VALUES OF ENTIRE FUNCTIONS REPRESENTED
BY GAP DIRICHLET SERIES

F. SUNYER I BALAGUER

Introduction. In two previous notes [9],! I stated some results
which, in a general way, may be expressed as follows: If the Taylor
series which represents an entire function satisfies a certain gap con-
dition (which depends only on the order of F(z)), the zeros of
F(z) —f(z) are not exceptional with respect to the proximate order
of F(z) by any meromorphic function f(z) # « of lower order.

On the other hand, Mandelbrojt (see for instance [3, Theorem
XXV]) proves that an entire function represented by a Dirichlet
series takes each value @ # «, except at most one, in any horizontal
strip of width greater than a quantity which depends only on the
order (R) and on the upper density of the sequence of exponents of
the series.

In the present note we shall prove some results closely related to
those of my above mentioned notes and to that of Mandelbrojt just
quoted. These results may briefly be stated as follows: If an entire
function F(s) can be represented by a Dirichlet series satisfying cer-
tain gap conditions, the zeros of F(s)—a cannot be exceptional with
respect to the proximate order (R) of F(s) in any strip of width
greater than a quantity, determined by the order, for every value of
a ¥ « without exception.

In §1 we shall deal with functions of finite order (R); in §2, we
shall give results concerning functions of infinite order (R).

I think it will be of interest to remark that the theorems of the
type of the well known Hadamard’s theorem (which asserts that a
Taylor series satisfying a specific gap condition cannot be con-
tinued analytically outside its circle of convergence) together with
the results concerning relationship between gap properties and the
position of the Julia lines, and again together with the results of my
above mentioned notes and those contained in one of my papers
[10], enable us to state the following general principle (without pre-
tending that it holds for every case). By means of gap conditions in
the Taylor series the disappearance of the possibility of the existence
of the exceptional cases can be affirmed.

Therefore, the content of this paper may be regarded as a link
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extending this general principle to the Dirichlet series.
Finally, I wish to thank our colleague J. Savé for the help he has
given me when writing this work in English.

1

1.1. First of all I want to fix the meaning of a notation which will
continuously be used. By (o) will always be represented a positive
quantity tending to zero when the variable (represented here by o)
tends to — =« ; but it must be borne in mind that, even in one formula,
the notation €(c) may represent different quantities, with only the
common properties of being positive and that: lim,._.e(d) =0. It
is evident, therefore, that eé(¢) means almost the same as o(1), but
we have introduced the notation (o) in order to show the variable
and the limit to which it tends.

According to the custom the sequence {)\,.} will have, throughout
the present paper, the following properties:

0=Xo<)\1<“'<)\n<"', lim)\,.=oo.

Let N(\) be the greatest of the » such that \,<\. Following
Mandelbrojt [4], we shall call D(A\) =N(\)/\ the density function
of {)\,.}, and the quantity D*=Ilim supy-., D(\) shall be called the
upper density of {)\,,}. On the other hand, Mandelbrojt similarly
introduces the function D(\) =\~1/3D(x)dx which is called the mean
density function, and D* =lim supy-o,D(\) which is called the mean
upper density of { An }

Let f(s) be an entire functien satisfying the following relationship:

Lub. |fle+ )| = Mo, f) < o
—e i<t @
for any real value of ¢ (in particular, every function represented by a
Dirichlet series absolutely convergent in the whole plane will have
this property). For that type of function Ritt? defines the order
(which for that reason is called order (R)) in the following way:
p = lim suplo—gz—]‘i&ﬁ (log: X = log log X)

c=— —0

will be called the order (R) of f(s); we shall also express it by saying

2 J. F. Ritt, On certain points in the theory of Dirichlet seres, Amer. J. Math. vol.
50 (1928) pp. 73-86. I could not possibly consult this paper; all I know of it is the
part referred to by Mandelbrojt [3]. This is the reason for not including it in the

bibliography.
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that f(s) is of order (R) equal to p.
Likewise, representing by Y the horizontal strip® 6,<t=<60, and
putting

M(#Y,]) = Lub. | fle + it) ],

the order (R) of f(s) in ¥ will be
. log log* M (s, Y, f)
p = lim sup ’

g=—o —a

where logt X=log X if X=1 and logt X=0 if X =1.

