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Abstract: In this paper, we study how many algebraic limit cycles have the discontinuous piecewise
linear differential systems separated by a straight line, with polynomial first integrals on both sides.
We assume that at least one of the systems is Hamiltonian. Under this assumption, piecewise
differential systems have no more than one limit cycle. This study characterizes linear differential
systems with polynomial first integrals.
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1. Introduction

We will consider discontinuous piecewise linear differential systems (DPwLS) on the
plane R2. On the half plane where x is negative they are expressed as:(

ẋ
ẏ

)
= A−

(
x
y

)
+ b−, (1)

and where x is positive as: (
ẋ
ẏ

)
= A+

(
x
y

)
+ b+, (2)

where A± are real 2× 2 matrices and b± ∈ R2. For the definition of a DPwLS on x = 0, we
follow Filippov’s solution [1].

DPwLSs have been studied in depth [2]. An introduction to and a comprehensive list
of references can be found in the books [3,4], and the survey [5].

Since planar linear differential systems have no limit cycles (isolated periodic orbits),
the limit cycles of DPwLSs separated by a straight line must cross the straight line at two
points. In this paper, we do not consider the possible limit cycles which have a segment on
the discontinuous straight line, called sliding limit cycles.

The limit cycles of planar differential systems play a main role in understanding
the dynamics of such systems, as well as for planar DPwLSs. Thus, the limit cycles of
DPwLSs (1) and (2) have been studied intensively in the last twenty years. The current
situation of proven bounds is summarized in [6].

One problem still to be solved is: “Is three the maximum number of limit cycles that a
discontinuous piecewise linear differential system with a straight line of separation can have?”

Recently, Buzzi, Gasull and Torregrosa analyzed the particular class of algebraic limit
cycles in the DPwLS (1) and (2) [7]. They establish that a limit cycle is algebraic if “all its
points, except the ones on the sliding set, are contained in the level sets of one or two
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polynomials”. One of the main results of [7] is to show the existence of DPwLSs (1) and (2)
with two algebraic limit cycles.

In order to deal with algebraic limit cycles for DPwLSs, we must work with linear
differential systems with polynomial first integrals (PFI) on both sides of x = 0. Therefore,
we need to identify and classify the planar linear differential systems with a PFI. To the
best of the authors’ knowledge, such a classification has not been done. In [8], the authors
provide a characterization of all quadratic differential systems with a PFI. However, this is
not applicable to our area of interest because they do not consider the cases where all the
coefficients of the quadratic terms vanish at the same time. Below, we classify all the linear
differential systems with PFIs.

Theorem 1. Let us consider system

ẋ = a + bx + cy,
ẏ = d + ex + f y,

(3)

with at most one equilibrium point (the associated vector field has no common factors) and where b2 +
c2 + e2 + f 2 6= 0. This system has a PFI H(x, y) if and only if one of the following conditions hold.

(i) If f = −b, then H1(x, y) = ex2 − cy2 − 2bxy + 2dx− 2ay.

(ii) If f 6= −b, c 6= 0, ec 6= f b and there are two positive integers, p and q, such that p 6= q and
ce = (pb + q f )(p f + qb)/(q− p)2, then

H2(x, y) =
(

cy +
p f + qb
q− p

x +
a(p f + qb) + dc(q− p)

q( f + b)

)p

(
cy− pb + q f

q− p
x +

a(pb + q f )− dc(q− p)
p( f + b)

)q
.

(iii) If f b 6= 0, f 2 6= b2 and c = 0 and there are two positive integers p and q such that p 6= q
and pb + q f = 0, then

H3(x, y) = (a + bx)p(e f x + f ( f − b)y + d( f − b) + ae
)q.

The main goal of this paper is to characterize the maximum number of limit cycles of
DPwLSs such as (1) and (2) formed by two linear differential systems with PFI when at least
one of these differential systems is a Hamiltonian system. Our main result is the following.

Theorem 2. When both linear differential systems, (1) and (2), have a PFI, they have at most one
limit cycle if only one of the two systems is Hamiltonian. If both systems are Hamiltonian, then the
DPwLS has no limit cycles.

The rest of this paper is organized as follows. Section 2 shows a proof of Theorem 1
following arguments related with factorization and divisibility of polynomials. Section 3
gives the proof of Theorem 2, applying the first integrals of Theorem 1. Finally, in Section 4,
we present a DPwLS such as (1) and (2) when both differential systems have a PFI and
exactly one limit cycle.

In [9], they study the limit cycles of the discontinuous piecewise differential systems
separated by one straight line and formed by two polynomial Hamiltonian systems, and
consequently, such limit cycles are algebraic. While in this paper, only one of the systems is
Hamiltonian, otherwise the piecewise differential system cannot have limit cycles.

Some authors are interested in knowing if the limit cycles of a discontinuous piecewise
differential system persist when the piecewise differential is regularized (see [10]), or how
many limit cycles can have such regularized piecewise differential systems (see [11]). For
the discontinuous piecewise differential systems studied here, having one algebraic limit
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cycle, if they are regularized using the regularization of Sotomayor and Teixeira [12], the
limit cycle persists but it is no longer algebraic.

2. Proof of Theorem 1

In order to prove Theorem 1, we must introduce a previous result: the polynomial
resolution of polynomial differential equations of the form NH + UHy = 0, where N and
U are polynomial and H is a polynomial solution of degree n.

