

PROCEEDINGS OF SPIE

[SPIEDigitallibrary.org/conference-proceedings-of-spie](https://www.spiedigitallibrary.org/conference-proceedings-of-spie)

Assess citizen science based land cover maps with remote sensing products: the Ground Truth 2.0 data quality tool

Joan Masó, Núria Julia, Alaitz Zabala, Ester Prat, Johannes Kwast, et al.

Joan Masó, Núria Julia, Alaitz Zabala, Ester Prat, Johannes van der Kwast, Cristina Domingo-Marimon, "Assess citizen science based land cover maps with remote sensing products: the Ground Truth 2.0 data quality tool," Proc. SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), 115241M (26 August 2020); doi: 10.1117/12.2570814

SPIE.

Event: Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), 2020, Paphos, Cyprus

Assess Citizen Science based Land Cover maps with Remote Sensing products. The Ground Truth 2.0 data quality tool

JoanMasó^{*a}, Núria Julià^a, Alaitz Zabala^b, Ester Prat^a, Johannes van der Kwast^c
Cristina Domingo-Marimon^a

^a CREAF, Fac Ciencies UAB, 08193 Bellaterra Barcelona Spain;

^b Dep. Geografia, Universitat Autònoma de Barcelona, Edifici B 08193 Bellaterra Barcelona Spain

^c IHE Delft Institute for Water Education, Department of Water Resources and Ecosystems, Westvest 7 2611 AX Delft, the Netherlands

*joan.maso@uab.cat; phone +34 935811771; fax +34 935814151; www.creaf.cat

ABSTRACT

One of the main concerns in adopting citizen science is data quality. Derived products inherit intrinsic limitations of the capture methodology as well as the uncertainties in observations. OpenStreetMap tools are designed to minimize uncertainties in positional accuracy by ensuring a good co-registration of the observations with imagery or direct use of GPS. When thematically annotating objects contributed by citizens, uncertainty increases. During the H2020 GroundTruth 2.0 project two land-cover products derived from OSM were analyzed; one created by the University of Heidelberg (<http://osmlanduse.org>) and another elaborated by University of Coimbra (<https://vgi.uc.pt/vgi/osm/osm2lulc/>). To be able to assess the quality of both maps, a third product derived from remote sensing was introduced as a reference map.

In GroundTruth 2.0 a tool to show and compare maps as part of the MiraMon Map Browser was developed. The objective was to allow final users to auto-evaluate the quality of their region of interest. The confusion matrix has been used as a method to derive overall commission and omission estimators as well as the Kappa coefficient. Most of the discrepancies between OSM and remote sensing (RS) derived maps are related to different approaches used during data capturing. The data quality tool assesses the quality of individual observations exposed using the OGC standard and describes the quality in an interoperable approach based on QualityML.

Keywords: Citizen Science, Data Quality, Land-Cover, Land-Use, Confusion Matrix

1. INTRODUCTION

Metadata was introduced in order to easily find and determine geospatial datasets coming from different sources such as local, regional or national governments, private sector, etc.¹. Discovery metadata focuses on the bits of information necessary to allow catalogues to manage simple queries and make data known. However once data is discovered, the answer to the question “what dataset will be more appropriated for a specific purpose?”, is related with the data quality information included in the metadata². Providers try to convey the information about data quality into a set of comparable quality indicators describing different aspects of the dataset, including the geometric dimension, the thematic dimension and the temporal dimension³. These dimensions combined with the diversity of geospatial products results in long lists of commonly used quality indicators. ISO 19157 tries to standardize these measurements in an Annex that describes about 80 indicators. This ISO defines the quality component that is going to be measured, the individual uncertainties or errors that are going to be collected or measured and the statistics or metrics that are going to be used to create the indicator. UncertML provides a list of uncertainties that can be used for individual measurements while QualityML, collecting the statistics and metrics from ISO19157 and other sources, is used to elaborate the indicators and organizing them in a rational way⁴. Therfore, QualityML is a dictionary of quality measurements and an encoding system to expose them.

8th International Conference on Remote Sensing and Geoinformation of the Environment, edited by K. Themistocleous, et al. Proc. of SPIE Vol. 11524, 115241N · © The Authors. Published under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.2570814

Sometimes, the data quality description in the producers' metadata is not enough for the final user, who will often need a more practical approach based on user centric descriptions on previous usage experiences and associated difficulties⁵. The Open Geospatial Consortium has published a standard to formalize the feedback of the users about geospatial artifacts called the Geospatial User Feedback (GUF)⁶.

