
Accelerating Semantic Search with Application of Specific
Platforms

Marius Monton, Jordi
Carrabina, Carlos

Montero, Javier Serrano
Laboratory for HW/SW

Prototypes and Solutions
(CEPHIS)

ETSE-UAB
Spain

+34935813534
{name.surname}@uab.cat

Xavier Binefa,Ciro
Gracia,

Digital Video Understanding
Group

Dept. Computer Science
UAB
Spain

{xavier.binefa;
ciro.gracia}@uab.cat

Mercedes Blázquez,
Jesús Contreras

iSOCO (Intelligent Software
Compontents, S.A)

{mercedes;jcontreras}@isoc
o.com

Emma Teodoro, Núria
Casellas, Joan-Josep
Vallbé, Marta Poblet,
Pompeu Casanovas

Institute of Law and
Technology (IDT)

UAB, Spain
{name.surname}@uab.cat

ABSTRACT
Semantic Search and Ontologies are one of the key technologies
that can improve content management. Nonetheless, in order to be
widely diffused, these technologies lack real-time capabilities,
that speed up both the indexing and the retrieval processes. This
contribution presents the approach and strategy proposed to tackle
this problem, within the Spanish project E-Sentencias; a project
for the development of a management system for lawyers that
includes documentation and multimedia related to the
management of their legal cases.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.
This is just an example, please use the correct category and
subject descriptors for your submission. The ACM Computing
Classification Scheme: http://www.acm.org/class/1998/

General Terms
Algorithms, Performance, Design,, Experimentation, Theory.

Keywords
Semantic Search, ontology, HW/SW acceleration platforms,
Reconfigurable Devices

1. INTRODUCTION
Document indexation has been, up to now, the most commercially
reliable and secure approach for the identification and storage of
legal documents (in databases) for subsequent retrieval.
Nonetheless, there are great disadvantages to this approach, such
as the need to index manually, its slowness and subjectivity [1].
Legal professionals spend an important part of their time
searching and retrieving specific legal information and, thus,
improving the functionalities for search and retrieval of legal
documents is paramount for the development of search engines
for the legal domain. Moreover, at the moment, all the

information which is available for retrieval is based on text and
does not include multimedia files1

To solve this problem, the E-Sentencias Project will develop a
software-hardware system for lawyers to manage the
documentation connected to their legal cases and the related
multimedia files. Both an ontology-based metasearch engine and
a specific hardware platform will be developed to optimize the
knowledge generation and management processes in the judicial
field. The objectives of this approach are: (i) to save time to users;
(ii) to aid searches intelligently; (iii) to optimize the results; and
(iv) to improve the organization of the search memory. To
achieve these results, the creation of specific legal domain
ontologies and the refinement and integration of different existing
technologies is needed.

The legal field constitutes a privileged domain for the application
of the Semantic Web and several legal ontologies2 are being used
to construct tools and prototypes to support the management,
organization, search and retrieval of documents stored in legal
databases [12]. Semantic search, as opposed to keyword search,
not only allows information management and retrieval but also
knowledge management and retrieval, as it offers the possibility
to distinguish between the different meanings contained in a text
(or in multimedia files).

1 According to the Civil Procedure Act (Ley 1/2000, de 7 de

enero, de Enjuiciamiento Civil), all civil cases should be
recorded in video.

2 For more information regarding legal ontologies see
[2,3,4,5,6,7,8,9,10,11]

SW4Law workshop 2007 47

Therefore, the developments regarding ontology-based semantic
search offer encouraging qualitative results, as they reduce
significantly the amount of information retrieved (compared to
indexing) and, at the same time, they improve the quality of the
document retrieval process (it filters the non-semantically related
documents).

However, quantitatively, semantic searches are not yet
sufficiently efficient. As an example, an ontology may be
represented as a graph not totally connected (connectivity
depends on the domain of application). In order to obtain the
maximum similarity/likeliness between concepts we need to cover
and calculate the distances within this graph. Therefore, the
semantic relationships between ontological concepts are
equivalent to the distances within the graph. For that reason, the
problem becomes an iterative problem from a computational point
of view, which allows the application of mathematical classic
techniques (Dijkstra’s algorithm).

The process to cover an ontology based on 10.000 nodes (with
different connectivity degrees) might take from 9 hours up to 4
days. The improvement of the computational time would result in
a more efficient and cheaper application of semantic technologies.
In this paper we outline the development of the computational
acceleration for ontological searches using application specific
embedded systems, based on hardware platforms and FPGAs
(Field Programmable Gate Arrays) or CPLDs (Complex
Programmable Logic Devices).

2. COMPUTATIONAL COMPLEXITY
OF IMPLEMENTATION ALGORITHMS
To find out what concepts are semantically related and the
quantification of the relationship they have, an appropriate
algorithm that takes all possible paths between the two concepts,
which calculates scores for all paths and chooses the maximum
score, is needed.

