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An elementary multidimensional

fundamental theorem of calculus

Joaquim Bruna

We discuss a version of the fundamental theorem of
calculus in several variables and some applications, of
potential interest as a teaching material in undergradu-
ate courses.

1 Introduction and main result

In standard undergraduate courses on one variable calculus, differentiation
and integration are presented as inverse processes, as stated in the funda-
mental theorem of calculus: if F' is differentiable at every point = € [a, b] and
F’ = f is integrable in [a, b], then

F(:U)—F(a):/xf(t)dt, a<xz<b.

This holds both in the context of Riemann and Lebesgue integration (see [4]
for a proof in the Lebesgue integration context).

In this note we provide a multidimensional version of this statement. The
proof is straightforward and can be included in an undergraduate course of
multidimensional calculus.

The first basic concept is that of interval or cube function ® on a domain
U C R". By an interval @ in U we understand a set QQ = H’;:l I; with all
the I; one-dimensional closed intervals of the same length. Notice that all
the faces of @) are parallel to the coordinate axis. An interval function is a
map defined on all intervals () C R™ assigning to each @Q a real or complex
number ®(Q) with the property that

Q) =3 Q).
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whenever (Q;) is a finite partition of @, that is, @ = UQ; and the @Q; have
disjoint interiors. The easiest example is

D4(Q) = /Q fde,

where f is locally integrable.

We have in mind two other examples. For the first one, assume that
T : U — V is a measurable homeomorphism between two domains such
that m(T'(A)) = 0 if m(A) = 0. Here and in the following m(A) denotes
the Lebesgue measure of A. Then ®(Q) = m(7(Q)) is an interval function,
because images of the faces have zero measure. For the second one assume
that F' is a continuous vector field in the plane or in space and set

*Q) - | E N dm

the flow of F' through the boundary 9@ oriented with the outward normal
N. Then ®(Q) is an interval function. This is because if @Q;,Q; are two
intervals with a face S in common, the outward normals are opposite one
each other.

Notice that a Dirac delta at a point @ € U, that is, ?(Q) = 1 if a € Q and
zero otherwise, is not an interval function according to our definition, because
if a is a boundary point of both Q1, Q2 then ®(Q1) = ®(Q2) = (Q) = 1.

In dimension n = 1, with U = (a,b), if g is defined on (a,b), it is
immediately seen that

®([e, d]) = g(d) — g(c), (1)

defines an interval function on (a,b). Indeed, a decomposition of [c,d] into
pieces @; amounts to a selection of intermediate points (the end-points of
the Q;) c=ty <t; < - - <ty =d, and then

(I)(I) = g Zg t1+1 (tz) = ZCD(QZ)

Conversely, given an interval function defined on (a,b) and p € (a,b), the
function

o([p,a])  p<a,

—®([z,p]) = <p,

satisfies (1). Thus there is an one-to-one correspondence between interval
functions and classical functions.

The second basic concept is that of density. For an interval function ®
we define its upper density

g(z) =

o(Q) (Q)

Dg(x) = limsup — =5 =inf sup ——=
2€0.6(Q)—0 M(Q) ¢ 5(Q)<encq M(Q)’
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where m(Q) denotes the measure of @ and §(Q) its diameter. Analogously
the lower density is defined
2(Q) : Q)

Do(e) = zelclgrg B m@) e 5(@)2&6@ m(Q)’
In case both are finite and equal we say that ® has a finite density Dg(x)
at x.
For instance, if f is continuous in U, the density of ®; is f at all points.
Indeed, given € > 0 there is 7 such that [f(y) — f(z)| < e if |z —y| < 7.
Then, if 6(Q) < 7, x € Q one has |f(y) — f(z)| < e forall y € Q so

®(Q)

m(Q) —f<w>‘ = 'm/my) f() dy

/If z)| dy <e.

Q) .
5(550 m(Q) fe).

A deeper result is Lebesgue’s differentiation theorem (see [3]) stating that
® ¢ has density f(z) at almost all points € U under the sole assumption
that f is locally integrable.