In Citizen Science, users are considered feedback providers but also data producers. In this case, the production becomes distributed. Despite the lack of a central responsible party and the heterogeneity of the participants in data collection, some simple best practices can dramatically improve the quality of the data set. Simple filtering techniques can be applied to validate data input (e.g. syntactical validation done by the data input user interfaces or usage of controlled vocabularies). More complex procedures involve the creation of a social network that reviews the data and associate a level of perceived trustworthiness of some contributors⁷. The lack of data quality assessment measures conducted by the responsible of the repository combined with the lack of simple data visualization tools (that make errors prominent) can also reduce the confidence in citizen science datasets⁸.

1.1 Data quality measures for land-cover maps

Commonly, the focus of data quality is in the precision of the position of the objects measured as one can see by the number of measures detailed by the ISO 191157 standards for geospatial quality. Land-cover (LC) maps are different in nature. Typically they define a list of land-use or land-cover classes and they cover the territory in a continuous way assigning a class name to all the space. This way, the thematic quality is as important as the positional quality and sometimes both qualities cannot be decoupled. The procedures to quality control a land-use and land-cover (LULC) map have been clearly defined and they are mainly based on comparing the map with a set of measures considered correct and collected at the ground⁹. The basic practice is the application of a confusion or error matrix. This matrix provides a table where the names of the classes are the titles of both rows and columns. Columns express the ground truth values and rows the categories classified as in the map. The confusion matrix provides a great deal of information, not only in terms of the average quality of the map but also on the individual classes that are more sensible to mistakes because they are more often confused with other classes. In addition, the confusion matrix is relatively easy to create by the producer and relatively easy to interpret by the user. Precisely, one problem with the confusion matrix is its nature, becoming too verbose and detailed to be easily compared. As a remedy, several indicators that can be computed from the confusion matrix have been suggested. One of the best known is the Kappa index. Even if a recent publication suggested that Kappa indices are useless and misleading for the practical applications in remote sensing¹⁰, this publication and others still propose better indices based on the confusion matrix numbers¹¹.

This paper acknowledges the fact that previous quality indicators (e.g. based on the Kappa index distributed by the producers) can be wrong and proposes a tool that allows users to actually create their own confusion matrices, calculate the newly proposed derivative indices for the area they are interested in and publish these indices linked to the QualityML definitions.

1.2 Creating land-cover maps from OSM

The democratization of high-quality location determination using low cost GPS hardware recently integrated in smart phones has made possible all sorts of crowdsourcing, Volunteered Geographic Information (VGI) and Citizen Science projects. In fact, the contributor can focus on providing good quality thematic attributes to the positions that the GPS records. One popular project that has been around since 2004 is OpenStreetMap (OSM). OSM's aim is to create a set of map data that is free to use, editable, and licensed under open copyright schemes (Open Database License (ODbL))¹². OSM provides an open source alternative to topographic maps in a single project that covers the whole world. Each feature must have at least one attribute (tag) describing it. A tag consists in a key-value-pair (e.g. landuse = forest), where keys describe a general topic or type of an attribute (e.g. landuse) and values give a value for that key (e.g. forest). These data tags are the bases for the map available at osmlanduse.org. Since OSM tags do not directly correspond to LULC classes, there are some gaps in the resulting product that can be covered by combining the OSM data with other data sources such as free remote sensing data¹³. The product is available here: <https://osmlanduse.org/>. A second team is developing OSM2LULC as part of the open source GeoData Algorithms for Spatial Problems (GASP) Python package. The method starts with line-based OSM features that are converted into polygons and associating OSM features to a LULC class¹⁴ using decision rules. The final product is available here: <https://vgi.uc.pt/expvgi>.

2. IMPLEMENTATION

Some efforts were done to propose solutions that can be applied to the citizen science dataset reusing ISO 19157 and reference datasets to calculate indicators covering in different aspects of data quality, such as the architecture proposed in the COBWeb project¹⁵. In some cases these processes are offered as chainable Web Processing services (WPS)¹⁶, but setting up a WPS and use it in a WPS client is outside of the capacities of most users. In addition, when these estimations are calculated, this information is not distributed as part of the metadata accompanying that data and it might be lost in the process of data sharing. In the Ground Truth 2.0 project, our proposal was to provide a web map client that enables the user to assess the quality of different products by itself and to choose what project would fit better its purpose.

