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Abstract: In this paper, perturbed third-body motion is considered under quantum corrections to
analyse the existence of periodic orbits. These orbits are studied through two approaches to identify
the first (second) periodic-orbit types. The essential conditions are given in order to prove that the
circular (elliptical) periodic orbits of the rotating Kepler problem (RKP) can continue to the perturbed
motion of the third body under quantum corrections where a massive primary body has excessive
gravitational force over the smaller primary body. The primaries moved around each other in circular
(elliptical) orbits, and the mass ratio was assumed to be sufficiently small. We prove the existence of
the two types of orbits by using the terminologies of Poincaré for quantised perturbed motion.

Keywords: periodic-orbit continuation; quantised three-body problem; first-kind periodic orbits;
second-kind periodic orbits

1. Introduction

Among the easiest nonintegrable mathematical systems in dynamical astronomy is
the so-called planer circular restricted three-body problem (PCRTBP). This simple model has
many applications in the study of stellar dynamics and the dynamics of motion inside the
solar system. For example, this model was used for studying the motion of exoplanets
surrounding one star or a binary star system in stellar systems [1]. In particular, it was used
for the problem of studying habitability in exoplanets [2–4]. This model was also used in
several space missions for analyse the motion of different spacecraft between two planets
or in the Earth–Moon system; see [5,6].

Many authors studied the different perturbations of PCRTBP due to zonal harmonic
terms, oblateness, radiation pressure; see, for instance, [7–17]. In particular, in [18,19], the
authors showed that there are periodic orbits that are symmetric of PCRTBP in a synodic
(or rotating) reference frame that can be analytically continued into ones of full three-body
problems where the mass assigned to the third body is considered very small with respect
to that of the other two bodies.

Following [20–22], here, we consider quantum perturbation in PCRTBP, which is called
the planar circular quantised restricted three-body problem (PCQRTBP). In [23,24], Poincaré
found the first (second) periodic-orbit type for PCRTBP. Our goal is to show that these
periodic orbits also extend to PCQRTBP. The first and second kinds of periodic orbits (FKPO
and SKPO) at the PCRTBP are related orbits to the circular (elliptic) periodic orbits of the
RKP. In the perturbed circular type of three-body problems, the two larger bodies rotate in
circular orbit about their own centre of mass, and on the infinitesimal body, the Newtonian
gravitational forces of the two larger bodies act together with a small perturbing force.
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The rotating frame is employed to study PCQRTBP, such that the primaries take fixed
locations on the x axis [25–28].

One of the most considerable problems in the theory of modern physics is incompati-
bility between quantum mechanics and general relativity, which permits a perturbative
appearance that is nonrenormalisable to the theory of quantum gravity. On the other
hand, quantum mechanics and its offspring, effective field theory, give extremely effective
descriptions of all usual nongravitational phenomena, of which the outcomes coincide
between predictive and experimental observations [22,29]. Furthermore, the theory of
general relativity is elegant and brilliant, and has had successful tests within the solar
system [30–32]. Regardless of the lack of an overarching theoretical frame to include
the success of both quantum and general relativity theories, the prediction of quantum
theory can be used in nonrenormalisable theories by applying the effective field theory
technique [33–37].

Periodic orbits play a considerable role in exploring the nonlinear behaviour of dy-
namical systems. In mathematical physics, celestial mechanics, quantum mechanics, and
in most branches of the mathematical sciences, particularly in dynamical system analysis,
the orbit of motion is composed of a point set connected by the system evaluation func-
tion. This can be explored as the enveloped phase space subset via the system path in the
framework of a specified set from initial conditions through the system’s evolution. As the
path of the phase space could perform unique estimations or calculations for any proposed
set of phase space variables, the intersection of different orbit sets in the phase space is
impossible. Thus, the orbital set of any dynamical system is a partition for the phase space.
To explore the structures of periodic orbits by utilising topological techniques is one of the
objectives of modern dynamical systems theory [38].