Proposition 1. We consider the differential equation

NH + UHy = 0, (4)

where N and U are polynomials, non identically zero and coprime. If U =
r

∏
i=1

Pri
i where Pi are the

irreducible real factors of U, then (4) has a polynomial solution H of degree n, different from the

trivial H = 0, if and only if there exists n1, n2, . . . , nr ∈ N such that
r
∑

i=1
ni deg Pi ≤ n and

N +
r

∑
j=1

njPj,y
U
Pj

= 0.

Moreover, when the polynomial H exists, then H = W ∏r
i=1 Pni

i , where W is a polynomial of

degree k = n−
r
∑

i=1
ni deg Pi, which does not depend on the variable y. If H is homogeneous, then

U and W are homogeneous and W = γxk with γ ∈ R.

Proof. Since N and U are coprime polynomials and H must also be polynomial, it fol-

lows that U divides H. So, n1, n2, . . . , nr ∈ N such that H = RW and R =
r

∏
i=1

Pni
i with

ni ≥ ri. Furthermore, we can assume that R and W are coprime. Taking into account these
considerations in (4):

NH + UHy = NRW + U

((
r
∑

j=1
njP

nj−1
j Pj,y

r
∏

i=1,i 6=j
Pni

i

)
W + RWy

)

= NRW + U

((
r
∑

j=1
njPj,y

R
Pj

)
W + RWy

)

= NRW + R

((
r
∑

j=1
njPj,y

U
Pj

)
W + UWy

)
= 0.

Now dividing this equation by R(
N +

r

∑
j=1

njPj,y
U
Pj

)
W + UWy = 0.

Since U and W are coprime and deg U > deg

(
N +

r
∑

j=1
njPj,y

U
Pj

)
, N +

r
∑

j=1
njPj,y

U
Pj

= 0

and Wy = 0. Thus, W = W(x). Finally, if H is homogeneous then Pj for all j = 1, . . . r and
W are also homogeneous because all of them are factors of H. Thus, U is homogeneous

and W = γxk where k = n−
r
∑

i=1
ni deg Pi.

To compute a PFI H of degree n of system (3), we use the decomposition in homoge-
neous parts of such a PFI.
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Proposition 2. We consider P(x, y) = ã + b̃x + c̃y and Q(x, y) = d̃ + ẽx + f̃ y with P ·Q 6= 0.
We suppose that the polynomial differential system

ẋ = P(x, y), ẏ = Q(x, y), (5)

has a PFI H of degree n. This can be expressed as xQ− yP =
2
∑

i=1
Ti, where Ti is the homogeneous

part of degree i of the polynomial xQ− yP.

If H =
n
∑

i=0
Hi where Hi is the homogeneous part of degree i of H, then the His verify the

following system of equations

nP1Hn + T2Hn,y = 0,
(n− 1)P1Hn−1 + T2Hn−1,y = −(nP0Hn + T1Hn,y),

. . .
(n− j)P1Hn−j + T2Hn−j,y = −((n− j + 1)P0Hn−j+1 + T1Hn−j+1,y),

. . .
P1H1 + T2H1,y = −(2P0H2 + T1H2,y),

0 = −(P0H1 + T1H1,y),

(6)

where Hj,y is the partial derivative of Hj with respect to the variable y and Pi is the homogeneous
part of the polynomial P of degree i.

Proof. We consider the partial derivatives of H, i.e., Hx and Hy. Thus:

PHx + QHy = 0. (7)

The Euler Theorem for homogeneous functions gives that

xHx + yHy =
n

∑
j=1

(xHj,x + yHj,y) =
n

∑
j=1

jHj. (8)

Therefore,

xHx =
n

∑
j=1

jHj − yHy. (9)

Multiplying Equation (7) by x and substituting xHx with the value given in (9):

P
n

∑
j=1

jHj + (xQ− yP)Hy = 0. (10)

Finally, taking into account that P = P0 + P1 and xQ− yP = T1 + T2, the homogeneous
parts of (10), arranged from the greatest to the lowest degree provide system (6).

Remark 1. If system (5) is homogeneous, ã = d̃ = 0, any PFI H verifies that each homogeneous
part of H also is a PFI of (5). Therefore, in homogeneous differential systems, it is logical to consider
only homogeneous PFI.

Corollary 1. If system (5) is homogeneous, then any homogeneous PFI H of degree n satisfies
nPH + (xQ− yP)Hy = 0, where xQ− yP = −c̃y2 + ( f̃ − b̃)xy + ẽx2.

Proof. The proof is simple, as H has only one homogeneous part of degree n, which is
H itself. Thus, system (6) is reduced to the first equation. Since P0 = T1 = 0, P1 = P and
T2 = xQ− yP, the proof follows.

Proof of Theorem 1. Let us distinguish several cases, taking into account the value of c.
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Case I: c 6= 0. Applying the change of variables to system (3)

x = x, Y =
a
c
+

b
c

x + y, (11)

results in system
ẋ = cY, Ẏ = d̃ + ẽx + f̃ Y, (12)

where d̃ = (dc− f a)/c, ẽ = (ec− f b)/c and f̃ = f + b.
We can assume that

d̃2 + ẽ2 6= 0. (13)

However, if d̃ = ẽ = 0, then d = f a/c and e = f b/c. So, Q = f P/c with f ∈ R and
system (3) will have common factors, in contradiction with the hypotheses.

Subcase (I.1): f̃ = 0. Then, f = −b, and the variables in system (12) can be separated. Thus,
the first integral is

H(x, Y) = d̃x +
ẽ
2

x2 − c
2

Y2.

