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A historical review of the
Cauchy-Riemann equations and
the Cauchy Theorem

Julia Cufi i Agusti Reventos

In this article we take a his-
torical tour through the Cauchy-
Riemann equations and their rela-
tionship with Cauchy’s theorem on
the independence with respect to
the path of the integral of a holo-
morphic function. Because of its
importance we do a detailed and
updated study of the contributions A. L. Cauchy G. F. B. Riemann
of d’Alembert and Euler to these (1789-1875) (1826-1866)
topics. We also review the Cauchy
works about the passage from the real to imaginary by paying attention to
some arguments he uses that, from our point of view, are not clear enough.
At the end we comment briefly the evolution of Green’s formula and its
relation with the above problems.

1 Introduction

The aim of this article is to take a historical tour through the Cauchy-
Riemann equations and their relationship with Cauchy’s theorem on the
independence with respect to the path of the integral of a holomorphic func-
tion. Remember that these equations establish the relationships

oM _8]\7 ON OM
dy Oz’ oy Oz’
for the components M, N of a complex function M + N i.

The first place where the above equations appear is in d’Alembert’s work
of 1752, Essai d’une nouvelle théorie de la résistance des fluides, [13]. This
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2 Cauchy-Riemann equations

article is difficult to read and, as far as we know, it has not been thoroughly
studied in the historiographical bibliography. Because of its importance, in
Section 3 we do a detailed and updated study of the part of this article that
refers to the Cauchy-Riemann equations.

Later, in 1757, these equations are found in the works of Euler [15], [16]
and [17], in which he gives his famous equations that model the movement
of a fluid. A few years later, in a work of 1777, [18], Euler shows that
the Cauchy-Riemann equations are valid for the (complex) derivative of a
function. In fact, it is the first place where these equations are present in
the context of functions of a complex variable.

The Cauchy-Riemann equations appear again in 1814 in the work of
Cauchy Mémoire sur les intégrales definis, [8|. He proves them for one func-
tion that is the complex derivative of another, and he deduces from this
that two integrals are equal even though they have been taken along differ-
ent paths with the same endpoints, over the boundary of a rectangle, as we
explain in Section 2.

The problem of path independence, one of the most important in the
theory of functions of a complex variable, was taken up by Cauchy in 1825
in the article Mémoire sur les intégrales definis prises entre des limits imag-
inaires, [7]. Some of the arguments in this memory are not clear enough, as
we will illustrate in this paper. However, they can be replaced by alternative
and rigorous reasonings as we highlight in Section 4.

Currently the easiest way to prove Cauchy’s theorem is by using Green’s
formula. The first time this formula appears stated in the form

/ de—i—Qdy:/(a(D?—a]D) dx dy,
OR r\ 0z Oy

where P(z,y), Q(x,y) are regular functions of z,y and R is a region of
the plane, it is in Cauchy’s paper from 1846, [9]. Cauchy presents it without
proof! and uses it to show that if a form P dz+ Q dy is exact then its integral
along a closed path is zero. He goes no further, although the same argument
would allow him to prove his theorem on path invariance for the integral of
a holomorphic function, as discussed in Section 5.

The reason why Cauchy did not give a proof of Green’s formula is possibly
due to the fact that it is a plane version of the previous results of Gauss on
the volume of a body and of Ostrograsdky on the divergence theorem, which
we analyze in Section 5.

The first published proof of Green’s formula is due to Riemann in his 1851
dissertation, Grundlagen fiir eine allgemeine Theorie der Functionen einer
verdnderlichen complexen Grisse, [31]. In this work Riemann also gives the
definition of a holomorphic function (he does not call it so) and shows that

LAt the beginning of this paper Cauchy says that he will later publish the proof, but
he did not, as Katz comments in [27].
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such a function satisfies the Cauchy-Riemann equations. For completeness
we review in Section 6 these two Riemann contributions.

2 Path independence in a complex integral

One of the most important results of the theory of functions of complex
variable is the fact that the integrals of a holomorphic function along two
paths that start at the same point and end at another same point, have the
same value. This result is known as Cauchy’s theorem.

Gauss can be considered the first to discuss this subject since in a letter
to Bessel on December 18, 1811 he affirms, speaking about integrals between

complex limits, that “the integral / o(x) dx has only one value, even if taken

on different paths”. He says that it is a beautiful theorem of easy proof, and
announces that he will give this proof on another occasion, but he did not
([22] p.157 and [28], p.632). Specifically he says:

Now what should one think of/gp(a;) dz for x = a+bi? Ob-

viously, if we want to begin from clear concepts, we must as-
sume that x passes through infinitely small increments (each of
the form o+ i) from the value for which the integral is 0, to
x = a+bi, and then sum all the p(x) dx. In this way the meaning
is completely established. But the passage can occur in infinitely
many ways: just as one can think of the entire domain of all
real magnitudes as an infinite straight line, so one can make the
entire domain of all magnitudes, real and imaginary, meaningful
as an infinite plane, wherein each point determined by abscissa
= a and ordinate = b, represents the quantity a + bi as it were.
The continuous passage from one value of x to another a + bi
accordingly occurs along a curve and is consequently possible in
infinitely many ways.

I now assert that the integral / o(z) dr always maintains a single

value after two different passages, if p(x) nowhere = oo within
the region enclosed between the curves representing the two pas-
sages.

This is a very beautiful theorem for which I will give a not difficult
proof at a suitable opportunity.”

As we said in the Introduction, Cauchy deals with the problem of path
independence in two different stages: first in a paper from the year 1814 in
which he proves the Cauchy-Riemann equations and the path independence

2This English translation of a portion of Gauss’s letter is due to Ruch, [33].
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for the particular case of the boundary of a rectangle, and later in a second
article from 1824 where he considers the general case.

The first of these articles, entitled Mémoire sur les intégrales definis, [8],
was presented to the Académie in 1814 but was not published until 1827,
and in it Cauchy aims to pass from real integrals to imaginary integrals.
Specifically on page 330 he says: I hope to establish the passage from the real
to the imaginary through direct and rigorous analysis.

It is in this article, in a footnote® on page 340, where Cauchy gives a
formula showing that two integrals are equal, even though they have been
made along different paths with the same ends, specifically following the
sides of a rectangle. This result appears again in Résumé des lecons sur le
calcul infinitésimal, Lesson 34, p.204, in [6] and in [5] p.291. The formula he
gives is

/J:X (f(a:JrYi) —f(:v+yoi)> dr = /yy(f(Xeri) = flzo+yi))idy, (1)

0 0

which actually means

| t@a= [ fea
ADC ABC

where A, B, C, D are the vertices of a rectangle traveled in a direct sense.