There are two different approaches to show that the circular orbits of the RKP are
prolongated to FKPO and SKPO in the classical three-body problem. The first approach
is based on Poincaré variables [39] and the associated proof for Theorem 2 of the present
work. The second approach deals with the related multipliers for the circular periodic orbits
(CPOs) [40] or the proof of Theorem 1. In the two proofs, we used the fact that the PCQRTBP
had a first integral; then, the FKPO could be prolongated from the classical problem of
three bodies to the perturbed one via quantum correction. However, the proofs of the two
theorems are not found when the first integral is absent, and the prolongation remains
an open problem for more investigations and studies. Lastly, we studied Theorem 2, the
prolongation of the SKPO from the classical problem of three bodies to the perturbed one
via quantum corrections.

In this work, we studied the prolongation of the so-called first (second) periodic-orbit
type FKPO and SKPO to the perturbed three-body problem via quantum corrections. The
existence of the two types of orbits is proven by using the terminologies of Poincaré for
quantised perturbed motion when the mass ratio is small enough, and the perturbed third
body has infinitesimal mass, but the primary bodies move about each other in circular
(elliptical) orbits. In the literature, there are many papers studying the periodic orbits of
other classes of the restricted three-body problem; see, for instance, [41–47].

2. Model Description
2.1. Equations of Motion for PCQRTBP

Let m1, m2 be the masses of the two primaries bodies, and m the mass of the infinites-
imal body with its own relative positional vectors with respect to primaries m1 and m2
be ρ1 = (ξ1, η1, ζ1), ρ2 = (ξ2, η2, ζ2) and it positional vector with respect to the origin of
inertial reference frame Oξηζ is ρ = (ξ, η, ζ). We assumed that the infinitesimal body did
not affect the motion of the primaries and was moving under their mutual gravitational
forces where all three bodies move in the same plane. Thus, the vectorial motion equation
of this body is given as follows:

mρ̈ = ∇ΓI (1)
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where ΓI is the potential function that takes the following form:

ΓI(ρ1, ρ2) = m
(

m1

ρ1
+

m2

ρ2

)
(2)

The relative distances of the infinitesimal body are

ρ2
1 = (ξ − ξ1)

2 + (η − η1)
2 + (ζ − ζ1)

2

ρ2
2 = (ξ − ξ2)

2 + (η − η2)
2 + (ζ − ζ2)

2

ρ2 = ξ2 + η2 + ζ2

(3)

In this work, the restricted motion of the three bodies is the proposed model in
order to analyse the periodic orbits of the perturbed motion of the third body, which had
infinitesimal mass compared with the masses of the other two bodies, namely, the so-called
primaries that move around each other in CPO. Furthermore, the motion of the third body
occurs in the same plane as that of the two primaries.

Now, we consider nondimensional rotating frame OXYZ that moves about the Z
axis with angular velocity ω. However, to normalise the variable and use dimensionless
coordinates, we also assumed that the separation primary distance, the total of their masses,
and the constant of universal gravitation had a unity value, while the perturbed mean
motion was equal to ω; see [20] for details. In this description, parameter m2 = µ2 = µ
was also assigned to the smaller primary body mass; hence, the mass of the massive body
was equal to m1 = µ1 = 1− µ, where µ = m2/(m1 + m2) ∈ (0, 1/2). Then, in synodical
coordinates, the position of the large body is (x1, y1) = (−µ2, 0) and of the small one is
(x2, y2) = (µ1, 0), while the infinitesimal body occurs at (x, y).