By undoing the change of variables (11), the first integral H1(x, y) is

cd + ab
c

x +
ce + b2

2c
x2 − c

2
a2

c2 −
c
2

2ab
c2 x− c

2
2a
c

y− c
2

2b
c

xy− c
2

b2

c2 x2 − c
2

y2

= − a2

c
+

(
− ab

c
+

cd + ab
c

)
x +

(
− b2

2c
+

ce + b2

2c

)
x2 − c

2
y2 − ay− bxy

= − c
2

y2 +
e
2

x2 − bxy + dx− ay− a2

c
.

Multiplying this expression by two and removing the constant term, gives Statement (i)
of Theorem 1 when c 6= 0.

Subcase (I.2): f̃ 6= 0 and ẽ 6= 0. Then,

f 6= −b and ce 6= b f . (14)

Considering the new variables

X =
d̃
ẽ
+ x, Y = Y, (15)

in system (12) gives
Ẋ = cY, Ẏ = ẽX + f̃ Y, (16)

where ẽ = (ce− b f )/c 6= 0 and f̃ = f + b 6= 0.
System (16) is homogeneous and can be applied to Corollary 1. Therefore, we must solve

ncYH − c
(

Y2 − f̃ XY/c− ẽX2/c
)

HY = 0,

where T = Y2 − f̃ XY/c− ẽX2/c, so the previous equation can be written as

nYH − THY = 0. (17)

As (17) has a polynomial solution, T factorizes as T = (Y + αX)(Y + βX). We suppose
that T does not factorize. From Proposition 1, in order to have a PFI of (17), the existence of
p ∈ Z+ is necessary such that 2p ≤ n and H = TpXn−2p and

nY− p
(

2Y− f̃
c

X
)
= 0,
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or equivalently

(n− 2p)Y + p
f̃
c

X = 0.

Thus, n = 2p and f̃ = 0, should be imposed. However, this contradicts our assumptions.
Therefore, we must suppose that T factorizes, which means that T = (Y + αX)(Y + βX) with

α + β = − f̃
c

and αβ = − ẽ
c

. (18)

Keeping in mind that we are studying the case f̃ 6= 0 and ẽ 6= 0, α + β 6= 0 and αβ 6= 0,
Proposition 1 gives the PFI of (17)

H = (−Y− αX)p(Y + βX)qXn−p−q,

where p, q ∈ Z+, 2 ≤ p + q ≤ n, and

nY− p(Y + βX)− q(Y + αX) = 0.

Taking this into account,

n = p + q and αq + βp = 0. (19)

Moreover, since α + β 6= 0,
p 6= q. (20)

Considering (18), (19) and (20) all together, it can be concluded that

α =
p

c(q− p)
f̃ , β = − q

c(q− p)
f̃ . (21)

From (18) it follows that
cẽ = f̃ 2 pq

(q− p)2 . (22)

In conclusion, one PFI of system (16) is

H = (Y + αX)p(Y + βX)q,

because we have (19), (20), (21), (22) and we can reject multiplicative constants, such as (−1)p.
The first integral of the original system (3) appears by undoing the changes of vari-

ables (11) and (15). So

Y + αX = y +
b
c

x +
a
c
+

p
q− p

f̃
c

x +
p

q− p
f̃ d̃
cẽ

=

(
a
c
+

p
q− p

f̃ d̃
ẽc

)
+ y +

(
b
c
+

p
q− p

f̃
c

)
x.

However,
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a
c
+

p
q− p

d̃ f̃
ẽc

=
a
c
+

p
q− p

d̃ f̃
f̃ 2 pq

(q−p)2

=
a
c
+

d̃(q− p)
f̃ q

=
a
c
+

(cd− a f )(q− p)
c( f + b)q

=
1

c( f + b)q
(a( f + b)q + cdq− cdp− a f q + a f p)

=
1

c( f + b)q
(a(p f + qb) + cd(q− p)),

and
b
c
+

p
q− p

f̃
c
=

1
c

b(q− p) + p( f + b)
q− p

=
1

c(q− p)
(bq + f p).

Taking all this into account,

Y + αX = y +
f p + bq
c(q− p)

x +
a(p f + qb) + cd(q− p)

cq( f + b)
.

Analogously,

Y + βX = y− bp + f q
c(q− p)

x +
a(pb + q f )− cd(q− p)

cp( f + b)
.

Finally, condition (22) becomes

c(ce− b f )
c

= ( f + b)2 pq
(q− p)2 ,

so,

ce =
b f (q− p)2 + ( f + b)2 pq

(q− p)2 =
f q(bq + f p) + bp( f p + bq)

(q− p)2 =
( f q + bp)(bq + f p)

(q− p)2 .

This proves statement (ii) of Theorem 1.

Subcase (I.3): f̃ 6= 0 and ẽ = 0. This case agrees with f 6= −b and ce = b f . Additionally,
from (13):

d̃ 6= 0. (23)

Proposition 2 can be applied to solve system (12) taking P = P1 = cY and Q = d̃ + f̃ Y.
Thus,

xQ− yP = d̃x + f̃ xY− cY2 = d̃x + Y( f̃ x− cY),

and consequently,
T1 = d̃x and T2 = Y( f̃ x− cY).

The first equation of (6) can be written in this case as

ncYHn + Y( f̃ x− cY)Hn,Y = 0.

So dividing by Y:
ncHn + ( f̃ x− cY)Hn,Y = 0.

From Proposition 1, we know that there is a polynomial solution Hn if and only if
there is p ∈ N such that p ≤ n and nc− pc = 0. In addition, in this case,

Hn = ( f̃ x− cY)pxn−p.
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However, these conditions imply that (n − p)c = 0, or equivalently, n = p and
therefore,

Hn = ( f̃ x− cY)n.