The proof of equality (1) is based on the Cauchy-Riemann equations that
Cauchy himself has shown, for a function that is the complex derivative of
another, in the first part of [8], p.336, in the section entitled Des équations
qui autorisent le passage du réel a ’imaginaire. He considers a function f(y)
and assumes that the variable y is in turn a function of two new variables
x, z and he defines the function

Fly) = / f(y) dy

so that F'(y) = f(y). Thus,

8F_ @
or oy
a—f(y)%-

Hence

s (1030) = 5 (103

3Although Cauchy read his memory in 1814, this footnote was added to the version
presented in 1825 in “Mémoires”, published in 1827 (see Smithies [34], p. 60).
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In the particular case where y(z,2) = x + ¢ z it results

L) = o (F) )

and putting f(y) = Q(z,2) + i R(x, z) one has
0 . g .
&(Q—HR) = %(WQ - R)

and therefore

2Q _ OR
ox 0z’
2Q _ OR
9z  Ox’

which are the Cauchy-Riemann equations for the components of f.
To prove (1) Cauchy, in page 338 of [8], uses the equality

Y X X Y
/ / W, y) do dy = / Wz, y) dy da,
Yo o o Yo

first applied to a function A such that

_os _or
 0x Oy’

and then to a function h such that
poO5 oL
Jy Oz

In the first case one has

Y X
/ (S(X.y) — S(zo.y)) dy = / (T(2,Y) ~T(x.po) de  (2)

Yo

and in the second one

X Y
| @)= Stww)de =~ [ (@04 - Tany)dy. G
xo Yo

Multiplying (2) by 7 and adding (3) one gets (1) for f =S +iT.

In other words, the equality (1) is true for all functions of the type f =

T T
S +1¢T as long as S and T satisfy the equalities 05 = a—, 05 = —a—,
Ox oy’ Oy Ox
which are the Cauchy-Riemann equations, that are satisfied when f is the

complex derivative of another function.



6 Cauchy-Riemann equations

As we discussed before, Cauchy comes again to the problem on the in-
dependence of the path in the integral of a complex function in 7] and [10],
which is the same paper, presented at the Académie in 1824, and published
in two different journals and in different years. In Section 4 we will discuss
more broadly Cauchy’s contribution to this topic.

Cauchy’s work on the integral of a function over the boundary of a rect-
angle, which we have just commented, is also discussed in Kline, [28], p. 636,
and in Smithies [34] , p. 60.

3 The Cauchy-Riemann equations

The first place where the equations known today as the Cauchy-Riemann
equations appear is in d’Alembert’s work from 1752, Essai d’une nouvelle
théorie de la résistance des fluides, |13]. The functions for which d’Alembert
establishes these equations are the horizontal and vertical components of the
force acting on a fluid. He also shows that there is a relationship with the
functions of a complex variable.

Later on, Euler also found them in fluid theory in a paper from 1757, [16]
and again in an article on complex integration from 1777, [18] (not published
until 1797).

In the following we will comment on the contributions of d’Alembert and
Euler on the aspects of fluid theory related to Cauchy-Riemann equations.
However we will begin making reference to a previous work by Clairaut [11]
closely related to the subject discussed by these two authors.

In 1740 Clairaut in the article [11] proved that if a differential form
Pdx + Qdy is exact, that is, if there exists a function f such that df =
Pdr + @Qdy, then it must be P, = @,. We note that this statement is
equivalent to the equality f., = fy., later known as the Schwarz identity.

Clairaut’s reasoning is as follows. Since P(z,y) = f.(x,y) and Q(z,y) =
fy(z,y), integrating it results

/Hawm—ﬂmw+wm /Qmw@—fmw+X@

for certain functions X (x), Y (y). Therefore

/P(fv,y) dr —Y(y) = /Q(x,y)dy—X(:v)

and deriving this equality with respect to y one has

[ Ptz = v't) = @)
and now deriving with respect to x,

Py(l‘,y) = Qm(x7y)v
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as asserted.

He also said, wrongly, that the condition P, = (), was sufficient so that
the form P dx + Q) dy was exact, but this is not correct as it was pointed out
by d’Alembert in 1768 (|14], p.14), taking

y —X
P(x,y) = 2 g Qz,y) = 2

Later, Clairaut in 1743 ([12], p.38), studying the figure of the Earth,
affirms that in order that a fluid would be in equilibrium it is necessary the
form Pdx + Qdy, where (P, Q) are the components of the force acting on
the fluid, be exact. In particular @, = P, which is the first Cauchy-Riemann
equation for the function Q) + 7 P.

3.1 The work of d’Alembert on fluid theory

In section §19 of the work Essai d’une nouvelle théorie de la résistance des
fluides, [13], d’Alembert meets again Clairaut’s equality for the horizontal
and vertical components of the forces acting on the particles of a fluid in
equilibrium.

Later, in this same article, d’Alembert considers the case of a fluid that
encounters an obstacle of revolution whose axis has the direction of the
fluid. Then he sees that the components of the fluid velocity, (¢(z, z), p(z, 2))
satisfy the equations

Op _9q¢ Op_ Oq p (4)
dr 9z 0z or =z

which would be the Cauchy-Riemann equations for the function p + 4 ¢ if it

was not for the term —p/z appearing in the second equation.

Now one coud obtain a description of the movement of the fluid by
integrating these equations. Since this is complicated, d’Alembert in sec-
tion §58 considers the simpler problem of characterizing pairs of functions
M(xz, z), N(z,z) such that the differentials M dz + N dz and N dx — M dz
are exact, that is, that there exist functions p,q with dp = M dx + N dz and
dq = N dx — M dz. These equalities mean that the functions p, g satisfy (4)
without the term —p/z.

The physical conditions that lead to obtain equations like those of (4)
but without the term —p/z are given when the obstacle encountered by the
fluid is a cylinder whose axis is perpendicular to the direction of the fluid.
Although a cylinder is a surface of revolution, this case is not included in
the previous situation since now the axis of the cylinder does not have the
direction of the fluid. D’Alembert considers this case in section §73 of [13],
where he says that the calculations he had done for surfaces of revolution
with the axis following the direction of the fluid can be redone to obtain the
desired equations, but he does not. We we will do this from Euler’s equations
in page 20.
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Below we will present d’Alembert’s arguments trying to make them as
understandable as possible. For this we will update the notation and some
aspects of d’Alembert’s reasoning, especially the use of derivatives and the
mean value theorem.

Components of the forces acting on a fluid

Let us consider Figure 5 of d’Alembert, where the points M, N, O, Q) repre-
sent four fluid particles infinitely close to each other. The point A is an ar-
bitrary point that can be inside or outside the fluid. The lines AP, MO, NQ
are parallel and the angle ZAPM is a right angle. Denote AP = x, PM = y.

A
Z
xX
P Yy M N
@ mmmmmm——————-
P o Q

Figure 5 of d’Alembert

Let us break down the forces acting on each of these four points into
their horizontal (PM direction) and vertical (MO direction) components.

Denote by R and @ the vertical and horizontal components of the force
on M, and set MO =a, MN =C.

With the current notation, not used by d’Alembert, we can assume that
at the point A we have an orthonormal reference (ej,ez), Wlth_e)l in the
direction of the vector AP and es In the direction of the Vector PM. In this
way we can wi write the force vector F at the point M like F = Rej + Qeo,
aswellasMO—ael,MN Ces.

If we think of F as a function of the coordinates x,y we can write

( y) = R(z,y) e1 + Q(x,y) ez, (force at M),

J?(x y+C)=R(z,y+C)e1 + Q(x,y +C) ea, (force at N),
I_T)(x +a,y) = R(x + a,y) e1 + Q(z + a, y) e, (force at O),
F(ac—i—a y+C) =Rz+a,y+C)le1 +Q(z+ o,y +C)ea, (forceat Q).

