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This paper introduces the precession of the equinoxes in an elementary
way and presents a formula for calculating the angle between the star Polaris
and the Celestial North Pole over the years.

1 Introduction.

Let’s go back in time 28 centuries when Homer described Odysseus sailing
the sea after bidding farewell to Calypso. In Samuel Butler’s translation ([1],
Book V), we find the following words:

He never closed his eyes, but kept them fixed on the Pleiads, on late-
setting Boötes, and on the Bear - which men also call the wain, and
which turns round and round where it is, facing Orion, and alone never
dipping into the stream of Oceanus - for Calypso had told him to keep
this to his left.

Why does Homer omit any reference to Polaris,
the North Star, when it ranks among the 30 bright-
est stars illuminating the entire celestial canvas?
Remarkably, Homer does depict prominent constel-
lations like the Bear, and Boötes, the Guardian of
the Bear, along with the Pleiades and Orion. Nev-
ertheless, the conspicuous absence of Polaris in his
narratives remains a puzzling enigma, given its celestial significance and bril-
liance.

The reason for that lack of enthusiasm is that the star we now call Polaris
was not the North Star back then. It was a bright star, yes, but practically
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isolated, just like today, and unlike today, it described a wide circle in the
sky, descending from about 55° degrees to 25° degrees above the horizon,
as we will see later. Some stars never set, as the Bear “never dip into the
stream of Ocean”. Navigators were skilled enough to determine the position
of the North by observing a few constellations. They located the hub of the
celestial sphere, even if for long periods it was a virtual, obscure point, but
so useful in those times as it is now with the North Star being right next to
it.

If you have the patience to follow me, I will try to explain the phe-
nomenon that underlies the significant difference between Odysseus’ firma-
ment and ours. It is known as the “precession of the equinoxes” and it helps
us understand other facts, such as the presence, in a current star chart, of
the zodiac sign of Aries on the constellation of Pisces, or the sign of Leo on
the stars of Cancer. In short, the zodiac signs correspond to constellations
shifted backward, a fact that did not occur in ancient times when astrology
was born, which speaks volumes about the validity of horoscopes.

2 Precession.

The Earth rotates around the line connecting the poles, known as the axis of
rotation, in a counterclockwise direction for an observer at the North Pole.
This rotation is the reason for the alternation of day and night. Addition-
ally, it undergoes a “revolution” around the Sun, also in a counterclockwise
direction relative to the same observer, in an almost circular orbit completed
in one year. The axis of rotation is tilted at approximately 23° degrees with
respect to the perpendicular to the orbit, and this inclination is the cause
of seasons, just as the inclination of the Euganean Hills, near Padua, al-
lows cacti to grow on Mount Ceva, which is unusual at the latitude of 45°
degrees N.

The tilt of 23° is rather stable over time. A study by Jacques Laskar and
his colleagues, as referenced in [2], reveals that this stability is quite unusual
among planets, and it is attributed to the presence of the Moon, which is
unusually massive compared to the planet. Considering that small variations
can cause ice ages, we realize how fortunate we are to be here discussing the
Earth’s axis of rotation. But I digress from my objective: the precession of
the equinoxes.

Equinoxes are the two days of the year when the night and day are of
equal duration, more precisely they are the moments in time when the Sun
crosses the Earth’s equator. One occurs in spring, and the other in autumn.
There are two other significant days in the year for seasonal changes: the
solstices. The summer solstice marks the day with the longest duration of
daylight, while the winter solstice marks the day with the shortest duration.
More precisely the solstices are the moments when the Sun reaches its most
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northerly or southerly excursion.

Figure 1: Equinoxes and solstices

The great scientist Hipparchus of Nicaea, comparing the positions of
certain stars during the nights of seasonal changes in the 2nd century BCE
with those observed in the 5th century BCE by Meton, noticed that the
“celestial sphere” had slightly rotated.

The Earth’s axis of rotation does not have a fixed direction in space but
rotates around the line perpendicular to its orbit, describing a cone. This
movement is called precession and occurs in a clockwise direction for an ob-
server at the North Pole. A complete precession takes place in approximately
26 000 years. Let us read Lucio Russo [4], pages 315–316.

The main result of Hipparchus mentioned by Ptolemy is the discovery
of the precession of the equinoxes. The precession is so slow that any
available observational data would have given Hipparchus displacements
of only a few degrees. Nevertheless, the astronomer, who is known
to have been very rigorous in his use of experimental data, dared to
extrapolate from a tiny arc the existence of a circular uniform motion
with a period of 26 000 years. If his astronomy was “dynamical”, any
old top might have given him the idea of sifting through observational
data for the existence and periodicity of precession.

Figure 2 illustrates the precession, which describes the cone in a clockwise
direction, as well as the counterclockwise rotation of the Earth, which has a
much shorter period: one day.

When we refer to the “celestial sphere”, we are talking about the positions
of the stars regardless of their distance from Earth. In other words, if we fix
a point on the Earth’s surface defined by latitude and longitude, we consider
the half-line extending from the center of the Earth through that point and
assign the same latitude and longitude to any star that lies on that half-line
at a given moment. Notice that the celestial latitude and longitude rotate
rigidly with the Earth and their values change continuously for any given
star.