Using this relation in the second equation of system (6)

(n− 1)cYHn−1 + Y( f̃ x− cY)Hn−1,Y = −d̃xn(−c)( f̃ x− cY)n−1.

It follows easily that Y should divide the right side of this equality, which leads to a
contradiction because from (23), f̃ 6= 0 and c 6= 0. Therefore, in this case, no PFI exists.

Case (II): c = 0. Changing variables X = y and Y = x to system (3) gives

Ẋ = ā + b̄X + c̄Y, Ẏ = d̄ + ēX + f̄ Y, (24)

where ā = d, d̄ = a, b̄ = f , f̄ = b, c̄ = e and ē = c = 0. Two subcases can be identified.

Subcase (II.1): c̄ 6= 0, which agrees with case (I) previously discussed. Therefore, the PFI exists.

Subcase (II.1.1): f̄ = −b̄, for which it is known that one PFI is

H(X, Y) = −c̄Y2 − 2b̄XY + 2d̄X− 2āY.

By undoing the change of variables applied in order to obtain system (24), the condition
characterizing this case translates to b = − f , and the first integral can be written as

H(x, y) = −ex2 + 2bxy + 2ay− 2dx.

Therefore, statement (i) of Theorem 1 is verified when c = 0. Thus, together with
subcase (I.1) this concludes the proof of subcase (II.1.1).
Subcase (II.1.2): f̄ 6= −b̄ and f̄ b̄ 6= 0. This subcase coincides with conditions (14) in
Subcase (I.2). Therefore, in order to have a PFI H̄, there must be a p, q ∈ N such that p 6= q,

ēc̄ =
(pb̄ + q f̄ )(p f̄ + qb̄)

(q− p)2

and H̄(X, Y) = F̄pḠq where

F̄(X, Y) = c̄Y +
p f̄ + qb̄
q− p

X +
ā(p f̄ + qb̄) + d̄c̄(q− p)

q( f̄ + b̄)
, and

Ḡ(X, Y) = c̄Y− pb̄ + q f̄
q− p

X +
ā(pb̄ + q f̄ )− d̄c̄(q− p)

p( f̄ + b̄)
.

The change of variables is now undone. From (24), the conditions are translated to
b 6= f and b f 6= 0. Furthermore, p and q satisfy that

(p f + qb)(pb + q f ) = 0 (25)

and the PFI is H(x, y) = FpGq where

F(x, y) = ex +
pb + q f
q− p

y +
d(pb + q f ) + ae(q− p)

q( f + b)
, and

G(x, y) = ex− p f + qb
q− p

y +
d(p f + qb)− ae(q− p)

q( f + b)
.

We assume now that (25) is satisfied because pb + q f = 0. Hence, f 6= b, because
n = p + q ∈ Z+ is the degree of H. It can be concluded that

p =
−n f
b− f

and q =
nb

b− f
,
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and therefore,

q− p =
n(b + f )

b− f
and p f + qb = n(b + f ).

Taking into account these relations,

F(x, y) = ex +
ae(q− p)
q( f + b)

= ex + ae
n(b + f )

b− f
1

nb
b− f

( f + b)

= ex +
ae
b

= e(bx + a), and

G(x, y) = ex− n( f + b)
n( f + b)

b− f

y +

dn( f + b)− aen(b + f )
b− f

− n f
b− f

( f + b)

= ex− (b− f )y− d
f − b

f
− ae

f
= ex− (b− f )y− d(b− f ) + ae

f
.

In conclusion, under our assumptions

H(x, y) = (a + bx)p(e f x + f ( f − b)y + d( f − b) + ae)q.

Following similar computations, if (25) is satisfied from the assumption that p f + qb = 0,
the same expression for H(x, y) is obtained. This concludes the proof of statement (iii) of
Theorem 1.

Subcase (II.2): ē = 0 and c̄ = 0. This is the last subcase to consider to finish the proof. If we
undo the change of variables taking into account (24), system (3) can be written as

ẋ = a + bx, ẏ = d + f y,

and the general hypothesis is reduced to b2 + f 2 6= 0.
This shows that, in fact, we are only interested in the case b f 6= 0. We assume, contrary

to our claim, that b = 0. Hence, a f 6= 0 in order to avoid common factors in the differential
system, as the variables can be separated in the system,

1
a

dx− 1
d + f y

ay = 0.

Integrating this equality:

x
a
− 1

f
ln(d + f y) = k,

where k is a constant. Straightforward computations provide the relation

d + f y = k · exp
(

f
a

x
)

.

Therefore, a PFI does not exist.
Analogously, it can be shown that the PFI cannot be found for the case f = 0. Therefore,

in order for a PFI to exist, there must be b f 6= 0. However, if b = − f it corresponds to
statement (i) of Theorem 1, whereas if b 6= − f it corresponds to statement (iii) of Theorem 1
for c = e = 0.

3. Proof of Theorem 2

Theorem 2 focuses on giving bounds to the number of limit cycles of DPwLS (1)
and (2). Therefore, although it is not necessary, in order to reduce the computations solving
these bounds, we shall apply Theorem 1 to the canonical forms introduced in [13].
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Hence, from now on, we consider the DPwLSs with real coefficients

ẋ = 2`x− y
ẏ = (`2 − α2)x + g

, (26)

defined when x ≤ 0, and
ẋ = 2rx− y + j
ẏ = (r2 − β2)x + k

, (27)

defined when x ≥ 0, with α, β ∈ {i, 0, 1} and i2 = −1.
From [13], it follows that there is a topological equivalence between the DPwLS (1)

and (2) and the DPwLS (26) and (27). Consequently, their phase portraits are also equiva-
lents, taking orbits into orbits and remaining invariant {x = 0}. This must be done while
avoiding orbits, which pass through sliding sets of these systems.

