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The internet is a digital universe governed by algorithms, where numbers and the discrete
operate to give the illusion of a continuum. Who can say where the internet is, even
though it connects all of us to a seemingly bondless expanse of information? When
considering the topic of this VII" Congtress on Ontology, I began to think about what
existence means in this digitalized world. Prior to 1987, my own research focused primarily
on three figures:

o Georg Cantor, who systematically developed set theory and
created an accompanying theory of transfinite numbers;

o  Chatles S. Peirce, the founder of Pragmatism, who among many
other accomplishments developed a non-rigorous treatment of
infinitesimals; and

o Abraham Robinson, who introduced a rigorous theory of
infinitesimals in the context of model theory and mathematical

logic.
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All were concerned with problems of continuity and the infinite. But beginning in 1987,
my research has also turned to another very different world, at least in some respects, of
mathematics—namely to the history of mathematics in China, both ancient and modern.
Consequently, I thought for this VII* International Ontology Congress it might be
worthwhile to explore briefly how the virtual environment created by the internet might
be viewed from a Chinese perspective, and just to maintain the symmetry of ancient and
modern, I plan to consider the views on mathematics and ontology of the 3"-century Wei
Dynasty Chinese mathematician Liu Hui of the Warring States Period, with those of the
best-known living mathematician in China, Wu Wen-Tsun.

Extraction of Roots and Approximations for the Square-Root of 2

If we are interested in the connections between number and continuity, the first of many
related problems were discovered at their earliest by the ancient Greeks. The Pythagoreans,
who struggled with these concepts immediately come to mind—their initial hypothesis
that all things could be expressed through numbers, by which they meant either whole
numbers, the integers, or ratios of integers, i.e. fractions, seemed reasonable enough.
However, this fundamental assumption was soon challenged by the counter-intuitive
discovery of incommensurable magnitudes, and the realization that the numerical length
of some magnitudes could only be approximated but never determined exactly by any
rational number or finite decimal fraction.

What did the ancient Chinese have to say about such lengths as the diagonal of the
square, or the ratio of the circumference to the diameter of the circle? Basically, Chinese
mathematicians operated in a digitalized world, a mathematics of numbers rather than
magnitudes. The earliest approximation method we have from the most ancient yet-
known Chinese source, the HEE  Suan shu shu (Book on Numbers and Computations,
ca. 186 BCE) approximates the square-root of a number as follows. The example is from
a problem devoted toJ7 Hl Fang Tian (Square Fields) [see Zhangjiashan 2001, p. 272; Peng
2001, p. 124; Wenwu 2000, p. 82; and Dauben 2007b]:

[Problem 54]: (Given) a field of 1 ux, how many [square| bu are there?
(The answer) says“: 14 15/31 [squate| b#. The method says™ a square
15 bu (on each side) is deficient by 15 [square]| bu; a square of 16 bu (on
each side) is in excess by 16 [square| b#. (The method) says: combine the
excess and deficiency as the divisor; (taking) the deficiency numerator
multiplied by the excess denominator and the excess numerator times the
deficiency denominator, combine them as the dividend.® Repeat this, as
in the “method of finding the width.”
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a. 'This problems proceeds on the assumption that there are 240 bi#* to one .
These were standard measures at the time the Swan Shu Shu was written, and the
bu, a unit of length, is not differentiated in the text by a special designation when
it is used as a measure of area, square bu, or bi’. 'The mu, however, is a measure
of area, like the acre, and so the situation here is similar to calculating the number
of square feet or meters per acre.

b. The section of the text is not really devoted to the “method” of the problem,
which actually begins with the following sentence. What follows here is simply
a statement of the amount of excess or deficiency with respect to one square
mn (240 square bu) of squares 14 and 15 bu on a side, respectively. The actual
“method” of the problem is given in the following sentence.

c.  This method reflects the way in which this problem is worked out on the counting
board. If the numbers for the “deficiency” are put down on the left, those for
the “excess” on the right, the top numbers are the lengths of the two squares of
sides 15 and 16 bu each; under these are their respective amounts of deficiency or
excess. The layout:

deficiency numerator AR T bu zu 30 15 16 T ying i
excess numerator

deficiency denominator  ANAEBE by zumn 15 16 L ying mu
excess denominator

d. The appropriate method is actually found in the Q7 Cong Problem 65: “Finding the
Length,” rather than in the Q7 Guang Problem 64: “Finding the Width.” According
to the method described here, using the method of excess and deficiency to solve
this problem leads to the following computation: (15x16+16x15)/(16+15) =
480/31 = 15 15/31 bu [for additional details, see Dauben 2007b].

