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‡Institució Catalana de la Recerca i d’Estudis Avançats
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Abstract—The information bottleneck function gives a measure
of optimal preservation of correlation between some random
variable X and some side information Y while compressing
X into a new random variable W with bounded remaining
correlation to X . As such, the information bottleneck has found
many natural applications in machine learning, coding and
video compression. The main objective in order to calculate the
information bottleneck is to find the optimal representation on W .
This could in principle be arbitrarily complicated, but fortunately
it is known that the cardinality of W can be restricted as
|W| ≤ |X |+1 which makes the calculation possible for finite |X |.
Now, for many practical applications, e.g. in machine learning,
X represents a potentially very large data space, while Y is
from a comparably small set of labels. This raises the question
whether the known cardinality bound can be improved in such
situations. We show that the information bottleneck function can
always be approximated up to an error δ(ϵ, |Y|) with a cardinality
|W| ≤ f(ϵ, |Y|), for explicitly given functions δ and f of an
approximation parameter ϵ > 0 and the cardinality of Y .

Finally, we generalize the known cardinality bounds to the
case were some of the random variables represent quantum
information.

I. INTRODUCTION

Given a joint probability distribution PXY , where X is
often interpreted as some kind of data and Y as some side
information (e.g. labels in supervised machine learning), the
information bottleneck function [1] quantifies the optimal
compression of X into W below a certain threshold while
preserving the maximal amount of correlation with the side
information. This is closely related to the question of finding
approximate sufficient statistics for PXY and has therefore
found a multitude of applications such as e.g. in investi-
gating deep neural networks [2], [3], video processing [4],
clustering [5] and polar coding [6]. Formally, the information
bottleneck function of a given joint distribution PXY of two
random variables X and Y is defined as [1]

IXY (R) := max I(Y :W ) s.t. Y −X −W Markov chain,
I(X :W ) ≤ R. (1)

Here, X is considered the “data” and Y the “classifier”, which
is assumed to capture the objective truth about each data point,
or at least reflect it on a training set.

It is known, and not difficult to prove using Caratheodory’s
theorem, that the above maximum is attained with |W| ≤
|X | + 1, which makes the information bottleneck function
at least in principle computable. By Caratheodory’s theorem
we refer to the fundamental geometric fact that if a point in
an n-dimensional real affine space, w.l.o.g. Rn, is a convex
combination of any set E , then it can be written as a convex
combination of a subset of cardinality n+1 [7]. (Some earlier
work states the bound |W| ≤ |X |+2, however directly using
the results in [8] gives the slightly better bound, see also [9].)
However, in the purported machine learning applications, X
takes values in an enormously large alphabet, e.g. digital
pictures of a certain format, which would require optimisation
over channels PW |X with potentially megabyte-sized input and
output, which is clearly infeasible. On the other hand, Y is by
definition from a small set, for example letters or numbers in
the task of recognizing written text.

It was found that in some cases deep neural networks
approximate the information bottleneck function well, despite
their output alphabet seemingly being too small, or at least
much smaller than the above guarantee [3]. This raises the
question whether the information bottleneck can generally be
well approximated with a smaller alphabet size |W|, and in
particular one with bounded cardinality depending on Y rather
than on X . In the present paper we answer this question
affirmatively, by

1) providing an explicit method that reduces the cardinality
of X , by compressing it into a random variable X ′

whose range is determined solely by |Y| and an error
parameter ϵ > 0, that allows to approximately recover
the statistics of X conditioned on Y from X ′;

2) showing how this implies that the information bottleneck
function of PXY is well-approximated by that of the
compressed PX′Y ; and

3) showing that the same tools imply that evaluating the
information bottleneck function on the original PXY ,
but with bounded cardinality |W| ≤ f(ϵ, |Y|) ≡ N ,
also gives a good approximation of the unbounded case.

Besides the usual information bottleneck function, recently



also a version based on quantum information was consid-
ered [10], [11], [12]. Dimension bounds on auxiliary quantum
registers in quantum information theory are generally a much
harder problem since no good tools for investigating them are
known. In the final section of this work, we will generalize
the previously known bound and the ones developed in this
work to particular intermediate settings where some random
variables are classical and others are quantum.

II. APPROXIMATION VIA RECOVERY

The following lemma shows how to obtain an approximately
sufficient statistics for X with respect to Y , with an alphabet
size that depends only on |Y| and on the accuracy of the
approximation. The main tool is the existence of a recovery
map that can approximately revert the compression.

