0)i = 0, i el vector
���!
P�(s) s’anul.la en

s = 0) s’obté

a(0) =
h�00(0), ~ui � (2 h�0(0), ~u 0

(0)i+ h�00(0), ~ui)
�2 h~u, ~u 00

(0)i = �h�0, ~u 0i
k~u 0k2

,

on ~u 0
= ~u 0

(0), �0 = �0(0) i s’ha utilitzat el fet que h~u 0
(s), ~u 0

(s)i + h~u(s), ~u00
(s)i = 0,

igualtat que s’obté derivant dos cops h~u(s), ~u(s)i = 1.
Així

X(0) = �(0)� h�0, ~u 0i
k~u 0k2

~u.

Fent aquest argument per a totes les rectes de la superfície reglada obtenim l’anome-
nada corba d’estricció, que és la corba

�(s) = �(s)� h�0(s), ~u 0
(s)i

k~u 0
(s)k2

~u(s).

Toc

JJ II J I
Tornar



Solucions als Exercicis 236

Els punts de �(s) es diuen punts centrals de la superfície reglada.
El fet important, que és el que utilitzen els llibres per estalviar-se aquest càlcul llarg

amb l’Hôpital que acabem de fer, (però llavors aquesta propietat de distància mínima
queda amagada) és que

h�0
(s), ~u 0

(s)i = 0.

Resumint, tota superfície reglada no cilíndrica (~u(s) no constant), es pot escriure com

'(s, t) = �(s) + t ~u(s), k~u(s)k = 1

per a una certa corba �(s) tal que h�0
(s), ~u 0

(s)i = 0.
En quest cas, la quantitat

p(s) =
det(�0

(s), ~u(s), ~u 0
(s))

k~u 0
(s)k2

rep el nom de paràmetre de distribució, i es pot veure (exercici 160) que la curvatura de
Gauss està donada per

K(s, t) = �
✓

p(s)

(p(s))2 + t2

◆
2

.

⇤
Exercici 160. És sabut (vegeu Exercici 159) que podem suposar la superfície donada
per

'(s, t) = �(s) + t u(s), ku(s)k = 1, h�0
(s), u0

(s)i = 0. (25)
Com que u0

(s) és perpendicular a �0
(s) i a u(s) és clar que existeix una funció p(s) tal

que
�0
(s) ^ u(s) = p(s) u0

(s).

Per determinar p(s) només hem de veure que

det(�0
(s), u(s), u0

(s)) = hu0
(s), �0

(s) ^ ui = p(s) ku0
(s)k2

d’on es dedueix que

p(s) =
det(�0

(s), u(s), u0
(s))

ku0
(s)k2

.

Calculem la primera i segona forma fonamental. Posem, per simplificar, u = u(s),
p = p(s), etc.

's = �0
+ t u0,

't = u,

'ss = �00
+ t u00,

'st = u0,

'tt = 0,

's ^ 't = �0 ^ u+ t u0 ^ u = p u0
+ t u0 ^ u,

k's ^ 'tk2 = p2 ku0k2 + t2 ku0k2

⌫ =

1

ku0k
p
p2 + t2

(p u0
+ t u0 ^ u),

dS = ku0k
p

p2 + t2 ds dt,

f = hu0, ⌫i = p ku0kp
p2 + t2

,
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K =

�f 2

E G� F 2

= � p2 ku0k2

(p2 + t2)

1

k's ^ 'tk2
= � p2

(p2 + t2)2
.

Per tant la curvatura total és (suposem s 2 [a, b])

⇥ =

Z b

a

Z 1

�1
K dS = �

Z b

a

Z 1

�1

p2 ku0k
(p2 + t2)3/2

dt ds = �
Z b

a

2 ku0k ds = �2L,

on L és la longitud de la corba esfèrica u(s).

Apliquem-ho a l’hiperboloide. Hem de parametritzar la superfície implícita z = x y en
la forma (25). Per a això observem que sempre que tallem per plans y = s = ct. tenim
z = s x que és un altra pla, i per tant la seva intersecció serà una recta continguda a
la superfície. Els punts d’aquesta intersecció, en funció de s que passarà de constant a
paràmetre, seran de la forma (t, s, s t) (hem canviat x per t) que es pot escriure com

'(s, t) = (0, s, 0) + t (1, 0, s),

però que per estar en (25) s’ha d’escriure com

'(s, t) = (0, s, 0) +
tp

1 + s2
(1, 0, s).

D’aquesta manera u(s) = 1p
1+s2

(1, 0, s) és unitari, h�0
(s), u0

(s)i = 0 amb �(s) = (0, s, 0),
i podem aplicar el resultat anterior.

Per tant,

⇥ = �2L = �2

Z b

a

ku0
(s)k ds = �2

Z b

a

1

1 + s2
ds = �2 (arctan(b)� arctan(a)).

Però podem arribar al mateix resultat integrant directament la curvatura de Gauss
(que està calculada a l’exercici 128). En efecte, es compleix

K = � 1

(1 + x2

+ y2)2
, EG� F 2

= 1 + x2

+ y2,

i per tant

⇥ = �
Z 1

1

Z b

a

1

(1 + x2

+ y2)2
p

1 + x2

+ y2 dx dy

= �2

Z b

a

1

1 + y2
dy = �2 (arctan(b)� arctan(a))

com abans.
Si volem, com diu l’enunciat, la curvatura total de tota la sella de muntar només hem

de fer a = �1, b = 1 i s’obté
⇥ = �2 ⇡ .

Recordeu que aquest valor (en valor absolut) és l’àrea de l’esfera coberta per l’aplicació
de Gauss. En aquest cas doncs, mitja esfera queda coberta per l’aplicació de Gauss. ⇤
Exercici 161. Amb la notació de l’exercici 159 hem de veure que

p(0) = lim

s!0

d(s)

✓(s)

on d(s) és la distància entre les rectes '(0, t) i '(s, t), i ✓(s) és l’angle entre els vectors
u = u(0) i u(s).

Aprofitant la notació i els càlculs del problema anterior tenim que

d(s) = h
�����!
�(0)�(s),

u ^ u(s)

sin(✓(s))
i.
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Per tant,

lim

s!0

d(s)

✓(s)
= lim

s!0

h
�����!
�(0)�(s), u^u(s)

sin ✓(s)i
sin(✓(s))

= lim

s!0

h
�����!
�(0)�(s), u ^ u(s)i

sin

2

(✓(s))

En aplicar un primer cop l’Hôpital obtenim

lim

s!0

d(s)

✓(s)
= lim

s!0

h�0
(s), u ^ u(s)i+ h

�����!
�(0)�(s), (u ^ u(s))0i

2 sin(✓(s)) cos(✓(s)) ✓0(s)
.

Tornant a aplicar l’Hôpital i tenint en compte que ✓0(0)2 = ku0
(0)k2 tenim el resultat.

⇤
Exercici 162. Si s’escriu '(s, t) = (x(s, t), y(s, t), z(s, t)) veiem que

x = cos(s) + z sin(s),

y = sin(s)� z cos(s),

d’on es dedueix fàcilment que la superfície donada és l’hiperboloide d’un full x2

+y2�z2 =
1.

Per calcular la corba d’estricció (exercici 159) s’ha d’escriure

�(s) = �(s)� h�0(s), u0
(s)i

ku0
(s)k2

u(s)

amb
�(s) = (cos(s) + s sin(s), sin(s)� s cos(s), s)

i
u(s) =

1p
2

(sin(s),� cos(s), 1).

Un càlcul directe dona
�(s) = (cos(s), sin(s), 0).

Però no es cert que les línies d’estricció dels hiperboloides d’un full siguin sempre planes
com es veu a l’exercici 163. ⇤
Exercici 163. Observem primer de tot que la superfície que ens donen és una superfície
reglada de directriu l’el.lipse 2 x2

+ y2 = 1 del pla z = 0, i generatrius de vector director
(�y, 2 x,

p
2 ) en el punt (x, y, 0) de l’el.lipse. A partir d’aquí és fàcil veure que la superfície

és l’hiperboloide d’equació 2 x2

+ y2 = 1 + z2.
Per calcular la corba d’estricció posem

�(s) = (

1p
2

cos(s), sin(s), 0),

i
u(s) =

1p
3 + cos

2

(s)
(� sin(s),

p
2 cos(s),

p
2 ),

de manera que '(s, t) = �(s) + t u(s).
La corba d’estricció és (exercici 159)

E(s) = �(s)� h�0
(s), u0

(s)i
ku0

(s)k u(s).

Derivant i substituint obtenim

E(s) =
1

3� cos

2

(s)
(

p
2 cos(s), 3 sin(s), sin(s) cos(s)),
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Corba d’estricció no plana de 2x

2
+ y

2 � z

2
= 1

que no és una corba plana, com es veu a la figura.
I la superfície 2 x2

+ y2 � z2 = 1 reparametritzada a partir de E(s) és

 (s, t) =

1p
3 + cos

2

(s)(3� cos

2

(s))

✓
t sin(s) cos

2

(s) +

p
2 cos(s)

p
3 + cos

2

(s)� 3t sin(s),

� t

p
2 cos

3

(s) + 3t

p
2 cos(s) + 3 sin(s)

p
3 + cos

2

(s) ,

� t

p
2 cos

2

(s) + sin(s) cos(s)

p
3 + cos

2

(s) + 3t

p
2

◆
.

⇤
Exercici 164(a) Localment, la parametrització és regular ja que els vectors

's(s, t) = T (s) + t k(s)N(s),

't(s, t) = T (s),

són linealment independents, per ser t 6= 0 i k 6= 0. ⇤
Exercici 164(b) El vector normal val

⌫(s, t) =
's ^ 't

k's ^ 'tk
= �B(s).

Com que no depèn de t, aquest vector i, per tant, el pla tangent són constants al llarg de les
generatrius, i tal i com es veu a l’exercici 158, K = 0 i la superfície és desenvolupable. ⇤
Exercici 164(c) Clarament, la matriu de la primera forma fonamental respecte la base
's, 't és

I =

✓
1 + t2 k(s)2 1

1 1

◆
.

Apareix la curvatura però no la torsió. És a dir, que si ara repetíssim els càlculs canviant
�(s) per una corba amb la seva mateixa curvatura però diferent torsió, la matriu de la
primera forma fonamental seria la mateixa. ⇤
Exercici 164(d)

'ss(s, t) = T 0
(s) + t k0

(s)N(s) + t k(s)N 0
(s)

= k(s)N(s) + t k0
(s)N(s) + t k(s) (�k(s)T (s)� ⌧(s)B(s))
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= �t k(s)2 T (s) + (t k0
(s) + k(s))N(s)� t k(s) ⌧(s)B(s),

'st(s, t) = k(s)N(s),

'tt(s, t) = 0 .

Com que ⌫(s, t) = �B(s),
e = h⌫,'ssi = t ⌧(s) k(s),

f = h⌫,'sti = 0,

g = h⌫,'tti = 0 .

Així, e g � f 2

= 0 i per tant K = 0. (És una superfície desenvolupable).
La curvatura mitjana val

H =

1

2

E g � 2F f +Ge

E G� F 2

=

1

2

⌧(s)

t k(s)
.

(La curvatura mitjana sí que depèn de la torsió). ⇤
Exercici 164(e) Per a cada valor u 2 [0, 1] denotem �u(s) l’única corba que té en s = 0

la mateixa referència de Frenet que �(s), amb �u(0) = �(0), amb la mateixa curvatura
que �(s), i torsió u ⌧(s). Obtenim una família uniparamètrica de corbes tal, que quan
u = 0 correspon a una corba plana i quan u = 1 correspon a la corba inicial �(s). Si
denotem per Su la desenvolupable tangencial de �u(s) tenim, per a cada u 2 [0, 1], una
aplicació F u

: S1 ! Su donada per
F u

('(s, t)) = 'u
(s, t),

amb
'(s, t) = �(s) + t �0(s),

'u
(s, t) = �u(s) + t (�u)0(s).

És a dir, F u envia el punt de coordenades (s, t) de S1 al punt de coordenades (s, t) de Su.
Els coeficients de la primera forma fonamental de S1 respecte '(s, t) coincideixen amb els
coeficients de la primera forma fonamental de Su respecte de 'u

= F u �'. Això és degut
a que en els coeficients de la primera forma fonamental de qualsevol d’questes superfí-
cies no apareix la torsió. Per tant F u és una isometria. En particular F 0 desenvolupa
isomètricament la corba donada sobre el pla (localment). ⇤
Exercici 165. Només hem de calcular la primera i segona forma fonamental. Utilitzant
les fórmules de Frenet tenim

's = (1� t k(s))T (s)� t ⌧(s)B(s),

't = N(s),

de forma que
E = (1� t k(s))2 + t2 ⌧(s)2, F = 0 i G = 1 .

A més,
's ^ 't = (1� t k(s))B(s)� t ⌧(s)T (s),

⌫ =

1

k(1� t k(s))B(s)� t ⌧(s)T (s)k ((1� t k(s))B(s)� t ⌧(s)T (s)),

'st = �k(s)T (s)� ⌧(s)B(s),

f =

�⌧(s)p
(1� t k(s))2 + t2 ⌧(s)2

,

'tt = 0,

g = 0 .
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Per tant,

K =

e g � f 2

E G� F 2

=

�⌧(s)2
�
(1� t k(s))2 + t2 ⌧(s)2

�
2

.

⇤
Exercici 166. Només hem de calcular la primera i segona forma fonamental. Utilitzant
les fórmules de Frenet tenim

's = T (s) + t ⌧(s)N(s),

't = B(s),

i per tant
E = 1 + t2 ⌧(s)2, F = 0 i G = 1 .

A més,
's ^ 't = t ⌧(s)T (s)�N(s),

⌫ =

1

kt ⌧(s)T (s)�N(s)k (t ⌧(s)T (s)�N(s)),

'tt = 0,

g = 0,

'ts = ⌧(s)N,

f =

�⌧
kt ⌧(s)T (s)�N(s)k .

I això permet escriure

K =

e g � f 2

E G� F 2

=

�⌧(s)2
�
1 + t2 ⌧(s)2

�
2

.

⇤
Exercici 167(a) Sigui �(s) una corba regular de R3 parametritzada per l’arc. L’eix polar
en el punt �(s) és la recta paral.lela a la binormal en aquest punt que passa pel centre de
curvatura. Concretament

ps(t) = �(s) + ⇢(s)N(s) + t B(s), t 2 R.
on ⇢(s) és el radi de curvatura. Així, la superfície polar és

'(s, t) = �(s) + ⇢(s)N(s) + t B(s).

Calculem ara l’envolupant dels plans normals. L’equació d’aquests plans és
hT (s), X � �(s)i = 0 . (26)

Derivant respecte s,
hk(s)N(s), X � �(s)i+ hT (s),�T (s)i = 0 .

És a dir,
hN(s), X � �(s)i = ⇢(s). (27)

Per tant, existeix una funció a(s) tal que
X � �(s) = ⇢(s)N(s) + a(s)B(s).

Per a tota funció a(s) aquest vector X � �(s) compleix les equacions (26) i (27), i és
doncs la corba característica per al paràmetre s. Així la superfície envolupant, unió de
característiques, és

'(s, t) = �(s) + ⇢(s)N(s) + t B(s),
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i coincideix amb la superfície polar. ⇤
Exercici 167(b) Recordem que una corba �(s) parametritzada per l’arc té contacte
d’ordre almenys m amb la superfície S donada per F (x, y, z) = 0 en un punt P = �(0) 2 S
si, i només si la funció

q(s) = F (�(s))

compleix
drq

dsr |s=0

= 0, r = 1, . . . ,m.

En el cas particular en què S és l’esfera

(x� a)2 + (y � b)2 + (z � c)2 � r2 = 0,

la funció q(s) que hem de considerar és la funció

q(s) = (x(s)� a)2 + (y(s)� b)2 + (z(s)� c)2 � r2 = h
���!
O�(s),

���!
O�(s)i � r2,

on �(s) = (x(s), y(s), z(s)), O = (a, b, c).
Observem que, com que P pertany a l’esfera, q(0) = 0 .

Contacte d’ordre almenys 1. El centre d’una esfera que té contacte d’ordre almenys 1
amb una corba, pertany al pla normal a la corba en el punt de contacte.

En efecte, com que
q0(0) = 2 h�!OP, �0(0)i,

per a tenir contacte d’ordre almenys 1,
�!
OP ha de ser ortogonal a �0(0).

Podem escriure doncs �!
OP = pN + q B, (28)

on N,B són els vectors normal principal i binormal de la corba en P i p, q 2 R. Equiva-
lentment

O = P � pN � q B,

i per tant O pertany al pla normal a la corba en el punt de contacte.

Contacte d’ordre almenys 2. El centre d’una esfera que té contacte d’ordre almenys 2
amb una corba pertany a l’eix polar de la corba en el punt de contacte.

En efecte, en aquest cas hem de tenir q(0) = q0(0) = q00(0) = 0.
Com que

q0(s) = 2 h
���!
O�(s), � 0

(s)i
tenim

q00(0) = 2 h� 0
(0), �0(0)i+ 2 h�!OP, �00(0)i

= 2 (1 + h�!OP, �00(0)i).
Per tant, q00(0) = 0 vol dir

h�!OP, �00(0)i = �1 .

Substituint
�!
OP per la seva expressió (28) tenim

k p = �1,

on k és la curvatura de la corba en P . Per tant,
�!
OP = �⇢N + q B,

on ⇢ = 1/k és el radi de curvatura de la corba en P .
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Equivalentment,
O = P + ⇢N � q B.

Però l’eix polar de la corba en P és, per definició, la recta
X(t) = P + ⇢N + t B, t 2 R,

i, per tant, O pertany a l’eix polar, com volíem veure.

Contacte d’ordre almenys 3. El centre d’una esfera que té contacte d’ordre almenys 3
amb una corba en un punt P és el punt de l’eix polar de la corba en P donat per

O = P + ⇢N � ⇢0(0)

⌧
B.

En efecte, en aquest cas s’ha de complir q(0) = q0(0) = q00(0) = q000(0) = 0. Com que
q00(s) = 2 h�(s)�O, �00(s)i+ 2

tenim
q000(0) = 2 h�0(0), �00(0)i+ 2 h�(0)�O, �000(0)i

= 2 hP �O, �000(0)i
= 2 h�⇢N + q B, k0

(0)N + k (�k T � ⌧ B)i
= 2 (�⇢ k0

(0)� q k ⌧),

on ⌧ és la torsió de la corba en P .
Per tant, q000(0) = 0 si, i només si

q = �⇢
2 k0

(0)

⌧
=

⇢0(0)

⌧
,

i, per tant,

O = P + ⇢N � ⇢0(0)

⌧
B,

com volíem veure.
Resumint, l’esfera osculatriu d’una corba en un punt, que com hem dit és l’esfera que

té en aquest punt contacte d’ordre almenys tres amb la corba, té centre

O = P + ⇢N � ⇢0(0)

⌧
B,

i radi
���
�!
OP
��� =

s

⇢2 +

✓
⇢0(0)

⌧

◆
2

.

Esfera osculatriu

Cercle osculador

P + ⇢N

B

P + ⇢N �
⇢0(0)

⌧
B

T
P

N

B
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Observem finalment que totes les esferes amb centre l’eix polar i que passen per P
tallen el pla osculador en un mateix cercle: el cercle osculador. Aquestes esferes tenen
contacte exactament 2 amb la corba en P excepte la osculatriu que té contacte almenys
3.

Eix polar

Cercle osculadorP

Esferes amb centre a l’eix polar

⇤
Exercici 167(c) Per trobar l’eix de regressió hem d’afegir a les equacions (26) i (27)
l’equació donada per la derivada segona:

h�k(s)T (s)� ⌧(s)B(s), X � �(s)i = ⇢0(s),

és a dir
�⌧(s) hB(s), X � �(s)i = ⇢0(s).

Per tant, l’eix de regressió és

X(s) = �(s) + ⇢(s)N(s)� ⇢0(s)

⌧(s)
B(s).

Però hem vist a l’apartat (b), que el terme de la dreta és el centre de l’esfera osculatriu,
per tant, l’eix de regressió és la corba formada pels centres de les esferes osculatrius.

La tangent a l’eix de regressió és tangent a la característica en el punt corresponent,
però com que en el nostre cas les característiques són rectes, ja que la família de superfícies
que estem considerant és una família de plans, aquestes rectes tangents estan contingudes
a la nostra superfície, que és així la desenvolupable tangencial de l’eix de regressió.

De fet, és fàcil veure directament que X 0
(s) té la direcció de B(s) i que la seva desen-

volupable tangencial és la superfície polar. ⇤
Exercici 168. Siguin aquestes corbes �

1

(u) = (a
1

(u), b
1

(u), h) i �
2

(v) = (a
2

(v), b
2

(v), 0).
Per a cada funció v = v(u) podem construir la superfície reglada

 (u, z) =
⇣
(a

1

(u)� a
2

(v))
z

h
+ a

2

(v), (b
1

(u)� b
2

(v))
z

h
+ b

2

(v), z
⌘
.

Com que  zz = 0 l’anul.lació o no de la curvatura de Gauss K depèn només de si
s’anul.la o no el coeficient f de la segona forma fonamental.
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Tenim
f = h uz, ⌫i = h

✓
1

h
(a0

1

� a0
2

v0),
1

h
(b0

1

� b0
2

v0), 0

◆
, ⌫i,

on ⌫ és la normal unitària. Les ‘primes’ a les lletres amb subíndex 1 vol dir derivada
respecte u i a les lletres amb subíndex 2 vol dir derivada respecte v.

Tenint en compte que

⌫ =

✓
(b0

1

� b0
2

v0)
z

h
+ b0

2

v0,�(a0
1

� a0
2

v0)
z

h
� a0

2

v0, ⇤
◆

(normalitzat)

obtenim
f =

v0

h
(a0

1

b0
2

� b0
1

a0
2

)

i per tant la superfície és desenvolupable si, i només si,
a0
1

b0
2

� b0
1

a0
2

= 0 .

Estudiem ara el volum tancat per aquestes superfícies reglades (sense saber encara si
són desenvolupables). Només hem d’integrar les àrees de les figures determinades en els
plans z = c, 0  c  h. La corba en el pla z = t h, 0  t  1, és (v = v(u))

x(u) = (1� t) a
2

(v) + t a
1

(u),

y(u) = (1� t) b
2

(v) + t b
1

(u),

z(u) = t h.