By the mean value theorem we have the following expressions for the forces

UNRB
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acting on the channels [M N] and [MO]:

(MN]: Riz,y+C) — Rlx,y) =cfjj<az,y+§>, 0<e<c,

[MO] : Q(x+a,y)—Q(fc,y)Zagf(wrmy), 0<n<a,

equalities that can be read, as d’Alembert does, saying:

[MN]: The force at the point N following NQ (the one denoted by R(z,y+
C)) will be R+C %—];. We have written R = R(x,y) so as not to overload
the notation.

[MO]: The force at the point O following OQ) (the one denoted by Q(x +
a,y)) will be Q + « %.

If the fluid is not homogeneous, these forces must be multiplied by the density
0 which is a function of the point. However, to simplify the calculations, we
will assume from now on that & is constant, since it is in this situation
that the first of the Cauchy-Riemann equations for the functions R and @
appears.

By the fundamental principle of fluids in equilibrium, the total sum of
forces on the channel M NOQ must vanish. The inner particles cancel their
forces with each other so that what must happen is that the sum of forces
at the boundary is zero. Equivalently, as d’Alembert says, the strength of
the columns M N and NQ, following M N and N respectively, must be
equal to the strength of the columns MO and OQ), following MO and OQ
respectively.

The force of the column M N following M N (that is, the second compo-
nent of this force) is equal to

C
/OQ<x,y+t>dt=CQ(a:,y+£)-

The force of the column N@ following N@ (that is, the first component
of the force) is equal to

/Oa <R($+t,y) +Cg];(x+t,y+§(t))> dt

:a<R(:L‘+77,y)+C(Zj(ﬂc-i-%y‘i'f(n)))-

Similarly the force of OQ following OQ is equal to
C aQ
/ <Q(x,y +1t)+a %(:1: +n(t),y + t)> dt
0

=C <Q(m,y+£)+Oéaa§($+77(§)7y+f)>-
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Finally, the force of the column MO following MO is equal to
aR(z+n,y).

We note that y <y + &, y+E<y+Cz<z+nax+n<z+a

Equalizing the sum of the forces of the columns M N and NQ with the
sum of the forces of the columns MO and OQ, we have

0 Rz +0,9) +CQy +€) +aC 92w +n(€),y +6)

=CQ(w7y+§_)+aR(x+ﬁ7y)+ac?;(fﬂ+ﬁ,y+5_(ﬁ)))-

Making C tend to zero it follows that R(x + n,y) = R(z + 7,y) and
therefore

Qey+6)+a 32w+ (e y +)

- OR _ o
=Q(z,y+§) +046*y(1‘ + 1,y + &(1)).
Making a tend to zero it follows that Q(z,y + &) = Q(x,y + &) and
therefore

Gele Oy + ) = 5w+ 1.y + &),

And finally, if « and C tend to zero, we get

0 OR
aig(xa y) = Fy(xvy%

which is the first Cauchy-Riemann equation for the function @ + ¢ R.

Pressure, Velocity and Acceleration

In this section we present the formula for the pressure of a fluid as a function
of its speed and an expression for the acceleration that we will need later.
In paragraph §27 of the quoted article [13], d’Alembert considers a section
of a uniform cylindrical channel that widens from the points A, B to the
points P, M between two walls AP and BM (Figure 10). He assumes that
the fluid is uniform and that in the cylindrical part, that is above the section
AB, the speed is constant and equal to v4. In this situation d’Alembert
calculates the velocity, vp, and the pressure at any point P in the channel.

UNRB
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Figure 10 of d’Alembert

The fluid section AB becomes the section ab after an infinitesimal time
increment At, and similarly the section PM becomes the section pm in the
same time increment.

Equalizing the areas of the infinitesimal rectangles ABab and PMpm
one obtains

AB -va-At=MP -vp - At
and therefore,
AB
Py

To study the pressure in P he first observes that the acceleration is
negative since when the section of the tube increases the speed decreases.

If s = s(t) measures the length traveled by a particle on the channel AP
in time ¢, from the point A, the infinitesimal acceleration at the point s(t)
is —dv/dt with v = ds/dt, and the infinitesimal pressure is —(dv/dt) - ds

Therefore the pressure at a point P of coordinate s is

5 dv
——ds 5
| -% )
and hence it is given by

/0 ’ / gt = _2”<5)2 . (6)

In paragraphs §43 and §44 of the same paper, d’Alembert calculates the
horizontal and vertical components of the force acting on a particle N of
the fluid. Let us remember that d’Alembert deals with stationary fluids,
those in which the velocity depends only on the point and not on the time,
that is v(z,2) = a(q(x,z2),p(z,z)) for a certain constant a. If (x(t), z(t))
is a parametrization of the curve described by the particle then its velocity
satisfies

vp =

(@'(t), /() = a(q(x(t), 2(1)), p(x(t), 2(1)))-
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Consequently, if we put dg = Adx + Bdz, dp = A" dx + B’ dz the force
that acts on the fluid, which we equate to acceleration, is

dv = a(dq,dp) = a(Adx + Bdz, A" dx + B’ dz) )
=a’(Aq+Bp, A q+ B'p).

Fluids encountering an obstacle of revolution

Next, in paragraph §45, d’Alembert assumes that the fluid encounters an
obstacle formed by a body of revolution obtained by rotating the section
ANm around the x axis, that has the direction of the fluid (Figure 17). One
can think of this section as the graph of a function z = z(x).

F K
A
Q
N
P M’
Ax
p R m rom
Az

Figure 17 of d’Alembert

Then he studies the components of the velocity of the trajectory F'Nm
tangent to the obstacle v(x,z) = a(q(x,z),p(x,z)), and proves, with the
notation introduced just before formula (7), that

A =B B =-A-2
z

Since A= 24 B=29 4 = % and B’ = %, the previous equalities become

= 9z 0z
p _ 9q
oxr ~ 0z’
8
9 _ _9q _p ®
0z or z

To prove the equalities B’ = —A — £ and A’ = B d’Alembert uses the
principle stating that the volume of fluid that crosses the disc of radius
p = FK, center F' and perpendicular to AP, in the time At is equal to the

UNRB



Julia Cufi i Agusti Reventos 13

volume of the fluid that crosses the truncated cone generated by rotating
NQ around AP in the same time At.

The first of these two volumes is the volume of a cylinder of radius p and
height a At, since we are assuming that the velocity far from the obstacle,
has only vertical component of modulus a. Therefore, this volume is equal
to m p? a At.

Regarding the second volume, we note that it is equal to the volume
of a straight cylinder with basis the circular crown of inner radius z(z) =
PN, width §(x) = NM’, and height aq(z, 2(x)) At, since a q(z, z(z)) is the
vertical component of the velocity at the point N = (z, z(z)). Hence this
volume is (w62 + 27 02) aqAt.