From the pervious description, Equations (1)–(3) in rotating frame are as follows:

m[ρ̈ + 2ω ∧ ρ̇ + ω ∧ (ω ∧ ρ) + ω̇ ∧ ρ] = ∇ΓR (4)

ρ2
1 = (x + µ)2 + y2 + z2

ρ2
2 = (x + µ− 1)2 + y2 + z2

ρ2 = x2 + y2 + z2

(5)

ΓI is the total Newtonian gravitational potential exerted by m1 and m2. The potential under
quantum corrections is

ΓR = ΓI + Υ1 + Υ2, (6)

where Υ1 and Υ2 are the related quantum corrections to bodies m1 and m2, respectively,
which are given in [21,22]:

Υ1 =mm1

(
Q11

ρ1
+

Q12

ρ2
1

)

Υ2 =mm2

(
Q21

ρ2
+

Q22

ρ2
2

) (7)

where

Q11 = k1(Rm1 + Rm)

Q12 = Q22 = k2(lp)
2

Q21 = k3(Rm2 + Rm)

(8)
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where Rm1 , Rm2 , and Rm are the radius lengths of gravitational masses m1, m2, and m,
respectively, while n1, n2, k1, k2, and k3 are dimensionless amounts that can be computed
with Feynman–Diagram analysis, and ` denotes the Planck length. Thus, for the values
of n1 and n2 in [22], n1 = −1 and n2 = −127/(30π2) were obtained, while in [21,29], they
were corrected to n1 = 3 and n2 = 41/(10π). c denotes the speed of light.

Furthermore, quantities Q11 and Q21 represent the effect of the post-Newtonian approx-
imation; there are comprehensive studies on this effect or the so-called general relativistic
effect in the framework of the restricted three-body problem [30,48,49]. Constants Q12 and
Q22, on the other hand, describe a quantum correction contribution.

In the framework of quantum corrections using Equations (4)–(8), the equations of
motion of the infinitesimal body body in the rotating reference frame are as follows:

ẍ− 2ωẏ = Πx(x, y, z)

ÿ + 2ωẋ = Πy(x, y, z)

z̈ = Πz(x, y, z),

(9)

where Π is the effective potential within the framework of quantum corrections that can be
written as follows:

Π(x, y, z) =
1
2

ω2
(

x2 + y2
)
+

µ1

ρ1

(
1 +

Q11

ρ1
+

Q12

ρ2
1

)
+

µ2

ρ2

(
1 +

Q21

ρ2
+

Q22

ρ2
2

)
, (10)

Functions Πx, Πy, and Πz are the first partial derivatives of potential function Π(x, y, z)
with respect to coordinate variables x, y, and z, respectively. Using Equations (9) and (10),
the Jacobian integral is given as follows:

2Π(x, y, y)−
(

ẋ2 + ẏ2 + ż2
)
= CJ . (11)

Relation (11) can be used to identify the possible regions of motion, where CJ is the constant
of integration, Jacobi constant, or the so-called first integral of motion.

2.2. Hamiltonian of PCQRTBP

From [40,50], we have that the Hamiltonian equations of the classical PCRTBP in
synodical coordinates are given by the following Hamiltonian:

κ = κ(x, y, p1, p2) =
1
2
(p2

1 + p2
2) + yp1 − xp2 −

1− µ

ρ1
− µ

ρ2
, (12)

where (p1, p2) is the conjugate momentum of the infinitesimal body localised at (x, y),
and distances among the third body and the primaries are identified with ρ2

1 = (x + µ2)
2 +

y2 and ρ2
2 = (x− µ1)

2 + y2.
From Equations (9) and (10), the Hamiltonian of the PCQRTBP in rotating frame is

controlled by

κ =
1
2
(p2

1 + p2
2) + ω2(yp1 − xp1)−

1− µ

ρ1

(
1 +

Q11

ρ1
+

Q12

ρ2
1

)
− µ

ρ2

(
1 +

Q21

ρ2
+

Q22

ρ2
2

)
, (13)

where
ω2 = 1 + 2n1(Rm1 + Rm2) + 3n2`

2 = 1 + O(1/c2),

Q11 = k1(Rm1 + Rm) = O(1/c2),

Q12 = Q22 = k2`
2 = O(1/c3),

Q21 = k3(Rm2 + Rm) = O(1/c2),
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3. Periodic Orbits of First Kind

Well-known techniques for analysing PCRTBP can be applied only to approximately
determine the trajectory of the infinitesimal body when the massive primary body has
excessive gravitational force over the smaller primary body. In planetary theory, the
classical orbit of motion must be considered as a reference to identify perturbed body
motions where the entire parameters of motion are well-known.

