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Abstract

We revisit the known counterexamples and the state of the art of the Markus-Yamabe
and LaSalle’s problems on global asymptotic stability of discrete dynamical systems. We also
provide new counterexamples, associated to difference equations, for some of these problems.

1 Introduction
Let F : R — R" be aC' map and consider the discrete dynamical system
Xp1 = F(x). 1)

Let A = (a;;) be arealh x n matrix. We denote by (A) the spectrum o#, i.e., the set of
eigenvalues ot and by|A| = (|a;;|). We also denote b F'(x) = (85—357’0) the Jacobian matrix
of Fatx € R". WhenF(0) = 0, we can writeF'(x) in the formF (x) = A(x)x, where A(x) is
ann x n matrix function. Note that thisi(x) is not unique.

LaSalle in [12] gave some possible generalizations of the sufficient conditions for global

asymptotic stability (GAS) fon. = 1. Concretely, the conditions are the following:
() |A] < 1forall A € o(A(x)) and for allx € R",

(I [\ < 1forall X € o(|A(x)|) and for allx € R",

(
(
() |A| < 1forall X € o(DF(x)) and for allx € R™,

(IV) |A] < 1forall A € o(|DF(x)|) and for allx € R™.

In [6] it is proved that none of the conditions | and Il implies GAS, evensoe 2. In
particular in both cases there are polynomial maps satisfying them and such that the origin of (1)

is not GAS.

Conditions Il and IV are also known as Markus-Yamabe type conditions because they are
similar to a condition proposed for ordinary differential equations, see [4, 10] and the references
therein. In [5] itis proved that condition Il implies GAS for planar polynomial maps and that there
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are planar rational maps satisfying it having other periodic points. In [4, 8] there are also examples
of polynomial maps defined iR, n > 3, satisfying the condition and having unbounded orbits.
Moreover in [5] it is also proved that whe is polynomial condition IV implies GAS.

Taking into account all these examples and the known results it turns out that it only remains
to study the following problem:

Open Question.Setn > 2. Let F : R* — R"™ be aC' map satisfying#'(0) = 0 and such that
condition IV holds. Is the origin GAS for the discrete dynamical sy$igt

In the forthcoming paper [7] we give a general result on GAS for maps of the form

F(zy,z0,...,2n) = (22,23, ..., f(x1,22,...,2p)). 2

In particular it implies that wher#’(0) = 0 and condition IV is satisfied then the origin is GAS
for the dynamical system generated by (2). Notice that precisely, difference equations ot order
can be studied through dynamical systems generated by maps of the form (2).

In this note, we revisit the known counterexamples and the state of the art of the Markus-
Yamabe and LaSalle’s problems. We also provide difference equations counterexamples to condi-
tions | and 1.

2 Examples and counterexamples

2.1 Condition I.
The map given in [6],

F(z,y) = Az, y) (;C) = <_(:§;221Z)2 —(:r21+:cy)> @) ’

satisfies condition (I) because

det (A(z,y) — A\1d) = A2
and so,0(A(x,y)) = {0}. On the other hand it is easy to check ti@{(1,—1) = (1,-1).
Therefore the origin is not GAS.

Remark2.1 lItis clear that the above map can be extende'to: > 2, as

T3 T4 xZ
F(I‘l,l‘g,...,ﬂi'n) = (F(l‘l,.ﬁg),?,?,...,?n),

providing an example satisfying condition (1), wit{ A(x)) = {0, 1/2} and not having the origin
as a global attractor. A similar trick can be used in all the counterexamples presented in this
section.

2.2 Condition II.

Following again [6], consider the map

P = A (7) = (425 1

)6 @
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For it, o(JA(x,y)|) = {1/2}. Moreover the hyperbold(x,y) : zy = 1} is invariant for (1),

because -
x 3x +1
Fl(xay)FQ(x)y): o (M> =1

2 2 _—

Hence we have proved that condition (IlI) does not imply that the origin is GAS.

Remark2.2 As usual, given a matri¥ we denote its spectral radius pyA) = maxyc, (4} |-
It is well known thatp(|A|) < p(A), see [6, 9]. Therefore condition Il is more restrictive that
condition I. In particular the map (3) gives a counterexample for both conditions | and .