Therefore, the equality of volumes gives

Tpla At = (162 +2m62)aqAt

and consequently

2

= —Z\T zZ\x ,07

Using Taylor’s development at the second order one gets

2

§(z) = ﬁ +o(p?), p— 0. (10)

Now d ’Alembert, through Figure 17, finds the following relation between
8 (x) and 2/(z):

But since the velocity vector at point M’ is tangent to the path KM'm’

we have
ol pla2(@) +0(a)) _ ple,2(2)) + 6(2) pa(w, 2(2) + )
Az—0 Az q(z,2(x) +6(2) gz, 2(2)) + 0(2) @2 (2, 2(2) + 1)

— 2/(2) + & (2),

with 0 < &, n < 0(z). Since 2'(z) = p(x,z(x))/q(z, z(x)) we can write,
omitting the variables, the previous equality as

PHop: _ P o
q+dq: ¢
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and so

0pq.
5p. = qd +68 q. + Zq. (11)

We want to differentiate® equality (11) twice with respect to p, at p = 0.
First of all remark that from (10) it comes

dé(x)  p d?6(x) 1
= — —|— (0] s = —_—
dp qz () 0p? |—o 42

We note also that p, and ¢, depend on p through £ and n. However, their
derivatives with respect to p do not play any role since they always appear
multiplied by § or &, which tend to zero with p.

The second derivative of the term on the left-hand side of equation (11)
is
dd d%s

d2
(pz(z, 2(x) + &) d7)> = p2(x,2(x)) d7p2

dp?

_ P
p=0 47

d
(5pz) - d7p

p=0 p=0

Before considering the terms in the right-hand side observe that from (10)

it comes ) . )
p z Qe+ qz 2 2
yx) =" — - )
R e R
Hence »
& (q0) = -2 — Tty
dp? | g q2* qz '
where we have replaced 2’ by p/q, and
d2
— 506 q.) =0.
Finally
& (Opey _ 4 (p(waZ(w))qz(fvyz(:v) +1) d5/d,0) _ P
dp?| =g 4 dp | = q(z, z(x)) ¢?z

In conclusion we have obtained

Pz p dz pPq P4z p dz

qz qz> qz ¢z ¢z g2 gz

that is to say

4D’Alembert does not use derivatives but arguments with infinitesimals of the first and
second order.
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which, with d’Alembert’s notation, is

as we wanted to see.

We now prove that A’ = B.

Since the channel FNM'K (Figure 17) is in equilibrium, the pressure
along NM' plus the pressure following F'N must be equal to the pressure
along F'K plus the pressure following K M’.

The pressure along N M’ according to (5), is equal to minus the integral
of the second component of the acceleration, that by (7) is equal to

d(x)
—/ a® (pB' + A q)(z, 2(x) + 5) ds.
0

The pressure along F'N is, by (6), equal to

a2 —U?
2

where U is the modulus of the velocity in N, that is U? = a? (p* + ¢?).
The pressure along F K is zero because the velocity far from the obstacle
is constant and therefore the acceleration in F K is zero.
Finally, the pressure along KM’ is equal to

a2 _ []/2
2

where U’ is the modulus of the velocity in M’, that is U? = a2 (p'* +
q 2) =a®(p* + ¢®) + a®§(x) %, with this partial derivative valued at
an intermediate point between N and M’.

Equivalently

o(p* + ¢%)

U'2—U2:a25(x) P

, 0<n<é(x). (12)
(z,z(z)+n)

Adding up the pressure on the channels and using the mean value theorem
for integrals, we have

- /6(@ a® (pB' + A q)(z, 2(x) + s)ds + CL2;U2
i a? - U?
= —d(@)a® (pB'+ A'q)(w, 2(2) + &) + ——
(12 _ (]I2

2 )
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with 0 < £ < 0(z). From (12) and (13) we obtain

2 2
0B + Azt = WD) .
z (,2(x)+n)

Passing to the limit when §(z) tends to zero, gives, at the point (z,z(x))
(recall B = g, B' = p.),

19(p* +¢%)
2 0z

and hence A’ = B as it should be proved.

pB +A'q= =pB +¢B

Exact differentials and Cauchy-Riemann equations

As we said on page 7, d’Alembert intends to find functions M (z, z), N(z, 2)
such that the differentials M dx + N dz and N dx — M dz are exact. The
exactness of these differentials means, in today’s language, that the complex
function M — i N satisfies the Cauchy-Riemann equations

oM _ N oM _oN
or 9y’ dy  Ox

and it is therefore holomorphic. Consequently M — ¢ N is a function only
of z and M + i N is a function of z. It follows that M and N are the sum
and the difference of a function of z and a function of Z, respectively. To
reach this conclusion, d’Alembert’s argument, which Euler later quotes in
the article [17], is as follows:

He notes that the forms (M + i N)(dx — idy) and (M — i N)(dz + idy)
are exact, in particular (M +i N) dz = %dz%— %di for a certain function f,
which satisfies therefore 0f/0z = 0 and hence it is a function of Z only. Thus
M + i N is a function only of z, say ¢(z). Similarly M — i N is a function
only of z, say 1(z). Consequently

M = 2(0(z) +9(2))

N = 5-(0(z) — 9(2))

Reciprocally, it is easy to see that given two arbitrary functions ¢(z) and
P(z), taking M = ¢(2) + ¥(z) and N = —i(¢(2) — ¥(z)), then the forms
M dx + N dy, N dx — M dy are exact.

3.2 Euler’s work on fluid theory

Euler devotes three papers (|15], [16] and [17]) to the theory of fluids in
a spirit similar to that of d’Alembert. In the second of these articles, the
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famous Euler equations that regulate the movement of a fluid appear. For
the particular case of homogeneous and stationary fluids, the first equation
says that the form udx + v dy + w dz is exact, where u, v, w are the velocity
components of the fluid and the second equation states that the divergence
of the velocity field is zero.

Euler’s argument to prove the second law is based on the principle of
conservation of mass. In a more current language it would essentially be the
following”:

Consider an incompressible fluid of constant density one, occupying a
region C' of the space. Denote by X (z,y, z,t) the field of velocities and let
(u,v,w) be its components.

To apply the law of conservation of mass that says us that the rate of
change of volume is zero, we will calculate explicitly the volume of the region
Cy that the fluid fills after a time t.

Denote by ¢(z,vy, z,t) the orbit of the point (z,y, z), which satisfies

do(z,y, z,1)

dt :X(‘,'Ij?y?’z’o)? (b(x?y’z’o) = ($7y’2:)‘

t=0
Then the boundary of the region C; can be parameterized by ¢(z,vy, z,t)
where (z,y, z) is a point on the boundary of C.

The linear part of the Taylor expansion of ¢(z,y, z,t) at t =0 is

¢(x7y1z7t) = (w7y7 Z) +tX(m7yaz7O)

One can avoid the terms of higher order because in the subsequent calcula-
tions we will differentiate with respect to ¢ at t = 0.

To calculate the volume between the regions Cy and C' one need to inte-
grate the Jacobian of ¢(z,y, z,t) with respect to z,y, z which is

1+ tug tvg twy
Jy=1 tu, 14+tv, twy, | =1 4tug)(1+tv)(1+tw,)+ Ot
tu, tv, 1+tw,
and so
dJy

= Uy + vy + w, = div X(z,y, 2,0).
dt |,—

Denoting by V; the volume of Cy \ C one has

Vi :/J¢(x,y,z,t)dxdydz

and therefore

dvi

el o / dj¢($ay72,t)
dt N

dt

drdydz = /divX(x,y,z,O).
t=0

t=0

5Nowadays it is usually proved using the divergence theorem that was stablished after
FEuler.
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Since this derivative is the rate of change of the volume of the fluid at the
boundary of C, it must be zero, and since this occurs for any region C', the
divergence of the velocity field must also be zero, that is, u, + vy, +w, = 0,
which is Euler’s second equation.