The variational path may be characterised as a disfigurement of the CPO of the
smaller body due to the attractive force of the bigger body, and this is a proposed periodic
solution for the perturbed problem (PCQRTBP). Poincaré stated that there are three different
kinds of periodic solutions. In the first (FKPO), the eccentricity is very small without any
appearance of inclination. In the second (FKPO), the eccentricity is finite and also without
any appearance of inclination. In the third, the inclination has a real appearance. In this
context, the FKPO arise when the perturbed third body has infinitesimal mass, the primary
bodies move about each other in CPO, and the mass ratio is sufficiently small.

If we denote δ = 1/c2, Hamiltonian (13) can be written as follows:

κ =
1
2
(p2

1 + p2
2) + yp1 − xp2 −

1− µ

ρ1
− µ

ρ2
+ O(δ). (14)

Moreover, if mass µ of the second primary is sufficiently small, Hamiltonian (14) becomes

κ =
1
2
(p2

1 + p2
2) + yp2 − xp2 −

1√
x2 + y2

+ O(δ, µ). (15)

We must take care with O(δ, µ), because it includes some terms that go to infinity in the
proximity of the primary bodies; so, we must exclude a neighbourhood of the primaries.
Hamiltonian (15) also coincides with the Hamiltonian of RKP when µ and δ tend to zero.

To explore the existence of the circular (elliptic) periodic orbits of the well-known RKP
to the first (second) periodic-orbit type of the PCQRTBP, we can follow the classical ap-
proach below. We performed a change in a polar coordinate variable with the corresponding
momentum as follows: (x, y, ẋ, ẏ)→ ($, ϑ, p$, pϑ) where

x = $ cos ϑ, y = $ sin ϑ, p1 = p$ cos ϑ− pϑ

$
sin ϑ, p2 = p$ sin ϑ +

pϑ

$
cos ϑ,

and Hamiltonian (15) is written as follows:

H(r, ϑ, p$, pϑ) =
1
2

(
p2

$ +
p2

ϑ

$2

)
− pϑ −

1
$
+ O(µ, δ). (16)

Using Hamiltonian Relation (16), the Hamiltonian equations of motion are governed by
the following form:

$̇ = Q1($, ϑ, p$, pϑ) = p$,

ϑ̇ = Q2($, ϑ, p$, pϑ) =
pϑ

$2 − 1,

ṗ$ = Q3($, ϑ, p$, pϑ) =
p2

ϑ

$3 −
1
$2 + O(µ, δ),

ṗϑ = Q4($, ϑ, p$, pϑ) = O(µ, δ).

(17)

Now, we suppose that the periodic solutions of System (17) with a v period can be
represented by functions $(t), ϑ(t), p$(t) and pϑ(t) when δ = µ = 0. The prolonga-
tion of these solutions represents a quaternion that is composed of four differentiable and
continuous functions everywhere in their domains. Functions have smoothness proper-
ties ($(t, δ), ϑ(t, δ), p$(t, δ), pϑ(t, δ)), v(δ). When δ > 0 in the proximity of zero where
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($(t, 0), ϑ(t, 0), p$(t, 0), pϑ(t, 0)) = ($(t), ϑ(t), p$(t), pϑ(t)), v(0) = v, and ($(t, δ), ϑ(t, δ),
p$(t, δ), pϑ(t, δ)) represent periodic orbits for System (17), and the length of its period is v.