Therefore, we shall now study the PFI of the canonical differential systems (26) and (27)
using Theorem 1.

Proposition 3. Considering
ẋ = 2lx− y + s,
ẏ = (l2 − α2)x + t,

(28)

where l, s, t ∈ R and α ∈ {i, 0, 1}. Then, (28) has a PFI, H(x, y), in the following cases only:

(i) l = 0 and in this case
H(x, y) = y2 − α2x2 + 2tx− 2sy; (29)

(ii) l = q−p
q+p 6= 0 with p, q ∈ Z+ and α = 1. In this case,

H(x, y) =
(

y− 2q
q + p

x +
t(q + p)

2q
− s
)p(

y +
2p

q + p
x− t(q + p)

2p
− s
)q

. (30)

Proof. Theorem 1 implies that we should consider two cases, l = 0 and l 6= 0.
If l = 0, then system (28) satisfies the condition f = −b = 0 of statement (i) of

Theorem 1, and (29) is straightforward from that statement.
If l 6= 0, as in systems (28) and (3) of Theorem 1, we obtain that a = s, f = 0 6= −b =

−2l, c = −1 6= 0 and e = l2 − α2. Therefore, the existence of a PFI is satisfied only under
the conditions of statement (ii) of Theorem 1. Hence, the condition ce 6= b f should be
studied, where

ce = α2 − l2 and b f = 0. (31)

It follows easily that α 6= ±l.

Furthermore, for the case p, q ∈ Z+, such that p 6= q and ce =
(pb + q f )(p f + qb)

(q− p)2 , the

right hand side satisfies

(pb + q f )(p f + qb)
(q− p)2 =

(2lp)(2lq)
(q− p)2 =

4pq
(q− p)2 l2.

So from (31):

α2 − l2 =
4qp

(q− p)2 l2.

However, this means that

α2 =

(
4pq

(q− p)2 + 1
)

l2 =
(p + q)2

(q− p)2 l2.
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Therefore, in this case, there is a PFI if and only if l2 =
(q− p)2

(q + p)2 α2 or, equivalently,

l = ± q− p
q + p

α.

System (28) has real coefficients, so l ∈ R, and since l 6= 0, it follows that α 6= 0 and
α 6= i. Thus, α = 1. Therefore, from statement (ii) of Theorem 1, if a PFI exists it must be

H(x, y) =
(
−y +

2lq
q− p

x + s− t(q− p)
2lq

)p(
−y− 2lp

q− p
x + s +

t(q− p)
2lp

)q
.

If l = q−p
q+p , then the first integral H is written

H(x, y) =
(
−y +

2q
q + p

x + s− t(q + p)
2q

)p(
−y− 2p

q + p
x + s +

t(q + p)
2p

)q
. (32)

Likewise, if l = p−q
q+p , then the first integral H becomes

H(x, y) =
(
−y− 2q

q + p
x + s +

t(q + p)
2q

)p(
−y +

2p
q + p

x + s− t(q + p)
2p

)q
. (33)

In fact, (32) and (33) are the same PFI with p and q reversed, and multiplying H(x, y)
by (−1)p+q, gives (30). This completes the proof of Proposition 3.

Corollary 2. (i) System (26) has a PFI if and only if

(i.1) l = 0, with Ĥ1(x, y) = y2 − α2x2 + 2gx; or
(i.2) l = q−p

q+p 6= 0 where p, q ∈ Z+ and α = 1, with

Ĥ2(x, y) =
(

y− 2q
q + p

x +
g(q + p)

2q

)p(
y +

2p
q + p

x− g(q + p)
2p

)q
.

(ii) System (27) has a PFI if and only if

(ii.1) r = 0, with Ĥ3(x, y) = y2 − β2x2 + 2kx− 2jy; or
(ii.2) r = q−p

q+p 6= 0 where p, q ∈ Z+ and β = 1, with

Ĥ4(x, y) =
(

y− 2q
q + p

x +
k(q + p)

2q
− j
)p(

y +
2p

q + p
x− k(q + p)

2p
− j
)q

.

Proof. The proof is straightforward from Proposition 3.

Remark 2. Cases (i.1) and (ii.1) are Hamiltonian cases. Any system of case (i.2) has a saddle point

located at
(

h(p + q)
2pq

,
h(q− p)

pq

)
where h =

g(p + q)
2

, and its separatrices cut x = 0 at
(

0,−h
q

)
and

(
0,

h
p

)
. Systems of cases (ii.2) also have a saddle point, located at

(
h̄(p + q)

2pq
,

h̄(q− p)
pq

+ j
)

with h̄ =
k(p + q)

2
, and its separatrices cut x = 0 at

(
0,− h̄

q
+ j
)

and
(

0,
h̄
p
+ j
)

.

Focusing again on the location of piecewise limit cycles, we start with some geometrical
ideas. Under the assumptions of Theorem 1, let H−(x, y) (equivalently, H+(x, y)) be a
PFI of the linear system in x ≤ 0 (equivalently, x ≥ 0). Any limit cycle must intersect the
straight line x = 0 at points (0, y) and (0, Y) with y 6= Y such that

H−(0, y)− H−(0, Y) = 0,

H+(0, y)− H+(0, Y) = 0.
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Hence, if we count the pairs of solutions (y, Y) we can give an upper bound to the number of
limit cycles of a piecewise differential system under the hypotheses of Theorem 2. However,
this is only the upper bound because the connection between branches of the first integrals
do not provide a closed curve, or a closed curve which, is not a periodic orbit, because the
two pieces are not oriented in the same direction. Some examples of these phenomena can
be seen in Figure 1.