In sections LXTX and LX X of [17], Euler applies his equations to the
case of a stationary fluid with constant density moving in planes perpendic-
ular to a fixed axis. Choosing an orthogonal system of coordinates (x,y, )
with z in the direction of the fixed axis, the third component of the velocity
will be zero. In this situation the first Euler’s equation reduces to the fact
that the form udx + v dy, where u,v are the other two components of the
velocity, must be exact, and the second one says that % + g—” = 0. This
last equation is satisfied, by the equality of the cross derivatives, if the form
u dy—v dx is exact. The fact that the two forms u dx+v dy and v dy—v dzx are
exact, which is the same as saying that the Cauchy-Riemann equations are
satisfied for the function u — 7 v, allows Euler to see, following d’Alembert’s
“fort ingénieuse” method (which we have reproduced on page 16), that u,v
must be the real part and the imaginary part of a function of x + iy, as
corresponds to the fact that the function u — i v is holomorphic.

A few years later, in a paper from 1777, [18], published in 1797, Euler
starts checking the validity of the Cauchy-Riemann equations for the complex
derivative of a function. We outline his argument below.

Suppose that the function f(z) has a primitive F'(z) such that dl;iz)
f(z). If one writes f(z) = f(x +iy) = M(z,y) +iN(z,y) and F(z) =
F(x+iy) = P(x,y) +iQ(z,y), one has

dF = dP +idQ = f(z)dz = (M + i N)(dz + i dy)
= (M dx — N dy) +i(Ndx + M dy),

and therefore,

dP = M dx — N dy,
dQ = Ndx+ M dy.
By Clairaut’s theorem of cross derivatives®, it turns out
oM  ON ON OM
oy Oz’ 0Oy Oz

Some years later, Cauchy in [8] also checks the Cauchy-Riemann equa-
tions for the derivative of a complex function, as we discussed on page 4.

5Euler does not explicitly cite Clairaut, but refers to a general property of functions
that define an integrable form.
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Relation to d’Alembert’s equations

We now apply the second Euler equation in the case where a fluid meets an
obstacle formed by a body of revolution, whose axis is the direction of the
fluid, a situation considered by d’Alembert in [13], section §44.

Suppose that the boundary of the revolution object is obtained by rotat-
ing around the z axis the graph of a function in the x, z plane, (z,z(z))".
Let’s also assume that the velocity components are (q(z, z), p(x, z)). After
a rotation of angle # the velocity at a point (z, z,y) has components

a(z,z,y) = q(z, 2),
p(x, 2,y) = p(x, 2) cos,
r(z,z,y) = p(z, z) sinb.

Therefore, the velocity as a function of the three variables (x, z,y) is given
by

z
p(z,2,y) = p(T, 2) s,
/y2 + 22
r(x,z,y) :p(;v,z)—y .
/y2 + 22
So
dq _0Oq
%(l‘,z,y) 8x(x’z)’
Op _Op z y?
5, (L 5Y) = 5 (2,2) - NET +p(z,2) (2 + 22372
or 22

5y V) =02 Ty

Imposing now zero divergence and simplifying the notation one gets
z
LD
N

and this equation restricted to the plane y = 0 is

qz + Dz -

_ p
Az = =Pz — 7,
z
which is the equation obtained by d’Alembert in [13]|, and that we have

considered in Section 3.1, equations (8).

"We keep d’Alembert’s notation (see Figure 17 in p. 12).
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When a fluid moving in planes perpendicular to a fixed axis, say the y
axis, encounters a cylinder whit axis in this direction, a situation considered
by d’Alembert in section §73 of [13], the velocity field can be written as
v = (g, 0, p) with respect to an orthogonal coordinate system (x,y, z). Then
Euler’s equation of null divergence gives

Gz +p. =0,

which is equation (8) without the term —p/z. As we have commented in
page 7 this result was announced without proof by d’Alembert.

4 Cauchy’s theorem

After this review of the history of the Cauchy-Riemann equations we return
to the fundamental problem about the independence with respect to the path
of the integral of a complex function.

As we explained at the end of Section 2, Cauchy deals with this topic in
the article [7] from the year 1825. We will try to understand how Cauchy
reasoned in section §2 of his work. Unlike when he studied the case of a
rectangle in [8] he will now not use the Cauchy-Riemann equations.

In fact, Cauchy’s goal in |7] is basically to extend the concept of integral
between real limits to integrals between imaginary limits, that is to give a
meaning to the expression

X+Yi
/ f(z)d. (14)
To+Yo

For this he considers the limits of the sums

S = Zf(zk)(zk+1 — 2k),
e

with zx = xp + yr i, where the x are a partition of [z, X] and the y; a
partition of [yo, Y], when the partitions become more and more fine. Cauchy
remarks that there is no need for a single limit of these sums to exist.
One way to determine the previous partitions is through a continuous
curve
z=9(t), y=x(t), to<t<T

with () and x(t) increasing functions, so that

©(to) = w0, x(to) = Yo,
(M) =X, x(T)=Y

and taking then xp = p(tx), yx = x(tx) where ¢ is a partition of [to, T,
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Cauchy, using an approximate version (as he says, a trés-peu prés) of the
mean value theorem, that he states in the form

P(tr1) — @(tr) = &' (t) (b1 — tr),
X(the1) = x(te) = X (tr) (tes1 — tr),

writes the sum S as

S = Z Flo(t) + x(te) 1) (@' (tr) + X (tr) ©) (tes1 — tr),
k
which tends, when refining the partition, to the integral with real limits

T
I= FOy@)) A (t)dt, where v = @+ xi. (15)
to
In order that (15) provides a good definition of the integral (14) it should
be seen that it does not depend on the chosen curve 7. It is now when
Cauchy enunciates his famous theorem saying: if f(z + yi) is continuous®
in the rectangle [z, X] x [yo, Y] then the integral (15) is independent of the
nature of the functions ¢ and Y.
To prove this statement he will see that small variations of the functions
©, x do not change the value of the integral. Specifically, he considers two
functions u(t), v(t) vanishing at ¢ty and 7" and the curve

p(t) + eu(t) + (x(t) +ev(t)) i =~(t) + e W(t),

with W(t) = u(t) + v(t) i. Then he studies the increment I, — I, where

T
Io= t FOy(&) +eW (@) (' (#) + e W' (1)) dt,

0
for sufficiently small values of € so that the new curve does not leave the
rectangle [zo, X] X [yo, Y], and he aims to see that the increment I, — I is
Zero.

Cauchy affirms that this increment can be developed in series following

the increasing powers of € and says that the coefficient of € is

T
| (ramvawe+ foomwn)
0
which, integrating by parts, is seen to be zero.

One way to find this coefficient of € could be by calculating

ar,
de

e=0

8Cauchy says continuous but thinks of differentiable functions with a continuous deriva-
tive.
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Since Cauchy does not make it explicit, he could also be making a similar
argument to the one he has used before, which consists of using the approx-
imate equality

for+eW) = f(7) =eW f'(7).