As in the theory of entire functions where the notion of order with
respect to the modulus of the variable is improved by the introduc-
tion of proximate orders, we shall similarly introduce the notion of
proximate orders (R). We shall give the following definition: The
function p(s) will be a proximate order (R) if

lim p(o) = p, lim P,(”)o' =0,

and then the function f(s) will be of proximate order (R) p(o) if

. log M (o, f)
lim suyp——— =

Ty L Vs

and, likewise, the function f(s) will be, in the strip ¥, of proximate
order (R) p(o) if

. log M (s, Y, f)

lim sup——————=1

== V(o)

As in the present note we shall deal only with orders (R); in the
following lines the R will be dropped and the orders simply called
order and proximate order.

1.2. We shall represent by n(x, ¥, f) the number of zeros of f(s)
situated in the part 0202« of the strip Y; with this notation we
shall state—and later on prove—the following result:

THEOREM 1. Let

F(s) = i A€ M?

n=0

be a function, represented by a Dirichlet series convergent in the whole

3 Since in this work we shall speak only of horizontal strips, we shall henceforth
suppress the word “‘horizontal” which will always be understood.
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plane, of order p and of proximate order p(c); given a strip Y of width
>7/p, there exists a number A depending only on Y, p, and h such that
if, on denoting by D* the mean upper density of {\.},

D*< A and liminf Ay — M) = £ >0,

n=o0
then for any given finite value of a (without exception)

. ”(“’ Y,F— a)
hfnfup———l;(a)— Z By > 0,

where B, depends only on p, Y, and h.
1.3. The proof of this theorem is based on the following lemma:

LEMMA 1. Let f(s) be a holomorphic function in the strip Y (0, <t=0,)
if
(i) f(s) is sn Y of order p>w/(0:—0,) and of proximate order p(c),
(ii) in a strip Y, contained in Y,
log M(o, ¥,
lim sup_%_i_fl =4>0,
e V(o)
then there exists a quantity B, which depends only on Y, Y’, p, and A,
such that, if
y Y,
imsup 2 0 g
-2 V(o)
there will be a sequence {s,=an+its} (lim o,=— ) of points con-
tained in Y and a quantity r depending on Y, Y', and A, such that in
the circles |s—s,.| =<r the inequality

log | f(s)] <0
holds.

First of all, without diminishing the generality, we can suppose
that p(f:—6,) /= is not an integer. Furthermore, we may also suppose
that the strip Y is Itl <w/2, that Y’ is Itl =B, and that p is not an
integer and is >1.

We shall write

¥(s) = ¢(e™),

where ¢(2) is the canonical product of Weierstrass which has for zeros
the points g, =e~*», where the {s..} represent the zeros of f(s) situated
in the part ¢ <0 of Y.
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If

imsup "5 =

according to the properties of the canonical products it follows easily
that the inequality
log M(s, ¥, ¥) < (1 + ¢(0))CBV (o)
holds, where C depends only on p. Consequently
log M (s, V', S/¥) _

lim sup )

Furthermore let ¥; (| tl =p1) be a strip such that 8, >8 and Bip>7/2,
for instance

A —CB.

25 = e (5, 7)
61—2 max ﬁ’zp’

then it follows that the inequality (we suppose B<A/C)

(1.3.1) lim sup 2% M(;’( I;" Y S k4 - cB
O=—w o

holds, where K depends only on Y;, ¥’, and p. In order to prove this
latter inequality we shall have to take into account that f(s)/¥(s)
has no zeros in the part ¢ <0 of V.

By aid of a lemma of Bernstein [11, Lemma II] slightly modified
for being valid in the strips, and applying it to ¥(s), it is possible to
prove that in the strip ¥; (|¢| 8= (w+28:)/4) the relationship
(1.3.2) limsup B M@ Y2 I o\ kB

Zi V(o)
will hold, where K; and K, depend only on Y3 and p.