Here the square root of 240 is simply approximated using the method of excess and
deficiency, and while 15 15/31 is not an exact result, it is close enough to suit the needs
of the Suan shu shu.

By the time Liu Hui wrote his commentary on the Nine Chapters in 263 CE, an algorithm
had been developed to approximate square roots as precisely was one might wish. Liu
Hui appreciated the fact that some numbers have exact square roots, some not. For those
numbers for which an integer root could not be exhausted, there was a special term or
expression, ANAJBH bu ke kai (it cannot be extracted), i.e. it “does not end” or “it is not
exact.” For mathematicians who found 3 a good-enough approximation for ps, taking 3 as
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the square root for V10 was perhaps also good enough.

But this was much too inaccurate for Liu Hui, who describes the following
procedure for extracting the root of a given number in his commentary on problem X
in chapter Y of the Nine Chapters. Let the given number be N; let a be the largest integer
such that a’=A<N. To illustrate the method Liu Hui describes, the following diagram
speaks for itself. This diagram is from the K84 K I Yongle dadian (Yongle Encyclopedia,
1403 CE), a massive Ming Dynasty compendium completed in the eatly 15" century; the
illustration is meant to show how the square root of N is to be extracted [Lam and Ang
2004, p. 100].
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The first step just described is to determine the largest integer @ that when squared is
the unshaded square in the diagram such that >=A<N. The difference, N-A, is then
represented by the shaded portion in the diagram. One then finds the next largest
integer b such that A+(2ba+/?) does not exceed N. Then N-(A+(2ba+ 7)) leaves another
gnomon, and the algorithm continues analogously until one either finds an exact value for
the square roof of I, in which case the algorithm stops, or one stops at some convenient
point with a fractional root with a gnomon-remainder and the comment “bu ke kai”—it
does not end, meaning no exact root has been found [Qian 1963, vol. 1, p. 150]. However,
and this deserves emphasis: No proof is offered that if one chose to continue this process,
an exact root might yet be determined, or #ot.
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Did Ancient Chinese Mathematicians Know that V2 is Irrational?

Recently, some historians of Chinese mathematics have suggested that by virtue of his
reference to “bu ke kai,” Liu Hui was not only aware of the limitations of square root
approximations, but he was also aware that some magnitudes were in factincommensurable.
This argument was first made by Alexei Volkov in the West [Volkov 1985], by the Chinese
historian of mathematics Li Jimin in the East [Li 1990], and most recently and forcefully
by Karine Chemla and Agathe Keller [Chemla and Keller 2002].

In commenting on the case when a given number NN for which the square root is sought is
not exhausted by the square root algorithm, Liu Hui considers fractional approximations,
“one of which he finds to be always smaller (a+(A-a%)/2a+1) and the other always larger
(a+(A-a%/2a), than the root,” [Chemla and Keller 2002, p. 103]. Chemla and Keller then
quote Liu Hui as follows:

One cannot determine its value (shu, i.e., the value, the quantity of the root).
Therefore, it is only when “one names it with ‘side™ that one does not make
any mistake (of, that there is no error) (emphasis ours) [Qian 1963: 15],
[Chemla and Keller 2002, p. 117].

“Shu” here means “number”—but all this suggests is that Liu Hui appreciated the fact
that his algorithm had failed to determine an exact value for the root; this is not, however,
the same as proving that the root is actually irrational. With the above passage in mind,
Chemla and Keller continue with their commentary as follows:

We deduce that, in this case, the root being sought has a “value,” a
“quantity” (shu), even if it cannot be expressed in a way that “exhausts
the inner constitution” of the magnitude considered with respect to unit.
Note that our interpretation of the impossibility of “exactly” “exhausting
the inner constitution” above fits with Liu Hui’s discarding of fractional

39 ¢

quantities as a possible result in such cases here. Moreover, the only
solution for stating the value in an exact way is to introduce a way of
naming it, as “side of IN.” However, one can also express the inner
constitution of the magnitude with respect to unity approximately, by a
pair of integers [Chemla and Keller 2002, p. 117].