Lemma 1 Given a joint distribution PXY of two random vari-
ables X and Y , and assuming that there exist N probability
distributions Q1, . . . , QN on Y , and a function f : X −→ [N ]
with the property that

∀x 1

2
∥PY |X=x −Qf(x)∥1 ≤ ϵ, (2)

for some ϵ > 0. Then there exists a recovery channel S :
[N ] −→ X such that the Markov chain Y − X − X ′ − X̂
defined by X ′ = f(X) and PX̂|X′ = S satisfies PX = PX̂

and 1
2∥PXY − PX̂Y ∥1 ≤ ϵ′ = 2ϵ.

Proof: The function f defines a partition of X =
∪̇

iXi

into the pre-images Xi = f−1(i). Define

S(x|i) =

{
1

PX(Xi)
PX(x) if x ∈ Xi,

0 otherwise.

It can easily be checked that this leads to the desired results
by calculating PX̂Y and then bounding 1

2∥PXY − PX̂Y ∥1
using triangle inequality and twice the assumption in Eq. 2. It
actually furthermore has the property that it gives a Markov
chain Y −X −X ′ − X̂ −X ′, since X ′ = f(X) = f(X̂) by
construction.

The idea, in any case, is that f identifies different x that
have almost the same correlation with Y , as expressed by the
conditional distribution; S recovers X as far as its correlation
with Y is concerned. Thus, X ′ is an approximately sufficient
statistics for X .

Now the question is: How large does N need to be? Surely
not larger than |X |, but we assume that to be potentially
unbounded. In the worst case, we need to choose an ϵ-net of
the probability simplex P(Y) of all probability distributions on
Y with respect to the total variational distance, which results
in N ≤

(
c
ϵ

)|Y|, with some universal constant c > 0.
To be more precise, N is the minimum cardinality of an ϵ-

net, and a standard upper bound is given by the corresponding
covering number. A standard estimate for the covering number

of K ⊂ Rn by a convex and symmetric D ⊂ Rn can be
attained via the volume of the involved sets

vol(K)

vol(D)
≤ N ≤

vol(K + 1
2D)

vol( 12D)
. (3)

A probability simplex ∆Y can be understood as a subset of
the unit sphere in R|Y| which again is the boundary of the
corresponding unit ball. Using the above volume bound for
ϵ-nets on the unit ball by ϵ-balls, we get that

N∆ ≤
(
2

ϵ
+ 1

)|Y|

≤
(
3

ϵ

)|Y|

. (4)

This is in fact independent of the metric used, as long as
the unit ball and the ϵ-ball are defined via the same metric.
However, using somewhat more involved ideas it is possible to
determine a bound on the covering number of the unit sphere
more directly (see [13, Lemma 5.3]), leading to

N∆ ≤
(
2

ϵ

)|Y|

. (5)

We will however get back to using the simpler estimates when
discussing the classical-quantum case.

III. APPLICATION TO APPROXIMATING THE
INFORMATION BOTTLENECK FUNCTION.

To apply the results from the last section to find the
desired approximation results, we first prove another lemma,
exploiting the Markov chain emerging from Lemma 1.

Lemma 2 Let Y −X − X̃ be a Markov chain. Then the IB
function of PXY dominates the IB function of PX̃Y pointwise:

IXY (R) ≥ IX̃Y (R) ∀R.

Proof: This follows easily from the definition: recall that

IX̃Y (R) = max I(Y :W ) with Markov chain

Y −X − X̃ −W, I(X̃ :W ) ≤ R.

Hence, given any W eligible for X̃Y , by data processing
inequality we have I(X :W ) ≤ R, and so W is also eligible
for XY . Since we are optimising the same objective function,
the claim follows.

The lemma implies that for the Markov chain Y −X−X ′−
X̂ −X ′ resulting from Lemma 1, we have

IXY (R) ≥ IX′Y (R) ≥ IX̂Y (R) ≥ IX′Y (R),

which implies

IXY (R) ≥ IX′Y (R) = IX̂Y (R). (6)

Now we are ready for our main result, which bounds the
gap in the latter inequality:

Corollary 3 Under the assumptions of Lemma 1,

IX′Y (R) ≤ IXY (R) ≤ IX′Y (R) + δ(ϵ),



where δ(ϵ, |Y|) := ϵ′ log |Y|+ (1+ϵ′)h
(

ϵ′

1+ϵ′

)
.