From the inequality (1.3.1) follows the existence of a sequence of

points {s: } in which

log | f(s4)/¥(s4) | < — 3K(4 — CB)V(al),
and consequently in the circles
|s—si| <8 — 8

there exists a domain, inside of which the point s will be found and
which will have points in common with the circumference
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IS—S»'I=32—51
in which
log | f(s)/¥(s)| S — 3K(4 — CB)V(ad).

From this result and from (1.3.2) may be deduced, by aid of a
theorem of Milloux* (if, for instance, 2B <A4/C), the existence of a
quantity r which depends only on p, ¥/, and A4, such that in the
circles | s—s! | < the inequality

log | f(s)/¥(s)| £ — 3K(4 — CB)V(q)
will hold, and consequently
log | f(s)| < — 3K(4 — CB)V(a) + (1 + ¢(a! )) K:«CBV (q.),

where K; depends only on p, ¥, and A.
Finally if B is smaller than a quantity B, which depends only on
Y’, p, and A, in the same circles the inequality

log | f(s)| <0

will hold, which is the result we had to prove.

1.4. Now we shall prove Theorem I. In order to simplify we shall
suppose that the strip Y is |t[ =w/2 and that, according to the
hypothesis of the theorem, p>1; this does not restrict the generality
of the proof, because it is evident that it may be attained by means of
linear transformation upon the variable s. Moreover, it is interesting
to point out that, since D* <1/h, the series which represents F(s) will
be absolutely convergent in the whole plane, since, according to a
well known result, a Dirichlet series whose exponents form a sequence
of finite upper density has its abscissa of convergence equal to its
abscissa of absolute convergence; therefore, we are concerned with
a case in which the definitions of order of F(s) are possible.

According to a result of Mandelbrojt [4, Theorem a] for any s,
=g¢+1ty, inside the circle

(1.4.1) Is—so|§1rﬁ*+e,

where € is a given positive quantity, arbitrarily small, but fixed, there
will exist a point s’ at which®

(1.4.2) log |F(s')| > log | n| = Moo — log ()‘..A:) — Cq
4 For a very precise statement of this theorem see [10, Lemmas 1, 4] and for the
proof see [6, pp. 96-100].

5 When the Dirichlet series contains a constant term (when g070), the definition
of the A(r) (and, therefore, of the A*) given by Mandelbrojt must vary slightly.
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where c. is a constant which depends on ¢; and this inequality will
hold for every value of n.
On the other hand, according to a result contained in the same
paper of Mandelbrojt [4, p. 355] for values of n sufficiently large
—108 ()‘nA:) — Ce

(1.4.3) Y > — D*(7 — 3 log (kD*)) — e.

Let us write

log u(e) = max (log | aa| — Nao);
15r<w

then evidently, if ¢ is smaller than a certain negative quantity, the
value of # which makes maximum the expression:

log | aa[ — Mo

will be one of those which satisfy (1.4.3). As a consequence of (1.4.2),
we shall conclude that, if o is smaller than a negative quantity, in
the circle (1.4.1) there will exist a point s’ at which the following in-
equality will hold:

log | F(s") | > log u(so + d),

where d=D*(7—3 log (hD*))+e. Moreover, according to Sugimura
[8, Theorem 5], as D* <eD* is finite,

log u(e) = (1 — €(0)) log M (o, F)
and consequently we shall have
log | F(s") | > (1 — e(ov)) log M(ao + d, F)
and for any finite value of @
(1.4.4) log |F(s") ~ a| > (1 — €(00)) log M(oo + d, F)

because according to a result due to Doetsch [1], M(¢, F) indefi-

nitely increases as ¢ tends to — «.
If D*<1/2 and if

. n(e, Y,F — a)
ll:nfng =B< Bo.

in any strip Y’ defined by
1
Itl =8> rmax[ﬁ*,——] ,
2p

then, according to Lemma 1, there exist a sequence of points
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{$a = on + ita} (lima,.=—°°,|tn|§3)

n=ow

and a quantity 7 which depends only on &, p, and Y”, that is to say,
on k, p, and D*, such that in the circles:

(1.4.5) |s—sa| <7
the following inequality holds:
(1.4.6) log |E(s) — a| < 0.