Then it would follow

T
Ie—I:/t (f(’y—i—eW)'y’—i—f(’y—i-eW)eW’) dt

0

= [ (wrer s g ew ey w Y a

0
which gives rise to the coefficient of € considered before.

As a consequence of the vanishing of the coefficient of ¢, Cauchy says
that the increase of the integral I, — I will reduce to an infinitely small of
the second or higher order. Next he says: Il est aisé d’en conclure que,
si chacune des fonctions x,y, recoit successivement des accroissements in-
finiment petits du premier ordre dont la somme presente un accroissement
fini, accroissement correspondant de A + B+/—1 sera infiniment petit du
premier ordre, c’est-a-dire nul.

It is difficult to understand this argument of Cauchy. In fact, in none of
the studies published on Cauchy’s work one can find a satisfactory explana-
tion that clarifies it. A possible interpretation is that he is calculating the
coefficients of €2, €3, etc. similarly to what he just did for the coefficient of
€, either by directly calculating the successive derivatives of I at ¢ = 0, or
by considering the finite increments of successive order.

But another interpretation, perhaps more plausible, is that he is calculat-
ing the derivative of I, at successive points €1, €3, ... through the increments
I€i+€ B Iei
€
and in this way he would see that the derivative is zero at all these points
and therefore that it is zero for all sufficiently small €. This would mean
that the value of I. would not depend on €, which is essentially what Cauchy

wanted to see.

It is surprising that Cauchy does not realize, or at least does not com-
ment, that his argument to see that dI./de is zero, at € = 0, already gives
that this derivative is zero for all sufficiently small e.

Indeed, assuming like Cauchy that f’ is continuous we will have

T

d
— (Y+eW)( +eW)dt
de Jy,

T
:/t (f(y+eM)W (Y +eW') + W' f(y +eW)) dt

0

:/T(f(fy+eW)W)'dt:0

0
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which directly proves that I, does not depend on e.

This reasoning, which also appears in Falk [19], proves the following
result: if D is a convex domain of the plane and f a function with continuous
derivative in D and «(t) and 7(t) are two curves in D that start and end
at the same points, that is, they are defined in the interval [to,T] with
A(to) = (to) and 4(T) = 3(T) then,

T T
t fFOy(@®) ' (t) dt = t ()7 (1) dt.

Indeed, it is only necessary to apply the previous argument with W (t) =
7(t) — v(t) and varying € between 0 and 1. That this is really what Cauchy
proves, namely the path invariance of an integral for convex domains, is also
discussed in [1].

On the other hand if we write y(t,€) = y(t) + € (3(t) — v(t)) we have a
homotopy between v and 7, and the integral along the curves 7(-,€) does
not depend on e.

This suggests that the independence of an integral with respect to the
path of integration will hold for any homotopy. Specifically, it can be shown
with arguments similar to the previous ones, that if we have two homotopic
curves, with the same beginning points and ending points, in a domain D
where f has a continuous derivative, then the integral of f along the two
curves has the same value. This is done in [2| when the homotopy is of class
C? and in [20] when the homotopy is only continuous and without assuming
that f’ is continuous.

In fact it seems that Cauchy does not find his reasoning clear enough
since he immediately reformulates it in terms of the calculus of variations.
The total variation of the integral I when - receives an increment dy = e W
is

T T
51= [ 6(f() ) dt = / (f' () 69 + f(7) 67') dt

to to

T
— / P ()Y W+ f) W) dt

0

which is zero, as we have seen. Here it has been used that § behaves like a
derivative, that is (6v)" = 6+ and 6(f (7)) = f'(7) 6.

Later, Casorati in 1868 also justified Cauchy’s theorem with this varia-
tional argument ([4], p.365).

From Cauchy to Goursat

We note that Cauchy always assumed that the functions he considered had
a continuous derivative. In fact he was not even talking about the derivative
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and was simply referring to complex functions. But to reach the conclusion of
Cauchy’s theorem it is not necessary to assume that the considered function
has a continuous derivative, but only that it is holomorphic, as it was proved
by Goursat in 1900.

In 1875, one year after the publication of Cauchy’s article [10], Briot
and Bouquet in [3] published a proof of Cauchy’s theorem, for holomorphic
functions, without assuming that they have a continuous derivative. They
first do this for a star shaped domain and then they go to the general case by
subdividing the initial region into smaller ones. However, their argument in
the star shaped case is not entirely correct because they assumed that there
was uniformity in the definition of the derivative (see [1]).

In 1884 Goursat in [23| presents a rigorous demonstration of Cauchy’s
theorem that he considers simpler than the previous ones, but still assuming
that the holomorphic function has a continuous derivative. Finally in 1900,
at Osgood’s request, Goursat himself in [24] complements the proof of 1884
so that it is valid without the condition of the continuity of the derivative.
It can be regarded as the first correct proof of Cauchy’s theorem assuming
only that the function is holomorphic.

As Goursat comments, this result gives rise to Cauchy’s integral formula
for a holomorphic function and from here the theory of analytic functions
can be developed from Cauchy’s point of view, in particular showing that a
holomorphic function already has continuous derivative.

5 On Green’s formula

As we said in the Introduction, Green’s formula, which plays a fundamen-
tal role in the theory of functions of a complex variable, together with the
Cauchy-Riemann equations is now the usual way to prove Cauchy’s theorem.
For this reason we will do a brief historical review of this formula.

Green’s formula states that

0Q OP

Pdr+Qd :/—dxd 16
[ PaeQay= [ (G2 =) dedy (16)

where P(z,y), Q(x,y) are regular functions of x,y and R is a region of the
plane.

The reasoning that allows to obtain Cauchy’s theorem from this equality
and the Cauchy-Riemann equations is the following:

If f(2) = u(z) + iv(2) is a holomorphic function in the region R then
uz = vy and u, = —v, and therefore integrating f(z) along the closed path
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OR, and applying Green’s formula it results
f(z)dz = / (u+iv)(de+idy)
OR OR
= / (udz —vdy) —i—i/ (vdx + udy)
OR OR

:—/(vx—l—uy)da:dy—{—i/(ux—vy)dxdy
R R
=0.

Let’s see below how Green’s formula has appeared in the literature. We
have already commented in the Introduction that the first time that it was
stated in the form (16) is in Cauchy’s article from the year 1846, [9].

The first published proof of Green’s formula is due to Riemann in his 1851
dissertation, [31], which we reproduce in Section 6. Later on this formula
appears in Casorati 4], p.381.

On the other hand, Green’s formula is the version in the plane of the
divergence theorem in the space, that states

oP 9Q OR
X.N)dS = = =
/as< ,N)dS /5<8x + gy az> da dy dz,

where X = (P, Q, R) is a regular field in R3, S a region of the space and N
the unit normal exterior vector to the boundary of S. Indeed, applying this
formula to the field (@, —P,0) and to a region formed by the points (z,y, t)
with (z,y) € S C R? and 0 < t < e we get Green’s formula.

The divergence theorem was proved in a particular case by Gauss in 1813,
[22]. After that, in 1828, Green in [25] proved it for a special type of vector
fields. In its general version it was established by Ostrogadsky in 1831.