Denotant A(t) l’àrea a nivell z = t h

A(t) =
1

2

Z T

0

x(u) dy(u)� y(u) dx(u),

on hem suposat 0  u  T (les corbes són tancades �
1

(0) = �
1

(T )).
Tenim
x(u) dy(u)� y(u) dx(u) = (x(u) y0(u)� y(u) x0

(u)) du

= (1� t)2 (a
2

b0
2

� a0
2

b
2

) v0 + (1� t) t (a
2

b0
1

� b
2

a0
1

)

+ (1� t) t (a
1

b0
2

� b
1

a0
2

) v0 + t2 (a
1

b0
1

� b
1

a0
1

)

El primer sumand integrat respecte de u és (1� t)2 per l’àrea tancada per ↵
2

i el quart
sumand integrat respecte de u és t2 per l’àrea tancada per ↵

1

. No depenen, doncs, de la
funció v = v(u) i no intervenen en el problema de maximitzar el volum. Integrant per
parts es veu que el tercer i quart sumands coincideixen de manera que el problema de
maximitzar el volum (el coeficients en t no juguen tampoc cap paper) es redueix a trobar
una funció v = v(u) que maximitzi la integralZ

(a
2

(v) b0
1

(u)� b
2

(v) a0
1

(u)) du.

Per les equacions d’Euler Lagrange51 obtenim
a0
2

(v) b0
1

(u)� b0
2

(v) a0
1

(u) = 0 .

51Si, donada una funció de tres variables L = L(u, x, y), es vol trobar una funció h : R �! R que
minimitzi la integral Z

b

a

L(u, h(u), h

0
(u)) du,

només s’ha de resoldre l’equació
d

du

✓
@L

@y

◆
=

@L

@x

.

En el nostre cas L(u, x, y) = a2(x) b
0
1(u)� b2(x) a

0
1(u) (en particular les derivades respecte y són zero).
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Equació que defineix implícitament v = v(u). Aquesta és la condició buscada que coinci-
deix amb K = 0 com volíem.

Nota: Un cas especialment fàcil és a
1

(u) = cos(u), b
1

(u) = sin(u), a
2

(v) = cos(v),
b
2

(v) = sin(v). La condició és

a0
1

b0
2

� b0
1

a0
2

= � sin(u) cos(v) + cos(u) sin(v) = sin(v � u) = 0,

és a dir u = v com era d’esperar (cilindre circular recte). (El cas v = u+ ⇡, que és el con
amb vèrtex (0, 0, 1/2), x2

+ y2 = (1� 2 z)2 és un mínim). ⇤
Exercici 169. Calculem la segona forma fonamental de la superfície reglada.

 u(u, t) = 'u(u, v0) + t'uv(u, v0),

 t(u, t) = 'v(u, v0),

 tt(u, t) = 0,

 ut(u, t) = 'uv(u, v0).

El fet que f = 0, en el punt (u, v
0

), comporta

'uv = �
1

12

'u + �
2

12

'v

i, per tant, ⌫̃(u, t) = ⌫(u, v
0

), on ⌫̃ és la normal de la superfície reglada i ⌫ la normal a la
superfície inicial. Així

˜f(u, t) = h ut(u, t), ⌫̃(u, t)i = h'uv(u, v0), ⌫(u, v0)i = f(u, v
0

) = 0 .

Com que  tt(u, t) = 0 també es té g̃ = 0 i, per tant,

˜K =

ẽ g̃ � ẽ2

˜E ˜G� ˜F 2

= 0

i la superfície reglada és desenvolupable.
L’aresta de retrocés es caracteritza com els punts singulars de ⌫̃, on la superfície deixa

de ser regular. Es compleix

 u(u, t) ^  (u, t) = (1 + t�1

12

(u, v
0

))'u(u, v0) ^ 'v(u, v0),

que s’anul.la per a t = �1/�1

12

. Per tant el punt de l’aresta de retrocés és

'(u, v
0

)� 1

�

1

12

(u, v
0

)

'v(u, v0).

Ara només cal recordar el valor del símbol de Christoffel i de la curvatura geodèsica de
les línies coordenades en coordenades principals, que vindran donats per

�

1

12

=

Ev

2E
, kg1 = � Ev

2E
p
G

.

Denotant per e
2

el vector unitari en la direcció principal 'v, el punt de l’aresta de retrocés
és

'(u, v
0

)� 1

kg1(u, v0)
e
2

(u, v
0

),

que és el que volíem veure. ⇤
Exercici 170. Es veu a l’exercici 194 que l’helicoide recte té curvatura mitjana zero. El
recíproc és el teorema de Catalan. Sabem que tota superfície reglada es pot escriure com

'(s, t) = �(s) + t v(s)
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amb h�0(s), v0(s)i = 0. Per tant

's = �0 + t v0,

't = v,

'ss = �00 + t v00,

'st = v0,

'tt = 0,

de manera que amb la notació habitual per als coeficients de la primera i segona forma
fonamental tenim

E = h�0, �0i+ t2hv0, v0i, F = h�0, vi, G = 1,

e =
1

k's ^ 'tk
h�00 + t v00, �0 ^ v + t v0 ^ vi, f =

1

k's ^ 'tk
hv0, �0 ^ vi, g = 0,

k's ^ 'tk =

p
E G� F 2

=

p
h�0, �0i+ t2 hv0, v0i � h�0, vi2 ,

i com que
H =

1

2

E g � 2F f +Ge

E G� F 2

la condició de curvatura mitjana zero és

2F f = e.

Quan es substitueixen els valors de e, f , F en aquesta expressió apareix un polinomi de
grau 2 en t, amb coeficients funcions de s, igual a zero. Per tant els seus coeficients són
zero i s’obté

2 h�0, vi hv0, �0 ^ vi = h�00, �0 ^ vi, (29)
hv00, �0 ^ vi+ h�00, v0 ^ vi = 0, (30)

hv00, v0 ^ vi = 0 . (31)

A partir d’aquí es distingeixen dos casos.
Primer cas: v(s) = c, amb c un vector constant. Podem traçar una corba sobre

la superfície que talli ortogonalment les generatrius. Només hem de posar �̃(s) =
�(s) + t(s) c i determinar la funció t(s) per tal que

h�̃0, ci = h�0 + t0 c, ci = 0.

Deduïm d’aquí que �̃(s) = �(s)� h�, ci c.
Llavors la superfície es pot parametritzar per

'̃(s, t) = �̃(s) + t c

amb h�̃0, ci = 0. És clar que aquesta és la mateixa superfície anterior ja que t varia
a R. Tenim la relació '̃(s, t� h�, ci) = '(s, t).
Amb aquesta parametrització l’equació (29) diu directament que h�00, �0 ^ ci = 0 i
per tant o bé c = � �0 + µ �00 (cosa que porta a contradicció multiplicant per c), o
bé �00 = � �0. En aquest segon cas ja es veu, per la fórmula de la curvatura, que la
curvatura de � és zero i per tant és una recta. Això, juntament amb el fet que v(s)
sigui constant, diu que la superfície donada és un pla.

Segon cas: v

0
(s) 6= 0. Si v0(s) 6= 0 en un punt, és diferent de zero en un entorn i és

en aquest entorn que es treballa. En aquest cas reparametritzem v(s), que és una
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corba sobre l’esfera S2, de manera que quedi parametritzada per l’arc, és a dir,
kv0(s)k = 1. En particular, 0 = hv0, vi0 = hv00, vi+ 1. Així, per l’equació (31) tenim

v00 = � v + µ v0

amb � = �(s), µ = µ(s). Per tant

hv00, vi = �1 = �,

hv00, v0i = 0 = µ

i aleshores v00 = �v. Això permet demostrar fàcilment que la corba v(s) és una
circumferència. En efecte, com que s és el paràmetre arc de v(s) tenim

k = kv00k = k�vk = 1,

⌧ =

det(v0, v00, v000)

ku0k2
= 0

ja que v000 = �v00.
Fent un moviment, que afecta a tota la superfície, però no al resultat que estem
buscant, es pot escriure

v(s) = (cos(s), sin(s), 0).

Substituint aquest valor a l’equació (30) i posant �(s) = (x(s), y(s), z(s)) s’obté
z00(s) = 0, i en conseqüència z(s) = a s+ b, amb a i b constants. Substituint aquest
valor a l’equació (29) s’obté

2 (x0
cos(s) + y0 sin(s)) = �x00

sin(s) + y00 cos(s). (32)

I la igualtat h�0, v0i = 0 donarà

�x0
sin(s) + y0 cos(s) = 0, (33)

que derivant és

�x00
sin(s)� x0

cos(s) + y00 cos(s)� y0 sin(s) = 0. (34)

Sumant (32) i (34) s’obté

x0
cos(s) + y0 sin(s) = 0

que, juntament amb (33), implica x0
= y0 = 0, i per tant �(s) = (c

1

, c
2

, a s + b)
amb c

1

, c
2

constants. Fent una translació podem suposar c
1

= c
2

= b = 0, �(s) =
(0, 0, a s) i

'(s, t) = (0, 0, a s) + t (cos(s), sin(s), 0)

com volíem veure.52

⇤
Exercici 171. Calculem la segona forma fonamental d’aquesta superfície reglada. En
primer lloc calculem

's(s, t) = �0(s) + t Y 0
(s),

't(s, t) = Y (s),

'st(s, t) = Y 0
(s),

'tt(s, t) = 0 .

52El raonament segueix el treball de fi de Grau de Jose Fabrizio Pineda, Geometria de superfícies
minimales, Universdad de la Laguna, 2019.
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Per tant, denotant per ⌫ la normal a la superfície reglada, amb l’abús de notació habitual
⌫(s, t) = ⌫('(s, t))

g(s, t) = h'tt(s, t), ⌫(s, t)i = 0,

f(s, t) = h'ts(s, t), ⌫(s, t)i = hY 0
(s), ⌫(s, t)i

= �hY (s),
d

ds
⌫(�(s))i = II(Y (s), �0(s)) = 0 .

Per tant e g � f 2

= 0 i K = 0 .
Aquest resultat demostra l’existència de desenvolupables osculadores, tècnica que,cal

remarcar, s’utilitza per al transport paral.lel, vegeu l’exercici 224. ⇤

Corbes sobre superfícies

Exercici 172. Donada una corba �(t) considerem una reparametrització seva per l’arc.
És a dir, denotem per s el paràmetre arc de �(t), determinat llevat de signe i transla-
ció, i definim �̃(s) = �(t(s)) on t = t(s) és el difeomorfisme que relaciona aquests dos
paràmetres. Per definició, la curvatura geodèsica de �(t) en el punt de paràmetre t és la
curvatura geodèsica de �̃(s) en el punt de paràmetre s = s(t). Així doncs

kn(t) = ˜kn(s) = hd
2�̃(s)

ds2
, ⌫(s)i = hd

2�(t(s))

ds2
, ⌫(s)i.

Denotem ⌫ = ⌫(s) el vector normal a la superfície en el punt �(s)
Per la regla de la cadena53

kn(t) = hd
2�(t(s))

ds2
, ⌫i = h d

ds

✓
d�

dt
t0
◆
, ⌫i

= hd
2�

dt2
t (t0)2 +

d�

dt
t00, ⌫i = hd

2�

dt2
(t0)2, ⌫i

= (t0)2 hd
2�

dt2
, ⌫i.

Observem com aquesta fórmula posa de manifest un resultat que ja sabíem: si es
canvia s per �s la curvatura normal no varia.

Estudiem ara la curvatura geodèsica.

kg(t) = ˜kg(s) = hd
2�̃(s)

ds2
, ⌫(s) ^ d�̃(s)

ds
i = hd

2�(t(s))

ds2
, ⌫(s) ^ d�(t(s))

ds
i.

Aplicant la regla de la cadena

kg(t) = hd
2�(t(s))

ds2
, ⌫ ^ d�(t(s))

ds
i = h d

ds

✓
d�

dt
t0
◆
, ⌫ ^ d�

dt
t0i

= hd
2�

dt2
(t0)2 +

d�

dt
t00, ⌫ ^ d�

dt
t0i

= (t0)3 hd
2�

dt2
, ⌫ ^ d�

dt
i.

Observem que, un altre cop, aquesta fórmula posa de manifest un resultat ja conegut:
si es canvia s per �s la curvatura geodèsica canvia de signe.

53Escriurem d

ds

�(t(s)) =

d�

dt

(t(s))

dt

ds

=

d�

dt

t

0
. ja que t = t(s) i se sobreentén que la derivada de � respecte

t és una funció de t.
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Resumint, si �(t) no està necessàriament parametritzada per l’arc i t0 = dt/ds, on s
és el paràmetre arc, les fórmules són

kn = (t0)2 hd
2�

dt2
, ⌫i,

kg = (t0)3 hd
2�

dt2
, ⌫ ^ d�

dt
i.

⇤
Exercici 173. Sigui (U,') una parametrització de S

1

i �(s) = '(u(s), v(s)) una corba
sobre S parametritzada per l’arc. Llavors tenim

�0(s) = u0 'u + v0 'v

amb 'u = 'u(u(s), v(s)), etc. Per tant,

� 00
(s) =

d

ds
(u0 'u + v0 'v) = u00 'u + v00 'v + (u0

)

2 'uu + 2 u0 v0 'uv + (v0)2 'vv

= u00 'u + v00 'v + (u0
)

2

(�

1

11

'u + �
2

11

'v + e ⌫)

+ 2 u0 v0 (�1

12

'u + �
2

12

'v + f ⌫) + (v0)2 (�1

22

'u + �
2

22

'v + g ⌫)

= (u00
+ �

1

11

(u0
)

2

+ 2�

1

12

u0 v0 + �1

22

(v0)2)'u

+ (v00 + �2

11

(u0
)

2

+ 2�

2

12

u0 v0 + �2

22

(v0)2)'v

+ (e (u0
)

2

+ 2 f u0 v0 + g (v0)2) ⌫

(35)

amb �k
ij = �

k
ij(u(s), v(s)), etc.

Escriurem doncs
�00(s) = A'u +B 'v + C ⌫, (36)

amb
A = u00

+ �

1

11

(u0
)

2

+ 2�

1

12

u0 v0 + �1

22

(v0)2,

B = v00 + �2

11

(u0
)

2

+ 2�

2

12

u0 v0 + �2

22

(v0)2,

C = II(�0, �0).

Per tant,
kg = det(⌫, �0, �00) = det(⌫, u0 'u, B 'v) + det(⌫, v0 'v, A'u)

= (u0 B � v0 A) det(⌫,'u,'v)

=

p
E G� F 2

(u0 B � v0 A).

Com que aquesta expressió només depèn de les coordenades de la corba i de la primera
forma fonamental, i la corba f(�(s)) té les mateixes coordenades respecte f � ' que �(s)
respecte ' i els coeficients de la primera forma fonamental respecte f �' i ' coincideixen,
kg és invariant per isometries. ⇤
Exercici 174. Aclarim primer la notació. Si posem v = v

0

, kg1 = kg1(u) és la curvatura
geodèsica de la corba '(u, v

0

), i els termes E, G, Ev de la dreta de la igualtat estan
valorats en el punt (u, v

0

). Anàlogament, si u = u
0

, kg2 = kg2(v) és la curvatura geodèsica
de la corba '(u

0

, v) i els termes E, G, Gu de la dreta de la igualtat estan valorats en el
punt (u

0

, v).
Com que les corbes '(u

0

, v) i '(u, v
0

) no estan parametritzades per l’arc, utilitzarem
les fórmules de l’exercici 172 per calcular la seva curvatura geodèsica.

En aquest exercici es veu que la curvatura geodèsica d’una corba �(t) està donada per

kg(t) =
det(⌫, �0, �00)

k�0k3
,
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però a l’exercici 173 es calcula el numerador d’aquesta expressió i s’obté

kg =

p
E G� F 2

(u0 B � v0 A)

k�0k3
, (37)

on A, B són els que s’han utilitzat en el mateix exercici 173.
Aplicant aquesta fórmula a la corba '(u, v

0

) (que compleix doncs u0
= 1, v0 = 0, i per

tant B = �

2

11

= � Ev
2G) tenim

kg1 =

p
E G B

 s
�
1 0

� ✓E 0

0 G

◆ ✓
1

0

◆ !3

= � Ev

2E
p
G

.

Aplicada ara a la corba '(u
0

, v) (que compleix doncs u0
= 0, v0 = 1 i per tant A =

�

1

22

= �Gu
2E ) tenim

kg2 =

p
E G (�A)

 s
�
0 1

� ✓E 0

0 G

◆ ✓
0

1

◆ !3

=

Gu

2G
p
E

.

⇤
Exercici 175. Si interpretem la curvatura normal com el valor de la segona forma
fonamental sobre el vector tangent (unitari) a la corba:

kn(s) = �h(d⌫)( �0(s)

k�0(s)k),
�0(s)

k�0(s)ki = � 1

k�0(s)k2
h(d⌫)(�0(s)), �0(s)i

= � 1

k�0(s)k2
h(⌫ � �)0(s), �0(s)i = 1

k�0(s)k2
h(⌫ � �)(s), �00(s)i

(⌫ i �0 són perpendiculars). ⇤
Exercici 176. Tenint en compte que les direccions principals són perpendiculars i prenent
l’origen per a mesurar els angles en una qualsevol d’elles, la curvatura normal kn(✓) es
calcula amb

kn(✓) = k
1

cos

2

(✓) + k
2

sin

2

(✓),

on k
1

, k
2

són les curvatures principals. Aleshores
Z ⇡

0

kn(✓) d✓ =

Z ⇡

0

(k
1

cos

2

(✓) + k
2

sin

2

(✓)) d✓

=

Z ⇡

0

✓
k
1

+ k
2

2

+

k
1

� k
2

2

cos(2 ✓)

◆
d✓

=

k
1

+ k
2

2

⇡ .

Si s’escull qualsevol altre direcció com origen dels angles, l’únic canvi és una translació
de ✓ que no modifica els resultats. ⇤
Exercici 177. La parametrització del cilindre determina una isometria local entre el pla
euclidià (u, v, 0) i la superfície, ja que els vectors tangents són:

'u = (0, 0, 1),

'v = (� sin(v), cos(v), 0).
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Com que les isometries locals conserven la curvatura geodèsica, les de les corbes � i �
coincideixen. Però la curvatura geodèsica de la corba � (en el pla z = 0 de R3) serà igual
a la seva curvatura.

Segon mètode. (Càlcul directe). Suposem � parametritzada per l’arc. Com que

�0
(t) = (�v0 sin(v), v0 cos(v), u0

),

�00
= (�(v0)2 cos(v)� v00 sin(v),�(v0)2 sin(v) + v00 cos(v), u00

),

⌫ = (�cos(v),� sin(v), 0),

tenim
kg =

h�00, ⌫ ^ �0i
k�0k3

= u0 v00 � v0 u00
= k�,

ja que la curvatura de � es determina per l’equació (u00, v00) = k� (�v0, u0
). ⇤

Exercici 178. Recordem que la curvatura geodèsica d’una corba �(s) sobre una superfície
S, en un punt P = �(0), coincideix, llevat del signe, amb la curvatura de la corba que
s’obté en projectar �(s) ortogonalment sobre el pla tangent a S en P . Per tant la curvatura
geodèsica és la curvatura del cercle superior que té radi a, i.e. kg = 1/a.

Noteu que la corba d’aquest exercici és la mateixa que es considera a l’exercici 113.

⇤
Exercici 179. Sigui �(s) una parametrització per l’arc de C. Sabem que la curvatura
normal en una direcció donada es calcula aplicant la segona forma fonamental al vector
unitari en aquesta direcció. Denotem T (s) = �0(s), llavors

�i = II i(T, T ) = �hd⌫i
ds

, T i = h⌫i, k ⌫i = k cos(↵i), i = 1, 2,

on N = N(s) és la normal principal de �(s) i ↵i és l’angle entre N i la normal a la
superfície ⌫i.

Observem que
✓ = ↵

2

� ↵
1

,

ja que les tres normals N , ⌫
1

, ⌫
2

estan en un mateix pla, concretament en el pla rectificant
de �(s).

Un càlcul directe diu que

sin

2

(✓) = cos

2

(↵
1

) + cos

2

(↵
2

)� 2 cos(↵
1

) cos(↵
2

) cos(✓).
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Per tant,

k2

sin

2

(✓) = k2

cos

2

(↵
1

) + k2

cos

2

(↵
2

)� 2 k2

cos(↵
1

) cos(↵
2

) cos(✓)

= �2
1

+ �2
2

� 2�
1

�
2

cos(✓).

⇤
Exercici 180(a) Són línies de curvatura les corbes que tenen com a vector tangent un
vector propi de d⌫ en cada punt. La condició de l’enunciat diu exactament això (Olinde).

⇤
Exercici 180(b) Sigui �(s) una parametrització per l’arc de C i ⌫

1

, ⌫
2

els vectors normals
a S

1

i S
2

respectivament. Si calculem la derivada del producte escalar dels normals al
llarg de C (calculem el cosinus de l’angle entre les superfícies) es té

d

ds
h⌫

1

(�(s)), ⌫
2

(�(s))i = hd⌫
1

(�0(s)), ⌫
2

(�(s))i+ h⌫
1

(�(s)), d⌫
2

(�0(s))i

= h⌫
1

(�(s)), d⌫
2

(�0(s))i
ja que el primer sumand és 0 donat que �0(s) és tangent a les dues superfícies i si C és
línia de curvatura en S

1

es compleix

d⌫
1

(�0(s)) = �(s) �0(s).

Així també és clar que, quan C també és línia de curvatura en S
2

, h⌫
1

(�(s)), d⌫
2

(�0(s))i
també és 0 (val la mateixa observació) i l’angle entre els vectors normals a les superfícies
és constant.