2.1 A technical approach in the client side

In this paper, we propose a strategy for map browsers consisting of implementing raster layer visualization as a Web Map Service (WMS) request that instead of dealing with static images in PNG or JPEG format for each layer, uses AJAX to do WMS requests that response binary arrays of a specific number of bytes (for example short integers of 16 bits). The proposed solution empowers the client as it is able to store the actual values of each band in memory and then it can use JavaScript code to operate with the data in many ways. First, the browser is able to build personalized views, enhance contrast, present histograms etc. at the client side. Secondly the user is able to perform spatial filters, generate animations and graphics of a time series, and perform complex calculations using several bands from the different available datasets¹⁷. Vector layers can be requested as Web Feature Service (WFS) or Sensor Observation Service (SOS) requests receiving a GeoJSON file as a result. In the Ground Truth 2.0 this approach was expanded to calculate some quality indicators of the data.

In the case of two raster datasets, one to assess quality and the other one considered the reference data, both are retrieved as two binary arrays. The process of creating a confusion matrix starts by creating a combination of the two layers in a single composite layer which pixels contain classes that correspond to all possible permutations of the legend of the two maps. The second step consists in creating a histogram as the count of the number of pixels in each combined class of the composite layer. This one dimensional histogram is rearranged in a 2 dimensional matrix that has the classes of the first layer as rows and the classes of the second layer as columns, resulting in a confusion matrix.

In the case of a raster dataset and one vector dataset that is composed by a list of ground truth point measurements, the confusion matrix is created by determining the value in the raster file of the geometrical position of each ground truth point and presenting these values in comparison with the vector file values in the form of a matrix.

From this confusion matrix, other derived indicators can be computed. They are presented as quality calculations in the QualityML format.

2.2 The Llobregat delta area in three different maps

To demonstrate the feasibility of this methodology, we selected an area of about 433 km² in the delta of the Llobregat river in Catalonia (North East of Spain). This area presents a big variety of classes and our research group recently made a LULC map from remote sensing, giving us a dataset to compare with. We requested the OSMlanduse and the OSM2LULC products from the Heidelberg and the Coimbra teams respectively. Both OSM derived products were using a CORINE Land cover level 2 legend but our map had a legend based on other legacy maps. The first thing we needed to perform was harmonizing the legends of the three maps by reclassifying the remote sensing based one to the nomenclatures used by the other two LULC products.

Then, we included the three maps in the MiraMon WMS server and in the MiraMon web map browser. The visualization of the map is done dynamically on the client side so it is possible to present the same map in more than one style. This characteristic was used to actually resent the data with the CORINE land cover level 1 and the CORINE land cover level 2. In Fig 1 one can see the 3 LULC maps represented with the CORINE land cover level 1. The first thing that is appreciated is that OSM is an object based map that was not designed to cover the space in a continuous way. This results in many areas that are not classified. This effect is nonexistent with the LULC remote sensing based map that provides a comprehensive coverage of the selected area. Secondly, visual differences between maps that will result in non-diagonal values in the confusion matrices are easily identified.