Evidently, if D*<1/(2p), we shall be able to choose ¥’ fixed and
independent of the value of D*; consequently, the quantities B, and
r will depend only on % and p; that proves that, if

—_ 1
D*<min(—-, i), B < By,
2p T
inequality (1.4.4) in which we shall put so=s, and inequality (1.4.6)
will be incompatible, because for a value of e sufficiently small the
circle (1.4.1) will lie entirely inside of (1.4.5); therefore, if
— 1 r
D* < A = min (—, ——),
20 T
it will follow that B = B,, which is the statement of the theorem.
1.5. REMARKS. If
.. . logs M(s, F)
lim inf —M—

o=—o -0

=p>0

and if pi(s) is a proximate order such that
Vv
im .___lga)_ - (Vx(ﬂ) = —m(v)c),
o=—» log M(c, F)

for any fo(s)#0 and fi(s), entire and of proximate order =p,(s),
then, with the hypothesis of Theorem I, the following relationship will
hold:

no, ¥, JoF = £) _

lim sup Bs.

og=— V(a’)

Moreover, if the function F(s) is of a very regular growth with
respect to the proximate order p(s), that is to say, when the follow-
ing relationship holds:
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.. . log M(a, F)
(1.5.1) lim inf ———— =4, > 0,

o=—x V(O')
not only will the limit superior of the expression #z(e, Y, foF
—f1)/ V(o) have lower positive bound, but the same will happen with
the limit inferior of this expression; that is to say, with the hypothesis
of Theorem I, and on supposing (1.5.1) true, the relationship

n(av Y, fOF - fl)

lim inf =By >0
g=—o V(a) ’

will hold, in which B{ depends only on Y, p, k, and 4;.

Finally, on representing by D the maximum density of {)\,.} , the
inequalities D*<D*=<D allow us to express the gap hypothesis in
Theorem I and in the two precisions we have just indicated, by
substituting D* by D*, or else by D. Moreover, if we express the gap
condition by means of D, it is possible, by using a generalization of
a result due to Pélya [7, chap. III, Theorem IV] instead of Mandel-
brojt's inequality, to prove that in this case the quantities A and B,
are independent of &, if £>0.

2
2.1. In a way similar to that of §1.1, we shall consider an entire
function f(s) which satisfies the following condition:
Lub. | f(e + it)| = M(q, f), Lub. Mo, f) <

—o<t<+ o olSoSo,

for any o, and o2 But contrary to the hypothesis of 1.1, we shall
suppose that

. log: M(o, f)

lim sup ———+— = o,

o=—w -0
that is to say, we shall suppose that f(s) is of infinite order (R).

Following a procedure similar to that of K. L. Hiong [2], it may

be proved that in this case there always exist functions W(o) with
the following properties:

W(a - m> < [W(o) ]+,

logs M(o,
2.1.1) lim sup &2 M@ ) _
o=—w log W(o)
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and finally log W(o) is a convex function of o. Any function with the
above properties shall be called an order of f(s). (Generally it is the
expression (log W(s))/ —o which receives that name, but owing to
various reasons we shall not follow the custom.)

Likewise, if f(s) is of infinite order in the strip ¥, there will exist
functions W(s) with the same properties as before, but, instead of
satisfying (2.1.1) they will satisfy the relationship:

log logt M(o, ¥, f) -1
o= log W (o) B

?

and any function of this class shall be called an order of f(s) in Y.

2.2. THEOREM II. Let

F(s) = D ane
n=0
be a Dirichlet series convergent throughout the plane and which repre-
sents a function of order W(o).
If the sequence {\,} has the properties:
limsupDQA)M < ©» (0 < B < 1), lim inf (A\py1 — Ns) = £ > 0,
A=o n=w

whatever the strip Y and the finite value a (without exception) may be, it
follows that

2.3. Similar to the reasoning in the case of finite order, the proof
of the preceding theorem may be based on the following lemma.