Proof: The left hand side inequality has been shown in
Lemma 2, concretely the inequality in Eq. (6). For the right
hand side bound, we use the equality in Eq. (6), and consider a
channel PW |X : X −→ W . Define Markov chains Y −X−W
and Y − X̂ − Ŵ by letting

PY XW = PXY PW |X , P
Y X̂Ŵ

= PX̂Y PŴ |X̂ ,

where we set P
Ŵ |X̂ = PW |X . Then we have I(X : W ) =

I(X̂ : Ŵ ), since PX = PX̂ and hence PWX = P
Ŵ X̂

. That
is, W is eligible for XY if and only if Ŵ is eligible for X̂Y .

On the other hand,∣∣I(Y :W )−I(Y : Ŵ )
∣∣ = ∣∣H(Y |W )−H(Y |Ŵ )

∣∣ ≤ δ(ϵ, |Y|),

where we have used the Alicki-Fannes continuity bound for
the conditional entropy in the form of [14].

For Lemma 1 to be applicable, we can use an ϵ-net for the
probability distributions on Y , resulting in N ≤

(
2
ϵ

)|Y|
. This

means of course, that to approximate IXY we might as well
compute IX′Y , and the latter can attain its optimal value with
an alphabet size |W| ≤ |X ′|+ 1 = N + 1 ≤

(
2
ϵ

)|Y|
+ 1.

In practice, utilizing Corollary 3 will require some simple
preprocessing on the used probability distribution associated
with the considered dataset in order to calculate the simplified
bottleneck function. In some cases, one might want to directly
use the original distribution, but still restrict |W|. This should
in particular be useful when X is very large. In the following
we denote by IXY (R,N) the bottleneck function IXY (R)
with the additional constraint that |W| ≤ N .

Corollary 4 Under the assumptions of Lemma 1,

IXY (R,N) ≤ IXY (R) ≤ IXY (R,N) + δ(ϵ, |Y|),

where δ(ϵ, |Y|) := ϵ′ log |Y|+(1+ϵ′)h
(

ϵ′

1+ϵ′

)
and N ≤

(
2
ϵ

)|Y|
.

Proof: Using the definitions in Lemma 1 and applying
it to the joint distribution PYW resulting from the optimal
channel PW |X , we get the following Markov chain, Y −X −
W −W ′− Ŵ . Here, W ′ is constructed via an ϵ-net on Y and
therefore requires at most N ≤

(
2
ϵ

)|Y|
. Furthermore, we have

1
2∥PYW −P

Y Ŵ
∥1 ≤ 2ϵ. It is immediately clear that restricting

the maximization to a smaller cardinality can not increase the
result and therefore the left hand side follows directly.

Given that I(Y : W ) is the optimal value for IXY (R), we
can use data processing and a continuity bound to get

I(Y :W ) ≥I(Y :W ′) ≥I(Y :Ŵ ) ≥I(Y :W )−δ(ϵ, |Y|). (7)

From data processing we also immediately get that

I(X :W ) ≥ I(X :W ′), (8)

which means that for a given rate R, if PW |X is an eligible
map, then also PW ′|X is. Therefore, we observe that the

restricted bottleneck function deviates from the unrestricted
one by at most δ(ϵ):

IXY (R)−δ(ϵ, |Y|) ≤ I(Y :W ′) ≤ IXY (R,N).

While this corollary gives a slightly more direct approach to
the problem, it has the downside that, a priori, we do not know
anything about the possible distributions PY |w=w. Therefore,
in general an ϵ-net on Y is needed.

A. Examples

For many applications, such as machine learning, the in-
volved probability distribution PXY often stems from a dataset
of objects with assigned labels. These datasets are then used
as training sets e.g. towards a classification task. Generally,
if we have a multi-class classification problem every object
is assigned exactly one label. The number of labels available
determines |Y|. Now, it might be the case that some objects
appear multiple times in the dataset but with different labels;
let us call such objects ambiguous. However, in the framework
of Corollary 3, as long as the total number of such objects in
the dataset is not too large, only a very restricted number of
distributions PY |X=x can appear and we can even achieve
ϵ = 0.

A particular case that is often encountered is that of de-
terministic datasets, i.e. Y = f(X) for some single-valued
function f , meaning that there are no ambiguous objects.
This includes many commonly used datasets such as MNIST
and CIFAR. It is known that in these cases the information
bottleneck function takes a very simple form [15]. This is also
the case when considering the conditions for our Lemma 1
since the possible probability distributions are limited to
PY |X=x = δy,f(x), and therefore N = |Y| is sufficient to
even achieve ϵ = 0.

For a small amount of ambiguous objects, let’s say a of
them, one can still achieve ϵ = 0 with N = |Y|+a. However,
for large datasets, a might quickly become unpractical and the
approximating method via ϵ-nets becomes much more viable.