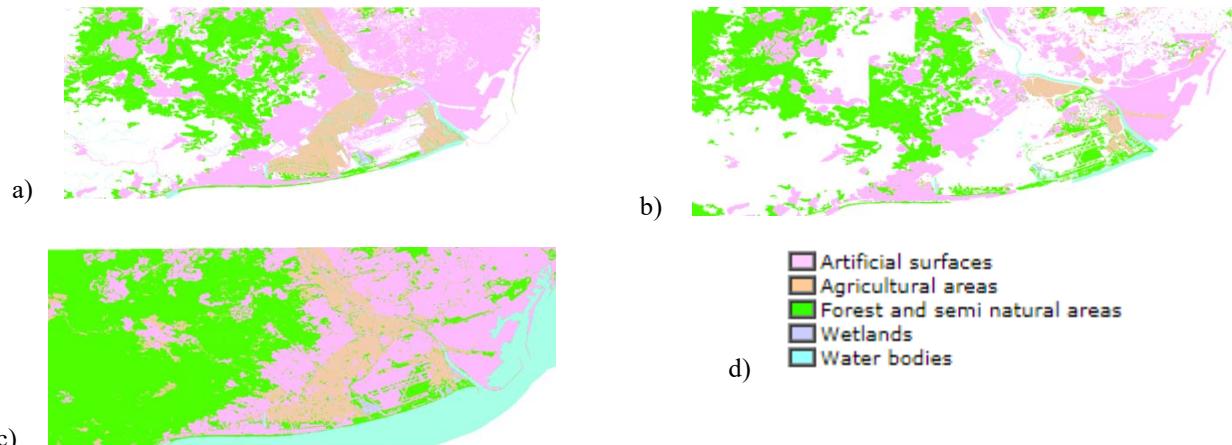


Fig 1. The three land-use land-cover maps to compare. a) OSM2LULC b) OSMlanduse c) remote sensing map d) legend applied to the 3 maps.

The process of creating a confusion matrix starts by requesting the combination of both maps in a single layer. In Fig. 2, the land-use map based on OSM2LULC (Coimbra version) is compared with the remote sensing based map (CREAF-RS version). The result of the combination is shown in Fig. 3. In this example we only use the first level of the CORINE legend and although the number of combinations is 25, there are only 5 colors present, corresponding to the classes that are the same in both maps.

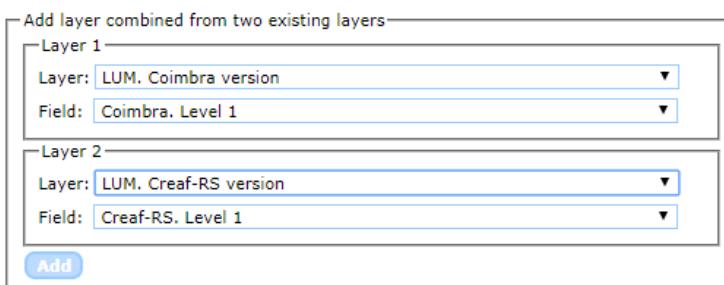


Fig 2. Request for a layer combination of two land-use maps in the MiraMon GIS software.

Fig 3. Layer combination of both land-use maps in the MiraMon GIS software.

Once the combination is done, we can request a confusion matrix. The diagonal values of the matrix (represented in green) correspond to the areas that have the same value in both maps. The non-diagonal values are the areas that have

different classes in both maps. We can also see some information about the most similar classes (*artificial surfaces* and *forest and semi natural areas*) as well as the Kappa coefficient that is 0.81 (in a Kappa coefficient, the closer to 1 the better).

Confusion matrix 1, Combination of OSM Land Use Map. Coimbra version and Remote Sensing Land Use Map. Creaf version Creaf-RS							
OSM Land Use Map. Coimbra version Coimbra. Level 1 (m ²) (Kappa: 0.8125659829491821)							
	Artificial surfaces	Agricultural areas	Forest and semi natural areas	Wetlands	Water bodies	Total	Similarity
Artificial surfaces	103122830	2986301	1701599	111904	413606	108336240	95.2%
Agricultural areas	11627045	27234362	3482189	223808	648385	43215790	63.0%
Forest and semi natural areas	18083467	5074079	74057411	122875	1360402	98698233	75.0%
Wetlands	285245	484917	436645	405926	365334	1978068	20.5%
Water bodies	170050	78991	165662	8777	2563918	2987398	85.8%
Total	133288638	35858650	79843506	873290	5351644	255215728	
Similarity	77.4%	75.9%	92.8%	46.5%	47.9%		81.3%

Fig 4. Request for the confusion matrix result in the MiraMon GIS software.

Preliminary analysis of the data collected detects that in general the land-use maps provided by both teams have reasonably good overall accuracy of about 80%. There are classes that present more confusions than others. For example, the urban fabric class is frequently confused with Industrial, commercial and transport units. We also have observed that sometimes validating our land-use maps with land-cover classes detects discrepancies due to the intrinsic differences between the human interpretation of classes that tend to emphasize land-use aspects, while remote sensing classes are mainly showing the land cover. For example, a big park in the city is identified as artificial in the OSM Land-use classes while it is seen as a forest area from remote sensing due to its green land-cover aspects (see Fig. 5). Actually both interpretations can be considered as correct.