Recíprocament, si l’angle entre les superfícies és constant i diferent de 0 (les superfícies
tenen vectors normals diferents), l’expressió anterior dirà que d⌫

2

(�0(s)) és perpendicular
a ⌫

1

. Però com que els vectors ⌫i són unitaris també es compleix

hd⌫
2

(�0(s)), ⌫
2

(�(s))i = 0,

de forma que d⌫
2

(�0(s)) i �0(s) són dos vectors perpendiculars a ⌫
1

i ⌫
2

al mateix temps.
Com que la dimensió és 3, això només pot passar si d⌫

2

(�0(s)) és un múltiple de �0(s) (que
se suposa que és un vector no nul ja que parametritzem per l’arc) i, per tant, �(s) també
és una línia de curvatura en S

2

. És clar que si les superfícies són tangents al llarg de C
(els vectors normals coincideixen sobre la corba) no s’ha de demostrar res. ⇤
Exercici 181. Tenint en compte que, respecte aquesta parametrització, es té:

'u = (�v sin(u), v cos(u), c),

'v = (cos(u), sin(u), 0),

I =

✓
c2 + v2 0

0 1

◆
,

⌫ =

1p
c2 + v2

(�c sin(u), c cos(u),�v),

'uu = (�v cos(u),�v sin(u), 0),

'uv = (� sin(u), cos(u), 0),

'vv = (0, 0, 0),

II =

cp
c2 + v2

✓
0 1

1 0

◆
,

W =

cp
c2 + v2

✓
0

1

c2+v2

1 0

◆
.
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Es pot plantejar l’equació que han de complir les línies de curvatura com

cp
c2 + v2

������

v02 �u0 v0 u02

c2 + v2 0 1

0 1 0

������
= 0,

que correspon a
�v02 + (c2 + v2)u02

= 0

i, aïllant, a

u0
= ± v0p

c2 + v2
.

S’obté, doncs, que una corba de la forma �(s) = '(u(s), v(s)) serà línia de curvatura si, i
només si

v = c sinh(±u+ ct.) = ±c sinh(u+ ct.)

Es pot arribar al mateix resultat si es té en compte que, en cada punt de la superfície,

els vectors propis de W són els mateixos que els de la matriu M =

✓
0

1

c2+v2

1 0

◆
. Com

que els valors propis de M són ± 1p
c2+v2

, és clar que els vectors propis de la forma (u0, v0)
d’aquesta matriu seran els que compleixin

u0 ± 1p
c2 + v2

v0 = 0 .

I aquesta és la mateixa equació que abans. ⇤
Exercici 182(a) Les derivades de primer i segon ordre de ' són:

'u = (1� u2

+ v2, 2 u v, 2 u),

'v = (2 u v, 1 + u2 � v2,�2 v),

'uu = (�2 u, 2 v, 2),

'uv = (2 v, 2 u, 0),

'vv = (2 u,�2 v,�2).

Amb uns quants càlculs (fàcils) es veu que

I =

�
1 + u2

+ v2
�
2

✓
1 0

0 1

◆
.

Tampoc costa massa calcular

⌫ =

1

1 + u2

+ v2
(�2 u, 2 v, 1� u2 � v2)

i, aleshores,

II =

✓
2 0

0 �2

◆
.

⇤
Exercici 182(b) A partir dels càlculs anteriors és immediat obtenir

W =

2

(1 + u2

+ v2)2

✓
1 0

0 �1

◆
,

que té traça nul.la i, per tant, la curvatura mitjana de la superfície és 0. ⇤
Exercici 182(c) Les curvatures principals són ±2/ (1 + u2

+ v2)2 i les línies de curvatura
seran les línies coordenades ja que l’expressió de W ja és diagonal i, per tant, el seus
vectors propis són 'u i 'v. ⇤
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Exercici 183. Per a una superfície de revolució amb aquesta parametrització els càlculs
donen (tenint en compte que el paràmetre u és el paràmetre arc de la corba �)

'u = (a0(u) cos(v), a0(u) sin(v), b0(u)) ,

'v = (�a(u) sin(v), a(u) cos(v), 0) ,

⌫ = (�b0(u) cos(v),�b0(u) sin(v), a0(u)) .

De forma que
⌫u = (�b00(u) cos(v),�b00(u) sin(v), a00(u)) ,

⌫v = (b0(u) sin(v),�b0(u) cos(v), 0) .

Sense haver de fer cap càlcul es veu de forma immediata que l’expressió de ⌫v també es
pot escriure com

⌫v = �b0(u)

a(u)
'v

mentre que, si tenim en compte que el vector normal (al pla) de la corba � és (�b0(u), a0(u))
i la curvatura es pot obtenir, doncs, de la igualtat (a00(u), b00(u)) = k(u) (�b0(u), a0(u)) de
forma que a00(u) = �k(u) b0(u), b00(u) = k(u) a0(u), l’expressió de ⌫u serà equivalent a

⌫u = �k(u)'u =

a00(u)

b0(u)
'u = �b00(u)

a0(u)
'u.

Aquestes dues expressions mostren que 'u i 'v són els vectors propis de W i que els
valors propis corresponents (curvatures principals) són k i b0(u)/a(u). En resum, les línies
de curvatura són les corbes coordenades i les línies de curvatura són les corresponents a
u = ct., v = ct.

Nota: Naturalment, calculant W com I�1 II s’arriba al mateix resultat (o a alguna
expressió equivalent). També queda demostrat, sense fer més càlculs ni simplificacions,

que la curvatura de Gauss de la superfície serà K = �a00(u)

a(u)
(corresponent al producte

de les dues curvatures principals). ⇤
Exercici 184. Suposem coordenades principals '(u, v) sobre una superfície S. En par-
ticular les línies coordenades són ortogonals (F = 0) i @2'

@u@v és tangent a la superfície
(f = 0). Considerem la superfície focal S

1

 (u, v) = '(u, v) + ⇢
1

(u, v) ⌫(u, v).

(Canviant ⇢
1

per ⇢
2

obtenim l’altra superfície focal, i el raonament seria el mateix).
Aleshores es té

 u = 'u + (⇢
1

)

0 ⌫ + ⇢
1

(�k
1

'u) = (⇢
1

)

0 ⌫,

 v = (1� ⇢
1

⇢
2

)'v + (⇢
1

)v ⌫.

Per tant, el pla tangent en qualsevol punt  (u, v) de la superfície focal S
1

està generat
per 'v i ⌫. I la normal ⌫

1

a S
1

és, doncs, ⌫
1

=

'up
E

.

Fixem un punt P = '(u
0

, v
0

) de S i considerem el corresponent punt M =  (u
0

, v
0

)

a la superfície focal S
1

. Per M passen les dues corbes que volem veure que tenen, a M ,
direccions conjugades.

Aquestes corbes són
�

1

(u) =  (u, v
0

) = '(u, v
0

) + ⇢
1

(u, v
0

) ⌫(u, v
0

),

�

2

(v) =  (u
0

, v) = '(u
0

, v) + ⇢
1

(u
0

, v) ⌫(u
0

, v).
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Per tant
d

du |u=u0

�

1

(u) =  u(u0

, v
0

),

d

dv |v=v0
�

2

(v) =  v(u0

, v
0

).

Denotant II
1

,W
1

respectivament la segona forma fonamental i l’endomorfisme de Wein-
garten de S

1

tenim (a (u
0

, v
0

))

II
1

(⌫, v) = hW
1

(⌫), vi = h�d⌫
1

(⌫), vi =
1p
E

h�d'u(⌫), vi =
1p
E

h⌫u, vi = 0 .

Per tant, si ⇢0
1

6= 0, II( u, v) = 0.

També es pot veure aquest resultat sense fer cap càlcul. En efecte, el pla tangent a S
1

en M és M + h'u(u0

, v
0

)i?. Conté doncs la recta PM .
El pla tangent a S

1

en els punts de �
1

és �
1

(v) + h'u(u0

, v)i?. Contenen doncs les
rectes normals a la superfície en els punts '(u

0

, v). Clarament aquestes rectes s’acosten,
quan t ! 0, a la normal PM .

Aquest argument es formalitza així: La intersecció dels plans tangents a S
1

al llarg
de �

2

(v) amb el pla tangent a S
1

en M és una recta de direcció 'u(u0

, v
0

) ^ 'u(u0

, v) Pel
mateix argument que en el problema 126 el límit quan t ! 0 d’aquest vector normalitzat
té la direcció de ⌫, que és el vector tangent en M de �

1

.
Més explícitament, per Taylor,

'u(u0

, v) = 'u(u0

, v
0

) + v 'uv(u0

, v
0

) + · · ·
d’on

'u(u0

, v
0

) ^ 'u(u0

, v) = v'u(u0

, v
0

) ^ 'uv(u0

, v
0

) + · · ·
En dividir per la norma el coeficient v se simplifica i tenim

lim

t!0

'u(u0

, v
0

) ^ 'u(u0

, v)

k'u(u0

, v
0

) ^ 'u(u0

, v)k =

'u(u0

, v
0

) ^ 'uv(u0

, v
0

)

k'u(u0

, v
0

) ^ 'uv(u0

, v
0

)k .

Com que, per tractar-se de coordenades principals, la derivada segona creuada no té
component normal (f = 0), el límit anterior és igual a la normal ⌫ a la superfície en el
punt de coordenades (u

0

, v
0

). ⇤
Exercici 185. Siguin x, y, z les coordenades rectangulars d’un punt de la superfície, i u,
v, w els cosinus directors de la normal en aquest punt.

Les coordenades X, Y , Z d’un punt qualsevol de la normal seran
X = x+ � u, Y = y + � v, Z = z + �w.

Expressem que hi ha un moviment que fa que el punt (X, Y, Z) descrigui una corba amb
tangent la normal a la superfície (teorema de Monge).

d(x+ � u)

u
=

d(y + � v)

v
=

d(z + �w)

w
Eliminant els d�

dx+ � du

u
=

dy + � dv

v
=

dz + � dw

w
.

Eliminant � tenim el resultat.
Quan z = z(x, y) les funcions u, v, w són

u = �p/
p

1 + p2 + q2 ,

v = �q/
p

1 + p2 + q2 ,

w = 1/
p
1 + p2 + q2 ,
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i per tant

(1 + p2 + q2)3/2du = �dp (1 + q2) + p q dq,

(1 + p2 + q2)3/2dv = �dq (1 + p2) + p q dp,

(1 + p2 + q2)3/2dw = �p dp� q dq.

Per tant l’equació de Darboux s’escriu
������

dx �dp (1 + q2) + p q dq �p
dy �dq (1 + p2) + p q dp �q
dz �p dp� q dq 1

������
= 0,

que desenvolupant dona

�dx dq + dy dp+ dz (q dp� p dq) = 0 .

Substituint dz = p dx+q dy, dp = r dx+s dy, dq = s dx+t dy obtenim l’equació diferencial
típica de les línies de curvatura

������

dy2 �dx dy dx2

1 + p2 p q 1 + q2

r s t

������
= 0 .

⇤
Exercici 186. Conseqüència quasi directa d’Olinde. Sabem que al llarg d’una línia de
curvatura �(s) es compleix

d⌫

ds
= �k �0(s),

on k = k(s) és la curvatura normal en la direcció �0(s).
L’angle entre el pla osculador i el pla tangent és l’angle entre els seus vectors normals:

el binormal a la corba B i el normal a la superfície ⌫.
Derivant el producte escalar tenim

hB, ⌫i0 = hB0, ⌫i+ hB, ⌫ 0i = hB0, ⌫i � hB, k T i = hB0, ⌫i = ⌧ hN, ⌫i = 0,

on T = �0(s) i N és el normal principal a la corba.
Ara bé, sabem que per ser la corba no asimptòtica en cap punt, es compleix h⌫, Ni 6= 0

i per tant ⌧ = 0 i la corba és plana. ⇤
Exercici 187. Que les línies de curvatura tenen aquesta propietat és el Teorema d’Olinde
Rodrigues.

Recíprocament, si ⌫ 0(s) = �(s) �0(s), el vector �0(s) és un vector propi de l’endomor-
fisme de Weigarten. Serà doncs �0(s) múltiple de e

1

o e
2

(directions principals). Si és
múltiple de e

1

el valor propi és k
1

ja que vectors propis proporcionals tenen el mateix
valor propi. Per tant, � = k

1

. Anàlogament si �0(s) és múltiple de e
2

. ⇤
Exercici 188.
Primer mètode. Sigui �(s) una línia de curvatura d’una certa superfície S. Suposem-la
parametritzada per l’arc i denotem ⌫(s) la restricció a �(s) del vector normal a S.

La superfície engendrada per les normals de què ens parla l’enunciat és

'(s, t) = �(s) + t ⌫(s).

Recordem que, tal com va dir Olinde,
d⌫

ds
= �kn(s) �

0
(s),
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on kn(s) és la curvatura principal en la direcció principal �0(s).
Així

's = �0(s) + t ⌫ 0(s) = (1� kn t) �
0
(s),

't = ⌫.

Observem que la relació entre la curvatura de �(s), k(s), i la curvatura principal kn(s) és
kn(s) = k cos(✓), on ✓ és l’angle entre la normal a la superfície i la normal principal de
�(s).

Per tant,
b⌫(s, t) = �0(s) ^ ⌫(s)

és el vector normal a la nova superfície i depèn només de s. És doncs constant al llarg
de les generatrius. Això ja demostra que aquesta superfície és desenvolupable: és reglada
amb el mateix pla tangent sobre les generatrius. Vegeu la definició i algunes propietats
de les superfícies reglades a l’exercici 158.

No obstant, podem trobar explícitament la línia de regressió, que es pot designar com
la línia que desenvolupa, ja que és una corba dins la superfície tal que les seves tangents
coincideixen amb les generatrius de la superfície reglada.

En efecte, aquesta corba ha de ser de la forma
�(s) = �(s) + t(s) ⌫(s)

i tal, que
�0
(s) = �0(s) + t0(s) ⌫(s) + t(s) ⌫ 0(s) = (1� kn(s) t(s)) �

0
(s) + t0(s) ⌫(s)

tingui la direcció de ⌫(s). És a dir, ha de ser 1�kn(s) t(s) = 0, que equival a t(s) = ⇢n(s),
on ⇢n(s) és el radi de curvatura principal (⇢ = ⇢n cos(✓)).

Si la línia de curvatura és també geodèsica (la normal a la corba i la normal a la
superfície coincideixen) llavors la línia de regressió és justament l’evoluta d’aquesta línia.

Segon mètode. La línia de regressió és la línia característica de la família uniparamètrica
de plans tangents. Recordem que, en general, donada una corba sobre una superfície tenim
la família uniparamètrica de plans tangents a la superfície en el punts de la corba. La
“característica” d’aquesta família (que s’obté resolent els sistema de tres equacions format
per l’equació de la família uniparamètica i les seves derivades primera i segona respecte
del paràmetre) és la que s’anomena “línia de regressió” i és tal que les seves tangents són
les rectes que s’obtenen com a intersecció de plans consecutius.

La família uniparamètrica de plans tangents a la superfície de Monge és
h(x� �(s)), b⌫(s)i = 0 .

Derivada primera:
h(x� �(s)), b⌫ 0(s)i = 0,

ja que h�0(s), b⌫(s)i = 0.
A més, b⌫ 0(s) = �00(s)^ ⌫(s)+�0(s)^ ⌫ 0(s) = k(s)N(s)^ ⌫(s) = k �0(s), de manera que

de les dues equacions anteriors deduïm que (x � �(s)) és ortogonal a b⌫(s) i a �0(s), per
tant, ha de ser x� �(s) = �(s) ⌫(s), per a una certa funció �(s).

Derivada segona (derivem h(x� �(s)), k(s) �0(s)i):
�k(s) + k0

(s) h(x� �(s)), �0(s)i+ k(s)2 h(x� �(s)), N(s)i = 0,

on N(s) és el vector normal principal de �(s). Però el terme del mig de la suma és zero,
de manera que tenim

�k(s) + �(s) k(s)2 cos(✓) = 0,
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és a dir, �(s) = ⇢n(s), com ja sabíem.

Comentari. Les línies de curvatura estan caracteritzades pel fet que normals en punts
consecutius es tallen. Aquesta afirmació que es pot trobar en els treballs clàssics vol dir
el següent (recordeu que dues rectes de l’espai en general no es tallen). Fixem una recta
r i una família uniparamètrica de rectes s(t) amb s(0) = r. Direm que r = s(0) talla la
recta consecutiva si existeix un punt P 2 r tal que per tot pla ⇧ que contingui r el punt
P (t) = ⇧ \ s(t) compleix que lim

t!0

P (t) = P .
Per exemple, si prenem com r l’eix z i com rectes s(t) les normals a la superfície

z = 3 x2

+ y2 al llarg d’una corba (t, y(t), 3 t2 + y(t)2), rectes que s’escriuen com

s(t) : (t, y(t), 3 t2 + y(t)2) + � (�6 t,�2 y(t), 1),

i les tallem amb un pla arbitrari que contingui l’eix x, y = µx, obtenim

3 t2 + y(t)2 +
µ t� y(t)

6µ t� 2 y(t)
)

de manera que, per l’Hôpital,

lim

t!0

P (t) = (0, 0,
µ� y0(0)

6µ� 2 y0(0)
)

i aquest quocient no depèn de µ, i per tant del pla, si i només si y0(0) = 0, cas en què el
límit val 1/6 (serà el valor del radi de curvatura principal en (0, 0, 0)). Hi ha una segona
direcció principal donada per corbes amb vector tangent a l’origen (0, 1, 0), que no es té
en compte quan es parametritza per x. ⇤
Exercici 189. Sabem, per l’exercici 149 que les superfícies de evolució estan donades per
'(u, v) = (a(u) cos(v), a(u) sin(v), b(u)) on x = a(u), z = b(u) és una corba del pla xz
que gira al voltant de l’eix z. Suposem que aquesta corba està parametritzada per l’arc,
és a dir, (a0)2 + (b0)2 = 1. Per alleugerir la notació no s’explicita que a i b són funcions de
u. Aleshores

'u = (a0 cos(v), a0 sin(v), b0),

'v = (�a sin(v), a cos(v), 0),

E = 1,

F = 0,

G = a2,

'uu = (a00 cos(v), a00 sin(v), b00),

'uv = (�a0 sin(v), a0 cos(v), 0),

'vv = (�a cos(v),�a sin(v), 0),

⌫ = (�b0 cos(v),�b0 sin(v), a0),

e = h'uu, ⌫i = �a00 b0 + a0 b00,

f = h'uv, ⌫i = 0,

g = h'vv, ⌫i = a b0.

L’equació de les línies de curvatura serà
������

(v0)2 �u0v0 (u0
)

2

E F G
e f g

������
=

������

(v0)2 �u0 v0 (u0
)

2

E 0 G
e 0 g

������
= 0 .
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Per tant les solucions seran u0 v0 = 0, és a dir, u = ct. (els paral.lels) i també v = ct. (els
meridians). ⇤
Exercici 190.
Primer mètode (Darboux a Leçons).

Les línies de curvatura es caracteritzen pel fet que si les agafem com línies coordenades
llavors F = f = 0. La segona condició s’escriu dient que les coordenades cartesianes
(x, y, z) dels punts de la superfície compleixen l’equació diferencial (det('u,'v,'uv) = 0)

@2✓

@u @v
= A

@✓

@u
+B

@✓

@v
, (38)

on A i B són certes funcions. És a dir, cadascuna de les components de ' és una solució
d’aquesta EDP.

La primera condició F = 0 és pot reduir ara a dir que x2

+ y2 + z2 també és solució
de l’EDP anterior. En efecte,

@2(x2

+ y2 + z2)

@u @v
=

@

@u
(2 x

@x

@v
+ 2 y

@y

@v
+ 2 z

@z

@v
)

= 2 h'u,'vi+ 2 x
@2x

@u @v
+ 2 y

@2y

@u @v
+ 2 z

@2z

@u @v

= 2 h'u,'vi+ A

✓
@(x2

+ y2 + z2)

@u

◆
+B

✓
@(x2

+ y2 + z2)

@v

◆

amb '(u, v) = (x(u, v), y(u, v), z(u, v)). Per tant F = 0 si, i només si, x2

+ y2 + z2 també
és solució de l’EDP anterior.

Estudiem ara les inversions. Aquestes venen donades per (x, y, z) 7! (X, Y, Z) amb

X =

K2 x

x2

+ y2 + z2
, Y =

K2 y

x2

+ y2 + z2
, Z =

K2 z

x2

+ y2 + z2
.

Les quatre solucions de (38), x, y, z, x2

+ y2 + z2, es transformen per la inversió en X,
Y , Z, X2

+ Y 2

+ Z2 i aïllant tenim

x =

K2 X

X2

+ Y 2

+ Z2

, y =

K2 Y

X2

+ Y 2

+ Z2

, z =

K2 Z

X2

+ Y 2

+ Z2

,

x2

+ y2 + z2 =
K4

X2

+ Y 2

+ Z2

.

Posem
✓ =

�

X2

+ Y 2

+ Z2

,

de manera que, quan � = X, Y, Z, 1, tenim les quatre solucions de (38).
Si substituïm aquesta expressió de ✓ a (38) obtindrem una equació del mateix tipus

per a �, concretament
@2�

@u @v
= A

1

@�

@u
+B

1

@�

@v
,

per a certes funcions A
1

, B
1

. Sabem que aquesta equació admet les solucions X, Y , Z.
Com que (38) admet la solució ✓ = 1, també admetrà la solució � = X2

+ Y 2

+ Z2. Per
tant la superfície corresponent al lloc geomètric de (X, Y, Z) té u, v com paràmetres de
les seves línies de curvatura. Com volíem demostrar.

Segon mètode.
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Considerem la primera superfície parametritzada en coordenades principals. Tindrem
'(u, v) = (x(u, v), y(u, v), z(u, v)) amb F = f = 0. Per més comoditat denotem

e
1

=

'up
E

, e
2

=

'vp
G

, e
3

=

'u ^ 'v

k'u ^ 'v|k
que és una base ortonormal de l’espai. La inversió transforma la superfície ' en la super-
fície '̃ donada per

'̃ = a', a =

1

h','i .

Ara s’ha de veure que ˜F =

˜f = 0. Fent els càlculs
'̃u = au '+ a'u,

'̃v = av '+ a'v,

˜N = a au ' ^ 'v � a av ' ^ 'u + a2 'u ^ 'v (normalitzat),
au = �2 a2 h','ui,
av = �2 a2 h','vi,

auv =
2 au av

a
� 2 a2 h','uvi.

Per tant (tenint en compte que F = 0)

˜F = au av
1

a
+ a au h','vi+ a av h'u,'i = 0 .

Calculem ara ˜f .
˜f = h'̃uv, ˜Ni
= hauv '+ au 'v + av 'u + a'uv, a au ' ^ 'v � a av ' ^ 'u + a2 'u ^ 'vi

(falta dividir pel mòdul del segon terme però no afecta el raonament ja que només volem
veure que ˜f = 0). Així (recordem que, per ser f = 0, tenim h'uv,'u ^ 'vi = 0)

˜f = a2 auv h','u ^ 'vi+ a au av h'u,' ^ 'vi � a au av h'v,' ^ 'ui
+ a2 au h'uv,' ^ 'vi � a2 av h'uv,' ^ 'ui

= (a2 auv � 2 a au av) det(','u,'v)

+ a2 au det(','v,'uv)� a2 av det(','u,'uv).