(a) (b)

Figure 1. Some possible connections between both side branches. (a) Cycle shape appears; (b) It is
not a cycle.

Below these results are applied to the proof of Theorem 2.

Proposition 4. Let γ be a limit cycle of a DPwLS (26) and (27) with a PFI on both sides of
Σ = {x = 0}. If one of the first integrals corresponds to a linear differential system with a saddle,
γ intersects Σ at two points located between the two points of Σ, which belong to the separatrices of
the saddle.

Proof. As a linear differential system, without common factors and having a PFI, it is
topologically equivalent to a linear Hamiltonian system (see Proposition C in [14]), the ω
and α-limits of the orbits in the saddle case are restricted to the limits of the separatrices.
Hence, any orbit out of its separatrices and far from the equilibrium point has a similar
behavior to those which are two straight lines, according to Corollary 2. This implies that
any orbit will cross Σ twice if and only if both separatrices cross Σ and the orbit is located at
the hyperbolic region between the branches of the separatrices crossing Σ. See Figure 2.

Figure 2. Graphical representation of a polynomial saddle phase portrait.

Lemma 1. We consider the function fp,α(x) =
(

x− α

x + α

)p
for all x ∈ R \ {−α} with 0 < α and

p ∈ Z+. Thus it is satisfied that fp,α(α) = 0, fp,α(0) = (−1)p, lim
x→±∞

fp,α(x) = 1 and

(i) if p is even, fp,α(x) > 0 for all x ∈ R \ {−α, α}, fp,α decreases for x ∈ (−α, α) and increases
outside, with a local minimum at x = α and an inflexion point at x = pα; and,

(ii) if p is odd, fp,α(x) > 0 if and only if x ∈ R \ (−α, α), fp,α increases for all x ∈ R \ {−α},
with an inflexion point at x = α and, if p > 1, another one at x = pα.
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Proof. First, straightforward computations show that fp,α(α) = 0 and fp,α(0) = (−1)p.
Since

f ′p,α(x) = p
(

x− α

x + α

)p−1 x + α− x + α

(x + α)2 =
2pα

(x + α)2

(
x− α

x + α

)p−1
.

Multiplying both sides by (x− α)(x + α) gives

(x− α)(x + α) f ′p,α(x) = 2pα fp,α(x). (34)

The second derivative is computed as

(x + α + x− α) f ′p,α(x) + (x− α)(x + α) f ′′p,α(x) = 2pα f ′p,α(x),

then
2(x− pα) f ′p,α(x) + (x− α)(x + α) f ′′p,α(x) = 0. (35)

From (34), we conclude that if f ′p,α(x) = 0 then also fp,α(x) = 0. So, x = α is the only
possible relative extreme. From (35), we conclude that f ′′p,α(x) = 0 if and only if f ′p,α(x) = 0
or 2(x− pα) = 0. Hence, there are two possible inflexion points, x = α and x = pα.

(i) When p is even, it is obvious that fp,α(x) > 0 for all x ∈ R \ {−α, α} and fp,α(α) = 0.
From (34)

(x− α)(x + α) f ′p,α(x) > 0,

which implies that either (x− α)(x + α) > 0 and f ′p,α(x) > 0, or (x− α)(x + α) < 0
and f ′p,α(x) < 0. Thus,

f ′p,α(x) > 0 if x ∈ (−∞,−α) ∪ (α, ∞)

and
f ′p,α(x) < 0 if x ∈ (−α, α).

Moreover, the sign of f ′p,α(x) changes at x = α. It is negative before α and positive
after it, so at this point fp,α has a local minimum.

Since (x − α)(x + α) f ′p,α(x) > 0 is equivalent to
f ′p,α(x)

(x−α)(x+α)
> 0, then (35) can be

rewritten as

f ′′p,α(x) =
− f ′p,α(x)

(x− α)(x + α)
2(x− pα),

hence, f ′′p,α(x) > 0 if and only if 2(x− pα) < 0 or, equivalently, if x < pα. This means
that fp,α has an inflexion point at x = pα.

(ii) When p is odd, fp,α(x) is positive if and only if (x− α)(x+ α) > 0, i.e., x ∈ (−∞,−α)∪
(α, ∞). This implies that fp,α(x) < 0 if and only if x ∈ (−α, α).
In order to study the monotonicity, (34) is used:

f ′p,α(x) = 2pα
fp,α(x)

(x− α)(x + α)
.

This implies that fp,α(x)
(x−α)(x+α)

> 0 for all x ∈ R \ {−α, α}. Since α > 0 we conclude
that f ′p,α(x) > 0 for all x ∈ R \ {−α, α}. So fp,α is an increasing function in the
whole domain.
Finally, we use (35) to study the convexity,

f ′′p,α(x) =
− f ′p,α(x)

(x− α)(x + α)
2(x− pα).
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As far as f ′p,α(x) > 0 for all x, f ′′p,α(x) > 0 for (x− α)(x + α) > 0 and 2(x− pα) > 0, or
(x− α)(x + α) < 0 and 2(x− pα) < 0. In the first case, if x ∈ (−∞,−α) ∪ (α, ∞) and
x < pα, then f ′′p,α(x) > 0 if x ∈ (−∞,−α) ∪ (α, pα). In the second case, f ′′p,α(x) > 0 if
x ∈ (−α, α) and x > pα. However, pα ≥ α, and since p ∈ Z+ and α > 0, then there
is no other solution for x where f ′′p,α(x) > 0. In conclusion, f ′′p,α(x) > 0 if and only if
x ∈ (−∞,−α) ∪ (α, pα). In a similar way, we conclude that f ′′p,α(x) < 0 if, and only if,
x ∈ (−α, α) ∪ (pα, ∞).