Similarly, the planets and the Sun also have positions on the celestial
sphere, which can overlap with the positions of the stars. The stars are
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Trigonometria esfèrica i hiperbòlica
Joan Girbau

L’objectiu d’aquestes notes és establir de forma curta i elegant les fórmules
fonamentals de la trigonometria esfèrica i de la trigonometria hiperbòlica.
La redacció consta, doncs, de dues seccions independents, una dedicada a la
trigonometria esfèrica i l’altra, a la hiperbòlica. La primera està adreçada a
estudiants de primer curs de qualsevol carrera tècnica. La segona requereix
del lector coneixements rudimentaris de varietats de Riemann.

1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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figura 1
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Figure 2: Counterclockwise rotation and clockwise precession

grouped into constellations, which are sets of stars in a relatively small area
of the celestial sphere, but they can vary greatly in distance from Earth.

Since ancient times, constellations have been defined by their distinc-
tive shapes, which have sparked the imagination of our ancestors, who saw
mythological figures within them. Among the constellations, the zodiacal
ones hold particular importance. These are the constellations that overlap
with the Sun’s apparent annual motion, which is actually due to the Earth’s
revolution.

Precession causes the positions of the stars to vary slightly on the celestial
sphere after one year, although this change is extremely slow. The position
of the Sun also differs slightly. The Sun passes through all 12 constellations
of the zodiac on the same day of the year, let’s say the spring equinox, over
the course of 26 000 years. Therefore, the zodiac shifts by one constellation
every 26 000/12 years, which is approximately 2166 years. Going back in
time by such a period brings us to the time when the zodiac signs were
associated with the constellations.

Today, for example, we refer to the sign of Aries while the Sun passes in
front of Pisces.

Figure 3: Alignments Earth-Sun-Zodiac constellation

Figure 3 shows the Earth on the left, the Sun, and the signs of Pisces and
Aries. The top alignment represents the astronomical alignment of Pisces,
which occurs approximately from March 12th to April 18th. However, the
zodiac sign from March 21st to April 19th is Aries. This alignment is based
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on ancient times and forms the basis of horoscopes, one of the many mani-
festations of superstition that changes its forms but has never abandoned its
influence on humanity.

Naturally, the most noticeable movement of stars in the celestial sphere
is due to the rotation of the Earth. For an observer at the North Pole, all
the stars circle around the celestial North Pole, which is directly above the
observer and located vertically. No star rises or sets in this case. Addition-
ally, only the stars of the northern celestial hemisphere are visible from the
North Pole.

At the equator, an observer instead has the celestial equator on the ver-
tical, the celestial North Pole on the northern horizon and the South Pole
on the southern horizon. Both celestial hemispheres are visible, and all the
stars rise in the east and set in the west.

We have discussed the situations at a latitude of 0°, the equator, and at
a latitude of 90° N, the North Pole. At an intermediate latitude, let’s say
40° N, the celestial North Pole is 40 degrees above the northern horizon, as
shown in Figure 4.

 l
l

l

Figure 4: Latitude

All the stars that are located within 40° of the celestial North Pole are
always above the horizon. In the words of Homer, they “never dip into the
stream of Ocean”. The other stars rise in the east and set in the west, just
like the Sun. I chose 40° N because it is near the latitude where a portion of
Odysseus’ journey takes place.

3 Deducing the trigonometric formula.

The celestial North Pole will be at its closest point to the North Star around
2100 (more precisely in Feb 2102, see [3]). Since, at that time, it will be
within half a degree, we can approximate the latitude of Polaris in 2100 as
90° N. That is consistent with the approximation we made by choosing the
round value 23° for the inclination of the Earth’s axis. The following formula
gives the angle f(n) between the celestial North Pole and the position of
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Figure 5: Deducing the trigonometric formula

Polaris in the year n = 1, 2, . . . :

sin
f(n)

2
= sin 23° × sin

|2100− n| 180°
26 000

.

In Figure 5, we observe the celestial sphere with a non-important radius
r > 0. The point P represents Polaris, while the center of the sphere O is
the Earth. The celestial North Pole in the year n is N while E is the center
of the circumference traced by N in the precession. The length of half of
the segment PN is determined by r sin(f(n)/2). This length is calculated
using the triangle OPN. On the other hand, the length is equal to r times
the right-hand side of the formula mentioned above, if it is computed on
triangle EPN.

There has never been a year 0 because years are numbered similarly
to centuries (even though we don’t say we are in the 2024th year), and
before the year 1 AD, there is the year 1 BC. However, the formula also
holds for n = 0, which corresponds to the year 1 BC, and for any n < 0,
representing the year −n+ 1 BC. In this paper, the Odyssey “corresponds”
to n = −800 (approximate time of the narration of mythological events that
occurred several centuries earlier). Some values derived from the formula are
as follows:

f(−800) = 15.4°, f(0) = 11.2°, f(500) = 8.6°,
f(1000) = 5.9°, f(1500) = 3.2°, f(1800) = 1.6°,
f(2024) = 0.4°, f(2100) = 0°, f(15 100) = 46°.

Homer therefore observed the star we call Polaris following a circular orbit
around the celestial North Pole with a radius of approximately 15°. Thus,
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we have found the values mentioned in the Introduction: Polaris descended
from 40° + 15° = 55° to 40° − 15° = 25° on the horizon.

To conclude with a question: Will Polaris ever set on the horizon of the
reader’s town?
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