Posem ' = Ae
1

+B e
2

+ C e
3

de manera que (tornem a usar f = 0)

det(','u,'v) =

p
E G C,

det(','v,'uv) = ��1

12

p
E G C,

det(','u,'uv) = �
2

12

p
E G C.

Per tant ˜f s’anul.la si, i només si,
(a2 auv � 2 a au av)� a2 au �

1

12

� a2 av �
2

12

= 0 . (39)
I observem també que auv es pot escriure com

auv =
2 au av

a
� 2 a2 h',�1

12

'u + �
2

12

'vi

=

2 au av
a

� 2 a2 �1

12

h','ui � 2 a2 �2

12

h','vi

=

2 au av
a

+ �

1

12

au + �
2

12

av,
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que és exactament la igualtat (39) que es buscava. ⇤
Exercici 191. Només cal recordar la definició

II(v, v) = I(W (v), v) = h�d⌫

ds
, vi = 0,

on d⌫/ds vol dir restringir el camp normal a la superfície ⌫ sobre una corba integral �(s)
de v i derivar. I ⌫(�(s)) és justament la imatge esfèrica de la corba. ⇤
Exercici 192(a) Com que � té el seu recorregut sobre S és clar que

h(⌫ � �), T i = 0 .

Derivant respecte el paràmetre arc de �
0 = h(⌫ � �), T i0 = h(⌫ � �)0, T i+ h(⌫ � �), T 0i.

Per hipòtesi, el primer terme de la suma és 0 (0 = kn(T ) = �h(d⌫)(T ), T i = II(T, T ))
i en el segon T 0

= k N (cal tenir en compte que si s’està parlant del vector binormal és
necessari que el triedre de Frenet estigui definit i, per tant, que k 6= 0) de forma que la
igualtat diu que T i N són perpendiculars a ⌫ sobre la corba �. Per tant és clar que
B i ⌫ són iguals (excepte un signe que depèn de l’orientació que s’hagi considerat a la
superfície).

Noteu que aquest resultat també es pot enunciar dient que el pla osculador de � coin-
cideix amb el pla tangent de la superfície i que, en realitat, el resultat és una equivalència.

⇤
Exercici 192(b) Ja s’ha fet servir que II(T, T ) = 0 i aquesta igualtat és una de les formes
possibles d’expressar la hipòtesi sobre la corba �.

Per a calcular II(N, T ) es pot tenir en compte que (considerant el paràmetre arc de
la corba)

II(N, T ) = �hN, (d⌫)(T )i = �hN, (⌫ � �)0i

(tenint en compte que N és perpendicular a ⌫)

= hN 0, (⌫ � �)i

(recordant les fórmules de Frenet i utilitzant la curvatura k i la torsió ⌧ de la corba)

= h�k T � ⌧ B, ⌫ � �i

(s’ha vist a l’apartat anterior que ⌫ � � = B)

= h�k T � ⌧ B,Bi = �⌧.
⇤

Exercici 192(c) Les expressions (matrius) de la primera i segona forma fonamentals de
la superfície (en els punts de la corba) prenent com a base de l’espai tangent el parell T ,
N seran

I =

✓
1 0

0 1

◆
, II =

✓
0 �⌧
�⌧ ⇤

◆
,

de forma que la matriu de l’endomorfisme de Weingarten serà també

W =

✓
0 �⌧
�⌧ ⇤

◆

i la curvatura de Gauss
K = det(W ) = �⌧ 2.
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⇤
Exercici 193. Calculem la segona forma fonamental.

'u = (

1

2

e

a
cos(b)� 1

2

e

a
sin(b),

1

2

e

a
sin(b) +

1

2

e

a
cos(b),

1

2

),

'v = (�1

2

e

a
cos(b)� 1

2

e

a
sin(b),�1

2

e

a
sin(b) +

1

2

e

a
cos(b),�1

2

),

⌫ =

1p
1 + e

2 a
(� cos(b),� sin(b), ea),

'uu = (�1

2

e

a
sin(b),

1

2

e

a
cos(b), 0),

'uv = (�1

2

e

a
cos(b),�1

2

e

a
sin(b), 0),

'vv = (

1

2

e

a
sin(b),�1

2

e

a
cos(b), 0)

e = h'uu, ⌫i = 0,

f = h'uv, ⌫i =
1

2

e

a 1p
1 + e

2 a
,

g = h'vv, ⌫i = 0 .

El fet que e = 0 comporta que les línies coordenades v = ct. són asimptòtiques. En
efecte, el vector tangent a aquestes corbes té coordenades (1, 0) respecte de la base ('u,'v)

de manera que si diem e
1

a aquest vector tenim

II(e
1

, e
1

) =

�
1 0

� ✓e f
f g

◆ ✓
1

0

◆
= e = 0 .

Anàlogament, el fet que g = 0 té com a conseqüència que les línies coordenades u = ct.
són asimptòtiques. En efecte, el vector tangent a aquestes corbes té coordenades (0, 1)
respecte de la base ('u,'v) de manera que si diem e

2

a aquest vector tenim

II(e
2

, e
2

) =

�
0 1

� ✓e f
f g

◆ ✓
0

1

◆
= g = 0 .

Per calcular la torsió de la línia v = 0 hem de calcular 'uuu. És fàcil veure que aquesta
derivada tercera la podem escriure com

'uuu =

1

2

'uu �
1

4

e

u/2
(cos(u/2), sin(u/2), 0).

També simplifica els càlculs observar que

'u = 'uu +
1

2

(e

u/2
cos(u/2), eu/2 sin(u/2), 1).

Llavors
⌧(u) =

h'u ^ 'uu,'uuui
k'u ^ 'uuk2

=

1

1 + e

u
.

Per altra banda la primera forma fonamental val

I =

✓
1

2

e

u
+

1

4

�1

4

�1

4

1

2

e

u
+

1

4

◆
,

de manera que

K(u, 0) =
det(II(u, 0))

det(I(u, 0))
=

�f 2

1

4

e

u
(1 + e

u
)

= � 1

(1 + e

u
)

2

= �⌧ 2(u).
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⇤
Exercici 194(a) En primer lloc, observem que podem parametritzar la catenoide mit-
jançant

'(u, v) = (cosh(u) cos(v), cosh(u) sin(v), u),

de manera que
'u(u, v) = (sinh(u) cos(v), sinh(u) sin(v), 1),

'u(u, v) = (� cosh(u) sin(v), cosh(u) cos(v), 0),

'uu(u, v) = (cosh(u) cos(v), cosh(u) sin(v), 0),

'uv(u, v) = (� sinh(u) sin(v), sinh(u) cos(v), 0),

'vv(u, v) = (� cosh(u) cos(v),� cosh(u) sin(v), 0),

'u ⇥ 'v = (� cosh(u) cos(v),� cosh(u) sin(v),
1

2

sinh(2u)),

k'u ⇥ 'vk = cosh

2

(u),

i llavors

I =

✓
cosh

2

(u) 0

0 cosh

2

(u)

◆
, II =

✓
�1 0

0 1

◆
, W = I�1 II =

✓
� sech

2

(u) 0

0 sech

2

(u)

◆
,

amb la qual cosa
K(u, v) = � sech

4

(u), H(u, v) ⌘ 0 .

D’altra banda, com que la matriu de W és diagonal, les línies coordenades són de curva-
tura, i com que II també és diagonal, com abans, les línies asimptòtiques són u± v = ct.
Observem que al problema 151 la catenària es parametritza per

x(u) =
p
a2 + u2 ,

z(u) = a log(u+

p
a2 + u2

).

Veiem que aquesta té la mateixa imatge que x = a cosh(

z
a � log(a)). En efecte, la segona

equació imposa a2 + u2

= (e

z/a � u)2, és a dir, u =

�a2e�z/a
+e

z/a

2

i per tant

x =

p
a2 + u2

=

a (ez/a a�1

+ e

�z/a a)

2

= a cosh

✓
z

a
� log(a)

◆
.

⇤
Exercici 194(b) Utilitzant la mateixa parametrització que a l’exercici 117, recordem que

I =

✓
1 0

0 a2 + u2

◆
, II =

 
0

�ap
a2+u2

�ap
a2+u2 0

!
, W =

 
0

�ap
a2+u2

�a
(a2+u2

)

3/2 0

!
.

Per tant, les curvatures principals verifiquen k
1

= �k
2

=

a
a2+u2 i les curvatures de Gauss

i mitjana són

K(u, v) =
�a2

(a2 + u2

)

2

H(u, v) ⌘ 0 .

Observem que II(A,B) = 0 si, i només si, AB = 0, per tant 'u i 'v determinen les
direccions asimptòtiques i en conseqüència les línies asimptòtiques són les corbes coorde-
nades. D’altra banda, les direccions principals venen donades pels vectors de coordenades
(±

p
a2 + u2 , 1) en la base 'u, 'v. Així una corba '(u(t), v(t)) és una línia de curvatura

si, i només si, (u0, v0) k (±
p
a2 + u2, 1), o equivalentment,

±1p
a2 + u2

du = dv,
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la qual cosa implica que les línies de curvatura són

v = ct. ±
Z

1p
a2 + u2

du = ct.± log(u+

p
a2 + u2

).

⇤
Exercici 194(c) Recordem que una parametrització de la tractriu era

t 7! (sin(t), cos(t) + log(tan(t/2))),

per tant, una parametrització de la pseudoesfera s’obté posant

'(u, v) =
⇣
sin(u) cos(v), sin(u) sin(v), cos(u) + log

�
tan(

u

2

)

�⌘
.

Calculant, obtenim

I =

✓
cot

2

(u) 0

0 sin

2

(u)

◆
, II =

✓
� cot(u) 0

0 cos(u) sin(u)

◆
,

i per tant

W = I�1 II =

✓
� tan(u) 0

0 cot(u)

◆
,

de manera que
K ⌘ �1 H(u, v) = cot(u)� tan(u).

Com que la matriu de W en la base 'u, 'v és diagonal tenim que les corbes coordenades
són línies de curvatura. Finalment, les direccions asimptòtiques A'u + B 'v verifiquen
B = ±A sin(u) i per tant les línies asimptòtiques s’obtenen integrant l’equació diferencial
corresponent

u0
= v0 sin(u)

i per tant són les corbes donades per

v = log

�
tan(u/2)

�
.

⇤
Exercici 194(d) Per estudiar la superfície z = 2 cos(y) aprofitem els càlculs fets per a
superfíces donades com gràfics de funcions a l’exercici 112 i com que h(x, y) = 2 cos(y)
compleix hx = 0, hy = �2 sin(y) obtenim directament

I =

✓
1 0

0 1 + 4 sin

2

(y)

◆
, II =

1p
1 + 4 sin

2

(y)

✓
0 0

0 �2 cos(y)

◆
,

i per a l’endomorfisme de Weingarten

W =

1

(1 + 4 sin

2

(y))3/2

✓
0 0

0 �2 sin(y)

◆
.

Per tant,

H =

�2 sin(y)

(1 + 4 sin

2

(y))3/2
, K = 0.

Com que la matriu de W està diagonalitzada les línies de curvatura són les línies coor-
denades. Com que la parametrització és '(x, y) = (x, y, 2 cos(y)) les línies de curvatura
són les x = ct., i les y = ct. És a dir, les corbes �

1

(t) = (a, y(t), 2 cos(y(t))) amb a constant
i y(t) una funció arbitrària; i �

2

(t) = (x(t), c, 2 cos(c)), amb c constant i x(t) una funció
arbitrària. Observeu que són les rectes que passen per (0, c, 2 cos(c)) amb vector director
(1, 0, 0).
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Per calcular les línies asimptòtiques calculem les direccions asimptòtiques i integrem.
Les direccions asimptòtiques estan donades pels vectors v tals que II(v, v) = 0 i en el
nostre cas això implica v = (v

1

, 0). Per tant les línies asimptòtiques de coordenades
(x(t), y(t)) compleixen y0(t) = 0, és a dir, són les y = ct. (que eren també línies de
curvatura). Això passa degut a que una de les curvatures principals és zero (la indicatriu
de Dupin degenera). ⇤
Exercici 195. Els càlculs de 155, fets allà per al cas de curvatura mitjana H = 0, valen
pràcticament igual per al cas H = ct. donant lloc a que les superfícies de revolució de
curvatura mitjana H = ct., donades per rotació de la corba (h(z), 0, z) al voltant de l’eix
z, han de complir l’equació diferencial

2H =

1

h (1 + (h0
)

2

)

1/2
� h00

(1 + (h0
)

2

)

3/2
.

Recordem que l’expressió de H en termes dels coeficients de la primera i segona formes
fonamentals (2), quan F = 0 que és el nostre cas, és

H =

1

2

⇣ g

G
+

e

E

⌘
.

L’equació anterior es pot escriure com

2H h =

�hh00
+ (1 + (h0

)

2

)

(1 + (h0
)

2

)

3/2
,

que, multiplicant per h0, dona

2H hh0
= h0 �hh00

+ (1 + (h0
)

2

)

(1 + (h0
)

2

)

3/2
,

que també serà

2H

✓
1

2

h2

◆0

=

 
hp

1 + (h0
)

2

!0

i per tant
H h2

=

hp
1 + (h0

)

2

+ ct. (40)

Aquesta és, doncs, l’equació diferencial que caracteritza les superfícies de revolució de
curvatura mitjana H constant.

Estudiem ara la trajectòria del focus d’una el.lipse quan aquesta gira sense lliscar per
sobre d’una recta que podem suposar que és l’eix de les x que ja ha aparegut a l’exercici 21.

Podem suposar que la trajectòria de F
1

que estem buscant és una corba de la forma
(x, y(x)) de manera que si denotem per s el seu paràmetre arc, aquesta trajectòria serà
una corba �(s) = (x(s), y(x(s)) amb ds/dx =

p
1 + (y0)2.
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P1 P

F2

y2

P2

↵

�0

F1

y

Així, denotant ↵(s) l’angle entre �0
(s) i la horitzontal tenim

h�0
(s), (1, 0)i = x0

(s) = cos(↵(s)).

Utilitzarem també el fet de que el moviment de l’el.lipse és, infinitessimalment, un gir
respecte el punt de contacte que es manifesta en la condició h�0

(s),
������!
F
1

(s)P (s)i = 0 com
s’explica a l’exercici 21, on F

1

(s) denota la posició del focus per al valor s del paràmetre
i P (s) el punt de contacte també per a aquest valor de s.

Per la propietat de la tangent a l’el.lipse, tenint en compte que � és perpendicular a
F
1

P , i amb la notació de la figura

\F
1

PP
1

= \F
2

PP
2

= ⇡/2� ↵,

tots aquest punts i angles funcions de s.
Per tant,

y = kF
1

Pk cos(↵),

y
2

= kF
2

Pk cos(↵).

Utilitzant ara la propietat pedal de l’el.lipse, fàcil de demostrar analíticament, que diu
que el producte de distàncies dels focus a una tangent arbitraria és constant i igual a b2,
essent b l’eix menor de l’el.lipse, tenim

y y
2

= b2

i per tant (kF
1

Pk+ kF
1

Pk = 2 a)

y + y
2

= y +
b2

y
= 2 a cos(↵) = 2 a

dx

ds
,

i així,
0 = y2 � 2 a y

dx

ds
+ b2 = y2 � 2 a yp

1 + (y0)2
+ b2.

Posant H = 1/(2 a) aquesta equació coincideix amb (40) com volíem veure. ⇤
Exercici 196. La superfície de revolució està donada per la parametrització

'(t, u) = ((2 + cos(t)) cos(u), 2 sin(t), (2 + cos(t)) sin(u)).

Per tant,

't = (� sin(t) cos(u), 2 cos(t),� sin(t) sin u),
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'u = (�(2 + cos(t)) sin(u), 0, (2 + cos(t)) cos(u)),

E = 4 cos

2

(t) + sin

2

(t),

F = 0,

G = (2 + cos(t))2,

⌫ =

1p
4 cos

2

(t) + sin

2

(t)
(2 cos(t) cos(u), sin(t), 2 cos(t) sin(u)),

'tt = (� cos(t) cos(u),�2 sin(t),� cos(t) sin(u)),

'tu = (sin(t) sin(u), 0,� sin(t) cos(u)),

'uu = (�(2 + cos(t)) cos(u), 0,�(2 + cos(t)) sin(u)),

e = � 2p
E

,

f = 0

g = �(2 + cos(t)) cos(t)p
E

.

L’equació de les línies de curvatura és
������

(u0
)

2 �u0 t0 (t0)2

E 0 G
e 0 g

������
= t0 u0

(E g � eG) = 0,

però és fàcil veure, substituint els valors que acabem de calcular, que (E g � eG) = 0 si,
i només si, 3 cos

3

(t) = 4 + cos(t), igualtat que no es pot donar mai, de manera que les
línies de curvatura són les línies coordenades t = ct. i u = ct.

Les línies asimptòtiques estan caracteritzades per tenir un vector tangent V = (t0, u0
)

tal que II(V, V ) = 0. Com que f = 0, aquesta condició s’escriu com e (t0)2 + g (u0
)

2

= 0.
Considerem les línies de curvatura t = ct., i mirem si són també asimptòtiques. La

condició de ser asimptòtica és ara g u02
= 0, és a dir,

� 1p
E

(2 + cos(t)) cos(t) = 0,

que implica cos(t) = 0 i, per tant, t = ⇡/2, 3 ⇡/2. És a dir, les corbes '(±⇡/2, u) =

(2 ± sin(u), 0, 2 cos(u)) són a la vegada asimptòtiques i línies de curvatura.
Les línies de curvatura u = ct. no són asimptòtiques ja que ara la condició és e (t0)2 = 0,

i com que e = 2p
E

aquesta condició no es pot donar.
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⇤
Exercici 197. Considerem la parametrització '(x, y) = (x, y, x y). Tenim

'x = (1, 0, y),

'y = (0, 1, x),

E = 1 + y2,

F = x y,

G = 1 + x2,

⌫ =

1p
1 + x2

+ y2
(�y,�x, 1),

'xx = (0, 0, 0),

'xy = (0, 0, 1),

'yy = (0, 0, 0),

e = 0,

f =

1p
1 + x2

+ y2
,

g = 0 .

Els vectors tangents a corbes asimptòtiques tenen coordenades (x0
(s), y0(s)) respecte

de la base ('x,'y) tals que
�
x0 y0

� ✓
0 f
f 0

◆ ✓
x0

y0

◆
= 2 f x0 y0 = 0 .

Com que f 6= 0, les corbes asimptòtiques són les corbes coordenades x = ct., y = ct.
L’equació diferencial de les línies de curvatura és

������

(y0)2 �x0 y0 (x0
)

2

1 + y2 x y 1 + x2

0 f 0

������
= f (1 + y2) (x0

)

2 � f (1 + x2

) (y0)2 = 0 .

Com que f 6= 0, les línies de curvatura han de complir
x0

p
1 + x2

=

y0p
1 + y2

.

Integrant obtenim arcsin(x) = arcsin(y) + c, és a dir

x = y cosh(c) +
p
1 + y2 sinh(c).

⇤
Exercici 198. Mantindrem la parametrització de la catenoide donada a l’exercici 194

(cosh(u) cos(v), cosh(u) sin(v), u)

i modificarem lleugerament la parametrització de l’helicoide donada a l’exercici 92 prenent

(sinh(u) cos(v), sinh(u) sin(v), v)

(s’ha canviat la u de l’exercici 92 per sinh(u), que no és cap restricció).
Definim la família uniparamètrica de superfícies St parametritzades per

 t(u, v) = cos(t)
�
cosh(u) cos(v), cosh(u) sin(v), u

�

+ sin(t)
�
sinh(u) cos(v), sinh(u) sin(v), v

�
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amb t 2 [0, ⇡/2]. Així  
0

(u, v) és la catenoide i  ⇡/2(u, v) l’helicoide. És fàcil veure que la
primera forma fonamental de cadascuna d’aquestes infinites superfícies respecte la carta
 t(u, v) no depèn de t i està donada per

I =

✓
cosh

2

(u) 0

0 cosh

2

(u)

◆
.

En particular, per a tot t 2 [0, ⇡/2], l’aplicació Ft : S
0

�! St determinada per la
condició Ft( 0

(u, v)) =  t(u, v) és una isometria.
Es veu a l’exercici 194 que en aquestes coordenades les línies de curvatura de la cate-

noide estan donades per u = ct. i v = ct. i les línies asimptòtiques per u = ±v + ct.
També es veu en el mateix exercici que les línies asimptòtiques de l’helicoide estan

donades per u = ct. i v = ct. (el canvi de u per sinh(u) no afecta a questa igualtat) i les
línies de curvatura per u = sinh(±v � c) que, com que hem canviat u per sinh(u), esdevé
u = ±v + ct. com volíem veure. ⇤
Exercici 199. L’equació diferencial de les línies asimptòtiques de la superfície reglada

'(s, t) = �(s) + t v(s)

és
e (s0)2 + 2 f s0 t0 + g (t0)2 = 0,

però com que es compleix g = 0 (exercici 158) aquesta equació es redueix a

e s0 + 2 f t0 = 0,

que es pot escriure com
dt

ds
= �2 f

e
= A(s) + B(s) t+ C(s) t2

ja que

e = h�00(s) + t v00, (�0 + t v) ^ vi 1

k(�0 + t v) ^ vk ,

f = hv0, �0 ^ vi 1

k(�0 + t v) ^ vk .

I això és una equació de Ricatti, que com és ben sabut, compleix que tres solucions en
donen una quarta imposant

t(s)� t
1

(s)

t(s)� t
2

(s)

t
3

(s)� t
1

(s)

t
3

(s)� t
2

(s)
= ct.

Com que t(s) representa la distància sobre la generatriu hem acabat. ⇤
Exercici 200. Denotem

e
1

=

1p
E
'u, e

2

=

1p
G
'v

de manera que (e
1

, e
2

, ⌫) on ⌫ és la normal unitària a la superfície és una base ortonormal.
Observem que, si denotem per s

1

i s
2

respectivament els paràmetres arc de les corbes
coordenades v = ct. i u = ct.,

kg1 = hde1
ds

1

, e
2

i, kg1 = �hde2
ds

2

, e
1

i,

ja que en general kg = h�00, ⌫ ^ �0i i en el nostre cas ⌫ ^ e
1

= e
2

i ⌫ ^ e
2

= �e
1

.
Per la definició de ✓, posant T (s) = �0(s), tenim

T (s) = cos(✓(s)) e
1

(s) + sin(✓(s)) e
2

(s). (41)
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Aplicant la regla de la cadena
dei
ds

=

du

ds

dei
du

+

dv

ds

dei
dv

=

du

ds

ds
1

du

dei
ds

1

+

dv

ds

ds
2

dv

dei
ds

2

. (42)

Per definició de paràmetre arc aplicat a '(u, ct.) i '(ct., v) es compleix
ds

1

du
=

p
E ,

ds
2

dv
=

p
G .