In this setting, the variational equation linked to v-periodic orbit σ(t, δ) = ($(t, δ),
ϑ(t, δ), p$(t, δ), pϑ(t, δ)) has the following form:

K̇ =

(
∂(Q1,Q2,Q3,Q4)

∂($, ϑ, p$, pϑ)

∣∣∣
($,ϑ,p$ ,pϑ)=σ(t,δ)

)
K. (18)

The matrix K is a 4× 4 matrix. By ∂(Q1,Q2,Q3,Q4)/∂($, ϑ, p$, pϑ) represents the Jacobian
matrix of function (Q1,Q2,Q3,Q4) with respect to variables ($, ϑ, p$, pϑ). The associated
fundamental (monodromy) matrix of the v-periodic orbit σ(t, δ) supplied us with solution
K(v, δ), of (18) such that the identity matrix was K(0, δ). The characteristic roots for
fundamental matrix K(v, 0) related to periodic solution σ(t, δ) are called the multipliers of
periodic orbits (MPOs).

Periodic orbit σ(t, δ) has +1 as the eigenvalue of its linked monodromy matrix K(v, δ)
all the time, and +1 with multiplicity 2 in the case of having a system with a first integral.
We removed such trivial multipliers in order to work with the nontrivial ones, i.e., different
from +1. If there are nontrivial multipliers, then the periodic orbit is elementary. An
elementary periodic solution for δ = 0 can be prolonged to the case of δ > 0 if it is small
enough; see Proposition 9.1.1 of [51].

System (17) can be rewritten in the following form when δ = 0:

$̇ = p$, ϑ̇ =
pϑ

$2 − 1, ṗ$ =
p2

ϑ

r3 −
1
$2 , ṗ$ = 0.

It is clear that the first integral is represented by pϑ. Thereby, pϑ = C for a specified value
C3 6= 1, and one obtains the so-called circular periodic solution (CPS) $ = C2, p$ = 0 of period
|2πC3/(1− C3)|. By computing the multipliers of CPS, we obtain +1 with multiplicity 2,
and exp(±i2π/(1− C3)) 6= +1 if 1/(1− C3) is not an integer. If the first integral of the
perturbed system can be evaluated with Proposition 9.1.1 of [51], the obtained periodic
solution can be prolongated, which leads to the following theorem:

Theorem 1. If C3 6= 1 and 1/(1− C3) do not belong to Z, then periodic orbits of the circular type
of RKP with angular momentum (AM) C can be prolongated to PCQRTBP.

Now, we can deduce that, from Theorem 1, the CPO of the first type of the RKP can
be continued to the quantised restricted three-body problem where the perturbed motion
has its own first integral. However, this property can only be satisfied when the parameter
mass ratio is small enough, and we must prevent the infinitesimal body from taking a
location or pass through the position of the smaller primary for revoking the collision case.

4. Periodic Orbits of the Second Kind

The study of the periodic orbits of the second type in the classical problem of three
bodies has a considerable literature in celestial mechanics. In [52,53], these orbits were
found by using continuation analysis in the framework of Cartesian and Delaunay co-
ordinates. In the previous section, we studied the periodic orbits of the first type. Here,
we analyse the periodic orbits of the second type because they are a generalisation to the
first type of periodic orbits and more interesting for the applications of real astronomical
dynamical systems.

In the framework of multipliers are +1 for the elliptic type of periodic orbits for the
RKP, along with the fact that they are not isolated at the energy level (see Proposition 8.5.2
of [51]). The method used previously to prolongate the circular periodic orbits from the
RKP to the PCQRTBP does not work to extend elliptical periodic orbits (EPOs).
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We used the so-called Delaunay variables (L, G, Ł, h̄) rather than polar coordinates
($, ϑ, p$, pϑ) via the following canonical transformation:

p$ =

√
− h̄2

$2 +
2
$
− 1

L2 , pϑ = h̄, L =
t

Ł3 , G = ϑ− f ,

t denotes the time variable. We obtained RKP when δ = 0.
Delaunay variables are action-angle variables that are extremely important in the

theory of perturbation because the equations of motion in using these variables are greatly
convenient for applying numerical and asymptotic research techniques. These variables
represent the action-angle variables of a Kepler problem; see [51,54]. Delaunay variables are
related to parameters of Kepler elliptical motion, such that Ł =

√
a, where h̄ = Ł

√
1− e2, L

is the mean anomaly that is the angular distance that is measured from the pericentre, and
g is the angle of the pericentre from the ascending node of the body to its periapsis and is
measured in the motion direction.