For a better understanding of the density consider the following example.
Assume U = (0,1) x (0,1) and let L = {(z,z),0 < = < 1} be the diagonal.
Define ®(Q) as the length of L N @, clearly an interval function. Then
Dg(x) =0 for ¢ L while Dg(z) = 0, Dg(x) = +o0 for z € L.

In dimension one, if ® is given by (1), ® has a finite density at x if and
only g is differentiable at x, because if = € [c, d]

g(d) —g(c) _g(d)—g(z) d—x  g(x)—g(c) z—c

d—c  d—z d—c+ xr—c d—c

Thus

Next elementary theorem seems to be unnoticed, to the best of author’s
knowledge. It holds both in the context of Riemann and Lebesgue’s integra-
tion.

Theorem 1.1. If an interval function ® has a finite upper density Dg at
every point and Dg is locally integrable, then for every cube Q C U

Q) g/QD¢,(a:)dx

Analogously, if ® has a finite lower density Dy at every point and Dg is

locally integrable, then
Q= [ Dyw)da
Q
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Thus,
3(Q) = /Q Da(x) da,

whenever ® has a finite integrable density at every point.

In an informal way, if ®(Q) is of the order of f(z)m(Q) for infinitesimal
cubes z € @, then ®(Q) = / f(z) dx for big cubes.

In dimension one, in view of the remark before the theorem, this is the
fundamental theorem of calculus stated in the beginning.
As a corollary we may state:

Corollary. For an interval function ® and a continuous function f on U
the following two statements are equivalent:

(Q)
Lom e = @), (@)= /Q f(@) da.

We point out some remarks. First, it is essential, as in one variable,
that the density is assumed to exist at every point. If it exists just a.e.
then the theorem does not hold. Secondly, in other type of results the a.e.
existence of the density is actually proved like in Lebesgue’s differentiation
theorem quoted before. In fact, the interval functions ® are characterized
as those being absolutely continuous, meaning that for every € > 0 there ex-
ists 0 > 0 such that > |®(Q;)| < € whenever @; are non-overlapping cubes

and > m(Q;) < . So the result can be rephrased by saying that inter-

(2
val functions having finite integrable density at all points are automatically
absolutely continuous. A reference for all these results is [3].

2 Proof

Let @ C U be a cube and let us break it into 2™ cubes S; of equal measure.
Since ®(Q) = > ®(S5;), one has

whence

2(5) _ B(Q)

m(S;) ~ m(Q)’
for at least one i. Repeating the argument we find a sequence Qi of cubes,
Qr C @, shrinking to some point p € () such that

D (Qr)
m(Qr)

>
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Therefore Dg(p) > %. So ®(Q) < Dg(p) m(Q) for some point p € Q.

Similarly, ®(Q) > Dg(p) m(Q) for some point. This holds for all cubes. So
® < 0if D < 0. Similarly, ® > 0 if Dg > 0.

We complete now the proof in the Riemann integration context, where
just the definition of the Riemann integral is used.

Let (Q;) be a partition of @; then

Q) => Qi) < _ Dalpi)m(Qi).
Therefore, if Dg is Riemann integrable, it follows that
®(Q) < [ D(a) da,
Q
In a similar way we see that
©(Q) > [ Dy(e)ds,
Q

and so the theorem is proved when the density is Riemann integrable.
Assume now that Dg is Lebesgue integrable on U. We may assume ®

real-valued and use semi-continuous functions as in [4]. Recall that a function

g is called lower semi-continuous at a point p if ligjn j}r}f g(x) > g(p) and upper

semi-continuous if liminf g(x) < g(p).
Given £ > 0, by the Vitali-Carathedory theorem (see [4]), there is a lower

semi-continuous function v such that Dg < vand [ (v—Dg)dx < e. Define
U

(Q) = /Q vdz — &(Q).

Then, v being lower semi-continuous,

— Jim inf Q) 1 vdr — limsu 2(Q)
zeQ m(Q) T ozeQ m(Q) /Q d : :I:EQp m(Q)
> v(x) — Dg(z) > 0.