One could also consider a different class of datasets, namely
those for multi-label datasets (every object can be assigned
multiple labels). Let’s assume that the dataset does not include
any ambiguous objects. Now, with a little combinatorics one
sees that we can achieve ϵ = 0 with N = 2|Y| if the number
of labels per objects is only restricted by the total number of
labels |Y|. If every object is assigned exactly k labels we can

achieve the same with N =

(
|Y|
k

)
and with a maximum of

k labels per object, N =
∑k

i=0

(
|Y|
i

)
suffices. While these

quantities are not necessarily small, they are still significantly
better than the ϵ-net approximation method.

IV. CLASSICAL-QUANTUM SETTING

In quantum information theory the role of probability distri-
butions is taken by quantum states, i.e. positive semi-definite
hermitian matrices with trace one. Instead of maps between



probabilities, these states are transformed by completely pos-
itive and trace preserving maps called quantum channels. For
a complete introduction we refer the reader to the literature,
e.g. [16].

In the traditional (classical) setting the main tool to prove
alphabet size bounds is Caratheodory’s theorem. One crucial
property that allows us to apply Caratheodory’s theorem
is that every conditional entropy for a classical probability
distribution pXY can be written as

H(X|W ) =
∑
w

p(w)H(X|W = w). (9)

This might seem like a trivial observation, however it should
be noted that when we move from classical probabilities to
quantum states, in general such an equality does not exist,
leading to major complications in quantum information the-
ory [17], [18]. In the following we will discuss an intermediate
setting where the random variables X,Y are quantum and
only W is restricted to be classical. In this setting, the
generalization of Eq. (9) still holds and we will be able to
apply Caratheodory’s theorem as well as the new framework
developed in the first part of this work.

Let us briefly recall the definition of the quantum in-
formation bottleneck. In [10] it was defined as the natural
generalization of the classical case as

IqXY (R) := sup
NX→W

I(X′;W )τ̃≤R

I(Y ;W )σ, (10)

with

τ̃X′W := (idX′ ⊗NX→W )τX′X , (11)

where τX′X is a purification of ρX , and

σWY := (NX→W ⊗ idY )ρXY . (12)

Hence ρX = TrX′ τX′X = TrY ρXY . This formula unfortu-
nately proved difficult to handle analytically. It was however
shown in [12] that the following formulation is equivalent to
the one above:

IqXY (R) = sup
NX→W

I(Y R;W )σ≤R

I(Y ;W )σ, (13)

where σWYR := (NX→W ⊗ idY R)ψXYR and ψXYR a
purification of ρXY .

Defining the quantum information bottleneck via purifica-
tions is in general necessary, due to the well known fact that
quantum information cannot be copied. In the intermediate
case where only Y is quantum and X,W are classical, this
reduces to a definition that more closely resembles the fully
classical case:

IcqXY (R) := sup
NX→W

I(X;W )σ≤R

I(Y ;W )σ, (14)

where purifying the state ρXY becomes equivalent to copying
the classical X .

First, we will argue that the classical bound proven by using
Caratheodory’s theorem can be generalized to the classical-
quantum setting where X and Y are quantum, and W is
classical, leading to the following lemma.

Lemma 5 For X and Y quantum, and W classical, an
optimal solution for the quantum information bottleneck can
be achieved with |W| ≤ |Y|2|R|2 + 1.

Proof: The proof idea in the classical case comes origi-
nally from [8], see also [9] for an application to generalized
classical information bottleneck functions. Starting from a
state ψXYR we consider the setting where the channel N has
a quantum input but a classical output. The resulting state
σWYR will then have the following classical-quantum form

σWYR =
∑
w

p(w)|w⟩⟨w| ⊗ ρwY R, (15)

with {|w⟩}w some orthonormal basis on W . Now, optimiz-
ing over the channel is equivalent to optimizing over all
{p(w), |w⟩}. The feasible solutions for the quantum informa-
tion bottleneck in this setting are now completely determined
by the set

C(ΨXYR)

=

{(
ρY R, I(Y R :W ), I(Y :W )

)
:
∑
w

p(w)ρwY R=ρY R

}

=

{(
ρY R,

∑
w

p(w)[H(Y R)−H(Y R|W =w)], (16)

∑
w

p(w)[H(Y )−H(Y |W =w)]

)
:
∑
w

p(w)ρwYR=ρYR

}
.

Following the argument in [8], C(ΨXYR) is a convex and
compact set. Also, the state ρY R can be interpreted as living
on a |Y|2|R|2 real vector space, therefore a direct application
of Caratheodory’s theorem proves the above lemma.