I per una altra banda, com que T (s) = u0 'u + v0 'v = cos(✓) e
1

+ sin(✓) e
2

, tenim
p
E

du

ds
= cos(✓),

p
G

dv

ds
= sin(✓).

Substituint a (42) resulta
dei
ds

= cos(✓)
dei
ds

1

+ sin(✓)
dei
ds

2

.

Derivant (41) i denotant w = � sin(✓) e
1

+ cos(✓) e
2

= �0 ^ ⌫ es té
dT

ds
=

d✓

ds
w + cos(✓)

✓
cos(✓)

de
1

ds
1

+ sin(✓)
de

1

ds
2

◆

+ sin(✓)

✓
cos(✓)

de
2

ds
1

+ sin(✓)
de

2

ds
2

◆
.

Per tant,

kg = hdT
ds

, wi

=

d✓

ds
+ cos

2

(✓) hde1
ds

1

, wi+ sin(✓) cos(✓) hde1
ds

2

, wi

+ sin(✓) cos(✓) hde2
ds

1

, wi+ sin

2

(✓) hde2
ds

2

, wi

=

d✓

ds
+ cos

3

(✓) kg1 + sin(✓) cos2(✓) kg2 + sin

2

(✓) cos(✓) kg1 + sin

3

(✓) kg2

= kg1 cos(✓) + kg2 sin(✓) + ✓0,

com volíem. ⇤
Exercici 201. Tenint en compte que la parametrització ve donada per

x = r cos(u) sin(v),

y = r sin(u) sin(v),

z = r cos(v)

la condició y = z s’escriurà en funció de (u, v) com
r sin(u) sin(v) = r cos(v)

de forma que es podrà prendre
tan(v) =

1

sin(u)
i, per tant,

v = arctan(1/ sin(u)).

L’equació que hauria de complir una geodèsica de l’esfera si es suposa que la parame-
trització és del tipus v = v(u) serà de la forma

u00
+ �

1

11

(u0
)

2

+ 2�

1

12

u0 v0 + �1

22

(v0)2 = 0,

v00 + �2

11

(u0
)

2

+ 2�

2

12

u0 v0 + �2

22

(v0)2 = 0,
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(on cal tenir en compte que, si el paràmetre respecte al que es deriva és u, u0
= 1, u00

= 0).
Prenent els valors dels �k

ij en funció de les variables, les equacions que s’han de complir
seran

2 cot(v) v0 = 0,

v00 � cos(v) sin(v) = 0 .

Clarament, aquestes equacions no es verifiquen si v = arctan(1/ sin(u)). ⇤
Exercici 202. Per tal de condensar la notació, escrivim �(s) = (u

1

(s), u
2

(s)) per designar
una corba qualsevol en la superfície (referida a una parametrització donada que no cal
especificar). Recordem que si reparametritzem la corba � respecte un paràmetre nou
t = t(s) es poden relacionar les derivades respecte els dos paràmetres amb

dui

ds
=

dui

dt

dt

ds
,

d2ui

ds2
=

d2ui

dt2

✓
dt

ds

◆
2

+

dui

dt

d2t

ds2
.

Utilitzant aquests convenis, les equacions que ha de complir una corba �(s) per tal de
ser una geodèsica s’escriuran com

d2u`
ds2

+

X
�

`
ij

dui

ds

duj

ds
= 0

(amb `, i, j = 1, 2). Si es fa un canvi de parametrització, aquestes equacions es convertei-
xen en

d2u`
dt2

✓
dt

ds

◆
2

+

du`
dt

d2t

ds2
+

X
�

`
ij

dui

dt

duj

dt

✓
dt

ds

◆
2

= 0

que es poden reescriure com
✓
d2u`
dt2

+

X
�

`
ij

dui

dt

duj

dt

◆ ✓
dt

ds

◆
2

= �du`
dt

d2t

ds2

i es pot deixar com una expressió del tipus
d2u`
dt2

+

X
�

`
ij

dui

dt

duj

dt
= f(t)

du`
dt

per a una certa funció f (que queda determinada pel canvi de paràmetres).
Aquesta condició necessària també és suficient ja que si es té una corba �(t) que

compleix la condició i es considera un canvi de paràmetres t = t(s) per al que
d2t

ds2
+ f(t)

dt

ds
= 0

es podrà assegurar que la reparametrització per s de la corba � és una geodèsica. (Amb
una mica de paciència es pot veure com la corba de l’esfera donada per la intersecció
amb el pla y = z, que es pot parametritzar per ' = arctan(1/ sin(✓)), és una geodèsi-
ca quan es considera la parametrització adequada sense haver de fer explícita aquesta
parametrització).54 ⇤

54Si un punt es mou sobre una superfície, sense forces externes, aquest punt segueix una geodèsica. En
efecte, per la llei de Newton

m

d

2
�

dt

2
= � ⌫ + µT

on �(t) és la trajectòria del punt, T la tangent unitària en aquesta direcció, i ⌫ la normal a la superfície.
Les funcions �, µ són coeficients de fregament, i tenim fregament degut a la superfície i per tant en la
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Exercici 203(a) Per a la parametrització de l’helicoide que s’ha donat:

'u = (cos(v), sin(v), 0),

'v = (�u sin(v), u cos(v), 1),

⌫ =

1p
1 + u2

(sin(v),� cos(v), u).

De forma que per a les derivades segones es té:

'uu = (0, 0, 0),

'uv = (� sin(v), cos(v), 0), h'uv, ⌫i =
�1p
1 + u2

,

'vv = (�u cos(v),�u sin(v), 0), h'vv, ⌫i = 0.

D’aquestes igualtats surt, sense més càlculs,

0 = �

1

11

= �

2

11

= �

2

22

, �

1

22

= �u.

I si es té en compte que

'uv +
1p

1 + u2

⌫ =

u

1 + u2

(�u sin(v), u cos(v), 1) =
u

1 + u2

'v

s’obtenen els coeficients que falten

�

1

12

= 0, �

2

12

=

u

1 + u2

.

Aquests càlculs serveixen per dir que una corba �(s) = '(u(s), v(s)) serà geodèsica
quan es compleixin les igualtats

u00 � u (v0)2 = 0,

v00 + 2

u

1 + u2

u0 v0 = 0.

⇤
Exercici 203(b) Quan v = ct. es té v0 = 0 i, per tant, la segona equació es verifica de
forma automàtica mentre que la primera es redueix a u00

= 0 i l’única restricció que imposa
és que el paràmetre u ha de ser una funció lineal de la variable s (les rectes v = ct., que
són òbviament geodèsiques, s’ha de parametritzar linealment respecte el paràmetre). ⇤
Exercici 203(c) Tenint en compte que la primera forma fonamental de l’helicoide (res-

pecte la parametrització que s’està considerant) és I =

✓
1 0

0 1 + u2

◆
, l’angle entre una

corba qualsevol �(s) = (u(s), v(s)) (parametritzada per l’arc), que té com a vector tan-
gent �0(s) = u0 'u + v0 'v, i les corbes v = ct., que tenen com a vector tangent 'u, tindrà
com a cosinus el valor u0. Si l’angle és constant es complirà u00

= 0 i aleshores, mirant la
primera equació de les geodèsiques, la corba � només podrà ser geodèsica en el cas que
u = 0 (l’eix vertical) o quan v0 = 0 (les mateixes rectes v = ct.).

direcció normal a aquesta i un altra fregament oposat al lliscament de la partícula i per tant oposat al
seu desplaçament. Escrivim la derivada segona en termes del paràmetre arc s de �(t), concretament,

d

2
�

dt

2
=

d

2
s

dt

2
T +

✓
ds

dt

◆2
dT

ds

.

Substituïm aquest valor a l’equació anterior i multipliquem el resultat escalarment per T ^ ⌫, de manera
que tindrem un zero a la dreta, i obtenim hN,T ^ ⌫i = 0 que implica N = ⌫ i la corba és geodèsica.
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Nota final: Si us fixeu en el tipus d’equacions que determinen les geodèsiques de l’he-
licoide, no resulta trivial establir parametritzacions explícites d’aquestes corbes. Un dels
primers resultats de la consulta geodesic lines helicoid a Google porta a l’article “The
Geodesic Lines on the Helicoid” , de S. E. Rasor (Annals of Mathematics, Second Series,
Vol. 11, No. 2 (Jan., 1910), pp. 77-85) on es pot veure com aquestes parametritzacions
no són gens fàcils d’obtenir. ⇤
Exercici 204(a) Només cal tenir en compte que una corba és geodèsica d’una superfície
si, i només si el seu vector normal coincideix amb la direcció del vector normal de la
superfície. Amb aquesta caracterització és clar que, si dues superfícies comparteixen
la direcció normal al llarg de la corba en ser tangents, la condició de geodèsica serà
simultània. (El càlcul del vector normal a la corba no té cap relació amb la superfície que
la conté). ⇤
Exercici 204(b)
Sigui s el paràmetre arc de �. La superfície parametritzada per

'(s, t) = �(s) + t B(s)

té l’espai tangent generat per

's = T + t B0
= T + t ⌧ N

't = B

de forma que el seu vector normal, que en general serà el determinat
per la direcció

's ^ 't = �N + t ⌧ T ,

serà, quan t = 0, paral.lel al vector normal a la corba N .

⇤

Exercici 204(c) Es marca una línia recta al llarg de la cinta i s’enganxa, sense arrugar,
aquesta cinta a la superfície al llarg d’aquesta línia. Com que en la cinta no s’ha modificat
la mètrica (sense arrugar!!!!), la línia marcada és una geodèsica en les dues superfícies ja
que en aquesta operació les dues superfícies són tangents. ⇤
Exercici 205(a)

(=)) Per ser C una geodèsica tenim que la curvatura geodèsica de C és nul.la. D’altra
banda, per ser línia asimptòtica la curvatura normal de C és també nul.la. Per tant la
curvatura de C com a corba de R3 és zero. I ja sabem que una corba regular amb curvatura
zero està continguda en una recta de R3.

((=) Recíprocament, si C està continguda a una recta de R3 la seva curvatura com
a corba de R3 és nul.la. De la igualtat k =

p
k2

n + k2

g en deduïm que kn = kg = 0 i això
ens diu respectivament que C és una línia asimptòtica i una geodèsica. ⇤
Exercici 205(b) Els vectors tangents a les línies de curvatura són els vectors propis de
l’aplicació de Weiergarten, és a dir, donada una parametrització �(t), es compleix que
�d⌫(�0(t)) és múltiple de �0(t). Sigui �(t) una parametrització per l’arc de C. Per ser
�(t) una geodèsica sabem que �00(t) = � ⌫(�(t)). Si � = 0 la corba és una recta i en
particular és plana. Si � 6= 0, tenim N = ⌫ sobre �(t) i

h�d⌫(�0(t)), B(t)i = h� d

dt
⌫(�(t)), B(t)i = h⌫(�(t)), ⌧(t)N(t)i = ⌧(t).

Per tant, si és línia de curvatura (el terme de l’esquerra s’anul.la) la torsió és zero i la
corba és plana. Si, recíprocament, la corba és plana, llavors �d⌫(�0(t)) és ortogonal a
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B(t), però, com que és tangent a la superfície, també és ortogonal a N = ⌫ i per tant té
la direcció de �0(t), i.e. és una direcció principal i � és línia de curvatura. ⇤
Exercici 205(c) En una superfície de revolució les línies de curvatura són els meridians i
paral.lels (veieu els càlcul a l’exercici 151) però els paral.lels (que són sempre circumferèn-
cies) només són geodèsiques si la tangent a la corba que gira per a generar la superfície,
en el punt que determina el paral.lel donat, és paral.lela a l’eix de rotació. En concret,
tots els paral.lels d’una esfera són línies de curvatura planes que no són geodèsiques, fora
del que correspon a l’equador. ⇤
Exercici 206. El fet que les geodèsiques siguin planes implica que són línies de curvatura.
L’única possibilitat que això passi és que totes les curvatures normals siguin iguals (hi ha
una geodèsica tangent a cada vector tangent a la superfície i, per tant, tots els vectors són
vectors propis de W ). En particular tots els punts de S són umbilicals i per l’exercici 122
hem acabat. ⇤
Exercici 207. El punt central és que les geodèsiques estan caracteritzades per la igualtat
de normals en cada punt N = ⌫ essent N la normal principal de la geodèsica i ⌫ la
normal a la superfície. Com que la normal al con és constant al llarg de la generatriu,
la generatriu que passa pel punt P intersecció d’aquesta generatriu amb la geodèsica que
estem considerant, està tota ella continguda en el pla rectificant (pla pel punt amb vector
normal N). En particular el vèrtex del con pertany a aquest pla rectificant. I la recta
tangent a la geodèsica en P també. Tracem en aquest pla la perpendicular des del vèrtex
a la tangent.

La longitud d d’aquesta perpendicular és la distància del vèrtex al pla osculador, ja
que és perpendicular a T i a N (té la direcció de la binormal).

Pla rectificant

p d

Recta tangent a la geodèsica

P

↵

Generatriu

Però com es veu a la figura d = p sin(↵) on ↵ és l’angle entre la geodèsica i la generatriu.
Pel teorema de Clairaut sabem que aquest producte és constant i hem acabat.

Nota: Troços de geodèsiques no parametritzades. En el procés de plegar un paper per
obtenir un con, les rectes del paper van a geodèsiques del con. De manera que una
manera fàcil d’obtenir aquests trams de geodèsiques (no tota la geodèsica sinó el tram
corresponent a la intersecció d’una recta amb el triangle/sector del pla inicial).

La parametrització ' del con que correspon a plegar el sector circular U donat, en
coordenades polars (r, ✓), per 0 < r < R i 0 < ✓ < ↵

0

serà

'(r, ✓) = r

✓
a cos(

✓

a
), a sin(

✓

a
), b

◆
,

on, si �
0

és l’angle del con, a = sin(�
0

), b = cos(�
0

),↵
0

= 2 ⇡ sin(�
0

).
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Si tallem una recta arbitraria y = mx + n amb U i considerem la seva imatge sobre
el con obtenim la geodèsica

�(✓) = '(r(✓), ✓) =
n

sin(✓)�m cos(✓)

✓
a cos(

✓

a
), a sin(

✓

a
), b

◆

Però insistim que aquesta expressió, per a 0 < ✓ < ↵
0

, és només un tros de geodèsica no
parametritzada.

Les equacions diferencials de les geodèsiques del con amb aquesta parametrització són

r00 � r

a2
= 0

✓00 +
2

r
r0 ✓0 = 0,

de solució dificultosa. ⇤
Exercici 208. La superfície polar de la corba �(s), parametritzada per l’arc, és

'(s, t) = �(s) + ⇢(s)N(s) + t B(s).

Com que
@'

@s
= ⇢0(s)N(s)� ⇢(s) ⌧(s)B(s) + t ⌧(s)N(s)

@'

@t
= B(s)

el camp normal és
⌫(s, t) = ±T (s)

Només hem de veure, doncs, que la normal principal de l’evoluta en el punt '(s, t) té la
direcció de T (s).

Però l’evoluta està donada per (vegeu l’Exercici 86)

�(s) = �(s) + ⇢(s)
⇣
N(s)� cot(↵(s))B(s)

⌘
, ↵(s) =

Z s

0

⌧(u) du+ c.

Llavors, ometent el paràmetre s per simplificar,

�0
= ⇢0 N � ⇢ ⌧ B � ⇢0 cot(↵)B + ⇢

⌧

sin

2

(↵)
B � ⇢ ⌧ cot(↵)N

=

�
⇢0 � ⇢ ⌧ cot(↵)

�
N + cot(↵)

�
⇢ ⌧ cot(↵)� ⇢0

�
B

=

�
⇢0 � ⇢ ⌧ cot(↵)

�
(N � cot(↵)B)

Considerant V = N � cot(↵)B és clar (recordeu com es calcula la normal principal
d’una corba no parametritzada per l’arc) que la normal principal buscada és el vector

V ^ (V ^ V 0
)

normalitzat. Però

V 0
= �k T � ⌧ cot(↵) (N � cot(↵)B) = �k T � ⌧ cot(↵)V

i així
V ^ V 0

= �k V ^ T

d’on
V ^ (V ^ V 0

) = k T

ja que V i T són ortogonals, i per tant la normal principal és igual a ±T com volíem
demostrar. ⇤
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Exercici 209. La primera forma fonamental és

I =

✓
r2 0

0 a2

◆

i, per tant, els símbols de Christoffel són

�

1

12

= �a sin(✓)

r
, �2

11

=

r sin(✓)

a
i les demés zero.

Les equacions de les geodèsiques són, doncs,

'00 � 2 a sin(✓)

r
✓0 '0

= 0

✓00 +
r sin(✓)

a
('0

)

2

= 0

La primera es pot escriure com

y0 = �h0 y, y = '0, h = 2 ln(r)

de manera que
ln(y) = � ln(r2) + a,

és a dir,
'0

= k r�2,

per a una certa constant k. Per tant, '00
= �2 k r�3 r0, que substituint a la primera

equació ens dona

sin(✓) =
r '00

2 a ✓0 '0 = � r0

a ✓0
.

Substituint els valors de sin(✓) i '0 a la segona equació tenim

✓00 =
k2 r0

a2 r3 ✓0
.

que es pot escriure com
a2 r3

�
(✓0)2

�0
= 2 k2 r0

i per tant

(✓0)2 = � k2

a2 r2
+ �

amb � una constant, que per la forma d’aquesta equació ha de ser positiva.
Així,

✓0 =

p
� a2 r2 � k2

a r
=

k
p
r2 � c2

c a r
,

amb c = k/a
p
� .

Finalment,
d'

d✓
=

d'

ds

ds

d✓
=

k r�2

✓0
=

a c

r
p
r2 � c2

,

com volíem. ⇤
Exercici 210. Recordem que tenir coordenades polars geodèsiques vol dir tenir una
aplicació '(r,↵) que associa a cada punt (r,↵) 2 [0,1)⇥(0, 2⇡) el punt Q de la superfície
S que dista r d’un punt fixat P 2 S (distància mesurada per sobre la geodèsica que el
uneix) i tal que l’angle en P entre una geodèsica per P fixada a priori i la geodèsica PQ
és ↵. En particular, les corbes ↵ = ct. són geodèsiques ortogonals a les corbes r = ct.
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El desenvolupament de Taylor respecte r (les derivades en r = 0 són derivades per la
dreta) dona

'(r,↵) = '(0,↵) + 'r(0,↵) r + 'rr(0,↵)
r2

2

+ · · ·
que es pot escriure com

'(r,↵) = P + f(↵) r + g(↵)
r2

2

+ · · ·

i així
@'

@↵
= f 0

(↵) r + g0(↵)
r2

2

+ · · ·

Observem que f(↵) = 'r(0,↵) és el vector tangent unitari a la geodèsica determinada
per ↵, en P .

Com que cos(↵) = hf(0), f(↵)i, derivant tenim
� sin(↵) = hf(0), f 0

(↵)i = kf 0
(↵)k cos(⇠),

on ⇠ és l’angle entre f(0) i f 0
(↵). Però com que hf(↵), f(↵)i = 1, tenim hf(↵), f 0

(↵)i = 0,
de manera que ⇠ = ↵ + ⇡/2.55 Per tant � sin(↵) = cos(⇠) i kf 0

(↵)k = 1.
Fet això ja es pot calcular

p
G . En efecte,

G = h@'
@↵

,
@'

@↵
i = hf 0

(↵) r + g0(↵)
r2

2

+ · · · , f 0
(↵) r + g0(↵)

r2

2

+ · · · i = kf 0
(↵)k2 r2 + · · ·

on els punts suspensius corresponen a termes amb potències de r superiors a 2. Com que
kf 0

(↵)k = 1 tenim
G = r2 + o(r2)

d’on es dedueix fàcilment el resultat. ⇤
Exercici 211. Desenvolupem m = m(r, ✓) per Taylor. Com que per l’exercici 210,

m(0, ✓) = 0 i
@m

@r |r=0

= 1 tenim

m = r + a
2

r2

2

+ a
3

r3

6

+ · · ·

Però, per la fórmula de la curvatura de Gauss donada a l’exercici 142,

a
2

=

@2m

@r2 |r=0

= �m(0, ✓)K(0, ✓) = 0

i

a
3

=

@3m

@r3 |r=0

=

@

@r |r=0

(�mK) = �@m
@r |r=0

K(0, ✓)�m(0, ✓)
@K

@r |r=0

= �K(0, ✓),

i per tant

m = r �K
0

r3

6

+ · · ·
com volíem. ⇤
Exercici 212. Els punts que estan a distància R de P estan donats per la corba (R, ✓),
respecte del sistema de coordenades polars geodèsiques amb centre P (exercici 211). De-
rivant respecte de ✓, veiem que el vector tangent a aquesta corba té coordenades (0, 1) i
per tant la seva norma val

p
G = m. Així,

L =

Z
2⇡

0

md✓ = 2 ⇡R� ⇡

3

K
0

R3

+ · · ·

55S’ha d’excloure el cas ⇠ = ↵ + 3⇡/2. També es pot raonar escrivint f(↵) respecte d’una base
ortonormal e1, e2, amb e1 = f(0). Llavors les components de f(↵) respecte d’aquesta base són cos(↵) i
sin(↵), de forma que f

0
(↵) té components � sin(↵), cos↵ i per tant, té norma 1.
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i l’àrea és
A =

Z R

0

Z
2⇡

0

md✓ dr = ⇡R2 � ⇡

12

K
0

R4

+ . . .

que donen interpretacions geomètriques de K
0

,

K
0

=

3

⇡
lim

R 7!0

2 ⇡R� L

R3

, K
0

=

12

⇡
lim

R 7!0

⇡R2 � A

R4

.

⇤
Exercici 213. La tractriu, situada en el pla yz té equació (exercici 16)

�(t) = R (t� tanh(t),
1

cosh(t)
).