This algorithm is a variant of Dijkstra's algorithm [13]. Basic
implementations of this algorithm have a computational
complexity of O(|V|2), being V the number of vertices. This
complexity appears due to: (1) the Extract-max function, which
returns the next vertex with strong relation (large value on edge)
and (2) the operation of updating adjacent vertices to last vertex
selected.

We can observe that the total number of operations for updating
vertices is only O(E), being E the number of edges among
vertices. However, the total number of operations in (1) is still
(O|V|2). Some improvements to this algorithm can reduce
complexity to O(|E| + |V| log |V|) using Fibonacci heap to store
the graph itself, but this is only true in case of sparse graphs:
graphs with much less edges than |V|2,what can be translated to
our problem as having much more concepts than binary relations

among them. That condition is actually not valid on our
ontologies (where the ratio is around 1 to 10), so other techniques
are needed to improve this algorithm.

3. INTRODUCTION TO
RECONFIGURABLE DEVICES
The computational platforms used for this kind of applications
have evolved through the history, experimenting with different
architectures (servers, meshes of processors, clusters, etc.). But
complex indexing and search problems represent a broad
spectrum of algorithms that combine different computations with
specific platform requirements, which demands architectures that
support such heterogeneity.

When planning the architecture of a general purpose machine,
there is the additional requirement of giving support to a number
of different applications with the same platform, leading the
whole system to be programmable. Our purpose is the
development of a system capable of prototyping the
implementation for a specific problem, semantic search, with
reconfigurable devices.

10 50 100 200 300 400 500

 -

2,50

5,00

7,50

10,00

12,50

15,00

17,50

20,00

22,50

25,00

27,50

nodes

tim
e

(s
)

Figure 2: Execution time of the algorithm
according to the number of nodes

function Dijkstra(G, w, s)

 for each vertex v in V[G]

 d[v] := infinity

 previous[v] := undefined

 d[s] := 0

 S := empty set

 Q := V[G]

 while Q is not an empty set

 u := Extract_Max(Q)

 S := S union {u}

 for each edge (u,v) outgoing from u

 if d[u] + w(u,v) > d[v]

 d[v] := d[u] + w(u,v)

 previous[v] := u

Figure 1: Dijkstra's Algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

48 June 8, 2007

A system like this is configured in compilation time from a
description written in a high level language, partitioned into
processes to be executed different resources ranging from
processors to application specific hardware resources. This
process of describing both hardware and software is based on a
set of design methodologies known as “hardware-software co-
design”. In last years, they can not only implement hardware
modules but also, due to the increasing device size and density,
FPGAs can contain several processors (soft core processors).

4. ACCELERATION SCHEME
Our acceleration platform will be based on a PCI expansion card
for a standard PC. This PCI card will contain a FPGA as main
computational device and the amount of memory required for
complex problems. This expansion board will accelerate the
process of finding next suitable vertex and maintaining the edges
set updated.

Due to amount of memory needed to store all vertices and edges,
external memory is used. FPGA will access this memory, and will
be accessible to the SW application (usually running in a PC)
through a standard Application Programming Interface (API).
Using this API, current Dijkstra code (included in the SW
application) will call Extract_Max function and this function will
be executed on our HW accelerator platform. This way, the most
costly function will be implemented in HW, with a fast execution
time and running in parallel to the rest of the SW application.

There are three possible approaches to implement the
Extract_Max function in our platform using different
computational structures: (i) sorted array (ii) sorted linked list and
(iii) heap.

4.1 Sorted array
Inside FPGA, it's possible to store small amount of information.
The design should allow keeping an array permanently sorted.
Insertion is done in the right place, and the rest of the array is
shifted accordingly. This implementation is fast (one cycle per
insertion): its complexity is O(1) for insertions and Extract_Max,
but it has great penalty on delete and update functions that are
O(|E|), and also in the fact that it cannot store large amounts of
data due to internal FPGA memory limitations.

4.2 Sorted linked list
A linked list can be implemented using external memory to
FPGA. In this implementation, FPGA is in charge of access to
external memory to ensure that the linked list is always sorted.
This way, FPGA will find the insertion point by exploring the list
and then modify that list to insert, update or delete a node.
Complexity of this operation is O(|E|).

4.3 Binary Heap
In this approach, FPGA would be in charge of maintaining a
binary heap of nodes. Using this implementation, external
memory to the FPGA will be used to store the heap. For every
operation, FPGA needs to access several times the external
memory, what means slower speed. This implementation has O(1)
for Extract_Max function and O(log |E|) for insert and delete
operations, and it can store large amount of edges due use of
external memory.

This last solution can be used implement both costly functions
Extract-Max function and update adjacent vertices sharing the
same storage structure. This method can be optimally
implemented with a FPGA and using external memory to store the
array of the binary heap.

In these approaches, main bottle-neck will surely be the PCI
transfer between PC and our HW acceleration platform. For that
reason, next stage of development will involve the
implementation of the complete algorithm in the reconfigurable
platform, where software only stores graph into memory and PCI
board returns all possible relations between nodes.