Likewise, Green’s formula is also the version for the plane of the rotational
theorem, that stays

OR 0Q 0P OR 0Q 0P B
/g((ay—az,az—ax»ax—ay>a]v>ds— 8S<(P,Q,R)»T>d5

where P, @, R are regular functions, S a surface of the space with unit normal
vector N and T the unit tangent vector to the boundary of S.

Historically this theorem, also known as Stokes’ theorem because Stokes
himself proposed it in an exam (see [27]), was not proved until 1861 by
Hankel ([26], p.34 ) who based his proof precisely on Green’s formula, for
which he quotes Riemann [32].

5.1 Gauss’s formula for the volume of a body

Gauss in the 1813 paper |21] proves a formula for the volume of a body that
can be considered as a particular case of the divergence theorem.
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Essentially, what Gauss does can be explained as follows. When a sur-
face S is parameterized as the graph of a function of the form ¢(z,y) =
(x,y,z(z,y)) then the ratio between the area element dS of the surface and
the area element dx dy in the plane is

+cosfdS = dxdy

where 6 is the angle between the normal vector to the surface, (—zz, —2y, 1)
or (zz,2y,—1), and the positive part of the z axis. The sign + corresponds
to the points where 6 is acute and the sign — when 6 is obtuse, depending
on the normal vector we have chosen.

Gauss gives the above relation between dS and dx dy without further
comment, but the justification is clear if we think that a small rectangle of
sides Az, Ay centered at a point Py in the plane z = 0, is the projection
of a rectangle in the tangent plane to the surface at the point P that is
projected onto Py. The ratio between the area Ax - Ay of the rectangle in
the plane z = 0 and the area AS of the rectangle in the tangent plane is
+cos0 AS = Ax - Ay, where 0 is the angle formed by these two planes.

Gauss considers a compact surface that encloses a region K of the space.
This allows him to choose a normal exterior vector to the surface at each
point. He observes that each point Py of the plane z = 0 is the projection
of an even number of points in the surface, and that the sign of the cosine
of the angle that forms the normal exterior vector with the axis z alternates
from one point to another (Figure 1).

Figure 1: The sign of the cosine of the angle that forms the normal exterior vector with
the axis z alternates from one point to another.

In order to calculate the volume V of the body K we can assume that it is

decomposed into areas limited by graphs of functions. In fact, the problem
reduces to calculate the volume of a body bounded by the graph of two
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functions z;(x,y), z2(x,y), defined on the same region D of the plane z = 0,
with z1(z,y) > 2z2(z,y). Let S7 be the surface given by the graph of z; and
So the one given by the graph of 29, so that the total surface of the body
is § = 57 U Sy. The normal exterior vector makes an acute angle with the
positive part of the z axis at the points of S7 and an obtuse one at the points
of S5. So

v:/awwmw—/@www@
D D

:/ z10050d51+/ ZQCOSHdSQ:/ZCOSGdS.
S1 Sa S

Analogously, changing the plane z = 0 by the planes x = 0 and y = 0
one would obtain, respectively,

V:/xcostSz/ycos@dS,
S S

where 6 is the angle of the normal with the corresponding axes. Gauss gives
these three equalities on page 6 of [21].

Note that they are a particular case of the divergence theorem applied to
the fields X = (2,0,0), Y = (0,y,0) and Z = (0,0, z), respectively. Indeed,
the above equalities can be written as

V:/ diVXdz‘dydz:/<N,X>dS,

K S

V:/ didea:dydz:/<N,Y)dS,
K S

V:/ dindacdydz:/<N,Z>dS,
K S

where N is the unit normal exterior vector to the surface.

5.2 Ostrogradsky’s divergence theorem

With exactly the same kind of arguments as Gauss, Ostrogradsky in [29]
proves the general version of the divergence theorem. It is enough to see
that for a function R = R(z,y, z) it holds

/ aRdazdydz:/RcostS,
K 0z s

where cos 0 is the third component of IV, the unit normal exterior vector to .S.
This equality is deduced, as we discussed above, by reducing the problem to
the case where K is bounded by the graphs of two functions z1(z, y), z2(z, y).
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Then,

| St dwdyds = [ (Reag20) = Ra.g,z2) ddy
K 0z D

= R(z,y,2z1)cos0dS1 + | R(z,y,22)cosfdSs
51 52

= / Rcos6dS.
S

In conclusion, given a field X = (P, Q, R) one gets

oP 0Q OR B
/K<833+8y+8z> dmdydz-/g(X,N)dS,

which is the statement of the divergence theorem.

This paper of Ostrogradsky that we are discussing was published in 1831,
but read in 1828. Meanwhile, in 1829, Poisson, who had been Ostrogradsky’s
supervisor in Paris, published essentially the same proof in [30]. To have
more historical details about the divergence theorem see [27].

5.3 The study of the electric field according to Green

Green’s formula (16) does not appear in Green’s paper [25]. In fact, in this
article the author proves the formula

/dxdydzUcSV—i—/daU v :/dwdysz(SU—l—/daV a (17)
dw dw

where U, V are differentiable functions of z,y, z defined on a region of the
space, where the triple integrals are extended, do is the area element of the
boundary of this region, dw is the length element in the direction of the
interior normal, and § represents the Laplacian. The above equality gives a
relationship between the density of an electric fluid on the surface of a body
and the potentials inside and outside this surface.

We note that (17) is a consequence of divergence theorem

/<X, N)do = /didea:dydz, (18)

where X is a field in the considered region and N is the outer normal vector
to the boundary of this region. Indeed, since

dU dVv
%__<VU7N>7 %—_<VKN>7

taking X = U - VV and denoting now the Laplacian by A, one gets

divX = (VU,VV) + U - AV.
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It turns out that

/ ;”;:—/w-vv,zv)da

:—/(VU,VV)d:Cdydz—/U-Adedydz

and, similarly,

au
V= —_ [(V.-VUN
/ dw /< U,N)do

:—/(VU,VV}da:dydz—/V-Adedydz

and these two equalities give (17).

For fields X that can be written as X = U - VV — V - VU, for cer-
tain functions U, V', the above calculation shows that (18) is a consequence
of (17).

6 Riemann’s contributions

A few years later of the publication of the works of Cauchy and of Gauss
and Ostrogradsky, that we have discussed, Riemann in his famous thesis
on the foundations of the general theory of functions of a complex variable,
presented in 1851, [31], rediscovers the Cauchy-Riemann equations and gives
the first direct proof of Green’s formula. Let us follow his arguments.

Cauchy-Riemann Equations

Riemann defines a holomorphic function’ w = w(z) when the differential
quotient dw/dz is independent of the value of the differential dz.

This definition can be interpreted as follows: the image by w of a curve
z(t) in the complex plane, with z(0) = a, verifies

dw dw/dt  (woz)'(0)
dz  dz/dt —  Z(0)

(19)

and this quotient does not depend on the curve z(t) passing through a.
Therefore, this ratio of tangent vectors considered as complex numbers can
be called w'(a).

It is easily seen that this Riemann’s definition coincides with the usual

one, that is,

w'(a) = lim M.