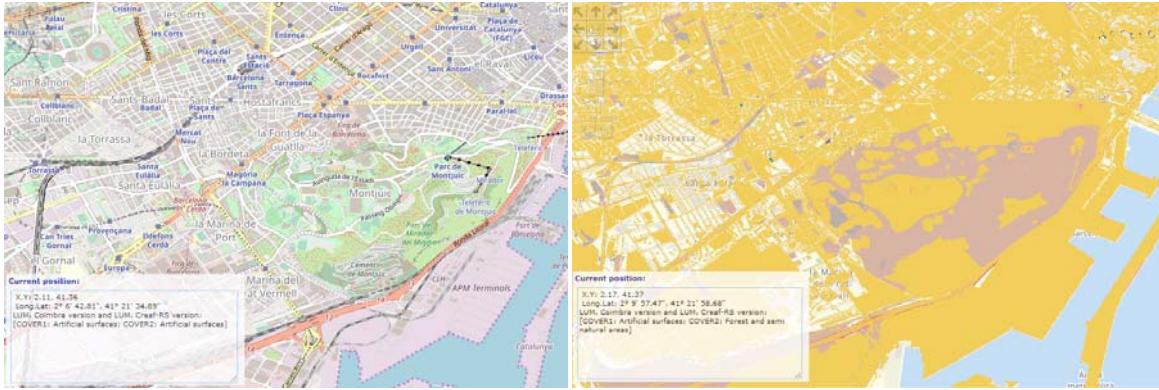
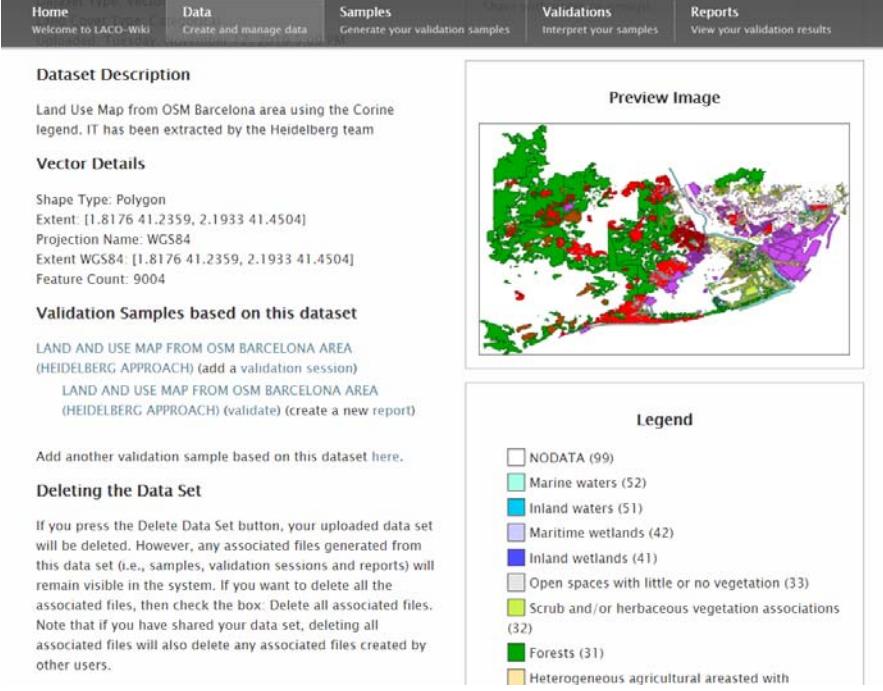
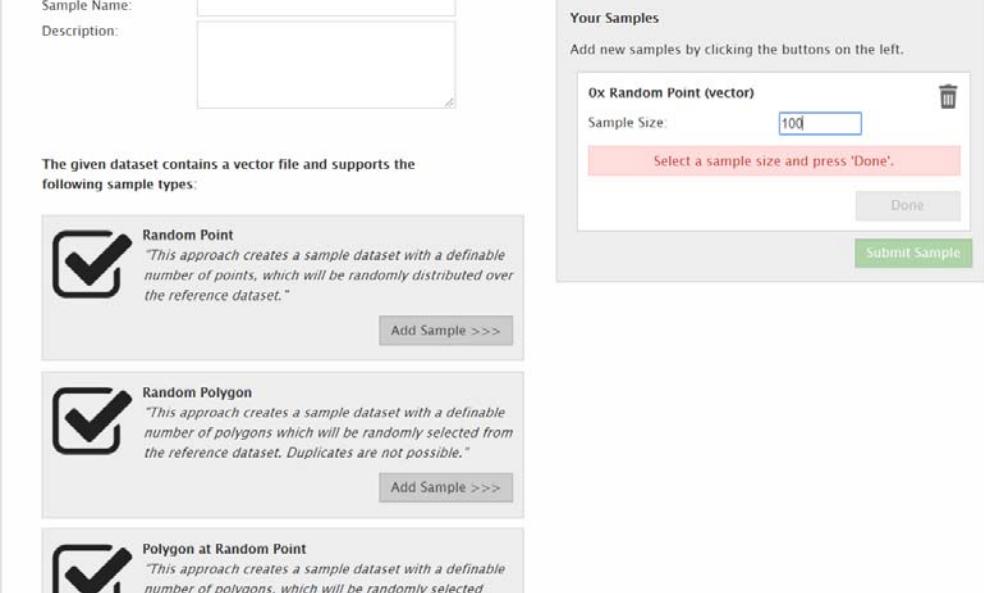