Per raons que es veuran a continuació reparametritzem �(t) per l’arc. Com que

s(t) =

Z t

0

k�0(t)k dt = R ln(cosh(t)),

la reparametrització és

�(s) = �(t(s)) = R (arccosh(e

s/R
)� e

�s/R
p

e

2 s/R � 1 , e�s/R
).

Si la fem girar al voltant de l’eix de les y0s tenim una parametrització de la pseudoesfera

 (s,↵) = R (e

�s/R
cos(↵), arccosh(es/R)� e

�s/R
p

e

2 s/R � 1 , e�s/R
sin(↵))

Calculem la primera forma fonamental respecte aquesta parametrització.

 s = (�e

�s/R
cos(↵), e�s/R

p
e

2 s/R � 1 ,�e

�s/R
sin(↵))

 ↵ = R (�e

�s/R
sin(↵), 0, e�s/R

cos(↵))

i per tant

I =

✓
1 0

0 R2

e

�2 s/R

◆
.

Aplicant la fórmula de la curvatura de Gauss en coordenades ortogonals (F = 0) de
l’exercici 142 obtenim

K = � 1p
G

(

p
G )ss = �

�p
R2

e

�2 s/R
�
ssp

R2

e

�2 s/R
= �

�
R e

�s/R
�
ss

R e

�s/R
= � 1

R2

,

és a dir, la pseudoesfera té curvatura de Gauss constant igual a
1

(R i)

2

.

També podem calcular els símbols de Christoffel amb les fórmules de l’exercici 142, i
obtenim

�

2

12

= �

2

21

= � 1

R
�

1

22

= R e

�2 s/R

i els demés zero.
Per tant les equacions de les geodèsiques �(t) =  (s(t),↵(t)) són

s00(t) +R e

�2 s(t)/R ↵0
(t)2 = 0,

↵00
(t)� 2

R
s0(t)↵0

(t) = 0.
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Nou canvi de coordenades. Per tal de deixar clar que la pseudoesfera és un tros del
semiplà de Poincaré56, fem

x = ↵

y = e

s/R

de manera que dx = d↵ i ds = R e

�s/R dy, i per tant

ds2 +R2

e

�2 s/R d↵2

=

R2

y2
(dx2

+ dy2)

la mètrica clàssica d’Henry Poincaré.
El canvi correspon a reparametritzar:

�(x, y) =  (R ln(y), x) = R (

cos(x)

y
, arccosh(y)� 1

y

p
y2 � 1 ,

sin(x)

y
).

.
Com que ara E = G = R2/y2 i F = 0, els símbols de Christoffel són (ordre (x, y))

�

2

11

=

1

y

�

1

12

= �

1

21

= �1

y

�

2

22

= �1

y

i els altres zero. ⇤
Exercici 214(a) Sigui T = �0(0) de manera que

T = cos(↵) e
1

+ sin(↵) e
2

.

Aplicant l’endomorfisme de Weingarten s’obté

W (T ) = k
1

cos(↵) e
1

+ k
2

sin(↵) e
2

.

Però
W (T ) = �d⌫(T ) = �⌫ 0(0)

de manera que

⌧g = h⌫ 0(0), ei = h�k
1

cos(↵) e
1

� k
2

sin(↵) e
2

, ei
= (k

1

� k
2

) sin(↵) cos(↵)

ja que

e1
↵

T

e2

e

Dibuix en el pla tangent, amb el normal apuntant al lector

56Es coneix com semiplà de Poincaré el semiplà y > 0 quan s’hi calculen longituds suposant que hi
ha definida una primera forma fonamental que, respecte les coordenades cartesianes (x, y) té coeficients
E = G = R

2
/y

2 i F = 0. Aquesta primera forma fonamental no està induïda pel producte escalar de R3.
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he
1

, ei = cos(↵ + ⇡/2) = � sin(↵),

he
2

, ei = cos(↵).

⇤
Exercici 214(b) Només hem de derivar

cos(✓(s)) = h⌫(s), N(s)i
i tenim

�✓0 sin(✓) = h⌫ 0, Ni+ h⌫,�k T � ⌧ Bi
= h⌫ 0, Ni � ⌧ h⌫, Bi,

però (mirem el dibuix adjunt)
N = hN, ei e+ hN, ⌫i ⌫ = cos(✓ � ⇡/2) e+ cos(✓) ⌫ = sin(✓) e+ cos(✓) ⌫

i per tant
h⌫ 0, Ni = sin(✓) h⌫ 0, ei = ⌧g sin(✓)

ja que h⌫ 0, ⌫i = 0.
L’angle entre ⌫ i B és, com es veu a la figura, 2 ⇡ � ✓ + ⇡/2 = 5 ⇡/2� ✓ i per tant

h⌫, Bi = sin(✓).

B

✓

⌫

e

T

N

Així
�✓0 sin(✓) = ⌧g sin(✓)� ⌧ sin(✓).

És a dir,
✓0 = �⌧g + ⌧

com volíem veure.
Si la corba donada és una geodèsica, ✓ = 0 i, per tant, sobre una geodèsica la torsió i

la torsió geodèsica coincideixen.
Més encara, la torsió geodèsica de �(s) en �(0) és la torsió de la geodèsica que passa

per �(0) amb vector tangent �0(0). Això és conseqüència de l’apartat (a), ja que la fórmula
⌧g = (k

1

� k
2

) sin(↵) cos(↵) diu, en particular, que per calcular ⌧g en un punt només hem
de conèixer k

1

i k
2

en aquest punt, i l’angle que forma el vector tangent a la corba amb
les direccions principals, és a dir, només depèn del vector tangent. ⇤
Exercici 214(c) Suposem k

1

6= k
2

. Llavors el resultat és conseqüència directa de (a).
Observem que, sobre les geodèsiques, la torsió i la torsió geodèsica coincideixen, de

manera que podem dir que una geodèsica (no recta) és plana si i només si és línia de
curvatura. ⇤
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Exercici 215(a) Com que E(u, v) = 1, F (u, v) = 0 i G(u, v) = a(u)2, els símbols de
Christoffel són els següents (veieu el problema 142)

�

1

11

= 0, �

2

11

= 0,

�

1

12

= 0, �

2

12

=

a0(u)

a(u)
,

�

1

22

= �a(u) a0(u), �

2

22

= 0.

I �(s) = '(u(s), v(s)) és una geodèsica (parametritzada) de S si, i només si, es satisfan
les equacions:

u00
(s)� a(u(s)) a0(u(s)) v0(s)2 = 0,

v00(s) + 2

a0(u(s))

a(u(s))
u0
(s) v0(s) = 0.

⇤
Exercici 215(b) Les funcions u(s) = s, v(s) = v

0

verifiquen les equacions anteriors i la
corba �(s) = '(s, v

0

) és un meridià de S. ⇤
Exercici 215(c) Els paral.lels parametritzats a velocitat constant s’obtenen prenent
u(s) = u

0

i v(s) = s. Aquest parell de funcions verifiquen les equacions de les geodè-
siques si i només si a0(u

0

) = 0 o, equivalentment, si la recta tangent a un meridià que
passi per aquest paral.lel és vertical (paral.lela a l’eix de gir).

En el cas de l’esfera, de tots el paral.lels, només l’equador és geodèsica (cercle màxim).
En el cas del tor, hi ha dos equadors, l’interior i l’exterior. ⇤
Exercici 215(d) Si escrivim la segona equació de les geodèsiques com

v00(s)

v0(s)
+ 2

a0(u(s)) u0
(s)

a(u(s))
= 0

i integrem respecte a s obtenim la relació

log(v0(s)) + 2 log(a(u(s))) = log(v0(s) a(u(s))2) = ct.

Sigui �(s) = '(u(s), v(s)) una geodèsica parametritzada per l’arc i sigui ✓(s) l’angle que
forma � amb el paral.lel que passa per �(s). Llavors el cosinus de ✓(s) és igual a

cos(✓(s)) =
h'v, u0

(s)'u + v0(s)'vi
k'vk k�0k = v0(s) a(u(s)).

Per tant, a(u(s)) cos(✓(s)) = v0(s) a(u(s))2 és constant. ⇤
Exercici 215(e)
Relació de Clairaut sobre el con.

Considerem el con desplegat sobre el pla, en el que les geodèsiques del con són rectes
del pla.

Aplicant el teorema del sinus al triangle 4OCD de la figura es té
OC

sin(⇡ � ↵)
=

OD

sin(⌘)
,

és a dir, OD sin(↵) = OC sin(⌘), però el segon terme d’aquesta igualtat és constant,
ja que queda determinat per la geodèsica que s’està considerant (C és el seu origen i ⌘
determina la seva direcció en aquest punt). Per tant, OD sin(↵) és constant.
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O

D

B↵

✓

A

C
⌘

Figura 3.1: Relació entre el T. de Clairaut i el teorema del sinus.

Ara bé, com que el radi ⇢ del paral.lel AB que passa per D (distància a l’eix de gir)
queda totalment determinat per OD, la igualtat OD sin(↵) = ct. implica ⇢ sin(↵) = ct.,
com diu la relació de Clairaut.

Relació de Clairaut sobre l’esfera.
Observem que els punts A, C de la figura 3.2 determinen un meridià i els punts A, B

determinen un altre meridià. Aquests dos meridians estan tallats per la geodèsica (cercle
màxim) determinada pels punts B, C.

b

E
c

O
D

b

B

c

A

C

Figura 3.2: Relació del T. de Clairaut i el teorema del sinus esfèric.

Apliquem el teorema del sinus al triangle esfèric ABC. Es té

sin(

ˆC)

sin(c)
=

sin(

ˆB)

sin(b)
.

És a dir,
sin(

ˆC) sin(b) = sin(

ˆB) sin(c). (43)
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Això implica que el producte
sin(

ˆC) sin(b)

és constant al llarg de la geodèsica ja que si girem el meridià AC mantenint fix el meridià
AB (i la geodèsica) el producte

sin(

ˆB) sin(c)

no varia.
Finalment observem que la distància de C a l’eix de rotació, CE en la figura, és igual

a sin(\COE), ja que la hipotenusa OC = 1. Però la longitud b del cercle màxim que
uneix A i C és justament igual a l’angle (en radians) \COE.

Per tant, la igualtat (43) s’escriu com
CE sin(

ˆC) = ct.,

que és exactament la relació de Clairaut. ⇤
Exercici 215(f) Sigui �u0(s) = '(u

0

, s/a(u
0

)) amb s 2 [0, 2 ⇡ a(u
0

)] una parametrització
per l’arc del paral.lel que passa per '(u

0

, 0). Recordem la fórmula
1

a(u
0

)

2

= k2

� = k2

n + k2

g .

D’altra banda, la curvatura normal de �(s) és igual a

II(
1

a(u
0

)

'v,
1

a(u
0

)

'v) =
1

a(u
0

)

2

h�d⌫('v),'vi =
g
⇣
u
0

, s
a(u0)

⌘

a(u
0

)

2

,

on g(u, v) denota el coeficient de la segona forma fonamental de S que està calculat a
l’exercici 151. Com que el que s’obté allà és g(u, v) = b0(u) a(u) tenim

|kg(�u0)| =

s
1

a(u
0

)

2

�
✓
b0(u

0

)

a(u
0

)

◆
2

=

|a0(u
0

)|
a(u

0

)

.

Per determinar el signe hem de tenir en compte que �00
u0
(s) = kg e+ kn⌫ on e és un vector

tangent a S unitari de manera que T , Ng i ⌫ formen una base ortonormal directa de R3.
Per exemple, si el vector normal ⌫ =

'u^'v

k'u^'vk apunta cap a fora (en sentit contrari cap on
es troba l’eix de gir de S) i estem en un punt on a0(u

0

) > 0 (la corba generatriu es recorre
de dalt a baix per tal que el vector ⌫ sigui exterior) aleshores podem veure que kg > 0 i
per tant kg(�u0) =

a0(u0)

a(u0)
.

També es pot arribar al mateix resultat calculant

�00
u0
(s) = x'u + y 'v + z ⌫ = � 1

a(u
0

)

✓
cos

✓
s

a(u
0

)

◆
, sin

✓
s

a(u
0

)

◆
, 0

◆

i utilitzant que T =

1

a(u0)
'v, �'u i ⌫ formen una base ortonormal directa de R3 per deduir

que y = h�00
u0
(s),'vi = 0 i per tant

kg(�u0) = h�00
u0
(s),�'ui =

a0(u
0

)

a(u
0

)

.

⇤
Exercici 216(a) Observem que

'u = cosh(v) �0(u)

'v = sinh(v) �(u) + cosh(v) ~w

'u ^ 'u = cosh(v) sinh(v) ~w + cosh

2

(v) (�0(u) ^ ~w)
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i aquest darrer vector no s’anul.la mai, cosa equivalent a dir que la diferencial de '(u, v)
té rang dos en tot punt. ⇤
Exercici 216(b) La primera forma fonamental és

 
cosh

2

(v) cosh(v) sinh(v) h�(u), �0(u)i

cosh(v) sinh(v) h�(u), �0(u)i sinh

2

(v) h�(u), �(u)i+ cosh

2

(v)

!

Per tant, l’angle ✓ entre les corbes coordenades està donat per

cos(✓) =
F

k'uk k'vk
=

sinh(v) h�(u), �0(u)iq
sinh

2

(v) h�(u), �(u)i+ cosh

2

(v)
.

Per tant, les línies coordenades són ortogonals per a aquelles corbes �(u) tals que
h�(u), �0(u)i = 0. És a dir, h�(u), �(u)i = R2, per a una certa constant R. Per tant, �(u)
està continguda en una circumferència de centre l’origen i radi R. ⇤
Exercici 216(c) Observem que �(u) està donada, com corba de S, per la condició v = 0.
En particular,

'u ^ 'u|v=0

= �0(u) ^ ~w = ±N(u),

on N(u) és el vector normal principal de la corba. Recordem que, en ser la corba plana,
el pla que la conté és el seu pla osculador. ⇤
Exercici 216(d) El càlcul anterior demostra que �(u) és geodèsica. (El vector normal
principal de la corba i el normal a la superfície són paral.lels). ⇤
Exercici 216(e) Apliquem Olinde. És a dir, derivem la normal al llarg de �(u) per veure
si surt un múltiple de �0(u).

d⌫(�0(u)) =
d⌫(u, 0)

du
=

dn(u)

du
= �k(u) �0(u),

on k(u) és la curvatura de �(u). Per tant, efectivament, �(u) és línia de curvatura.
També es pot verificar directament si �(u) compleix l’equació de les línies de curvatura

(recordem que en coordenades �(u) és (u, 0)):
������

dv2 �du dv du2

E F G
e f g

������
=

������

0 0 1

1 0 1

e f g

������
= f

però f(u, 0) = 0, ja que
'uv = sinh(v) �0(u)

i per tant
'uv(u, 0) = 0.

⇤
Exercici 216(f) Si �(u) = (cos(u), sin(u), 0) tindrem

'(u, v) = (cosh(v) cos(u), cosh(u) sin(v), sinh(v))

que correspon a l’hiperboloide d’un full amb la parametrització donada a l’exercici 90.
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⇤
Exercici 217. La fórmula de l’angle d’inclinació en coordenades ortogonals (F = 0) és57

2

p
E G ✓0 = Ev u

0 �Gu v
0.

Si pensem la corba com v = v(u) l’equació anterior s’escriu com

2

p
E G

d✓

du
= Ev �Gu

dv

du
.

que en el nostre cas en què E = (U � V )U2

1

, G = (U � V )V 2

1

queda

2 (U � V )U
1

V
1

d✓

du
= �dV

dv
U2

1

� dU

du
V 2

1

dv

du
.

Tal com és la mètrica tenim
dv

du
=

U
1

V
1

tan(✓) i per tant l’equació anterior, dividida per

U
1

V
1

i multiplicant per cos(✓), queda

2 (U � V ) cos(✓)
d✓

du
= �dV

dv

U
1

V
1

cos(✓)� dU

du
sin(✓).

Tenint en compte que v = v(u) i multiplicant per sin(✓)

2 (U � V ) cos(✓) sin(✓)
d✓

du
= �dV

du
cos

2

(✓)� dU

du
sin

2

(✓).

Això és equivalent a

2U sin(✓) cos(✓)
d✓

du
+

dU

du
sin

2

(✓) = 2V sin(✓) cos(✓)
d✓

du
� dV

du
cos

2

(✓)

que es pot escriure com
d

du
(U sin

2

(✓)) = � d

du
(V cos

2

(✓))

i per tant
U sin

2

(✓) + V cos

2

(✓) = a,

amb a constant com volíem. ⇤
Exercici 218. Motivat per l’estudi de les quàdriques homofocals (exercici 91), que inclou
les superfícies triplement ortogonals i el teorema de Dupin, s’arriba a la parametrització

57Vegeu Notes sobre corbes i superfícies, A. Reventós, 2018.
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meravellosa de les quàdriques com

x =

s
a (a� u) (a� v)

(a� b) (a� c)

y =

s
b (b� u) (b� v)

(b� a) (b� c)

z =

s
c (c� u) (c� v)

(c� a) (c� b)

(44)

que, tenint en compte que es compleix
x2

a
+

y2

b
+

z2

c
= 1,

queda clar que aquesta quàdrica és un
1. El.lipsoide, si a � b � c > 0. Llavors (u, v) 2 (b, a)⇥ (c, b).

2. Hiperboloide d’un full, si a � b > 0 > c. Llavors (u, v) 2 (b, a)⇥ (�1, c).

3. Hiperboloide de dos fulls, si a > 0 � b � c. Llavors (u, v) 2 (c, b)⇥ (�1, c).
Denotant com sempre '(u, v) = (x(u, v), y(u, v), z(u, v)) la parametrització donada

a (44), calculem mecànicament 'u i 'v. En aquest punt convé escriure les derivades de la
parametrització '(u, v) com

'u =

✓
� 1

2

p
a� u

s
a (a� v)

(a� b) (a� c)
,

1

2

p
u� b

s
b (b� v)

(a� b) (b� c)
,

1

2

p
u� c

s
c (v � c)

(a� c) (b� c)

◆

'v =

✓
� 1

2

p
a� v

s
a (a� u)

(a� b) (a� c)
,� 1

2

p
b� v

s
b (u� b)

(a� b) (b� c)
,

1

2

p
v � c

s
c (u� c)

(a� c) (b� c)

◆

on hem escrit cada factor de manera que sigui positiu (és a dir, hem escrit (v� c) en lloc
de (c� v) etc.)

A partir d’aquí ja es fàcil calcular els coeficients de la primera forma fonamental.
S’obté

E =

u (u� v)

f(u)
, F = 0, G =

v (v � u)

f(v)
,

on f(x) = 4 (a� x) (b� x) (c� x).
Amb això la primera part del problema està acabada ja que

ds2 = (u� v)

✓
u

f(u)
du2 � v

f(v)
dv2
◆

i per tant les quàdriques són superfícies isotermes de Liouville (confronteu amb l’exercici
217).

Observem que a l’el.lipsoide tenim v < u, f(u) > 0, f(v) < 0, i relacions similars als
hiperboloides, de manera que ds2 és definit positiu.
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Donem per completesa la segona forma fonamental.
Per calcular la normal ⌫(u, v) = (X(u, v), Y (u, v), Z(u, v)) a la quàdrica s’ha de cal-

cular 'u ^ 'v i la seva norma.
Les tres components de 'u ^ 'v són

p
b c

4

p
(a� b) (a� c)

u� vp
(u� b) (u� c) (v � c) (b� v)

p
c a

4

p
(b� c) (b� a)

u� vp
(u� c) (u� a) (v � a) (c� v)

p
a b

4

p
(c� a) (b� a)

u� vp
(u� c) (u� a) (v � a) (c� v)

Dividint per la seva norma

k'u ^ 'vk =

p
E G� F 2

= (u� v)

r
�u v

f(u) f(v)

s’obté que la normal ⌫(u, v) = (X(u, v), Y (u, v), Z(u, v)) a la quàdrica està donada per

X =

s
b c (a� u) (a� v)

u v (a� b) (a� c)

Y =

s
c a (b� u) (b� v)

u v (b� a) (b� c)

Z =

s
a b (c� u) (c� v)

u v (c� a) (c� b)

La segona forma fonamental58

e = �
r

a b c

u v

u� v

f(u)
, f = 0, g =

r
a b c

u v

u� v

f(v)
,

Com que s’ha obtingut F = f = 0 sabem que les línies coordenades u = ct., v = ct.
són línies de curvatura.

La parametrització considerada transforma el rectangle (b, a)⇥ (c, b), on varien (u, v),
en la part de l’el.lipsoide corresponent a l’octant x > 0, y > 0, z > 0 si es pren el signe
positiu en les arrels quadrades de (44). Estudiem les vores d’aquest rectangle. Com es
pot veure a la figura, línies u = b, v = b (verda i blava que queden alineades) van a parar
als punts de l’el.lipsoide amb y = 0, la línia u = a (l’altra verda) va a parar als punts de
l’el.lipsoide amb x = 0, i la línia v = c (blava) va a parar als punts de l’el.lipsoide amb
z = 0.

58En el càlcul llarg de les derivades segones s’utilitza la igualtat (a � v) (b � u) (c � u) (b � c) + (a �
v) (b� u) (c� u) (b� c) + (a� v) (b� u) (c� u) (b� c) = (v � u) (a� b) (b� c) (c� a).

Toc

JJ II J I
Tornar



Solucions als Exercicis 289

'(u, c)

'(a, v)

'(u, b)

'(b, v)

'(a, b)

'(a, c)

'(b, c)

'(b, b)

Les línies v = ct. van a parar a les línies de curvatura corresponents sobre l’el.lipsoide que
surten d’un dels segments verds i acaben a l’altre; anàlogament les línies de curvatura
d’equació u = ct. surten d’un dels segments blaus i acaben a l’altre.

Ara bé, per recobrir l’el.lipsoide necessitem vuit cartes que provenen de combinar els
signes ± de les arrels quadrades en (44). En cadascuna d’elles podem repetir exactament
els arguments que acabem de fer (l’espai de paràmetres és sempre el mateix rectangle)
i veiem com les línies de curvatura que en cadascuna de les vuit cartes tenen equació
u = ct. donen lloc sobre l’el.lipsoide a dues corbes tancades.

I el punt umbilical representat a la figura per un punt groc, que té coordenades u =

v = b si pensem la carta local definida sobre el rectangle tancat i no obert com és habitual,
dona lloc a quatre punts umbilicals (també en groc), com es veu fàcilment a partir de les
vuit cartes i com s’enganxen entre elles.