In these new variables of the Delaunay type, Hamiltonian (16) takes the follow-
ing form:

κ(L, G, Ł, h̄) = − 1
2Ł2 − h̄ + O(δ, µ), (19)

The corresponding Hamiltonian system is

L̇ =
1

Ł3 + O(δ, µ), Ł̇ = O(δ, µ), Ġ = −1 + O(δ, µ), ˙̄h = O(δ, µ). (20)

Delaunay coordinates only work in the vicinity of the phase space where there are elliptical
periodic orbits of the rotating Kepler problem (EPORKP).

Birkhoff [55] observed that the Hamilton equations with Hamiltonian (12) are invariant
due to variable transformation (x, y, p1, p2, t) → (x,−y,−p1, p2,−t). Then,if (x(t), y(t),
p1(t), p2(t)) is an orbit of such a Hamiltonian system, (x(−t),−y(−t), −p1(−t), p2(−t)) is
also an orbit of that system. In the event of the perpendicular crossing of the x axis from the
orbits at the two locations of t = 0 and t = v/2, the orbit is periodic with a v period. So, a
protocol to find periodic orbits is to search for orbits with two perpendicular crossings with
the x axis. In [53], the authors applied ideas of Birkhoff for prolongating the EPORKP to the
quantised problem (PCQRTBP). Hence, we examined if the proposed idea in [53] could be
employed to extend the EPO from the RKP to the quantised problem.

There are two clear perpendicular intersections with the x axis in Delaunay’s variables
at the locations of

G(t) = iπ, L(t) = jπ,

where i and j represent different integers. Here g(t) = iπ refers to the fact that the major
axis of EPO coincides with the x axis, while L(t) = jπ indicates that the infinitesimal body
occurs on the x axis at either the apoapsis or periapsis, where the motion of the third body is
perpendicular to the x axis.

When δ = µ = 0, the motion of an elliptical orbit at initial time t = 0 is considered at
apoapsis with a positive x axis. Thereby, one obtains

G(0) = −π , L(0) = π. (21)

From Equation Set (20), the elliptical orbit of motion is determined with

L̇ =
1

Ł3 , Ł̇ = 0, Ġ = −1, ˙̄h = 0. (22)

Thus, the solutions of Equations (22) verifying the given conditions in (21) are

L(t) =
t

Ł3
0
+ π, Ł(t) = Ł0, G(t) = −t− π, h̄(t) = h̄0, (23)
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where quantities Ł0 and h̄0 are the integration constants.
Solution (23) represents an elliptical orbit with period 2πŁ3

0, and we considered the
case of 2πŁ3

0 = 2πα/β with α and β coprime positive integers. Hence, we needed to
continue Periodic Orbit (23) when δ > 0, and mass ration µ > 0 was small enough with a
period v = 2πα = 2πβŁ3

0. Therefore,

G(v/2) = ∓(1 + α)π, l(v/2) = (1 + β)π,

and this orbit had two perpendicular intersections with the x axis. However, the motion at
the small-body location (1, 0) had to be excluded to avoid collision cases.

In the context of δ > 0 and µ > 0 having small enough values, we searched for
solutions of Equation System (20) with the following forms:

(L(t, Ł0, h̄0; δ, µ), G(t, Ł0, h̄0; δ, µ), Ł(t, Ł0, h̄0; δ, µ), h̄(t, Ł0, h̄0; δ, µ)),

which had to verify the following initial conditions:

G(0, Ł0, h̄0; δ, µ) = −π , L(0, Ł0, h̄0; δ, µ) = π,

such that
ϕ1(t, Ł0, h̄0; δ, µ) = G(t, Ł0, h̄0; δ, µ)± (1 + α)π,

ϕ2(t, Ł0, h̄0; δ, µ) = L(t, Ł0, h̄0; δ, µ)− (1 + β)π,

with Ł0 near (α/β)1/3 and t near v/2.
By applying implicit function theorem (IFT), we could find the required solutions if

the following determinant value was not equal to zero, i.e.,

det
(

∂(ϕ1, ϕ2)