2.3 Condition Ill.
Forn = 2, consider the rational map introduced by Szlenk in the appendix of [5],
ky3 ka?
F =(- 1,2 : 4
@) = (e i) e 2VE) @

It can be seen that
o(DF(x)) C {z € C : |2| < V3k/2}

F4 <#’0) — <#70)_
k—1 kE—1

In [5] it was also proved that whem = 2 and F' is a polynomial map it is true that condition
(1M implies GAS, see next subsection. Neverthelesspfor 3, polynomial counterexamples can
also be constructed, see [4]. If we take the map

and

9 =

Fle.y,2) = (5 +y@+y2)% 5 - @ +32)%5) (5)

it can be seen that whemy, yo, z0) = (174/32,—63/32,1) ,

F™ (0, Y0, 20) = (% 2", —g—; 22m,2_m> :
and so the origin can not be GAS. This example satisfies ¢h&tF'(x)) = {1/2} because
DF(x) = x/2 4+ N(x), whereN (x) is a nilpotent matrix. These maps belong to a bigger class

of counterexamples constructed in [8].

The example (4) has also been modified in [5] to get a counterexample given by a diffeomor-
phism. Later, other conditions have been added to condition Ill, like the one of having the infinite
as a repeller, for trying to obtain GAS. Nevertheless, assuming also these additional conditions it
turns out that it is possible to obtain dynamical systems for which the origin is not GAS, see [2].
Recently, in [1] a new family of counterexamples satisfying condition Ill together with these more
restrictive conditions is introduced. The maps

Fupe(z,y) = (ae™ — by, cz), (6)

for some concrete values of the parametersandc, provide an explicit family of counterexam-

ples. The nice point with these new counterexamples is that their dynamics are very complicated,
because they can be seen as perturbed twist maps. In Section 2.5 we will use the above family to
construct a difference equation counterexample to Condition 111
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2.4 Conditions Il and IV in the polynomial case.

For the particular case df being a polynomial map there are some positive results. For instance
condition lll implies GAS fom = 2, see [5], and condition IV also implies GAS for anysee [6].
We do not give here the proofs but we want to comment a key difference between the polynomial
and the non-polynomial cases.

Let B(x) be ann x n matrix with polynomial entries and such that the Sgtgno(B(x)) is
contained in a compact set. Let us prove that its characteristic polynomial

px(A) = det(B(x) — A1d)

is indeed independent af Observe that the coefficients @f(\) are polynomials ox. Therefore

the result follows if we prove that these coefficients are bounded functions. This is a straightfor-
ward consequence of the Vieta’'s formulas that give the coefficients of a monic polynomial as
symmetric polynomial functions of its roots, because it is clear that by hypothesis, fgradiithe

roots ofp, are bounded.

Therefore when one of the conditions Il or IV holds ahAdis a polynomial map the char-
acteristic polynomial oD F'(x) is independent ok. As can be seen in the proofs of the above
mentioned cases this fact forces some kind of triangular structurgstlimt allow to prove that
the origin is GAS. Nevertheless, recall that for= 3 there is a polynomial counterexample (5)
satisfying condition Il1.

2.5 A difference equation counterexample for condition Il

Motivated by family (6) we will construct a counterexample of condition Ill given by a map
associated to a difference equation.
Consider the family of difference equations

Tt = 2 Tmt1 — bx,,. @)

To study its behavior we can consider the dynamical system generated by the map
ﬁb(xvy) = <y7 26_y2 - be?) )

that, forb # —1, has a unique fixed poirt, xo), wherezy = z¢(b) is the only solution of

2e~70 — (b + 1)xo = 0. Therefore, with a translation, we can conjugggavith
Fy(,y) = (y, 2~ 00" — (b+ 1)z — ba).

Notice thatF;(0,0) = (0,0). Moreover, since

0 1
DFb(xay) = <—b _4(y+x0)e(y+$0)2)

andmax,cr |4we—“’2| = 2,/2/e we know that forb > 2/e the eigenvalues of the above matrix
are complex conjugated with modulus less than or equdbtdrherefore for each € (2/e, 1),
the mapF;, satisfies condition Il1.
Following [1] we consider first the map;. It is an area preserving map which numerically
seems to present all the complicated dynamics associated to the perturbed twist maps. In Figure 1
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Figure 1: Three obits af}

we show several thousands of points of three orbi@lcﬁndﬁo,ggg. Recall that these maps are
conjugated to the correspondirig.

Although it is not easy to prove, from the above pictures it seems natural to believe Izt
hyperbolic periodic orbits and associated to them transversal heteroclinic points. Therefore, for
b < 1 many of these hyperbolic points remain, providing a counterexample that satisfies condition
Il and has complicated dynamics.