Thus, the proof is complete.

Remark 3. Figure 3 shows graphical representations of the results obtained in this proof.

(a) (b)
Figure 3. Graphical representations of fp,α(x) from Lemma 1. (a) p is even; (b) p is odd.

Proof of Theorem 2. Taking into account Corollary 2, it is enough to check Theorem 2
for the planar DPwLS (26) and (27). We divide the proof into three cases according to
Corollary 2, which controls when the linear differential systems (26) and (27) have PFI.

Case 1: Systems (26) and (27) are both Hamiltonian. Therefore, from Proposition 3 in
system (27), r = 0. Similarly, in system (26), ` = 0. In this case, every limit cycle of
DPwLS (26) and (27) crosses x = 0 at two different points (0, y) and (0, Y), satisfying
the system

e1 = Ĥ1(0, y)− Ĥ1(0, Y) = (y−Y)(y + Y) = 0,

e2 = Ĥ3(0, y)− Ĥ3(0, Y) = (y−Y)(y + Y− 2j) = 0,

using the notation of Corollary 2.
We are only interested in the solutions in which y 6= Y. System e1 = 0, e2 = 0 either

has no solutions, or has an infinite number of solutions when j = 0. Consequently, there
are no isolated solutions, and therefore, in this case, the DPwLS (26) and (27) have no
limit cycles.

Case 2: Only system (26) is Hamiltonian. From Proposition 3, system (27) has β = 1 and

r =
q− p
q + p

6= 0 with p, q ∈ Z+, and system (26) has ` = 0. In this case, every limit cycle of

the DPwLS (26) and (27) crosses x = 0 at two different points (0, y) and (0, Y) satisfying
the system
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e1 = Ĥ1(0, y)− Ĥ1(0, Y) = (y−Y)(y + Y) = 0,

e2 = Ĥ4(0, y)− Ĥ4(0, Y)

=

(
y +

k(q + p)
2q

− j
)p(

y− k(q + p)
2p

− j
)q
−(

Y +
k(q + p)

2q
− j
)p(

Y− k(q + p)
2p

− j
)q

= 0.

As in the previous case, we are only interested in solutions in which y 6= Y. As e1 = 0
implies that y = −Y, e2 = 0 implies that(

−Y +
k(q + p)

2q
− j
)p(
−Y− k(q + p)

2p
− j
)q

=

(
Y +

k(q + p)
2q

− j
)p(

Y− k(q + p)
2p

− j
)q

,

or, equivalently −Y +
k(q + p)

2q
− j

Y +
k(q + p)

2q
− j


p

=

 Y− k(q + p)
2p

− j

−Y− k(q + p)
2p

− j


q

.

Lemma 1 gives the need for:

fp,α(Y) = (−1)p+q fq,β(Y),

where α = k(p+q)
2q − j and β = j + k(p+q)

2p . We can assume k is positive, otherwise switching
k̄ = −k > 0, p̄ = q and q̄ = p will expand the same equation, e2 = 0, under this assumption.
In this case, −α < j < β and according to Proposition 4, we should look for solutions
Y ∈ (−α, β). Furthermore, as y = −Y, there is a solution in (−α, β), which implies that
(−|Y|, |Y|) ⊂ (−α, β), so α and β are both positive.

The proof is completed by showing that the graphs of fp,α(x) and (−1)p+q fq,β(x) cut
each other in one non-vanishing value of x ∈ (−α, β), at most. In order to check this, we
must take into account the parity of p and q and the relative positions of α and β. Lemma 1
is the key to this analysis.

Nevertheless, we only need to consider one case: p and q even. In Statements (ii) and
(iii) of Theorem 1, without loss of generality, we can assume that p and q are both even.
On the contrary, p′ = 2p and q′ = 2q are both even, satisfying the same hypotheses of the
theorem for the same differential system and giving a PFI, H′j , such that H′j = (Hj)

2 for any
j = 2, 3.

Let p and q be even integers. In this case, (−1)p+q = 1, so we will compare fp,α
and fq,β. For α < β, we divide (−α, β), studying intervals (−α, α) and (α, β) separately.
At both intervals, fp,α and fq,β are positive functions. However, at (−α, α), both functions
decreases while at (α, β) fp,α increases and fq,β decreases. Since 0 belongs to (−α, α) and
both functions have the same value at this point, 1, there are no inflexion points in this
interval. There are no other points in common between the two graphs in this interval.
In interval (α, β), the monotonicity is enough to assure the existence of a point in common
because fp,α(α) = 0, fp,α(β) > 0, fq,β(α) > 0 and fq,β(β) = 0. Figure 4 summarizes
our proof.