∂(t, Ł0)

)∣∣∣∣
δ=0
6= 0,

on the elliptic periodic orbit. Since

∣∣∣∣∂(ϕ1, ϕ2)

∂(t, Ł0)

∣∣∣∣
δ=0

=

∣∣∣∣∣∣∣∣
∂G
∂t

∂G
∂Ł0

∂L
∂t

∂L
∂Ł0

∣∣∣∣∣∣∣∣
δ=0

,

then, from (23), we obtain ∣∣∣∣∂(ϕ1, ϕ2)

∂(t, Ł0)

∣∣∣∣
δ=0

=
3v

2Ł4
0
6= 0.

Thus, we obtain the next result:

Theorem 2. Let α and β be different prime integers and v = 2πα. Then, the EPO with period v
for the RKP satisfying

G(0) = −π , L(0) = π , Ł3(0) = α/β,

without crossing location (1, 0) can be continued to the PCQRTBP when δ > 0 and µ > 0 are
small enough.

Our main results are proven through the proofs of Theorems 1 and 2. In the first
theorem, the polar variables were used instead of the rectangular coordinates to explore the
existence of the circular periodic orbits of the well-known RKP to the first periodic-orbit
type of the quantised restricted three-body problem. In the second theorem, periodic orbits
of the second type were constructed by using Delaunay’s variables.The proofs of the two
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theorems were based on the mass ratio being small enough; in the first theorem, the motion
at the location of the small body had to be excluded to avoid the collision case.

5. Conclusions

In the framework of the perturbed restricted three-body problem, the perturbed
motion of the third body was considered under quantum corrections. Hence, the existence
of periodic orbits was studied through two approaches to find the first (second) type of
periodic orbits. The main results were stated through the proofs of Theorems 1 and 2. Thus,
the essential conditions were given in order to prove that the CPORKP could be continued
to the perturbed motion of the third body under quantum corrections when the massive
primary body has excessive gravitational force over the smaller primary body. We showed
that the first type of periodic orbits can arise when the perturbed third body has infinitely
small mass, the primary bodies move about each other in circular orbit, and the mass ratio
is sufficiently small. The terminologies of Poincaré were used to prove that the PCQRTBP
had periodic orbits of first kind; see Theorem 1.

In the second approach, a canonical transformation using Delaunay’s variables was
used to study the existence of an EPO. This transformation enabled us to prove that the
EPORKP could also be continued to the perturbed motion of the third body under quantum
corrections by employing the same conditions as those of circular orbits; the mass ratio was
very small, and the perturbed third body had infinitesimal mass, but the primary bodies
moved about each other in elliptical orbit. Therefore, using the terminologies of Poincaré,
the perturbed motion of the infinitesimal body could be continued with periodic orbits of
the second type; see Theorem 2.

We conclude that the circular (elliptical) periodic orbits of the RKP coyld be continued
to the perturbed motion of the third body via quantum corrections. The existence of
the first (second) periodic-orbit type was proven for the quantised perturbed motion.
The obtained results could be applied to the perturbed restricted three-body problem in
stellar, solar, and planetary systems when the Newtonian potential of at least one body
from the primaries is corrected with the quantum effect. Despite the first and second kinds
of periodic orbits being able to be continued to classical and quantised motions when the
mass ratio is very small, the Lagrangian point locations within the new pattern provide
quantum corrections to the coordinates of Sun–Earth or Earth–Moon libration points [21,56].
In spite of the extreme smallness of the quantum corrections, there was no sign indicating
that the qualitative characteristics of the restricted three-body problem in the framework of
Newtonian potential remained unchanged. There is an extended study testing the effect of
quantum-corrected gravity on solar and stellar systems [57].
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