In any case, fob = 1 it is not difficult to see that the maﬁ has two orbits of three peri-
odic points suggested by Figure 1. One of them is of elliptic type and the other one of saddle
type. Moreover, they remain fdr < 1, see again Figure 1. In fact in Figure 2 we present the
two curves corresponding to the first and the second componeﬁg%(nfy) — (z,y) = (0,0)
for b € {1,0.999}. The second component corresponds to the dashed line. Notice that these
curves intersect transversally at seven ponts which are the fixed point and the two 3-periodic or-
bits. Therefore the origin of the correspondifgis not GAS.

b=0.999

Figure 2: Fixed and three periodic pointsli)f
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2.6 A difference equation counterexample for condition |

In the previous section we have seen that there are counterexamples of GAS, satisfying condition
Il and which are of the form

F(:U,y) = (y7f(y) - b:lj),
with f smooth andf(0) = 0. Let us see that they also satisfy condition 1. We write

l%%y%:A@£D(§>?:<?b é@><j).

By the mean value Theorelf(y)/y = f'(z) for somez between) andz. ThereforeA(z,y) =
DF(x, z) for somez. Theno(A(z,y)) C o(DF(z,y)) and the result follows.

3 On the existence of the fixed point

One could think that the hypothesis tat0) = 0 is not essential when one considers the problem
of GAS under any of the conditions I-IV. Soon, one realizes that even whenl it has to be
taken into account. For instance, if one considers the dynamical system generated by the map

F(z) = log(1 + "),

itis clear thai DF'(z)| = |F'(x)| < 1, satisfying condition IlI, but having no fixed point.

In fact it was proved in [5] an interesting relation between the existence of a fixed point for
polynomial maps under condition 11l and the celebrated Jacobian Conjecture. We reproduce here
this result.

Let F : R — R"™ be a polynomial map satisfying condition Ill. Until now we were inter-
ested in knowing whether the dynamical system associatédhiad a GAS fixed point. Now we
formulate a weaker problem:

Fixed Point Conjecture. Let F' : R — R™ be a polynomial map satisfying condition Ill. Then
F has a unique fixed point.

Considering the real and the imaginary part of the components of a polynomialfFmap
C" — C" and using standard arguments of linear algebra it is easy to see that this conjecture can
be formulated in the following equivalent form:

Fixed Point Conjecture. Let F : C* — C™ be a polynomial map such th&F'(z) has all its
eigenvalues with modulus less than one at eaehC". ThenF' has a unique fixed point.

Theorem 3.1 shows that this problem is equivalent to the Jacobian Conjecture (JC), formulated
in 1939 by Keller [11], and which can be established as follows.

Jacobian Conjecture.Let F : C" — C" be a polynomial map withet(DF(z)) € C* = C\ {0}
at eachr € C". ThenF' is invertible.

Theorem 3.1. ([5]) The Jacobian Conjecture is equivalent to the Fixed Point Conjecture

Proof. Assume that the JC holds and IEtbe satisfying the hypothesis of Fixed Point Conjecture
(FPC) for somer. ConsidelG(x) = F'(x)—x. Then the eigenvalues é1G(x) are the eigenvalues
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of DF(x) minus one. Hence by the results of Section 2.4 we knowdhaDG(x) is constant.
Moreover, from the hypothesis dniwe have that this constant is not zero. &ds invertible and
it exists a unique zero df, which is the unique fixed point of (x).

Now assume that the JC fails for some From the Reduction Theorem ([3]) this means that
there existh € N andG : C* — C"™ polynomial and non invertible of the form

G(x) =x+ H(x),

with D H (x) a nilpotent matrix at eack € C". Now setg(x) = %G(x) andlety,zc C",y #z
with g(y) = g(z) = p. Denoting byh(x) = x + p — g(x) we have that(y) = y andh(z) = z.
On the other hand, sind@ H (x) is a nilpotent matrix at eack € C*, all its eigenvalues are zero.
From the definition of(x) we obtain

Dh(x) = Id — Dg(x) = Td (% 1d +% DH(X)) _ % 1d —% DH(x)

which implies that(Dh(x)) = {1/2}. Hence h(x) is under the hypothesis of the FPC and it has
two different fixed points. O

Recall that in [5] it is proved that the FPC is truel. From this fact, and the proof of
Theorem C, we can only deduce that the JC is true for some special subcases, but it can not be
deduced that it is true far = 2.
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