Cadascuna de les components connexes de les línies de curvatura u = ct. (una amb
x > 0 i una altra amb x < 0) separen l’el.lpsoide en dues regions, cadascuna de les quals
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conté dos punts umbilicals (no diametralment oposats).
Els mateixos comentaris valen per a les corbes v = ct. ⇤

Exercici 219. Considerem la parametrització de l’el.lipsoide donada a l’exercici 218.
Recordem que estem donant vuit cartes locals.

Com que aquesta parametrització és una parametrització isoterma de Liouville, sabem
per l’exercici 217, que les geodèsiques de l’el.lipsoide compleixen l’equació

(u� ↵) sin2

(✓) + (v � ↵) cos2(✓) = 0, (45)

on ✓ = ✓(u, v) és l’angle que forma la geodèsica amb les corbes coordenades v = ct. i ↵ és
una constant.

Concretament, això vol dir que quan la geodèsica passa pel punt P de coordenades
(u

0

, v
0

) s’ha de complir

(u
0

� ↵) sin2

(✓(u
0

, v
0

)) + (v
0

� ↵) cos2(✓(u
0

, v
0

)) = 0,

on ✓(u
0

, v
0

) és l’angle en el punt P entre la geodèsica i la corba coordenada v = v
0

.
Observem que aquesta equació, donat el punt i la constant ↵, només determina la

tangent al quadrat de ✓, i per tant hi ha dues geodèsiques associades al mateix valor ↵
que passen per aquest punt, una formant angle ✓ i l’altra formant angle �✓ amb v = ct.

Recordem que les coordenades (u, v) que estem considerant compleixen c < v < b <
u < a. D’aquí i de l’equació (45) es dedueix fàcilment que per a tots els punts de
coordenades (u, v) d’una mateixa geodèsica es compleix v < ↵ < u. En particular ↵ 2
(c, a). Això dóna lloc als tres casos que estudiarem a continuació.

Primer cas: ↵ 2 (b, a). Considerem la línia de curvatura donada per u = ↵. Els seus
punts tenen, doncs, coordenades (↵, v) amb v 2 (c, b).

La geodèsica determinada per ↵ quan passa pel punt de coordenades (↵, v
0

), compleix,
per (45),

(v
0

� ↵) cos2(✓) = 0

i per tant, ✓ = ⇡/2. És a dir, si la la geodèsica determinada per ↵ 2 (b, a) té un punt de
contacte amb la línia de curvatura u = ↵, és tangent a ella en aquest punt. Observem
que v

0

� ↵ 6= 0 ja que ↵ 2 (b, a) i v
0

2 (c, b).
Per tant, a partir de l’estudi de les línies de curvatura que hem fet a l’exercici 218,

deduïm que la geodèsica determinada per la constant ↵ 2 (b, a) es manté sempre dins
de la regió de l’el.lipsoide determinada per les dues components connexes de la línia de
curvatura u = ↵.

Segon cas: ↵ 2 (c, b). El mateix argument mostra que la geodèsica determinada per
la constant ↵ 2 (c, b) es manté sempre dins de la regió de l’el.lipsoide determinada per les
dues components connexes de la línia de curvatura v = ↵.

Observem que per poder escriure u = ↵ hem d’estar en el primer cas i per poder
escriure v = ↵ hem d’estar en el segon cas.

Tercer cas: ↵ = b. Recordem primerament que els punts umbilicals (tots tenen coor-
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denades u = v = b si estenem la carta local al tancat [b, a]⇥ [c, b]) són els punts

U
1

=

✓s
a (a� b)

(a� c)
, 0,

s
c (b� c)

(a� c)

◆

U
2

=

✓s
a (a� b)

(a� c)
, 0,�

s
c (b� c)

(a� c)

◆

U
3

=

✓
�

s
a (a� b)

(a� c)
, 0,�

s
c (b� c)

(a� c)

◆

U
4

=

✓
�

s
a (a� b)

(a� c)
, 0,

s
c (b� c)

(a� c)

◆

de manera que U
1

, U
3

i U
2

, U
4

són respectivament parelles antipodals.
Les geodèsiques que surten d’un d’aquests punts no corresponen ni al primer ni al

segon cas anteriors (no estan acotades entre línies de curvatura). Han de correspondre,
doncs, al cas que ens faltava estudiar, les geodèsiques donades per

(u� b) sin2

(✓) + (v � b) cos2(✓) = 0. (46)

Si es pren un punt qualsevol (u
1

, v
1

) d’aquest geodèsica es veu que ✓(u
1

, v
1

) no pot ser
mai ni igual a 0 ni igual a ⇡/2. En efecte, si ✓ = 0 tindríem, per (46), v

1

= b cosa que no
pot ser, ja que v

1

2 (c, b). Si ✓ = ⇡/2, tindríem u
1

= b que tampoc pot ser.
Per tant, un cop surt d’un punt umbilical U

1

aquesta geodèsica va creuant totes les
línies de curvatura u = ct. i v = ct. que encerclen respectivament els punts umbilicals
U
1

, U
2

i U
1

, U
4

, sense ser mai tangent a elles, i per tant ha d’anar a parar a U
3

, el punt
umbilical diametralment oposat a U

1

.
Hi ha una geodèsica d’aquest tipus per a cada direcció de l’espai tangent a l’el.lipsoide

en U
1

(que van a parar a U
3

) i una per a cada direcció de l’espai tangent a l’el.lipsoide en
U
2

(que van a parar a U
4

).
Finalment observem que dues geodèsiques que surten del mateix punt umbilical no

es poden tallar. En efecte, si es tallessin sabem que ✓ queda determinat en aquest punt
llevat del signe, ja que

tan

2

(✓) = �v � b

u� b
,

on (u, v) són les coordenades del punt, però podria ser que una de les geodèsiques arribés
a aquest punt amb angle ✓ i l’altra amb angle �✓. Ara bé, això no pot ser ja que en el
sentit creixent del paràmetre arc de la geodèsica mesurada a partir del punt umbilical, per
exemple U

1

, la geodèsica surt de la regió tancada delimitada per les línies de curvatura
u = ct. i v = ct. que contenen respectivament U

1

, U
4

i U
1

, U
2

. Com que aquestes regions
es tallen ortogonalment, el vector tangent a la geodèsica ha d’estar forçosament en un dels
quadrants determinats per les tangents a les línies de curvatura en el punt de contacte,
com indica la figura. Això determina el signe de l’angle ✓ que haurà de coincidir per a les
dues geodèsiques, i dues geodèsiques que en un punt tenen la mateixa tangent són iguals.
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P

✓

U1

U2

U3

U4

⇤
Exercici 220. Partim de la fórmula de Bonnet per a geodèsiques de la forma f(u, v) = c.59

@

@u

Gm� F np
E n2 � 2F mn+Gm2

+

@

@v

E n� F mp
E n2 � 2F mn+Gm2

= 0,

on E, F , G són els coeficients de la primera forma fonamental i m = fu, n = fv. Per tant,
existeix �(u, v) tal que

@�

@u
=

E n� F mp
E n2 � 2F mn+Gm2

@�

@v
=

F n�Gmp
E n2 � 2F mn+Gm2

(47)

Sigui (u
1

(t), v
1

(t)) les components d’una una trajectòria ortogonal a les corbes donades
per f(u, v) = c. Aquestes darreres corbes compleixen fu u0

+ fv v0 = mu0
+ n v0 = 0, es a

dir, el seu vector tangent (a l’espai de paràmetres) és proporcional a (�n,m)

La condició d’ortogonalitat és

0 =

�
u0
1

v0
1

� ✓E F
F G

◆ ✓
�n
m

◆
= u0

1

(�E n+ F m) + v0
1

(�F n+Gm).

Anem a veure que �(u, v) és constant sobre (u
1

(t), v
1

(t)).
Derivant

d

dt
�(u

1

(t), v
1

(t)) = �u u
0
1

+ �v v
0
1

=

E n� F mp
E n2 � 2F mn+Gm2

u0
1

+

F n�Gmp
E n2 � 2F mn+Gm2

v0
1

= 0.

i per tant � és constant sobre les trajectòries ortogonals, com es volia veure.

Ara falta veure que �(u(s), v(s)) = ±s+ ct. quan f(u(s), v(s)) = ct.
Només cal derivar la funció h(s) = �(u(s), v(s)).

dh

ds
= �u u

0
+ �v v

0
= u0 ��u + k �v

�
, (48)

59Vegeu Notes sobre corbes i superfícies, A. Reventós, 2018. Bonnet dóna la fórmula de la curvatura
geodèsica d’una sola corba f(u, v) = 0, però aquí ho apliquem a tota una família de geodèsiques.
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on k =

dv
du . Hem reparametritzat la geodèsica per u en lloc del seu paràmetre arc s.

Com que (u, v(u)) és ortogonal a �(u, v) = ct. es té
�
1 k

�✓E F
F G

◆✓
��v

�u

◆
= 0

i per tant
k =

F �u � E �v

F �v �G�u
(49)

Com que s és el paràmetre arc de la geodèsica �(u) de coordenades (u, v(u)) tenim

ds

du
= k�0(s)k =

s
�
1 k

� ✓E F
F G

◆ ✓
1

k

◆
=

p
E + 2F k +Gk2

i per tant
u0

=

1p
E + 2F k +Gk2

Substituint aquest valor de u0 a (48), i substituint a continuació el valor de k obtingut a
(49) s’obté (després d’un càlcul una mica llarg)

✓
dh

ds

◆
2

=

E �2

v � 2F �u �v +G�2

u

E G� F 2

Substituint ara en aquesta expressió els valors de �u, �v obtinguts a (47) s’obté (després
d’un altre càlcul una mica llarg) ✓

dh

ds

◆
2

= 1

i per tant, h(s) = ±s+ ct. com es volia provar. ⇤
Exercici 221. Considerem l’el.lipsoide donat per la parametrització de l’exercici 218

x =

s
a (a� u) (a� v)

(a� b) (a� c)

y =

s
b (b� u) (b� v)

(b� a) (b� c)

z =

s
c (c� u) (c� v)

(c� a) (c� b)

amb a � b � c > 0 i (u, v) 2 (b, a)⇥ (c, b).
Considerem la família de geodèsiques umbilicals donades per

h(u, v) = (u� b) sin2

(✓) + (v � b) cos2(✓) = 0. (50)
La funció �(u, v) de l’exercici 220, que és constant sobre aquesta família de geodèsiques,
es pot calcular explícitament integrant les equacions (47) del mateix exercici 220.

En efecte, en el cas de l’el.lipsoide aquestes equacions s’escriuen, respecte de les coor-
denades (u, v) introduïdes a l’exercici 218 en què

E =

u (u� v)

f(u)
, F = 0, G =

v (v � u)

f(v)
amb f(x) = 4 (a� x) (b� x) (c� x), com

@�

@u
=

u (u� v)n

f(u)�

@�

@v
=

v (u� v)m

f(v)�
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amb m = hu, n = hv i

�

2

=

u (u� v)

f(u)
n2

+

v (v � u)

f(v)
m2.

Per trobar �(u, v) s’observa que

u� f(u)

u
�2

u(u, v) = v � f(v)

v
�2

v(u, v).

Anem a veure si ha ha alguna solució d’aquesta equació diferencial de la forma
�(u, v) = A(u) + B(v).

Si hi fos tindríem
u� f(u)

u
A2

u(u) = v � f(v)

v
B2

v(v),

i com que el primer terme és una funció de u i el segon de v aquesta equació es pot integrar
igualant els dos termes a una constant ↵ i sumant les dues funcions, una de u i l’altra de
v, que obtenim en integrar aquest dos termes. La solució serà doncs

�(u, v) =

Z r
u

f(u)
(u� ↵) du±

Z r
v

f(v)
(v � ↵) dv.

No posem el signe ± a la primera arrel quadrada ja que el que interessa és estudiar
�(u, v) = ct. i, canviant de signe la constant, les solucions estan incloses a l’expressió
anterior. Per això tampoc importen les constant d’integració.

Observeu que, per tal que els radicands de les dues arrels quadrades siguin positius i
s’obtingui una solució a l’interval d’inici (u, v) 2 (b, a) ⇥ (c, b), caldrà per un costat que
↵  u (ja que els valors f(u) són positius) i per l’altre que ↵ � v (ja que els valors f(v)
són negatius). Per tant s’ha d’agafar ↵ = b.

Posant, doncs, ↵ = b a l’equació anterior i explicitant el valor de f(u) i f(v) es té

�(u, v) =
1

2

Z r
u

(a� u) (u� c)
du± 1

2

Z r
v

(a� v) (v � c)
dv,

expressió que té sentit encara que en principi (u, v) 2 (b, a) ⇥ (c, b), ja que les funcions
que integrem són contínues sobre [b, a)⇥ (c, b].

Escriurem simplement
�(u, v) = f

1

(u)± f
2

(v),

entenent que les constants d’integració ja s’han considerat en aquestes funcions.
Això vol dir que hi ha dues funcions

�
1

(u, v) = f
1

(u) + f
2

(v), �
2

(u, v) = f
1

(u)� f
2

(v)

que són constants sobre les famílies de geodèsiques umbilicals donades per l’equació (50).
Això és degut a que hi ha dues famílies diferents de geodèsiques que verifiquen aquesta

equació: les que surten del punt umbilical U
1

i arriben a U
3

i les que surten del punt
umbilical U

2

i arriben a U
4

.
Suposem que dues d’aquestes geodèsiques es tallen en un cert punt P de coordenades

(u, v). Per l’exercici 220 sabem que la longitud de la geodèsica que va de U
1

a P és
`
1

= �
1

(u, v)� �
1

(b, b) = f
1

(u) + f
2

(v)� �
1

(b, b)

i la longitud de la geodèsica que va de U
2

a P és
`
2

= �
2

(u, v)� �
2

(b, b) = f
1

(u)� f
2

(v)� �
2

(b, b)

Ja s’ha comentat a l’exercici 219 que els punts umbilicals tenen coordenades (b, b) si
suposem les vuit cartes locals de l’exercici 218 definides sobre el tancat [b, a]⇥ [c, b].
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Es té, doncs,
`
1

+ `
2

= 2 f
1

(u)� 2�(b, b), `
1

� `
2

= 2 f
2

(v)

fet que demostra que les corbes u = ct. són el.lipses i les corbes v = ct. hipèrboles. ⇤
Exercici 222. Aquesta fórmula diu que si tenim coordenades ortogonals (u, v) sobre
una superfície i C és una corba en aquesta carta local (U,'), parametritzada per �(t) =
'(u(t), v(t)), llavors

kg =
d✓

ds
+ (kg)1 cos(✓) + (kg)2 sin(✓),

on
- kg = kg(t) és la curvatura geodèsica de la corba C en el punt �(t).
- ✓ = ✓(t) és l’angle en el punt �(t) entre C i la corba v = constant

60 que passa per
aquest punt.

- (kg)1 = (kg)1(t) és la curvatura geodèsica en el punt �(t) de la corba coordenada
v = constant que passa per aquest punt.

- (kg)2 = (kg)2(t) és la curvatura geodèsica en el punt �(t) de la corba coordenada
u = constant que passa per aquest punt.

Acceptant com a conegudes les fórmules que ens donen les curvatures geodèsiques d’un
sistema ortogonal:

(kg)1 = (kg)v=ct. = �1

2

Ev

E
p
G

, (51)

(kg)2 = (kg)u=ct. = +

1

2

Gu

G
p
E

, (52)

on
✓
E 0

0 G

◆
és la primera forma fonamental respecte de les coordenades (u, v) (en aquest

ordre).
La dificultat del problema està en què la fórmula de l’angle d’inclinació de Gauss és

vàlida per a un sistema de coordenades arbitrari, i la volem deduir a partir de la fórmula
de Liouville, que només és certa per a sistemes de coordenades ortogonals. Ara bé, la
fórmula de Gauss fa referència a geodèsiques i la de Liouville a corbes generals.

Suposem a partir d’ara que tenim un sistema de coordenades (u, v) sobre una super-
fície i que, respecte d’aquestes coordenades, la primera forma fonamental s’escriu com✓
E F
F G

◆
.

Donem a ✓, kg, (kg)1 i (kg)2 el mateix significat que els hi acabem de donar en recordar
la fórmula de Liouville.

Per calcular ✓ només hem de multiplicar els vectors tangents a v = ct. i a �(t).

(u0
(t), v0(t))

✓
E F
F G

◆ ✓
1

0

◆
= E u0

+ F v0 = k(u0
(t), v0(t))k k(1, 0)k cos(✓).

Per tant
cos(✓) =

E u0
+ F v0p

E (u0
)

2

+ 2F u0 v0 +G (v0)2
p
E

.

Si introduïm el paràmetre arc s de �(t), que compleix

ds

dt
=

s

E

✓
du

dt

◆
2

+ 2F
du

dt

dv

dt
+G

✓
dv

dt

◆
2

,

60Clarament parlem de la corba '(u, constant).
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i ometem com és habitual el dt, tenim

cos(✓) ds =
E du+ F dvp

E
.

D’aquí s’obté fàcilment

sin(✓) ds =

p
E G� F 2 dvp

E
.

Aquestes expressions del sinus i el cosinus apareixen exactament així ja en el Disquisitio-
nes.

Per tal de poder aplicar la fórmula de Liouville cal tenir coordenades ortogonals. Per
a això, fem un canvi de variables del tipus

ū = ū(u, v),

v̄ = v,

de manera que les noves corbes ū = ct. siguin ortogonals a les corbes v = ct.
El camp tangent a les corbes ū = ct. és

@'

@v̄
=

@u

@v̄

@'

@u
+

@v

@v̄

@'

@v
=

@u

@v̄

@'

@u
+

@'

@v
,

de manera que si imposem que sigui ortogonal a les corbes v = ct., obtenim
✓
@u

@v̄
1

◆ ✓
E F
F G

◆ ✓
1

0

◆
= 0,

és a dir,
@u

@v̄
= �F

E
.

De forma equivalent
u = �

Z
F

E
dv̄. (53)

Quan s’aplica la fórmula de Liouville a les coordenades ortogonals (ū, v̄) s’obté (posem
kg = 0 perquè volem l’equació de les geodèsiques):

d✓

ds
= �(kg)v=ct. cos(✓)� (kg)ū=ct. sin(✓).

Observem que ✓ és el mateix independentment de si treballem en el sistema (u, v) o
en el sistema (ū, v̄) ja que és l’angle de la geodèsica amb v = v̄ = ct. Observem també
que la primera forma fonamental, respecte dels sistema (ū, v̄) és

0

@
E �2 0

0

GE � F 2

E

1

A ,

on � =

@u

@ū
, ja que

@'

@ū
=

@u

@ū

@'

@u
.

Observem que, per (53), tenim

� = �
Z ✓

F

E

◆

ū

dv̄,

�v̄ = �
✓
F

E

◆

ū

=

Eū F � Fū E

E2

.
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Usant les fórmules (51) i (52) tenim

d✓

ds
=

1

2

(E �2)v̄

�2 E

r
GE � F 2

E

cos(✓)� 1

2

✓
GE � F 2

E

◆

ū

GE � F 2

E
�
p
E

sin(✓).

Que és equivalent a
p
E G� F 2 d✓ =

1

2�2
(E �2)v̄p

E

E du+ F dvp
E

� 1

2�

✓
GE � F 2

E

◆

ū

dv.

Coeficient de du.
1

2�2
(Ev̄ �

2

+ 2E ��v̄) =
Ev̄

2

+

E �v̄
�

= �F Eu

2E
+

Ev

2

+

Eu F

E
� Fu

=

F Eu

2E
+

Ev

2

� Fu.

Coeficient de dv.

Aprofitant el càlcul de
(E �2)

¯v̄

2�2
que acabem de fer s’obté

F (E �2)v̄
2E �2

� (GE � F 2

)u E � Eu (GE � F 2

)

2E2

=

F

E

✓
F Eu

2E
+

Ev

2

� Fu

◆
� Gu

2

+

F Fu

E
� GEu

2E
+

GEu

2E
� Eu F 2

2E2

=

F Ev

2E
�Gu.

Substituint, tenim
p
E G� F 2 d✓ =

✓
F Eu

2E
+

Ev

2

� Fu

◆
du+

✓
F Ev

2E
� Gu

2

◆
dv

que és exactament la fórmula de Gauss de les geodèsiques. ⇤

Sense classificació clara

Exercici 223. Utilitzant que els meridians són geodèsiques i que el transport paral.lel
conserva angles es veu que l’angle final és 2↵. En efecte, w

1

és tangent a C
1

, per tant
forma un angle ↵ amb la tangent a C

2

en Q; per la seva banda w
2

forma també un angle
↵ amb C

2

, però per estar w
1

i w
2

a diferents costats respecte la tangent a C
2

en Q aquests
angles s’han de sumar i s’obté el valor 2↵.
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⇤
Exercici 224. Com que el transport paral.lel al llarg de geodèsiques (en aquest cas els
meridians) és molt fàcil, ometrem l’apartat (a) i de l’apartat (b) només farem el transport
paral.lel al llarg del paral.lel ' = '

0

entre els punts P i Q.
Sigui P el punt de coordenades (✓,') = (0,'

0

) i sigui w 2 TPS2. Volem transportar
w paral.lelament al llarg del paral.lel ' = '

0

fins al punt Q = (✓
0

,'
0

).
Denotem X(✓,') = (sin(') cos(✓), sin(') sin(✓), cos(')) i posem

w = a
0

@X

@✓ |P + b
0

@X

@' |P .

Busquem un camp tangent W (✓) al llarg del meridià tal que
DW

d✓
= 0, W (0) = w.

Aquest camp W (✓) es pot escriure com

W (✓) = aX✓ + bX'

amb a = a(✓), b = b(✓) i X✓ =
@X(✓,'0)

@✓ , X' =

@X(✓,'0)

@' . Derivant tenim

dW

dt
= a0 X✓ + b0 X' + aX✓✓ + bX✓'

Per tant, la condició DW
dt = 0 és (igualem a zero els coeficients de X✓ i X')

a0 + a�1

11

+ b�1

12

= 0

b0 + a�2

11

+ b�2

12

= 0.

Substituint els valors dels símbols de Christoffel

a0 + b cot('
0

) = 0

b0 � a cos('
0

) sin('
0

) = 0.