5. CONCLUSIONS AND FURTHER
WORK
In this paper we presented a set of proposals to improve ontology
search, based on the implementation of reconfigurable devices.
This research is currently being developed within the nationally

Routing
Logic
Blocks

SRAM

Memory
Blocks I/O Blocs

Routing
Logic
Blocks

SRAMSRAM

Memory
Blocks I/O BlocsI/O Blocs

Figure 4: FPGA Basic Blocs

Figure 3: Sorted Array

Figure 5: Linked List

SW4Law workshop 2007 49

funded E-Sentencias Project, which has the development of a
software-hardware system for lawyers to manage the
documentation connected to their legal cases and the related
multimedia files as its objective.

With these improvements, we will able to do complex searches
and relationship extractions in large ontologies in few seconds
instead of in the current minutes or hours. Moreover, the plan to
develop a full platform for managing ontologies can enhance the
use of these technologies in new applications.

6. ACKNOWLEDGMENTS
E-Sentencias (E-Sentencias. Plataforma hardware-software de
aceleración del proceso de generación y gestión de conocimiento
e imágenes para la justicia) is a Project funded by the Ministerio
de Industria, Turismo y Comercio (FIT-350101-2006-26). A
consortium of: Intelligent Software Components (iSOCO),
Wolters Kluwer España, IUAB Institute of Law and Technology
(IDT-UAB), Centro de Prototipos y Soluciones Hardware -
Software (CHEPIS - UAB) y Digital Video Semantics (Dpt.
Computer Science UAB).

7. REFERENCES
[1] Casellas, N., Jakulin, A., Vallbé, J.-J. and Casanovas, P

Acquiring an ontology from the text. In M. Ali and R.
Dapoigny, editors, Advances in Applied Artificial
Intelligence, 19th Internatoinal Conference on Industrial,
Engineering and Other Applications of Applied Intelligent
Systems (IEA/AIE 2006). Annecy, France, June 27-30 2006,
Lecture Notes in Computer Science 4031, Springer, 2006:
1000-1013.

[2] McCarty, L.T. A language for legal discourse, I. Basic
features. In Proceedings of the Second International
Conference on Artificial Intelligence and Law. Vancouver,
Canada.

[3] Stamper, R.K. The role of semantic in legal expert reasoning
and legal systems. Ratio Iuris, 4(2): 219-244, 1991.

[4] Stamper, R.K. Signs, Information, Norms and Systems. In B.
Holmqvist and P. Andersen, editors, Signs of Work. De
Gruyter, 1996.

[5] Valente, A. A Modelling Approach to Legal Knowledge
Engineering. IOS Press, 1995.

[6] Breuker, J., Elhag, A., Petkov, E. and Winkels, R.
Ontologies for legal information serving and knowledge
management. In Legal Knowledge and Information Systems,
Jurix 2002: The Fifteenth Annual Conference. IOS Press,
2002.

[7] Kralingen, R.W. van. Frame-Based Conceptual Models of
Statute Law. Computer/Law Series, No.16, Kluwer Law
Interational, 1995.

[8] Gangemi, A., Pisanelli, D.M. and Steve, G. A formal
ontology framework to represent Norm Dynamics. In
Proceedings of the Second International Workshop on Legal
Ontologies, 2001.

[9] Casanovas, P., Poblet, M., Casellas, N., Vallbé, J.-J., Ramos,
F., Benjamins, V.R., Blázquez, M., Rodrigo, L., Contreras, J.
and Gorroñogoitia, J. D10.2.1 Legal Case Study: Legal
Scenario. Technical Report SEKT, EU-IST Project IST-
2003-506826, 2004.

[10] Casanovas, P., Casellas, N., Vallbé, J.-J., Poblet, M.,
Benjamins, V.R. Blázquez, M., Peña-Ortiz, Rl and
Contreras, J. Semantic Web: A Legal Case Study. In J.
Davies, R. Studer and P. Warren, editors, Semantic Web
Technologies: Trends and Research in Ontology-based
Systems. John Wiley & Sons, 2006.

[11] Benjamins, V.R., Casanovas, P., Gangemi, A. and Breuker,
J., editors, Law and the Semantic Web: Legal Ontologies,
Methodologies, Legal Information Retrieval, and
Applications. Lecture Notes in Computer Science. Springer
Verlag, 2005.

[12] Casanovas, P., Casellas, N., Vallbé, J.-J., Poblet, M., Ramos,
R., Gorroñogoitia, J., Contreras, J., Blázquez, M. and
Benjamins, V.R.. Iuriservice II: Ontology Development and
Architectural Design. In Proceedings of the Tenth
International Conference on Artificial Intelligence and Law
(ICAIL 2005). Alma Mater Studiorum-University of
Bologna, CIRSFID, 2005.

[13] Goos, G., Hartmanis, J., and van Leeuwen, J.Intelligent
Search on XML Data Applications, Languages, Models,
Implementations, and Benchmarks, 125, 2003.

Figure 6: Binary Heap

50 June 8, 2007

	10.1.1.106.1167 49.pdf
	10.1.1.106.1167 50.pdf
	10.1.1.106.1167 51.pdf
	10.1.1.106.1167 52.pdf