If β < α, similar arguments can be developed, but analyzing the functions at the
intervals (−α,−β) and (−β, β) separately. This completes the desired conclusion, with at
most one limit cycle.
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Case 3: Only system (27) is Hamiltonian. Again, from Proposition 3, in system (27) r = 0
and in system (26) α = 1 and ` = q−p

q+p 6= 0 with p, q ∈ Z+. In this case, every limit cycle of
the DPwLS (26) and (27) crosses x = 0 at two different points, (0, y) and (0, Y), satisfying
the system

e1 = Ĥ2(0, y)− Ĥ2(0, Y)

=

(
y +

g(q + p)
2q

)p(
y− g(q + p)

2p

)q
−
(

Y +
g(q + p)

2q

)p(
Y− g(q + p)

2p

)q
= 0.

e2 = Ĥ3(0, y)− Ĥ3(0, Y) = (y−Y)(y + Y) = 0,

Similar arguments as the ones used in Case 2 show that DPwLS (26) and (27) have at most
one limit cycle.

Therefore, we have completed the proof of Theorem 2.

(a) (b)
Figure 4. p and q even. (a) α < β; (b) β < α.

4. Examples

In this section, we show that the bound obtained in Theorem 2 can be achieved.

We consider A− =

(
2 −1
3 −2

)
, A+ =

(
1/2 1

1 1/2

)
, b− =

(
1
1

)
and b+ =

(
a
d

)
with

a, d ∈ R and the piecewise linear system given by(
ẋ
ẏ

)
= A−

(
x
y

)
+ b−, (36)

if x ≤ 0, and (
ẋ
ẏ

)
= A+

(
x
y

)
+ b+, (37)

if x ≥ 0.
System (36) satisfies the hypotheses of Theorem 1 statement (i). It means that Sys-

tem (36) is a Hamiltonian system and has H− = 3x2 + y2 − 4xy + 2x− 2y as a first integral.
Moreover, this system has a saddle located at (−1,−1) and its separatrices are y = x (un-
stable) and y = 3x + 2 (stable). These separatrices cut the vertical axis at (0, 0) and (0, 2).

System (37) satisfies the hypotheses of Theorem 1 statement (ii) with p = 1 and q = 3.
Thus, system (37) has the PFI

H+ =

(
y + x +

2
3
(a + d)

)
(y− x + 2(a− d))3.
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This shows that this system has a saddle located at
(

2a−4d
3 , 2d−4a

3

)
and its separatrices

are y = −x− 2
3 (a + d) (stable) and y = x− 2(a− d) (unstable). These separatrices cut the

vertical axis at (0,− 2
3 (a + d)) and (0,−2(a− d)).

We denote γ = 2
3 (a + d) and θ = 2(a− d). In this way, as mentioned before, we can

characterize the limit cycles solving system

H+(0, y1)− H+(0, y0) = 0,
H−(0, y1)− H−(0, y0) = 0,

(38)

where y1 and y0 are unknown and identify points at Σ0 = {(x, y) ∈ R2 : x = 0} that
characterize both level curves completing the cycle, if one exists. If we compute the
resultant of both left-hand side expressions with respect to y1, we conclude that, in order to
have a limit cycle, a necessary condition is that y0 satisfies the equation

R(y0) = −(4 + γ + 3θ)y2
0 + 2(4 + γ + 3θ)y0 − θ3 − 3γθ2 − 6θ2 − 6γθ − 12θ − 4γ− 8 = 0.

The discriminant of this quadratic equation is

D(γ, θ) = −4(1 + θ)2(4 + 3γ + θ)(4 + γ + 3θ).

Figure 5 shows the set of points where D(γ, θ) vanishes. Thus, these straight lines
bound the regions where the discriminant does not vanish and R(y0) = 0 may or may not
have real solutions.

Figure 5. Regions delimited by D(γ, θ) = 0.

As (0, y0) is an intersection point of the limit cycle with Σ0 and any limit cycle requires
two of these points, we look for the region where R(y0) = 0 has two real different solutions.
This means that we are interested in D(γ, θ) > 0, or equivalently,

(4 + 3γ + θ)(4 + γ + 3θ) < 0.

In order to assure the existence of a limit cycle, the solutions of R(y0) = 0 must
be located at (−2, 0) and between −γ and −θ, the intersection points of the separatrices
and Σ0. The equations

R(−γ) = −(2 + γ + θ)3 = 0,
R(−θ) = −4(1 + θ)2(2 + γ + θ) = 0,
R(0) = −8− 4γ− 12θ − 6γθ − 6θ2 − 3γθ2 − θ3 = 0,
R(−2) = −40− 12γ− 36θ − 6γθ − 6θ2 − 3γθ2 − θ3 = 0
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characterize the regions that must be studied. It is simple to check that we have found
algebraic limit cycles if γ and θ satisfy

2 + γ + θ > 0,
4 + 3γ + θ < 0,
−8− 4γ− 12θ − 6γθ − 6θ2 − 3γθ2 − θ3 < 0.

Figure 6 shows the region described above, as well as the limit cycle found for γ = −2
and θ = 1. In this case, we see that the limit cycle passes through the points (0, 1− 2

√
5

5 ) ≈
(0, 0.105573) and (0, 1 + 2

√
5

5 ) ≈ (0, 1.89443).

(a)

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

(b)
Figure 6. (a) Region with limit cycle; (b) Limit cycle found for γ = −2 and θ = 1.

5. Discussion

We have illustrated how to study the limit cycles of piecewise differential systems
separated by one straight line and formed by two integrable systems. Here, we have
considered that the first integrals of both differential systems are polynomials with one of
the differential systems being a Hamiltonian system, and consequently, if the piecewise dif-
ferential system has limit cycles, these are algebraic. Under this assumption, the piecewise
differential system has no more than one limit cycle. Additionally, we have characterized
the linear differential systems with polynomial first integrals.
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