Fig 5. Zoom to an area of discrepancies due to different interpretation of land use and land cover.

2.3 The Llobregat delta area compared to ground truth data

To do this we have used a web tool generated by IIASA called LACO-Wiki (laco-wiki.net). LACO-Wiki encapsulates the process of accuracy assessment and validation into a website that presents a set of four simple steps including uploading a land-cover map (see Fig. 6), creating a sample from the map (see Fig. 7), interpreting the sample with very high resolution imagery (see Fig. 8) and generating a report with accuracy measures¹⁸. The steps 1, 2 and 4 are done by the owner of the campaign but step 3 is done by volunteers. The graphical user interface is designed in a way that it is easy, clear and simple to respond to each validation. The interface offers only one point at a time on top of the selected imagery and reports on the class that has been associated with it. The volunteer can diagnose if the classification is correct or incorrect and in case it finds it incorrect, an alternative category can be provided (see Fig. 8). After the answer

is provided a new point is presented. With some practice, a single point can be done in half a minute and a set of 100 points can be processed in 30 minutes.


The screenshot shows the LACOWiki interface. At the top, there are tabs: Home (Welcome to LACO-Wiki), Data (Create and manage data), Samples (Generate your validation samples), Validations (Interpret your samples), and Reports (View your validation results). The main content area is titled 'Dataset Description' and contains the following information:

- Land Use Map from OSM Barcelona area using the Corine legend. It has been extracted by the Heidelberg team**
- Vector Details**
 - Shape Type: Polygon
 - Extent: [1.8176 41.2359, 2.1933 41.4504]
 - Projection Name: WGS84
 - Extent WGS84: [1.8176 41.2359, 2.1933 41.4504]
 - Feature Count: 9004
- Validation Samples based on this dataset**
 - LAND AND USE MAP FROM OSM BARCELONA AREA (HEIDELBERG, APPROACH) (add a validation session)
 - LAND AND USE MAP FROM OSM BARCELONA AREA (HEIDELBERG APPROACH) (validate) (create a new report)
- Deleting the Data Set**

If you press the Delete Data Set button, your uploaded data set will be deleted. However, any associated files generated from this data set (i.e., samples, validation sessions and reports) will remain visible in the system. If you want to delete all the associated files, then check the box: Delete all associated files. Note that if you have shared your data set, deleting all associated files will also delete any associated files created by other users.

On the right side, there are two panels: 'Preview Image' showing a map of the land use dataset, and 'Legend' listing the land use categories with their corresponding colors and counts.

Fig 6.Adding the OSM landuse dataset in the LACOWiki.

The screenshot shows the 'Your Samples' section of the LACOWiki interface. It includes a form for adding a new sample:

- Sample Name:**
- Description:**

Below the form, it says: 'The given dataset contains a vector file and supports the following sample types:'

- Random Point** (checked): 'This approach creates a sample dataset with a definable number of points, which will be randomly distributed over the reference dataset.'
- Random Polygon** (checked): 'This approach creates a sample dataset with a definable number of polygons which will be randomly selected from the reference dataset. Duplicates are not possible.'
- Polygon at Random Point** (checked): 'This approach creates a sample dataset with a definable number of polygons, which will be randomly selected.'

On the right, there is a 'Your Samples' panel with a 'Ox Random Point (vector)' section. It shows a sample size of 100, a 'Done' button, and a 'Submit Sample' button.