Note that ψ can always be chosen to be a minimal pu-
rification of ρ with |R| ≤ |X ||Y|, and therefore we have
|W| ≤ |Y|4|X |2 + 1.

One can also consider a setting in between the fully classical
case and the one considered before, that leads to a bound closer
to what is familiar in the classical case.

Lemma 6 For Y quantum, but X and W classical, an
optimal solution for the quantum information bottleneck can
be achieved with |W| ≤ |X |+ 1.

The proof is almost identical to that of the fully classical case
and omitted here for brevity.

In this second intermediate scenario we can also find a
classical-quantum version of the cardinality bounds achieved
with the recoverability strategy. Therefore, we first need a
generalization of Lemma 1.



Lemma 7 Given a classical-quantum state

ρXY =
∑
x

p(x)|x⟩⟨x| ⊗ ρxY , (17)

and assume that there exist N quantum states σ1
Y , . . . , σ

N
Y and

a function f : X −→ [N ] with the property that

∀x 1

2
∥ρxY − σ

f(x)
Y ∥1 ≤ ϵ, (18)

for given ϵ > 0. Then there exists a recovery channel S :
[N ] −→ X such that the Markov chain Y − X − X ′ − X̂
defined by X ′ = f(X) and PX̂|X′ = S satisfies PX = PX̂

and 1
2∥ρXY − ρX̂Y ∥1 ≤ ϵ′ = 2ϵ.

Proof: The proof is similar to the completely classical
case. Again, the function f defines a partition of X =

∪̇
iXi

into the pre-images Xi = f−1(i). Now, it can be shown that
the function

S(x|i) =

{
1

PX(Xi)
PX(x) if x ∈ Xi,

0 otherwise,

achieves the desired result. The above strategy again has the
property that it gives a Markov chain Y −X −X ′ − X̂ −X ′,
since X ′ = f(X) = f(X̂) by construction.

Again, we shall ask what is the necessary N for the assump-
tions to hold in general. Following the classical argument it is
always possible to satisfy the assumptions by choosing an ϵ-
net, but now on the set of quantum states. Pure quantum states
correspond to the unit sphere in C|Y| ∼= R2|Y|. Mixed quantum
states can be represented by pure states on a purifying system
Y ⊗ Y ′, whose Hilbert space dimension is |Y|2. We can now
use the previously presented volume bound to get

NQ ≤
(
2

ϵ
+ 1

)2|Y|2

≤
(
3

ϵ

)2|Y|2

. (19)

Using the result in Lemma 7, we immediately get the
following generalizations.

Lemma 8 Let Y −X − X̃ be a Markov chain. Then the IB
function of ρXY dominates the IB function of ρX̃Y pointwise:

IcqXY (R) ≥ Icq
X̃Y

(R) ∀R.

Corollary 9 Under the assumptions of Lemma 7,

IcqX′Y (R) ≤ IcqXY (R) ≤ IcqX′Y (R) + δ(ϵ, |Y|),

where δ(ϵ, |Y|) := ϵ′ log |Y|+ (1+ϵ′)h
(

ϵ′

1+ϵ′

)
.

Corollary 10 Under the assumptions of Lemma 7,

IcqXY (R,N) ≤ IcqXY (R) ≤ IcqXY (R,N) + δ(ϵ, |Y|),

where δ(ϵ, |Y|) is as before and N ≤
(
3
ϵ

)2|Y|2
.

The proofs of the last three results are very similar to those
in the fully classical case and therefore omitted here for the
sake of brevity.

V. CONCLUSION

In the present paper we addressed the question whether
the information bottleneck function can be well-approximated
with an auxiliary random variable whose alphabet size |W|
only depends on |Y| and the allowed error. We proved that this
is indeed the case, using an approach based on approximate
sufficiency, which itself relates to approximate Markov chains
through (approximate) recovery maps. We showed that for
many practical problems this approach drastically reduces the
cardinality needed and therefore the computational complexity
of evaluating the bottleneck function. In the second part, we
discussed extensions of these and other known bounds to
settings with quantum information and showed that in some
special cases dimension bounds exist and make it possible to
evaluate the quantum information bottleneck.

Furthermore our results, in particular Lemma 1, could
provide a possible road towards classifying problems which
are suitable to be solved by neural networks. The general
approach of this work could also lead to new cardinality
bounds for other information theoretic quantities.

An important question left open is to find dimension bounds
for the fully quantum case, a setting where the usual tools
like Caratheodory’s theorem do not seem to be applicable.
We discuss the application of our new recoverability approach
to the fully quantum setting in [19].
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