Clearly Liu Hui appreciates that the /% or ratio of numbers he obtains to approximate the
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root does not in fact serve to do so exactly. But all that he knows from this is that the
ratio or /ii he has constructed, meant to express the ratio of the side to the diagonal of the
square, does not give a precise value for the ratio of the actual magnitudes in question.
What Liu Hui in fact says is that:

If by extraction, (the number) is not used up, this means that one cannot extract (its
root). You must then call it (the number with side ([fj mian) [Qian 1963, p. 150].

What the Pythagoreans did in establishing the existence of incommensurable magnitudes
was to assume that all magnitudes could be expressed as the ratio of two numbers a/b.
Then, probably by an anthyphairetic argument, they found that there were cases in which
given two magnitudes, a common unit could not be found. This is analogous to the
assumption that the ratio 1/3, when computed, would lead to some finite results, but
instead, 1/3 in its decimal expansion is .3333..., bu ke kai. But this “bu ke kai” does not
prove the existence of irrational quantities, for 1/3 is cleatly rational, but the division it
represents never terminates, it never ends.

What is missing from this account is any argument, not to say “proof”’—that
incommensurable magnitudes or irrational numbers exist. Liu Hui never proves (or
argues) that there is no /4 for V2. This is an ontological problem that proved, as we know,
to be of profound significance for the ancient Greeks.'

1 Perhaps Chemla and Keller, despite their arguments to the contrary, admit as much when they
write: “This helps to make clearer the statement in Liu Hui’s commentary that comes closest to an as-
sertion of the irrational character of some ratios between magnitudes” (Chemla and Keller 2002, p. 117,
emphasis added). Somewhat later in their paper they also admit that “The sharp demarcation that ancient
Greek mathematical authors made between number and magnitude and that relates to this treatment of
irrationality is not to be met with in ancient Chinese and Indian texts” [Chemla and Keller 2002, p. 122].
Realizing that there were magnitudes for which they could associate no corresponding rational number,
the Greeks knew their arithmetic of ratios of whole numbers was incomplete. Had Chinese and Indian
mathematicians dealing with square and cube roots also understood that there were geometric magni-
tudes for which there were no corresponding numerical equivalents in their system of numbers and ratios
of numbers, they should have articulated a similar distinction. That they did not may in part be explained
by the fact that the Chinese had no clear concept, mathematically, of magnitude in the sense that Euclid,
for the most part, develops his principles of geometry, i.e. the Elements, in terms of magnitudes and not
arithmetic, the limitations of which were dramatically revealed by the discovery of incommensurable
magnitudes. For details on this subject, see “Does the Nine Chapters Include the Concept of Irrational
Number?” [in Xu 2005, p. 62-89].
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The Pythagoreans’ Discovery of Incommensurability

How was incommensurability discovered? Kurt von Fritz, in examining both the Greek
construction of the pentagon or pentagram, argued several decades ago that in either
case, an infinite descent argument proceeds to establish the existence of incommensurable
magnitudes [von Fritz 1945]. The process is based on the Euclidean algorithm, anthyphairesis,
namely given two homogenous magnitudes A > B, subtracting the smaller from the larger
gives a remainder C. If C > B, subtracting B from C leaves a remainder D. If C < B,
subtracting C from B leaves a remainder D’. The process continues in this manner, and
in the case of numbers, the algorithm terminates in a finite number of steps yielding the
greatest common divisor of the two numbers. Euclid proved these results in Book VII,
propositions 1 and 2 in the Elements. In Book X, proposition 3, the same is established
for commensurable magnitudes, resulting in the greatest common measure between the
two magnitudes (for details, see [Knorr 1975, p. 29]). In the case of incommensurable
magnitudes, however, this process proceeds ad infinitum, and no common multiple will ever
be reached, since the algorithm never terminates, but proceeds always proceeds to yield the
same ratio of incommensurable magnitudes.