Ara es resol el sistema amb les condicions inicials donades i tenim el resultat. Per
simplificar els càlculs anem a fer, a partir d’aquí, el cas en què w = X'(P ), és a dir, que
tindrem les condicions inicials a(0) = 0, b(0) = 1. Derivant la primera equació del sistema
i utilitzant la segona tenim

d2a

d✓2
+ a cos

2

('
0

) = 0

que té solució amb a(0) = 0 donada per

a(✓) = B sin(c ✓), c = cos('
0

)

Com que

b = � a0

cot('
0

)

= �B sin('
0

) cos(c ✓)

tenim
B = � 1

sin('
0

)

.

Resumint

a(✓) = � 1

sin('
0

)

sin(c ✓)

b(✓) = cos(c ✓).
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Tenim doncs determinat W (✓) i w transportat a qualsevol punt del paral.lel de paràmetre
✓
0

s’obté simplement escrivint W (✓
0

)

W (✓) = � 1

sin('
0

)

sin(c ✓)X✓ + cos(c ✓)X'.

Segon mètode. La derivada covariant d’un camp W al llarg d’una certa corba d’una
superfície es calcula projectant sobre la superfície la derivada a R3 de W restringit a la
corba, dW/dt. Per tant quan dues superfícies es tallen en una corba i sobre aquesta corba
tenen el mateix pla tangent, la derivada covariant de W és exactament la mateixa en
les dues superfícies. Aleshores, és el mateix calcular el transport pararl.lel al llarg d’un
parl.lel de l’esfera que al llarg del con que li és tangent en aquest paral.lel. A més, com
que el concepte de derivada covariant és intrínsec (es pot calcular a partir de la primera
forma fonamental) podrem desplegar el con sobre el pla, fer el transport pararl.lel allà i
tornar a la posició inicial del con.

Considerem, doncs, el con tangent a l’esfera al llarg del paral.lel ' = '
0

. La longitud
de la base és igual a la longitud del paral.lel, 2 ⇡ sin('

0

). I un cop desplegat aquest con
sobre el pla obtenim un sector circular d’angle ↵

0

= 2 ⇡ cos('
0

).

↵ @

@'

w
w1

tan('0)

↵

'0

@

@✓

La longitud del paral.lel entre els punts P i Q és ✓
0

sin('
0

). Mirat en el con desplegat
tenim un sector circular d’angle ↵

0

= ✓
0

cos('
0

) ja que la generatriu del con mesura
tan('

0

). Observem que amb la notació de més amunt ↵
0

= c ✓
0

.
Com es veu a la figura anterior, dreta, el transportat paral.lelament del vector w 2

TPS2 a Q és el vector w
1

2 TQS2 que forma un angle ↵
0

amb el meridià, és a dir, amb
X'(P ). Per tant

w
1

= A
X✓

kX✓k
+B

X'

kX'k
amb

A = hw
1

,
1

sin('
0

)

X✓i = cos(↵
0

+ ⇡/2) = � sin(↵
0

)

B = hw
1

, X'i = cos(↵
0

)

és a dir,
W (✓) = � 1

sin('
0

)

sin(c ✓)X✓ + cos(c ✓)X'.

⇤

Toc

JJ II J I
Tornar



Solucions als Exercicis 300

Exercici 225(a) Com que N(u) i B(u) constitueixen una base ortonormal del pla ⇧u

aleshores tenim que per a tot u 2 I la corba v 7! �(u)+r(u) cos(v)N(u)+r(u) sin(v)B(u)
parametritza la circumferència Cu de centre �(u) i radi r(u) sobre el pla ⇧u, i per tant, '
parametritza S.

⇤
Exercici 225(b) Calculem els vectors tangents utilitzant les fórmules de Frenet de la
corba �:

'u(u, v) = �0(u) + r0(u) (cos(v)N(u) + sin(v)B(u))

+ r(u) (cos(v)N 0
(u) + sin(v)B0

(u))

=

⇣
1� k(u) r(u) cos(v)

⌘
T (u) +

⇣
r0(u) cos(v) + r(u) ⌧(u) sin(v)

⌘
N(u)

+

⇣
r0(u) sin(v)� r(u) ⌧(u) cos(v)

⌘
B(u)

'v(u, v) = �r(u) sin(v)N(u) + r(u) cos(v)B(u)

i la primera forma fonamental ve donada per

E(u, v) = (1� k(u) r(u) cos(v))2 + r0(u)2 + r(u)2 ⌧(u)2

F (u, v) = �r(u)2 ⌧(u)

G(u, v) = r(u)2

de manera que el seu determinant és igual a

E G� F 2

=

⇣
(1� k(u) r(u) cos(v))2 + r0(u)2

⌘
r(u)2

Recordem que ' és regular si, i només si d' és injectiva. Això és equivalent a que els
vectors 'u i 'v siguin linealment independents, condició que es verifica quan 'u ⇥'v 6= 0

o, de forma equivalent, quan E G� F 2

= k'u ⇥ 'vk2 6= 0.
Així, la parametrització ' és regular (immersió) si, i només si r(u) 6= 0 i o bé 1 �

k(u) r(u) cos(v) 6= 0 o bé r0(u) 6= 0, per a tot (u, v) 2 I ⇥ (0, 2⇡). Observem finalment
que la condició 1� k(u) r(u) cos(v) 6= 0 es satisfà sempre que 0 < r(u) < 1

k(u) . ⇤

Exercici 225(c) Observem també que l’element d’àrea dA =

p
E G� F 2 du dv no depèn

de la torsió ⌧ de la corba �. ⇤
Exercici 225(d) Les línies de curvatura són corbes �(t) sobre la superfície de manera
que per a tot t el vector tangent �0

(t) és un vector propi de l’aplicació de Weingarten
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W = �d⌫. Suposem que r(u) és constant i � és plana (i.e. ⌧(u) ⌘ 0) i calculem en aquest
cas

'u ^ 'v =

�������

T (u) N(u) B(u)

1� k(u) r(u) cos(v) 0 0

0 �r(u) sin(v) r(u) cos(v)

�������

= �(1� k(u) r(u) cos(v)) (r(u) cos(v)N(u) + r(u) sin(v)B(u)),

llavors el vector normal de la superfície S és igual a

⌫(u, v) =
'u ^ 'v

k'u ^ 'vk
= � cos(v)N(u)� sin(v)B(u).

Si derivem ⌫(u, v) respecte u i v obtenim

d⌫('u)(u, v) =
@⌫(u, v)

@u
= � cos(v)N 0

(u) = � cos(v) k(u)T (u) (k 'u(u, v))

d⌫('v)(u, v) =
@⌫(u, v)

@v
= sin(v)N(u)� cos(v)B(u) (k 'v(u, v))

Per tant, les línies de curvatura són en aquest cas les línies coordenades. ⇤
Exercici 225(e) Sigui

�(u) = (a cos(u/a), a sin(u/a), 0),

llavors
N(u) = (� cos(u/a),� sin(u/a), 0) i B(u) = (0, 0, 1).

La condició de regularitat és

b ⌘ r(u) <
1

k(u)
=

1

1/a
= a

i la parametrització és
'(u, v) = a (cos(u/a), sin(u/a), 0)

+ b
�
cos(v) (� cos(u/a),� sin(u/a), 0) + sin(v) (0, 0, 1)

�

= ((a� b cos(v)) cos(u/a), (a� b cos(v)) sin(u/a), b sin(v)).

La primera formal fonamental s’escriu com
✓�

1� b
a cos(v)

�
2

0

0 b2

◆

i l’àrea, com ja havíem vist, és
Z

2⇡ a

0

✓Z
2⇡

0

(1� b

a
cos(v)) b dv

◆
du = 4 ⇡2 a b.

Finalment, les línies de curvatura del tor són les seves línies coordenades, és a dir, els
paral.lels i els meridians. ⇤
Exercici 226. Una corba es pot donar com intersecció de dues superfícies

u(x, y, z) = ↵

v(x, y, z) = �

Si pensem ↵ i � com paràmetres llavors tenim una família biparamètrica de corbes. Però si
hi ha una relació entre elles del tipus �(↵, �) = 0 podem pensar que per exemple � = �(↵)
i tenim una família uniparamètrica de corbes, que generen doncs una superfície.
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L’equació d’aquesta superfície serà en aquests casos
�(↵, �) = �(u(x, y, z), v(x, y, z)) = 0.

Això és una equació del tipus F (x, y, z) = 0 que permet, sempre que es compleixin les
condicions habituals, escriure z = z(x, y).

Derivant respecte x i y l’equació anterior tenim
�u (ux + uz p) + �v (vx + vz p) = 0

�u (uy + uz q) + �v (vy + vz q) = 0,

on p i q designen, com és habitual, les derivades parcials de la funció z(x, y) respecte x i
y repectivament. Per tal que � no sigui constant, el determinant d’aquest sistema ha de
ser 0, és a dir,

p

����
uz vz
uy vy

����+ q

����
ux vx
uz vz

����+
����
ux vx
uy vy

���� = 0,

que escriurem com una EDP lineal de la forma

p
@(u, v)

@(z, y)
+ q

@(u, v)

@(x, z)
+

@(u, v)

@(x, y)
= 0. (54)

Cilindres. Pensem els cilindres com el resultat de fer passar per cada punt d’una corba
arbitrària en el pla z = 0 una recta de direcció fixada (a, b, 1).

Per descriure aquesta situació a partir dels comentaris anteriors pensem les rectes com
intersecció de plans

x = a z + ↵

y = b z + �

(observem que aquestes rectes tallen z = 0 en el punt (↵, �, 0)).
Sigui �(x, y) = 0 una corba en z = 0. Les rectes de la família anterior que passen per

aquesta corba venen donades per
�(↵, �) = 0

és a dir,
�(x� a z, y � b z) = 0.

[equació general dels cilindres].
L’EDP associada (54) és doncs (u = x� a z, v = y � b z)

�a p� b q + 1 = 0

[equació diferencial dels cilindres] que expressa que el vector (a, b, 1) és tangent a la su-
perfície (és ortogonal al normal (p, q,�1)).

Superfícies de revolució. Suposem que tenim una superfície de revolució d’eix la recta
per l’orígen amb vector director (a, b, c).

Aquesta superfície es pot considerar formada per la unió de corbes obtingudes tallant
els plans ortogonals a aquesta recta amb esferes de centre l’origen.

És a dir,
a x+ b y + c z = ↵

x2

+ y2 + z2 = �

amb una relació entre ↵ i � del tipus �(↵, �) = 0 donada per la corba generatriu (la que
fem rotar al voltant de l’eix). Tindrem

�(a x+ b y + c z, x2

+ y2 + z2) = 0.
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[equació general de les superfícies de revolució amb eix (a, b, c)].
I l’EDP associada (54) és doncs (u = a x+ b y + c z, v = x2

+ y2 + z2)
p (c y � b z) + q (a z � x c) + (a y � b x) = 0,

que expressa que la normal a la superfície talla l’eix de revolució. ⇤
Exercici 227. Posant n = (n

1

, n
2

, n
3

) i usant que n2

1

+ n2

2

+ n2

3

= 1 (i per tant les seves
derivades respecte x, y, z són zero) un càlcul directe mostra que

�n ^ rot(n) = (hn, grad(n
1

)i, hn, grad(n
2

)i, hn, grad(n
3

)i).
Interpretant aquests productes escalars com derivades direccionals (recordem que la deri-
vada direccional d’una funció en una direcció v és multiplicar escalarment v pel gradient
de la funció) tenim

�n ^ rot(n) = (Dnn1

, Dnn2

, Dnn3

).

que escriurem simplement com
�n ^ rot(n) = Dnn.

Però si denotem per T , N , B la referència de Frenet de �(s) tenim n = T de manera
que

�n ^ rot(n) = DTT =

dT

ds
= k N.

Per tant
rot(n) = n ^ (k N) = k B.

Nota. Si la família de superfícies forma part d’un sistema triplement ortogonal es pot
veure (vegeu On Lamé families of surfaces, C. E. Weatherburn, Annals of Mathematics,
28, p. 301-308, 1926) que

div(Dn rot(n)) = 0

de manera que en aquest cas l’expressió anterior es pot escriure com

div(

d

ds
(k B)) = 0.

És a dir
div(k0 B + k ⌧ N) = 0.

⇤
Exercici 228. Primer de tot es comprova la condició d’integrabilitat61

hX, rot(X)i = 0,

càlcul fàcil ja que rot(X) =

�
2 x (y � z), 2 y (z � x), 2 z (x� y)

�
.

El problema és equivalent a veure si X o algun múltiple d’ell és gradient d’una funció.
Llavors les corbes de nivell d’aquesta funció seran les superfícies buscades.

Plantegem doncs si existeixen funcions µ = µ(x, y, z), U = U(x, y, z) tals que

µ

✓
y z (y + z) dx+ x z (x+ z) dy + x y (x+ y) dz

◆
= dU. (55)

Comencem considerant, de moment, z com paràmetre i estudiem

µ

✓
y z (y + z) dx+ x z (x+ z) dy

◆
= dU.

61Conseqüència immediata del teorema del rotacional. En aquest exercici seguirem el text Ecuaciones
diferenciales de Puig Adam.
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Es veu que µ(x, y) =
1

x2 y2
és factor integrant (vegeu l’argument al final de l’exercici).

Busquem doncs una funció U = U(x, y, z) tal que
@U

@x
=

z (y + z)

x2 y

@U

@y
=

z (x+ z)

x y2

Integrant s’obté

U(x, y, z) = �z

y
� z2

x y
� z

x
= �z (x+ y + z)

x y
.

Les superfícies buscades hauran de ser de la forma

U(x, y, z) = C(z)

per a una certa funció de z (es pot pensar com la constant d’integració del sistema anterior
on z era paràmetre).

Seran els zeros de l’equació

F (x, y, z) = U(x, y, z)� C(z) = 0.

Per trobar C(z) s’ha d’imposar (acabar d’integrar l’equació (55))

Fz = Uz � C 0
=

x (x+ y)

x y
,

és a dir,

C 0
=

�2 (x+ y + z)

x y
i ara es produeix el miracle degut a la condició d’integrabilitat!! Aquesta funció de la
dreta sempre és funció de U i z.

En el nostre cas
C 0

=

2

z
U

però com que fem càlculs sobre F = 0 (U = C) tenim C 0
=

2

zC d’on C(z) = kz2, amb k
constant d’integració, de manera que les superfícies buscades (U = C) són

�z (x+ y + z)

x y
= k z2 (56)

La família buscada està donada doncs per les superfícies

Fk(x, y, z) = k z +
x+ y + z

x y
= 0.

Ara es pot comprovar que per a tot k, i en els punts de la superfície corresponent,
grad(Fk) = µX.

De fet
@Fk

@z
= �2 k z � x+ y + 2 z

x y

però substituint ara k pel seu valor deduït de (56) obtenim
@Fk

@z
=

x+ y

x y
,

com volíem.
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Càlcul del factor integrant.
La cerca del factor integrant µ = µ(x, y, z) porta a l’equació en derivades parcials

µy (y + z) y � µx (x+ z) x+ 2µ (y � x) = 0

Primer mètode.
Mirar els coeficients de x i y i preguntar-nos si existeix µ tal que

µx = � 2µ

x+ z

µy = � 2µ

y + z

En aquest mètode el factor integrant és µ =

1

(x+ z)2 (y + z)2
.

Segon mètode.
Per eliminar la µ posem � = e

µ que transforma l’equació anterior en

�y (y + z) y � �x (x+ z) x+ 2 (y � x) = 0,

que igualant coeficients de x, y, z porta a buscar � tal que

y µy = �2

xµx = �2

Això porta fàcilment a µ =

1

x2 y2
. ⇤

Exercici 229. Suposarem la superfície que es vol obtenir donada en la forma z = z(x, y).
L’equació del pla tangent en el punt P = (x

0

, y
0

, z
0

) és p (x�x
0

)+q (y�y
0

)�(z�z
0

) = 0,
on, com és habitual, p, q denoten les derivades de z respecte x, y respectivament, en el
punt P .

Si es talla amb x = y = 0 s’obté �p x
0

� q y
0

� (z � z
0

) = 0. És a dir,

z = z
0

� p x
0

� q y
0

.

La condició imposada per l’enunciat (z = �z
0

) és equivalent, doncs, a dir que per a
tot (x, y) (canviem P per un punt genèric)

p x+ q y = 2 z

Explícitament, es volen obtenir funcions z = z(x, y) tals que

x
@z

@x
+ y

@z

@y
= 2 z.

Això és una EDP lineal de primer ordre.
És sabut (vegeu el Recordatori més avall) que per resoldre aquest tipus d’equacions

s’ha de resoldre primer el sistema associat
dx

x
=

dy

y
=

dz

2 z

que tindrà com solució una família biparamètrica de corbes tal, que per cada punt de
l’espai on estan definides en passa una i només una d’elles.

Per resoldre aquest sistema, i pel teorema del canvi de variable, s’escriu com
8
><

>:

y0 =
y

x

z0 =
2 z

x
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on y0 = dy/dx, z0 = dz/dx, que dona la família biparamètrica de corbes
(
y = C

1

x

z = C
2

x2

Això vol dir que per cada punt (x, y, z) de l’espai passa una corba
�(x) = (x, C

1

x, C
2

x2

)

i en aquest punt
�0(x) = (1, C

1

, 2C
2

x) =
1

x
(x, y, 2 z),

i això mostra que es compleix el sistema associat.
Si hi ha una relació entre C

1

i C
2

la família biparamètrica passa a ser uniparamètrica
i per tant una superfície formada per corbes que compleixen les condicions demanades.

Prenem una funció h : R �! R i canviem C
2

per h(C
1

). Tindrem
(
y = C

1

x

z = h(C
1

) x2

i substituint tindrem
z = h

⇣y
x

⌘
x2

que si imposem que aquesta condició es compleixi per a la hipèrbola x2 � y2 = 1, del pla
z = 1, tenim

1

x2

= h

✓p
x2 � 1

x

◆
.

Això implica h(t) = 1� t2 de manera que la superfície buscada és

z = (1� y2

x2

) x2

= x2 � y2.

Si la relació entre C
1

i C
2

està donada de forma implícita, és a dir tenim una funció
h : R2 �! R, i les relacionem posant h(C

1

, C
2

) = 0 s’obté

h
⇣y
x
,
z

x2

⌘
= 0

i, imposant la condició de passar per la hipèrbola x2�y2 = 1, z = 1, la relació x2�C2

1

x2

=

1, C
2

x2

= 1 que dona C2

1

= 1� C
2

i diu que s’ha d’agafar h(u, v) = u2

+ v � 1, de forma
que

h
⇣y
x
,
z

x2

⌘
=

y2

x2

+

z

x2

� 1 = 0.

És a dir, z = x2 � y2.

Recordatori. Observem que l’EDP

X(x, y, z)
@z

@x
+ Y (x, y, z)

@z

@y
= Z(x, y, z)

una mica més general que la de l’exercici (cas particular en què X = x, Y = y, Z = z)
que es pot escriure com

h(X, Y, Z), (p, q,�1)i = 0

representa el problema d’obtenir les superfícies per a les que un camp de R3 donat (X, Y, Z)
és tangent, és a dir, que en cada punt P de la superfície S es compleixi

�
X(x, y, z(x, y)), Y (x, y, z(x, y)), Z(x, y, z(x, y))

�
2 TPS, P = (x, y, z(x, y)).
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La idea simple és que es determinen les corbes integrals del camp i la unió d’aquestes
corbes serà la superfície buscada.

Busquem corbes �(t) = (x(t), y(t), z(t)) tals que �0(t) = µ (X, Y, Z) amb µ = µ(t) i
X = X(x(t), y(t), z(t)), etc. Eliminem aquest factor µ escrivint aquesta condició amb la
notació habitual

dx

X
=

dy

Y
=

dz

Z
. (57)

Es diu que aquest sistema és el sistema de primer ordre associat a la EDP.
Pel teorema del canvi de variable aquest sistema es pot escriure com

dy

dx
=

Y

X
dz

dx
=

Z

X
i és doncs del tipus (

y0 = F
1

(x, y, z)

z0 = F
2

(x, y, z)

Les solucions, que es pot demostrar que existeixen com en el teorema d’existència i unicitat
habitual, són corbes del tipus (x, y(x)z(x)) amb vector tangent (1, y0, z0) = (1, F

1

, F
2

) =

1

X (X, Y, Z). Per cada punt de l’espai de definició passa una i només una corba d’aquest
tipus.

Les solucions són del tipus
(
f
1

(x, y, z, C
1

) = 0

f
2

(x, y, z, C
2

) = 0

on C
1

, C
2

són les constants d’integració. El fet que per cada punt de l’espai passi una i
només una d’aquestes corbes és el que permet aïllar les constants i tenir

(
C

1

= f(x, y, z)

C
2

= g(x, y, z)
(58)

Fixades C
1

i C
2

estem tallant dues superfícies i genèricament tenim, doncs, una corba.
Les solucions d’aquest sistema són, doncs, famílies biparamètriques de corbes.

Si, a més, tenim una informació addicional que ens relacioni les constants C
1

i C
2

(per exemple C
2

= h(C
1

) per a una certa funció real de variable real h) el sistema anterior
esdevé (

C
1

= f(x, y, z)

h(C
1

) = g(x, y, z)
(59)

i tenim una família uniparamètrica de corbes, és a dir, intuïtivament una superfície.
L’equació d’aquesta superfície s’obté simplement eliminant C

1

d’aquest sistema, i s’ob-
té

g(x, y, z) = h(f(x, y, z))

que clarament conté les corbes donades pel sistema (59) i compleix doncs la condició que
el camp (X, Y, Z) n’és tangent. ⇤

Toc

JJ II J I
Tornar


	Taula de Contingut
	FBCFets bàsics de la teoria de corbes
	1 Corbes planes
	1 Parametritzacions i paràmetre arc
	2 Curvatura
	3 Envolupants
	4 Involutes i evolutes

	2 Corbes a l'espai
	1 Parametritzacions i paràmetre arc
	2 Triedre de Frenet. Curvatura i torsió
	3 Corbes esfèriques i hèlixs

	RTSResum teòric sobre superfícies
	3 Superfícies
	1 Parametritzacions. Espai tangent.
	2 Primera forma fonamental.
	3 Segona forma fonamental
	4 Teorema egregi
	5 Superfícies de revolució
	6 Superfícies reglades
	7 Corbes sobre superfícies
	7.1 Curvatura normal i curvatura geodèsica
	7.2 Línies de curvatura
	7.3 Línies asimptòtiques
	7.4 Geodèsiques

	8 Sense classificació clara

	Solucions als Exercicis