)

Therefore ¥(Q) > 0, whence

@(Q)§/de:c:/QDq>da:+/Q(v—Dq>)dx</QDq,da:—Fs.

Since ¢ is arbitrary, this shows that ®(Q) < / Dg dx and applying the same
Q

argument to —® we are done.
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|
3 Applications

1. As a first application we indicate a simplified proof of a version of the
change of variables formula, with minimal assumptions and not relying in
the one-dimensional version and Fubini’s theorem, the one stated in Theorem
7.26 in [4]:

Theorem 3.1. Let T : U — V be an homeomorphism between two domains
in R™, differentiable at every point x € U. Assume that |det dT'(x)| is inte-
grable on U. Then for a positive measurable function f in 'V one has

/ f(y)dy = / (T()) |det dT(z)| da. 2)
174 U

Note that the assumption |detdT'(z)| # 0 is not made, so this version
includes Sard’s theorem.

We modify the proof in [4] replacing the more advanced Radon-Nikodym
differentiation theorem for absolutely continuous measures by theorem 1.1.

First, lemma 7.25 in [4| proves that T maps sets of measure zero to sets
of measure zero. As a consequence,

(Q) = m(T(Q))

is an interval function.

Secondly, theorem 7.24 in [4] proves that ® has density |detdT'(p)| at
every point p. In fact, the proof in [4] uses balls, but it is easily checked
that it holds for cubes too. We explain the basic idea for completeness.
By hypothesis, we can approximate T'(p + h) near p by L = L(p + h) =
T(p) + dT'(p)(h), and use that m(L(Q)) = | det L| m(Q) for all affine maps.

One has

T(p+h) =L+ E, |[E| <7(|h])|h], (h) = 0.

with decreasing 7(t) as t — 0.

Let v; = gTj;(p), j=1,---,n be the columns of dT'(p). If @ has side ¢,
L maps @ onto a parallelepiped P with spanning vectors dv;, whose measure
is

m(P) = | det dT(p)|8" = | det dT(p)|m(Q),

so let us compare T'(Q) with P = L(Q). Since |T — L| = |E| < 7(|h])|h/|, it
is clear that 7'(Q) is included in a parallelepiped P; concentric with P with
spanning vectors (6 4+ o(d))v;j, whose measure is

0" det dT(p)| + o(0™).

Again by |T — L| = |E| < 7(|h])|h|, the boundary b(T(Q)) = T(bQ) is at
distance less than 7(8)d from bP. Since T' is an homeomorphism, this implies
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that T'(Q)) contains a parallelepiped P» concentric with P with spanning
vectors (0 —o(d))v; (see figure 1 for n = 2; a rigorous proof of this fact relies
on Brouwer’s fixed point theorem and can be found in lemma 7.23 of [4]),
whose measure is

0" det dT'(p)| — o(6™).
Altogether, since m(Q) = 6",

m(Q) |det dT'(p)| — o(m(Q)) <m(T(Q)) <m(Q) |det dT'(p)] + o(m(Q)),

proving that ® has density |det dT'(p)| at p.
By theorem 1.1, one has

m(T(A)) = /A | det dT ()| dz,

when A is a cube, whence when A is a finite union of cubes too. Since
every open set is a countable union of cubes, by the monotone convergence
theorem this holds when A is an open set and in turn when A is a countable
intersection of open sets, a G set. Since every measurable set differs from s
G5 set in a set of zero measure and T preserves those, we conclude that this
holds for all measurable sets A C U, that is, (2) holds for the characteristic
function of a measurable set. By linearity it then holds for simple functions,
and by the monotone convergence theorem again, for a general measurable
function.

Remark. As a first remark for the instructor, in case | det dT'(z)| # 0 for all
x € U, the use of Brouwer’s fixed point theorem can be avoided as follows:
By the inclusion T(Q) C P,

m(T(Q)) <m(Q) |det dT'(p)| + o(m(Q)),
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implying Dg(p) < |det dT'(p)|. Then theorem 1.1 implies
m(T(A)) g/ | det dT'(z)| dz,
A
for all cubes, and as before this leads to

/ f(y)dy < / f(T(x)) |det dT(z)| da.
|4 U

But since the same inequality applies to the inverse f~!, the result follows.