According to von Fritz, this was how the ancient Pythagoreans originally must
have discovered the existence of incommensurable magnitudes, specifically from their
construction of the regular pentagon or pentagram, and their realization that if two
magnitudes are in mean and extreme ratio, applying the Euclidean algorithm, subtracting
the smaller from the larger to find a greatest common measure, led to a succession of
magnitudes always in the same mean and extreme ratio. Consequently, the anthyphairesis
in this case continues with no end. Thus any two magnitudes in mean and extreme ratio
were necessarily incommensurable, and there was no least common multiple of the two
magnitudes because there was no end to the anthyphairetic algorithm.

In considering the diagram of inscribed pentagons and pentagrams on the right, the
diagonal AB and side BC are in mean and extreme ratio, meaning that AB is the mean
proportional between BC and their sum AB+BC, or equivalently, BC:AB=AB:(AB+BC),
ot AB*=BC(AB+BC). Realizing that the point E divides the diagonal AB into mean and
extreme ratio, and that the ratio of the diagonal EF and the side DE are also in mean and
extreme ratio, continuing this process always leads to another and another, and indeed, to
an infinite sequence of inscribed figures whose sides and diagonals are always in mean and
extreme ratio, ad infinitun.
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If we now apply the Euclidean algorithm in hopes of finding a unit that will serve as a
common multiple of both AB and BC, or EI and DE, we will generate an endless series
of pentagons/pentagrams where EF:DE (in the diagram above) will always be in the same
ratio as that of AB:BC. If AB and BC, or EF and DE were in numerical ratio, or were
commensurable, the Euclidean algorithm generating successively inscribed pentagons
or pentagrams would terminate after a finite number of steps, yielding their common
measure. The fact that this does not happen means that magnitudes in mean and extreme
ratio are incommensurable. Thus the Euclidean algorithm will never come to an end, and
there will not be a common unit magnitude that may serve as a multiple of both AB and
BC or EF and DE.

Slightly more than a decade after von Fritz advanced the idea that the ancient
Pythagoreans discovered incommensurability via the anthyphairetic algorithm applied to
two magnitudes in mean and extreme ration, Siegfried Heller suggested that it was more
likely made as a result of applying the same anthyphairetic process to the side and diagonal
of the square [Heller 1958].

The outlines of the argument may be seen with reference to the diagram below [from
Knorr 1975, p. 32]. Applying the Euclidean algorithm to find a common magnitude to
serve as a multiple of both the side and diagonal, first subtract the length of the side BF
from the diagonal DF, and the remainder sO is the side of another square with diagonal
dlJ. Subtracting this side s/ from the diagonal d_| leaves another remainder s_J, which
again constitutes a square of side s'| and diagonal d[J.
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Since the side and diagonal of the successive squares determined by this application of the
Euclidean algorithm are always in the same ratio, the algorithm will never reach a common
magnitude that could be taken as the measure of both the side and diagonal of the square.
Consequently, BF and DF must be incommensurable. QED.

Wilbur Knorr, in his detailed study of the problem of discovery of
incommensurability, however, understands the problem of anthyphairesis in eatly Greek
geometry somewhat differently:

The Pythagoreans employed the algorithm not as a theoretical device for proving the
irrationality of the diameter, but as a practical device for approximating it. But it is
conceivable that the discovery of such an algorithm, yielding an infinity of values
always approaching but never equaling the limiting value, might initially have been
misconstrued as a proof [of] incommensurability [Knorr 1975, pp. 33-34].

Knorr prefers to understand the Greek’s discovery of incommensurability in terms of
the side and diagonal of the square in terms of the properties of even and odd numbers,
in the classic formulation given by Aristotle in Prior Analytics 1.23, 41a29: “if the side and
diameter are assumed commensurable with each other, one may deduce that odd numbers
equal even numbers; this contradiction then affirms the incommensurability of the given
magnitudes,” [Knorr 1975, p. 23]. Knorr also offers several ingenious interpretations of
how a Pythagorean poof might have proceeded, based upon the geometry of the square
and the ratio of the side to the diagonal [Knorr 1975, p. 26-28]. In each case, the argument
proceeds by contradiction, assuming the commensurability in question, just as Aristotle
uses the example of the ratio of the side and diagonal of the square to demonstrate the
technique of reasoning per impossible in the Prior Analytics.
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Liu Hui’s Proof for the Volume of the Right Square-Based Pyramid V=(1/3)abh

Like the Greek treatments of algorithms to determine the ratio of the side and diagonal
of the square, or those of the pentagon or pentagram, involving applications of the
Euclidean algorithm that continue anthyphairetically ad infinitum, there is an interesting
example to be found among Liu Hui’s comments in the Nine Chapters, an algorithm that
does not terminate, “bu ke kai,” but one that leads to a very different conclusion from the
anthyphairetic case in Greek mathematics. This concerns the Chinese determination of
the volume of the right pyramid with rectangular base, called a yangma. Liu Hui knew that
the formula 1"=(1/3)abh was exact (whete ais the length and 4 the width of the rectangular
base of the pyramid, and /4 the height as in the yangma below), but how to prove it?