Fig 7. Procedure for creating a validation samples. Validation samples are creating random, stratified or systematic sampling.

Fig 8. A point that is classified as *Urban fabric* is interpreted as incorrect and class *Artificial, non-agricultural vegetated areas* is proposed instead.

As a result, step 4 provides a point cloud containing information on the classified categories in each land-cover map and the actual class that volunteers have interpreted from the imagery that the LACOWiki offers as a background (see Fig. 9). In addition, LACOWiki also provides an Excel file with the confusion matrix generated by the points (see Fig. 10).

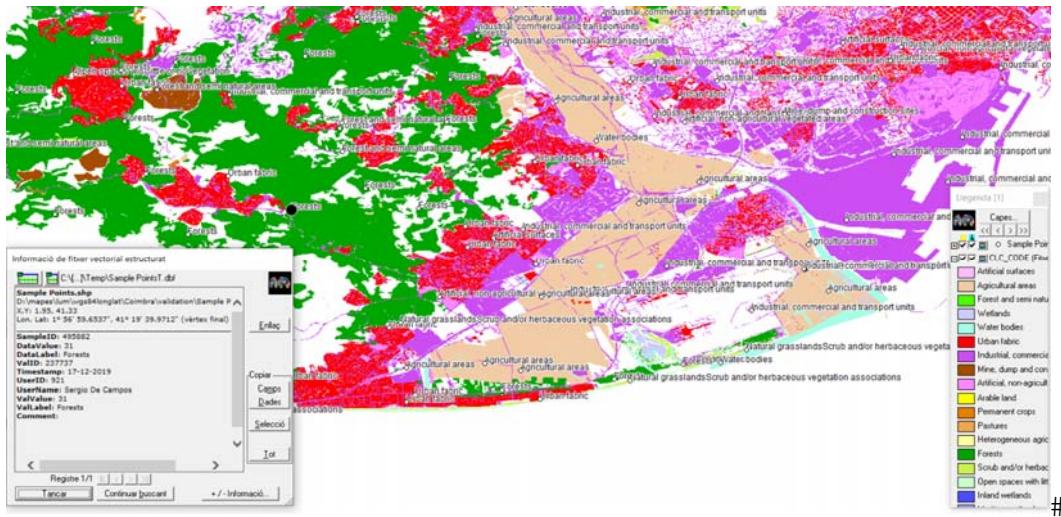


Fig 9. Result of the Coimbra validation campaign as a map in the MiraMon GIS software.

		User Interpretations																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
		Artificial surfaces (1)	Agricultural areas (2)	Forest and semi-natural areas (3)	Wetlands (4)	Water bodies (5)	Urban fabric (6)	Industrial, commercial and transport units (7)	Marine, dunes and construction sites (8)	Artificial semi-agricultural areas (9)	Artificial land (10)	Pleasant vegetal (11)	Prairie/scrub (12)	Pasture (13)	Homogeneous agricultural area/edged with permanent crops (14)	Forests (15)	Natural grasslands/scrub and/or herbaceous vegetation associations (16)	Open spaces with little or no vegetation (17)	Inland wetlands (18)	Marine wetlands (19)	Urban waters (20)	Riparian waters (21)	Mediterranean (22)	Fluvial (23)	Lakes (24)	Polar (25)	User Accuracy (26)	User Total																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Dataset	Category	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	58

are some quality measures that are particularly specific for citizen science that take advantage of the redundancy created by different users that should be useful. The open source code of the MiraMon web map browser presented here can be accessed from: <https://github.com/joanma747/MiraMonMapBrowser>

ACKNOWLEDGEMENTS

We thank the 2 providers of the OSM land-cover map Michael Schultz (University of Heidelberg) and Cidália Fonte and Joaquim Patriarca (University of Coimbra) the provision of the OSM land-use land-cover maps and the LACO-Wiki responsible their support in the validation website. This work has been done under the H2020 project Ground Thuth 2.0 WeObserve and NextGEOSS projects. Ground Thuth 2.0, WeObserve and NextGEOSS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689744, No 776740 and No 730329 respectively.