Remark. As a second remark, to be eventually combined with the previous
one, a proof in the context of Riemann integration can be further simplified as
follows. To prove (2) say for a continuous function f with compact support,

introduce
v - [ fa
T(Q)

The continuity of f implies

Dy(p) = f(T(p))Da(p),

so Dy (p) = f(T(p)) | det dT'(p)|. This leads using theorem 1.1 to
f@)dy = [ $(T(@)) ldetdT(z)] da.
T(Q) Q

for all cubes. If K is the support of f, the compact T~!(K) can be covered
by a finite number of cubes @, so (2) follows.

2. As a second application we analyze the divergence theorem. Assume
that F' is a continuous vector field in space and set

B(Q) = /8 Q(F, NY dim_1,

the flow of F' through the boundary 9Q) oriented with the outward normal V.
We mentioned before that ® is indeed an interval function. If its density
exists, we call it the divergence div F of F. If integrable, the theorem implies

/ (F,N)dm,_1 = / div F dm,,,
bQ Q
and the same holds with @) replaced by a finite union of cubes. From this it
follows by approximations that the same holds with @ replaced by a domain
with piece-wise regular boundary (details can be found in [1]).

If F' is differentiable with components F;, let us check that the density
div F exists at every point and equals (V, F) = > D;F;.

(2
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First consider an affine field F(z) = M (X — P), where M = (m;;) is a
constant matrix and X, P are the column vectors !, p’, and let us compute
the flux across the boundary 9@ of a parallelepiped in space spanned by 3
vectors vy, U2, U3

Q = {p +t1v1 + tavy + tgvs, 0 <t; <1},

containing p, oriented by the outward normal. F differs from M (X — P’) by
a constant field, which obviously has zero flux, so we can replace p by p’ and
assume p’ = 0. On the face t3 = 1, the basis vy, v is positively oriented and
the flux is

1 1
/ / det(M (t1v1 + tave + v3),v1,ve) dty dta,
0 0

while on the face t3 = 0 it is

1 p1
— / / det(M(twl + tQ’UQ), V1, UQ) dt1 dts.
0 JO
Therefore they add up to
det(M (vs), v1,v2).

If M(vs) = > A\iv;, this equals Azdet(vs,vi,v2). The same applies to the

3
other two couples of opposite sides, whence the flux is exactly
trace(M) det(v1, va, v3),

the trace of M times the volume of Q).
Now let F' be a differentiable field at p, @ a cube of size § containing p.
As before we expand F' around p

F(z)=F(p)+dF(p)(X —P)+E, E=o(z—0pl|).

The contribution to the flux of F' across 0Q of the constant field F(p) is
zero, that of the linear field dF(p)(X — P) is the trace of dF'(p) times m(Q)
while that of E is 0(d"), whence the flux equals

(D1Fy + -+ 4 D) (p)m(@Q) + o(m(Q)),

thus proving that the density is (V, F').

Upon replacement of the field F' = (A, B) by JF = (—B, A) the diver-
gence theorem in the plane amounts to Green’s formula. Using the language
of line integrals, if Pdx + Q) dy is a differentiable 1-form and @, — P, is
integrable one has

/bUPd:c+Qdy=/(Qx—Py)dA,

U
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with no assumption needed separately for Q., P,. A particular case are
complex line integrals

M@=Aﬁ@%

for f continuous in the complex plane C. For differentiable f the density is
df, and so if integrable one has

/bUf(z) dz:/Uaf(z)dA(z).

Other general versions of Green’s theorem with minimal assumptions are
known, but the proofs are far from elementary (see [2] and references herein).

3. In a surface S in R? oriented by a unit normal field N one can define
cubes as those which are so in a local chart. If F' is a continuous field, the
circulation

M@a@mﬂm

defines an interval function. If F' is differentiable, one can show along the
same lines that the density is (V x F, N) and one gets Stoke’s theorem with
minimal assumptions (see the details in the book [1]).
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