QIANDU YANGMA BIENAO

ATV

The argument runs something like this in the case of the above diagrams. The volume of
two giandu is cleatly abh. 1f one giandu is equal to one yangma (the square based pyramid)
and one bienao, and if the bienao is /2 a_yangma, then the volume of the yangma must be
(1/3)abh. 'The proof that this is so proceeds by an “infinite descent argument.” The
_yangma above, if bisected at half its height, can be broken down into the volumes C and
D, where the volume of C, equivalent to four gzandu, is exactly twice the volume of the
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two giandn of D. Thus, to prove that the yangma is twice the bienao, it sufficies to show
that the two remaining yangma volumes E are exactly twice the volume with respect to the
two bienao . But it is easy to see that these volumes are similar to the initial yangma and
bienao. By bisecting the volumes E and I, Liu Hui reiterates the same argument, but with
components half as large each time. As Jean-Claude Martzloff puts it in his discussion
of Liu Hui’s method, “Thus, he obtains more and more portions of the initial yangma
which are themselves in the desired proportion. The remaining parts decrease constantly
and, after passing to the limit, he concludes that Y=2B,” [Martzloff 1997, pp. 284-285;
see also Lloyd 1996, pp. 152-156, and Wu 2000, p. 60-61, and Chemla and Guo 2004, pp.
396-398]. In this case, the process ad infinitium serves to establish the proposition, that
since in all cases the ratio of the yangma to bienao is 2:1, this suffices to establish the general
proposition that the volume of the pyramid is (1/3)abh.

Liu Hui and Approximations for the Value of Pi

One last example will suffice here to illustrate how ancient Chinese mathematicians
approached the non-terminating approximation of certain ratios, namely of the diameter
to the circumference of the circle. Liu Hui notes that the traditional value was exactly the
perimeter of the hexagon inscribed in a circle of unit diameter, and thus fell short of what
the actual value of the circumference of the circle should be. To get a closer approximation,
Liu Hui considered successively larger inscribed regular polygons, increasing from the
0-sided to 12-sided to 24-sided all the way up to the 192-sided polygon for which he sowed
that the ratio of circumference to the diameter of a circle must fall between 3.14 64/625
and 3.14 169/625.

Here, the diagram on the right from the 7K 44 K8 Yongle dadian (Yongle Encyclopedia,
1403 CE) |Chapter 16,344, p. 8a] shows a figure accompanying Liu Hui’s commentary in
the Nine Chapters, which shows how closely Liu Hui’s thinking was to the familiar Greek
approach to the approximation of p/ taken by Archimedes. As Liu Hui explains the
argument in question: “The finer we cut the segments, the less will be the loss. Cut further
and further until unable to cut further. Then [the polygon] will coincide with the circle and
there will be no more any loss,” [translated by Wu Wen-Tsun 2000, p. 64].
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Wu Wen-tsun and the Mechanization of Mathematical Proofs

It is generally agreed that the “golden age” of ancient Chinese mathematics was reached
in the Song and Yuan dynasties. A good example of the power and generality of the
methods achieved in this period is that of Yang Hui (ca. 1238-1298) of the late Southern
Song Dynasty. In commenting on the works of one of Yang Hui’s forerunners, Jia Xian,

Wu Wen-Tsun explains:

According to Yang Hui’s works, there already occurred in Jia’s time
some diagrams bearing the name of Root-Extraction Basic Diagrams. Such
diagrams are actually the same as the so-called Pascalian Triangle of
17" century. Thus, it seems that Jia had freed himself from geometrical
considerations and, with the aid of the root-extraction basic diagrams, had
discovered his methods directly from a generalization of the arithmetized
Root-Extraction Shu of his ancestors [Wu 2000, p. 22; note that Shx

means “method”].
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But this was not all. The fullest generalization of algebraic methods in ancient
Chinese methods came with the “tian yuan” or “heavenly element” method. It was
the mathematician Zhu Shijie who generalized this method to enable the solution
of simultaneous sets of equations in as many as four unknowns. As Wu Wen-tsun
describes the method, he also accounts for the reason why it was limited to equations
in no more than four unknowns:

The Chinese version of the Pascal triangle shown on the left is from theDY TGS S7 Yuan
Yo Jian (Jade Mirror of the Four Unknowns, 1303) of 47T Zhu Shijie (1260-1320)
[Guo and Guo 2000, vol. 1, p. 32].

For the actual computation at the time of Zhu one had to place the
coefficients of various kinds of terms of polynomials in counting rods at
definite positions of the counting board. This limited the method to at
most four equations in four unknowns and only quite simple ones can be
so treated. However, that the method of Zhu enjoys a general character
which can be applied to arbitrary systems of equations is quite clear [Wu
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2000, p. 26].2

In his approach to the mechanization of mathematics, Wu found a useful parallel in the

methods of Descartes, what he calls “Descartes’ Program,
Chinese mathematics as follows:

>

which he compares with

In fact ... it seems clear that Descartes had the attitude of emphasizing
on geometry problem-solving by means of equations-solving rather than
geometry theorem-proving, just in the same spirit of our ancestors...
In a word, it may be said that Chinese ancient mathematics in the main
were developed along the way as indicated in Descartes” Program, and
conversely, Descartes’ Program may be considered as an overview of the
way of developments of Chinese ancient mathematics... [Wu 2000, p.

32-33).

2 The limitation arises due to the delegation of unknowns to the four cardinal regions of the
counting board, each corresponding to an unknown x,y,z,w (bottom, left, top, right), schematically, as

follows:
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Wu also acknowledges that the method is subject to “great defects and required clarification.” In fact,
one of the main objectives of his book on Mathematics Mechanization was to “give a solid mathematical

foundation of methods influenced by that of Zhu” [Wu 2000, p. 26].



Ontology Studies 8, 2008 273

When the Notices of the AMS announced the winners of the 2006 Shaw Prize in October
of 2000, the citation read as follows:

In the 1970s Wu turned his attention to questions of computation, in
particular the search for effective methods of automatic machine proofs
in geometry. In 1977 Wu introduced a powerful mechanical method,
based on Ritt’s concept of characteristic sets. This transforms a problem
in elementary geometry into an algebraic statement about polynomials
that lends itself to effective computation. This method of Wu completely
revolutionized the field, effectively provoking a paradigm shift. Before
Wu the dominant approach had been the use of Al search methods,
which proved a computational dead end.

By introducing sophisticated mathematical ideas Wu opened a whole
new approach that has proved extremely effective on a wide range of
problems, not just in elementary geometry... Under his leadership
mathematics mechanization has expanded in recent years into a rapidly
growing discipline, encompassing research in computational algebraic
geometry, symbolic computation, computer theorem proving, and coding
theory LAMS Notices 2006, pp. 1054-55].

The great success of Wu Wen-tsun’s interest in mechanizing mathematics was to discover a
means of translating geometric problems into algebraic equivalents subject to algorithmic
solutions. This had long been a hallmark of the Chinese mathematical mind-set, so to
speak, from antiquity to the present, and in the present, it has been the transformation of
those ancient mathematical procedures by Wu Wen-tsun that has led to new and profound
methods of proof on the very same terms that rule in internet ontology. By translating
the terms of a problem from the continuous space of geometry to its algebraic equivalent,
and then subjecting the latter to a suitable algorithmic interpretation, computers can
then be programmed to provide computational verification. This means of proceeding
algorithmically was one of the great strengths of ancient Chinese mathematics, and as
Wu Wen-tsun has often acknowledged, it was in the methods of his predecessors that he
found inspiration for the very modern applications of those methods in his own work on
mechanical problem solving. In this sense, therefore, Chinese mathematicians ancient and
modern have long operated and in very productive ways continue to work in a highly digital
world, where algorithmic thinking is a particularly successful approach to conceptualizing
and solving mathematical problems.
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