REFERENCES

- [1] Hariharan, R., Shmueli-Scheuer, M., Li, C. and Mehrotra, S., "Quality-driven approximate methods for integrating GIS data," Proceedings of the 13th annual ACM international workshop on Geographic information systems, 97–104, Association for Computing Machinery, Bremen, Germany (2005).
- [2] Devillers, R., Bédard, Y. and Jeansoulin, R., "Multidimensional Management of Geospatial Data Quality Information for its Dynamic Use Within GIS," *Photogrammetric Engineering & Remote Sensing* **81**(2), 205–215 (2005).
- [3] Devillers, R., Gervais, M., Bédard, Y. and Jeansoulin, R., "Spatial data quality: from metadata to quality indicators and contextual end-user manual," OEEPE/ISPRS Joint Workshop on Spatial Data Quality Management, 45–55 (2002).
- [4] Moroni, D. F., Ramapriyan, H., Peng, G., Hobbs, J., Goldstein, J., Downs, R., Wolfe, R., Shie, C.-L., Merchant, C. J., Bourassa, M., Matthews, J. L., Cornillon, P., Bastin, L., Kehoe, K., Smith, B., Privette, J. L., Subramanian, A. C., Brown, O. and Ivanova, I., "Understanding the Various Perspectives of Earth Science Observational Data Uncertainty," report, ESIP (2019).
- [5] Goodchild, M. F., "Beyond metadata: towards user-centric description of data quality," presented at 5th International Symposium for Spatial Data Quality (ISSDQ 2007), 2007, Enschede, the Netherlands.
- [6] Masó, J. and Bastin, L., "OGC Geospatial User Feedback Standard: Conceptual Model., Ver.1.0, 15-097r1," OGC 15-097r1 (2016).
- [7] Hunter, J., Alabri, A. and Ingen, C. van., "Assessing the quality and trustworthiness of citizen science data," *Concurrency and Computation: Practice and Experience* **25**(4), 454–466 (2013).
- [8] Alabri, A. and Hunter, J., "Enhancing the Quality and Trust of Citizen Science Data," 2010 IEEE Sixth International Conference on e-Science, 81–88 (2010).
- [9] Strahler, A., Boschetti, L., Foody, G., Friedl, M., Hansen, M., Herold, M., Mayaux, P., Morisette, J., Stehman, S. and Woodcock, C., "Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps" (2008).
- [10] Pontius Jr, R. G. and Millones, M., "Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment," *International Journal of Remote Sensing* **32**(15), 4407–4429 (2011).
- [11] Salk, C., Fritz, S., See, L., Dresel, C. and McCallum, I., "An Exploration of Some Pitfalls of Thematic Map Assessment Using the New Map Tools Resource," *3, Remote Sensing* **10**(3), 376 (2018).
- [12] Haklay, M. and Weber, P., "OpenStreetMap: User-Generated Street Maps," *IEEE Pervasive Computing* **7**(4), 12–18 (2008).
- [13] Schultz, M., Voss, J., Auer, M., Carter, S. and Zipf, A., "Open land cover from OpenStreetMap and remote sensing," *International Journal of Applied Earth Observation and Geoinformation* **63**, 206–213 (2017).
- [14] Patriarca, J., Fonte, C. C., Estima, J., de Almeida, J.-P. and Cardoso, A., "Automatic conversion of OSM data into LULC maps: comparing FOSS4G based approaches towards an enhanced performance," *Open geospatial data, softw. stand.* **4**(1), 11 (2019).

- [15] Leibovici, D. G., Williams, J., Rosser, J. F., Hodges, C., Chapman, C., Higgins, C. and Jackson, M. J., “Earth Observation for Citizen Science Validation, or Citizen Science for Earth Observation Validation? The Role of Quality Assurance of Volunteered Observations,” 4, *Data* **2**(4), 35 (2017).
- [16] Meek, S., Jackson, M. and Leibovici, D. G., “A BPMN solution for chaining OGC services to quality assure location-based crowdsourced data,” *Computers & Geosciences* **87**, 76–83 (2016).
- [17] Masó, J., Zabala Torres, A., Serral, I. and Pons, X., “Remote Sensing Analytical Geospatial Operations Directly in the Web Browser,” *ISPRS Archives* **624**, 403–410 (2018).
- [18] See, L., Laso Bayas, J. C., Schepaschenko, D., Perger, C., Dresel, C., Maus, V., Salk, C., Weichselbaum, J., Lesiv, M., McCallum, I., Moorthy, I. and Fritz, S., “LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya,” 7, *Remote Sensing* **9**(7), 754 (2017).