9Riemann does not use this word.
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From the relation (19) it follows that the function w(z) is conformal.
Indeed, if v(t), o(t) are two curves with v(0) = ¢(0) then

equality which means that the function w preserves the angle between the
tangents to the curves v and ¢ at a common point.

Riemann then proves that the function w satisfies the Cauchy-Riemann
equations. He deduces it as follows: putting z = x + iy and w = u + 7 v the
differential quotient dw/dz is written as

du+idv (35 +ige)de+ (5 —iG)

1dy
de +idy dx +idy ’

Since this quotient does not depend on the value dx + i dy, considered
as the tangent vector to a curve, and taking the curves = = constant and
y = constant, it turns out that

ou, ov_ov  ou
ox or Oy y

or, equivalently,

ou  Ov ov ou

%:% an %——@

Green’s formula

Regarding Green’s formula, in section 7 of his thesis, Riemann proves that

/<88)x(+88)y/) dT:—/(Xcosf—l—Y cosn)ds (20)

where X, Y are continuous functions'’ of x,y defined on a plane region T,
and writes the unit interior normal vector at a point of the boundary of T
as (cos&,cosn). It is understood that the integral on the left-hand side is
extended to T, with dT' = dx dy being the area element, and the integral on
the right-hand side is extended to the boundary of T with length element ds.

We note that the above equality, which is the divergence theorem in the
plane, gives rise to Green’s formula applied to the field (Y, —X).

The proof of (20) reduces to show the equality

0X
—dl'=—- | X . 21
o d / cosds (21)

1ORjemann talks about continuous functions although it is clear that he needs more
assumptions.
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For this purpose Riemann divides the region T into trapezoidal regions
obtained by cutting 7" by lines parallel to the x axis, equally separated from
each other, so that it is enough to prove (21) for everyone of these trapezoids.

Assume that Ay is small enough so that the two boundaries of these
trapezoids can be parameterized in the form (z(y),y). We fix one of these
trapezoids and parameterize the left border by (z1(y),y) and the right one
by (22(y),y).

The orientation of the boundary of T', that must be travelled leaving T'
on the left side, implies that the interior normal vector IV is given by

dml

N = (1= ) = 1) cos cosn) (22)

on the left border of the trapezoid, and by

N (—1, C;;) — V]| (cos&, cosn) (23)

on the right border. In particular cos¢ is positive in the first case and
negative in the second one.

If for a fixed trapezoid y varies in a certain interval [a,b] we take the
partition determined for each n by the points y, = a + k:b;“, k=0,....,n
so that Ay = yx11 — Yk

Then
— dT / / — dw dy

- / (X(22(y), ) — X (@1 (9), v)) dy (24)

a

= nh_)rgoAyZ (z2(yr)s Y&) — X (21(yx), Yk))-
k=0

On the other hand, in order to calculate / X cos& ds on the boundary

of the trapezoid it is only necessary to consider the non-horizontal part of
this boundary since on the horizontal parts it is cosé = 0. The partition
we have considered given by the values y; determines a partition of the left
part of the boundary given by the points (z1(y),yx). Denoting by si the
length over this boundary from the point (z1(a),a) to the point (1 (yk, yr)),

we have that / X cos& ds extended to the left border is

n

nh_}ﬂ(io Z(Sk_ﬁrl — 5i) X (21(yx), yr) cos E(x1(yr), Yr)-
k=0
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Now, by (22), we have

Ykt1 dz\ 2 dz\?
Sk+1—8k:/ 1+(> dy = Ay 1—|—(>
Yk dy dy
Ay

= < T < .
(cos f)szk7 Ye = Tk > Yk+1

Therefore the integral we are considering, on the left border, equals to
n
/XCOS€d8 Jim AykZOX(m(yk),yk)'
Similarly, on the right border, using now (23), it results
n
/Xcos{ds = — lim AykZ:OX@Z(Z/k)ayk)-
These two equalities added themselves, together with (24) prove (21).

Analogously it would be shown that / % dl' = — | Y cosnds and we
would obtain (20).

Chronological order of results

1740 — Clairaut: Sur l'intégration ou la construction des équations différen-
tielles du premier ordre, [11].

1743 — Clairaut: Théorie de la figure de la Terre, tirée des principes de
I’Hydrostatique, [12].

1752 — d’Alembert: Essai d’une nouvelle théorie de la résistance des flu-
ides, [13]

1757 — Euler: Equilibre et mouvement des fluides I, II, III, [15], [16], [17].
1768 — d’Alembert: Sur I’équilibre des fluides, [14].

1797 — Euler: Ulterior Disquisitio de Formulis Integralibys Imagirariis.
Written in 1777, [18].

1811 - Gauss’s letter to Bessel, [22].

1813 — Gauss: Theoria attractionis corporum Sphaeroidicorum Ellipticorum
Homogeneorum, Methodo nova tractata, |21].
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1814 — Cauchy: Mémoire sur les integrales définies. Presented at the Aca-
démie; it was not published until 1827 in [8].

1822 — Cauchy: Mémoires sur les intégrales définies ot l’on fixe le nombre
et la nature des constantes arbitraires et des fonctions arbitraires, [5].

1823 — Cauchy: Résumé des legons sur le calcul infinitésimal, [6].

1824 — Cauchy: Mémoire sur les integrales définies prises entre des limits
imaginaires. Presented at the Académie; it was not published until
1825 (|7]) and 1874 ([10]).

1828 — Green: An Essay on the Application of Mathematical Analysis to the
theories of Electricity and Magnetisme, |25].

— Ostrogradsky: Note sur la Théorie de la Chaleur, [29].

1829 — Poisson: Mémoire sur I’Equilibre et le Mouvement des Corps Elas-
tiques, [30].

1846 — Cauchy: Sur les intégrales qui s’étendent a tous les points d’une
courbe fermée, [9].

1851 — Riemann: Grundlagen fiir eine allgemeine Theorie der Functionen
einer veranderlichen complexen Grosse, [31].

1857 — Riemann: Lehrsdtze aus der analysis situs fiir die Theorie der Inte-
grale von zweigliedrigen vollstandigen Differentialien, [32].

1861 — Hankel: Zur allgemeinen Theorie der Bewegung der Flissigkeiten,
[26].

1868 — Casorati: Teorica delle funzioni di variabili complesse, [4].
1875 — Briot-Bouquet: Théorie des fonctions elliptiques, [3].
1883 — Falk: Extrait d’une lettre adressée a M. Hermite, [19].
1884 — Goursat: Démonstration du théoréme de Cauchy, |23].

1900 — Goursat: Sur la définition générale des fonctions analytiques, d’aprés
Cauchy, [24].
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A. Clairaut J. d’Alembert L. Euler C. F. Gauss
(1713 — 1765) (1717 — 1783) (1707 — 1783) (1777 — 1855)

A. L. Cauchy G. Green M. Ostrogradski S. Poisson
(1789 — 1857) (1793 — 1841) (1801 — 1862) (1781 — 1840)

G. F. B. Riemann H. Hankel F. Casorati C. Briot
(1826 — 1866) (1839 - 1873) (1835 — 1890) (1817 — 1882)

J. C. Bouquet M. Falk E. Goursat
(1819 — 1885) (1841-1926) (1858 - 1936)
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