LEMMA 2. Let Y be any strip and Y’ another strip contained in Y.
If W(o) is an order of f(s) both in Y and in Y’, and if

Pt log W (o) '

there will exist a sequence {s., =g.+it,} (limo,= — ®) of points inside
Y such that in the circles

|'s = sa| = [W(ew)],
where v >0 1s arbitrary, the relationship

log | f(s)| < — [W(en)]—etow
holds.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



320 F. SUNYER I BALAGUER (April

The proof of this lemma is almost the same as that of Lemma 1.
2.4. According to a result of Mandelbrojt which we have made use
of, in the circle

|s—s| =7 (s0 = o0 + ity)
there exists a point s’ at which®
log | F(s') | > log [ an| — Naoo — log An— log (rL(r))

for any value of n. Taking the value of » which gives the maximum
value to the expression

log | anl — An0o,
the above inequality will take the form:
(2.4.1) log IF(s’) | > log u(so) — log Ar— log (rL(r)).

On the other hand, it is easy to prove that, in the Dirichlet series
having the properties we are now taking into account, the relation-
ship

M(o, F) < u(o) [W(o) ]H+e@

holds, and that from this inequality it follows that if {o.} possesses
the properties:

limop = — o, log M(ox, F) > [W(ay)]t=ew,

k=
then it will possess the property:
(2.4.2) log u(ow) > [W(ow) ]1—etw.

Moreover, if we represent by A(¢) the value of A\, corresponding
to the value of #» which gives the maximum value to the expression
log [a,.l —\.0, then it is possible to prove that

Mo) < [W(o) i+
and, therefore, according to Mandelbrojt [4, p. 355] we shall have

in (2.4.1)

(2.4.3) log A% < [W(cq)] 08 Gtet),

Likewise, according to Mandelbrojt [5, Lemma VI], from the condi-
tion

lim sup DAV <

x=”

8 Since La(r) <L(r) = f; A(t)e~*dt, the L,(r) can be replaced by L(r).
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it follows that
(2.4.9) log (rL(r)) < Cré-118 (C = constant < ),
As a consequence, for any ¢, if we put
=0, r=[We)]*  (6<8/01-8),

it follows from (2.4.1), (2.4.2), (2.4.3), and (2.4.4) that the function
F(s) is of order W(o) in any strip, and evidently, the same happens to
the function F(s)—a.
If, contrary to the statement of the theorem, there were a finite
value ¢ and a strip Y for which
log n(e, Y,F — a

lim sup g nle ) <1,

o= log W (o)
then, from Lemma 2, there would exist a sequence of points
{s,,’ =0}t } inside Y, such that in the circles

|s—si| < W),

the relationship
(2.4.5) log |F(s) - al < — [W(o-k')]l—e(ai)

will hold.

On the other hand, applying to F(s) —a Mandelbrojt’s result which
we have made use of several times, but keeping constant the value of
n=mn, in such a way that a.,70, it will follow that, in the circles

|s—si|sr=[WeE)]? (6 < B/(1 = B)),
there will exist a point s’/ at which
log |F(s") — a| > 10g | @ny| — Mapoid — log Am,
— log (L) > — C[W(ai) pe-re
and since the value of v in Lemma 2 is arbitrary, we may suppose
that v <@ and, as a consequence the inequalities (2.4.5) and (2.4.6)
are incompatible, which proves the theorem.

2.5. As in the case of finite order, when the function F(s) is of a
regular growth with respect to W(s), that is to say, when

logs M(o, F)
im —— =1
o=— lOg W(O’)

(2.4.6)

Theorem II may be stated in the following way:
If the hypotheses of Theorem 11 are fulfilled and F(s) is of a regular
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growth with respect to W(o), for any fo(s) #0 and fi(s), entire and of
respective orders Wo(o) and Wi(c) such that
Wo(o) < [W(a) (b <min (1, 8/(1 - B))),
Wio) < [W(o) (b1 < 1),
we shall have

log n(a, ¥, foF — f1)
im =1
o=—w log W(a)

whatever the strip Y may be.
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